1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalAlias.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/VectorExtras.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/raw_ostream.h"
48 DisableMMX("disable-mmx", cl::Hidden
, cl::desc("Disable use of MMX"));
50 // Disable16Bit - 16-bit operations typically have a larger encoding than
51 // corresponding 32-bit instructions, and 16-bit code is slow on some
52 // processors. This is an experimental flag to disable 16-bit operations
53 // (which forces them to be Legalized to 32-bit operations).
55 Disable16Bit("disable-16bit", cl::Hidden
,
56 cl::desc("Disable use of 16-bit instructions"));
58 // Forward declarations.
59 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, EVT VT
, SDValue V1
,
62 static TargetLoweringObjectFile
*createTLOF(X86TargetMachine
&TM
) {
63 switch (TM
.getSubtarget
<X86Subtarget
>().TargetType
) {
64 default: llvm_unreachable("unknown subtarget type");
65 case X86Subtarget::isDarwin
:
66 return new TargetLoweringObjectFileMachO();
67 case X86Subtarget::isELF
:
68 return new TargetLoweringObjectFileELF();
69 case X86Subtarget::isMingw
:
70 case X86Subtarget::isCygwin
:
71 case X86Subtarget::isWindows
:
72 return new TargetLoweringObjectFileCOFF();
77 X86TargetLowering::X86TargetLowering(X86TargetMachine
&TM
)
78 : TargetLowering(TM
, createTLOF(TM
)) {
79 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
80 X86ScalarSSEf64
= Subtarget
->hasSSE2();
81 X86ScalarSSEf32
= Subtarget
->hasSSE1();
82 X86StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
84 RegInfo
= TM
.getRegisterInfo();
87 // Set up the TargetLowering object.
89 // X86 is weird, it always uses i8 for shift amounts and setcc results.
90 setShiftAmountType(MVT::i8
);
91 setBooleanContents(ZeroOrOneBooleanContent
);
92 setSchedulingPreference(SchedulingForRegPressure
);
93 setStackPointerRegisterToSaveRestore(X86StackPtr
);
95 if (Subtarget
->isTargetDarwin()) {
96 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
97 setUseUnderscoreSetJmp(false);
98 setUseUnderscoreLongJmp(false);
99 } else if (Subtarget
->isTargetMingw()) {
100 // MS runtime is weird: it exports _setjmp, but longjmp!
101 setUseUnderscoreSetJmp(true);
102 setUseUnderscoreLongJmp(false);
104 setUseUnderscoreSetJmp(true);
105 setUseUnderscoreLongJmp(true);
108 // Set up the register classes.
109 addRegisterClass(MVT::i8
, X86::GR8RegisterClass
);
111 addRegisterClass(MVT::i16
, X86::GR16RegisterClass
);
112 addRegisterClass(MVT::i32
, X86::GR32RegisterClass
);
113 if (Subtarget
->is64Bit())
114 addRegisterClass(MVT::i64
, X86::GR64RegisterClass
);
116 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
118 // We don't accept any truncstore of integer registers.
119 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
121 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
122 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
124 setTruncStoreAction(MVT::i32
, MVT::i16
, Expand
);
125 setTruncStoreAction(MVT::i32
, MVT::i8
, Expand
);
126 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
128 // SETOEQ and SETUNE require checking two conditions.
129 setCondCodeAction(ISD::SETOEQ
, MVT::f32
, Expand
);
130 setCondCodeAction(ISD::SETOEQ
, MVT::f64
, Expand
);
131 setCondCodeAction(ISD::SETOEQ
, MVT::f80
, Expand
);
132 setCondCodeAction(ISD::SETUNE
, MVT::f32
, Expand
);
133 setCondCodeAction(ISD::SETUNE
, MVT::f64
, Expand
);
134 setCondCodeAction(ISD::SETUNE
, MVT::f80
, Expand
);
136 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
138 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
139 setOperationAction(ISD::UINT_TO_FP
, MVT::i8
, Promote
);
140 setOperationAction(ISD::UINT_TO_FP
, MVT::i16
, Promote
);
142 if (Subtarget
->is64Bit()) {
143 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
144 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
145 } else if (!UseSoftFloat
) {
146 if (X86ScalarSSEf64
) {
147 // We have an impenetrably clever algorithm for ui64->double only.
148 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
150 // We have an algorithm for SSE2, and we turn this into a 64-bit
151 // FILD for other targets.
152 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
155 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
157 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
158 setOperationAction(ISD::SINT_TO_FP
, MVT::i8
, Promote
);
161 // SSE has no i16 to fp conversion, only i32
162 if (X86ScalarSSEf32
) {
163 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
164 // f32 and f64 cases are Legal, f80 case is not
165 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
167 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Custom
);
168 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
172 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Promote
);
175 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
176 // are Legal, f80 is custom lowered.
177 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
178 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
180 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
182 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Promote
);
183 setOperationAction(ISD::FP_TO_SINT
, MVT::i8
, Promote
);
185 if (X86ScalarSSEf32
) {
186 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Promote
);
187 // f32 and f64 cases are Legal, f80 case is not
188 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
190 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Custom
);
191 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
194 // Handle FP_TO_UINT by promoting the destination to a larger signed
196 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Promote
);
197 setOperationAction(ISD::FP_TO_UINT
, MVT::i8
, Promote
);
198 setOperationAction(ISD::FP_TO_UINT
, MVT::i16
, Promote
);
200 if (Subtarget
->is64Bit()) {
201 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
202 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
203 } else if (!UseSoftFloat
) {
204 if (X86ScalarSSEf32
&& !Subtarget
->hasSSE3())
205 // Expand FP_TO_UINT into a select.
206 // FIXME: We would like to use a Custom expander here eventually to do
207 // the optimal thing for SSE vs. the default expansion in the legalizer.
208 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
210 // With SSE3 we can use fisttpll to convert to a signed i64; without
211 // SSE, we're stuck with a fistpll.
212 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
215 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
216 if (!X86ScalarSSEf64
) {
217 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
218 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
221 // Scalar integer divide and remainder are lowered to use operations that
222 // produce two results, to match the available instructions. This exposes
223 // the two-result form to trivial CSE, which is able to combine x/y and x%y
224 // into a single instruction.
226 // Scalar integer multiply-high is also lowered to use two-result
227 // operations, to match the available instructions. However, plain multiply
228 // (low) operations are left as Legal, as there are single-result
229 // instructions for this in x86. Using the two-result multiply instructions
230 // when both high and low results are needed must be arranged by dagcombine.
231 setOperationAction(ISD::MULHS
, MVT::i8
, Expand
);
232 setOperationAction(ISD::MULHU
, MVT::i8
, Expand
);
233 setOperationAction(ISD::SDIV
, MVT::i8
, Expand
);
234 setOperationAction(ISD::UDIV
, MVT::i8
, Expand
);
235 setOperationAction(ISD::SREM
, MVT::i8
, Expand
);
236 setOperationAction(ISD::UREM
, MVT::i8
, Expand
);
237 setOperationAction(ISD::MULHS
, MVT::i16
, Expand
);
238 setOperationAction(ISD::MULHU
, MVT::i16
, Expand
);
239 setOperationAction(ISD::SDIV
, MVT::i16
, Expand
);
240 setOperationAction(ISD::UDIV
, MVT::i16
, Expand
);
241 setOperationAction(ISD::SREM
, MVT::i16
, Expand
);
242 setOperationAction(ISD::UREM
, MVT::i16
, Expand
);
243 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
244 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
245 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
246 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
247 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
248 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
249 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
250 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
251 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
252 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
253 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
254 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
256 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
257 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
258 setOperationAction(ISD::BR_CC
, MVT::Other
, Expand
);
259 setOperationAction(ISD::SELECT_CC
, MVT::Other
, Expand
);
260 if (Subtarget
->is64Bit())
261 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
262 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Legal
);
263 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Legal
);
264 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
265 setOperationAction(ISD::FP_ROUND_INREG
, MVT::f32
, Expand
);
266 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
267 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
268 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
269 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
271 setOperationAction(ISD::CTPOP
, MVT::i8
, Expand
);
272 setOperationAction(ISD::CTTZ
, MVT::i8
, Custom
);
273 setOperationAction(ISD::CTLZ
, MVT::i8
, Custom
);
274 setOperationAction(ISD::CTPOP
, MVT::i16
, Expand
);
276 setOperationAction(ISD::CTTZ
, MVT::i16
, Expand
);
277 setOperationAction(ISD::CTLZ
, MVT::i16
, Expand
);
279 setOperationAction(ISD::CTTZ
, MVT::i16
, Custom
);
280 setOperationAction(ISD::CTLZ
, MVT::i16
, Custom
);
282 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
283 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
284 setOperationAction(ISD::CTLZ
, MVT::i32
, Custom
);
285 if (Subtarget
->is64Bit()) {
286 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
287 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
288 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
291 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
292 setOperationAction(ISD::BSWAP
, MVT::i16
, Expand
);
294 // These should be promoted to a larger select which is supported.
295 setOperationAction(ISD::SELECT
, MVT::i1
, Promote
);
296 // X86 wants to expand cmov itself.
297 setOperationAction(ISD::SELECT
, MVT::i8
, Custom
);
299 setOperationAction(ISD::SELECT
, MVT::i16
, Expand
);
301 setOperationAction(ISD::SELECT
, MVT::i16
, Custom
);
302 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
303 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
304 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
305 setOperationAction(ISD::SELECT
, MVT::f80
, Custom
);
306 setOperationAction(ISD::SETCC
, MVT::i8
, Custom
);
308 setOperationAction(ISD::SETCC
, MVT::i16
, Expand
);
310 setOperationAction(ISD::SETCC
, MVT::i16
, Custom
);
311 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
312 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
313 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
314 setOperationAction(ISD::SETCC
, MVT::f80
, Custom
);
315 if (Subtarget
->is64Bit()) {
316 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
317 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
319 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
322 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
323 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
324 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
325 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
326 if (Subtarget
->is64Bit())
327 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
328 setOperationAction(ISD::ExternalSymbol
, MVT::i32
, Custom
);
329 if (Subtarget
->is64Bit()) {
330 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
331 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
332 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
333 setOperationAction(ISD::ExternalSymbol
, MVT::i64
, Custom
);
335 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
336 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
337 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
338 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
339 if (Subtarget
->is64Bit()) {
340 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
341 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
342 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
345 if (Subtarget
->hasSSE1())
346 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
348 if (!Subtarget
->hasSSE2())
349 setOperationAction(ISD::MEMBARRIER
, MVT::Other
, Expand
);
351 // Expand certain atomics
352 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i8
, Custom
);
353 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i16
, Custom
);
354 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
355 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
357 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i8
, Custom
);
358 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i16
, Custom
);
359 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
360 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
362 if (!Subtarget
->is64Bit()) {
363 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i64
, Custom
);
364 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
365 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
366 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i64
, Custom
);
367 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i64
, Custom
);
368 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i64
, Custom
);
369 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i64
, Custom
);
372 // Use the default ISD::DBG_STOPPOINT.
373 setOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
, Expand
);
374 // FIXME - use subtarget debug flags
375 if (!Subtarget
->isTargetDarwin() &&
376 !Subtarget
->isTargetELF() &&
377 !Subtarget
->isTargetCygMing()) {
378 setOperationAction(ISD::DBG_LABEL
, MVT::Other
, Expand
);
379 setOperationAction(ISD::EH_LABEL
, MVT::Other
, Expand
);
382 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
383 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
384 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
385 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
386 if (Subtarget
->is64Bit()) {
387 setExceptionPointerRegister(X86::RAX
);
388 setExceptionSelectorRegister(X86::RDX
);
390 setExceptionPointerRegister(X86::EAX
);
391 setExceptionSelectorRegister(X86::EDX
);
393 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
394 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i64
, Custom
);
396 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
398 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
400 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
401 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
402 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
403 if (Subtarget
->is64Bit()) {
404 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
405 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
407 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
408 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
411 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
412 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
413 if (Subtarget
->is64Bit())
414 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
415 if (Subtarget
->isTargetCygMing())
416 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
418 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
420 if (!UseSoftFloat
&& X86ScalarSSEf64
) {
421 // f32 and f64 use SSE.
422 // Set up the FP register classes.
423 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
424 addRegisterClass(MVT::f64
, X86::FR64RegisterClass
);
426 // Use ANDPD to simulate FABS.
427 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
428 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
430 // Use XORP to simulate FNEG.
431 setOperationAction(ISD::FNEG
, MVT::f64
, Custom
);
432 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
434 // Use ANDPD and ORPD to simulate FCOPYSIGN.
435 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
436 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
438 // We don't support sin/cos/fmod
439 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
440 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
441 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
442 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
444 // Expand FP immediates into loads from the stack, except for the special
446 addLegalFPImmediate(APFloat(+0.0)); // xorpd
447 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
448 } else if (!UseSoftFloat
&& X86ScalarSSEf32
) {
449 // Use SSE for f32, x87 for f64.
450 // Set up the FP register classes.
451 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
452 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
454 // Use ANDPS to simulate FABS.
455 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
457 // Use XORP to simulate FNEG.
458 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
460 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
462 // Use ANDPS and ORPS to simulate FCOPYSIGN.
463 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
464 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
466 // We don't support sin/cos/fmod
467 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
468 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
470 // Special cases we handle for FP constants.
471 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
472 addLegalFPImmediate(APFloat(+0.0)); // FLD0
473 addLegalFPImmediate(APFloat(+1.0)); // FLD1
474 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
475 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
479 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
481 } else if (!UseSoftFloat
) {
482 // f32 and f64 in x87.
483 // Set up the FP register classes.
484 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
485 addRegisterClass(MVT::f32
, X86::RFP32RegisterClass
);
487 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
488 setOperationAction(ISD::UNDEF
, MVT::f32
, Expand
);
489 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
490 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
493 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
494 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
496 addLegalFPImmediate(APFloat(+0.0)); // FLD0
497 addLegalFPImmediate(APFloat(+1.0)); // FLD1
498 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
499 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
500 addLegalFPImmediate(APFloat(+0.0f
)); // FLD0
501 addLegalFPImmediate(APFloat(+1.0f
)); // FLD1
502 addLegalFPImmediate(APFloat(-0.0f
)); // FLD0/FCHS
503 addLegalFPImmediate(APFloat(-1.0f
)); // FLD1/FCHS
506 // Long double always uses X87.
508 addRegisterClass(MVT::f80
, X86::RFP80RegisterClass
);
509 setOperationAction(ISD::UNDEF
, MVT::f80
, Expand
);
510 setOperationAction(ISD::FCOPYSIGN
, MVT::f80
, Expand
);
513 APFloat
TmpFlt(+0.0);
514 TmpFlt
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
516 addLegalFPImmediate(TmpFlt
); // FLD0
518 addLegalFPImmediate(TmpFlt
); // FLD0/FCHS
519 APFloat
TmpFlt2(+1.0);
520 TmpFlt2
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
522 addLegalFPImmediate(TmpFlt2
); // FLD1
523 TmpFlt2
.changeSign();
524 addLegalFPImmediate(TmpFlt2
); // FLD1/FCHS
528 setOperationAction(ISD::FSIN
, MVT::f80
, Expand
);
529 setOperationAction(ISD::FCOS
, MVT::f80
, Expand
);
533 // Always use a library call for pow.
534 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
535 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
536 setOperationAction(ISD::FPOW
, MVT::f80
, Expand
);
538 setOperationAction(ISD::FLOG
, MVT::f80
, Expand
);
539 setOperationAction(ISD::FLOG2
, MVT::f80
, Expand
);
540 setOperationAction(ISD::FLOG10
, MVT::f80
, Expand
);
541 setOperationAction(ISD::FEXP
, MVT::f80
, Expand
);
542 setOperationAction(ISD::FEXP2
, MVT::f80
, Expand
);
544 // First set operation action for all vector types to either promote
545 // (for widening) or expand (for scalarization). Then we will selectively
546 // turn on ones that can be effectively codegen'd.
547 for (unsigned VT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
548 VT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++VT
) {
549 setOperationAction(ISD::ADD
, (MVT::SimpleValueType
)VT
, Expand
);
550 setOperationAction(ISD::SUB
, (MVT::SimpleValueType
)VT
, Expand
);
551 setOperationAction(ISD::FADD
, (MVT::SimpleValueType
)VT
, Expand
);
552 setOperationAction(ISD::FNEG
, (MVT::SimpleValueType
)VT
, Expand
);
553 setOperationAction(ISD::FSUB
, (MVT::SimpleValueType
)VT
, Expand
);
554 setOperationAction(ISD::MUL
, (MVT::SimpleValueType
)VT
, Expand
);
555 setOperationAction(ISD::FMUL
, (MVT::SimpleValueType
)VT
, Expand
);
556 setOperationAction(ISD::SDIV
, (MVT::SimpleValueType
)VT
, Expand
);
557 setOperationAction(ISD::UDIV
, (MVT::SimpleValueType
)VT
, Expand
);
558 setOperationAction(ISD::FDIV
, (MVT::SimpleValueType
)VT
, Expand
);
559 setOperationAction(ISD::SREM
, (MVT::SimpleValueType
)VT
, Expand
);
560 setOperationAction(ISD::UREM
, (MVT::SimpleValueType
)VT
, Expand
);
561 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Expand
);
562 setOperationAction(ISD::VECTOR_SHUFFLE
, (MVT::SimpleValueType
)VT
, Expand
);
563 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
,Expand
);
564 setOperationAction(ISD::EXTRACT_SUBVECTOR
,(MVT::SimpleValueType
)VT
,Expand
);
565 setOperationAction(ISD::INSERT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
, Expand
);
566 setOperationAction(ISD::FABS
, (MVT::SimpleValueType
)VT
, Expand
);
567 setOperationAction(ISD::FSIN
, (MVT::SimpleValueType
)VT
, Expand
);
568 setOperationAction(ISD::FCOS
, (MVT::SimpleValueType
)VT
, Expand
);
569 setOperationAction(ISD::FREM
, (MVT::SimpleValueType
)VT
, Expand
);
570 setOperationAction(ISD::FPOWI
, (MVT::SimpleValueType
)VT
, Expand
);
571 setOperationAction(ISD::FSQRT
, (MVT::SimpleValueType
)VT
, Expand
);
572 setOperationAction(ISD::FCOPYSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
573 setOperationAction(ISD::SMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
574 setOperationAction(ISD::UMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
575 setOperationAction(ISD::SDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
576 setOperationAction(ISD::UDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
577 setOperationAction(ISD::FPOW
, (MVT::SimpleValueType
)VT
, Expand
);
578 setOperationAction(ISD::CTPOP
, (MVT::SimpleValueType
)VT
, Expand
);
579 setOperationAction(ISD::CTTZ
, (MVT::SimpleValueType
)VT
, Expand
);
580 setOperationAction(ISD::CTLZ
, (MVT::SimpleValueType
)VT
, Expand
);
581 setOperationAction(ISD::SHL
, (MVT::SimpleValueType
)VT
, Expand
);
582 setOperationAction(ISD::SRA
, (MVT::SimpleValueType
)VT
, Expand
);
583 setOperationAction(ISD::SRL
, (MVT::SimpleValueType
)VT
, Expand
);
584 setOperationAction(ISD::ROTL
, (MVT::SimpleValueType
)VT
, Expand
);
585 setOperationAction(ISD::ROTR
, (MVT::SimpleValueType
)VT
, Expand
);
586 setOperationAction(ISD::BSWAP
, (MVT::SimpleValueType
)VT
, Expand
);
587 setOperationAction(ISD::VSETCC
, (MVT::SimpleValueType
)VT
, Expand
);
588 setOperationAction(ISD::FLOG
, (MVT::SimpleValueType
)VT
, Expand
);
589 setOperationAction(ISD::FLOG2
, (MVT::SimpleValueType
)VT
, Expand
);
590 setOperationAction(ISD::FLOG10
, (MVT::SimpleValueType
)VT
, Expand
);
591 setOperationAction(ISD::FEXP
, (MVT::SimpleValueType
)VT
, Expand
);
592 setOperationAction(ISD::FEXP2
, (MVT::SimpleValueType
)VT
, Expand
);
593 setOperationAction(ISD::FP_TO_UINT
, (MVT::SimpleValueType
)VT
, Expand
);
594 setOperationAction(ISD::FP_TO_SINT
, (MVT::SimpleValueType
)VT
, Expand
);
595 setOperationAction(ISD::UINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
596 setOperationAction(ISD::SINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
599 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
600 // with -msoft-float, disable use of MMX as well.
601 if (!UseSoftFloat
&& !DisableMMX
&& Subtarget
->hasMMX()) {
602 addRegisterClass(MVT::v8i8
, X86::VR64RegisterClass
);
603 addRegisterClass(MVT::v4i16
, X86::VR64RegisterClass
);
604 addRegisterClass(MVT::v2i32
, X86::VR64RegisterClass
);
605 addRegisterClass(MVT::v2f32
, X86::VR64RegisterClass
);
606 addRegisterClass(MVT::v1i64
, X86::VR64RegisterClass
);
608 setOperationAction(ISD::ADD
, MVT::v8i8
, Legal
);
609 setOperationAction(ISD::ADD
, MVT::v4i16
, Legal
);
610 setOperationAction(ISD::ADD
, MVT::v2i32
, Legal
);
611 setOperationAction(ISD::ADD
, MVT::v1i64
, Legal
);
613 setOperationAction(ISD::SUB
, MVT::v8i8
, Legal
);
614 setOperationAction(ISD::SUB
, MVT::v4i16
, Legal
);
615 setOperationAction(ISD::SUB
, MVT::v2i32
, Legal
);
616 setOperationAction(ISD::SUB
, MVT::v1i64
, Legal
);
618 setOperationAction(ISD::MULHS
, MVT::v4i16
, Legal
);
619 setOperationAction(ISD::MUL
, MVT::v4i16
, Legal
);
621 setOperationAction(ISD::AND
, MVT::v8i8
, Promote
);
622 AddPromotedToType (ISD::AND
, MVT::v8i8
, MVT::v1i64
);
623 setOperationAction(ISD::AND
, MVT::v4i16
, Promote
);
624 AddPromotedToType (ISD::AND
, MVT::v4i16
, MVT::v1i64
);
625 setOperationAction(ISD::AND
, MVT::v2i32
, Promote
);
626 AddPromotedToType (ISD::AND
, MVT::v2i32
, MVT::v1i64
);
627 setOperationAction(ISD::AND
, MVT::v1i64
, Legal
);
629 setOperationAction(ISD::OR
, MVT::v8i8
, Promote
);
630 AddPromotedToType (ISD::OR
, MVT::v8i8
, MVT::v1i64
);
631 setOperationAction(ISD::OR
, MVT::v4i16
, Promote
);
632 AddPromotedToType (ISD::OR
, MVT::v4i16
, MVT::v1i64
);
633 setOperationAction(ISD::OR
, MVT::v2i32
, Promote
);
634 AddPromotedToType (ISD::OR
, MVT::v2i32
, MVT::v1i64
);
635 setOperationAction(ISD::OR
, MVT::v1i64
, Legal
);
637 setOperationAction(ISD::XOR
, MVT::v8i8
, Promote
);
638 AddPromotedToType (ISD::XOR
, MVT::v8i8
, MVT::v1i64
);
639 setOperationAction(ISD::XOR
, MVT::v4i16
, Promote
);
640 AddPromotedToType (ISD::XOR
, MVT::v4i16
, MVT::v1i64
);
641 setOperationAction(ISD::XOR
, MVT::v2i32
, Promote
);
642 AddPromotedToType (ISD::XOR
, MVT::v2i32
, MVT::v1i64
);
643 setOperationAction(ISD::XOR
, MVT::v1i64
, Legal
);
645 setOperationAction(ISD::LOAD
, MVT::v8i8
, Promote
);
646 AddPromotedToType (ISD::LOAD
, MVT::v8i8
, MVT::v1i64
);
647 setOperationAction(ISD::LOAD
, MVT::v4i16
, Promote
);
648 AddPromotedToType (ISD::LOAD
, MVT::v4i16
, MVT::v1i64
);
649 setOperationAction(ISD::LOAD
, MVT::v2i32
, Promote
);
650 AddPromotedToType (ISD::LOAD
, MVT::v2i32
, MVT::v1i64
);
651 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
652 AddPromotedToType (ISD::LOAD
, MVT::v2f32
, MVT::v1i64
);
653 setOperationAction(ISD::LOAD
, MVT::v1i64
, Legal
);
655 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i8
, Custom
);
656 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i16
, Custom
);
657 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i32
, Custom
);
658 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f32
, Custom
);
659 setOperationAction(ISD::BUILD_VECTOR
, MVT::v1i64
, Custom
);
661 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v8i8
, Custom
);
662 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i16
, Custom
);
663 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i32
, Custom
);
664 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v1i64
, Custom
);
666 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f32
, Custom
);
667 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i8
, Custom
);
668 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i16
, Custom
);
669 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v1i64
, Custom
);
671 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i16
, Custom
);
673 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Expand
);
674 setOperationAction(ISD::TRUNCATE
, MVT::v8i8
, Expand
);
675 setOperationAction(ISD::SELECT
, MVT::v8i8
, Promote
);
676 setOperationAction(ISD::SELECT
, MVT::v4i16
, Promote
);
677 setOperationAction(ISD::SELECT
, MVT::v2i32
, Promote
);
678 setOperationAction(ISD::SELECT
, MVT::v1i64
, Custom
);
679 setOperationAction(ISD::VSETCC
, MVT::v8i8
, Custom
);
680 setOperationAction(ISD::VSETCC
, MVT::v4i16
, Custom
);
681 setOperationAction(ISD::VSETCC
, MVT::v2i32
, Custom
);
684 if (!UseSoftFloat
&& Subtarget
->hasSSE1()) {
685 addRegisterClass(MVT::v4f32
, X86::VR128RegisterClass
);
687 setOperationAction(ISD::FADD
, MVT::v4f32
, Legal
);
688 setOperationAction(ISD::FSUB
, MVT::v4f32
, Legal
);
689 setOperationAction(ISD::FMUL
, MVT::v4f32
, Legal
);
690 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
691 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
692 setOperationAction(ISD::FNEG
, MVT::v4f32
, Custom
);
693 setOperationAction(ISD::LOAD
, MVT::v4f32
, Legal
);
694 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
695 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f32
, Custom
);
696 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
697 setOperationAction(ISD::SELECT
, MVT::v4f32
, Custom
);
698 setOperationAction(ISD::VSETCC
, MVT::v4f32
, Custom
);
701 if (!UseSoftFloat
&& Subtarget
->hasSSE2()) {
702 addRegisterClass(MVT::v2f64
, X86::VR128RegisterClass
);
704 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
705 // registers cannot be used even for integer operations.
706 addRegisterClass(MVT::v16i8
, X86::VR128RegisterClass
);
707 addRegisterClass(MVT::v8i16
, X86::VR128RegisterClass
);
708 addRegisterClass(MVT::v4i32
, X86::VR128RegisterClass
);
709 addRegisterClass(MVT::v2i64
, X86::VR128RegisterClass
);
711 setOperationAction(ISD::ADD
, MVT::v16i8
, Legal
);
712 setOperationAction(ISD::ADD
, MVT::v8i16
, Legal
);
713 setOperationAction(ISD::ADD
, MVT::v4i32
, Legal
);
714 setOperationAction(ISD::ADD
, MVT::v2i64
, Legal
);
715 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
716 setOperationAction(ISD::SUB
, MVT::v16i8
, Legal
);
717 setOperationAction(ISD::SUB
, MVT::v8i16
, Legal
);
718 setOperationAction(ISD::SUB
, MVT::v4i32
, Legal
);
719 setOperationAction(ISD::SUB
, MVT::v2i64
, Legal
);
720 setOperationAction(ISD::MUL
, MVT::v8i16
, Legal
);
721 setOperationAction(ISD::FADD
, MVT::v2f64
, Legal
);
722 setOperationAction(ISD::FSUB
, MVT::v2f64
, Legal
);
723 setOperationAction(ISD::FMUL
, MVT::v2f64
, Legal
);
724 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
725 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
726 setOperationAction(ISD::FNEG
, MVT::v2f64
, Custom
);
728 setOperationAction(ISD::VSETCC
, MVT::v2f64
, Custom
);
729 setOperationAction(ISD::VSETCC
, MVT::v16i8
, Custom
);
730 setOperationAction(ISD::VSETCC
, MVT::v8i16
, Custom
);
731 setOperationAction(ISD::VSETCC
, MVT::v4i32
, Custom
);
733 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Custom
);
734 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Custom
);
735 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
736 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
737 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
739 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
740 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; ++i
) {
741 EVT VT
= (MVT::SimpleValueType
)i
;
742 // Do not attempt to custom lower non-power-of-2 vectors
743 if (!isPowerOf2_32(VT
.getVectorNumElements()))
745 // Do not attempt to custom lower non-128-bit vectors
746 if (!VT
.is128BitVector())
748 setOperationAction(ISD::BUILD_VECTOR
,
749 VT
.getSimpleVT().SimpleTy
, Custom
);
750 setOperationAction(ISD::VECTOR_SHUFFLE
,
751 VT
.getSimpleVT().SimpleTy
, Custom
);
752 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,
753 VT
.getSimpleVT().SimpleTy
, Custom
);
756 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
757 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
758 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Custom
);
759 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Custom
);
760 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f64
, Custom
);
761 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Custom
);
763 if (Subtarget
->is64Bit()) {
764 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Custom
);
765 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Custom
);
768 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
769 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; i
++) {
770 MVT::SimpleValueType SVT
= (MVT::SimpleValueType
)i
;
773 // Do not attempt to promote non-128-bit vectors
774 if (!VT
.is128BitVector()) {
777 setOperationAction(ISD::AND
, SVT
, Promote
);
778 AddPromotedToType (ISD::AND
, SVT
, MVT::v2i64
);
779 setOperationAction(ISD::OR
, SVT
, Promote
);
780 AddPromotedToType (ISD::OR
, SVT
, MVT::v2i64
);
781 setOperationAction(ISD::XOR
, SVT
, Promote
);
782 AddPromotedToType (ISD::XOR
, SVT
, MVT::v2i64
);
783 setOperationAction(ISD::LOAD
, SVT
, Promote
);
784 AddPromotedToType (ISD::LOAD
, SVT
, MVT::v2i64
);
785 setOperationAction(ISD::SELECT
, SVT
, Promote
);
786 AddPromotedToType (ISD::SELECT
, SVT
, MVT::v2i64
);
789 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
791 // Custom lower v2i64 and v2f64 selects.
792 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
793 setOperationAction(ISD::LOAD
, MVT::v2i64
, Legal
);
794 setOperationAction(ISD::SELECT
, MVT::v2f64
, Custom
);
795 setOperationAction(ISD::SELECT
, MVT::v2i64
, Custom
);
797 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i32
, Legal
);
798 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Legal
);
799 if (!DisableMMX
&& Subtarget
->hasMMX()) {
800 setOperationAction(ISD::FP_TO_SINT
, MVT::v2i32
, Custom
);
801 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i32
, Custom
);
805 if (Subtarget
->hasSSE41()) {
806 // FIXME: Do we need to handle scalar-to-vector here?
807 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
809 // i8 and i16 vectors are custom , because the source register and source
810 // source memory operand types are not the same width. f32 vectors are
811 // custom since the immediate controlling the insert encodes additional
813 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
814 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
815 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
816 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
818 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Custom
);
819 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Custom
);
820 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Custom
);
821 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
823 if (Subtarget
->is64Bit()) {
824 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Legal
);
825 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
829 if (Subtarget
->hasSSE42()) {
830 setOperationAction(ISD::VSETCC
, MVT::v2i64
, Custom
);
833 if (!UseSoftFloat
&& Subtarget
->hasAVX()) {
834 addRegisterClass(MVT::v8f32
, X86::VR256RegisterClass
);
835 addRegisterClass(MVT::v4f64
, X86::VR256RegisterClass
);
836 addRegisterClass(MVT::v8i32
, X86::VR256RegisterClass
);
837 addRegisterClass(MVT::v4i64
, X86::VR256RegisterClass
);
839 setOperationAction(ISD::LOAD
, MVT::v8f32
, Legal
);
840 setOperationAction(ISD::LOAD
, MVT::v8i32
, Legal
);
841 setOperationAction(ISD::LOAD
, MVT::v4f64
, Legal
);
842 setOperationAction(ISD::LOAD
, MVT::v4i64
, Legal
);
843 setOperationAction(ISD::FADD
, MVT::v8f32
, Legal
);
844 setOperationAction(ISD::FSUB
, MVT::v8f32
, Legal
);
845 setOperationAction(ISD::FMUL
, MVT::v8f32
, Legal
);
846 setOperationAction(ISD::FDIV
, MVT::v8f32
, Legal
);
847 setOperationAction(ISD::FSQRT
, MVT::v8f32
, Legal
);
848 setOperationAction(ISD::FNEG
, MVT::v8f32
, Custom
);
849 //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
850 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
851 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
852 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
853 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
855 // Operations to consider commented out -v16i16 v32i8
856 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
857 setOperationAction(ISD::ADD
, MVT::v8i32
, Custom
);
858 setOperationAction(ISD::ADD
, MVT::v4i64
, Custom
);
859 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
860 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
861 setOperationAction(ISD::SUB
, MVT::v8i32
, Custom
);
862 setOperationAction(ISD::SUB
, MVT::v4i64
, Custom
);
863 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
864 setOperationAction(ISD::FADD
, MVT::v4f64
, Legal
);
865 setOperationAction(ISD::FSUB
, MVT::v4f64
, Legal
);
866 setOperationAction(ISD::FMUL
, MVT::v4f64
, Legal
);
867 setOperationAction(ISD::FDIV
, MVT::v4f64
, Legal
);
868 setOperationAction(ISD::FSQRT
, MVT::v4f64
, Legal
);
869 setOperationAction(ISD::FNEG
, MVT::v4f64
, Custom
);
871 setOperationAction(ISD::VSETCC
, MVT::v4f64
, Custom
);
872 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
873 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
874 setOperationAction(ISD::VSETCC
, MVT::v8i32
, Custom
);
876 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
877 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
878 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
879 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i32
, Custom
);
880 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8f32
, Custom
);
882 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f64
, Custom
);
883 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i64
, Custom
);
884 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f64
, Custom
);
885 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i64
, Custom
);
886 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f64
, Custom
);
887 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f64
, Custom
);
890 // Not sure we want to do this since there are no 256-bit integer
893 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
894 // This includes 256-bit vectors
895 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; ++i
) {
896 EVT VT
= (MVT::SimpleValueType
)i
;
898 // Do not attempt to custom lower non-power-of-2 vectors
899 if (!isPowerOf2_32(VT
.getVectorNumElements()))
902 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
903 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
904 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
907 if (Subtarget
->is64Bit()) {
908 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i64
, Custom
);
909 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i64
, Custom
);
914 // Not sure we want to do this since there are no 256-bit integer
917 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
918 // Including 256-bit vectors
919 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; i
++) {
920 EVT VT
= (MVT::SimpleValueType
)i
;
922 if (!VT
.is256BitVector()) {
925 setOperationAction(ISD::AND
, VT
, Promote
);
926 AddPromotedToType (ISD::AND
, VT
, MVT::v4i64
);
927 setOperationAction(ISD::OR
, VT
, Promote
);
928 AddPromotedToType (ISD::OR
, VT
, MVT::v4i64
);
929 setOperationAction(ISD::XOR
, VT
, Promote
);
930 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i64
);
931 setOperationAction(ISD::LOAD
, VT
, Promote
);
932 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i64
);
933 setOperationAction(ISD::SELECT
, VT
, Promote
);
934 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i64
);
937 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
941 // We want to custom lower some of our intrinsics.
942 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
944 // Add/Sub/Mul with overflow operations are custom lowered.
945 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
946 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
947 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
948 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
949 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
950 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
951 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
952 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
953 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
954 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
956 if (!Subtarget
->is64Bit()) {
957 // These libcalls are not available in 32-bit.
958 setLibcallName(RTLIB::SHL_I128
, 0);
959 setLibcallName(RTLIB::SRL_I128
, 0);
960 setLibcallName(RTLIB::SRA_I128
, 0);
963 // We have target-specific dag combine patterns for the following nodes:
964 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
965 setTargetDAGCombine(ISD::BUILD_VECTOR
);
966 setTargetDAGCombine(ISD::SELECT
);
967 setTargetDAGCombine(ISD::SHL
);
968 setTargetDAGCombine(ISD::SRA
);
969 setTargetDAGCombine(ISD::SRL
);
970 setTargetDAGCombine(ISD::STORE
);
971 setTargetDAGCombine(ISD::MEMBARRIER
);
972 if (Subtarget
->is64Bit())
973 setTargetDAGCombine(ISD::MUL
);
975 computeRegisterProperties();
977 // FIXME: These should be based on subtarget info. Plus, the values should
978 // be smaller when we are in optimizing for size mode.
979 maxStoresPerMemset
= 16; // For @llvm.memset -> sequence of stores
980 maxStoresPerMemcpy
= 16; // For @llvm.memcpy -> sequence of stores
981 maxStoresPerMemmove
= 3; // For @llvm.memmove -> sequence of stores
982 setPrefLoopAlignment(16);
983 benefitFromCodePlacementOpt
= true;
987 MVT::SimpleValueType
X86TargetLowering::getSetCCResultType(EVT VT
) const {
992 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
993 /// the desired ByVal argument alignment.
