1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/CodeGen/MachineCodeEmitter.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/ObjectCodeEmitter.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/Function.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/MC/MCCodeEmitter.h"
33 #include "llvm/MC/MCExpr.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
42 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
45 template<class CodeEmitter
>
46 class VISIBILITY_HIDDEN Emitter
: public MachineFunctionPass
{
47 const X86InstrInfo
*II
;
51 intptr_t PICBaseOffset
;
56 explicit Emitter(X86TargetMachine
&tm
, CodeEmitter
&mce
)
57 : MachineFunctionPass(&ID
), II(0), TD(0), TM(tm
),
58 MCE(mce
), PICBaseOffset(0), Is64BitMode(false),
59 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
60 Emitter(X86TargetMachine
&tm
, CodeEmitter
&mce
,
61 const X86InstrInfo
&ii
, const TargetData
&td
, bool is64
)
62 : MachineFunctionPass(&ID
), II(&ii
), TD(&td
), TM(tm
),
63 MCE(mce
), PICBaseOffset(0), Is64BitMode(is64
),
64 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
66 bool runOnMachineFunction(MachineFunction
&MF
);
68 virtual const char *getPassName() const {
69 return "X86 Machine Code Emitter";
72 void emitInstruction(const MachineInstr
&MI
,
73 const TargetInstrDesc
*Desc
);
75 void getAnalysisUsage(AnalysisUsage
&AU
) const {
77 AU
.addRequired
<MachineModuleInfo
>();
78 MachineFunctionPass::getAnalysisUsage(AU
);
82 void emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
);
83 void emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
84 intptr_t Disp
= 0, intptr_t PCAdj
= 0,
85 bool NeedStub
= false, bool Indirect
= false);
86 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
);
87 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
, intptr_t Disp
= 0,
89 void emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
92 void emitDisplacementField(const MachineOperand
*RelocOp
, int DispVal
,
93 intptr_t Adj
= 0, bool IsPCRel
= true);
95 void emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeField
);
96 void emitRegModRMByte(unsigned RegOpcodeField
);
97 void emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
);
98 void emitConstant(uint64_t Val
, unsigned Size
);
100 void emitMemModRMByte(const MachineInstr
&MI
,
101 unsigned Op
, unsigned RegOpcodeField
,
104 unsigned getX86RegNum(unsigned RegNo
) const;
107 template<class CodeEmitter
>
108 char Emitter
<CodeEmitter
>::ID
= 0;
109 } // end anonymous namespace.
111 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
112 /// to the specified templated MachineCodeEmitter object.
114 FunctionPass
*llvm::createX86CodeEmitterPass(X86TargetMachine
&TM
,
115 MachineCodeEmitter
&MCE
) {
116 return new Emitter
<MachineCodeEmitter
>(TM
, MCE
);
118 FunctionPass
*llvm::createX86JITCodeEmitterPass(X86TargetMachine
&TM
,
119 JITCodeEmitter
&JCE
) {
120 return new Emitter
<JITCodeEmitter
>(TM
, JCE
);
122 FunctionPass
*llvm::createX86ObjectCodeEmitterPass(X86TargetMachine
&TM
,
123 ObjectCodeEmitter
&OCE
) {
124 return new Emitter
<ObjectCodeEmitter
>(TM
, OCE
);
127 template<class CodeEmitter
>
128 bool Emitter
<CodeEmitter
>::runOnMachineFunction(MachineFunction
&MF
) {
130 MCE
.setModuleInfo(&getAnalysis
<MachineModuleInfo
>());
132 II
= TM
.getInstrInfo();
133 TD
= TM
.getTargetData();
134 Is64BitMode
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
135 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
138 DEBUG(errs() << "JITTing function '"
139 << MF
.getFunction()->getName() << "'\n");
140 MCE
.startFunction(MF
);
141 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
143 MCE
.StartMachineBasicBlock(MBB
);
144 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
146 const TargetInstrDesc
&Desc
= I
->getDesc();
147 emitInstruction(*I
, &Desc
);
148 // MOVPC32r is basically a call plus a pop instruction.
149 if (Desc
.getOpcode() == X86::MOVPC32r
)
150 emitInstruction(*I
, &II
->get(X86::POP32r
));
151 NumEmitted
++; // Keep track of the # of mi's emitted
154 } while (MCE
.finishFunction(MF
));
159 /// emitPCRelativeBlockAddress - This method keeps track of the information
160 /// necessary to resolve the address of this block later and emits a dummy
163 template<class CodeEmitter
>
164 void Emitter
<CodeEmitter
>::emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
) {
165 // Remember where this reference was and where it is to so we can
166 // deal with it later.
167 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
168 X86::reloc_pcrel_word
, MBB
));
172 /// emitGlobalAddress - Emit the specified address to the code stream assuming
173 /// this is part of a "take the address of a global" instruction.