994 static void getMaxByValAlign(const Type
*Ty
, unsigned &MaxAlign
) {
997 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
998 if (VTy
->getBitWidth() == 128)
1000 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1001 unsigned EltAlign
= 0;
1002 getMaxByValAlign(ATy
->getElementType(), EltAlign
);
1003 if (EltAlign
> MaxAlign
)
1004 MaxAlign
= EltAlign
;
1005 } else if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1006 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1007 unsigned EltAlign
= 0;
1008 getMaxByValAlign(STy
->getElementType(i
), EltAlign
);
1009 if (EltAlign
> MaxAlign
)
1010 MaxAlign
= EltAlign
;
1018 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1019 /// function arguments in the caller parameter area. For X86, aggregates
1020 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1021 /// are at 4-byte boundaries.
1022 unsigned X86TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
1023 if (Subtarget
->is64Bit()) {
1024 // Max of 8 and alignment of type.
1025 unsigned TyAlign
= TD
->getABITypeAlignment(Ty
);
1032 if (Subtarget
->hasSSE1())
1033 getMaxByValAlign(Ty
, Align
);
1037 /// getOptimalMemOpType - Returns the target specific optimal type for load
1038 /// and store operations as a result of memset, memcpy, and memmove
1039 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1042 X86TargetLowering::getOptimalMemOpType(uint64_t Size
, unsigned Align
,
1043 bool isSrcConst
, bool isSrcStr
,
1044 SelectionDAG
&DAG
) const {
1045 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1046 // linux. This is because the stack realignment code can't handle certain
1047 // cases like PR2962. This should be removed when PR2962 is fixed.
1048 const Function
*F
= DAG
.getMachineFunction().getFunction();
1049 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
1050 if (!NoImplicitFloatOps
&& Subtarget
->getStackAlignment() >= 16) {
1051 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE2() && Size
>= 16)
1053 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE1() && Size
>= 16)
1056 if (Subtarget
->is64Bit() && Size
>= 8)
1061 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1063 SDValue
X86TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
1064 SelectionDAG
&DAG
) const {
1065 if (usesGlobalOffsetTable())
1066 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
1067 if (!Subtarget
->is64Bit())
1068 // This doesn't have DebugLoc associated with it, but is not really the
1069 // same as a Register.
1070 return DAG
.getNode(X86ISD::GlobalBaseReg
, DebugLoc::getUnknownLoc(),
1075 /// getFunctionAlignment - Return the Log2 alignment of this function.
1076 unsigned X86TargetLowering::getFunctionAlignment(const Function
*F
) const {
1077 return F
->hasFnAttr(Attribute::OptimizeForSize
) ? 0 : 4;
1080 //===----------------------------------------------------------------------===//
1081 // Return Value Calling Convention Implementation
1082 //===----------------------------------------------------------------------===//
1084 #include "X86GenCallingConv.inc"
1087 X86TargetLowering::LowerReturn(SDValue Chain
,
1088 CallingConv::ID CallConv
, bool isVarArg
,
1089 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1090 DebugLoc dl
, SelectionDAG
&DAG
) {
1092 SmallVector
<CCValAssign
, 16> RVLocs
;
1093 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1094 RVLocs
, *DAG
.getContext());
1095 CCInfo
.AnalyzeReturn(Outs
, RetCC_X86
);
1097 // If this is the first return lowered for this function, add the regs to the
1098 // liveout set for the function.
1099 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
1100 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
1101 if (RVLocs
[i
].isRegLoc())
1102 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
1107 SmallVector
<SDValue
, 6> RetOps
;
1108 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
1109 // Operand #1 = Bytes To Pop
1110 RetOps
.push_back(DAG
.getTargetConstant(getBytesToPopOnReturn(), MVT::i16
));
1112 // Copy the result values into the output registers.
1113 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1114 CCValAssign
&VA
= RVLocs
[i
];
1115 assert(VA
.isRegLoc() && "Can only return in registers!");
1116 SDValue ValToCopy
= Outs
[i
].Val
;
1118 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1119 // the RET instruction and handled by the FP Stackifier.
1120 if (VA
.getLocReg() == X86::ST0
||
1121 VA
.getLocReg() == X86::ST1
) {
1122 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1123 // change the value to the FP stack register class.
1124 if (isScalarFPTypeInSSEReg(VA
.getValVT()))
1125 ValToCopy
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f80
, ValToCopy
);
1126 RetOps
.push_back(ValToCopy
);
1127 // Don't emit a copytoreg.
1131 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1132 // which is returned in RAX / RDX.
1133 if (Subtarget
->is64Bit()) {
1134 EVT ValVT
= ValToCopy
.getValueType();
1135 if (ValVT
.isVector() && ValVT
.getSizeInBits() == 64) {
1136 ValToCopy
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, ValToCopy
);
1137 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
)
1138 ValToCopy
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, ValToCopy
);
1142 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), ValToCopy
, Flag
);
1143 Flag
= Chain
.getValue(1);
1146 // The x86-64 ABI for returning structs by value requires that we copy
1147 // the sret argument into %rax for the return. We saved the argument into
1148 // a virtual register in the entry block, so now we copy the value out
1150 if (Subtarget
->is64Bit() &&
1151 DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1152 MachineFunction
&MF
= DAG
.getMachineFunction();
1153 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1154 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1156 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1157 FuncInfo
->setSRetReturnReg(Reg
);
1159 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy());
1161 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::RAX
, Val
, Flag
);
1162 Flag
= Chain
.getValue(1);
1165 RetOps
[0] = Chain
; // Update chain.
1167 // Add the flag if we have it.
1169 RetOps
.push_back(Flag
);
1171 return DAG
.getNode(X86ISD::RET_FLAG
, dl
,
1172 MVT::Other
, &RetOps
[0], RetOps
.size());
1175 /// LowerCallResult - Lower the result values of a call into the
1176 /// appropriate copies out of appropriate physical registers.
1179 X86TargetLowering::LowerCallResult(SDValue Chain
, SDValue InFlag
,
1180 CallingConv::ID CallConv
, bool isVarArg
,
1181 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1182 DebugLoc dl
, SelectionDAG
&DAG
,
1183 SmallVectorImpl
<SDValue
> &InVals
) {
1185 // Assign locations to each value returned by this call.
1186 SmallVector
<CCValAssign
, 16> RVLocs
;
1187 bool Is64Bit
= Subtarget
->is64Bit();
1188 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1189 RVLocs
, *DAG
.getContext());
1190 CCInfo
.AnalyzeCallResult(Ins
, RetCC_X86
);
1192 // Copy all of the result registers out of their specified physreg.
1193 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1194 CCValAssign
&VA
= RVLocs
[i
];
1195 EVT CopyVT
= VA
.getValVT();
1197 // If this is x86-64, and we disabled SSE, we can't return FP values
1198 if ((CopyVT
== MVT::f32
|| CopyVT
== MVT::f64
) &&
1199 ((Is64Bit
|| Ins
[i
].Flags
.isInReg()) && !Subtarget
->hasSSE1())) {
1200 llvm_report_error("SSE register return with SSE disabled");
1203 // If this is a call to a function that returns an fp value on the floating
1204 // point stack, but where we prefer to use the value in xmm registers, copy
1205 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1206 if ((VA
.getLocReg() == X86::ST0
||
1207 VA
.getLocReg() == X86::ST1
) &&
1208 isScalarFPTypeInSSEReg(VA
.getValVT())) {
1213 if (Is64Bit
&& CopyVT
.isVector() && CopyVT
.getSizeInBits() == 64) {
1214 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1215 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) {
1216 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1217 MVT::v2i64
, InFlag
).getValue(1);
1218 Val
= Chain
.getValue(0);
1219 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1220 Val
, DAG
.getConstant(0, MVT::i64
));
1222 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1223 MVT::i64
, InFlag
).getValue(1);
1224 Val
= Chain
.getValue(0);
1226 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, CopyVT
, Val
);
1228 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1229 CopyVT
, InFlag
).getValue(1);
1230 Val
= Chain
.getValue(0);
1232 InFlag
= Chain
.getValue(2);
1234 if (CopyVT
!= VA
.getValVT()) {
1235 // Round the F80 the right size, which also moves to the appropriate xmm
1237 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, VA
.getValVT(), Val
,
1238 // This truncation won't change the value.
1239 DAG
.getIntPtrConstant(1));
1242 InVals
.push_back(Val
);
1249 //===----------------------------------------------------------------------===//
1250 // C & StdCall & Fast Calling Convention implementation
1251 //===----------------------------------------------------------------------===//
1252 // StdCall calling convention seems to be standard for many Windows' API
1253 // routines and around. It differs from C calling convention just a little:
1254 // callee should clean up the stack, not caller. Symbols should be also
1255 // decorated in some fancy way :) It doesn't support any vector arguments.
1256 // For info on fast calling convention see Fast Calling Convention (tail call)
1257 // implementation LowerX86_32FastCCCallTo.
1259 /// CallIsStructReturn - Determines whether a call uses struct return
1261 static bool CallIsStructReturn(const SmallVectorImpl
<ISD::OutputArg
> &Outs
) {
1265 return Outs
[0].Flags
.isSRet();
1268 /// ArgsAreStructReturn - Determines whether a function uses struct
1269 /// return semantics.
1271 ArgsAreStructReturn(const SmallVectorImpl
<ISD::InputArg
> &Ins
) {
1275 return Ins
[0].Flags
.isSRet();
1278 /// IsCalleePop - Determines whether the callee is required to pop its
1279 /// own arguments. Callee pop is necessary to support tail calls.
1280 bool X86TargetLowering::IsCalleePop(bool IsVarArg
, CallingConv::ID CallingConv
){
1284 switch (CallingConv
) {
1287 case CallingConv::X86_StdCall
:
1288 return !Subtarget
->is64Bit();
1289 case CallingConv::X86_FastCall
:
1290 return !Subtarget
->is64Bit();
1291 case CallingConv::Fast
:
1292 return PerformTailCallOpt
;
1296 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1297 /// given CallingConvention value.
1298 CCAssignFn
*X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC
) const {
1299 if (Subtarget
->is64Bit()) {
1300 if (Subtarget
->isTargetWin64())
1301 return CC_X86_Win64_C
;
1306 if (CC
== CallingConv::X86_FastCall
)
1307 return CC_X86_32_FastCall
;
1308 else if (CC
== CallingConv::Fast
)
1309 return CC_X86_32_FastCC
;
1314 /// NameDecorationForCallConv - Selects the appropriate decoration to
1315 /// apply to a MachineFunction containing a given calling convention.
1317 X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv
) {
1318 if (CallConv
== CallingConv::X86_FastCall
)
1320 else if (CallConv
== CallingConv::X86_StdCall
)
1326 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1327 /// by "Src" to address "Dst" with size and alignment information specified by
1328 /// the specific parameter attribute. The copy will be passed as a byval
1329 /// function parameter.
1331 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
1332 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1334 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
1335 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
1336 /*AlwaysInline=*/true, NULL
, 0, NULL
, 0);
1340 X86TargetLowering::LowerMemArgument(SDValue Chain
,
1341 CallingConv::ID CallConv
,
1342 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1343 DebugLoc dl
, SelectionDAG
&DAG
,
1344 const CCValAssign
&VA
,
1345 MachineFrameInfo
*MFI
,
1348 // Create the nodes corresponding to a load from this parameter slot.
1349 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
1350 bool AlwaysUseMutable
= (CallConv
==CallingConv::Fast
) && PerformTailCallOpt
;
1351 bool isImmutable
= !AlwaysUseMutable
&& !Flags
.isByVal();
1354 // If value is passed by pointer we have address passed instead of the value
1356 if (VA
.getLocInfo() == CCValAssign::Indirect
)
1357 ValVT
= VA
.getLocVT();
1359 ValVT
= VA
.getValVT();
1361 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1362 // changed with more analysis.
1363 // In case of tail call optimization mark all arguments mutable. Since they
1364 // could be overwritten by lowering of arguments in case of a tail call.
1365 int FI
= MFI
->CreateFixedObject(ValVT
.getSizeInBits()/8,
1366 VA
.getLocMemOffset(), isImmutable
);
1367 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1368 if (Flags
.isByVal())
1370 return DAG
.getLoad(ValVT
, dl
, Chain
, FIN
,
1371 PseudoSourceValue::getFixedStack(FI
), 0);
1375 X86TargetLowering::LowerFormalArguments(SDValue Chain
,
1376 CallingConv::ID CallConv
,
1378 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1381 SmallVectorImpl
<SDValue
> &InVals
) {
1383 MachineFunction
&MF
= DAG
.getMachineFunction();
1384 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1386 const Function
* Fn
= MF
.getFunction();
1387 if (Fn
->hasExternalLinkage() &&
1388 Subtarget
->isTargetCygMing() &&
1389 Fn
->getName() == "main")
1390 FuncInfo
->setForceFramePointer(true);
1392 // Decorate the function name.
1393 FuncInfo
->setDecorationStyle(NameDecorationForCallConv(CallConv
));
1395 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1396 bool Is64Bit
= Subtarget
->is64Bit();
1397 bool IsWin64
= Subtarget
->isTargetWin64();
1399 assert(!(isVarArg
&& CallConv
== CallingConv::Fast
) &&
1400 "Var args not supported with calling convention fastcc");
1402 // Assign locations to all of the incoming arguments.
1403 SmallVector
<CCValAssign
, 16> ArgLocs
;
1404 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1405 ArgLocs
, *DAG
.getContext());
1406 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForNode(CallConv
));
1408 unsigned LastVal
= ~0U;
1410 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1411 CCValAssign
&VA
= ArgLocs
[i
];
1412 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1414 assert(VA
.getValNo() != LastVal
&&
1415 "Don't support value assigned to multiple locs yet");
1416 LastVal
= VA
.getValNo();
1418 if (VA
.isRegLoc()) {
1419 EVT RegVT
= VA
.getLocVT();
1420 TargetRegisterClass
*RC
= NULL
;
1421 if (RegVT
== MVT::i32
)
1422 RC
= X86::GR32RegisterClass
;
1423 else if (Is64Bit
&& RegVT
== MVT::i64
)
1424 RC
= X86::GR64RegisterClass
;
1425 else if (RegVT
== MVT::f32
)
1426 RC
= X86::FR32RegisterClass
;
1427 else if (RegVT
== MVT::f64
)
1428 RC
= X86::FR64RegisterClass
;
1429 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128)
1430 RC
= X86::VR128RegisterClass
;
1431 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 64)
1432 RC
= X86::VR64RegisterClass
;
1434 llvm_unreachable("Unknown argument type!");
1436 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
1437 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
1439 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1440 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1442 if (VA
.getLocInfo() == CCValAssign::SExt
)
1443 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
1444 DAG
.getValueType(VA
.getValVT()));
1445 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
1446 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
1447 DAG
.getValueType(VA
.getValVT()));
1448 else if (VA
.getLocInfo() == CCValAssign::BCvt
)
1449 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getValVT(), ArgValue
);
1451 if (VA
.isExtInLoc()) {
1452 // Handle MMX values passed in XMM regs.
1453 if (RegVT
.isVector()) {
1454 ArgValue
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1455 ArgValue
, DAG
.getConstant(0, MVT::i64
));
1456 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getValVT(), ArgValue
);
1458 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
1461 assert(VA
.isMemLoc());
1462 ArgValue
= LowerMemArgument(Chain
, CallConv
, Ins
, dl
, DAG
, VA
, MFI
, i
);
1465 // If value is passed via pointer - do a load.
1466 if (VA
.getLocInfo() == CCValAssign::Indirect
)
1467 ArgValue
= DAG
.getLoad(VA
.getValVT(), dl
, Chain
, ArgValue
, NULL
, 0);
1469 InVals
.push_back(ArgValue
);
1472 // The x86-64 ABI for returning structs by value requires that we copy
1473 // the sret argument into %rax for the return. Save the argument into
1474 // a virtual register so that we can access it from the return points.
1475 if (Is64Bit
&& MF
.getFunction()->hasStructRetAttr()) {
1476 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1477 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1479 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1480 FuncInfo
->setSRetReturnReg(Reg
);
1482 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, InVals
[0]);
1483 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Chain
);
1486 unsigned StackSize
= CCInfo
.getNextStackOffset();
1487 // align stack specially for tail calls
1488 if (PerformTailCallOpt
&& CallConv
== CallingConv::Fast
)
1489 StackSize
= GetAlignedArgumentStackSize(StackSize
, DAG
);
1491 // If the function takes variable number of arguments, make a frame index for
1492 // the start of the first vararg value... for expansion of llvm.va_start.
1494 if (Is64Bit
|| CallConv
!= CallingConv::X86_FastCall
) {
1495 VarArgsFrameIndex
= MFI
->CreateFixedObject(1, StackSize
);
1498 unsigned TotalNumIntRegs
= 0, TotalNumXMMRegs
= 0;
1500 // FIXME: We should really autogenerate these arrays
1501 static const unsigned GPR64ArgRegsWin64
[] = {
1502 X86::RCX
, X86::RDX
, X86::R8
, X86::R9
1504 static const unsigned XMMArgRegsWin64
[] = {
1505 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
1507 static const unsigned GPR64ArgRegs64Bit
[] = {
1508 X86::RDI
, X86::RSI
, X86::RDX
, X86::RCX
, X86::R8
, X86::R9
1510 static const unsigned XMMArgRegs64Bit
[] = {
1511 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1512 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1514 const unsigned *GPR64ArgRegs
, *XMMArgRegs
;
1517 TotalNumIntRegs
= 4; TotalNumXMMRegs
= 4;
1518 GPR64ArgRegs
= GPR64ArgRegsWin64
;
1519 XMMArgRegs
= XMMArgRegsWin64
;
1521 TotalNumIntRegs
= 6; TotalNumXMMRegs
= 8;
1522 GPR64ArgRegs
= GPR64ArgRegs64Bit
;
1523 XMMArgRegs
= XMMArgRegs64Bit
;
1525 unsigned NumIntRegs
= CCInfo
.getFirstUnallocated(GPR64ArgRegs
,
1527 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
,
1530 bool NoImplicitFloatOps
= Fn
->hasFnAttr(Attribute::NoImplicitFloat
);
1531 assert(!(NumXMMRegs
&& !Subtarget
->hasSSE1()) &&
1532 "SSE register cannot be used when SSE is disabled!");
1533 assert(!(NumXMMRegs
&& UseSoftFloat
&& NoImplicitFloatOps
) &&
1534 "SSE register cannot be used when SSE is disabled!");
1535 if (UseSoftFloat
|| NoImplicitFloatOps
|| !Subtarget
->hasSSE1())
1536 // Kernel mode asks for SSE to be disabled, so don't push them
1538 TotalNumXMMRegs
= 0;
1540 // For X86-64, if there are vararg parameters that are passed via
1541 // registers, then we must store them to their spots on the stack so they
1542 // may be loaded by deferencing the result of va_next.
1543 VarArgsGPOffset
= NumIntRegs
* 8;
1544 VarArgsFPOffset
= TotalNumIntRegs
* 8 + NumXMMRegs
* 16;
1545 RegSaveFrameIndex
= MFI
->CreateStackObject(TotalNumIntRegs
* 8 +
1546 TotalNumXMMRegs
* 16, 16);
1548 // Store the integer parameter registers.
1549 SmallVector
<SDValue
, 8> MemOps
;
1550 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
1551 unsigned Offset
= VarArgsGPOffset
;
1552 for (; NumIntRegs
!= TotalNumIntRegs
; ++NumIntRegs
) {
1553 SDValue FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1554 DAG
.getIntPtrConstant(Offset
));
1555 unsigned VReg
= MF
.addLiveIn(GPR64ArgRegs
[NumIntRegs
],
1556 X86::GR64RegisterClass
);
1557 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
1559 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1560 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
),
1562 MemOps
.push_back(Store
);
1566 if (TotalNumXMMRegs
!= 0 && NumXMMRegs
!= TotalNumXMMRegs
) {
1567 // Now store the XMM (fp + vector) parameter registers.
1568 SmallVector
<SDValue
, 11> SaveXMMOps
;
1569 SaveXMMOps
.push_back(Chain
);
1571 unsigned AL
= MF
.addLiveIn(X86::AL
, X86::GR8RegisterClass
);
1572 SDValue ALVal
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, AL
, MVT::i8
);
1573 SaveXMMOps
.push_back(ALVal
);
1575 SaveXMMOps
.push_back(DAG
.getIntPtrConstant(RegSaveFrameIndex
));
1576 SaveXMMOps
.push_back(DAG
.getIntPtrConstant(VarArgsFPOffset
));
1578 for (; NumXMMRegs
!= TotalNumXMMRegs
; ++NumXMMRegs
) {
1579 unsigned VReg
= MF
.addLiveIn(XMMArgRegs
[NumXMMRegs
],
1580 X86::VR128RegisterClass
);
1581 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::v4f32
);
1582 SaveXMMOps
.push_back(Val
);
1584 MemOps
.push_back(DAG
.getNode(X86ISD::VASTART_SAVE_XMM_REGS
, dl
,
1586 &SaveXMMOps
[0], SaveXMMOps
.size()));
1589 if (!MemOps
.empty())
1590 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1591 &MemOps
[0], MemOps
.size());
1595 // Some CCs need callee pop.
1596 if (IsCalleePop(isVarArg
, CallConv
)) {
1597 BytesToPopOnReturn
= StackSize
; // Callee pops everything.
1598 BytesCallerReserves
= 0;
1600 BytesToPopOnReturn
= 0; // Callee pops nothing.
1601 // If this is an sret function, the return should pop the hidden pointer.
1602 if (!Is64Bit
&& CallConv
!= CallingConv::Fast
&& ArgsAreStructReturn(Ins
))
1603 BytesToPopOnReturn
= 4;
1604 BytesCallerReserves
= StackSize
;
1608 RegSaveFrameIndex
= 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1609 if (CallConv
== CallingConv::X86_FastCall
)
1610 VarArgsFrameIndex
= 0xAAAAAAA; // fastcc functions can't have varargs.
1613 FuncInfo
->setBytesToPopOnReturn(BytesToPopOnReturn
);
1619 X86TargetLowering::LowerMemOpCallTo(SDValue Chain
,
1620 SDValue StackPtr
, SDValue Arg
,
1621 DebugLoc dl
, SelectionDAG
&DAG
,
1622 const CCValAssign
&VA
,
1623 ISD::ArgFlagsTy Flags
) {
1624 const unsigned FirstStackArgOffset
= (Subtarget
->isTargetWin64() ? 32 : 0);
1625 unsigned LocMemOffset
= FirstStackArgOffset
+ VA
.getLocMemOffset();
1626 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
1627 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
1628 if (Flags
.isByVal()) {
1629 return CreateCopyOfByValArgument(Arg
, PtrOff
, Chain
, Flags
, DAG
, dl
);
1631 return DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
1632 PseudoSourceValue::getStack(), LocMemOffset
);
1635 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1636 /// optimization is performed and it is required.
1638 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG
&DAG
,
1639 SDValue
&OutRetAddr
,
1645 if (!IsTailCall
|| FPDiff
==0) return Chain
;
1647 // Adjust the Return address stack slot.
1648 EVT VT
= getPointerTy();
1649 OutRetAddr
= getReturnAddressFrameIndex(DAG
);
1651 // Load the "old" Return address.
1652 OutRetAddr
= DAG
.getLoad(VT
, dl
, Chain
, OutRetAddr
, NULL
, 0);
1653 return SDValue(OutRetAddr
.getNode(), 1);
1656 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1657 /// optimization is performed and it is required (FPDiff!=0).
1659 EmitTailCallStoreRetAddr(SelectionDAG
& DAG
, MachineFunction
&MF
,
1660 SDValue Chain
, SDValue RetAddrFrIdx
,
1661 bool Is64Bit
, int FPDiff
, DebugLoc dl
) {
1662 // Store the return address to the appropriate stack slot.
1663 if (!FPDiff
) return Chain
;
1664 // Calculate the new stack slot for the return address.
1665 int SlotSize
= Is64Bit
? 8 : 4;
1666 int NewReturnAddrFI
=
1667 MF
.getFrameInfo()->CreateFixedObject(SlotSize
, FPDiff
-SlotSize
);
1668 EVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
1669 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewReturnAddrFI
, VT
);
1670 Chain
= DAG
.getStore(Chain
, dl
, RetAddrFrIdx
, NewRetAddrFrIdx
,
1671 PseudoSourceValue::getFixedStack(NewReturnAddrFI
), 0);
1676 X86TargetLowering::LowerCall(SDValue Chain
, SDValue Callee
,
1677 CallingConv::ID CallConv
, bool isVarArg
,
1679 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1680 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1681 DebugLoc dl
, SelectionDAG
&DAG
,
1682 SmallVectorImpl
<SDValue
> &InVals
) {
1684 MachineFunction
&MF
= DAG
.getMachineFunction();
1685 bool Is64Bit
= Subtarget
->is64Bit();
1686 bool IsStructRet
= CallIsStructReturn(Outs
);
1688 assert((!isTailCall
||
1689 (CallConv
== CallingConv::Fast
&& PerformTailCallOpt
)) &&
1690 "IsEligibleForTailCallOptimization missed a case!");
1691 assert(!(isVarArg
&& CallConv
== CallingConv::Fast
) &&
1692 "Var args not supported with calling convention fastcc");
1694 // Analyze operands of the call, assigning locations to each operand.
1695 SmallVector
<CCValAssign
, 16> ArgLocs
;
1696 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(),
1697 ArgLocs
, *DAG
.getContext());
1698 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForNode(CallConv
));
1700 // Get a count of how many bytes are to be pushed on the stack.
1701 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1702 if (PerformTailCallOpt
&& CallConv
== CallingConv::Fast
)
1703 NumBytes
= GetAlignedArgumentStackSize(NumBytes
, DAG
);
1707 // Lower arguments at fp - stackoffset + fpdiff.
1708 unsigned NumBytesCallerPushed
=
1709 MF
.getInfo
<X86MachineFunctionInfo
>()->getBytesToPopOnReturn();
1710 FPDiff
= NumBytesCallerPushed
- NumBytes
;
1712 // Set the delta of movement of the returnaddr stackslot.
1713 // But only set if delta is greater than previous delta.
1714 if (FPDiff
< (MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta()))
1715 MF
.getInfo
<X86MachineFunctionInfo
>()->setTCReturnAddrDelta(FPDiff
);
1718 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
1720 SDValue RetAddrFrIdx
;
1721 // Load return adress for tail calls.
1722 Chain
= EmitTailCallLoadRetAddr(DAG
, RetAddrFrIdx
, Chain
, isTailCall
, Is64Bit
,
1725 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
1726 SmallVector
<SDValue
, 8> MemOpChains
;
1729 // Walk the register/memloc assignments, inserting copies/loads. In the case
1730 // of tail call optimization arguments are handle later.
1731 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1732 CCValAssign
&VA
= ArgLocs
[i
];
1733 EVT RegVT
= VA
.getLocVT();
1734 SDValue Arg
= Outs
[i
].Val
;
1735 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
1736 bool isByVal
= Flags
.isByVal();
1738 // Promote the value if needed.
1739 switch (VA
.getLocInfo()) {
1740 default: llvm_unreachable("Unknown loc info!");
1741 case CCValAssign::Full
: break;
1742 case CCValAssign::SExt
:
1743 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, RegVT
, Arg
);
1745 case CCValAssign::ZExt
:
1746 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, RegVT
, Arg
);
1748 case CCValAssign::AExt
:
1749 if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128) {
1750 // Special case: passing MMX values in XMM registers.
1751 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1752 Arg
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, Arg
);
1753 Arg
= getMOVL(DAG
, dl
, MVT::v2i64
, DAG
.getUNDEF(MVT::v2i64
), Arg
);
1755 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, RegVT
, Arg
);
1757 case CCValAssign::BCvt
:
1758 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, RegVT
, Arg
);
1760 case CCValAssign::Indirect
: {
1761 // Store the argument.
1762 SDValue SpillSlot
= DAG
.CreateStackTemporary(VA
.getValVT());
1763 int FI
= cast
<FrameIndexSDNode
>(SpillSlot
)->getIndex();
1764 Chain
= DAG
.getStore(Chain
, dl
, Arg
, SpillSlot
,
1765 PseudoSourceValue::getFixedStack(FI
), 0);
1771 if (VA
.isRegLoc()) {
1772 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1774 if (!isTailCall
|| (isTailCall
&& isByVal
)) {
1775 assert(VA
.isMemLoc());
1776 if (StackPtr
.getNode() == 0)
1777 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, getPointerTy());
1779 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
1780 dl
, DAG
, VA
, Flags
));
1785 if (!MemOpChains
.empty())
1786 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1787 &MemOpChains
[0], MemOpChains
.size());
1789 // Build a sequence of copy-to-reg nodes chained together with token chain
1790 // and flag operands which copy the outgoing args into registers.
1792 // Tail call byval lowering might overwrite argument registers so in case of
1793 // tail call optimization the copies to registers are lowered later.
1795 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1796 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1797 RegsToPass
[i
].second
, InFlag
);
1798 InFlag
= Chain
.getValue(1);
1802 if (Subtarget
->isPICStyleGOT()) {
1803 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1806 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EBX
,
1807 DAG
.getNode(X86ISD::GlobalBaseReg
,
1808 DebugLoc::getUnknownLoc(),
1811 InFlag
= Chain
.getValue(1);
1813 // If we are tail calling and generating PIC/GOT style code load the
1814 // address of the callee into ECX. The value in ecx is used as target of
1815 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1816 // for tail calls on PIC/GOT architectures. Normally we would just put the
1817 // address of GOT into ebx and then call target@PLT. But for tail calls
1818 // ebx would be restored (since ebx is callee saved) before jumping to the
1821 // Note: The actual moving to ECX is done further down.
1822 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
1823 if (G
&& !G
->getGlobal()->hasHiddenVisibility() &&
1824 !G
->getGlobal()->hasProtectedVisibility())
1825 Callee
= LowerGlobalAddress(Callee
, DAG
);
1826 else if (isa
<ExternalSymbolSDNode
>(Callee
))
1827 Callee
= LowerExternalSymbol(Callee
, DAG
);
1831 if (Is64Bit
&& isVarArg
) {
1832 // From AMD64 ABI document:
1833 // For calls that may call functions that use varargs or stdargs
1834 // (prototype-less calls or calls to functions containing ellipsis (...) in
1835 // the declaration) %al is used as hidden argument to specify the number
1836 // of SSE registers used. The contents of %al do not need to match exactly
1837 // the number of registers, but must be an ubound on the number of SSE
1838 // registers used and is in the range 0 - 8 inclusive.
1840 // FIXME: Verify this on Win64
1841 // Count the number of XMM registers allocated.
1842 static const unsigned XMMArgRegs
[] = {
1843 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1844 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1846 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
, 8);
1847 assert((Subtarget
->hasSSE1() || !NumXMMRegs
)
1848 && "SSE registers cannot be used when SSE is disabled");
1850 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
,
1851 DAG
.getConstant(NumXMMRegs
, MVT::i8
), InFlag
);
1852 InFlag
= Chain
.getValue(1);
1856 // For tail calls lower the arguments to the 'real' stack slot.
1858 // Force all the incoming stack arguments to be loaded from the stack
1859 // before any new outgoing arguments are stored to the stack, because the
1860 // outgoing stack slots may alias the incoming argument stack slots, and
1861 // the alias isn't otherwise explicit. This is slightly more conservative
1862 // than necessary, because it means that each store effectively depends
1863 // on every argument instead of just those arguments it would clobber.
1864 SDValue ArgChain
= DAG
.getStackArgumentTokenFactor(Chain
);
1866 SmallVector
<SDValue
, 8> MemOpChains2
;
1869 // Do not flag preceeding copytoreg stuff together with the following stuff.
1871 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1872 CCValAssign
&VA
= ArgLocs
[i
];
1873 if (!VA
.isRegLoc()) {
1874 assert(VA
.isMemLoc());
1875 SDValue Arg
= Outs
[i
].Val
;
1876 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
1877 // Create frame index.
1878 int32_t Offset
= VA
.getLocMemOffset()+FPDiff
;
1879 uint32_t OpSize
= (VA
.getLocVT().getSizeInBits()+7)/8;
1880 FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
);
1881 FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1883 if (Flags
.isByVal()) {
1884 // Copy relative to framepointer.
1885 SDValue Source
= DAG
.getIntPtrConstant(VA
.getLocMemOffset());
1886 if (StackPtr
.getNode() == 0)
1887 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
,
1889 Source
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, Source
);
1891 MemOpChains2
.push_back(CreateCopyOfByValArgument(Source
, FIN
,
1895 // Store relative to framepointer.
1896 MemOpChains2
.push_back(
1897 DAG
.getStore(ArgChain
, dl
, Arg
, FIN
,
1898 PseudoSourceValue::getFixedStack(FI
), 0));
1903 if (!MemOpChains2
.empty())
1904 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1905 &MemOpChains2
[0], MemOpChains2
.size());
1907 // Copy arguments to their registers.
1908 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1909 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1910 RegsToPass
[i
].second
, InFlag
);
1911 InFlag
= Chain
.getValue(1);
1915 // Store the return address to the appropriate stack slot.
1916 Chain
= EmitTailCallStoreRetAddr(DAG
, MF
, Chain
, RetAddrFrIdx
, Is64Bit
,
1920 // If the callee is a GlobalAddress node (quite common, every direct call is)
1921 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1922 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
1923 // We should use extra load for direct calls to dllimported functions in
1925 GlobalValue
*GV
= G
->getGlobal();
1926 if (!GV
->hasDLLImportLinkage()) {
1927 unsigned char OpFlags
= 0;
1929 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1930 // external symbols most go through the PLT in PIC mode. If the symbol
1931 // has hidden or protected visibility, or if it is static or local, then
1932 // we don't need to use the PLT - we can directly call it.
1933 if (Subtarget
->isTargetELF() &&
1934 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1935 GV
->hasDefaultVisibility() && !GV
->hasLocalLinkage()) {
1936 OpFlags
= X86II::MO_PLT
;
1937 } else if (Subtarget
->isPICStyleStubAny() &&
1938 (GV
->isDeclaration() || GV
->isWeakForLinker()) &&
1939 Subtarget
->getDarwinVers() < 9) {
1940 // PC-relative references to external symbols should go through $stub,
1941 // unless we're building with the leopard linker or later, which
1942 // automatically synthesizes these stubs.
1943 OpFlags
= X86II::MO_DARWIN_STUB
;
1946 Callee
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(),
1947 G
->getOffset(), OpFlags
);
1949 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
1950 unsigned char OpFlags
= 0;
1952 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1953 // symbols should go through the PLT.
1954 if (Subtarget
->isTargetELF() &&
1955 getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
1956 OpFlags
= X86II::MO_PLT
;
1957 } else if (Subtarget
->isPICStyleStubAny() &&
1958 Subtarget
->getDarwinVers() < 9) {
1959 // PC-relative references to external symbols should go through $stub,
1960 // unless we're building with the leopard linker or later, which
1961 // automatically synthesizes these stubs.
1962 OpFlags
= X86II::MO_DARWIN_STUB
;
1965 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), getPointerTy(),
1967 } else if (isTailCall
) {
1968 unsigned Opc
= Is64Bit
? X86::R11
: X86::EAX
;
1970 Chain
= DAG
.getCopyToReg(Chain
, dl
,
1971 DAG
.getRegister(Opc
, getPointerTy()),
1973 Callee
= DAG
.getRegister(Opc
, getPointerTy());
1974 // Add register as live out.
1975 MF
.getRegInfo().addLiveOut(Opc
);
1978 // Returns a chain & a flag for retval copy to use.
1979 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1980 SmallVector
<SDValue
, 8> Ops
;
1983 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
1984 DAG
.getIntPtrConstant(0, true), InFlag
);
1985 InFlag
= Chain
.getValue(1);
1988 Ops
.push_back(Chain
);
1989 Ops
.push_back(Callee
);
1992 Ops
.push_back(DAG
.getConstant(FPDiff
, MVT::i32
));
1994 // Add argument registers to the end of the list so that they are known live
1996 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1997 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1998 RegsToPass
[i
].second
.getValueType()));
2000 // Add an implicit use GOT pointer in EBX.
2001 if (!isTailCall
&& Subtarget
->isPICStyleGOT())
2002 Ops
.push_back(DAG
.getRegister(X86::EBX
, getPointerTy()));
2004 // Add an implicit use of AL for x86 vararg functions.
2005 if (Is64Bit
&& isVarArg
)
2006 Ops
.push_back(DAG
.getRegister(X86::AL
, MVT::i8
));
2008 if (InFlag
.getNode())
2009 Ops
.push_back(InFlag
);
2012 // If this is the first return lowered for this function, add the regs
2013 // to the liveout set for the function.
2014 if (MF
.getRegInfo().liveout_empty()) {
2015 SmallVector
<CCValAssign
, 16> RVLocs
;
2016 CCState
CCInfo(CallConv
, isVarArg
, getTargetMachine(), RVLocs
,
2018 CCInfo
.AnalyzeCallResult(Ins
, RetCC_X86
);
2019 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
2020 if (RVLocs
[i
].isRegLoc())
2021 MF
.getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
2024 assert(((Callee
.getOpcode() == ISD::Register
&&
2025 (cast
<RegisterSDNode
>(Callee
)->getReg() == X86::EAX
||
2026 cast
<RegisterSDNode
>(Callee
)->getReg() == X86::R9
)) ||
2027 Callee
.getOpcode() == ISD::TargetExternalSymbol
||
2028 Callee
.getOpcode() == ISD::TargetGlobalAddress
) &&
2029 "Expecting an global address, external symbol, or register");
2031 return DAG
.getNode(X86ISD::TC_RETURN
, dl
,
2032 NodeTys
, &Ops
[0], Ops
.size());
2035 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, &Ops
[0], Ops
.size());
2036 InFlag
= Chain
.getValue(1);
2038 // Create the CALLSEQ_END node.