175 template<class CodeEmitter
>
176 void Emitter
<CodeEmitter
>::emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
177 intptr_t Disp
/* = 0 */,
178 intptr_t PCAdj
/* = 0 */,
179 bool NeedStub
/* = false */,
180 bool Indirect
/* = false */) {
181 intptr_t RelocCST
= Disp
;
182 if (Reloc
== X86::reloc_picrel_word
)
183 RelocCST
= PICBaseOffset
;
184 else if (Reloc
== X86::reloc_pcrel_word
)
186 MachineRelocation MR
= Indirect
187 ? MachineRelocation::getIndirectSymbol(MCE
.getCurrentPCOffset(), Reloc
,
188 GV
, RelocCST
, NeedStub
)
189 : MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
190 GV
, RelocCST
, NeedStub
);
191 MCE
.addRelocation(MR
);
192 // The relocated value will be added to the displacement
193 if (Reloc
== X86::reloc_absolute_dword
)
194 MCE
.emitDWordLE(Disp
);
196 MCE
.emitWordLE((int32_t)Disp
);
199 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
200 /// be emitted to the current location in the function, and allow it to be PC
202 template<class CodeEmitter
>
203 void Emitter
<CodeEmitter
>::emitExternalSymbolAddress(const char *ES
,
205 intptr_t RelocCST
= (Reloc
== X86::reloc_picrel_word
) ? PICBaseOffset
: 0;
206 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
207 Reloc
, ES
, RelocCST
));
208 if (Reloc
== X86::reloc_absolute_dword
)
214 /// emitConstPoolAddress - Arrange for the address of an constant pool
215 /// to be emitted to the current location in the function, and allow it to be PC
217 template<class CodeEmitter
>
218 void Emitter
<CodeEmitter
>::emitConstPoolAddress(unsigned CPI
, unsigned Reloc
,
219 intptr_t Disp
/* = 0 */,
220 intptr_t PCAdj
/* = 0 */) {
221 intptr_t RelocCST
= 0;
222 if (Reloc
== X86::reloc_picrel_word
)
223 RelocCST
= PICBaseOffset
;
224 else if (Reloc
== X86::reloc_pcrel_word
)
226 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
227 Reloc
, CPI
, RelocCST
));
228 // The relocated value will be added to the displacement
229 if (Reloc
== X86::reloc_absolute_dword
)
230 MCE
.emitDWordLE(Disp
);
232 MCE
.emitWordLE((int32_t)Disp
);
235 /// emitJumpTableAddress - Arrange for the address of a jump table to
236 /// be emitted to the current location in the function, and allow it to be PC
238 template<class CodeEmitter
>
239 void Emitter
<CodeEmitter
>::emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
240 intptr_t PCAdj
/* = 0 */) {
241 intptr_t RelocCST
= 0;
242 if (Reloc
== X86::reloc_picrel_word
)
243 RelocCST
= PICBaseOffset
;
244 else if (Reloc
== X86::reloc_pcrel_word
)
246 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
247 Reloc
, JTI
, RelocCST
));
248 // The relocated value will be added to the displacement
249 if (Reloc
== X86::reloc_absolute_dword
)
255 template<class CodeEmitter
>
256 unsigned Emitter
<CodeEmitter
>::getX86RegNum(unsigned RegNo
) const {
257 return II
->getRegisterInfo().getX86RegNum(RegNo
);
260 inline static unsigned char ModRMByte(unsigned Mod
, unsigned RegOpcode
,
262 assert(Mod
< 4 && RegOpcode
< 8 && RM
< 8 && "ModRM Fields out of range!");
263 return RM
| (RegOpcode
<< 3) | (Mod
<< 6);
266 template<class CodeEmitter
>
267 void Emitter
<CodeEmitter
>::emitRegModRMByte(unsigned ModRMReg
,
268 unsigned RegOpcodeFld
){
269 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, getX86RegNum(ModRMReg
)));
272 template<class CodeEmitter
>
273 void Emitter
<CodeEmitter
>::emitRegModRMByte(unsigned RegOpcodeFld
) {
274 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, 0));
277 template<class CodeEmitter
>
278 void Emitter
<CodeEmitter
>::emitSIBByte(unsigned SS
,
281 // SIB byte is in the same format as the ModRMByte...
282 MCE
.emitByte(ModRMByte(SS
, Index
, Base
));
285 template<class CodeEmitter
>
286 void Emitter
<CodeEmitter
>::emitConstant(uint64_t Val
, unsigned Size
) {
287 // Output the constant in little endian byte order...
288 for (unsigned i
= 0; i
!= Size
; ++i
) {
289 MCE
.emitByte(Val
& 255);
294 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
295 /// sign-extended field.