2039 unsigned NumBytesForCalleeToPush
;
2040 if (IsCalleePop(isVarArg
, CallConv
))
2041 NumBytesForCalleeToPush
= NumBytes
; // Callee pops everything
2042 else if (!Is64Bit
&& CallConv
!= CallingConv::Fast
&& IsStructRet
)
2043 // If this is is a call to a struct-return function, the callee
2044 // pops the hidden struct pointer, so we have to push it back.
2045 // This is common for Darwin/X86, Linux & Mingw32 targets.
2046 NumBytesForCalleeToPush
= 4;
2048 NumBytesForCalleeToPush
= 0; // Callee pops nothing.
2050 // Returns a flag for retval copy to use.
2051 Chain
= DAG
.getCALLSEQ_END(Chain
,
2052 DAG
.getIntPtrConstant(NumBytes
, true),
2053 DAG
.getIntPtrConstant(NumBytesForCalleeToPush
,
2056 InFlag
= Chain
.getValue(1);
2058 // Handle result values, copying them out of physregs into vregs that we
2060 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
,
2061 Ins
, dl
, DAG
, InVals
);
2065 //===----------------------------------------------------------------------===//
2066 // Fast Calling Convention (tail call) implementation
2067 //===----------------------------------------------------------------------===//
2069 // Like std call, callee cleans arguments, convention except that ECX is
2070 // reserved for storing the tail called function address. Only 2 registers are
2071 // free for argument passing (inreg). Tail call optimization is performed
2073 // * tailcallopt is enabled
2074 // * caller/callee are fastcc
2075 // On X86_64 architecture with GOT-style position independent code only local
2076 // (within module) calls are supported at the moment.
2077 // To keep the stack aligned according to platform abi the function
2078 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2079 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2080 // If a tail called function callee has more arguments than the caller the
2081 // caller needs to make sure that there is room to move the RETADDR to. This is
2082 // achieved by reserving an area the size of the argument delta right after the
2083 // original REtADDR, but before the saved framepointer or the spilled registers
2084 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2096 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2097 /// for a 16 byte align requirement.
2098 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize
,
2099 SelectionDAG
& DAG
) {
2100 MachineFunction
&MF
= DAG
.getMachineFunction();
2101 const TargetMachine
&TM
= MF
.getTarget();
2102 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
2103 unsigned StackAlignment
= TFI
.getStackAlignment();
2104 uint64_t AlignMask
= StackAlignment
- 1;
2105 int64_t Offset
= StackSize
;
2106 uint64_t SlotSize
= TD
->getPointerSize();
2107 if ( (Offset
& AlignMask
) <= (StackAlignment
- SlotSize
) ) {
2108 // Number smaller than 12 so just add the difference.
2109 Offset
+= ((StackAlignment
- SlotSize
) - (Offset
& AlignMask
));
2111 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2112 Offset
= ((~AlignMask
) & Offset
) + StackAlignment
+
2113 (StackAlignment
-SlotSize
);
2118 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2119 /// for tail call optimization. Targets which want to do tail call
2120 /// optimization should implement this function.
2122 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee
,
2123 CallingConv::ID CalleeCC
,
2125 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2126 SelectionDAG
& DAG
) const {
2127 MachineFunction
&MF
= DAG
.getMachineFunction();
2128 CallingConv::ID CallerCC
= MF
.getFunction()->getCallingConv();
2129 return CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
;
2133 X86TargetLowering::createFastISel(MachineFunction
&mf
,
2134 MachineModuleInfo
*mmo
,
2136 DenseMap
<const Value
*, unsigned> &vm
,
2137 DenseMap
<const BasicBlock
*,
2138 MachineBasicBlock
*> &bm
,
2139 DenseMap
<const AllocaInst
*, int> &am
2141 , SmallSet
<Instruction
*, 8> &cil
2144 return X86::createFastISel(mf
, mmo
, dw
, vm
, bm
, am
2152 //===----------------------------------------------------------------------===//
2153 // Other Lowering Hooks
2154 //===----------------------------------------------------------------------===//
2157 SDValue
X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) {
2158 MachineFunction
&MF
= DAG
.getMachineFunction();
2159 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
2160 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
2162 if (ReturnAddrIndex
== 0) {
2163 // Set up a frame object for the return address.
2164 uint64_t SlotSize
= TD
->getPointerSize();
2165 ReturnAddrIndex
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, -SlotSize
);
2166 FuncInfo
->setRAIndex(ReturnAddrIndex
);
2169 return DAG
.getFrameIndex(ReturnAddrIndex
, getPointerTy());
2173 bool X86::isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
2174 bool hasSymbolicDisplacement
) {
2175 // Offset should fit into 32 bit immediate field.
2176 if (!isInt32(Offset
))
2179 // If we don't have a symbolic displacement - we don't have any extra
2181 if (!hasSymbolicDisplacement
)
2184 // FIXME: Some tweaks might be needed for medium code model.
2185 if (M
!= CodeModel::Small
&& M
!= CodeModel::Kernel
)
2188 // For small code model we assume that latest object is 16MB before end of 31
2189 // bits boundary. We may also accept pretty large negative constants knowing
2190 // that all objects are in the positive half of address space.
2191 if (M
== CodeModel::Small
&& Offset
< 16*1024*1024)
2194 // For kernel code model we know that all object resist in the negative half
2195 // of 32bits address space. We may not accept negative offsets, since they may
2196 // be just off and we may accept pretty large positive ones.
2197 if (M
== CodeModel::Kernel
&& Offset
> 0)
2203 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2204 /// specific condition code, returning the condition code and the LHS/RHS of the
2205 /// comparison to make.
2206 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode
, bool isFP
,
2207 SDValue
&LHS
, SDValue
&RHS
, SelectionDAG
&DAG
) {
2209 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
2210 if (SetCCOpcode
== ISD::SETGT
&& RHSC
->isAllOnesValue()) {
2211 // X > -1 -> X == 0, jump !sign.
2212 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2213 return X86::COND_NS
;
2214 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->isNullValue()) {
2215 // X < 0 -> X == 0, jump on sign.
2217 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->getZExtValue() == 1) {
2219 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2220 return X86::COND_LE
;
2224 switch (SetCCOpcode
) {
2225 default: llvm_unreachable("Invalid integer condition!");
2226 case ISD::SETEQ
: return X86::COND_E
;
2227 case ISD::SETGT
: return X86::COND_G
;
2228 case ISD::SETGE
: return X86::COND_GE
;
2229 case ISD::SETLT
: return X86::COND_L
;
2230 case ISD::SETLE
: return X86::COND_LE
;
2231 case ISD::SETNE
: return X86::COND_NE
;
2232 case ISD::SETULT
: return X86::COND_B
;
2233 case ISD::SETUGT
: return X86::COND_A
;
2234 case ISD::SETULE
: return X86::COND_BE
;
2235 case ISD::SETUGE
: return X86::COND_AE
;
2239 // First determine if it is required or is profitable to flip the operands.
2241 // If LHS is a foldable load, but RHS is not, flip the condition.
2242 if ((ISD::isNON_EXTLoad(LHS
.getNode()) && LHS
.hasOneUse()) &&
2243 !(ISD::isNON_EXTLoad(RHS
.getNode()) && RHS
.hasOneUse())) {
2244 SetCCOpcode
= getSetCCSwappedOperands(SetCCOpcode
);
2245 std::swap(LHS
, RHS
);
2248 switch (SetCCOpcode
) {
2254 std::swap(LHS
, RHS
);
2258 // On a floating point condition, the flags are set as follows:
2260 // 0 | 0 | 0 | X > Y
2261 // 0 | 0 | 1 | X < Y
2262 // 1 | 0 | 0 | X == Y
2263 // 1 | 1 | 1 | unordered
2264 switch (SetCCOpcode
) {
2265 default: llvm_unreachable("Condcode should be pre-legalized away");
2267 case ISD::SETEQ
: return X86::COND_E
;
2268 case ISD::SETOLT
: // flipped
2270 case ISD::SETGT
: return X86::COND_A
;
2271 case ISD::SETOLE
: // flipped
2273 case ISD::SETGE
: return X86::COND_AE
;
2274 case ISD::SETUGT
: // flipped
2276 case ISD::SETLT
: return X86::COND_B
;
2277 case ISD::SETUGE
: // flipped
2279 case ISD::SETLE
: return X86::COND_BE
;
2281 case ISD::SETNE
: return X86::COND_NE
;
2282 case ISD::SETUO
: return X86::COND_P
;
2283 case ISD::SETO
: return X86::COND_NP
;
2287 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2288 /// code. Current x86 isa includes the following FP cmov instructions:
2289 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2290 static bool hasFPCMov(unsigned X86CC
) {
2306 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2307 /// the specified range (L, H].
2308 static bool isUndefOrInRange(int Val
, int Low
, int Hi
) {
2309 return (Val
< 0) || (Val
>= Low
&& Val
< Hi
);
2312 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2313 /// specified value.
2314 static bool isUndefOrEqual(int Val
, int CmpVal
) {
2315 if (Val
< 0 || Val
== CmpVal
)
2320 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2321 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2322 /// the second operand.
2323 static bool isPSHUFDMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2324 if (VT
== MVT::v4f32
|| VT
== MVT::v4i32
|| VT
== MVT::v4i16
)
2325 return (Mask
[0] < 4 && Mask
[1] < 4 && Mask
[2] < 4 && Mask
[3] < 4);
2326 if (VT
== MVT::v2f64
|| VT
== MVT::v2i64
)
2327 return (Mask
[0] < 2 && Mask
[1] < 2);
2331 bool X86::isPSHUFDMask(ShuffleVectorSDNode
*N
) {
2332 SmallVector
<int, 8> M
;
2334 return ::isPSHUFDMask(M
, N
->getValueType(0));
2337 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2338 /// is suitable for input to PSHUFHW.
2339 static bool isPSHUFHWMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2340 if (VT
!= MVT::v8i16
)
2343 // Lower quadword copied in order or undef.
2344 for (int i
= 0; i
!= 4; ++i
)
2345 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2348 // Upper quadword shuffled.
2349 for (int i
= 4; i
!= 8; ++i
)
2350 if (Mask
[i
] >= 0 && (Mask
[i
] < 4 || Mask
[i
] > 7))
2356 bool X86::isPSHUFHWMask(ShuffleVectorSDNode
*N
) {
2357 SmallVector
<int, 8> M
;
2359 return ::isPSHUFHWMask(M
, N
->getValueType(0));
2362 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2363 /// is suitable for input to PSHUFLW.
2364 static bool isPSHUFLWMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2365 if (VT
!= MVT::v8i16
)
2368 // Upper quadword copied in order.
2369 for (int i
= 4; i
!= 8; ++i
)
2370 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2373 // Lower quadword shuffled.
2374 for (int i
= 0; i
!= 4; ++i
)
2381 bool X86::isPSHUFLWMask(ShuffleVectorSDNode
*N
) {
2382 SmallVector
<int, 8> M
;
2384 return ::isPSHUFLWMask(M
, N
->getValueType(0));
2387 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2388 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2389 static bool isSHUFPMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2390 int NumElems
= VT
.getVectorNumElements();
2391 if (NumElems
!= 2 && NumElems
!= 4)
2394 int Half
= NumElems
/ 2;
2395 for (int i
= 0; i
< Half
; ++i
)
2396 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2398 for (int i
= Half
; i
< NumElems
; ++i
)
2399 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2405 bool X86::isSHUFPMask(ShuffleVectorSDNode
*N
) {
2406 SmallVector
<int, 8> M
;
2408 return ::isSHUFPMask(M
, N
->getValueType(0));
2411 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2412 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2413 /// half elements to come from vector 1 (which would equal the dest.) and
2414 /// the upper half to come from vector 2.
2415 static bool isCommutedSHUFPMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2416 int NumElems
= VT
.getVectorNumElements();
2418 if (NumElems
!= 2 && NumElems
!= 4)
2421 int Half
= NumElems
/ 2;
2422 for (int i
= 0; i
< Half
; ++i
)
2423 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2425 for (int i
= Half
; i
< NumElems
; ++i
)
2426 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2431 static bool isCommutedSHUFP(ShuffleVectorSDNode
*N
) {
2432 SmallVector
<int, 8> M
;
2434 return isCommutedSHUFPMask(M
, N
->getValueType(0));
2437 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2438 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2439 bool X86::isMOVHLPSMask(ShuffleVectorSDNode
*N
) {
2440 if (N
->getValueType(0).getVectorNumElements() != 4)
2443 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2444 return isUndefOrEqual(N
->getMaskElt(0), 6) &&
2445 isUndefOrEqual(N
->getMaskElt(1), 7) &&
2446 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2447 isUndefOrEqual(N
->getMaskElt(3), 3);
2450 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2451 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2452 bool X86::isMOVLPMask(ShuffleVectorSDNode
*N
) {
2453 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2455 if (NumElems
!= 2 && NumElems
!= 4)
2458 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2459 if (!isUndefOrEqual(N
->getMaskElt(i
), i
+ NumElems
))
2462 for (unsigned i
= NumElems
/2; i
< NumElems
; ++i
)
2463 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2469 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2470 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2472 bool X86::isMOVHPMask(ShuffleVectorSDNode
*N
) {
2473 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2475 if (NumElems
!= 2 && NumElems
!= 4)
2478 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2479 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2482 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2483 if (!isUndefOrEqual(N
->getMaskElt(i
+ NumElems
/2), i
+ NumElems
))
2489 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2490 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2492 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2493 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2498 return isUndefOrEqual(N
->getMaskElt(0), 2) &&
2499 isUndefOrEqual(N
->getMaskElt(1), 3) &&
2500 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2501 isUndefOrEqual(N
->getMaskElt(3), 3);
2504 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2505 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2506 static bool isUNPCKLMask(const SmallVectorImpl
<int> &Mask
, EVT VT
,
2507 bool V2IsSplat
= false) {
2508 int NumElts
= VT
.getVectorNumElements();
2509 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2512 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2514 int BitI1
= Mask
[i
+1];
2515 if (!isUndefOrEqual(BitI
, j
))
2518 if (!isUndefOrEqual(BitI1
, NumElts
))
2521 if (!isUndefOrEqual(BitI1
, j
+ NumElts
))
2528 bool X86::isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2529 SmallVector
<int, 8> M
;
2531 return ::isUNPCKLMask(M
, N
->getValueType(0), V2IsSplat
);
2534 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2535 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2536 static bool isUNPCKHMask(const SmallVectorImpl
<int> &Mask
, EVT VT
,
2537 bool V2IsSplat
= false) {
2538 int NumElts
= VT
.getVectorNumElements();
2539 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2542 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2544 int BitI1
= Mask
[i
+1];
2545 if (!isUndefOrEqual(BitI
, j
+ NumElts
/2))
2548 if (isUndefOrEqual(BitI1
, NumElts
))
2551 if (!isUndefOrEqual(BitI1
, j
+ NumElts
/2 + NumElts
))
2558 bool X86::isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2559 SmallVector
<int, 8> M
;
2561 return ::isUNPCKHMask(M
, N
->getValueType(0), V2IsSplat
);
2564 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2565 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2567 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2568 int NumElems
= VT
.getVectorNumElements();
2569 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2572 for (int i
= 0, j
= 0; i
!= NumElems
; i
+= 2, ++j
) {
2574 int BitI1
= Mask
[i
+1];
2575 if (!isUndefOrEqual(BitI
, j
))
2577 if (!isUndefOrEqual(BitI1
, j
))
2583 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2584 SmallVector
<int, 8> M
;
2586 return ::isUNPCKL_v_undef_Mask(M
, N
->getValueType(0));
2589 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2590 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2592 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2593 int NumElems
= VT
.getVectorNumElements();
2594 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2597 for (int i
= 0, j
= NumElems
/ 2; i
!= NumElems
; i
+= 2, ++j
) {
2599 int BitI1
= Mask
[i
+1];
2600 if (!isUndefOrEqual(BitI
, j
))
2602 if (!isUndefOrEqual(BitI1
, j
))
2608 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2609 SmallVector
<int, 8> M
;
2611 return ::isUNPCKH_v_undef_Mask(M
, N
->getValueType(0));
2614 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2615 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2616 /// MOVSD, and MOVD, i.e. setting the lowest element.
2617 static bool isMOVLMask(const SmallVectorImpl
<int> &Mask
, EVT VT
) {
2618 if (VT
.getVectorElementType().getSizeInBits() < 32)
2621 int NumElts
= VT
.getVectorNumElements();
2623 if (!isUndefOrEqual(Mask
[0], NumElts
))
2626 for (int i
= 1; i
< NumElts
; ++i
)
2627 if (!isUndefOrEqual(Mask
[i
], i
))
2633 bool X86::isMOVLMask(ShuffleVectorSDNode
*N
) {
2634 SmallVector
<int, 8> M
;
2636 return ::isMOVLMask(M
, N
->getValueType(0));
2639 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2640 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2641 /// element of vector 2 and the other elements to come from vector 1 in order.
2642 static bool isCommutedMOVLMask(const SmallVectorImpl
<int> &Mask
, EVT VT
,
2643 bool V2IsSplat
= false, bool V2IsUndef
= false) {
2644 int NumOps
= VT
.getVectorNumElements();
2645 if (NumOps
!= 2 && NumOps
!= 4 && NumOps
!= 8 && NumOps
!= 16)
2648 if (!isUndefOrEqual(Mask
[0], 0))
2651 for (int i
= 1; i
< NumOps
; ++i
)
2652 if (!(isUndefOrEqual(Mask
[i
], i
+NumOps
) ||
2653 (V2IsUndef
&& isUndefOrInRange(Mask
[i
], NumOps
, NumOps
*2)) ||
2654 (V2IsSplat
&& isUndefOrEqual(Mask
[i
], NumOps
))))
2660 static bool isCommutedMOVL(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false,
2661 bool V2IsUndef
= false) {
2662 SmallVector
<int, 8> M
;
2664 return isCommutedMOVLMask(M
, N
->getValueType(0), V2IsSplat
, V2IsUndef
);
2667 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2668 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2669 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode
*N
) {
2670 if (N
->getValueType(0).getVectorNumElements() != 4)
2673 // Expect 1, 1, 3, 3
2674 for (unsigned i
= 0; i
< 2; ++i
) {
2675 int Elt
= N
->getMaskElt(i
);
2676 if (Elt
>= 0 && Elt
!= 1)
2681 for (unsigned i
= 2; i
< 4; ++i
) {
2682 int Elt
= N
->getMaskElt(i
);
2683 if (Elt
>= 0 && Elt
!= 3)
2688 // Don't use movshdup if it can be done with a shufps.
2689 // FIXME: verify that matching u, u, 3, 3 is what we want.
2693 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2694 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2695 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode
*N
) {
2696 if (N
->getValueType(0).getVectorNumElements() != 4)
2699 // Expect 0, 0, 2, 2
2700 for (unsigned i
= 0; i
< 2; ++i
)
2701 if (N
->getMaskElt(i
) > 0)
2705 for (unsigned i
= 2; i
< 4; ++i
) {
2706 int Elt
= N
->getMaskElt(i
);
2707 if (Elt
>= 0 && Elt
!= 2)
2712 // Don't use movsldup if it can be done with a shufps.
2716 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2717 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2718 bool X86::isMOVDDUPMask(ShuffleVectorSDNode
*N
) {
2719 int e
= N
->getValueType(0).getVectorNumElements() / 2;
2721 for (int i
= 0; i
< e
; ++i
)
2722 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2724 for (int i
= 0; i
< e
; ++i
)
2725 if (!isUndefOrEqual(N
->getMaskElt(e
+i
), i
))
2730 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2731 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2733 unsigned X86::getShuffleSHUFImmediate(SDNode
*N
) {
2734 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2735 int NumOperands
= SVOp
->getValueType(0).getVectorNumElements();
2737 unsigned Shift
= (NumOperands
== 4) ? 2 : 1;
2739 for (int i
= 0; i
< NumOperands
; ++i
) {
2740 int Val
= SVOp
->getMaskElt(NumOperands
-i
-1);
2741 if (Val
< 0) Val
= 0;
2742 if (Val
>= NumOperands
) Val
-= NumOperands
;
2744 if (i
!= NumOperands
- 1)
2750 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2751 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2753 unsigned X86::getShufflePSHUFHWImmediate(SDNode
*N
) {
2754 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2756 // 8 nodes, but we only care about the last 4.
2757 for (unsigned i
= 7; i
>= 4; --i
) {
2758 int Val
= SVOp
->getMaskElt(i
);
2767 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2768 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2770 unsigned X86::getShufflePSHUFLWImmediate(SDNode
*N
) {
2771 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2773 // 8 nodes, but we only care about the first 4.
2774 for (int i
= 3; i
>= 0; --i
) {
2775 int Val
= SVOp
->getMaskElt(i
);
2784 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2786 bool X86::isZeroNode(SDValue Elt
) {
2787 return ((isa
<ConstantSDNode
>(Elt
) &&
2788 cast
<ConstantSDNode
>(Elt
)->getZExtValue() == 0) ||
2789 (isa
<ConstantFPSDNode
>(Elt
) &&
2790 cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().isPosZero()));
2793 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2794 /// their permute mask.
2795 static SDValue
CommuteVectorShuffle(ShuffleVectorSDNode
*SVOp
,
2796 SelectionDAG
&DAG
) {
2797 EVT VT
= SVOp
->getValueType(0);
2798 unsigned NumElems
= VT
.getVectorNumElements();
2799 SmallVector
<int, 8> MaskVec
;
2801 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2802 int idx
= SVOp
->getMaskElt(i
);
2804 MaskVec
.push_back(idx
);
2805 else if (idx
< (int)NumElems
)
2806 MaskVec
.push_back(idx
+ NumElems
);
2808 MaskVec
.push_back(idx
- NumElems
);
2810 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(1),
2811 SVOp
->getOperand(0), &MaskVec
[0]);
2814 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2815 /// the two vector operands have swapped position.
2816 static void CommuteVectorShuffleMask(SmallVectorImpl
<int> &Mask
, EVT VT
) {
2817 unsigned NumElems
= VT
.getVectorNumElements();
2818 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2822 else if (idx
< (int)NumElems
)
2823 Mask
[i
] = idx
+ NumElems
;
2825 Mask
[i
] = idx
- NumElems
;
2829 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2830 /// match movhlps. The lower half elements should come from upper half of
2831 /// V1 (and in order), and the upper half elements should come from the upper
2832 /// half of V2 (and in order).
2833 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode
*Op
) {
2834 if (Op
->getValueType(0).getVectorNumElements() != 4)
2836 for (unsigned i
= 0, e
= 2; i
!= e
; ++i
)
2837 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+2))
2839 for (unsigned i
= 2; i
!= 4; ++i
)
2840 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+4))
2845 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2846 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2848 static bool isScalarLoadToVector(SDNode
*N
, LoadSDNode
**LD
= NULL
) {
2849 if (N
->getOpcode() != ISD::SCALAR_TO_VECTOR
)
2851 N
= N
->getOperand(0).getNode();
2852 if (!ISD::isNON_EXTLoad(N
))
2855 *LD
= cast
<LoadSDNode
>(N
);
2859 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2860 /// match movlp{s|d}. The lower half elements should come from lower half of
2861 /// V1 (and in order), and the upper half elements should come from the upper
2862 /// half of V2 (and in order). And since V1 will become the source of the
2863 /// MOVLP, it must be either a vector load or a scalar load to vector.
2864 static bool ShouldXformToMOVLP(SDNode
*V1
, SDNode
*V2
,
2865 ShuffleVectorSDNode
*Op
) {
2866 if (!ISD::isNON_EXTLoad(V1
) && !isScalarLoadToVector(V1
))
2868 // Is V2 is a vector load, don't do this transformation. We will try to use
2869 // load folding shufps op.
2870 if (ISD::isNON_EXTLoad(V2
))
2873 unsigned NumElems
= Op
->getValueType(0).getVectorNumElements();
2875 if (NumElems
!= 2 && NumElems
!= 4)
2877 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
)
2878 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
))
2880 for (unsigned i
= NumElems
/2; i
!= NumElems
; ++i
)
2881 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+NumElems
))
2886 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2888 static bool isSplatVector(SDNode
*N
) {
2889 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2892 SDValue SplatValue
= N
->getOperand(0);
2893 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
2894 if (N
->getOperand(i
) != SplatValue
)
2899 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2900 /// to an zero vector.
2901 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2902 static bool isZeroShuffle(ShuffleVectorSDNode
*N
) {
2903 SDValue V1
= N
->getOperand(0);
2904 SDValue V2
= N
->getOperand(1);
2905 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2906 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2907 int Idx
= N
->getMaskElt(i
);
2908 if (Idx
>= (int)NumElems
) {
2909 unsigned Opc
= V2
.getOpcode();
2910 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V2
.getNode()))
2912 if (Opc
!= ISD::BUILD_VECTOR
||
2913 !X86::isZeroNode(V2
.getOperand(Idx
-NumElems
)))
2915 } else if (Idx
>= 0) {
2916 unsigned Opc
= V1
.getOpcode();
2917 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V1
.getNode()))
2919 if (Opc
!= ISD::BUILD_VECTOR
||
2920 !X86::isZeroNode(V1
.getOperand(Idx
)))
2927 /// getZeroVector - Returns a vector of specified type with all zero elements.
2929 static SDValue
getZeroVector(EVT VT
, bool HasSSE2
, SelectionDAG
&DAG
,
2931 assert(VT
.isVector() && "Expected a vector type");
2933 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2934 // type. This ensures they get CSE'd.
2936 if (VT
.getSizeInBits() == 64) { // MMX
2937 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2938 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2939 } else if (HasSSE2
) { // SSE2
2940 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2941 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2943 SDValue Cst
= DAG
.getTargetConstantFP(+0.0, MVT::f32
);
2944 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4f32
, Cst
, Cst
, Cst
, Cst
);
2946 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2949 /// getOnesVector - Returns a vector of specified type with all bits set.
2951 static SDValue
getOnesVector(EVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
2952 assert(VT
.isVector() && "Expected a vector type");
2954 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2955 // type. This ensures they get CSE'd.
2956 SDValue Cst
= DAG
.getTargetConstant(~0U, MVT::i32
);
2958 if (VT
.getSizeInBits() == 64) // MMX
2959 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2961 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2962 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2966 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2967 /// that point to V2 points to its first element.
2968 static SDValue
NormalizeMask(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
2969 EVT VT
= SVOp
->getValueType(0);
2970 unsigned NumElems
= VT
.getVectorNumElements();
2972 bool Changed
= false;
2973 SmallVector
<int, 8> MaskVec
;
2974 SVOp
->getMask(MaskVec
);
2976 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2977 if (MaskVec
[i
] > (int)NumElems
) {
2978 MaskVec
[i
] = NumElems
;
2983 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(0),
2984 SVOp
->getOperand(1), &MaskVec
[0]);
2985 return SDValue(SVOp
, 0);
2988 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2989 /// operation of specified width.
2990 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, EVT VT
, SDValue V1
,
2992 unsigned NumElems
= VT
.getVectorNumElements();
2993 SmallVector
<int, 8> Mask
;
2994 Mask
.push_back(NumElems
);
2995 for (unsigned i
= 1; i
!= NumElems
; ++i
)
2997 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
3000 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3001 static SDValue
getUnpackl(SelectionDAG
&DAG
, DebugLoc dl
, EVT VT
, SDValue V1
,
3003 unsigned NumElems
= VT
.getVectorNumElements();
3004 SmallVector
<int, 8> Mask
;
3005 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
) {
3007 Mask
.push_back(i
+ NumElems
);
3009 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
3012 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3013 static SDValue
getUnpackh(SelectionDAG
&DAG
, DebugLoc dl
, EVT VT
, SDValue V1
,
3015 unsigned NumElems
= VT
.getVectorNumElements();
3016 unsigned Half
= NumElems
/2;
3017 SmallVector
<int, 8> Mask
;
3018 for (unsigned i
= 0; i
!= Half
; ++i
) {
3019 Mask
.push_back(i
+ Half
);
3020 Mask
.push_back(i
+ NumElems
+ Half
);
3022 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
3025 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3026 static SDValue
PromoteSplat(ShuffleVectorSDNode
*SV
, SelectionDAG
&DAG
,
3028 if (SV
->getValueType(0).getVectorNumElements() <= 4)
3029 return SDValue(SV
, 0);
3031 EVT PVT
= MVT::v4f32
;
3032 EVT VT
= SV
->getValueType(0);
3033 DebugLoc dl
= SV
->getDebugLoc();
3034 SDValue V1
= SV
->getOperand(0);
3035 int NumElems
= VT
.getVectorNumElements();
3036 int EltNo
= SV
->getSplatIndex();
3038 // unpack elements to the correct location
3039 while (NumElems
> 4) {
3040 if (EltNo
< NumElems
/2) {
3041 V1
= getUnpackl(DAG
, dl
, VT
, V1
, V1
);
3043 V1
= getUnpackh(DAG
, dl
, VT
, V1
, V1
);
3044 EltNo
-= NumElems
/2;
3049 // Perform the splat.
3050 int SplatMask
[4] = { EltNo
, EltNo
, EltNo
, EltNo
};
3051 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PVT
, V1
);
3052 V1
= DAG
.getVectorShuffle(PVT
, dl
, V1
, DAG
.getUNDEF(PVT
), &SplatMask
[0]);
3053 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, V1
);
3056 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3057 /// vector of zero or undef vector. This produces a shuffle where the low
3058 /// element of V2 is swizzled into the zero/undef vector, landing at element
3059 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3060 static SDValue
getShuffleVectorZeroOrUndef(SDValue V2
, unsigned Idx
,
3061 bool isZero
, bool HasSSE2
,
3062 SelectionDAG
&DAG
) {
3063 EVT VT
= V2
.getValueType();
3065 ? getZeroVector(VT
, HasSSE2
, DAG
, V2
.getDebugLoc()) : DAG
.getUNDEF(VT
);
3066 unsigned NumElems
= VT
.getVectorNumElements();
3067 SmallVector
<int, 16> MaskVec
;
3068 for (unsigned i
= 0; i
!= NumElems
; ++i
)
3069 // If this is the insertion idx, put the low elt of V2 here.
3070 MaskVec
.push_back(i
== Idx
? NumElems
: i
);
3071 return DAG
.getVectorShuffle(VT
, V2
.getDebugLoc(), V1
, V2
, &MaskVec
[0]);
3074 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
3075 /// a shuffle that is zero.
3077 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode
*SVOp
, int NumElems
,
3078 bool Low
, SelectionDAG
&DAG
) {
3079 unsigned NumZeros
= 0;
3080 for (int i
= 0; i
< NumElems
; ++i
) {
3081 unsigned Index
= Low
? i
: NumElems
-i
-1;
3082 int Idx
= SVOp
->getMaskElt(Index
);
3087 SDValue Elt
= DAG
.getShuffleScalarElt(SVOp
, Index
);
3088 if (Elt
.getNode() && X86::isZeroNode(Elt
))
3096 /// isVectorShift - Returns true if the shuffle can be implemented as a
3097 /// logical left or right shift of a vector.
3098 /// FIXME: split into pslldqi, psrldqi, palignr variants.
3099 static bool isVectorShift(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
3100 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
3101 int NumElems
= SVOp
->getValueType(0).getVectorNumElements();
3104 unsigned NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, true, DAG
);
3107 NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, false, DAG
);
3111 bool SeenV1
= false;
3112 bool SeenV2
= false;
3113 for (int i
= NumZeros
; i
< NumElems
; ++i
) {
3114 int Val
= isLeft
? (i
- NumZeros
) : i
;
3115 int Idx
= SVOp
->getMaskElt(isLeft
? i
: (i
- NumZeros
));
3127 if (SeenV1
&& SeenV2
)
3130 ShVal
= SeenV1
? SVOp
->getOperand(0) : SVOp
->getOperand(1);
3136 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3138 static SDValue
LowerBuildVectorv16i8(SDValue Op
, unsigned NonZeros
,
3139 unsigned NumNonZero
, unsigned NumZero
,
3140 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3144 DebugLoc dl
= Op
.getDebugLoc();
3147 for (unsigned i
= 0; i
< 16; ++i
) {
3148 bool ThisIsNonZero
= (NonZeros
& (1 << i
)) != 0;
3149 if (ThisIsNonZero
&& First
) {
3151 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3153 V
= DAG
.getUNDEF(MVT::v8i16
);
3158 SDValue
ThisElt(0, 0), LastElt(0, 0);
3159 bool LastIsNonZero
= (NonZeros
& (1 << (i
-1))) != 0;
3160 if (LastIsNonZero
) {
3161 LastElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
3162 MVT::i16
, Op
.getOperand(i
-1));
3164 if (ThisIsNonZero
) {
3165 ThisElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i16
, Op
.getOperand(i
));
3166 ThisElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
,
3167 ThisElt
, DAG
.getConstant(8, MVT::i8
));
3169 ThisElt
= DAG
.getNode(ISD::OR
, dl
, MVT::i16
, ThisElt
, LastElt
);
3173 if (ThisElt
.getNode())
3174 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, V
, ThisElt
,
3175 DAG
.getIntPtrConstant(i
/2));
3179 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V
);
3182 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3184 static SDValue
LowerBuildVectorv8i16(SDValue Op
, unsigned NonZeros
,
3185 unsigned NumNonZero
, unsigned NumZero
,
3186 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3190 DebugLoc dl
= Op
.getDebugLoc();
3193 for (unsigned i
= 0; i
< 8; ++i
) {
3194 bool isNonZero
= (NonZeros
& (1 << i
)) != 0;
3198 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3200 V
= DAG
.getUNDEF(MVT::v8i16
);
3203 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
,
3204 MVT::v8i16
, V
, Op
.getOperand(i
),
3205 DAG
.getIntPtrConstant(i
));
3212 /// getVShift - Return a vector logical shift node.
3214 static SDValue
getVShift(bool isLeft
, EVT VT
, SDValue SrcOp
,
3215 unsigned NumBits
, SelectionDAG
&DAG
,
3216 const TargetLowering
&TLI
, DebugLoc dl
) {
3217 bool isMMX
= VT
.getSizeInBits() == 64;
3218 EVT ShVT
= isMMX
? MVT::v1i64
: MVT::v2i64
;
3219 unsigned Opc
= isLeft
? X86ISD::VSHL
: X86ISD::VSRL
;
3220 SrcOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, ShVT
, SrcOp
);
3221 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3222 DAG
.getNode(Opc
, dl
, ShVT
, SrcOp
,
3223 DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy())));
3227 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
3228 DebugLoc dl
= Op
.getDebugLoc();
3229 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3230 if (ISD::isBuildVectorAllZeros(Op
.getNode())
3231 || ISD::isBuildVectorAllOnes(Op
.getNode())) {
3232 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3233 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3234 // eliminated on x86-32 hosts.
3235 if (Op
.getValueType() == MVT::v4i32
|| Op
.getValueType() == MVT::v2i32
)
3238 if (ISD::isBuildVectorAllOnes(Op
.getNode()))
3239 return getOnesVector(Op
.getValueType(), DAG
, dl
);
3240 return getZeroVector(Op
.getValueType(), Subtarget
->hasSSE2(), DAG
, dl
);
3243 EVT VT
= Op
.getValueType();
3244 EVT ExtVT
= VT
.getVectorElementType();
3245 unsigned EVTBits
= ExtVT
.getSizeInBits();
3247 unsigned NumElems
= Op
.getNumOperands();
3248 unsigned NumZero
= 0;
3249 unsigned NumNonZero
= 0;
3250 unsigned NonZeros
= 0;
3251 bool IsAllConstants
= true;
3252 SmallSet
<SDValue
, 8> Values
;
3253 for (unsigned i
= 0; i
< NumElems
; ++i
) {
3254 SDValue Elt
= Op
.getOperand(i
);
3255 if (Elt
.getOpcode() == ISD::UNDEF
)
3258 if (Elt
.getOpcode() != ISD::Constant
&&
3259 Elt
.getOpcode() != ISD::ConstantFP
)
3260 IsAllConstants
= false;
3261 if (X86::isZeroNode(Elt
))
3264 NonZeros
|= (1 << i
);
3269 if (NumNonZero
== 0) {
3270 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3271 return DAG
.getUNDEF(VT
);
3274 // Special case for single non-zero, non-undef, element.
3275 if (NumNonZero
== 1) {
3276 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3277 SDValue Item
= Op
.getOperand(Idx
);
3279 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3280 // the value are obviously zero, truncate the value to i32 and do the
3281 // insertion that way. Only do this if the value is non-constant or if the
3282 // value is a constant being inserted into element 0. It is cheaper to do
3283 // a constant pool load than it is to do a movd + shuffle.
3284 if (ExtVT
== MVT::i64
&& !Subtarget
->is64Bit() &&
3285 (!IsAllConstants
|| Idx
== 0)) {
3286 if (DAG
.MaskedValueIsZero(Item
, APInt::getBitsSet(64, 32, 64))) {
3287 // Handle MMX and SSE both.
3288 EVT VecVT
= VT
== MVT::v2i64
? MVT::v4i32
: MVT::v2i32
;
3289 unsigned VecElts
= VT
== MVT::v2i64
? 4 : 2;
3291 // Truncate the value (which may itself be a constant) to i32, and
3292 // convert it to a vector with movd (S2V+shuffle to zero extend).