296 static bool isDisp8(int Value
) {
297 return Value
== (signed char)Value
;
300 static bool gvNeedsNonLazyPtr(const MachineOperand
&GVOp
,
301 const TargetMachine
&TM
) {
302 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
303 // mechanism as 32-bit mode.
304 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit() &&
305 !TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin())
308 // Return true if this is a reference to a stub containing the address of the
309 // global, not the global itself.
310 return isGlobalStubReference(GVOp
.getTargetFlags());
313 template<class CodeEmitter
>
314 void Emitter
<CodeEmitter
>::emitDisplacementField(const MachineOperand
*RelocOp
,
316 intptr_t Adj
/* = 0 */,
317 bool IsPCRel
/* = true */) {
318 // If this is a simple integer displacement that doesn't require a relocation,
321 emitConstant(DispVal
, 4);
325 // Otherwise, this is something that requires a relocation. Emit it as such
327 unsigned RelocType
= Is64BitMode
?
328 (IsPCRel
? X86::reloc_pcrel_word
: X86::reloc_absolute_word_sext
)
329 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
330 if (RelocOp
->isGlobal()) {
331 // In 64-bit static small code model, we could potentially emit absolute.
332 // But it's probably not beneficial. If the MCE supports using RIP directly
333 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
334 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
335 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
336 bool NeedStub
= isa
<Function
>(RelocOp
->getGlobal());
337 bool Indirect
= gvNeedsNonLazyPtr(*RelocOp
, TM
);
338 emitGlobalAddress(RelocOp
->getGlobal(), RelocType
, RelocOp
->getOffset(),
339 Adj
, NeedStub
, Indirect
);
340 } else if (RelocOp
->isSymbol()) {
341 emitExternalSymbolAddress(RelocOp
->getSymbolName(), RelocType
);
342 } else if (RelocOp
->isCPI()) {
343 emitConstPoolAddress(RelocOp
->getIndex(), RelocType
,
344 RelocOp
->getOffset(), Adj
);
346 assert(RelocOp
->isJTI() && "Unexpected machine operand!");
347 emitJumpTableAddress(RelocOp
->getIndex(), RelocType
, Adj
);
351 template<class CodeEmitter
>
352 void Emitter
<CodeEmitter
>::emitMemModRMByte(const MachineInstr
&MI
,
353 unsigned Op
,unsigned RegOpcodeField
,
355 const MachineOperand
&Op3
= MI
.getOperand(Op
+3);
357 const MachineOperand
*DispForReloc
= 0;
359 // Figure out what sort of displacement we have to handle here.
360 if (Op3
.isGlobal()) {
362 } else if (Op3
.isSymbol()) {
364 } else if (Op3
.isCPI()) {
365 if (!MCE
.earlyResolveAddresses() || Is64BitMode
|| IsPIC
) {
368 DispVal
+= MCE
.getConstantPoolEntryAddress(Op3
.getIndex());
369 DispVal
+= Op3
.getOffset();
371 } else if (Op3
.isJTI()) {
372 if (!MCE
.earlyResolveAddresses() || Is64BitMode
|| IsPIC
) {
375 DispVal
+= MCE
.getJumpTableEntryAddress(Op3
.getIndex());
378 DispVal
= Op3
.getImm();
381 const MachineOperand
&Base
= MI
.getOperand(Op
);
382 const MachineOperand
&Scale
= MI
.getOperand(Op
+1);
383 const MachineOperand
&IndexReg
= MI
.getOperand(Op
+2);
385 unsigned BaseReg
= Base
.getReg();
387 // Indicate that the displacement will use an pcrel or absolute reference
388 // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
389 // while others, unless explicit asked to use RIP, use absolute references.
390 bool IsPCRel
= MCE
.earlyResolveAddresses() ? true : false;
392 // Is a SIB byte needed?
393 // If no BaseReg, issue a RIP relative instruction only if the MCE can
394 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
395 // 2-7) and absolute references.
396 if ((!Is64BitMode
|| DispForReloc
|| BaseReg
!= 0) &&
397 IndexReg
.getReg() == 0 &&
398 ((BaseReg
== 0 && MCE
.earlyResolveAddresses()) || BaseReg
== X86::RIP
||
399 (BaseReg
!= 0 && getX86RegNum(BaseReg
) != N86::ESP
))) {
400 if (BaseReg
== 0 || BaseReg
== X86::RIP
) { // Just a displacement?
401 // Emit special case [disp32] encoding
402 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 5));
403 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
, true);
405 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
406 if (!DispForReloc
&& DispVal
== 0 && BaseRegNo
!= N86::EBP
) {
407 // Emit simple indirect register encoding... [EAX] f.e.