3293 Item
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Item
);
3294 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecVT
, Item
);
3295 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3296 Subtarget
->hasSSE2(), DAG
);
3298 // Now we have our 32-bit value zero extended in the low element of
3299 // a vector. If Idx != 0, swizzle it into place.
3301 SmallVector
<int, 4> Mask
;
3302 Mask
.push_back(Idx
);
3303 for (unsigned i
= 1; i
!= VecElts
; ++i
)
3305 Item
= DAG
.getVectorShuffle(VecVT
, dl
, Item
,
3306 DAG
.getUNDEF(Item
.getValueType()),
3309 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Item
);
3313 // If we have a constant or non-constant insertion into the low element of
3314 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3315 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3316 // depending on what the source datatype is.
3319 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3320 } else if (ExtVT
== MVT::i32
|| ExtVT
== MVT::f32
|| ExtVT
== MVT::f64
||
3321 (ExtVT
== MVT::i64
&& Subtarget
->is64Bit())) {
3322 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3323 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3324 return getShuffleVectorZeroOrUndef(Item
, 0, true, Subtarget
->hasSSE2(),
3326 } else if (ExtVT
== MVT::i16
|| ExtVT
== MVT::i8
) {
3327 Item
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Item
);
3328 EVT MiddleVT
= VT
.getSizeInBits() == 64 ? MVT::v2i32
: MVT::v4i32
;
3329 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MiddleVT
, Item
);
3330 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3331 Subtarget
->hasSSE2(), DAG
);
3332 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Item
);
3336 // Is it a vector logical left shift?
3337 if (NumElems
== 2 && Idx
== 1 &&
3338 X86::isZeroNode(Op
.getOperand(0)) &&
3339 !X86::isZeroNode(Op
.getOperand(1))) {
3340 unsigned NumBits
= VT
.getSizeInBits();
3341 return getVShift(true, VT
,
3342 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3343 VT
, Op
.getOperand(1)),
3344 NumBits
/2, DAG
, *this, dl
);
3347 if (IsAllConstants
) // Otherwise, it's better to do a constpool load.
3350 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3351 // is a non-constant being inserted into an element other than the low one,
3352 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3353 // movd/movss) to move this into the low element, then shuffle it into
3355 if (EVTBits
== 32) {
3356 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3358 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3359 Item
= getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
3360 Subtarget
->hasSSE2(), DAG
);
3361 SmallVector
<int, 8> MaskVec
;
3362 for (unsigned i
= 0; i
< NumElems
; i
++)
3363 MaskVec
.push_back(i
== Idx
? 0 : 1);
3364 return DAG
.getVectorShuffle(VT
, dl
, Item
, DAG
.getUNDEF(VT
), &MaskVec
[0]);
3368 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3369 if (Values
.size() == 1)
3372 // A vector full of immediates; various special cases are already
3373 // handled, so this is best done with a single constant-pool load.
3377 // Let legalizer expand 2-wide build_vectors.
3378 if (EVTBits
== 64) {
3379 if (NumNonZero
== 1) {
3380 // One half is zero or undef.
3381 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3382 SDValue V2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
,
3383 Op
.getOperand(Idx
));
3384 return getShuffleVectorZeroOrUndef(V2
, Idx
, true,
3385 Subtarget
->hasSSE2(), DAG
);
3390 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3391 if (EVTBits
== 8 && NumElems
== 16) {
3392 SDValue V
= LowerBuildVectorv16i8(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3394 if (V
.getNode()) return V
;
3397 if (EVTBits
== 16 && NumElems
== 8) {
3398 SDValue V
= LowerBuildVectorv8i16(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3400 if (V
.getNode()) return V
;
3403 // If element VT is == 32 bits, turn it into a number of shuffles.
3404 SmallVector
<SDValue
, 8> V
;
3406 if (NumElems
== 4 && NumZero
> 0) {
3407 for (unsigned i
= 0; i
< 4; ++i
) {
3408 bool isZero
= !(NonZeros
& (1 << i
));
3410 V
[i
] = getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
3412 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3415 for (unsigned i
= 0; i
< 2; ++i
) {
3416 switch ((NonZeros
& (0x3 << i
*2)) >> (i
*2)) {
3419 V
[i
] = V
[i
*2]; // Must be a zero vector.
3422 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2+1], V
[i
*2]);
3425 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3428 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3433 SmallVector
<int, 8> MaskVec
;
3434 bool Reverse
= (NonZeros
& 0x3) == 2;
3435 for (unsigned i
= 0; i
< 2; ++i
)
3436 MaskVec
.push_back(Reverse
? 1-i
: i
);
3437 Reverse
= ((NonZeros
& (0x3 << 2)) >> 2) == 2;
3438 for (unsigned i
= 0; i
< 2; ++i
)
3439 MaskVec
.push_back(Reverse
? 1-i
+NumElems
: i
+NumElems
);
3440 return DAG
.getVectorShuffle(VT
, dl
, V
[0], V
[1], &MaskVec
[0]);
3443 if (Values
.size() > 2) {
3444 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3445 // values to be inserted is equal to the number of elements, in which case
3446 // use the unpack code below in the hopes of matching the consecutive elts
3447 // load merge pattern for shuffles.
3448 // FIXME: We could probably just check that here directly.
3449 if (Values
.size() < NumElems
&& VT
.getSizeInBits() == 128 &&
3450 getSubtarget()->hasSSE41()) {
3451 V
[0] = DAG
.getUNDEF(VT
);
3452 for (unsigned i
= 0; i
< NumElems
; ++i
)
3453 if (Op
.getOperand(i
).getOpcode() != ISD::UNDEF
)
3454 V
[0] = DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, V
[0],
3455 Op
.getOperand(i
), DAG
.getIntPtrConstant(i
));
3458 // Expand into a number of unpckl*.
3460 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3461 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3462 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3463 for (unsigned i
= 0; i
< NumElems
; ++i
)
3464 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3466 while (NumElems
!= 0) {
3467 for (unsigned i
= 0; i
< NumElems
; ++i
)
3468 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
], V
[i
+ NumElems
]);
3477 // v8i16 shuffles - Prefer shuffles in the following order:
3478 // 1. [all] pshuflw, pshufhw, optional move
3479 // 2. [ssse3] 1 x pshufb
3480 // 3. [ssse3] 2 x pshufb + 1 x por
3481 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3483 SDValue
LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode
*SVOp
,
3484 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3485 SDValue V1
= SVOp
->getOperand(0);
3486 SDValue V2
= SVOp
->getOperand(1);
3487 DebugLoc dl
= SVOp
->getDebugLoc();
3488 SmallVector
<int, 8> MaskVals
;
3490 // Determine if more than 1 of the words in each of the low and high quadwords
3491 // of the result come from the same quadword of one of the two inputs. Undef
3492 // mask values count as coming from any quadword, for better codegen.
3493 SmallVector
<unsigned, 4> LoQuad(4);
3494 SmallVector
<unsigned, 4> HiQuad(4);
3495 BitVector
InputQuads(4);
3496 for (unsigned i
= 0; i
< 8; ++i
) {
3497 SmallVectorImpl
<unsigned> &Quad
= i
< 4 ? LoQuad
: HiQuad
;
3498 int EltIdx
= SVOp
->getMaskElt(i
);
3499 MaskVals
.push_back(EltIdx
);
3508 InputQuads
.set(EltIdx
/ 4);
3511 int BestLoQuad
= -1;
3512 unsigned MaxQuad
= 1;
3513 for (unsigned i
= 0; i
< 4; ++i
) {
3514 if (LoQuad
[i
] > MaxQuad
) {
3516 MaxQuad
= LoQuad
[i
];
3520 int BestHiQuad
= -1;
3522 for (unsigned i
= 0; i
< 4; ++i
) {
3523 if (HiQuad
[i
] > MaxQuad
) {
3525 MaxQuad
= HiQuad
[i
];
3529 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3530 // of the two input vectors, shuffle them into one input vector so only a
3531 // single pshufb instruction is necessary. If There are more than 2 input
3532 // quads, disable the next transformation since it does not help SSSE3.
3533 bool V1Used
= InputQuads
[0] || InputQuads
[1];
3534 bool V2Used
= InputQuads
[2] || InputQuads
[3];
3535 if (TLI
.getSubtarget()->hasSSSE3()) {
3536 if (InputQuads
.count() == 2 && V1Used
&& V2Used
) {
3537 BestLoQuad
= InputQuads
.find_first();
3538 BestHiQuad
= InputQuads
.find_next(BestLoQuad
);
3540 if (InputQuads
.count() > 2) {
3546 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3547 // the shuffle mask. If a quad is scored as -1, that means that it contains
3548 // words from all 4 input quadwords.
3550 if (BestLoQuad
>= 0 || BestHiQuad
>= 0) {
3551 SmallVector
<int, 8> MaskV
;
3552 MaskV
.push_back(BestLoQuad
< 0 ? 0 : BestLoQuad
);
3553 MaskV
.push_back(BestHiQuad
< 0 ? 1 : BestHiQuad
);
3554 NewV
= DAG
.getVectorShuffle(MVT::v2i64
, dl
,
3555 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V1
),
3556 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V2
), &MaskV
[0]);
3557 NewV
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, NewV
);
3559 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3560 // source words for the shuffle, to aid later transformations.
3561 bool AllWordsInNewV
= true;
3562 bool InOrder
[2] = { true, true };
3563 for (unsigned i
= 0; i
!= 8; ++i
) {
3564 int idx
= MaskVals
[i
];
3566 InOrder
[i
/4] = false;
3567 if (idx
< 0 || (idx
/4) == BestLoQuad
|| (idx
/4) == BestHiQuad
)
3569 AllWordsInNewV
= false;
3573 bool pshuflw
= AllWordsInNewV
, pshufhw
= AllWordsInNewV
;
3574 if (AllWordsInNewV
) {
3575 for (int i
= 0; i
!= 8; ++i
) {
3576 int idx
= MaskVals
[i
];
3579 idx
= MaskVals
[i
] = (idx
/ 4) == BestLoQuad
? (idx
& 3) : (idx
& 3) + 4;
3580 if ((idx
!= i
) && idx
< 4)
3582 if ((idx
!= i
) && idx
> 3)
3591 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3592 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3593 if ((pshufhw
&& InOrder
[0]) || (pshuflw
&& InOrder
[1])) {
3594 return DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
,
3595 DAG
.getUNDEF(MVT::v8i16
), &MaskVals
[0]);
3599 // If we have SSSE3, and all words of the result are from 1 input vector,
3600 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3601 // is present, fall back to case 4.
3602 if (TLI
.getSubtarget()->hasSSSE3()) {
3603 SmallVector
<SDValue
,16> pshufbMask
;
3605 // If we have elements from both input vectors, set the high bit of the
3606 // shuffle mask element to zero out elements that come from V2 in the V1
3607 // mask, and elements that come from V1 in the V2 mask, so that the two
3608 // results can be OR'd together.
3609 bool TwoInputs
= V1Used
&& V2Used
;
3610 for (unsigned i
= 0; i
!= 8; ++i
) {
3611 int EltIdx
= MaskVals
[i
] * 2;
3612 if (TwoInputs
&& (EltIdx
>= 16)) {
3613 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3614 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3617 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3618 pshufbMask
.push_back(DAG
.getConstant(EltIdx
+1, MVT::i8
));
3620 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V1
);
3621 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3622 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3623 MVT::v16i8
, &pshufbMask
[0], 16));
3625 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3627 // Calculate the shuffle mask for the second input, shuffle it, and
3628 // OR it with the first shuffled input.
3630 for (unsigned i
= 0; i
!= 8; ++i
) {
3631 int EltIdx
= MaskVals
[i
] * 2;
3633 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3634 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3637 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3638 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 15, MVT::i8
));
3640 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V2
);
3641 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3642 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3643 MVT::v16i8
, &pshufbMask
[0], 16));
3644 V1
= DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3645 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3648 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3649 // and update MaskVals with new element order.
3650 BitVector
InOrder(8);
3651 if (BestLoQuad
>= 0) {
3652 SmallVector
<int, 8> MaskV
;
3653 for (int i
= 0; i
!= 4; ++i
) {
3654 int idx
= MaskVals
[i
];
3656 MaskV
.push_back(-1);
3658 } else if ((idx
/ 4) == BestLoQuad
) {
3659 MaskV
.push_back(idx
& 3);
3662 MaskV
.push_back(-1);
3665 for (unsigned i
= 4; i
!= 8; ++i
)
3667 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3671 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3672 // and update MaskVals with the new element order.
3673 if (BestHiQuad
>= 0) {
3674 SmallVector
<int, 8> MaskV
;
3675 for (unsigned i
= 0; i
!= 4; ++i
)
3677 for (unsigned i
= 4; i
!= 8; ++i
) {
3678 int idx
= MaskVals
[i
];
3680 MaskV
.push_back(-1);
3682 } else if ((idx
/ 4) == BestHiQuad
) {
3683 MaskV
.push_back((idx
& 3) + 4);
3686 MaskV
.push_back(-1);
3689 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3693 // In case BestHi & BestLo were both -1, which means each quadword has a word
3694 // from each of the four input quadwords, calculate the InOrder bitvector now
3695 // before falling through to the insert/extract cleanup.
3696 if (BestLoQuad
== -1 && BestHiQuad
== -1) {
3698 for (int i
= 0; i
!= 8; ++i
)
3699 if (MaskVals
[i
] < 0 || MaskVals
[i
] == i
)
3703 // The other elements are put in the right place using pextrw and pinsrw.
3704 for (unsigned i
= 0; i
!= 8; ++i
) {
3707 int EltIdx
= MaskVals
[i
];
3710 SDValue ExtOp
= (EltIdx
< 8)
3711 ? DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V1
,
3712 DAG
.getIntPtrConstant(EltIdx
))
3713 : DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V2
,
3714 DAG
.getIntPtrConstant(EltIdx
- 8));
3715 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, ExtOp
,
3716 DAG
.getIntPtrConstant(i
));
3721 // v16i8 shuffles - Prefer shuffles in the following order:
3722 // 1. [ssse3] 1 x pshufb
3723 // 2. [ssse3] 2 x pshufb + 1 x por
3724 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3726 SDValue
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode
*SVOp
,
3727 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3728 SDValue V1
= SVOp
->getOperand(0);
3729 SDValue V2
= SVOp
->getOperand(1);
3730 DebugLoc dl
= SVOp
->getDebugLoc();
3731 SmallVector
<int, 16> MaskVals
;
3732 SVOp
->getMask(MaskVals
);
3734 // If we have SSSE3, case 1 is generated when all result bytes come from
3735 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3736 // present, fall back to case 3.
3737 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3740 for (unsigned i
= 0; i
< 16; ++i
) {
3741 int EltIdx
= MaskVals
[i
];
3750 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3751 if (TLI
.getSubtarget()->hasSSSE3()) {
3752 SmallVector
<SDValue
,16> pshufbMask
;
3754 // If all result elements are from one input vector, then only translate
3755 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3757 // Otherwise, we have elements from both input vectors, and must zero out
3758 // elements that come from V2 in the first mask, and V1 in the second mask
3759 // so that we can OR them together.
3760 bool TwoInputs
= !(V1Only
|| V2Only
);
3761 for (unsigned i
= 0; i
!= 16; ++i
) {
3762 int EltIdx
= MaskVals
[i
];
3763 if (EltIdx
< 0 || (TwoInputs
&& EltIdx
>= 16)) {
3764 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3767 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3769 // If all the elements are from V2, assign it to V1 and return after
3770 // building the first pshufb.
3773 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3774 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3775 MVT::v16i8
, &pshufbMask
[0], 16));
3779 // Calculate the shuffle mask for the second input, shuffle it, and
3780 // OR it with the first shuffled input.
3782 for (unsigned i
= 0; i
!= 16; ++i
) {
3783 int EltIdx
= MaskVals
[i
];
3785 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3788 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3790 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3791 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3792 MVT::v16i8
, &pshufbMask
[0], 16));
3793 return DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3796 // No SSSE3 - Calculate in place words and then fix all out of place words
3797 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3798 // the 16 different words that comprise the two doublequadword input vectors.
3799 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3800 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V2
);
3801 SDValue NewV
= V2Only
? V2
: V1
;
3802 for (int i
= 0; i
!= 8; ++i
) {
3803 int Elt0
= MaskVals
[i
*2];
3804 int Elt1
= MaskVals
[i
*2+1];
3806 // This word of the result is all undef, skip it.
3807 if (Elt0
< 0 && Elt1
< 0)
3810 // This word of the result is already in the correct place, skip it.
3811 if (V1Only
&& (Elt0
== i
*2) && (Elt1
== i
*2+1))
3813 if (V2Only
&& (Elt0
== i
*2+16) && (Elt1
== i
*2+17))
3816 SDValue Elt0Src
= Elt0
< 16 ? V1
: V2
;
3817 SDValue Elt1Src
= Elt1
< 16 ? V1
: V2
;
3820 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3821 // using a single extract together, load it and store it.
3822 if ((Elt0
>= 0) && ((Elt0
+ 1) == Elt1
) && ((Elt0
& 1) == 0)) {
3823 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3824 DAG
.getIntPtrConstant(Elt1
/ 2));
3825 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3826 DAG
.getIntPtrConstant(i
));
3830 // If Elt1 is defined, extract it from the appropriate source. If the
3831 // source byte is not also odd, shift the extracted word left 8 bits
3832 // otherwise clear the bottom 8 bits if we need to do an or.
3834 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3835 DAG
.getIntPtrConstant(Elt1
/ 2));
3836 if ((Elt1
& 1) == 0)
3837 InsElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
, InsElt
,
3838 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3840 InsElt
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt
,
3841 DAG
.getConstant(0xFF00, MVT::i16
));
3843 // If Elt0 is defined, extract it from the appropriate source. If the
3844 // source byte is not also even, shift the extracted word right 8 bits. If
3845 // Elt1 was also defined, OR the extracted values together before
3846 // inserting them in the result.
3848 SDValue InsElt0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
,
3849 Elt0Src
, DAG
.getIntPtrConstant(Elt0
/ 2));
3850 if ((Elt0
& 1) != 0)
3851 InsElt0
= DAG
.getNode(ISD::SRL
, dl
, MVT::i16
, InsElt0
,
3852 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3854 InsElt0
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt0
,
3855 DAG
.getConstant(0x00FF, MVT::i16
));
3856 InsElt
= Elt1
>= 0 ? DAG
.getNode(ISD::OR
, dl
, MVT::i16
, InsElt
, InsElt0
)
3859 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3860 DAG
.getIntPtrConstant(i
));
3862 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, NewV
);
3865 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3866 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3867 /// done when every pair / quad of shuffle mask elements point to elements in
3868 /// the right sequence. e.g.
3869 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3871 SDValue
RewriteAsNarrowerShuffle(ShuffleVectorSDNode
*SVOp
,
3873 TargetLowering
&TLI
, DebugLoc dl
) {
3874 EVT VT
= SVOp
->getValueType(0);
3875 SDValue V1
= SVOp
->getOperand(0);
3876 SDValue V2
= SVOp
->getOperand(1);
3877 unsigned NumElems
= VT
.getVectorNumElements();
3878 unsigned NewWidth
= (NumElems
== 4) ? 2 : 4;
3879 EVT MaskVT
= MVT::getIntVectorWithNumElements(NewWidth
);
3880 EVT MaskEltVT
= MaskVT
.getVectorElementType();
3882 switch (VT
.getSimpleVT().SimpleTy
) {
3883 default: assert(false && "Unexpected!");
3884 case MVT::v4f32
: NewVT
= MVT::v2f64
; break;
3885 case MVT::v4i32
: NewVT
= MVT::v2i64
; break;
3886 case MVT::v8i16
: NewVT
= MVT::v4i32
; break;
3887 case MVT::v16i8
: NewVT
= MVT::v4i32
; break;
3890 if (NewWidth
== 2) {
3896 int Scale
= NumElems
/ NewWidth
;
3897 SmallVector
<int, 8> MaskVec
;
3898 for (unsigned i
= 0; i
< NumElems
; i
+= Scale
) {
3900 for (int j
= 0; j
< Scale
; ++j
) {
3901 int EltIdx
= SVOp
->getMaskElt(i
+j
);
3905 StartIdx
= EltIdx
- (EltIdx
% Scale
);
3906 if (EltIdx
!= StartIdx
+ j
)
3910 MaskVec
.push_back(-1);
3912 MaskVec
.push_back(StartIdx
/ Scale
);
3915 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V1
);
3916 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V2
);
3917 return DAG
.getVectorShuffle(NewVT
, dl
, V1
, V2
, &MaskVec
[0]);
3920 /// getVZextMovL - Return a zero-extending vector move low node.
3922 static SDValue
getVZextMovL(EVT VT
, EVT OpVT
,
3923 SDValue SrcOp
, SelectionDAG
&DAG
,
3924 const X86Subtarget
*Subtarget
, DebugLoc dl
) {
3925 if (VT
== MVT::v2f64
|| VT
== MVT::v4f32
) {
3926 LoadSDNode
*LD
= NULL
;
3927 if (!isScalarLoadToVector(SrcOp
.getNode(), &LD
))
3928 LD
= dyn_cast
<LoadSDNode
>(SrcOp
);
3930 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3932 MVT ExtVT
= (OpVT
== MVT::v2f64
) ? MVT::i64
: MVT::i32
;
3933 if ((ExtVT
.SimpleTy
!= MVT::i64
|| Subtarget
->is64Bit()) &&
3934 SrcOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
3935 SrcOp
.getOperand(0).getOpcode() == ISD::BIT_CONVERT
&&
3936 SrcOp
.getOperand(0).getOperand(0).getValueType() == ExtVT
) {
3938 OpVT
= (OpVT
== MVT::v2f64
) ? MVT::v2i64
: MVT::v4i32
;
3939 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3940 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3941 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3949 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3950 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3951 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3955 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3958 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
3959 SDValue V1
= SVOp
->getOperand(0);
3960 SDValue V2
= SVOp
->getOperand(1);
3961 DebugLoc dl
= SVOp
->getDebugLoc();
3962 EVT VT
= SVOp
->getValueType(0);
3964 SmallVector
<std::pair
<int, int>, 8> Locs
;
3966 SmallVector
<int, 8> Mask1(4U, -1);
3967 SmallVector
<int, 8> PermMask
;
3968 SVOp
->getMask(PermMask
);
3972 for (unsigned i
= 0; i
!= 4; ++i
) {
3973 int Idx
= PermMask
[i
];
3975 Locs
[i
] = std::make_pair(-1, -1);
3977 assert(Idx
< 8 && "Invalid VECTOR_SHUFFLE index!");
3979 Locs
[i
] = std::make_pair(0, NumLo
);
3983 Locs
[i
] = std::make_pair(1, NumHi
);
3985 Mask1
[2+NumHi
] = Idx
;
3991 if (NumLo
<= 2 && NumHi
<= 2) {
3992 // If no more than two elements come from either vector. This can be
3993 // implemented with two shuffles. First shuffle gather the elements.
3994 // The second shuffle, which takes the first shuffle as both of its
3995 // vector operands, put the elements into the right order.
3996 V1
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3998 SmallVector
<int, 8> Mask2(4U, -1);
4000 for (unsigned i
= 0; i
!= 4; ++i
) {
4001 if (Locs
[i
].first
== -1)
4004 unsigned Idx
= (i
< 2) ? 0 : 4;
4005 Idx
+= Locs
[i
].first
* 2 + Locs
[i
].second
;
4010 return DAG
.getVectorShuffle(VT
, dl
, V1
, V1
, &Mask2
[0]);
4011 } else if (NumLo
== 3 || NumHi
== 3) {
4012 // Otherwise, we must have three elements from one vector, call it X, and
4013 // one element from the other, call it Y. First, use a shufps to build an
4014 // intermediate vector with the one element from Y and the element from X
4015 // that will be in the same half in the final destination (the indexes don't
4016 // matter). Then, use a shufps to build the final vector, taking the half
4017 // containing the element from Y from the intermediate, and the other half
4020 // Normalize it so the 3 elements come from V1.
4021 CommuteVectorShuffleMask(PermMask
, VT
);
4025 // Find the element from V2.
4027 for (HiIndex
= 0; HiIndex
< 3; ++HiIndex
) {
4028 int Val
= PermMask
[HiIndex
];
4035 Mask1
[0] = PermMask
[HiIndex
];
4037 Mask1
[2] = PermMask
[HiIndex
^1];
4039 V2
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
4042 Mask1
[0] = PermMask
[0];
4043 Mask1
[1] = PermMask
[1];
4044 Mask1
[2] = HiIndex
& 1 ? 6 : 4;
4045 Mask1
[3] = HiIndex
& 1 ? 4 : 6;
4046 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
4048 Mask1
[0] = HiIndex
& 1 ? 2 : 0;
4049 Mask1
[1] = HiIndex
& 1 ? 0 : 2;
4050 Mask1
[2] = PermMask
[2];
4051 Mask1
[3] = PermMask
[3];
4056 return DAG
.getVectorShuffle(VT
, dl
, V2
, V1
, &Mask1
[0]);
4060 // Break it into (shuffle shuffle_hi, shuffle_lo).
4062 SmallVector
<int,8> LoMask(4U, -1);
4063 SmallVector
<int,8> HiMask(4U, -1);
4065 SmallVector
<int,8> *MaskPtr
= &LoMask
;
4066 unsigned MaskIdx
= 0;
4069 for (unsigned i
= 0; i
!= 4; ++i
) {
4076 int Idx
= PermMask
[i
];
4078 Locs
[i
] = std::make_pair(-1, -1);
4079 } else if (Idx
< 4) {
4080 Locs
[i
] = std::make_pair(MaskIdx
, LoIdx
);
4081 (*MaskPtr
)[LoIdx
] = Idx
;
4084 Locs
[i
] = std::make_pair(MaskIdx
, HiIdx
);
4085 (*MaskPtr
)[HiIdx
] = Idx
;
4090 SDValue LoShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &LoMask
[0]);
4091 SDValue HiShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &HiMask
[0]);
4092 SmallVector
<int, 8> MaskOps
;
4093 for (unsigned i
= 0; i
!= 4; ++i
) {
4094 if (Locs
[i
].first
== -1) {
4095 MaskOps
.push_back(-1);
4097 unsigned Idx
= Locs
[i
].first
* 4 + Locs
[i
].second
;
4098 MaskOps
.push_back(Idx
);
4101 return DAG
.getVectorShuffle(VT
, dl
, LoShuffle
, HiShuffle
, &MaskOps
[0]);
4105 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) {
4106 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4107 SDValue V1
= Op
.getOperand(0);
4108 SDValue V2
= Op
.getOperand(1);
4109 EVT VT
= Op
.getValueType();
4110 DebugLoc dl
= Op
.getDebugLoc();
4111 unsigned NumElems
= VT
.getVectorNumElements();
4112 bool isMMX
= VT
.getSizeInBits() == 64;
4113 bool V1IsUndef
= V1
.getOpcode() == ISD::UNDEF
;
4114 bool V2IsUndef
= V2
.getOpcode() == ISD::UNDEF
;
4115 bool V1IsSplat
= false;
4116 bool V2IsSplat
= false;
4118 if (isZeroShuffle(SVOp
))
4119 return getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
4121 // Promote splats to v4f32.
4122 if (SVOp
->isSplat()) {
4123 if (isMMX
|| NumElems
< 4)
4125 return PromoteSplat(SVOp
, DAG
, Subtarget
->hasSSE2());
4128 // If the shuffle can be profitably rewritten as a narrower shuffle, then
4130 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
4131 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4132 if (NewOp
.getNode())
4133 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4134 LowerVECTOR_SHUFFLE(NewOp
, DAG
));
4135 } else if ((VT
== MVT::v4i32
|| (VT
== MVT::v4f32
&& Subtarget
->hasSSE2()))) {
4136 // FIXME: Figure out a cleaner way to do this.
4137 // Try to make use of movq to zero out the top part.
4138 if (ISD::isBuildVectorAllZeros(V2
.getNode())) {
4139 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4140 if (NewOp
.getNode()) {
4141 if (isCommutedMOVL(cast
<ShuffleVectorSDNode
>(NewOp
), true, false))
4142 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(0),
4143 DAG
, Subtarget
, dl
);
4145 } else if (ISD::isBuildVectorAllZeros(V1
.getNode())) {
4146 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4147 if (NewOp
.getNode() && X86::isMOVLMask(cast
<ShuffleVectorSDNode
>(NewOp
)))
4148 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(1),
4149 DAG
, Subtarget
, dl
);
4153 if (X86::isPSHUFDMask(SVOp
))
4156 // Check if this can be converted into a logical shift.
4157 bool isLeft
= false;
4160 bool isShift
= getSubtarget()->hasSSE2() &&
4161 isVectorShift(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
);
4162 if (isShift
&& ShVal
.hasOneUse()) {
4163 // If the shifted value has multiple uses, it may be cheaper to use
4164 // v_set0 + movlhps or movhlps, etc.
4165 EVT EVT
= VT
.getVectorElementType();
4166 ShAmt
*= EVT
.getSizeInBits();
4167 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4170 if (X86::isMOVLMask(SVOp
)) {
4173 if (ISD::isBuildVectorAllZeros(V1
.getNode()))
4174 return getVZextMovL(VT
, VT
, V2
, DAG
, Subtarget
, dl
);
4179 // FIXME: fold these into legal mask.
4180 if (!isMMX
&& (X86::isMOVSHDUPMask(SVOp
) ||
4181 X86::isMOVSLDUPMask(SVOp
) ||
4182 X86::isMOVHLPSMask(SVOp
) ||
4183 X86::isMOVHPMask(SVOp
) ||
4184 X86::isMOVLPMask(SVOp
)))
4187 if (ShouldXformToMOVHLPS(SVOp
) ||
4188 ShouldXformToMOVLP(V1
.getNode(), V2
.getNode(), SVOp
))
4189 return CommuteVectorShuffle(SVOp
, DAG
);
4192 // No better options. Use a vshl / vsrl.
4193 EVT EVT
= VT
.getVectorElementType();
4194 ShAmt
*= EVT
.getSizeInBits();
4195 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4198 bool Commuted
= false;
4199 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4200 // 1,1,1,1 -> v8i16 though.
4201 V1IsSplat
= isSplatVector(V1
.getNode());
4202 V2IsSplat
= isSplatVector(V2
.getNode());
4204 // Canonicalize the splat or undef, if present, to be on the RHS.
4205 if ((V1IsSplat
|| V1IsUndef
) && !(V2IsSplat
|| V2IsUndef
)) {
4206 Op
= CommuteVectorShuffle(SVOp
, DAG
);
4207 SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4208 V1
= SVOp
->getOperand(0);
4209 V2
= SVOp
->getOperand(1);
4210 std::swap(V1IsSplat
, V2IsSplat
);
4211 std::swap(V1IsUndef
, V2IsUndef
);
4215 if (isCommutedMOVL(SVOp
, V2IsSplat
, V2IsUndef
)) {
4216 // Shuffling low element of v1 into undef, just return v1.
4219 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4220 // the instruction selector will not match, so get a canonical MOVL with
4221 // swapped operands to undo the commute.
4222 return getMOVL(DAG
, dl
, VT
, V2
, V1
);
4225 if (X86::isUNPCKL_v_undef_Mask(SVOp
) ||
4226 X86::isUNPCKH_v_undef_Mask(SVOp
) ||
4227 X86::isUNPCKLMask(SVOp
) ||
4228 X86::isUNPCKHMask(SVOp
))
4232 // Normalize mask so all entries that point to V2 points to its first
4233 // element then try to match unpck{h|l} again. If match, return a
4234 // new vector_shuffle with the corrected mask.
4235 SDValue NewMask
= NormalizeMask(SVOp
, DAG
);
4236 ShuffleVectorSDNode
*NSVOp
= cast
<ShuffleVectorSDNode
>(NewMask
);
4237 if (NSVOp
!= SVOp
) {
4238 if (X86::isUNPCKLMask(NSVOp
, true)) {
4240 } else if (X86::isUNPCKHMask(NSVOp
, true)) {
4247 // Commute is back and try unpck* again.
4248 // FIXME: this seems wrong.
4249 SDValue NewOp
= CommuteVectorShuffle(SVOp
, DAG
);
4250 ShuffleVectorSDNode
*NewSVOp
= cast
<ShuffleVectorSDNode
>(NewOp
);
4251 if (X86::isUNPCKL_v_undef_Mask(NewSVOp
) ||
4252 X86::isUNPCKH_v_undef_Mask(NewSVOp
) ||
4253 X86::isUNPCKLMask(NewSVOp
) ||
4254 X86::isUNPCKHMask(NewSVOp
))
4258 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4260 // Normalize the node to match x86 shuffle ops if needed
4261 if (!isMMX
&& V2
.getOpcode() != ISD::UNDEF
&& isCommutedSHUFP(SVOp
))
4262 return CommuteVectorShuffle(SVOp
, DAG
);
4264 // Check for legal shuffle and return?
4265 SmallVector
<int, 16> PermMask
;
4266 SVOp
->getMask(PermMask
);
4267 if (isShuffleMaskLegal(PermMask
, VT
))
4270 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4271 if (VT
== MVT::v8i16
) {
4272 SDValue NewOp
= LowerVECTOR_SHUFFLEv8i16(SVOp
, DAG
, *this);
4273 if (NewOp
.getNode())
4277 if (VT
== MVT::v16i8
) {
4278 SDValue NewOp
= LowerVECTOR_SHUFFLEv16i8(SVOp
, DAG
, *this);
4279 if (NewOp
.getNode())
4283 // Handle all 4 wide cases with a number of shuffles except for MMX.
4284 if (NumElems
== 4 && !isMMX
)
4285 return LowerVECTOR_SHUFFLE_4wide(SVOp
, DAG
);
4291 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
,
4292 SelectionDAG
&DAG
) {
4293 EVT VT
= Op
.getValueType();
4294 DebugLoc dl
= Op
.getDebugLoc();
4295 if (VT
.getSizeInBits() == 8) {
4296 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRB
, dl
, MVT::i32
,
4297 Op
.getOperand(0), Op
.getOperand(1));
4298 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4299 DAG
.getValueType(VT
));
4300 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4301 } else if (VT
.getSizeInBits() == 16) {
4302 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4303 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4305 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4306 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4307 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4311 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, MVT::i32
,
4312 Op
.getOperand(0), Op
.getOperand(1));
4313 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4314 DAG
.getValueType(VT
));
4315 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4316 } else if (VT
== MVT::f32
) {
4317 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4318 // the result back to FR32 register. It's only worth matching if the
4319 // result has a single use which is a store or a bitcast to i32. And in
4320 // the case of a store, it's not worth it if the index is a constant 0,
4321 // because a MOVSSmr can be used instead, which is smaller and faster.
4322 if (!Op
.hasOneUse())
4324 SDNode
*User
= *Op
.getNode()->use_begin();
4325 if ((User
->getOpcode() != ISD::STORE
||
4326 (isa
<ConstantSDNode
>(Op
.getOperand(1)) &&
4327 cast
<ConstantSDNode
>(Op
.getOperand(1))->isNullValue())) &&
4328 (User
->getOpcode() != ISD::BIT_CONVERT
||
4329 User
->getValueType(0) != MVT::i32
))
4331 SDValue Extract
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4332 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4i32
,
4335 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, Extract
);
4336 } else if (VT
== MVT::i32
) {
4337 // ExtractPS works with constant index.
4338 if (isa
<ConstantSDNode
>(Op
.getOperand(1)))
4346 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4347 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
4350 if (Subtarget
->hasSSE41()) {
4351 SDValue Res
= LowerEXTRACT_VECTOR_ELT_SSE4(Op
, DAG
);
4356 EVT VT
= Op
.getValueType();
4357 DebugLoc dl
= Op
.getDebugLoc();
4358 // TODO: handle v16i8.
4359 if (VT
.getSizeInBits() == 16) {
4360 SDValue Vec
= Op
.getOperand(0);
4361 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4363 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4364 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4365 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4368 // Transform it so it match pextrw which produces a 32-bit result.
4369 EVT EVT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
+1);
4370 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, EVT
,
4371 Op
.getOperand(0), Op
.getOperand(1));
4372 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, EVT
, Extract
,
4373 DAG
.getValueType(VT
));
4374 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4375 } else if (VT
.getSizeInBits() == 32) {
4376 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4380 // SHUFPS the element to the lowest double word, then movss.
4381 int Mask
[4] = { Idx
, -1, -1, -1 };
4382 EVT VVT
= Op
.getOperand(0).getValueType();
4383 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4384 DAG
.getUNDEF(VVT
), Mask
);
4385 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4386 DAG
.getIntPtrConstant(0));
4387 } else if (VT
.getSizeInBits() == 64) {
4388 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4389 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4390 // to match extract_elt for f64.
4391 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4395 // UNPCKHPD the element to the lowest double word, then movsd.
4396 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4397 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4398 int Mask
[2] = { 1, -1 };
4399 EVT VVT
= Op
.getOperand(0).getValueType();
4400 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4401 DAG
.getUNDEF(VVT
), Mask
);
4402 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4403 DAG
.getIntPtrConstant(0));
4410 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
){
4411 EVT VT
= Op
.getValueType();
4412 EVT EVT
= VT
.getVectorElementType();
4413 DebugLoc dl
= Op
.getDebugLoc();
4415 SDValue N0
= Op
.getOperand(0);
4416 SDValue N1
= Op
.getOperand(1);
4417 SDValue N2
= Op
.getOperand(2);
4419 if ((EVT
.getSizeInBits() == 8 || EVT
.getSizeInBits() == 16) &&
4420 isa
<ConstantSDNode
>(N2
)) {
4421 unsigned Opc
= (EVT
.getSizeInBits() == 8) ? X86ISD::PINSRB
4423 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4425 if (N1
.getValueType() != MVT::i32
)
4426 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4427 if (N2
.getValueType() != MVT::i32
)
4428 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4429 return DAG
.getNode(Opc
, dl
, VT
, N0
, N1
, N2
);
4430 } else if (EVT
== MVT::f32
&& isa
<ConstantSDNode
>(N2
)) {
4431 // Bits [7:6] of the constant are the source select. This will always be
4432 // zero here. The DAG Combiner may combine an extract_elt index into these
4433 // bits. For example (insert (extract, 3), 2) could be matched by putting
4434 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4435 // Bits [5:4] of the constant are the destination select. This is the
4436 // value of the incoming immediate.