408 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, BaseRegNo
));
409 } else if (!DispForReloc
&& isDisp8(DispVal
)) {
410 // Emit the disp8 encoding... [REG+disp8]
411 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, BaseRegNo
));
412 emitConstant(DispVal
, 1);
414 // Emit the most general non-SIB encoding: [REG+disp32]
415 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, BaseRegNo
));
416 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
, IsPCRel
);
420 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
421 assert(IndexReg
.getReg() != X86::ESP
&&
422 IndexReg
.getReg() != X86::RSP
&& "Cannot use ESP as index reg!");
424 bool ForceDisp32
= false;
425 bool ForceDisp8
= false;
427 // If there is no base register, we emit the special case SIB byte with
428 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
429 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
431 } else if (DispForReloc
) {
432 // Emit the normal disp32 encoding.
433 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
435 } else if (DispVal
== 0 && getX86RegNum(BaseReg
) != N86::EBP
) {
436 // Emit no displacement ModR/M byte
437 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
438 } else if (isDisp8(DispVal
)) {
439 // Emit the disp8 encoding...
440 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, 4));
441 ForceDisp8
= true; // Make sure to force 8 bit disp if Base=EBP
443 // Emit the normal disp32 encoding...
444 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
447 // Calculate what the SS field value should be...
448 static const unsigned SSTable
[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
449 unsigned SS
= SSTable
[Scale
.getImm()];
452 // Handle the SIB byte for the case where there is no base, see Intel
453 // Manual 2A, table 2-7. The displacement has already been output.
455 if (IndexReg
.getReg())
456 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
457 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
459 emitSIBByte(SS
, IndexRegNo
, 5);
461 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
463 if (IndexReg
.getReg())
464 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
466 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
467 emitSIBByte(SS
, IndexRegNo
, BaseRegNo
);
470 // Do we need to output a displacement?
472 emitConstant(DispVal
, 1);
473 } else if (DispVal
!= 0 || ForceDisp32
) {
474 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
, IsPCRel
);
479 template<class CodeEmitter
>
480 void Emitter
<CodeEmitter
>::emitInstruction(const MachineInstr
&MI
,
481 const TargetInstrDesc
*Desc
) {
484 MCE
.processDebugLoc(MI
.getDebugLoc());
486 unsigned Opcode
= Desc
->Opcode
;
488 // Emit the lock opcode prefix as needed.
489 if (Desc
->TSFlags
& X86II::LOCK
)
492 // Emit segment override opcode prefix as needed.
493 switch (Desc
->TSFlags
& X86II::SegOvrMask
) {
500 default: llvm_unreachable("Invalid segment!");
501 case 0: break; // No segment override!
504 // Emit the repeat opcode prefix as needed.
505 if ((Desc
->TSFlags
& X86II::Op0Mask
) == X86II::REP
)
508 // Emit the operand size opcode prefix as needed.
509 if (Desc
->TSFlags
& X86II::OpSize
)
512 // Emit the address size opcode prefix as needed.
513 if (Desc
->TSFlags
& X86II::AdSize
)
516 bool Need0FPrefix
= false;
517 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
518 case X86II::TB
: // Two-byte opcode prefix
519 case X86II::T8
: // 0F 38
520 case X86II::TA
: // 0F 3A
523 case X86II::TF
: // F2 0F 38
527 case X86II::REP
: break; // already handled.
528 case X86II::XS
: // F3 0F
532 case X86II::XD
: // F2 0F
536 case X86II::D8
: case X86II::D9
: case X86II::DA
: case X86II::DB
:
537 case X86II::DC
: case X86II::DD
: case X86II::DE
: case X86II::DF
:
539 (((Desc
->TSFlags
& X86II::Op0Mask
)-X86II::D8
)
540 >> X86II::Op0Shift
));
541 break; // Two-byte opcode prefix
542 default: llvm_unreachable("Invalid prefix!");
543 case 0: break; // No prefix!
546 // Handle REX prefix.
548 if (unsigned REX
= X86InstrInfo::determineREX(MI
))
549 MCE
.emitByte(0x40 | REX
);
552 // 0x0F escape code must be emitted just before the opcode.
556 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
557 case X86II::TF
: // F2 0F 38
558 case X86II::T8
: // 0F 38
561 case X86II::TA
: // 0F 3A
566 // If this is a two-address instruction, skip one of the register operands.
567 unsigned NumOps
= Desc
->getNumOperands();
569 if (NumOps
> 1 && Desc
->getOperandConstraint(1, TOI::TIED_TO
) != -1)
571 else if (NumOps
> 2 && Desc
->getOperandConstraint(NumOps
-1, TOI::TIED_TO
)== 0)
572 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
575 unsigned char BaseOpcode
= II
->getBaseOpcodeFor(Desc
);
576 switch (Desc
->TSFlags
& X86II::FormMask
) {
578 llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
580 // Remember the current PC offset, this is the PIC relocation
584 llvm_unreachable("psuedo instructions should be removed before code"
587 case TargetInstrInfo::INLINEASM
:
588 // We allow inline assembler nodes with empty bodies - they can
589 // implicitly define registers, which is ok for JIT.
590 assert(MI
.getOperand(0).getSymbolName()[0] == 0 &&
591 "JIT does not support inline asm!");
593 case TargetInstrInfo::DBG_LABEL
:
594 case TargetInstrInfo::EH_LABEL
:
595 case TargetInstrInfo::GC_LABEL
:
596 MCE
.emitLabel(MI
.getOperand(0).getImm());
598 case TargetInstrInfo::IMPLICIT_DEF
:
600 case X86::FP_REG_KILL
:
602 case X86::MOVPC32r
: {
603 // This emits the "call" portion of this pseudo instruction.
604 MCE
.emitByte(BaseOpcode
);
605 emitConstant(0, X86InstrInfo::sizeOfImm(Desc
));
606 // Remember PIC base.
607 PICBaseOffset
= (intptr_t) MCE
.getCurrentPCOffset();
608 X86JITInfo
*JTI
= TM
.getJITInfo();
609 JTI
->setPICBase(MCE
.getCurrentPCValue());
615 case X86II::RawFrm
: {
616 MCE
.emitByte(BaseOpcode
);
621 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
623 DEBUG(errs() << "RawFrm CurOp " << CurOp
<< "\n");
624 DEBUG(errs() << "isMBB " << MO
.isMBB() << "\n");
625 DEBUG(errs() << "isGlobal " << MO
.isGlobal() << "\n");
626 DEBUG(errs() << "isSymbol " << MO
.isSymbol() << "\n");
627 DEBUG(errs() << "isImm " << MO
.isImm() << "\n");
630 emitPCRelativeBlockAddress(MO
.getMBB());
635 // Assume undefined functions may be outside the Small codespace.
638 (TM
.getCodeModel() == CodeModel::Large
||
639 TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin())) ||
640 Opcode
== X86::TAILJMPd
;
641 emitGlobalAddress(MO
.getGlobal(), X86::reloc_pcrel_word
,
642 MO
.getOffset(), 0, NeedStub
);
647 emitExternalSymbolAddress(MO
.getSymbolName(), X86::reloc_pcrel_word
);
651 assert(MO
.isImm() && "Unknown RawFrm operand!");
652 if (Opcode
== X86::CALLpcrel32
|| Opcode
== X86::CALL64pcrel32
) {
653 // Fix up immediate operand for pc relative calls.
654 intptr_t Imm
= (intptr_t)MO
.getImm();
655 Imm
= Imm
- MCE
.getCurrentPCValue() - 4;
656 emitConstant(Imm
, X86InstrInfo::sizeOfImm(Desc
));
658 emitConstant(MO
.getImm(), X86InstrInfo::sizeOfImm(Desc
));
662 case X86II::AddRegFrm
: {
663 MCE
.emitByte(BaseOpcode
+ getX86RegNum(MI
.getOperand(CurOp
++).getReg()));
668 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
669 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
671 emitConstant(MO1
.getImm(), Size
);
675 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
676 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
677 if (Opcode
== X86::MOV64ri64i32
)
678 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
679 // This should not occur on Darwin for relocatable objects.
680 if (Opcode
== X86::MOV64ri
)
681 rt
= X86::reloc_absolute_dword
; // FIXME: add X86II flag?
682 if (MO1
.isGlobal()) {
683 bool NeedStub
= isa
<Function
>(MO1
.getGlobal());
684 bool Indirect
= gvNeedsNonLazyPtr(MO1
, TM
);
685 emitGlobalAddress(MO1
.getGlobal(), rt
, MO1
.getOffset(), 0,
687 } else if (MO1
.isSymbol())
688 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
689 else if (MO1
.isCPI())
690 emitConstPoolAddress(MO1
.getIndex(), rt
);
691 else if (MO1
.isJTI())
692 emitJumpTableAddress(MO1
.getIndex(), rt
);
696 case X86II::MRMDestReg
: {
697 MCE
.emitByte(BaseOpcode
);
698 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
699 getX86RegNum(MI
.getOperand(CurOp
+1).getReg()));
702 emitConstant(MI
.getOperand(CurOp
++).getImm(),
703 X86InstrInfo::sizeOfImm(Desc
));
706 case X86II::MRMDestMem
: {
707 MCE
.emitByte(BaseOpcode
);
708 emitMemModRMByte(MI
, CurOp
,
709 getX86RegNum(MI
.getOperand(CurOp
+ X86AddrNumOperands
)
711 CurOp
+= X86AddrNumOperands
+ 1;
713 emitConstant(MI
.getOperand(CurOp
++).getImm(),
714 X86InstrInfo::sizeOfImm(Desc
));
718 case X86II::MRMSrcReg
:
719 MCE
.emitByte(BaseOpcode
);
720 emitRegModRMByte(MI
.getOperand(CurOp
+1).getReg(),
721 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
724 emitConstant(MI
.getOperand(CurOp
++).getImm(),
725 X86InstrInfo::sizeOfImm(Desc
));
728 case X86II::MRMSrcMem
: {
729 // FIXME: Maybe lea should have its own form?