4437 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4438 // combine either bitwise AND or insert of float 0.0 to set these bits.
4439 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue() << 4);
4440 // Create this as a scalar to vector..
4441 N1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4f32
, N1
);
4442 return DAG
.getNode(X86ISD::INSERTPS
, dl
, VT
, N0
, N1
, N2
);
4443 } else if (EVT
== MVT::i32
&& isa
<ConstantSDNode
>(N2
)) {
4444 // PINSR* works with constant index.
4451 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4452 EVT VT
= Op
.getValueType();
4453 EVT EVT
= VT
.getVectorElementType();
4455 if (Subtarget
->hasSSE41())
4456 return LowerINSERT_VECTOR_ELT_SSE4(Op
, DAG
);
4461 DebugLoc dl
= Op
.getDebugLoc();
4462 SDValue N0
= Op
.getOperand(0);
4463 SDValue N1
= Op
.getOperand(1);
4464 SDValue N2
= Op
.getOperand(2);
4466 if (EVT
.getSizeInBits() == 16 && isa
<ConstantSDNode
>(N2
)) {
4467 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4468 // as its second argument.
4469 if (N1
.getValueType() != MVT::i32
)
4470 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4471 if (N2
.getValueType() != MVT::i32
)
4472 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4473 return DAG
.getNode(X86ISD::PINSRW
, dl
, VT
, N0
, N1
, N2
);
4479 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
4480 DebugLoc dl
= Op
.getDebugLoc();
4481 if (Op
.getValueType() == MVT::v2f32
)
4482 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f32
,
4483 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i32
,
4484 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
,
4485 Op
.getOperand(0))));
4487 if (Op
.getValueType() == MVT::v1i64
&& Op
.getOperand(0).getValueType() == MVT::i64
)
4488 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v1i64
, Op
.getOperand(0));
4490 SDValue AnyExt
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, Op
.getOperand(0));
4491 EVT VT
= MVT::v2i32
;
4492 switch (Op
.getValueType().getSimpleVT().SimpleTy
) {
4499 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(),
4500 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, AnyExt
));
4503 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4504 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4505 // one of the above mentioned nodes. It has to be wrapped because otherwise
4506 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4507 // be used to form addressing mode. These wrapped nodes will be selected
4510 X86TargetLowering::LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) {
4511 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
4513 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4515 unsigned char OpFlag
= 0;
4516 unsigned WrapperKind
= X86ISD::Wrapper
;
4517 CodeModel::Model M
= getTargetMachine().getCodeModel();
4519 if (Subtarget
->isPICStyleRIPRel() &&
4520 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
4521 WrapperKind
= X86ISD::WrapperRIP
;
4522 else if (Subtarget
->isPICStyleGOT())
4523 OpFlag
= X86II::MO_GOTOFF
;
4524 else if (Subtarget
->isPICStyleStubPIC())
4525 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4527 SDValue Result
= DAG
.getTargetConstantPool(CP
->getConstVal(), getPointerTy(),
4529 CP
->getOffset(), OpFlag
);
4530 DebugLoc DL
= CP
->getDebugLoc();
4531 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4532 // With PIC, the address is actually $g + Offset.
4534 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4535 DAG
.getNode(X86ISD::GlobalBaseReg
,
4536 DebugLoc::getUnknownLoc(), getPointerTy()),
4543 SDValue
X86TargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) {
4544 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
4546 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4548 unsigned char OpFlag
= 0;
4549 unsigned WrapperKind
= X86ISD::Wrapper
;
4550 CodeModel::Model M
= getTargetMachine().getCodeModel();
4552 if (Subtarget
->isPICStyleRIPRel() &&
4553 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
4554 WrapperKind
= X86ISD::WrapperRIP
;
4555 else if (Subtarget
->isPICStyleGOT())
4556 OpFlag
= X86II::MO_GOTOFF
;
4557 else if (Subtarget
->isPICStyleStubPIC())
4558 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4560 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), getPointerTy(),
4562 DebugLoc DL
= JT
->getDebugLoc();
4563 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4565 // With PIC, the address is actually $g + Offset.
4567 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4568 DAG
.getNode(X86ISD::GlobalBaseReg
,
4569 DebugLoc::getUnknownLoc(), getPointerTy()),
4577 X86TargetLowering::LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) {
4578 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
4580 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4582 unsigned char OpFlag
= 0;
4583 unsigned WrapperKind
= X86ISD::Wrapper
;
4584 CodeModel::Model M
= getTargetMachine().getCodeModel();
4586 if (Subtarget
->isPICStyleRIPRel() &&
4587 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
4588 WrapperKind
= X86ISD::WrapperRIP
;
4589 else if (Subtarget
->isPICStyleGOT())
4590 OpFlag
= X86II::MO_GOTOFF
;
4591 else if (Subtarget
->isPICStyleStubPIC())
4592 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4594 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, getPointerTy(), OpFlag
);
4596 DebugLoc DL
= Op
.getDebugLoc();
4597 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4600 // With PIC, the address is actually $g + Offset.
4601 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4602 !Subtarget
->is64Bit()) {
4603 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4604 DAG
.getNode(X86ISD::GlobalBaseReg
,
4605 DebugLoc::getUnknownLoc(),
4614 X86TargetLowering::LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
4616 SelectionDAG
&DAG
) const {
4617 // Create the TargetGlobalAddress node, folding in the constant
4618 // offset if it is legal.
4619 unsigned char OpFlags
=
4620 Subtarget
->ClassifyGlobalReference(GV
, getTargetMachine());
4621 CodeModel::Model M
= getTargetMachine().getCodeModel();
4623 if (OpFlags
== X86II::MO_NO_FLAG
&&
4624 X86::isOffsetSuitableForCodeModel(Offset
, M
)) {
4625 // A direct static reference to a global.
4626 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), Offset
);
4629 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), 0, OpFlags
);
4632 if (Subtarget
->isPICStyleRIPRel() &&
4633 (M
== CodeModel::Small
|| M
== CodeModel::Kernel
))
4634 Result
= DAG
.getNode(X86ISD::WrapperRIP
, dl
, getPointerTy(), Result
);
4636 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4638 // With PIC, the address is actually $g + Offset.
4639 if (isGlobalRelativeToPICBase(OpFlags
)) {
4640 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4641 DAG
.getNode(X86ISD::GlobalBaseReg
, dl
, getPointerTy()),
4645 // For globals that require a load from a stub to get the address, emit the
4647 if (isGlobalStubReference(OpFlags
))
4648 Result
= DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(), Result
,
4649 PseudoSourceValue::getGOT(), 0);
4651 // If there was a non-zero offset that we didn't fold, create an explicit
4654 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), Result
,
4655 DAG
.getConstant(Offset
, getPointerTy()));
4661 X86TargetLowering::LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) {
4662 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4663 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
4664 return LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
4668 GetTLSADDR(SelectionDAG
&DAG
, SDValue Chain
, GlobalAddressSDNode
*GA
,
4669 SDValue
*InFlag
, const EVT PtrVT
, unsigned ReturnReg
,
4670 unsigned char OperandFlags
) {
4671 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
4672 DebugLoc dl
= GA
->getDebugLoc();
4673 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(),
4674 GA
->getValueType(0),
4678 SDValue Ops
[] = { Chain
, TGA
, *InFlag
};
4679 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 3);
4681 SDValue Ops
[] = { Chain
, TGA
};
4682 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 2);
4684 SDValue Flag
= Chain
.getValue(1);
4685 return DAG
.getCopyFromReg(Chain
, dl
, ReturnReg
, PtrVT
, Flag
);
4688 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4690 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4693 DebugLoc dl
= GA
->getDebugLoc(); // ? function entry point might be better
4694 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, X86::EBX
,
4695 DAG
.getNode(X86ISD::GlobalBaseReg
,
4696 DebugLoc::getUnknownLoc(),
4698 InFlag
= Chain
.getValue(1);
4700 return GetTLSADDR(DAG
, Chain
, GA
, &InFlag
, PtrVT
, X86::EAX
, X86II::MO_TLSGD
);
4703 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4705 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4707 return GetTLSADDR(DAG
, DAG
.getEntryNode(), GA
, NULL
, PtrVT
,
4708 X86::RAX
, X86II::MO_TLSGD
);
4711 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4712 // "local exec" model.
4713 static SDValue
LowerToTLSExecModel(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4714 const EVT PtrVT
, TLSModel::Model model
,
4716 DebugLoc dl
= GA
->getDebugLoc();
4717 // Get the Thread Pointer
4718 SDValue Base
= DAG
.getNode(X86ISD::SegmentBaseAddress
,
4719 DebugLoc::getUnknownLoc(), PtrVT
,
4720 DAG
.getRegister(is64Bit
? X86::FS
: X86::GS
,
4723 SDValue ThreadPointer
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Base
,
4726 unsigned char OperandFlags
= 0;
4727 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
4729 unsigned WrapperKind
= X86ISD::Wrapper
;
4730 if (model
== TLSModel::LocalExec
) {
4731 OperandFlags
= is64Bit
? X86II::MO_TPOFF
: X86II::MO_NTPOFF
;
4732 } else if (is64Bit
) {
4733 assert(model
== TLSModel::InitialExec
);
4734 OperandFlags
= X86II::MO_GOTTPOFF
;
4735 WrapperKind
= X86ISD::WrapperRIP
;
4737 assert(model
== TLSModel::InitialExec
);
4738 OperandFlags
= X86II::MO_INDNTPOFF
;
4741 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4743 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), GA
->getValueType(0),
4744 GA
->getOffset(), OperandFlags
);
4745 SDValue Offset
= DAG
.getNode(WrapperKind
, dl
, PtrVT
, TGA
);
4747 if (model
== TLSModel::InitialExec
)
4748 Offset
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Offset
,
4749 PseudoSourceValue::getGOT(), 0);
4751 // The address of the thread local variable is the add of the thread
4752 // pointer with the offset of the variable.
4753 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
4757 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) {
4758 // TODO: implement the "local dynamic" model
4759 // TODO: implement the "initial exec"model for pic executables
4760 assert(Subtarget
->isTargetELF() &&
4761 "TLS not implemented for non-ELF targets");
4762 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4763 const GlobalValue
*GV
= GA
->getGlobal();
4765 // If GV is an alias then use the aliasee for determining
4766 // thread-localness.
4767 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
4768 GV
= GA
->resolveAliasedGlobal(false);
4770 TLSModel::Model model
= getTLSModel(GV
,
4771 getTargetMachine().getRelocationModel());
4774 case TLSModel::GeneralDynamic
:
4775 case TLSModel::LocalDynamic
: // not implemented
4776 if (Subtarget
->is64Bit())
4777 return LowerToTLSGeneralDynamicModel64(GA
, DAG
, getPointerTy());
4778 return LowerToTLSGeneralDynamicModel32(GA
, DAG
, getPointerTy());
4780 case TLSModel::InitialExec
:
4781 case TLSModel::LocalExec
:
4782 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
,
4783 Subtarget
->is64Bit());
4786 llvm_unreachable("Unreachable");
4791 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4792 /// take a 2 x i32 value to shift plus a shift amount.
4793 SDValue
X86TargetLowering::LowerShift(SDValue Op
, SelectionDAG
&DAG
) {
4794 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
4795 EVT VT
= Op
.getValueType();
4796 unsigned VTBits
= VT
.getSizeInBits();
4797 DebugLoc dl
= Op
.getDebugLoc();
4798 bool isSRA
= Op
.getOpcode() == ISD::SRA_PARTS
;
4799 SDValue ShOpLo
= Op
.getOperand(0);
4800 SDValue ShOpHi
= Op
.getOperand(1);
4801 SDValue ShAmt
= Op
.getOperand(2);
4802 SDValue Tmp1
= isSRA
? DAG
.getNode(ISD::SRA
, dl
, VT
, ShOpHi
,
4803 DAG
.getConstant(VTBits
- 1, MVT::i8
))
4804 : DAG
.getConstant(0, VT
);
4807 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4808 Tmp2
= DAG
.getNode(X86ISD::SHLD
, dl
, VT
, ShOpHi
, ShOpLo
, ShAmt
);
4809 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
4811 Tmp2
= DAG
.getNode(X86ISD::SHRD
, dl
, VT
, ShOpLo
, ShOpHi
, ShAmt
);
4812 Tmp3
= DAG
.getNode(isSRA
? ISD::SRA
: ISD::SRL
, dl
, VT
, ShOpHi
, ShAmt
);
4815 SDValue AndNode
= DAG
.getNode(ISD::AND
, dl
, MVT::i8
, ShAmt
,
4816 DAG
.getConstant(VTBits
, MVT::i8
));
4817 SDValue Cond
= DAG
.getNode(X86ISD::CMP
, dl
, VT
,
4818 AndNode
, DAG
.getConstant(0, MVT::i8
));
4821 SDValue CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
4822 SDValue Ops0
[4] = { Tmp2
, Tmp3
, CC
, Cond
};
4823 SDValue Ops1
[4] = { Tmp3
, Tmp1
, CC
, Cond
};
4825 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4826 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4827 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4829 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4830 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4833 SDValue Ops
[2] = { Lo
, Hi
};
4834 return DAG
.getMergeValues(Ops
, 2, dl
);
4837 SDValue
X86TargetLowering::LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4838 EVT SrcVT
= Op
.getOperand(0).getValueType();
4840 if (SrcVT
.isVector()) {
4841 if (SrcVT
== MVT::v2i32
&& Op
.getValueType() == MVT::v2f64
) {
4847 assert(SrcVT
.getSimpleVT() <= MVT::i64
&& SrcVT
.getSimpleVT() >= MVT::i16
&&
4848 "Unknown SINT_TO_FP to lower!");
4850 // These are really Legal; return the operand so the caller accepts it as
4852 if (SrcVT
== MVT::i32
&& isScalarFPTypeInSSEReg(Op
.getValueType()))
4854 if (SrcVT
== MVT::i64
&& isScalarFPTypeInSSEReg(Op
.getValueType()) &&
4855 Subtarget
->is64Bit()) {
4859 DebugLoc dl
= Op
.getDebugLoc();
4860 unsigned Size
= SrcVT
.getSizeInBits()/8;
4861 MachineFunction
&MF
= DAG
.getMachineFunction();
4862 int SSFI
= MF
.getFrameInfo()->CreateStackObject(Size
, Size
);
4863 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4864 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
4866 PseudoSourceValue::getFixedStack(SSFI
), 0);
4867 return BuildFILD(Op
, SrcVT
, Chain
, StackSlot
, DAG
);
4870 SDValue
X86TargetLowering::BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
,
4872 SelectionDAG
&DAG
) {
4874 DebugLoc dl
= Op
.getDebugLoc();
4876 bool useSSE
= isScalarFPTypeInSSEReg(Op
.getValueType());
4878 Tys
= DAG
.getVTList(MVT::f64
, MVT::Other
, MVT::Flag
);
4880 Tys
= DAG
.getVTList(Op
.getValueType(), MVT::Other
);
4881 SmallVector
<SDValue
, 8> Ops
;
4882 Ops
.push_back(Chain
);
4883 Ops
.push_back(StackSlot
);
4884 Ops
.push_back(DAG
.getValueType(SrcVT
));
4885 SDValue Result
= DAG
.getNode(useSSE
? X86ISD::FILD_FLAG
: X86ISD::FILD
, dl
,
4886 Tys
, &Ops
[0], Ops
.size());
4889 Chain
= Result
.getValue(1);
4890 SDValue InFlag
= Result
.getValue(2);
4892 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4893 // shouldn't be necessary except that RFP cannot be live across
4894 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4895 MachineFunction
&MF
= DAG
.getMachineFunction();
4896 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8);
4897 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4898 Tys
= DAG
.getVTList(MVT::Other
);
4899 SmallVector
<SDValue
, 8> Ops
;
4900 Ops
.push_back(Chain
);
4901 Ops
.push_back(Result
);
4902 Ops
.push_back(StackSlot
);
4903 Ops
.push_back(DAG
.getValueType(Op
.getValueType()));
4904 Ops
.push_back(InFlag
);
4905 Chain
= DAG
.getNode(X86ISD::FST
, dl
, Tys
, &Ops
[0], Ops
.size());
4906 Result
= DAG
.getLoad(Op
.getValueType(), dl
, Chain
, StackSlot
,
4907 PseudoSourceValue::getFixedStack(SSFI
), 0);
4913 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4914 SDValue
X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
) {
4915 // This algorithm is not obvious. Here it is in C code, more or less:
4917 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4918 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4919 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4921 // Copy ints to xmm registers.
4922 __m128i xh = _mm_cvtsi32_si128( hi );
4923 __m128i xl = _mm_cvtsi32_si128( lo );
4925 // Combine into low half of a single xmm register.
4926 __m128i x = _mm_unpacklo_epi32( xh, xl );
4930 // Merge in appropriate exponents to give the integer bits the right
4932 x = _mm_unpacklo_epi32( x, exp );
4934 // Subtract away the biases to deal with the IEEE-754 double precision
4936 d = _mm_sub_pd( (__m128d) x, bias );
4938 // All conversions up to here are exact. The correctly rounded result is
4939 // calculated using the current rounding mode using the following
4941 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4942 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4943 // store doesn't really need to be here (except
4944 // maybe to zero the other double)
4949 DebugLoc dl
= Op
.getDebugLoc();
4950 LLVMContext
*Context
= DAG
.getContext();
4952 // Build some magic constants.
4953 std::vector
<Constant
*> CV0
;
4954 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0x45300000)));
4955 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0x43300000)));
4956 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0)));
4957 CV0
.push_back(ConstantInt::get(*Context
, APInt(32, 0)));
4958 Constant
*C0
= ConstantVector::get(CV0
);
4959 SDValue CPIdx0
= DAG
.getConstantPool(C0
, getPointerTy(), 16);
4961 std::vector
<Constant
*> CV1
;
4963 ConstantFP::get(*Context
, APFloat(APInt(64, 0x4530000000000000ULL
))));
4965 ConstantFP::get(*Context
, APFloat(APInt(64, 0x4330000000000000ULL
))));
4966 Constant
*C1
= ConstantVector::get(CV1
);
4967 SDValue CPIdx1
= DAG
.getConstantPool(C1
, getPointerTy(), 16);
4969 SDValue XR1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4970 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4972 DAG
.getIntPtrConstant(1)));
4973 SDValue XR2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4974 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4976 DAG
.getIntPtrConstant(0)));
4977 SDValue Unpck1
= getUnpackl(DAG
, dl
, MVT::v4i32
, XR1
, XR2
);
4978 SDValue CLod0
= DAG
.getLoad(MVT::v4i32
, dl
, DAG
.getEntryNode(), CPIdx0
,
4979 PseudoSourceValue::getConstantPool(), 0,
4981 SDValue Unpck2
= getUnpackl(DAG
, dl
, MVT::v4i32
, Unpck1
, CLod0
);
4982 SDValue XR2F
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Unpck2
);
4983 SDValue CLod1
= DAG
.getLoad(MVT::v2f64
, dl
, CLod0
.getValue(1), CPIdx1
,
4984 PseudoSourceValue::getConstantPool(), 0,
4986 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::v2f64
, XR2F
, CLod1
);
4988 // Add the halves; easiest way is to swap them into another reg first.
4989 int ShufMask
[2] = { 1, -1 };
4990 SDValue Shuf
= DAG
.getVectorShuffle(MVT::v2f64
, dl
, Sub
,
4991 DAG
.getUNDEF(MVT::v2f64
), ShufMask
);
4992 SDValue Add
= DAG
.getNode(ISD::FADD
, dl
, MVT::v2f64
, Shuf
, Sub
);
4993 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Add
,
4994 DAG
.getIntPtrConstant(0));
4997 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4998 SDValue
X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
) {
4999 DebugLoc dl
= Op
.getDebugLoc();
5000 // FP constant to bias correct the final result.
5001 SDValue Bias
= DAG
.getConstantFP(BitsToDouble(0x4330000000000000ULL
),
5004 // Load the 32-bit value into an XMM register.
5005 SDValue Load
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
5006 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
5008 DAG
.getIntPtrConstant(0)));
5010 Load
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
5011 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Load
),
5012 DAG
.getIntPtrConstant(0));
5014 // Or the load with the bias.
5015 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, MVT::v2i64
,
5016 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
5017 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
5019 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
5020 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
5021 MVT::v2f64
, Bias
)));
5022 Or
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
5023 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Or
),
5024 DAG
.getIntPtrConstant(0));
5026 // Subtract the bias.
5027 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Or
, Bias
);
5029 // Handle final rounding.
5030 EVT DestVT
= Op
.getValueType();
5032 if (DestVT
.bitsLT(MVT::f64
)) {
5033 return DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
5034 DAG
.getIntPtrConstant(0));
5035 } else if (DestVT
.bitsGT(MVT::f64
)) {
5036 return DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
5039 // Handle final rounding.
5043 SDValue
X86TargetLowering::LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5044 SDValue N0
= Op
.getOperand(0);
5045 DebugLoc dl
= Op
.getDebugLoc();
5047 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5048 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5049 // the optimization here.
5050 if (DAG
.SignBitIsZero(N0
))
5051 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, Op
.getValueType(), N0
);
5053 EVT SrcVT
= N0
.getValueType();
5054 if (SrcVT
== MVT::i64
) {
5055 // We only handle SSE2 f64 target here; caller can expand the rest.
5056 if (Op
.getValueType() != MVT::f64
|| !X86ScalarSSEf64
)
5059 return LowerUINT_TO_FP_i64(Op
, DAG
);
5060 } else if (SrcVT
== MVT::i32
&& X86ScalarSSEf64
) {
5061 return LowerUINT_TO_FP_i32(Op
, DAG
);
5064 assert(SrcVT
== MVT::i32
&& "Unknown UINT_TO_FP to lower!");
5066 // Make a 64-bit buffer, and use it to build an FILD.
5067 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::i64
);
5068 SDValue WordOff
= DAG
.getConstant(4, getPointerTy());
5069 SDValue OffsetSlot
= DAG
.getNode(ISD::ADD
, dl
,
5070 getPointerTy(), StackSlot
, WordOff
);
5071 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
5072 StackSlot
, NULL
, 0);
5073 SDValue Store2
= DAG
.getStore(Store1
, dl
, DAG
.getConstant(0, MVT::i32
),
5074 OffsetSlot
, NULL
, 0);
5075 return BuildFILD(Op
, MVT::i64
, Store2
, StackSlot
, DAG
);
5078 std::pair
<SDValue
,SDValue
> X86TargetLowering::
5079 FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool IsSigned
) {
5080 DebugLoc dl
= Op
.getDebugLoc();
5082 EVT DstTy
= Op
.getValueType();
5085 assert(DstTy
== MVT::i32
&& "Unexpected FP_TO_UINT");
5089 assert(DstTy
.getSimpleVT() <= MVT::i64
&&
5090 DstTy
.getSimpleVT() >= MVT::i16
&&
5091 "Unknown FP_TO_SINT to lower!");
5093 // These are really Legal.
5094 if (DstTy
== MVT::i32
&&
5095 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
5096 return std::make_pair(SDValue(), SDValue());
5097 if (Subtarget
->is64Bit() &&
5098 DstTy
== MVT::i64
&&
5099 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
5100 return std::make_pair(SDValue(), SDValue());
5102 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5104 MachineFunction
&MF
= DAG
.getMachineFunction();
5105 unsigned MemSize
= DstTy
.getSizeInBits()/8;
5106 int SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
5107 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
5110 switch (DstTy
.getSimpleVT().SimpleTy
) {
5111 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5112 case MVT::i16
: Opc
= X86ISD::FP_TO_INT16_IN_MEM
; break;
5113 case MVT::i32
: Opc
= X86ISD::FP_TO_INT32_IN_MEM
; break;
5114 case MVT::i64
: Opc
= X86ISD::FP_TO_INT64_IN_MEM
; break;
5117 SDValue Chain
= DAG
.getEntryNode();
5118 SDValue Value
= Op
.getOperand(0);
5119 if (isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType())) {
5120 assert(DstTy
== MVT::i64
&& "Invalid FP_TO_SINT to lower!");
5121 Chain
= DAG
.getStore(Chain
, dl
, Value
, StackSlot
,
5122 PseudoSourceValue::getFixedStack(SSFI
), 0);
5123 SDVTList Tys
= DAG
.getVTList(Op
.getOperand(0).getValueType(), MVT::Other
);
5125 Chain
, StackSlot
, DAG
.getValueType(Op
.getOperand(0).getValueType())
5127 Value
= DAG
.getNode(X86ISD::FLD
, dl
, Tys
, Ops
, 3);
5128 Chain
= Value
.getValue(1);
5129 SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
5130 StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
5133 // Build the FP_TO_INT*_IN_MEM
5134 SDValue Ops
[] = { Chain
, Value
, StackSlot
};
5135 SDValue FIST
= DAG
.getNode(Opc
, dl
, MVT::Other
, Ops
, 3);
5137 return std::make_pair(FIST
, StackSlot
);
5140 SDValue
X86TargetLowering::LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) {
5141 if (Op
.getValueType().isVector()) {
5142 if (Op
.getValueType() == MVT::v2i32
&&
5143 Op
.getOperand(0).getValueType() == MVT::v2f64
) {
5149 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, true);
5150 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
5151 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5152 if (FIST
.getNode() == 0) return Op
;
5155 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
5156 FIST
, StackSlot
, NULL
, 0);
5159 SDValue
X86TargetLowering::LowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
) {
5160 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, false);
5161 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
5162 assert(FIST
.getNode() && "Unexpected failure");
5165 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
5166 FIST
, StackSlot
, NULL
, 0);
5169 SDValue
X86TargetLowering::LowerFABS(SDValue Op
, SelectionDAG
&DAG
) {
5170 LLVMContext
*Context
= DAG
.getContext();
5171 DebugLoc dl
= Op
.getDebugLoc();
5172 EVT VT
= Op
.getValueType();
5175 EltVT
= VT
.getVectorElementType();
5176 std::vector
<Constant
*> CV
;
5177 if (EltVT
== MVT::f64
) {
5178 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(64, ~(1ULL << 63))));
5182 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(32, ~(1U << 31))));
5188 Constant
*C
= ConstantVector::get(CV
);
5189 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5190 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5191 PseudoSourceValue::getConstantPool(), 0,
5193 return DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op
.getOperand(0), Mask
);
5196 SDValue
X86TargetLowering::LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) {
5197 LLVMContext
*Context
= DAG
.getContext();
5198 DebugLoc dl
= Op
.getDebugLoc();
5199 EVT VT
= Op
.getValueType();
5202 EltVT
= VT
.getVectorElementType();
5203 std::vector
<Constant
*> CV
;
5204 if (EltVT
== MVT::f64
) {
5205 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(64, 1ULL << 63)));
5209 Constant
*C
= ConstantFP::get(*Context
, APFloat(APInt(32, 1U << 31)));
5215 Constant
*C
= ConstantVector::get(CV
);
5216 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5217 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5218 PseudoSourceValue::getConstantPool(), 0,
5220 if (VT
.isVector()) {
5221 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
5222 DAG
.getNode(ISD::XOR
, dl
, MVT::v2i64
,
5223 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
5225 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, Mask
)));
5227 return DAG
.getNode(X86ISD::FXOR
, dl
, VT
, Op
.getOperand(0), Mask
);
5231 SDValue
X86TargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) {
5232 LLVMContext
*Context
= DAG
.getContext();
5233 SDValue Op0
= Op
.getOperand(0);
5234 SDValue Op1
= Op
.getOperand(1);
5235 DebugLoc dl
= Op
.getDebugLoc();
5236 EVT VT
= Op
.getValueType();
5237 EVT SrcVT
= Op1
.getValueType();
5239 // If second operand is smaller, extend it first.
5240 if (SrcVT
.bitsLT(VT
)) {
5241 Op1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Op1
);
5244 // And if it is bigger, shrink it first.
5245 if (SrcVT
.bitsGT(VT
)) {
5246 Op1
= DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op1
, DAG
.getIntPtrConstant(1));
5250 // At this point the operands and the result should have the same
5251 // type, and that won't be f80 since that is not custom lowered.
5253 // First get the sign bit of second operand.
5254 std::vector
<Constant
*> CV
;
5255 if (SrcVT
== MVT::f64
) {
5256 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 1ULL << 63))));
5257 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 0))));
5259 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 1U << 31))));
5260 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5261 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5262 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5264 Constant
*C
= ConstantVector::get(CV
);
5265 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5266 SDValue Mask1
= DAG
.getLoad(SrcVT
, dl
, DAG
.getEntryNode(), CPIdx
,
5267 PseudoSourceValue::getConstantPool(), 0,
5269 SDValue SignBit
= DAG
.getNode(X86ISD::FAND
, dl
, SrcVT
, Op1
, Mask1
);
5271 // Shift sign bit right or left if the two operands have different types.
5272 if (SrcVT
.bitsGT(VT
)) {
5273 // Op0 is MVT::f32, Op1 is MVT::f64.
5274 SignBit
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f64
, SignBit
);
5275 SignBit
= DAG
.getNode(X86ISD::FSRL
, dl
, MVT::v2f64
, SignBit
,
5276 DAG
.getConstant(32, MVT::i32
));
5277 SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
, SignBit
);
5278 SignBit
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, SignBit
,
5279 DAG
.getIntPtrConstant(0));
5282 // Clear first operand sign bit.
5284 if (VT
== MVT::f64
) {
5285 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, ~(1ULL << 63)))));
5286 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(64, 0))));
5288 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, ~(1U << 31)))));
5289 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5290 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5291 CV
.push_back(ConstantFP::get(*Context
, APFloat(APInt(32, 0))));
5293 C
= ConstantVector::get(CV
);
5294 CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5295 SDValue Mask2
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5296 PseudoSourceValue::getConstantPool(), 0,
5298 SDValue Val
= DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op0
, Mask2
);
5300 // Or the value with the sign bit.
5301 return DAG
.getNode(X86ISD::FOR
, dl
, VT
, Val
, SignBit
);
5304 /// Emit nodes that will be selected as "test Op0,Op0", or something
5306 SDValue
X86TargetLowering::EmitTest(SDValue Op
, unsigned X86CC
,
5307 SelectionDAG
&DAG
) {
5308 DebugLoc dl
= Op
.getDebugLoc();
5310 // CF and OF aren't always set the way we want. Determine which
5311 // of these we need.
5312 bool NeedCF
= false;
5313 bool NeedOF
= false;
5315 case X86::COND_A
: case X86::COND_AE
:
5316 case X86::COND_B
: case X86::COND_BE
:
5319 case X86::COND_G
: case X86::COND_GE
:
5320 case X86::COND_L
: case X86::COND_LE
:
5321 case X86::COND_O
: case X86::COND_NO
:
5327 // See if we can use the EFLAGS value from the operand instead of
5328 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5329 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5330 if (Op
.getResNo() == 0 && !NeedOF
&& !NeedCF
) {
5331 unsigned Opcode
= 0;
5332 unsigned NumOperands
= 0;
5333 switch (Op
.getNode()->getOpcode()) {
5335 // Due to an isel shortcoming, be conservative if this add is likely to
5336 // be selected as part of a load-modify-store instruction. When the root
5337 // node in a match is a store, isel doesn't know how to remap non-chain
5338 // non-flag uses of other nodes in the match, such as the ADD in this
5339 // case. This leads to the ADD being left around and reselected, with
5340 // the result being two adds in the output.
5341 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5342 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5343 if (UI
->getOpcode() == ISD::STORE
)
5345 if (ConstantSDNode
*C
=
5346 dyn_cast
<ConstantSDNode
>(Op
.getNode()->getOperand(1))) {
5347 // An add of one will be selected as an INC.
5348 if (C
->getAPIntValue() == 1) {
5349 Opcode
= X86ISD::INC
;
5353 // An add of negative one (subtract of one) will be selected as a DEC.
5354 if (C
->getAPIntValue().isAllOnesValue()) {
5355 Opcode
= X86ISD::DEC
;
5360 // Otherwise use a regular EFLAGS-setting add.
5361 Opcode
= X86ISD::ADD
;
5365 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5366 // likely to be selected as part of a load-modify-store instruction.
5367 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5368 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5369 if (UI
->getOpcode() == ISD::STORE
)
5371 // Otherwise use a regular EFLAGS-setting sub.
5372 Opcode
= X86ISD::SUB
;
5379 return SDValue(Op
.getNode(), 1);
5385 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
5386 SmallVector
<SDValue
, 4> Ops
;
5387 for (unsigned i
= 0; i
!= NumOperands
; ++i
)
5388 Ops
.push_back(Op
.getOperand(i
));
5389 SDValue New
= DAG
.getNode(Opcode
, dl
, VTs
, &Ops
[0], NumOperands
);
5390 DAG
.ReplaceAllUsesWith(Op
, New
);
5391 return SDValue(New
.getNode(), 1);
5395 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5396 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op
,
5397 DAG
.getConstant(0, Op
.getValueType()));
5400 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5402 SDValue
X86TargetLowering::EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
5403 SelectionDAG
&DAG
) {
5404 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op1
))
5405 if (C
->getAPIntValue() == 0)
5406 return EmitTest(Op0
, X86CC
, DAG
);
5408 DebugLoc dl
= Op0
.getDebugLoc();
5409 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op0
, Op1
);
5412 SDValue
X86TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5413 assert(Op
.getValueType() == MVT::i8
&& "SetCC type must be 8-bit integer");
5414 SDValue Op0
= Op
.getOperand(0);
5415 SDValue Op1
= Op
.getOperand(1);
5416 DebugLoc dl
= Op
.getDebugLoc();
5417 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
5419 // Lower (X & (1 << N)) == 0 to BT(X, N).
5420 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5421 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5422 if (Op0
.getOpcode() == ISD::AND
&&
5424 Op1
.getOpcode() == ISD::Constant
&&
5425 cast
<ConstantSDNode
>(Op1
)->getZExtValue() == 0 &&
5426 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5428 if (Op0
.getOperand(1).getOpcode() == ISD::SHL
) {
5429 if (ConstantSDNode
*Op010C
=
5430 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(1).getOperand(0)))
5431 if (Op010C
->getZExtValue() == 1) {
5432 LHS
= Op0
.getOperand(0);
5433 RHS
= Op0
.getOperand(1).getOperand(1);
5435 } else if (Op0
.getOperand(0).getOpcode() == ISD::SHL
) {
5436 if (ConstantSDNode
*Op000C
=
5437 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(0).getOperand(0)))
5438 if (Op000C
->getZExtValue() == 1) {
5439 LHS
= Op0
.getOperand(1);
5440 RHS
= Op0
.getOperand(0).getOperand(1);
5442 } else if (Op0
.getOperand(1).getOpcode() == ISD::Constant
) {
5443 ConstantSDNode
*AndRHS
= cast
<ConstantSDNode
>(Op0
.getOperand(1));
5444 SDValue AndLHS
= Op0
.getOperand(0);
5445 if (AndRHS
->getZExtValue() == 1 && AndLHS
.getOpcode() == ISD::SRL
) {
5446 LHS
= AndLHS
.getOperand(0);
5447 RHS
= AndLHS
.getOperand(1);
5451 if (LHS
.getNode()) {
5452 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5453 // instruction. Since the shift amount is in-range-or-undefined, we know
5454 // that doing a bittest on the i16 value is ok. We extend to i32 because
5455 // the encoding for the i16 version is larger than the i32 version.
5456 if (LHS
.getValueType() == MVT::i8
)
5457 LHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, LHS
);
5459 // If the operand types disagree, extend the shift amount to match. Since
5460 // BT ignores high bits (like shifts) we can use anyextend.
5461 if (LHS
.getValueType() != RHS
.getValueType())
5462 RHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, LHS
.getValueType(), RHS
);
5464 SDValue BT
= DAG
.getNode(X86ISD::BT
, dl
, MVT::i32
, LHS
, RHS
);
5465 unsigned Cond
= CC
== ISD::SETEQ
? X86::COND_AE
: X86::COND_B
;
5466 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5467 DAG
.getConstant(Cond
, MVT::i8
), BT
);
5471 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5472 unsigned X86CC
= TranslateX86CC(CC
, isFP
, Op0
, Op1
, DAG
);
5474 SDValue Cond
= EmitCmp(Op0
, Op1
, X86CC
, DAG
);
5475 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5476 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
5479 SDValue
X86TargetLowering::LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5481 SDValue Op0
= Op
.getOperand(0);
5482 SDValue Op1
= Op
.getOperand(1);
5483 SDValue CC
= Op
.getOperand(2);
5484 EVT VT
= Op
.getValueType();
5485 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5486 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5487 DebugLoc dl
= Op
.getDebugLoc();
5491 EVT VT0
= Op0
.getValueType();
5492 assert(VT0
== MVT::v4f32
|| VT0
== MVT::v2f64
);
5493 unsigned Opc
= VT0
== MVT::v4f32
? X86ISD::CMPPS
: X86ISD::CMPPD
;
5496 switch (SetCCOpcode
) {
5499 case ISD::SETEQ
: SSECC
= 0; break;
5501 case ISD::SETGT
: Swap
= true; // Fallthrough
5503 case ISD::SETOLT
: SSECC
= 1; break;
5505 case ISD::SETGE
: Swap
= true; // Fallthrough
5507 case ISD::SETOLE
: SSECC
= 2; break;
5508 case ISD::SETUO
: SSECC
= 3; break;
5510 case ISD::SETNE
: SSECC
= 4; break;
5511 case ISD::SETULE
: Swap
= true;
5512 case ISD::SETUGE
: SSECC
= 5; break;
5513 case ISD::SETULT
: Swap
= true;
5514 case ISD::SETUGT
: SSECC
= 6; break;
5515 case ISD::SETO
: SSECC
= 7; break;
5518 std::swap(Op0
, Op1
);
5520 // In the two special cases we can't handle, emit two comparisons.