731 if (Opcode
== X86::LEA64r
|| Opcode
== X86::LEA64_32r
||
732 Opcode
== X86::LEA16r
|| Opcode
== X86::LEA32r
)
733 AddrOperands
= X86AddrNumOperands
- 1; // No segment register
735 AddrOperands
= X86AddrNumOperands
;
737 intptr_t PCAdj
= (CurOp
+ AddrOperands
+ 1 != NumOps
) ?
738 X86InstrInfo::sizeOfImm(Desc
) : 0;
740 MCE
.emitByte(BaseOpcode
);
741 emitMemModRMByte(MI
, CurOp
+1, getX86RegNum(MI
.getOperand(CurOp
).getReg()),
743 CurOp
+= AddrOperands
+ 1;
745 emitConstant(MI
.getOperand(CurOp
++).getImm(),
746 X86InstrInfo::sizeOfImm(Desc
));
750 case X86II::MRM0r
: case X86II::MRM1r
:
751 case X86II::MRM2r
: case X86II::MRM3r
:
752 case X86II::MRM4r
: case X86II::MRM5r
:
753 case X86II::MRM6r
: case X86II::MRM7r
: {
754 MCE
.emitByte(BaseOpcode
);
756 // Special handling of lfence, mfence, monitor, and mwait.
757 if (Desc
->getOpcode() == X86::LFENCE
||
758 Desc
->getOpcode() == X86::MFENCE
||
759 Desc
->getOpcode() == X86::MONITOR
||
760 Desc
->getOpcode() == X86::MWAIT
) {
761 emitRegModRMByte((Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
763 switch (Desc
->getOpcode()) {
773 emitRegModRMByte(MI
.getOperand(CurOp
++).getReg(),
774 (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
780 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
781 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
783 emitConstant(MO1
.getImm(), Size
);
787 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
788 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
789 if (Opcode
== X86::MOV64ri32
)
790 rt
= X86::reloc_absolute_word_sext
; // FIXME: add X86II flag?
791 if (MO1
.isGlobal()) {
792 bool NeedStub
= isa
<Function
>(MO1
.getGlobal());
793 bool Indirect
= gvNeedsNonLazyPtr(MO1
, TM
);
794 emitGlobalAddress(MO1
.getGlobal(), rt
, MO1
.getOffset(), 0,
796 } else if (MO1
.isSymbol())
797 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
798 else if (MO1
.isCPI())
799 emitConstPoolAddress(MO1
.getIndex(), rt
);
800 else if (MO1
.isJTI())
801 emitJumpTableAddress(MO1
.getIndex(), rt
);
805 case X86II::MRM0m
: case X86II::MRM1m
:
806 case X86II::MRM2m
: case X86II::MRM3m
:
807 case X86II::MRM4m
: case X86II::MRM5m
:
808 case X86II::MRM6m
: case X86II::MRM7m
: {
809 intptr_t PCAdj
= (CurOp
+ X86AddrNumOperands
!= NumOps
) ?
810 (MI
.getOperand(CurOp
+X86AddrNumOperands
).isImm() ?
811 X86InstrInfo::sizeOfImm(Desc
) : 4) : 0;
813 MCE
.emitByte(BaseOpcode
);
814 emitMemModRMByte(MI
, CurOp
, (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0m
,
816 CurOp
+= X86AddrNumOperands
;
821 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
822 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
824 emitConstant(MO
.getImm(), Size
);
828 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
829 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
830 if (Opcode
== X86::MOV64mi32
)
831 rt
= X86::reloc_absolute_word_sext
; // FIXME: add X86II flag?
833 bool NeedStub
= isa
<Function
>(MO
.getGlobal());
834 bool Indirect
= gvNeedsNonLazyPtr(MO
, TM
);
835 emitGlobalAddress(MO
.getGlobal(), rt
, MO
.getOffset(), 0,
837 } else if (MO
.isSymbol())
838 emitExternalSymbolAddress(MO
.getSymbolName(), rt
);
840 emitConstPoolAddress(MO
.getIndex(), rt
);
842 emitJumpTableAddress(MO
.getIndex(), rt
);
846 case X86II::MRMInitReg
:
847 MCE
.emitByte(BaseOpcode
);
848 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
849 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
850 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
855 if (!Desc
->isVariadic() && CurOp
!= NumOps
) {
857 errs() << "Cannot encode all operands of: " << MI
<< "\n";
863 // Adapt the Emitter / CodeEmitter interfaces to MCCodeEmitter.
865 // FIXME: This is a total hack designed to allow work on llvm-mc to proceed
866 // without being blocked on various cleanups needed to support a clean interface
867 // to instruction encoding.
871 #include "llvm/DerivedTypes.h"
874 class MCSingleInstructionCodeEmitter
: public MachineCodeEmitter
{
878 MCSingleInstructionCodeEmitter() { reset(); }
882 BufferEnd
= array_endof(Data
);
887 return StringRef(reinterpret_cast<char*>(BufferBegin
),
888 CurBufferPtr
- BufferBegin
);
891 virtual void startFunction(MachineFunction
&F
) {}
892 virtual bool finishFunction(MachineFunction
&F
) { return false; }
893 virtual void emitLabel(uint64_t LabelID
) {}
894 virtual void StartMachineBasicBlock(MachineBasicBlock
*MBB
) {}
895 virtual bool earlyResolveAddresses() const { return false; }
896 virtual void addRelocation(const MachineRelocation
&MR
) { }
897 virtual uintptr_t getConstantPoolEntryAddress(unsigned Index
) const {
900 virtual uintptr_t getJumpTableEntryAddress(unsigned Index
) const {
903 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock
*MBB
) const {
906 virtual uintptr_t getLabelAddress(uint64_t LabelID
) const {
909 virtual void setModuleInfo(MachineModuleInfo
* Info
) {}
912 class X86MCCodeEmitter
: public MCCodeEmitter
{
913 X86MCCodeEmitter(const X86MCCodeEmitter
&); // DO NOT IMPLEMENT
914 void operator=(const X86MCCodeEmitter
&); // DO NOT IMPLEMENT
917 X86TargetMachine
&TM
;
918 llvm::Function
*DummyF
;
920 mutable llvm::MachineFunction
*DummyMF
;
921 llvm::MachineBasicBlock
*DummyMBB
;
923 MCSingleInstructionCodeEmitter
*InstrEmitter
;
924 Emitter
<MachineCodeEmitter
> *Emit
;
927 X86MCCodeEmitter(X86TargetMachine
&_TM
) : TM(_TM
) {
928 // Verily, thou shouldst avert thine eyes.
929 const llvm::FunctionType
*FTy
=
930 FunctionType::get(llvm::Type::getVoidTy(getGlobalContext()), false);
931 DummyF
= Function::Create(FTy
, GlobalValue::InternalLinkage
);
932 DummyTD
= new TargetData("");
933 DummyMF
= new MachineFunction(DummyF
, TM
);
934 DummyMBB
= DummyMF
->CreateMachineBasicBlock();
936 InstrEmitter
= new MCSingleInstructionCodeEmitter();
937 Emit
= new Emitter
<MachineCodeEmitter
>(TM
, *InstrEmitter
,
941 ~X86MCCodeEmitter() {
948 bool AddRegToInstr(const MCInst
&MI
, MachineInstr
*Instr
,
949 unsigned Start
) const {
950 if (Start
+ 1 > MI
.getNumOperands())
953 const MCOperand
&Op
= MI
.getOperand(Start
);
954 if (!Op
.isReg()) return false;
956 Instr
->addOperand(MachineOperand::CreateReg(Op
.getReg(), false));
960 bool AddImmToInstr(const MCInst
&MI
, MachineInstr
*Instr
,
961 unsigned Start
) const {
962 if (Start
+ 1 > MI
.getNumOperands())
965 const MCOperand
&Op
= MI
.getOperand(Start
);
967 Instr
->addOperand(MachineOperand::CreateImm(Op
.getImm()));
973 const MCExpr
*Expr
= Op
.getExpr();
974 if (const MCConstantExpr
*CE
= dyn_cast
<MCConstantExpr
>(Expr
)) {
975 Instr
->addOperand(MachineOperand::CreateImm(CE
->getValue()));
979 // FIXME: Relocation / fixup.