5522 if (SetCCOpcode
== ISD::SETUEQ
) {
5524 UNORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(3, MVT::i8
));
5525 EQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(0, MVT::i8
));
5526 return DAG
.getNode(ISD::OR
, dl
, VT
, UNORD
, EQ
);
5528 else if (SetCCOpcode
== ISD::SETONE
) {
5530 ORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(7, MVT::i8
));
5531 NEQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(4, MVT::i8
));
5532 return DAG
.getNode(ISD::AND
, dl
, VT
, ORD
, NEQ
);
5534 llvm_unreachable("Illegal FP comparison");
5536 // Handle all other FP comparisons here.
5537 return DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(SSECC
, MVT::i8
));
5540 // We are handling one of the integer comparisons here. Since SSE only has
5541 // GT and EQ comparisons for integer, swapping operands and multiple
5542 // operations may be required for some comparisons.
5543 unsigned Opc
= 0, EQOpc
= 0, GTOpc
= 0;
5544 bool Swap
= false, Invert
= false, FlipSigns
= false;
5546 switch (VT
.getSimpleVT().SimpleTy
) {
5549 case MVT::v16i8
: EQOpc
= X86ISD::PCMPEQB
; GTOpc
= X86ISD::PCMPGTB
; break;
5551 case MVT::v8i16
: EQOpc
= X86ISD::PCMPEQW
; GTOpc
= X86ISD::PCMPGTW
; break;
5553 case MVT::v4i32
: EQOpc
= X86ISD::PCMPEQD
; GTOpc
= X86ISD::PCMPGTD
; break;
5554 case MVT::v2i64
: EQOpc
= X86ISD::PCMPEQQ
; GTOpc
= X86ISD::PCMPGTQ
; break;
5557 switch (SetCCOpcode
) {
5559 case ISD::SETNE
: Invert
= true;
5560 case ISD::SETEQ
: Opc
= EQOpc
; break;
5561 case ISD::SETLT
: Swap
= true;
5562 case ISD::SETGT
: Opc
= GTOpc
; break;
5563 case ISD::SETGE
: Swap
= true;
5564 case ISD::SETLE
: Opc
= GTOpc
; Invert
= true; break;
5565 case ISD::SETULT
: Swap
= true;
5566 case ISD::SETUGT
: Opc
= GTOpc
; FlipSigns
= true; break;
5567 case ISD::SETUGE
: Swap
= true;
5568 case ISD::SETULE
: Opc
= GTOpc
; FlipSigns
= true; Invert
= true; break;
5571 std::swap(Op0
, Op1
);
5573 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5574 // bits of the inputs before performing those operations.
5576 EVT EltVT
= VT
.getVectorElementType();
5577 SDValue SignBit
= DAG
.getConstant(APInt::getSignBit(EltVT
.getSizeInBits()),
5579 std::vector
<SDValue
> SignBits(VT
.getVectorNumElements(), SignBit
);
5580 SDValue SignVec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &SignBits
[0],
5582 Op0
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
, SignVec
);
5583 Op1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op1
, SignVec
);
5586 SDValue Result
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
);
5588 // If the logical-not of the result is required, perform that now.
5590 Result
= DAG
.getNOT(dl
, Result
, VT
);
5595 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5596 static bool isX86LogicalCmp(SDValue Op
) {
5597 unsigned Opc
= Op
.getNode()->getOpcode();
5598 if (Opc
== X86ISD::CMP
|| Opc
== X86ISD::COMI
|| Opc
== X86ISD::UCOMI
)
5600 if (Op
.getResNo() == 1 &&
5601 (Opc
== X86ISD::ADD
||
5602 Opc
== X86ISD::SUB
||
5603 Opc
== X86ISD::SMUL
||
5604 Opc
== X86ISD::UMUL
||
5605 Opc
== X86ISD::INC
||
5606 Opc
== X86ISD::DEC
))
5612 SDValue
X86TargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) {
5613 bool addTest
= true;
5614 SDValue Cond
= Op
.getOperand(0);
5615 DebugLoc dl
= Op
.getDebugLoc();
5618 if (Cond
.getOpcode() == ISD::SETCC
)
5619 Cond
= LowerSETCC(Cond
, DAG
);
5621 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5622 // setting operand in place of the X86ISD::SETCC.
5623 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5624 CC
= Cond
.getOperand(0);
5626 SDValue Cmp
= Cond
.getOperand(1);
5627 unsigned Opc
= Cmp
.getOpcode();
5628 EVT VT
= Op
.getValueType();
5630 bool IllegalFPCMov
= false;
5631 if (VT
.isFloatingPoint() && !VT
.isVector() &&
5632 !isScalarFPTypeInSSEReg(VT
)) // FPStack?
5633 IllegalFPCMov
= !hasFPCMov(cast
<ConstantSDNode
>(CC
)->getSExtValue());
5635 if ((isX86LogicalCmp(Cmp
) && !IllegalFPCMov
) ||
5636 Opc
== X86ISD::BT
) { // FIXME
5643 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5644 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5647 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Flag
);
5648 SmallVector
<SDValue
, 4> Ops
;
5649 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5650 // condition is true.
5651 Ops
.push_back(Op
.getOperand(2));
5652 Ops
.push_back(Op
.getOperand(1));
5654 Ops
.push_back(Cond
);
5655 return DAG
.getNode(X86ISD::CMOV
, dl
, VTs
, &Ops
[0], Ops
.size());
5658 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5659 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5660 // from the AND / OR.
5661 static bool isAndOrOfSetCCs(SDValue Op
, unsigned &Opc
) {
5662 Opc
= Op
.getOpcode();
5663 if (Opc
!= ISD::OR
&& Opc
!= ISD::AND
)
5665 return (Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5666 Op
.getOperand(0).hasOneUse() &&
5667 Op
.getOperand(1).getOpcode() == X86ISD::SETCC
&&
5668 Op
.getOperand(1).hasOneUse());
5671 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5672 // 1 and that the SETCC node has a single use.
5673 static bool isXor1OfSetCC(SDValue Op
) {
5674 if (Op
.getOpcode() != ISD::XOR
)
5676 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5677 if (N1C
&& N1C
->getAPIntValue() == 1) {
5678 return Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5679 Op
.getOperand(0).hasOneUse();
5684 SDValue
X86TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) {
5685 bool addTest
= true;
5686 SDValue Chain
= Op
.getOperand(0);
5687 SDValue Cond
= Op
.getOperand(1);
5688 SDValue Dest
= Op
.getOperand(2);
5689 DebugLoc dl
= Op
.getDebugLoc();
5692 if (Cond
.getOpcode() == ISD::SETCC
)
5693 Cond
= LowerSETCC(Cond
, DAG
);
5695 // FIXME: LowerXALUO doesn't handle these!!
5696 else if (Cond
.getOpcode() == X86ISD::ADD
||
5697 Cond
.getOpcode() == X86ISD::SUB
||
5698 Cond
.getOpcode() == X86ISD::SMUL
||
5699 Cond
.getOpcode() == X86ISD::UMUL
)
5700 Cond
= LowerXALUO(Cond
, DAG
);
5703 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5704 // setting operand in place of the X86ISD::SETCC.
5705 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5706 CC
= Cond
.getOperand(0);
5708 SDValue Cmp
= Cond
.getOperand(1);
5709 unsigned Opc
= Cmp
.getOpcode();
5710 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5711 if (isX86LogicalCmp(Cmp
) || Opc
== X86ISD::BT
) {
5715 switch (cast
<ConstantSDNode
>(CC
)->getZExtValue()) {
5719 // These can only come from an arithmetic instruction with overflow,
5720 // e.g. SADDO, UADDO.
5721 Cond
= Cond
.getNode()->getOperand(1);
5728 if (Cond
.hasOneUse() && isAndOrOfSetCCs(Cond
, CondOpc
)) {
5729 SDValue Cmp
= Cond
.getOperand(0).getOperand(1);
5730 if (CondOpc
== ISD::OR
) {
5731 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5732 // two branches instead of an explicit OR instruction with a
5734 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5735 isX86LogicalCmp(Cmp
)) {
5736 CC
= Cond
.getOperand(0).getOperand(0);
5737 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5738 Chain
, Dest
, CC
, Cmp
);
5739 CC
= Cond
.getOperand(1).getOperand(0);
5743 } else { // ISD::AND
5744 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5745 // two branches instead of an explicit AND instruction with a
5746 // separate test. However, we only do this if this block doesn't
5747 // have a fall-through edge, because this requires an explicit
5748 // jmp when the condition is false.
5749 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5750 isX86LogicalCmp(Cmp
) &&
5751 Op
.getNode()->hasOneUse()) {
5752 X86::CondCode CCode
=
5753 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5754 CCode
= X86::GetOppositeBranchCondition(CCode
);
5755 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5756 SDValue User
= SDValue(*Op
.getNode()->use_begin(), 0);
5757 // Look for an unconditional branch following this conditional branch.
5758 // We need this because we need to reverse the successors in order
5759 // to implement FCMP_OEQ.
5760 if (User
.getOpcode() == ISD::BR
) {
5761 SDValue FalseBB
= User
.getOperand(1);
5763 DAG
.UpdateNodeOperands(User
, User
.getOperand(0), Dest
);
5764 assert(NewBR
== User
);
5767 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5768 Chain
, Dest
, CC
, Cmp
);
5769 X86::CondCode CCode
=
5770 (X86::CondCode
)Cond
.getOperand(1).getConstantOperandVal(0);
5771 CCode
= X86::GetOppositeBranchCondition(CCode
);
5772 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5778 } else if (Cond
.hasOneUse() && isXor1OfSetCC(Cond
)) {
5779 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5780 // It should be transformed during dag combiner except when the condition
5781 // is set by a arithmetics with overflow node.
5782 X86::CondCode CCode
=
5783 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5784 CCode
= X86::GetOppositeBranchCondition(CCode
);
5785 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5786 Cond
= Cond
.getOperand(0).getOperand(1);
5792 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5793 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5795 return DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5796 Chain
, Dest
, CC
, Cond
);
5800 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5801 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5802 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5803 // that the guard pages used by the OS virtual memory manager are allocated in
5804 // correct sequence.
5806 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
5807 SelectionDAG
&DAG
) {
5808 assert(Subtarget
->isTargetCygMing() &&
5809 "This should be used only on Cygwin/Mingw targets");
5810 DebugLoc dl
= Op
.getDebugLoc();
5813 SDValue Chain
= Op
.getOperand(0);
5814 SDValue Size
= Op
.getOperand(1);
5815 // FIXME: Ensure alignment here
5819 EVT IntPtr
= getPointerTy();
5820 EVT SPTy
= Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
;
5822 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
5824 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EAX
, Size
, Flag
);
5825 Flag
= Chain
.getValue(1);
5827 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5828 SDValue Ops
[] = { Chain
,
5829 DAG
.getTargetExternalSymbol("_alloca", IntPtr
),
5830 DAG
.getRegister(X86::EAX
, IntPtr
),
5831 DAG
.getRegister(X86StackPtr
, SPTy
),
5833 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, Ops
, 5);
5834 Flag
= Chain
.getValue(1);
5836 Chain
= DAG
.getCALLSEQ_END(Chain
,
5837 DAG
.getIntPtrConstant(0, true),
5838 DAG
.getIntPtrConstant(0, true),
5841 Chain
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, SPTy
).getValue(1);
5843 SDValue Ops1
[2] = { Chain
.getValue(0), Chain
};
5844 return DAG
.getMergeValues(Ops1
, 2, dl
);
5848 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG
&DAG
, DebugLoc dl
,
5850 SDValue Dst
, SDValue Src
,
5851 SDValue Size
, unsigned Align
,
5853 uint64_t DstSVOff
) {
5854 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5856 // If not DWORD aligned or size is more than the threshold, call the library.
5857 // The libc version is likely to be faster for these cases. It can use the
5858 // address value and run time information about the CPU.
5859 if ((Align
& 3) != 0 ||
5861 ConstantSize
->getZExtValue() >
5862 getSubtarget()->getMaxInlineSizeThreshold()) {
5863 SDValue
InFlag(0, 0);
5865 // Check to see if there is a specialized entry-point for memory zeroing.
5866 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Src
);
5868 if (const char *bzeroEntry
= V
&&
5869 V
->isNullValue() ? Subtarget
->getBZeroEntry() : 0) {
5870 EVT IntPtr
= getPointerTy();
5871 const Type
*IntPtrTy
= TD
->getIntPtrType(*DAG
.getContext());
5872 TargetLowering::ArgListTy Args
;
5873 TargetLowering::ArgListEntry Entry
;
5875 Entry
.Ty
= IntPtrTy
;
5876 Args
.push_back(Entry
);
5878 Args
.push_back(Entry
);
5879 std::pair
<SDValue
,SDValue
> CallResult
=
5880 LowerCallTo(Chain
, Type::getVoidTy(*DAG
.getContext()),
5881 false, false, false, false,
5882 0, CallingConv::C
, false, /*isReturnValueUsed=*/false,
5883 DAG
.getExternalSymbol(bzeroEntry
, IntPtr
), Args
, DAG
, dl
);
5884 return CallResult
.second
;
5887 // Otherwise have the target-independent code call memset.
5891 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5892 SDValue
InFlag(0, 0);
5895 ConstantSDNode
*ValC
= dyn_cast
<ConstantSDNode
>(Src
);
5896 unsigned BytesLeft
= 0;
5897 bool TwoRepStos
= false;
5900 uint64_t Val
= ValC
->getZExtValue() & 255;
5902 // If the value is a constant, then we can potentially use larger sets.
5903 switch (Align
& 3) {
5904 case 2: // WORD aligned
5907 Val
= (Val
<< 8) | Val
;
5909 case 0: // DWORD aligned
5912 Val
= (Val
<< 8) | Val
;
5913 Val
= (Val
<< 16) | Val
;
5914 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) { // QWORD aligned
5917 Val
= (Val
<< 32) | Val
;
5920 default: // Byte aligned
5923 Count
= DAG
.getIntPtrConstant(SizeVal
);
5927 if (AVT
.bitsGT(MVT::i8
)) {
5928 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5929 Count
= DAG
.getIntPtrConstant(SizeVal
/ UBytes
);
5930 BytesLeft
= SizeVal
% UBytes
;
5933 Chain
= DAG
.getCopyToReg(Chain
, dl
, ValReg
, DAG
.getConstant(Val
, AVT
),
5935 InFlag
= Chain
.getValue(1);
5938 Count
= DAG
.getIntPtrConstant(SizeVal
);
5939 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
, Src
, InFlag
);
5940 InFlag
= Chain
.getValue(1);
5943 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5946 InFlag
= Chain
.getValue(1);
5947 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5950 InFlag
= Chain
.getValue(1);
5952 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5953 SmallVector
<SDValue
, 8> Ops
;
5954 Ops
.push_back(Chain
);
5955 Ops
.push_back(DAG
.getValueType(AVT
));
5956 Ops
.push_back(InFlag
);
5957 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5960 InFlag
= Chain
.getValue(1);
5962 EVT CVT
= Count
.getValueType();
5963 SDValue Left
= DAG
.getNode(ISD::AND
, dl
, CVT
, Count
,
5964 DAG
.getConstant((AVT
== MVT::i64
) ? 7 : 3, CVT
));
5965 Chain
= DAG
.getCopyToReg(Chain
, dl
, (CVT
== MVT::i64
) ? X86::RCX
:
5968 InFlag
= Chain
.getValue(1);
5969 Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5971 Ops
.push_back(Chain
);
5972 Ops
.push_back(DAG
.getValueType(MVT::i8
));
5973 Ops
.push_back(InFlag
);
5974 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5975 } else if (BytesLeft
) {
5976 // Handle the last 1 - 7 bytes.
5977 unsigned Offset
= SizeVal
- BytesLeft
;
5978 EVT AddrVT
= Dst
.getValueType();
5979 EVT SizeVT
= Size
.getValueType();
5981 Chain
= DAG
.getMemset(Chain
, dl
,
5982 DAG
.getNode(ISD::ADD
, dl
, AddrVT
, Dst
,
5983 DAG
.getConstant(Offset
, AddrVT
)),
5985 DAG
.getConstant(BytesLeft
, SizeVT
),
5986 Align
, DstSV
, DstSVOff
+ Offset
);
5989 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5994 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG
&DAG
, DebugLoc dl
,
5995 SDValue Chain
, SDValue Dst
, SDValue Src
,
5996 SDValue Size
, unsigned Align
,
5998 const Value
*DstSV
, uint64_t DstSVOff
,
5999 const Value
*SrcSV
, uint64_t SrcSVOff
) {
6000 // This requires the copy size to be a constant, preferrably
6001 // within a subtarget-specific limit.
6002 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6005 uint64_t SizeVal
= ConstantSize
->getZExtValue();
6006 if (!AlwaysInline
&& SizeVal
> getSubtarget()->getMaxInlineSizeThreshold())
6009 /// If not DWORD aligned, call the library.
6010 if ((Align
& 3) != 0)
6015 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) // QWORD aligned
6018 unsigned UBytes
= AVT
.getSizeInBits() / 8;
6019 unsigned CountVal
= SizeVal
/ UBytes
;
6020 SDValue Count
= DAG
.getIntPtrConstant(CountVal
);
6021 unsigned BytesLeft
= SizeVal
% UBytes
;
6023 SDValue
InFlag(0, 0);
6024 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
6027 InFlag
= Chain
.getValue(1);
6028 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
6031 InFlag
= Chain
.getValue(1);
6032 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RSI
:
6035 InFlag
= Chain
.getValue(1);
6037 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6038 SmallVector
<SDValue
, 8> Ops
;
6039 Ops
.push_back(Chain
);
6040 Ops
.push_back(DAG
.getValueType(AVT
));
6041 Ops
.push_back(InFlag
);
6042 SDValue RepMovs
= DAG
.getNode(X86ISD::REP_MOVS
, dl
, Tys
, &Ops
[0], Ops
.size());
6044 SmallVector
<SDValue
, 4> Results
;
6045 Results
.push_back(RepMovs
);
6047 // Handle the last 1 - 7 bytes.
6048 unsigned Offset
= SizeVal
- BytesLeft
;
6049 EVT DstVT
= Dst
.getValueType();
6050 EVT SrcVT
= Src
.getValueType();
6051 EVT SizeVT
= Size
.getValueType();
6052 Results
.push_back(DAG
.getMemcpy(Chain
, dl
,
6053 DAG
.getNode(ISD::ADD
, dl
, DstVT
, Dst
,
6054 DAG
.getConstant(Offset
, DstVT
)),
6055 DAG
.getNode(ISD::ADD
, dl
, SrcVT
, Src
,
6056 DAG
.getConstant(Offset
, SrcVT
)),
6057 DAG
.getConstant(BytesLeft
, SizeVT
),
6058 Align
, AlwaysInline
,
6059 DstSV
, DstSVOff
+ Offset
,
6060 SrcSV
, SrcSVOff
+ Offset
));
6063 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
6064 &Results
[0], Results
.size());
6067 SDValue
X86TargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
6068 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
6069 DebugLoc dl
= Op
.getDebugLoc();
6071 if (!Subtarget
->is64Bit()) {
6072 // vastart just stores the address of the VarArgsFrameIndex slot into the
6073 // memory location argument.
6074 SDValue FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
6075 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1), SV
, 0);
6079 // gp_offset (0 - 6 * 8)
6080 // fp_offset (48 - 48 + 8 * 16)
6081 // overflow_arg_area (point to parameters coming in memory).
6083 SmallVector
<SDValue
, 8> MemOps
;
6084 SDValue FIN
= Op
.getOperand(1);
6086 SDValue Store
= DAG
.getStore(Op
.getOperand(0), dl
,
6087 DAG
.getConstant(VarArgsGPOffset
, MVT::i32
),
6089 MemOps
.push_back(Store
);
6092 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6093 FIN
, DAG
.getIntPtrConstant(4));
6094 Store
= DAG
.getStore(Op
.getOperand(0), dl
,
6095 DAG
.getConstant(VarArgsFPOffset
, MVT::i32
),
6097 MemOps
.push_back(Store
);
6099 // Store ptr to overflow_arg_area
6100 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6101 FIN
, DAG
.getIntPtrConstant(4));
6102 SDValue OVFIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
6103 Store
= DAG
.getStore(Op
.getOperand(0), dl
, OVFIN
, FIN
, SV
, 0);
6104 MemOps
.push_back(Store
);
6106 // Store ptr to reg_save_area.
6107 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6108 FIN
, DAG
.getIntPtrConstant(8));
6109 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
6110 Store
= DAG
.getStore(Op
.getOperand(0), dl
, RSFIN
, FIN
, SV
, 0);
6111 MemOps
.push_back(Store
);
6112 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
6113 &MemOps
[0], MemOps
.size());
6116 SDValue
X86TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) {
6117 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6118 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_arg!");
6119 SDValue Chain
= Op
.getOperand(0);
6120 SDValue SrcPtr
= Op
.getOperand(1);
6121 SDValue SrcSV
= Op
.getOperand(2);
6123 llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6127 SDValue
X86TargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) {
6128 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6129 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_copy!");
6130 SDValue Chain
= Op
.getOperand(0);
6131 SDValue DstPtr
= Op
.getOperand(1);
6132 SDValue SrcPtr
= Op
.getOperand(2);
6133 const Value
*DstSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
6134 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6135 DebugLoc dl
= Op
.getDebugLoc();
6137 return DAG
.getMemcpy(Chain
, dl
, DstPtr
, SrcPtr
,
6138 DAG
.getIntPtrConstant(24), 8, false,
6139 DstSV
, 0, SrcSV
, 0);
6143 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) {
6144 DebugLoc dl
= Op
.getDebugLoc();
6145 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6147 default: return SDValue(); // Don't custom lower most intrinsics.
6148 // Comparison intrinsics.
6149 case Intrinsic::x86_sse_comieq_ss
:
6150 case Intrinsic::x86_sse_comilt_ss
:
6151 case Intrinsic::x86_sse_comile_ss
:
6152 case Intrinsic::x86_sse_comigt_ss
:
6153 case Intrinsic::x86_sse_comige_ss
:
6154 case Intrinsic::x86_sse_comineq_ss
:
6155 case Intrinsic::x86_sse_ucomieq_ss
:
6156 case Intrinsic::x86_sse_ucomilt_ss
:
6157 case Intrinsic::x86_sse_ucomile_ss
:
6158 case Intrinsic::x86_sse_ucomigt_ss
:
6159 case Intrinsic::x86_sse_ucomige_ss
:
6160 case Intrinsic::x86_sse_ucomineq_ss
:
6161 case Intrinsic::x86_sse2_comieq_sd
:
6162 case Intrinsic::x86_sse2_comilt_sd
:
6163 case Intrinsic::x86_sse2_comile_sd
:
6164 case Intrinsic::x86_sse2_comigt_sd
:
6165 case Intrinsic::x86_sse2_comige_sd
:
6166 case Intrinsic::x86_sse2_comineq_sd
:
6167 case Intrinsic::x86_sse2_ucomieq_sd
:
6168 case Intrinsic::x86_sse2_ucomilt_sd
:
6169 case Intrinsic::x86_sse2_ucomile_sd
:
6170 case Intrinsic::x86_sse2_ucomigt_sd
:
6171 case Intrinsic::x86_sse2_ucomige_sd
:
6172 case Intrinsic::x86_sse2_ucomineq_sd
: {
6174 ISD::CondCode CC
= ISD::SETCC_INVALID
;
6177 case Intrinsic::x86_sse_comieq_ss
:
6178 case Intrinsic::x86_sse2_comieq_sd
:
6182 case Intrinsic::x86_sse_comilt_ss
:
6183 case Intrinsic::x86_sse2_comilt_sd
:
6187 case Intrinsic::x86_sse_comile_ss
:
6188 case Intrinsic::x86_sse2_comile_sd
:
6192 case Intrinsic::x86_sse_comigt_ss
:
6193 case Intrinsic::x86_sse2_comigt_sd
:
6197 case Intrinsic::x86_sse_comige_ss
:
6198 case Intrinsic::x86_sse2_comige_sd
:
6202 case Intrinsic::x86_sse_comineq_ss
:
6203 case Intrinsic::x86_sse2_comineq_sd
:
6207 case Intrinsic::x86_sse_ucomieq_ss
:
6208 case Intrinsic::x86_sse2_ucomieq_sd
:
6209 Opc
= X86ISD::UCOMI
;
6212 case Intrinsic::x86_sse_ucomilt_ss
:
6213 case Intrinsic::x86_sse2_ucomilt_sd
:
6214 Opc
= X86ISD::UCOMI
;
6217 case Intrinsic::x86_sse_ucomile_ss
:
6218 case Intrinsic::x86_sse2_ucomile_sd
:
6219 Opc
= X86ISD::UCOMI
;
6222 case Intrinsic::x86_sse_ucomigt_ss
:
6223 case Intrinsic::x86_sse2_ucomigt_sd
:
6224 Opc
= X86ISD::UCOMI
;
6227 case Intrinsic::x86_sse_ucomige_ss
:
6228 case Intrinsic::x86_sse2_ucomige_sd
:
6229 Opc
= X86ISD::UCOMI
;
6232 case Intrinsic::x86_sse_ucomineq_ss
:
6233 case Intrinsic::x86_sse2_ucomineq_sd
:
6234 Opc
= X86ISD::UCOMI
;
6239 SDValue LHS
= Op
.getOperand(1);
6240 SDValue RHS
= Op
.getOperand(2);
6241 unsigned X86CC
= TranslateX86CC(CC
, true, LHS
, RHS
, DAG
);
6242 SDValue Cond
= DAG
.getNode(Opc
, dl
, MVT::i32
, LHS
, RHS
);
6243 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
6244 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
6245 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
6247 // ptest intrinsics. The intrinsic these come from are designed to return
6248 // an integer value, not just an instruction so lower it to the ptest
6249 // pattern and a setcc for the result.
6250 case Intrinsic::x86_sse41_ptestz
:
6251 case Intrinsic::x86_sse41_ptestc
:
6252 case Intrinsic::x86_sse41_ptestnzc
:{
6255 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6256 case Intrinsic::x86_sse41_ptestz
:
6258 X86CC
= X86::COND_E
;
6260 case Intrinsic::x86_sse41_ptestc
:
6262 X86CC
= X86::COND_B
;
6264 case Intrinsic::x86_sse41_ptestnzc
:
6266 X86CC
= X86::COND_A
;
6270 SDValue LHS
= Op
.getOperand(1);
6271 SDValue RHS
= Op
.getOperand(2);
6272 SDValue Test
= DAG
.getNode(X86ISD::PTEST
, dl
, MVT::i32
, LHS
, RHS
);
6273 SDValue CC
= DAG
.getConstant(X86CC
, MVT::i8
);
6274 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
, CC
, Test
);
6275 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
6278 // Fix vector shift instructions where the last operand is a non-immediate
6280 case Intrinsic::x86_sse2_pslli_w
:
6281 case Intrinsic::x86_sse2_pslli_d
:
6282 case Intrinsic::x86_sse2_pslli_q
:
6283 case Intrinsic::x86_sse2_psrli_w
:
6284 case Intrinsic::x86_sse2_psrli_d
:
6285 case Intrinsic::x86_sse2_psrli_q
:
6286 case Intrinsic::x86_sse2_psrai_w
:
6287 case Intrinsic::x86_sse2_psrai_d
:
6288 case Intrinsic::x86_mmx_pslli_w
:
6289 case Intrinsic::x86_mmx_pslli_d
:
6290 case Intrinsic::x86_mmx_pslli_q
:
6291 case Intrinsic::x86_mmx_psrli_w
:
6292 case Intrinsic::x86_mmx_psrli_d
:
6293 case Intrinsic::x86_mmx_psrli_q
:
6294 case Intrinsic::x86_mmx_psrai_w
:
6295 case Intrinsic::x86_mmx_psrai_d
: {
6296 SDValue ShAmt
= Op
.getOperand(2);
6297 if (isa
<ConstantSDNode
>(ShAmt
))
6300 unsigned NewIntNo
= 0;
6301 EVT ShAmtVT
= MVT::v4i32
;
6303 case Intrinsic::x86_sse2_pslli_w
:
6304 NewIntNo
= Intrinsic::x86_sse2_psll_w
;
6306 case Intrinsic::x86_sse2_pslli_d
:
6307 NewIntNo
= Intrinsic::x86_sse2_psll_d
;
6309 case Intrinsic::x86_sse2_pslli_q
:
6310 NewIntNo
= Intrinsic::x86_sse2_psll_q
;
6312 case Intrinsic::x86_sse2_psrli_w
:
6313 NewIntNo
= Intrinsic::x86_sse2_psrl_w
;
6315 case Intrinsic::x86_sse2_psrli_d
:
6316 NewIntNo
= Intrinsic::x86_sse2_psrl_d
;
6318 case Intrinsic::x86_sse2_psrli_q
:
6319 NewIntNo
= Intrinsic::x86_sse2_psrl_q
;
6321 case Intrinsic::x86_sse2_psrai_w
:
6322 NewIntNo
= Intrinsic::x86_sse2_psra_w
;
6324 case Intrinsic::x86_sse2_psrai_d
:
6325 NewIntNo
= Intrinsic::x86_sse2_psra_d
;
6328 ShAmtVT
= MVT::v2i32
;
6330 case Intrinsic::x86_mmx_pslli_w
:
6331 NewIntNo
= Intrinsic::x86_mmx_psll_w
;
6333 case Intrinsic::x86_mmx_pslli_d
:
6334 NewIntNo
= Intrinsic::x86_mmx_psll_d
;
6336 case Intrinsic::x86_mmx_pslli_q
:
6337 NewIntNo
= Intrinsic::x86_mmx_psll_q
;
6339 case Intrinsic::x86_mmx_psrli_w
:
6340 NewIntNo
= Intrinsic::x86_mmx_psrl_w
;
6342 case Intrinsic::x86_mmx_psrli_d
:
6343 NewIntNo
= Intrinsic::x86_mmx_psrl_d
;
6345 case Intrinsic::x86_mmx_psrli_q
:
6346 NewIntNo
= Intrinsic::x86_mmx_psrl_q
;
6348 case Intrinsic::x86_mmx_psrai_w
:
6349 NewIntNo
= Intrinsic::x86_mmx_psra_w
;
6351 case Intrinsic::x86_mmx_psrai_d
:
6352 NewIntNo
= Intrinsic::x86_mmx_psra_d
;
6354 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6360 // The vector shift intrinsics with scalars uses 32b shift amounts but
6361 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6365 ShOps
[1] = DAG
.getConstant(0, MVT::i32
);
6366 if (ShAmtVT
== MVT::v4i32
) {
6367 ShOps
[2] = DAG
.getUNDEF(MVT::i32
);
6368 ShOps
[3] = DAG
.getUNDEF(MVT::i32
);
6369 ShAmt
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ShAmtVT
, &ShOps
[0], 4);
6371 ShAmt
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, ShAmtVT
, &ShOps
[0], 2);
6374 EVT VT
= Op
.getValueType();
6375 ShAmt
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, ShAmt
);
6376 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6377 DAG
.getConstant(NewIntNo
, MVT::i32
),
6378 Op
.getOperand(1), ShAmt
);
6383 SDValue
X86TargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) {
6384 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6385 DebugLoc dl
= Op
.getDebugLoc();
6388 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
6390 DAG
.getConstant(TD
->getPointerSize(),
6391 Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
);
6392 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6393 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6398 // Just load the return address.
6399 SDValue RetAddrFI
= getReturnAddressFrameIndex(DAG
);
6400 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6401 RetAddrFI
, NULL
, 0);
6404 SDValue
X86TargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) {
6405 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
6406 MFI
->setFrameAddressIsTaken(true);
6407 EVT VT
= Op
.getValueType();
6408 DebugLoc dl
= Op
.getDebugLoc(); // FIXME probably not meaningful
6409 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6410 unsigned FrameReg
= Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
;
6411 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
6413 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
, NULL
, 0);
6417 SDValue
X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op
,
6418 SelectionDAG
&DAG
) {
6419 return DAG
.getIntPtrConstant(2*TD
->getPointerSize());
6422 SDValue
X86TargetLowering::LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
6424 MachineFunction
&MF
= DAG
.getMachineFunction();
6425 SDValue Chain
= Op
.getOperand(0);
6426 SDValue Offset
= Op
.getOperand(1);
6427 SDValue Handler
= Op
.getOperand(2);
6428 DebugLoc dl
= Op
.getDebugLoc();
6430 SDValue Frame
= DAG
.getRegister(Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
,
6432 unsigned StoreAddrReg
= (Subtarget
->is64Bit() ? X86::RCX
: X86::ECX
);
6434 SDValue StoreAddr
= DAG
.getNode(ISD::SUB
, dl
, getPointerTy(), Frame
,
6435 DAG
.getIntPtrConstant(-TD
->getPointerSize()));
6436 StoreAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StoreAddr
, Offset
);
6437 Chain
= DAG
.getStore(Chain
, dl
, Handler
, StoreAddr
, NULL
, 0);
6438 Chain
= DAG
.getCopyToReg(Chain
, dl
, StoreAddrReg
, StoreAddr
);
6439 MF
.getRegInfo().addLiveOut(StoreAddrReg
);
6441 return DAG
.getNode(X86ISD::EH_RETURN
, dl
,
6443 Chain
, DAG
.getRegister(StoreAddrReg
, getPointerTy()));
6446 SDValue
X86TargetLowering::LowerTRAMPOLINE(SDValue Op
,
6447 SelectionDAG
&DAG
) {
6448 SDValue Root
= Op
.getOperand(0);
6449 SDValue Trmp
= Op
.getOperand(1); // trampoline
6450 SDValue FPtr
= Op
.getOperand(2); // nested function
6451 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
6452 DebugLoc dl
= Op
.getDebugLoc();
6454 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6456 const X86InstrInfo
*TII
=
6457 ((X86TargetMachine
&)getTargetMachine()).getInstrInfo();
6459 if (Subtarget
->is64Bit()) {
6460 SDValue OutChains
[6];
6462 // Large code-model.
6464 const unsigned char JMP64r
= TII
->getBaseOpcodeFor(X86::JMP64r
);
6465 const unsigned char MOV64ri
= TII
->getBaseOpcodeFor(X86::MOV64ri
);
6467 const unsigned char N86R10
= RegInfo
->getX86RegNum(X86::R10
);
6468 const unsigned char N86R11
= RegInfo
->getX86RegNum(X86::R11
);
6470 const unsigned char REX_WB
= 0x40 | 0x08 | 0x01; // REX prefix
6472 // Load the pointer to the nested function into R11.
6473 unsigned OpCode
= ((MOV64ri
| N86R11
) << 8) | REX_WB
; // movabsq r11
6474 SDValue Addr
= Trmp
;
6475 OutChains
[0] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6478 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6479 DAG
.getConstant(2, MVT::i64
));
6480 OutChains
[1] = DAG
.getStore(Root
, dl
, FPtr
, Addr
, TrmpAddr
, 2, false, 2);
6482 // Load the 'nest' parameter value into R10.
6483 // R10 is specified in X86CallingConv.td
6484 OpCode
= ((MOV64ri
| N86R10
) << 8) | REX_WB
; // movabsq r10
6485 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6486 DAG
.getConstant(10, MVT::i64
));
6487 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6488 Addr
, TrmpAddr
, 10);
6490 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6491 DAG
.getConstant(12, MVT::i64
));
6492 OutChains
[3] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 12, false, 2);
6494 // Jump to the nested function.
6495 OpCode
= (JMP64r
<< 8) | REX_WB
; // jmpq *...
6496 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6497 DAG
.getConstant(20, MVT::i64
));
6498 OutChains
[4] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6499 Addr
, TrmpAddr
, 20);
6501 unsigned char ModRM
= N86R11
| (4 << 3) | (3 << 6); // ...r11
6502 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6503 DAG
.getConstant(22, MVT::i64
));
6504 OutChains
[5] = DAG
.getStore(Root
, dl
, DAG
.getConstant(ModRM
, MVT::i8
), Addr
,
6508 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 6) };
6509 return DAG
.getMergeValues(Ops
, 2, dl
);
6511 const Function
*Func
=
6512 cast
<Function
>(cast
<SrcValueSDNode
>(Op
.getOperand(5))->getValue());
6513 CallingConv::ID CC
= Func
->getCallingConv();
6518 llvm_unreachable("Unsupported calling convention");
6519 case CallingConv::C
:
6520 case CallingConv::X86_StdCall
: {
6521 // Pass 'nest' parameter in ECX.
6522 // Must be kept in sync with X86CallingConv.td
6525 // Check that ECX wasn't needed by an 'inreg' parameter.
6526 const FunctionType
*FTy
= Func
->getFunctionType();
6527 const AttrListPtr
&Attrs
= Func
->getAttributes();
6529 if (!Attrs
.isEmpty() && !Func
->isVarArg()) {
6530 unsigned InRegCount
= 0;
6533 for (FunctionType::param_iterator I
= FTy
->param_begin(),
6534 E
= FTy
->param_end(); I
!= E
; ++I
, ++Idx
)
6535 if (Attrs
.paramHasAttr(Idx
, Attribute::InReg
))
6536 // FIXME: should only count parameters that are lowered to integers.
6537 InRegCount
+= (TD
->getTypeSizeInBits(*I
) + 31) / 32;
6539 if (InRegCount
> 2) {
6540 llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6545 case CallingConv::X86_FastCall
:
6546 case CallingConv::Fast
:
6547 // Pass 'nest' parameter in EAX.
6548 // Must be kept in sync with X86CallingConv.td
6553 SDValue OutChains
[4];
6556 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6557 DAG
.getConstant(10, MVT::i32
));
6558 Disp
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, FPtr
, Addr
);
6560 const unsigned char MOV32ri
= TII
->getBaseOpcodeFor(X86::MOV32ri
);
6561 const unsigned char N86Reg
= RegInfo
->getX86RegNum(NestReg
);
6562 OutChains
[0] = DAG
.getStore(Root
, dl
,
6563 DAG
.getConstant(MOV32ri
|N86Reg
, MVT::i8
),
6566 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6567 DAG
.getConstant(1, MVT::i32
));
6568 OutChains
[1] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 1, false, 1);
6570 const unsigned char JMP
= TII
->getBaseOpcodeFor(X86::JMP
);
6571 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6572 DAG
.getConstant(5, MVT::i32
));
6573 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(JMP
, MVT::i8
), Addr
,
6574 TrmpAddr
, 5, false, 1);
6576 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6577 DAG
.getConstant(6, MVT::i32
));
6578 OutChains
[3] = DAG
.getStore(Root
, dl
, Disp
, Addr
, TrmpAddr
, 6, false, 1);
6581 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 4) };
6582 return DAG
.getMergeValues(Ops
, 2, dl
);
6586 SDValue
X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) {
6588 The rounding mode is in bits 11:10 of FPSR, and has the following
6595 FLT_ROUNDS, on the other hand, expects the following:
6602 To perform the conversion, we do:
6603 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6606 MachineFunction
&MF
= DAG
.getMachineFunction();
6607 const TargetMachine
&TM
= MF
.getTarget();
6608 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
6609 unsigned StackAlignment
= TFI
.getStackAlignment();
6610 EVT VT
= Op
.getValueType();
6611 DebugLoc dl
= Op
.getDebugLoc();
6613 // Save FP Control Word to stack slot
6614 int SSFI
= MF
.getFrameInfo()->CreateStackObject(2, StackAlignment
);
6615 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6617 SDValue Chain
= DAG
.getNode(X86ISD::FNSTCW16m
, dl
, MVT::Other
,
6618 DAG
.getEntryNode(), StackSlot
);
6620 // Load FP Control Word from stack slot
6621 SDValue CWD
= DAG
.getLoad(MVT::i16
, dl
, Chain
, StackSlot
, NULL
, 0);
6623 // Transform as necessary
6625 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6626 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6627 CWD
, DAG
.getConstant(0x800, MVT::i16
)),
6628 DAG
.getConstant(11, MVT::i8
));
6630 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6631 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6632 CWD
, DAG
.getConstant(0x400, MVT::i16
)),
6633 DAG
.getConstant(9, MVT::i8
));
6636 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6637 DAG
.getNode(ISD::ADD
, dl
, MVT::i16
,
6638 DAG
.getNode(ISD::OR
, dl
, MVT::i16
, CWD1
, CWD2
),
6639 DAG
.getConstant(1, MVT::i16
)),
6640 DAG
.getConstant(3, MVT::i16
));
6643 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
6644 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
6647 SDValue
X86TargetLowering::LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) {
6648 EVT VT
= Op
.getValueType();
6650 unsigned NumBits
= VT
.getSizeInBits();
6651 DebugLoc dl
= Op
.getDebugLoc();
6653 Op
= Op
.getOperand(0);
6654 if (VT
== MVT::i8
) {
6655 // Zero extend to i32 since there is not an i8 bsr.
6657 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6660 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6661 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6662 Op
= DAG
.getNode(X86ISD::BSR
, dl
, VTs
, Op
);
6664 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6665 SmallVector
<SDValue
, 4> Ops
;
6667 Ops
.push_back(DAG
.getConstant(NumBits
+NumBits
-1, OpVT
));
6668 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6669 Ops
.push_back(Op
.getValue(1));
6670 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6672 // Finally xor with NumBits-1.
6673 Op
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Op
, DAG
.getConstant(NumBits
-1, OpVT
));
6676 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6680 SDValue
X86TargetLowering::LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) {
6681 EVT VT
= Op
.getValueType();
6683 unsigned NumBits
= VT
.getSizeInBits();
6684 DebugLoc dl
= Op
.getDebugLoc();
6686 Op
= Op
.getOperand(0);
6687 if (VT
== MVT::i8
) {
6689 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6692 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6693 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6694 Op
= DAG
.getNode(X86ISD::BSF
, dl
, VTs
, Op
);
6696 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6697 SmallVector
<SDValue
, 4> Ops
;
6699 Ops
.push_back(DAG
.getConstant(NumBits
, OpVT
));
6700 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6701 Ops
.push_back(Op
.getValue(1));
6702 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6705 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6709 SDValue
X86TargetLowering::LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) {
6710 EVT VT
= Op
.getValueType();
6711 assert(VT
== MVT::v2i64
&& "Only know how to lower V2I64 multiply");
6712 DebugLoc dl
= Op
.getDebugLoc();
6714 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6715 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6716 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6717 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6718 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6720 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6721 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6722 // return AloBlo + AloBhi + AhiBlo;
6724 SDValue A
= Op
.getOperand(0);
6725 SDValue B
= Op
.getOperand(1);
6727 SDValue Ahi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6728 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6729 A
, DAG
.getConstant(32, MVT::i32
));
6730 SDValue Bhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6731 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6732 B
, DAG
.getConstant(32, MVT::i32
));
6733 SDValue AloBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6734 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6736 SDValue AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6737 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6739 SDValue AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6740 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6742 AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6743 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6744 AloBhi
, DAG
.getConstant(32, MVT::i32
));
6745 AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6746 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6747 AhiBlo
, DAG
.getConstant(32, MVT::i32
));
6748 SDValue Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, AloBlo
, AloBhi
);
6749 Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, Res
, AhiBlo
);
6754 SDValue
X86TargetLowering::LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
6755 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6756 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6757 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6758 // has only one use.
6759 SDNode
*N
= Op
.getNode();
6760 SDValue LHS
= N
->getOperand(0);
6761 SDValue RHS
= N
->getOperand(1);
6762 unsigned BaseOp
= 0;
6764 DebugLoc dl
= Op
.getDebugLoc();
6766 switch (Op
.getOpcode()) {
6767 default: llvm_unreachable("Unknown ovf instruction!");
6769 // A subtract of one will be selected as a INC. Note that INC doesn't
6770 // set CF, so we can't do this for UADDO.
6771 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6772 if (C
->getAPIntValue() == 1) {
6773 BaseOp
= X86ISD::INC
;
6777 BaseOp
= X86ISD::ADD
;
6781 BaseOp
= X86ISD::ADD
;
6785 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6786 // set CF, so we can't do this for USUBO.
6787 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6788 if (C
->getAPIntValue() == 1) {
6789 BaseOp
= X86ISD::DEC
;
6793 BaseOp
= X86ISD::SUB
;
6797 BaseOp
= X86ISD::SUB
;
6801 BaseOp
= X86ISD::SMUL
;
6805 BaseOp
= X86ISD::UMUL
;
6810 // Also sets EFLAGS.
6811 SDVTList VTs
= DAG
.getVTList(N
->getValueType(0), MVT::i32
);
6812 SDValue Sum
= DAG
.getNode(BaseOp
, dl
, VTs
, LHS
, RHS
);
6815 DAG
.getNode(X86ISD::SETCC
, dl
, N
->getValueType(1),
6816 DAG
.getConstant(Cond
, MVT::i32
), SDValue(Sum
.getNode(), 1));
6818 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), SetCC
);
6822 SDValue
X86TargetLowering::LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) {
6823 EVT T
= Op
.getValueType();
6824 DebugLoc dl
= Op
.getDebugLoc();
6827 switch(T
.getSimpleVT().SimpleTy
) {
6829 assert(false && "Invalid value type!");
6830 case MVT::i8
: Reg
= X86::AL
; size
= 1; break;
6831 case MVT::i16
: Reg
= X86::AX
; size
= 2; break;
6832 case MVT::i32
: Reg
= X86::EAX
; size
= 4; break;
6834 assert(Subtarget
->is64Bit() && "Node not type legal!");
6835 Reg
= X86::RAX
; size
= 8;
6838 SDValue cpIn
= DAG
.getCopyToReg(Op
.getOperand(0), dl
, Reg
,
6839 Op
.getOperand(2), SDValue());
6840 SDValue Ops
[] = { cpIn
.getValue(0),
6843 DAG
.getTargetConstant(size
, MVT::i8
),
6845 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6846 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG_DAG
, dl
, Tys
, Ops
, 5);
6848 DAG
.getCopyFromReg(Result
.getValue(0), dl
, Reg
, T
, Result
.getValue(1));
6852 SDValue
X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op
,
6853 SelectionDAG
&DAG
) {
6854 assert(Subtarget
->is64Bit() && "Result not type legalized?");
6855 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6856 SDValue TheChain
= Op
.getOperand(0);
6857 DebugLoc dl
= Op
.getDebugLoc();
6858 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6859 SDValue rax
= DAG
.getCopyFromReg(rd
, dl
, X86::RAX
, MVT::i64
, rd
.getValue(1));
6860 SDValue rdx
= DAG
.getCopyFromReg(rax
.getValue(1), dl
, X86::RDX
, MVT::i64
,
6862 SDValue Tmp
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, rdx
,
6863 DAG
.getConstant(32, MVT::i8
));
6865 DAG
.getNode(ISD::OR
, dl
, MVT::i64
, rax
, Tmp
),
6868 return DAG
.getMergeValues(Ops
, 2, dl
);
6871 SDValue
X86TargetLowering::LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) {
6872 SDNode
*Node
= Op
.getNode();
6873 DebugLoc dl
= Node
->getDebugLoc();
6874 EVT T
= Node
->getValueType(0);
6875 SDValue negOp
= DAG
.getNode(ISD::SUB
, dl
, T
,
6876 DAG
.getConstant(0, T
), Node
->getOperand(2));
6877 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
,
6878 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
6879 Node
->getOperand(0),
6880 Node
->getOperand(1), negOp
,
6881 cast
<AtomicSDNode
>(Node
)->getSrcValue(),
6882 cast
<AtomicSDNode
>(Node
)->getAlignment());
6885 /// LowerOperation - Provide custom lowering hooks for some operations.
6887 SDValue
X86TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
6888 switch (Op
.getOpcode()) {
6889 default: llvm_unreachable("Should not custom lower this!");
6890 case ISD::ATOMIC_CMP_SWAP
: return LowerCMP_SWAP(Op
,DAG
);
6891 case ISD::ATOMIC_LOAD_SUB
: return LowerLOAD_SUB(Op
,DAG
);
6892 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
6893 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
6894 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
6895 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
6896 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
6897 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
6898 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
6899 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
6900 case ISD::ExternalSymbol
: return LowerExternalSymbol(Op
, DAG
);
6901 case ISD::SHL_PARTS
:
6902 case ISD::SRA_PARTS
:
6903 case ISD::SRL_PARTS
: return LowerShift(Op
, DAG
);
6904 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
6905 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
6906 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
6907 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
6908 case ISD::FABS
: return LowerFABS(Op
, DAG
);
6909 case ISD::FNEG
: return LowerFNEG(Op
, DAG
);
6910 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
6911 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
6912 case ISD::VSETCC
: return LowerVSETCC(Op
, DAG
);
6913 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
6914 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
6915 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
6916 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
6917 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
6918 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
6919 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
6920 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
6921 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
6922 case ISD::FRAME_TO_ARGS_OFFSET
:
6923 return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
6924 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
6925 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
6926 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
6927 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
6928 case ISD::CTLZ
: return LowerCTLZ(Op
, DAG
);
6929 case ISD::CTTZ
: return LowerCTTZ(Op
, DAG
);
6930 case ISD::MUL
: return LowerMUL_V2I64(Op
, DAG
);
6936 case ISD::UMULO
: return LowerXALUO(Op
, DAG
);
6937 case ISD::READCYCLECOUNTER
: return LowerREADCYCLECOUNTER(Op
, DAG
);
6941 void X86TargetLowering::
6942 ReplaceATOMIC_BINARY_64(SDNode
*Node
, SmallVectorImpl
<SDValue
>&Results
,
6943 SelectionDAG
&DAG
, unsigned NewOp
) {
6944 EVT T
= Node
->getValueType(0);
6945 DebugLoc dl
= Node
->getDebugLoc();
6946 assert (T
== MVT::i64
&& "Only know how to expand i64 atomics");
6948 SDValue Chain
= Node
->getOperand(0);
6949 SDValue In1
= Node
->getOperand(1);
6950 SDValue In2L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6951 Node
->getOperand(2), DAG
.getIntPtrConstant(0));
6952 SDValue In2H
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6953 Node
->getOperand(2), DAG
.getIntPtrConstant(1));
6954 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6955 // have a MemOperand. Pass the info through as a normal operand.
6956 SDValue LSI
= DAG
.getMemOperand(cast
<MemSDNode
>(Node
)->getMemOperand());
6957 SDValue Ops
[] = { Chain
, In1
, In2L
, In2H
, LSI
};
6958 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
6959 SDValue Result
= DAG
.getNode(NewOp
, dl
, Tys
, Ops
, 5);
6960 SDValue OpsF
[] = { Result
.getValue(0), Result
.getValue(1)};
6961 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6962 Results
.push_back(Result
.getValue(2));
6965 /// ReplaceNodeResults - Replace a node with an illegal result type
6966 /// with a new node built out of custom code.
6967 void X86TargetLowering::ReplaceNodeResults(SDNode
*N
,
6968 SmallVectorImpl
<SDValue
>&Results
,
6969 SelectionDAG
&DAG
) {
6970 DebugLoc dl
= N
->getDebugLoc();
6971 switch (N
->getOpcode()) {
6973 assert(false && "Do not know how to custom type legalize this operation!");
6975 case ISD::FP_TO_SINT
: {
6976 std::pair
<SDValue
,SDValue
> Vals
=
6977 FP_TO_INTHelper(SDValue(N
, 0), DAG
, true);
6978 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
6979 if (FIST
.getNode() != 0) {
6980 EVT VT
= N
->getValueType(0);
6981 // Return a load from the stack slot.
6982 Results
.push_back(DAG
.getLoad(VT
, dl
, FIST
, StackSlot
, NULL
, 0));
6986 case ISD::READCYCLECOUNTER
: {
6987 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6988 SDValue TheChain
= N
->getOperand(0);
6989 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6990 SDValue eax
= DAG
.getCopyFromReg(rd
, dl
, X86::EAX
, MVT::i32
,
6992 SDValue edx
= DAG
.getCopyFromReg(eax
.getValue(1), dl
, X86::EDX
, MVT::i32
,
6994 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6995 SDValue Ops
[] = { eax
, edx
};
6996 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Ops
, 2));
6997 Results
.push_back(edx
.getValue(1));
7000 case ISD::ATOMIC_CMP_SWAP
: {
7001 EVT T
= N
->getValueType(0);
7002 assert (T
== MVT::i64
&& "Only know how to expand i64 Cmp and Swap");
7003 SDValue cpInL
, cpInH
;
7004 cpInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
7005 DAG
.getConstant(0, MVT::i32
));
7006 cpInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
7007 DAG
.getConstant(1, MVT::i32
));
7008 cpInL
= DAG
.getCopyToReg(N
->getOperand(0), dl
, X86::EAX
, cpInL
, SDValue());
7009 cpInH
= DAG
.getCopyToReg(cpInL
.getValue(0), dl
, X86::EDX
, cpInH
,
7011 SDValue swapInL
, swapInH
;
7012 swapInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
7013 DAG
.getConstant(0, MVT::i32
));
7014 swapInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
7015 DAG
.getConstant(1, MVT::i32
));
7016 swapInL
= DAG
.getCopyToReg(cpInH
.getValue(0), dl
, X86::EBX
, swapInL
,
7018 swapInH
= DAG
.getCopyToReg(swapInL
.getValue(0), dl
, X86::ECX
, swapInH
,
7019 swapInL
.getValue(1));
7020 SDValue Ops
[] = { swapInH
.getValue(0),
7022 swapInH
.getValue(1) };
7023 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
7024 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG8_DAG
, dl
, Tys
, Ops
, 3);
7025 SDValue cpOutL
= DAG
.getCopyFromReg(Result
.getValue(0), dl
, X86::EAX
,
7026 MVT::i32
, Result
.getValue(1));
7027 SDValue cpOutH
= DAG
.getCopyFromReg(cpOutL
.getValue(1), dl
, X86::EDX
,
7028 MVT::i32
, cpOutL
.getValue(2));
7029 SDValue OpsF
[] = { cpOutL
.getValue(0), cpOutH
.getValue(0)};
7030 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
7031 Results
.push_back(cpOutH
.getValue(1));
7034 case ISD::ATOMIC_LOAD_ADD
:
7035 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMADD64_DAG
);
7037 case ISD::ATOMIC_LOAD_AND
:
7038 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMAND64_DAG
);
7040 case ISD::ATOMIC_LOAD_NAND
:
7041 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMNAND64_DAG
);
7043 case ISD::ATOMIC_LOAD_OR
:
7044 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMOR64_DAG
);
7046 case ISD::ATOMIC_LOAD_SUB
:
7047 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSUB64_DAG
);
7049 case ISD::ATOMIC_LOAD_XOR
:
7050 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMXOR64_DAG
);
7052 case ISD::ATOMIC_SWAP
:
7053 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSWAP64_DAG
);
7058 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode
) const {
7060 default: return NULL
;
7061 case X86ISD::BSF
: return "X86ISD::BSF";
7062 case X86ISD::BSR
: return "X86ISD::BSR";
7063 case X86ISD::SHLD
: return "X86ISD::SHLD";
7064 case X86ISD::SHRD
: return "X86ISD::SHRD";
7065 case X86ISD::FAND
: return "X86ISD::FAND";
7066 case X86ISD::FOR
: return "X86ISD::FOR";
7067 case X86ISD::FXOR
: return "X86ISD::FXOR";
7068 case X86ISD::FSRL
: return "X86ISD::FSRL";
7069 case X86ISD::FILD
: return "X86ISD::FILD";
7070 case X86ISD::FILD_FLAG
: return "X86ISD::FILD_FLAG";
7071 case X86ISD::FP_TO_INT16_IN_MEM
: return "X86ISD::FP_TO_INT16_IN_MEM";
7072 case X86ISD::FP_TO_INT32_IN_MEM
: return "X86ISD::FP_TO_INT32_IN_MEM";
7073 case X86ISD::FP_TO_INT64_IN_MEM
: return "X86ISD::FP_TO_INT64_IN_MEM";
7074 case X86ISD::FLD
: return "X86ISD::FLD";
7075 case X86ISD::FST
: return "X86ISD::FST";
7076 case X86ISD::CALL
: return "X86ISD::CALL";
7077 case X86ISD::RDTSC_DAG
: return "X86ISD::RDTSC_DAG";
7078 case X86ISD::BT
: return "X86ISD::BT";
7079 case X86ISD::CMP
: return "X86ISD::CMP";
7080 case X86ISD::COMI
: return "X86ISD::COMI";
7081 case X86ISD::UCOMI
: return "X86ISD::UCOMI";
7082 case X86ISD::SETCC
: return "X86ISD::SETCC";
7083 case X86ISD::CMOV
: return "X86ISD::CMOV";
7084 case X86ISD::BRCOND
: return "X86ISD::BRCOND";
7085 case X86ISD::RET_FLAG
: return "X86ISD::RET_FLAG";
7086 case X86ISD::REP_STOS
: return "X86ISD::REP_STOS";
7087 case X86ISD::REP_MOVS
: return "X86ISD::REP_MOVS";
7088 case X86ISD::GlobalBaseReg
: return "X86ISD::GlobalBaseReg";
7089 case X86ISD::Wrapper
: return "X86ISD::Wrapper";
7090 case X86ISD::WrapperRIP
: return "X86ISD::WrapperRIP";
7091 case X86ISD::PEXTRB
: return "X86ISD::PEXTRB";
7092 case X86ISD::PEXTRW
: return "X86ISD::PEXTRW";
7093 case X86ISD::INSERTPS
: return "X86ISD::INSERTPS";
7094 case X86ISD::PINSRB
: return "X86ISD::PINSRB";
7095 case X86ISD::PINSRW
: return "X86ISD::PINSRW";
7096 case X86ISD::PSHUFB
: return "X86ISD::PSHUFB";
7097 case X86ISD::FMAX
: return "X86ISD::FMAX";
7098 case X86ISD::FMIN
: return "X86ISD::FMIN";
7099 case X86ISD::FRSQRT
: return "X86ISD::FRSQRT";
7100 case X86ISD::FRCP
: return "X86ISD::FRCP";
7101 case X86ISD::TLSADDR
: return "X86ISD::TLSADDR";
7102 case X86ISD::SegmentBaseAddress
: return "X86ISD::SegmentBaseAddress";
7103 case X86ISD::EH_RETURN
: return "X86ISD::EH_RETURN";
7104 case X86ISD::TC_RETURN
: return "X86ISD::TC_RETURN";
7105 case X86ISD::FNSTCW16m
: return "X86ISD::FNSTCW16m";
7106 case X86ISD::LCMPXCHG_DAG
: return "X86ISD::LCMPXCHG_DAG";
7107 case X86ISD::LCMPXCHG8_DAG
: return "X86ISD::LCMPXCHG8_DAG";
7108 case X86ISD::ATOMADD64_DAG
: return "X86ISD::ATOMADD64_DAG";
7109 case X86ISD::ATOMSUB64_DAG
: return "X86ISD::ATOMSUB64_DAG";
7110 case X86ISD::ATOMOR64_DAG
: return "X86ISD::ATOMOR64_DAG";
7111 case X86ISD::ATOMXOR64_DAG
: return "X86ISD::ATOMXOR64_DAG";
7112 case X86ISD::ATOMAND64_DAG
: return "X86ISD::ATOMAND64_DAG";
7113 case X86ISD::ATOMNAND64_DAG
: return "X86ISD::ATOMNAND64_DAG";
7114 case X86ISD::VZEXT_MOVL
: return "X86ISD::VZEXT_MOVL";
7115 case X86ISD::VZEXT_LOAD
: return "X86ISD::VZEXT_LOAD";
7116 case X86ISD::VSHL
: return "X86ISD::VSHL";
7117 case X86ISD::VSRL
: return "X86ISD::VSRL";
7118 case X86ISD::CMPPD
: return "X86ISD::CMPPD";
7119 case X86ISD::CMPPS
: return "X86ISD::CMPPS";
7120 case X86ISD::PCMPEQB
: return "X86ISD::PCMPEQB";
7121 case X86ISD::PCMPEQW
: return "X86ISD::PCMPEQW";
7122 case X86ISD::PCMPEQD
: return "X86ISD::PCMPEQD";
7123 case X86ISD::PCMPEQQ
: return "X86ISD::PCMPEQQ";
7124 case X86ISD::PCMPGTB
: return "X86ISD::PCMPGTB";
7125 case X86ISD::PCMPGTW
: return "X86ISD::PCMPGTW";
7126 case X86ISD::PCMPGTD
: return "X86ISD::PCMPGTD";
7127 case X86ISD::PCMPGTQ
: return "X86ISD::PCMPGTQ";
7128 case X86ISD::ADD
: return "X86ISD::ADD";
7129 case X86ISD::SUB
: return "X86ISD::SUB";
7130 case X86ISD::SMUL
: return "X86ISD::SMUL";
7131 case X86ISD::UMUL
: return "X86ISD::UMUL";
7132 case X86ISD::INC
: return "X86ISD::INC";
7133 case X86ISD::DEC
: return "X86ISD::DEC";
7134 case X86ISD::MUL_IMM
: return "X86ISD::MUL_IMM";
7135 case X86ISD::PTEST
: return "X86ISD::PTEST";
7136 case X86ISD::VASTART_SAVE_XMM_REGS
: return "X86ISD::VASTART_SAVE_XMM_REGS";
7140 // isLegalAddressingMode - Return true if the addressing mode represented
7141 // by AM is legal for this target, for a load/store of the specified type.
7142 bool X86TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
7143 const Type
*Ty
) const {
7144 // X86 supports extremely general addressing modes.
7145 CodeModel::Model M
= getTargetMachine().getCodeModel();
7147 // X86 allows a sign-extended 32-bit immediate field as a displacement.
7148 if (!X86::isOffsetSuitableForCodeModel(AM
.BaseOffs
, M
, AM
.BaseGV
!= NULL
))
7153 Subtarget
->ClassifyGlobalReference(AM
.BaseGV
, getTargetMachine());
7155 // If a reference to this global requires an extra load, we can't fold it.
7156 if (isGlobalStubReference(GVFlags
))
7159 // If BaseGV requires a register for the PIC base, we cannot also have a
7160 // BaseReg specified.
7161 if (AM
.HasBaseReg
&& isGlobalRelativeToPICBase(GVFlags
))
7164 // If lower 4G is not available, then we must use rip-relative addressing.
7165 if (Subtarget
->is64Bit() && (AM
.BaseOffs
|| AM
.Scale
> 1))
7175 // These scales always work.
7180 // These scales are formed with basereg+scalereg. Only accept if there is
7185 default: // Other stuff never works.
7193 bool X86TargetLowering::isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const {
7194 if (!Ty1
->isInteger() || !Ty2
->isInteger())
7196 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
7197 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
7198 if (NumBits1
<= NumBits2
)
7200 return Subtarget
->is64Bit() || NumBits1
< 64;
7203 bool X86TargetLowering::isTruncateFree(EVT VT1
, EVT VT2
) const {
7204 if (!VT1
.isInteger() || !VT2
.isInteger())
7206 unsigned NumBits1
= VT1
.getSizeInBits();
7207 unsigned NumBits2
= VT2
.getSizeInBits();
7208 if (NumBits1
<= NumBits2
)
7210 return Subtarget
->is64Bit() || NumBits1
< 64;
7213 bool X86TargetLowering::isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const {
7214 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7215 return Ty1
== Type::getInt32Ty(Ty1
->getContext()) &&
7216 Ty2
== Type::getInt64Ty(Ty1
->getContext()) && Subtarget
->is64Bit();
7219 bool X86TargetLowering::isZExtFree(EVT VT1
, EVT VT2
) const {
7220 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7221 return VT1
== MVT::i32
&& VT2
== MVT::i64
&& Subtarget
->is64Bit();
7224 bool X86TargetLowering::isNarrowingProfitable(EVT VT1
, EVT VT2
) const {
7225 // i16 instructions are longer (0x66 prefix) and potentially slower.
7226 return !(VT1
== MVT::i32
&& VT2
== MVT::i16
);
7229 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7230 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7231 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7232 /// are assumed to be legal.
7234 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl
<int> &M
,
7236 // Only do shuffles on 128-bit vector types for now.
7237 if (VT
.getSizeInBits() == 64)
7240 // FIXME: pshufb, blends, palignr, shifts.
7241 return (VT
.getVectorNumElements() == 2 ||
7242 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7243 isMOVLMask(M
, VT
) ||
7244 isSHUFPMask(M
, VT
) ||
7245 isPSHUFDMask(M
, VT
) ||
7246 isPSHUFHWMask(M
, VT
) ||
7247 isPSHUFLWMask(M
, VT
) ||
7248 isUNPCKLMask(M
, VT
) ||
7249 isUNPCKHMask(M
, VT
) ||
7250 isUNPCKL_v_undef_Mask(M
, VT
) ||
7251 isUNPCKH_v_undef_Mask(M
, VT
));
7255 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
7257 unsigned NumElts
= VT
.getVectorNumElements();
7258 // FIXME: This collection of masks seems suspect.
7261 if (NumElts
== 4 && VT
.getSizeInBits() == 128) {
7262 return (isMOVLMask(Mask
, VT
) ||
7263 isCommutedMOVLMask(Mask
, VT
, true) ||
7264 isSHUFPMask(Mask
, VT
) ||
7265 isCommutedSHUFPMask(Mask
, VT
));
7270 //===----------------------------------------------------------------------===//
7271 // X86 Scheduler Hooks
7272 //===----------------------------------------------------------------------===//
7274 // private utility function
7276 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr
*bInstr
,
7277 MachineBasicBlock
*MBB
,
7285 TargetRegisterClass
*RC
,
7286 bool invSrc
) const {
7287 // For the atomic bitwise operator, we generate
7290 // ld t1 = [bitinstr.addr]
7291 // op t2 = t1, [bitinstr.val]
7293 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7295 // fallthrough -->nextMBB
7296 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7297 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7298 MachineFunction::iterator MBBIter
= MBB
;
7301 /// First build the CFG
7302 MachineFunction
*F
= MBB
->getParent();
7303 MachineBasicBlock
*thisMBB
= MBB
;
7304 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7305 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7306 F
->insert(MBBIter
, newMBB
);
7307 F
->insert(MBBIter
, nextMBB
);
7309 // Move all successors to thisMBB to nextMBB
7310 nextMBB
->transferSuccessors(thisMBB
);
7312 // Update thisMBB to fall through to newMBB
7313 thisMBB
->addSuccessor(newMBB
);
7315 // newMBB jumps to itself and fall through to nextMBB
7316 newMBB
->addSuccessor(nextMBB
);
7317 newMBB
->addSuccessor(newMBB
);
7319 // Insert instructions into newMBB based on incoming instruction
7320 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7321 "unexpected number of operands");
7322 DebugLoc dl
= bInstr
->getDebugLoc();
7323 MachineOperand
& destOper
= bInstr
->getOperand(0);
7324 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7325 int numArgs
= bInstr
->getNumOperands() - 1;
7326 for (int i
=0; i
< numArgs
; ++i
)
7327 argOpers
[i
] = &bInstr
->getOperand(i
+1);
7329 // x86 address has 4 operands: base, index, scale, and displacement
7330 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7331 int valArgIndx
= lastAddrIndx
+ 1;
7333 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7334 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(LoadOpc
), t1
);
7335 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7336 (*MIB
).addOperand(*argOpers
[i
]);
7338 unsigned tt
= F
->getRegInfo().createVirtualRegister(RC
);
7340 MIB
= BuildMI(newMBB
, dl
, TII
->get(notOpc
), tt
).addReg(t1
);
7345 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7346 assert((argOpers
[valArgIndx
]->isReg() ||
7347 argOpers
[valArgIndx
]->isImm()) &&
7349 if (argOpers
[valArgIndx
]->isReg())
7350 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpc
), t2
);
7352 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpc
), t2
);
7354 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7356 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), EAXreg
);
7359 MIB
= BuildMI(newMBB
, dl
, TII
->get(CXchgOpc
));
7360 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7361 (*MIB
).addOperand(*argOpers
[i
]);
7363 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7364 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7366 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), destOper
.getReg());
7370 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7372 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7376 // private utility function: 64 bit atomics on 32 bit host.
7378 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr
*bInstr
,
7379 MachineBasicBlock
*MBB
,
7384 bool invSrc
) const {
7385 // For the atomic bitwise operator, we generate
7386 // thisMBB (instructions are in pairs, except cmpxchg8b)
7387 // ld t1,t2 = [bitinstr.addr]
7389 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7390 // op t5, t6 <- out1, out2, [bitinstr.val]
7391 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7392 // mov ECX, EBX <- t5, t6
7393 // mov EAX, EDX <- t1, t2
7394 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7395 // mov t3, t4 <- EAX, EDX
7397 // result in out1, out2
7398 // fallthrough -->nextMBB
7400 const TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
7401 const unsigned LoadOpc
= X86::MOV32rm
;
7402 const unsigned copyOpc
= X86::MOV32rr
;
7403 const unsigned NotOpc
= X86::NOT32r
;
7404 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7405 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7406 MachineFunction::iterator MBBIter
= MBB
;
7409 /// First build the CFG
7410 MachineFunction
*F
= MBB
->getParent();
7411 MachineBasicBlock
*thisMBB
= MBB
;
7412 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7413 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7414 F
->insert(MBBIter
, newMBB
);
7415 F
->insert(MBBIter
, nextMBB
);
7417 // Move all successors to thisMBB to nextMBB
7418 nextMBB
->transferSuccessors(thisMBB
);
7420 // Update thisMBB to fall through to newMBB
7421 thisMBB
->addSuccessor(newMBB
);
7423 // newMBB jumps to itself and fall through to nextMBB
7424 newMBB
->addSuccessor(nextMBB
);
7425 newMBB
->addSuccessor(newMBB
);
7427 DebugLoc dl
= bInstr
->getDebugLoc();
7428 // Insert instructions into newMBB based on incoming instruction
7429 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7430 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 14 &&
7431 "unexpected number of operands");
7432 MachineOperand
& dest1Oper
= bInstr
->getOperand(0);
7433 MachineOperand
& dest2Oper
= bInstr
->getOperand(1);
7434 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7435 for (int i
=0; i
< 2 + X86AddrNumOperands
; ++i
)
7436 argOpers
[i
] = &bInstr
->getOperand(i
+2);
7438 // x86 address has 4 operands: base, index, scale, and displacement
7439 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7441 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7442 MachineInstrBuilder MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t1
);
7443 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7444 (*MIB
).addOperand(*argOpers
[i
]);
7445 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7446 MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t2
);
7447 // add 4 to displacement.
7448 for (int i
=0; i
<= lastAddrIndx
-2; ++i
)
7449 (*MIB
).addOperand(*argOpers
[i
]);
7450 MachineOperand newOp3
= *(argOpers
[3]);
7452 newOp3
.setImm(newOp3
.getImm()+4);
7454 newOp3
.setOffset(newOp3
.getOffset()+4);
7455 (*MIB
).addOperand(newOp3
);
7456 (*MIB
).addOperand(*argOpers
[lastAddrIndx
]);
7458 // t3/4 are defined later, at the bottom of the loop
7459 unsigned t3
= F
->getRegInfo().createVirtualRegister(RC
);
7460 unsigned t4
= F
->getRegInfo().createVirtualRegister(RC
);
7461 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest1Oper
.getReg())
7462 .addReg(t1
).addMBB(thisMBB
).addReg(t3
).addMBB(newMBB
);
7463 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest2Oper
.getReg())
7464 .addReg(t2
).addMBB(thisMBB
).addReg(t4
).addMBB(newMBB
);
7466 unsigned tt1
= F
->getRegInfo().createVirtualRegister(RC
);
7467 unsigned tt2
= F
->getRegInfo().createVirtualRegister(RC
);
7469 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt1
).addReg(t1
);
7470 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt2
).addReg(t2
);
7476 int valArgIndx
= lastAddrIndx
+ 1;
7477 assert((argOpers
[valArgIndx
]->isReg() ||
7478 argOpers
[valArgIndx
]->isImm()) &&
7480 unsigned t5
= F
->getRegInfo().createVirtualRegister(RC
);
7481 unsigned t6
= F
->getRegInfo().createVirtualRegister(RC
);
7482 if (argOpers
[valArgIndx
]->isReg())
7483 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcL
), t5
);
7485 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcL
), t5
);
7486 if (regOpcL
!= X86::MOV32rr
)
7488 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7489 assert(argOpers
[valArgIndx
+ 1]->isReg() ==
7490 argOpers
[valArgIndx
]->isReg());
7491 assert(argOpers
[valArgIndx
+ 1]->isImm() ==
7492 argOpers
[valArgIndx
]->isImm());
7493 if (argOpers
[valArgIndx
+ 1]->isReg())
7494 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcH
), t6
);
7496 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcH
), t6
);
7497 if (regOpcH
!= X86::MOV32rr
)
7499 (*MIB
).addOperand(*argOpers
[valArgIndx
+ 1]);
7501 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EAX
);
7503 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EDX
);
7506 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EBX
);
7508 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::ECX
);
7511 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG8B
));
7512 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7513 (*MIB
).addOperand(*argOpers
[i
]);
7515 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7516 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7518 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t3
);
7519 MIB
.addReg(X86::EAX
);
7520 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t4
);
7521 MIB
.addReg(X86::EDX
);
7524 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7526 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7530 // private utility function
7532 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr
*mInstr
,
7533 MachineBasicBlock
*MBB
,
7534 unsigned cmovOpc
) const {
7535 // For the atomic min/max operator, we generate
7538 // ld t1 = [min/max.addr]
7539 // mov t2 = [min/max.val]
7541 // cmov[cond] t2 = t1
7543 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7545 // fallthrough -->nextMBB
7547 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7548 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7549 MachineFunction::iterator MBBIter
= MBB
;
7552 /// First build the CFG
7553 MachineFunction
*F
= MBB
->getParent();
7554 MachineBasicBlock
*thisMBB
= MBB
;
7555 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7556 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7557 F
->insert(MBBIter
, newMBB
);
7558 F
->insert(MBBIter
, nextMBB
);
7560 // Move all successors of thisMBB to nextMBB
7561 nextMBB
->transferSuccessors(thisMBB
);
7563 // Update thisMBB to fall through to newMBB
7564 thisMBB
->addSuccessor(newMBB
);
7566 // newMBB jumps to newMBB and fall through to nextMBB
7567 newMBB
->addSuccessor(nextMBB
);
7568 newMBB
->addSuccessor(newMBB
);
7570 DebugLoc dl
= mInstr
->getDebugLoc();
7571 // Insert instructions into newMBB based on incoming instruction
7572 assert(mInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7573 "unexpected number of operands");
7574 MachineOperand
& destOper
= mInstr
->getOperand(0);
7575 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7576 int numArgs
= mInstr
->getNumOperands() - 1;
7577 for (int i
=0; i
< numArgs
; ++i
)
7578 argOpers
[i
] = &mInstr
->getOperand(i
+1);
7580 // x86 address has 4 operands: base, index, scale, and displacement
7581 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7582 int valArgIndx
= lastAddrIndx
+ 1;
7584 unsigned t1
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7585 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rm
), t1
);
7586 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7587 (*MIB
).addOperand(*argOpers
[i
]);
7589 // We only support register and immediate values
7590 assert((argOpers
[valArgIndx
]->isReg() ||
7591 argOpers
[valArgIndx
]->isImm()) &&
7594 unsigned t2
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7595 if (argOpers
[valArgIndx
]->isReg())
7596 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7598 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7599 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7601 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), X86::EAX
);
7604 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::CMP32rr
));
7609 unsigned t3
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7610 MIB
= BuildMI(newMBB
, dl
, TII
->get(cmovOpc
),t3
);
7614 // Cmp and exchange if none has modified the memory location
7615 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG32
));
7616 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7617 (*MIB
).addOperand(*argOpers
[i
]);
7619 assert(mInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7620 (*MIB
).addMemOperand(*F
, *mInstr
->memoperands_begin());
7622 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), destOper
.getReg());
7623 MIB
.addReg(X86::EAX
);
7626 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7628 F
->DeleteMachineInstr(mInstr
); // The pseudo instruction is gone now.