980 Instr
->addOperand(MachineOperand::CreateImm(0));
984 bool AddLMemToInstr(const MCInst
&MI
, MachineInstr
*Instr
,
985 unsigned Start
) const {
986 return (AddRegToInstr(MI
, Instr
, Start
+ 0) &&
987 AddImmToInstr(MI
, Instr
, Start
+ 1) &&
988 AddRegToInstr(MI
, Instr
, Start
+ 2) &&
989 AddImmToInstr(MI
, Instr
, Start
+ 3));
992 bool AddMemToInstr(const MCInst
&MI
, MachineInstr
*Instr
,
993 unsigned Start
) const {
994 return (AddRegToInstr(MI
, Instr
, Start
+ 0) &&
995 AddImmToInstr(MI
, Instr
, Start
+ 1) &&
996 AddRegToInstr(MI
, Instr
, Start
+ 2) &&
997 AddImmToInstr(MI
, Instr
, Start
+ 3) &&
998 AddRegToInstr(MI
, Instr
, Start
+ 4));
1001 void EncodeInstruction(const MCInst
&MI
, raw_ostream
&OS
) const {
1004 // Convert the MCInst to a MachineInstr so we can (ab)use the regular
1006 const X86InstrInfo
&II
= *TM
.getInstrInfo();
1007 const TargetInstrDesc
&Desc
= II
.get(MI
.getOpcode());
1008 MachineInstr
*Instr
= DummyMF
->CreateMachineInstr(Desc
, DebugLoc());
1009 DummyMBB
->push_back(Instr
);
1011 unsigned Opcode
= MI
.getOpcode();
1012 unsigned NumOps
= MI
.getNumOperands();
1014 if (NumOps
> 1 && Desc
.getOperandConstraint(1, TOI::TIED_TO
) != -1) {
1015 Instr
->addOperand(MachineOperand::CreateReg(0, false));
1017 } else if (NumOps
> 2 &&
1018 Desc
.getOperandConstraint(NumOps
-1, TOI::TIED_TO
)== 0)
1019 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
1023 switch (Desc
.TSFlags
& X86II::FormMask
) {
1024 case X86II::MRMDestReg
:
1025 case X86II::MRMSrcReg
:
1026 // Matching doesn't fill this in completely, we have to choose operand 0
1027 // for a tied register.
1028 OK
&= AddRegToInstr(MI
, Instr
, 0); CurOp
++;
1029 OK
&= AddRegToInstr(MI
, Instr
, CurOp
++);
1031 OK
&= AddImmToInstr(MI
, Instr
, CurOp
);
1035 if (CurOp
< NumOps
) {
1036 // Hack to make branches work.
1037 if (!(Desc
.TSFlags
& X86II::ImmMask
) &&
1038 MI
.getOperand(0).isExpr() &&
1039 isa
<MCSymbolRefExpr
>(MI
.getOperand(0).getExpr()))
1040 Instr
->addOperand(MachineOperand::CreateMBB(DummyMBB
));
1042 OK
&= AddImmToInstr(MI
, Instr
, CurOp
);
1046 case X86II::AddRegFrm
:
1047 OK
&= AddRegToInstr(MI
, Instr
, CurOp
++);
1049 OK
&= AddImmToInstr(MI
, Instr
, CurOp
);
1052 case X86II::MRM0r
: case X86II::MRM1r
:
1053 case X86II::MRM2r
: case X86II::MRM3r
:
1054 case X86II::MRM4r
: case X86II::MRM5r
:
1055 case X86II::MRM6r
: case X86II::MRM7r
:
1056 // Matching doesn't fill this in completely, we have to choose operand 0
1057 // for a tied register.
1058 OK
&= AddRegToInstr(MI
, Instr
, 0); CurOp
++;
1060 OK
&= AddImmToInstr(MI
, Instr
, CurOp
);
1063 case X86II::MRM0m
: case X86II::MRM1m
:
1064 case X86II::MRM2m
: case X86II::MRM3m
:
1065 case X86II::MRM4m
: case X86II::MRM5m
:
1066 case X86II::MRM6m
: case X86II::MRM7m
:
1067 OK
&= AddMemToInstr(MI
, Instr
, CurOp
); CurOp
+= 5;
1069 OK
&= AddImmToInstr(MI
, Instr
, CurOp
);
1072 case X86II::MRMSrcMem
:
1073 OK
&= AddRegToInstr(MI
, Instr
, CurOp
++);
1074 if (Opcode
== X86::LEA64r
|| Opcode
== X86::LEA64_32r
||
1075 Opcode
== X86::LEA16r
|| Opcode
== X86::LEA32r
)
1076 OK
&= AddLMemToInstr(MI
, Instr
, CurOp
);
1078 OK
&= AddMemToInstr(MI
, Instr
, CurOp
);
1081 case X86II::MRMDestMem
:
1082 OK
&= AddMemToInstr(MI
, Instr
, CurOp
); CurOp
+= 5;
1083 OK
&= AddRegToInstr(MI
, Instr
, CurOp
);
1087 case X86II::MRMInitReg
:
1094 errs() << "couldn't convert inst '";
1096 errs() << "' to machine instr:\n";
1100 InstrEmitter
->reset();
1102 Emit
->emitInstruction(*Instr
, &Desc
);
1103 OS
<< InstrEmitter
->str();
1105 Instr
->eraseFromParent();
1110 // Ok, now you can look.
1111 MCCodeEmitter
*llvm::createX86MCCodeEmitter(const Target
&,
1112 TargetMachine
&TM
) {
1113 return new X86MCCodeEmitter(static_cast<X86TargetMachine
&>(TM
));