7632 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
7633 // all of this code can be replaced with that in the .td file.
7635 X86TargetLowering::EmitPCMP(MachineInstr
*MI
, MachineBasicBlock
*BB
,
7636 unsigned numArgs
, bool memArg
) const {
7638 MachineFunction
*F
= BB
->getParent();
7639 DebugLoc dl
= MI
->getDebugLoc();
7640 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7645 Opc
= numArgs
== 3 ?
7646 X86::PCMPISTRM128rm
:
7647 X86::PCMPESTRM128rm
;
7649 Opc
= numArgs
== 3 ?
7650 X86::PCMPISTRM128rr
:
7651 X86::PCMPESTRM128rr
;
7654 MachineInstrBuilder MIB
= BuildMI(BB
, dl
, TII
->get(Opc
));
7656 for (unsigned i
= 0; i
< numArgs
; ++i
) {
7657 MachineOperand
&Op
= MI
->getOperand(i
+1);
7659 if (!(Op
.isReg() && Op
.isImplicit()))
7663 BuildMI(BB
, dl
, TII
->get(X86::MOVAPSrr
), MI
->getOperand(0).getReg())
7666 F
->DeleteMachineInstr(MI
);
7672 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7674 MachineBasicBlock
*MBB
) const {
7675 // Emit code to save XMM registers to the stack. The ABI says that the
7676 // number of registers to save is given in %al, so it's theoretically
7677 // possible to do an indirect jump trick to avoid saving all of them,
7678 // however this code takes a simpler approach and just executes all
7679 // of the stores if %al is non-zero. It's less code, and it's probably
7680 // easier on the hardware branch predictor, and stores aren't all that
7681 // expensive anyway.
7683 // Create the new basic blocks. One block contains all the XMM stores,
7684 // and one block is the final destination regardless of whether any
7685 // stores were performed.
7686 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7687 MachineFunction
*F
= MBB
->getParent();
7688 MachineFunction::iterator MBBIter
= MBB
;
7690 MachineBasicBlock
*XMMSaveMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7691 MachineBasicBlock
*EndMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7692 F
->insert(MBBIter
, XMMSaveMBB
);
7693 F
->insert(MBBIter
, EndMBB
);
7696 // Move any original successors of MBB to the end block.
7697 EndMBB
->transferSuccessors(MBB
);
7698 // The original block will now fall through to the XMM save block.
7699 MBB
->addSuccessor(XMMSaveMBB
);
7700 // The XMMSaveMBB will fall through to the end block.
7701 XMMSaveMBB
->addSuccessor(EndMBB
);
7703 // Now add the instructions.
7704 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7705 DebugLoc DL
= MI
->getDebugLoc();
7707 unsigned CountReg
= MI
->getOperand(0).getReg();
7708 int64_t RegSaveFrameIndex
= MI
->getOperand(1).getImm();
7709 int64_t VarArgsFPOffset
= MI
->getOperand(2).getImm();
7711 if (!Subtarget
->isTargetWin64()) {
7712 // If %al is 0, branch around the XMM save block.
7713 BuildMI(MBB
, DL
, TII
->get(X86::TEST8rr
)).addReg(CountReg
).addReg(CountReg
);
7714 BuildMI(MBB
, DL
, TII
->get(X86::JE
)).addMBB(EndMBB
);
7715 MBB
->addSuccessor(EndMBB
);
7718 // In the XMM save block, save all the XMM argument registers.
7719 for (int i
= 3, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
7720 int64_t Offset
= (i
- 3) * 16 + VarArgsFPOffset
;
7721 BuildMI(XMMSaveMBB
, DL
, TII
->get(X86::MOVAPSmr
))
7722 .addFrameIndex(RegSaveFrameIndex
)
7723 .addImm(/*Scale=*/1)
7724 .addReg(/*IndexReg=*/0)
7725 .addImm(/*Disp=*/Offset
)
7726 .addReg(/*Segment=*/0)
7727 .addReg(MI
->getOperand(i
).getReg())
7728 .addMemOperand(MachineMemOperand(
7729 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
),
7730 MachineMemOperand::MOStore
, Offset
,
7731 /*Size=*/16, /*Align=*/16));
7734 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7740 X86TargetLowering::EmitLoweredSelect(MachineInstr
*MI
,
7741 MachineBasicBlock
*BB
) const {
7742 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7743 DebugLoc DL
= MI
->getDebugLoc();
7745 // To "insert" a SELECT_CC instruction, we actually have to insert the
7746 // diamond control-flow pattern. The incoming instruction knows the
7747 // destination vreg to set, the condition code register to branch on, the
7748 // true/false values to select between, and a branch opcode to use.
7749 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
7750 MachineFunction::iterator It
= BB
;
7756 // cmpTY ccX, r1, r2
7758 // fallthrough --> copy0MBB
7759 MachineBasicBlock
*thisMBB
= BB
;
7760 MachineFunction
*F
= BB
->getParent();
7761 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7762 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7764 X86::GetCondBranchFromCond((X86::CondCode
)MI
->getOperand(3).getImm());
7765 BuildMI(BB
, DL
, TII
->get(Opc
)).addMBB(sinkMBB
);
7766 F
->insert(It
, copy0MBB
);
7767 F
->insert(It
, sinkMBB
);
7768 // Update machine-CFG edges by transferring all successors of the current
7769 // block to the new block which will contain the Phi node for the select.
7770 sinkMBB
->transferSuccessors(BB
);
7772 // Add the true and fallthrough blocks as its successors.
7773 BB
->addSuccessor(copy0MBB
);
7774 BB
->addSuccessor(sinkMBB
);
7777 // %FalseValue = ...
7778 // # fallthrough to sinkMBB
7781 // Update machine-CFG edges
7782 BB
->addSuccessor(sinkMBB
);
7785 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7788 BuildMI(BB
, DL
, TII
->get(X86::PHI
), MI
->getOperand(0).getReg())
7789 .addReg(MI
->getOperand(1).getReg()).addMBB(copy0MBB
)
7790 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
7792 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7798 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
7799 MachineBasicBlock
*BB
) const {
7800 switch (MI
->getOpcode()) {
7801 default: assert(false && "Unexpected instr type to insert");
7803 case X86::CMOV_V1I64
:
7804 case X86::CMOV_FR32
:
7805 case X86::CMOV_FR64
:
7806 case X86::CMOV_V4F32
:
7807 case X86::CMOV_V2F64
:
7808 case X86::CMOV_V2I64
:
7809 return EmitLoweredSelect(MI
, BB
);
7811 case X86::FP32_TO_INT16_IN_MEM
:
7812 case X86::FP32_TO_INT32_IN_MEM
:
7813 case X86::FP32_TO_INT64_IN_MEM
:
7814 case X86::FP64_TO_INT16_IN_MEM
:
7815 case X86::FP64_TO_INT32_IN_MEM
:
7816 case X86::FP64_TO_INT64_IN_MEM
:
7817 case X86::FP80_TO_INT16_IN_MEM
:
7818 case X86::FP80_TO_INT32_IN_MEM
:
7819 case X86::FP80_TO_INT64_IN_MEM
: {
7820 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7821 DebugLoc DL
= MI
->getDebugLoc();
7823 // Change the floating point control register to use "round towards zero"
7824 // mode when truncating to an integer value.
7825 MachineFunction
*F
= BB
->getParent();
7826 int CWFrameIdx
= F
->getFrameInfo()->CreateStackObject(2, 2);
7827 addFrameReference(BuildMI(BB
, DL
, TII
->get(X86::FNSTCW16m
)), CWFrameIdx
);
7829 // Load the old value of the high byte of the control word...
7831 F
->getRegInfo().createVirtualRegister(X86::GR16RegisterClass
);
7832 addFrameReference(BuildMI(BB
, DL
, TII
->get(X86::MOV16rm
), OldCW
),
7835 // Set the high part to be round to zero...
7836 addFrameReference(BuildMI(BB
, DL
, TII
->get(X86::MOV16mi
)), CWFrameIdx
)
7839 // Reload the modified control word now...
7840 addFrameReference(BuildMI(BB
, DL
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7842 // Restore the memory image of control word to original value
7843 addFrameReference(BuildMI(BB
, DL
, TII
->get(X86::MOV16mr
)), CWFrameIdx
)
7846 // Get the X86 opcode to use.
7848 switch (MI
->getOpcode()) {
7849 default: llvm_unreachable("illegal opcode!");
7850 case X86::FP32_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m32
; break;
7851 case X86::FP32_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m32
; break;
7852 case X86::FP32_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m32
; break;
7853 case X86::FP64_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m64
; break;
7854 case X86::FP64_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m64
; break;
7855 case X86::FP64_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m64
; break;
7856 case X86::FP80_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m80
; break;
7857 case X86::FP80_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m80
; break;
7858 case X86::FP80_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m80
; break;
7862 MachineOperand
&Op
= MI
->getOperand(0);
7864 AM
.BaseType
= X86AddressMode::RegBase
;
7865 AM
.Base
.Reg
= Op
.getReg();
7867 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
7868 AM
.Base
.FrameIndex
= Op
.getIndex();
7870 Op
= MI
->getOperand(1);
7872 AM
.Scale
= Op
.getImm();
7873 Op
= MI
->getOperand(2);
7875 AM
.IndexReg
= Op
.getImm();
7876 Op
= MI
->getOperand(3);
7877 if (Op
.isGlobal()) {
7878 AM
.GV
= Op
.getGlobal();
7880 AM
.Disp
= Op
.getImm();
7882 addFullAddress(BuildMI(BB
, DL
, TII
->get(Opc
)), AM
)
7883 .addReg(MI
->getOperand(X86AddrNumOperands
).getReg());
7885 // Reload the original control word now.
7886 addFrameReference(BuildMI(BB
, DL
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7888 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7891 // String/text processing lowering.
7892 case X86::PCMPISTRM128REG
:
7893 return EmitPCMP(MI
, BB
, 3, false /* in-mem */);
7894 case X86::PCMPISTRM128MEM
:
7895 return EmitPCMP(MI
, BB
, 3, true /* in-mem */);
7896 case X86::PCMPESTRM128REG
:
7897 return EmitPCMP(MI
, BB
, 5, false /* in mem */);
7898 case X86::PCMPESTRM128MEM
:
7899 return EmitPCMP(MI
, BB
, 5, true /* in mem */);
7902 case X86::ATOMAND32
:
7903 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7904 X86::AND32ri
, X86::MOV32rm
,
7905 X86::LCMPXCHG32
, X86::MOV32rr
,
7906 X86::NOT32r
, X86::EAX
,
7907 X86::GR32RegisterClass
);
7909 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR32rr
,
7910 X86::OR32ri
, X86::MOV32rm
,
7911 X86::LCMPXCHG32
, X86::MOV32rr
,
7912 X86::NOT32r
, X86::EAX
,
7913 X86::GR32RegisterClass
);
7914 case X86::ATOMXOR32
:
7915 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR32rr
,
7916 X86::XOR32ri
, X86::MOV32rm
,
7917 X86::LCMPXCHG32
, X86::MOV32rr
,
7918 X86::NOT32r
, X86::EAX
,
7919 X86::GR32RegisterClass
);
7920 case X86::ATOMNAND32
:
7921 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7922 X86::AND32ri
, X86::MOV32rm
,
7923 X86::LCMPXCHG32
, X86::MOV32rr
,
7924 X86::NOT32r
, X86::EAX
,
7925 X86::GR32RegisterClass
, true);
7926 case X86::ATOMMIN32
:
7927 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL32rr
);
7928 case X86::ATOMMAX32
:
7929 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG32rr
);
7930 case X86::ATOMUMIN32
:
7931 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB32rr
);
7932 case X86::ATOMUMAX32
:
7933 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA32rr
);
7935 case X86::ATOMAND16
:
7936 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7937 X86::AND16ri
, X86::MOV16rm
,
7938 X86::LCMPXCHG16
, X86::MOV16rr
,
7939 X86::NOT16r
, X86::AX
,
7940 X86::GR16RegisterClass
);
7942 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR16rr
,
7943 X86::OR16ri
, X86::MOV16rm
,
7944 X86::LCMPXCHG16
, X86::MOV16rr
,
7945 X86::NOT16r
, X86::AX
,
7946 X86::GR16RegisterClass
);
7947 case X86::ATOMXOR16
:
7948 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR16rr
,
7949 X86::XOR16ri
, X86::MOV16rm
,
7950 X86::LCMPXCHG16
, X86::MOV16rr
,
7951 X86::NOT16r
, X86::AX
,
7952 X86::GR16RegisterClass
);
7953 case X86::ATOMNAND16
:
7954 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7955 X86::AND16ri
, X86::MOV16rm
,
7956 X86::LCMPXCHG16
, X86::MOV16rr
,
7957 X86::NOT16r
, X86::AX
,
7958 X86::GR16RegisterClass
, true);
7959 case X86::ATOMMIN16
:
7960 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL16rr
);
7961 case X86::ATOMMAX16
:
7962 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG16rr
);
7963 case X86::ATOMUMIN16
:
7964 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB16rr
);
7965 case X86::ATOMUMAX16
:
7966 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA16rr
);
7969 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7970 X86::AND8ri
, X86::MOV8rm
,
7971 X86::LCMPXCHG8
, X86::MOV8rr
,
7972 X86::NOT8r
, X86::AL
,
7973 X86::GR8RegisterClass
);
7975 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR8rr
,
7976 X86::OR8ri
, X86::MOV8rm
,
7977 X86::LCMPXCHG8
, X86::MOV8rr
,
7978 X86::NOT8r
, X86::AL
,
7979 X86::GR8RegisterClass
);
7981 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR8rr
,
7982 X86::XOR8ri
, X86::MOV8rm
,
7983 X86::LCMPXCHG8
, X86::MOV8rr
,
7984 X86::NOT8r
, X86::AL
,
7985 X86::GR8RegisterClass
);
7986 case X86::ATOMNAND8
:
7987 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7988 X86::AND8ri
, X86::MOV8rm
,
7989 X86::LCMPXCHG8
, X86::MOV8rr
,
7990 X86::NOT8r
, X86::AL
,
7991 X86::GR8RegisterClass
, true);
7992 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7993 // This group is for 64-bit host.
7994 case X86::ATOMAND64
:
7995 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7996 X86::AND64ri32
, X86::MOV64rm
,
7997 X86::LCMPXCHG64
, X86::MOV64rr
,
7998 X86::NOT64r
, X86::RAX
,
7999 X86::GR64RegisterClass
);
8001 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR64rr
,
8002 X86::OR64ri32
, X86::MOV64rm
,
8003 X86::LCMPXCHG64
, X86::MOV64rr
,
8004 X86::NOT64r
, X86::RAX
,
8005 X86::GR64RegisterClass
);
8006 case X86::ATOMXOR64
:
8007 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR64rr
,
8008 X86::XOR64ri32
, X86::MOV64rm
,
8009 X86::LCMPXCHG64
, X86::MOV64rr
,
8010 X86::NOT64r
, X86::RAX
,
8011 X86::GR64RegisterClass
);
8012 case X86::ATOMNAND64
:
8013 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
8014 X86::AND64ri32
, X86::MOV64rm
,
8015 X86::LCMPXCHG64
, X86::MOV64rr
,
8016 X86::NOT64r
, X86::RAX
,
8017 X86::GR64RegisterClass
, true);
8018 case X86::ATOMMIN64
:
8019 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL64rr
);
8020 case X86::ATOMMAX64
:
8021 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG64rr
);
8022 case X86::ATOMUMIN64
:
8023 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB64rr
);
8024 case X86::ATOMUMAX64
:
8025 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA64rr
);
8027 // This group does 64-bit operations on a 32-bit host.
8028 case X86::ATOMAND6432
:
8029 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
8030 X86::AND32rr
, X86::AND32rr
,
8031 X86::AND32ri
, X86::AND32ri
,
8033 case X86::ATOMOR6432
:
8034 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
8035 X86::OR32rr
, X86::OR32rr
,
8036 X86::OR32ri
, X86::OR32ri
,
8038 case X86::ATOMXOR6432
:
8039 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
8040 X86::XOR32rr
, X86::XOR32rr
,
8041 X86::XOR32ri
, X86::XOR32ri
,
8043 case X86::ATOMNAND6432
:
8044 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
8045 X86::AND32rr
, X86::AND32rr
,
8046 X86::AND32ri
, X86::AND32ri
,
8048 case X86::ATOMADD6432
:
8049 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
8050 X86::ADD32rr
, X86::ADC32rr
,
8051 X86::ADD32ri
, X86::ADC32ri
,
8053 case X86::ATOMSUB6432
:
8054 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
8055 X86::SUB32rr
, X86::SBB32rr
,
8056 X86::SUB32ri
, X86::SBB32ri
,
8058 case X86::ATOMSWAP6432
:
8059 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
8060 X86::MOV32rr
, X86::MOV32rr
,
8061 X86::MOV32ri
, X86::MOV32ri
,
8063 case X86::VASTART_SAVE_XMM_REGS
:
8064 return EmitVAStartSaveXMMRegsWithCustomInserter(MI
, BB
);
8068 //===----------------------------------------------------------------------===//
8069 // X86 Optimization Hooks
8070 //===----------------------------------------------------------------------===//
8072 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
8076 const SelectionDAG
&DAG
,
8077 unsigned Depth
) const {
8078 unsigned Opc
= Op
.getOpcode();
8079 assert((Opc
>= ISD::BUILTIN_OP_END
||
8080 Opc
== ISD::INTRINSIC_WO_CHAIN
||
8081 Opc
== ISD::INTRINSIC_W_CHAIN
||
8082 Opc
== ISD::INTRINSIC_VOID
) &&
8083 "Should use MaskedValueIsZero if you don't know whether Op"
8084 " is a target node!");
8086 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0); // Don't know anything.
8095 // These nodes' second result is a boolean.
8096 if (Op
.getResNo() == 0)
8100 KnownZero
|= APInt::getHighBitsSet(Mask
.getBitWidth(),
8101 Mask
.getBitWidth() - 1);
8106 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8107 /// node is a GlobalAddress + offset.
8108 bool X86TargetLowering::isGAPlusOffset(SDNode
*N
,
8109 GlobalValue
* &GA
, int64_t &Offset
) const{
8110 if (N
->getOpcode() == X86ISD::Wrapper
) {
8111 if (isa
<GlobalAddressSDNode
>(N
->getOperand(0))) {
8112 GA
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getGlobal();
8113 Offset
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getOffset();
8117 return TargetLowering::isGAPlusOffset(N
, GA
, Offset
);
8120 static bool isBaseAlignmentOfN(unsigned N
, SDNode
*Base
,
8121 const TargetLowering
&TLI
) {
8124 if (TLI
.isGAPlusOffset(Base
, GV
, Offset
))
8125 return (GV
->getAlignment() >= N
&& (Offset
% N
) == 0);
8126 // DAG combine handles the stack object case.
8130 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode
*N
, unsigned NumElems
,
8131 EVT EVT
, LoadSDNode
*&LDBase
,
8132 unsigned &LastLoadedElt
,
8133 SelectionDAG
&DAG
, MachineFrameInfo
*MFI
,
8134 const TargetLowering
&TLI
) {
8136 LastLoadedElt
= -1U;
8137 for (unsigned i
= 0; i
< NumElems
; ++i
) {
8138 if (N
->getMaskElt(i
) < 0) {
8144 SDValue Elt
= DAG
.getShuffleScalarElt(N
, i
);
8145 if (!Elt
.getNode() ||
8146 (Elt
.getOpcode() != ISD::UNDEF
&& !ISD::isNON_EXTLoad(Elt
.getNode())))
8149 if (Elt
.getNode()->getOpcode() == ISD::UNDEF
)
8151 LDBase
= cast
<LoadSDNode
>(Elt
.getNode());
8155 if (Elt
.getOpcode() == ISD::UNDEF
)
8158 LoadSDNode
*LD
= cast
<LoadSDNode
>(Elt
);
8159 if (!TLI
.isConsecutiveLoad(LD
, LDBase
, EVT
.getSizeInBits()/8, i
, MFI
))
8166 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8167 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8168 /// if the load addresses are consecutive, non-overlapping, and in the right
8169 /// order. In the case of v2i64, it will see if it can rewrite the
8170 /// shuffle to be an appropriate build vector so it can take advantage of
8171 // performBuildVectorCombine.
8172 static SDValue
PerformShuffleCombine(SDNode
*N
, SelectionDAG
&DAG
,
8173 const TargetLowering
&TLI
) {
8174 DebugLoc dl
= N
->getDebugLoc();
8175 EVT VT
= N
->getValueType(0);
8176 EVT EVT
= VT
.getVectorElementType();
8177 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
8178 unsigned NumElems
= VT
.getVectorNumElements();
8180 if (VT
.getSizeInBits() != 128)
8183 // Try to combine a vector_shuffle into a 128-bit load.
8184 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
8185 LoadSDNode
*LD
= NULL
;
8186 unsigned LastLoadedElt
;
8187 if (!EltsFromConsecutiveLoads(SVN
, NumElems
, EVT
, LD
, LastLoadedElt
, DAG
,
8191 if (LastLoadedElt
== NumElems
- 1) {
8192 if (isBaseAlignmentOfN(16, LD
->getBasePtr().getNode(), TLI
))
8193 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
8194 LD
->getSrcValue(), LD
->getSrcValueOffset(),
8196 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
8197 LD
->getSrcValue(), LD
->getSrcValueOffset(),
8198 LD
->isVolatile(), LD
->getAlignment());
8199 } else if (NumElems
== 4 && LastLoadedElt
== 1) {
8200 SDVTList Tys
= DAG
.getVTList(MVT::v2i64
, MVT::Other
);
8201 SDValue Ops
[] = { LD
->getChain(), LD
->getBasePtr() };
8202 SDValue ResNode
= DAG
.getNode(X86ISD::VZEXT_LOAD
, dl
, Tys
, Ops
, 2);
8203 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, ResNode
);
8208 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8209 static SDValue
PerformSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
8210 const X86Subtarget
*Subtarget
) {
8211 DebugLoc DL
= N
->getDebugLoc();
8212 SDValue Cond
= N
->getOperand(0);
8213 // Get the LHS/RHS of the select.
8214 SDValue LHS
= N
->getOperand(1);
8215 SDValue RHS
= N
->getOperand(2);
8217 // If we have SSE[12] support, try to form min/max nodes.
8218 if (Subtarget
->hasSSE2() &&
8219 (LHS
.getValueType() == MVT::f32
|| LHS
.getValueType() == MVT::f64
) &&
8220 Cond
.getOpcode() == ISD::SETCC
) {
8221 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
8223 unsigned Opcode
= 0;
8224 if (LHS
== Cond
.getOperand(0) && RHS
== Cond
.getOperand(1)) {
8227 case ISD::SETOLE
: // (X <= Y) ? X : Y -> min
8230 if (!UnsafeFPMath
) break;
8232 case ISD::SETOLT
: // (X olt/lt Y) ? X : Y -> min
8234 Opcode
= X86ISD::FMIN
;
8237 case ISD::SETOGT
: // (X > Y) ? X : Y -> max
8240 if (!UnsafeFPMath
) break;
8242 case ISD::SETUGE
: // (X uge/ge Y) ? X : Y -> max
8244 Opcode
= X86ISD::FMAX
;
8247 } else if (LHS
== Cond
.getOperand(1) && RHS
== Cond
.getOperand(0)) {
8251 // This can use a min only if the LHS isn't NaN.
8252 if (DAG
.isKnownNeverNaN(LHS
))
8253 Opcode
= X86ISD::FMIN
;
8254 else if (DAG
.isKnownNeverNaN(RHS
)) {
8255 Opcode
= X86ISD::FMIN
;
8256 // Put the potential NaN in the RHS so that SSE will preserve it.
8257 std::swap(LHS
, RHS
);
8261 case ISD::SETUGT
: // (X > Y) ? Y : X -> min
8263 if (!UnsafeFPMath
) break;
8265 case ISD::SETUGE
: // (X uge/ge Y) ? Y : X -> min
8267 Opcode
= X86ISD::FMIN
;
8271 // This can use a max only if the LHS isn't NaN.
8272 if (DAG
.isKnownNeverNaN(LHS
))
8273 Opcode
= X86ISD::FMAX
;
8274 else if (DAG
.isKnownNeverNaN(RHS
)) {
8275 Opcode
= X86ISD::FMAX
;
8276 // Put the potential NaN in the RHS so that SSE will preserve it.
8277 std::swap(LHS
, RHS
);
8281 case ISD::SETOLE
: // (X <= Y) ? Y : X -> max
8283 if (!UnsafeFPMath
) break;
8285 case ISD::SETOLT
: // (X olt/lt Y) ? Y : X -> max
8287 Opcode
= X86ISD::FMAX
;
8293 return DAG
.getNode(Opcode
, DL
, N
->getValueType(0), LHS
, RHS
);
8296 // If this is a select between two integer constants, try to do some
8298 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(LHS
)) {
8299 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(RHS
))
8300 // Don't do this for crazy integer types.
8301 if (DAG
.getTargetLoweringInfo().isTypeLegal(LHS
.getValueType())) {
8302 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8303 // so that TrueC (the true value) is larger than FalseC.
8304 bool NeedsCondInvert
= false;
8306 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue()) &&
8307 // Efficiently invertible.
8308 (Cond
.getOpcode() == ISD::SETCC
|| // setcc -> invertible.
8309 (Cond
.getOpcode() == ISD::XOR
&& // xor(X, C) -> invertible.
8310 isa
<ConstantSDNode
>(Cond
.getOperand(1))))) {
8311 NeedsCondInvert
= true;
8312 std::swap(TrueC
, FalseC
);
8315 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
8316 if (FalseC
->getAPIntValue() == 0 &&
8317 TrueC
->getAPIntValue().isPowerOf2()) {
8318 if (NeedsCondInvert
) // Invert the condition if needed.
8319 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8320 DAG
.getConstant(1, Cond
.getValueType()));
8322 // Zero extend the condition if needed.
8323 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LHS
.getValueType(), Cond
);
8325 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
8326 return DAG
.getNode(ISD::SHL
, DL
, LHS
.getValueType(), Cond
,
8327 DAG
.getConstant(ShAmt
, MVT::i8
));
8330 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8331 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
8332 if (NeedsCondInvert
) // Invert the condition if needed.
8333 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8334 DAG
.getConstant(1, Cond
.getValueType()));
8336 // Zero extend the condition if needed.
8337 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8338 FalseC
->getValueType(0), Cond
);
8339 return DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8340 SDValue(FalseC
, 0));
8343 // Optimize cases that will turn into an LEA instruction. This requires
8344 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8345 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8346 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8347 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8349 bool isFastMultiplier
= false;
8351 switch ((unsigned char)Diff
) {
8353 case 1: // result = add base, cond
8354 case 2: // result = lea base( , cond*2)
8355 case 3: // result = lea base(cond, cond*2)
8356 case 4: // result = lea base( , cond*4)
8357 case 5: // result = lea base(cond, cond*4)
8358 case 8: // result = lea base( , cond*8)
8359 case 9: // result = lea base(cond, cond*8)
8360 isFastMultiplier
= true;
8365 if (isFastMultiplier
) {
8366 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8367 if (NeedsCondInvert
) // Invert the condition if needed.
8368 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8369 DAG
.getConstant(1, Cond
.getValueType()));
8371 // Zero extend the condition if needed.
8372 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8374 // Scale the condition by the difference.
8376 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8377 DAG
.getConstant(Diff
, Cond
.getValueType()));
8379 // Add the base if non-zero.
8380 if (FalseC
->getAPIntValue() != 0)
8381 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8382 SDValue(FalseC
, 0));
8392 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8393 static SDValue
PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
,
8394 TargetLowering::DAGCombinerInfo
&DCI
) {
8395 DebugLoc DL
= N
->getDebugLoc();
8397 // If the flag operand isn't dead, don't touch this CMOV.
8398 if (N
->getNumValues() == 2 && !SDValue(N
, 1).use_empty())
8401 // If this is a select between two integer constants, try to do some
8402 // optimizations. Note that the operands are ordered the opposite of SELECT
8404 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
8405 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
8406 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8407 // larger than FalseC (the false value).
8408 X86::CondCode CC
= (X86::CondCode
)N
->getConstantOperandVal(2);
8410 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue())) {
8411 CC
= X86::GetOppositeBranchCondition(CC
);
8412 std::swap(TrueC
, FalseC
);
8415 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
8416 // This is efficient for any integer data type (including i8/i16) and
8418 if (FalseC
->getAPIntValue() == 0 && TrueC
->getAPIntValue().isPowerOf2()) {
8419 SDValue Cond
= N
->getOperand(3);
8420 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8421 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8423 // Zero extend the condition if needed.
8424 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TrueC
->getValueType(0), Cond
);
8426 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
8427 Cond
= DAG
.getNode(ISD::SHL
, DL
, Cond
.getValueType(), Cond
,
8428 DAG
.getConstant(ShAmt
, MVT::i8
));
8429 if (N
->getNumValues() == 2) // Dead flag value?
8430 return DCI
.CombineTo(N
, Cond
, SDValue());
8434 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
8435 // for any integer data type, including i8/i16.
8436 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
8437 SDValue Cond
= N
->getOperand(3);
8438 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8439 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8441 // Zero extend the condition if needed.
8442 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8443 FalseC
->getValueType(0), Cond
);
8444 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8445 SDValue(FalseC
, 0));
8447 if (N
->getNumValues() == 2) // Dead flag value?
8448 return DCI
.CombineTo(N
, Cond
, SDValue());
8452 // Optimize cases that will turn into an LEA instruction. This requires
8453 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8454 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8455 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8456 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8458 bool isFastMultiplier
= false;
8460 switch ((unsigned char)Diff
) {
8462 case 1: // result = add base, cond
8463 case 2: // result = lea base( , cond*2)
8464 case 3: // result = lea base(cond, cond*2)
8465 case 4: // result = lea base( , cond*4)
8466 case 5: // result = lea base(cond, cond*4)
8467 case 8: // result = lea base( , cond*8)
8468 case 9: // result = lea base(cond, cond*8)
8469 isFastMultiplier
= true;
8474 if (isFastMultiplier
) {
8475 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8476 SDValue Cond
= N
->getOperand(3);
8477 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8478 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8479 // Zero extend the condition if needed.
8480 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8482 // Scale the condition by the difference.
8484 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8485 DAG
.getConstant(Diff
, Cond
.getValueType()));
8487 // Add the base if non-zero.
8488 if (FalseC
->getAPIntValue() != 0)
8489 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8490 SDValue(FalseC
, 0));
8491 if (N
->getNumValues() == 2) // Dead flag value?
8492 return DCI
.CombineTo(N
, Cond
, SDValue());
8502 /// PerformMulCombine - Optimize a single multiply with constant into two
8503 /// in order to implement it with two cheaper instructions, e.g.
8504 /// LEA + SHL, LEA + LEA.
8505 static SDValue
PerformMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
8506 TargetLowering::DAGCombinerInfo
&DCI
) {
8507 if (DAG
.getMachineFunction().
8508 getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
8511 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
8514 EVT VT
= N
->getValueType(0);
8518 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
8521 uint64_t MulAmt
= C
->getZExtValue();
8522 if (isPowerOf2_64(MulAmt
) || MulAmt
== 3 || MulAmt
== 5 || MulAmt
== 9)
8525 uint64_t MulAmt1
= 0;
8526 uint64_t MulAmt2
= 0;
8527 if ((MulAmt
% 9) == 0) {
8529 MulAmt2
= MulAmt
/ 9;
8530 } else if ((MulAmt
% 5) == 0) {
8532 MulAmt2
= MulAmt
/ 5;
8533 } else if ((MulAmt
% 3) == 0) {
8535 MulAmt2
= MulAmt
/ 3;
8538 (isPowerOf2_64(MulAmt2
) || MulAmt2
== 3 || MulAmt2
== 5 || MulAmt2
== 9)){
8539 DebugLoc DL
= N
->getDebugLoc();
8541 if (isPowerOf2_64(MulAmt2
) &&
8542 !(N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::ADD
))
8543 // If second multiplifer is pow2, issue it first. We want the multiply by
8544 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8546 std::swap(MulAmt1
, MulAmt2
);
8549 if (isPowerOf2_64(MulAmt1
))
8550 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
8551 DAG
.getConstant(Log2_64(MulAmt1
), MVT::i8
));
8553 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, N
->getOperand(0),
8554 DAG
.getConstant(MulAmt1
, VT
));
8556 if (isPowerOf2_64(MulAmt2
))
8557 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, NewMul
,
8558 DAG
.getConstant(Log2_64(MulAmt2
), MVT::i8
));
8560 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, NewMul
,
8561 DAG
.getConstant(MulAmt2
, VT
));
8563 // Do not add new nodes to DAG combiner worklist.
8564 DCI
.CombineTo(N
, NewMul
, false);
8570 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8572 static SDValue
PerformShiftCombine(SDNode
* N
, SelectionDAG
&DAG
,
8573 const X86Subtarget
*Subtarget
) {
8574 // On X86 with SSE2 support, we can transform this to a vector shift if
8575 // all elements are shifted by the same amount. We can't do this in legalize
8576 // because the a constant vector is typically transformed to a constant pool
8577 // so we have no knowledge of the shift amount.
8578 if (!Subtarget
->hasSSE2())
8581 EVT VT
= N
->getValueType(0);
8582 if (VT
!= MVT::v2i64
&& VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
)
8585 SDValue ShAmtOp
= N
->getOperand(1);
8586 EVT EltVT
= VT
.getVectorElementType();
8587 DebugLoc DL
= N
->getDebugLoc();
8588 SDValue BaseShAmt
= SDValue();
8589 if (ShAmtOp
.getOpcode() == ISD::BUILD_VECTOR
) {
8590 unsigned NumElts
= VT
.getVectorNumElements();
8592 for (; i
!= NumElts
; ++i
) {
8593 SDValue Arg
= ShAmtOp
.getOperand(i
);
8594 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8598 for (; i
!= NumElts
; ++i
) {
8599 SDValue Arg
= ShAmtOp
.getOperand(i
);
8600 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8601 if (Arg
!= BaseShAmt
) {
8605 } else if (ShAmtOp
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
8606 cast
<ShuffleVectorSDNode
>(ShAmtOp
)->isSplat()) {
8607 SDValue InVec
= ShAmtOp
.getOperand(0);
8608 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
) {
8609 unsigned NumElts
= InVec
.getValueType().getVectorNumElements();
8611 for (; i
!= NumElts
; ++i
) {
8612 SDValue Arg
= InVec
.getOperand(i
);
8613 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8617 } else if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
8618 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(InVec
.getOperand(2))) {
8619 unsigned SplatIdx
= cast
<ShuffleVectorSDNode
>(ShAmtOp
)->getSplatIndex();
8620 if (C
->getZExtValue() == SplatIdx
)
8621 BaseShAmt
= InVec
.getOperand(1);
8624 if (BaseShAmt
.getNode() == 0)
8625 BaseShAmt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, ShAmtOp
,
8626 DAG
.getIntPtrConstant(0));
8630 // The shift amount is an i32.
8631 if (EltVT
.bitsGT(MVT::i32
))
8632 BaseShAmt
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, BaseShAmt
);
8633 else if (EltVT
.bitsLT(MVT::i32
))
8634 BaseShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, BaseShAmt
);
8636 // The shift amount is identical so we can do a vector shift.
8637 SDValue ValOp
= N
->getOperand(0);
8638 switch (N
->getOpcode()) {
8640 llvm_unreachable("Unknown shift opcode!");
8643 if (VT
== MVT::v2i64
)
8644 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8645 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
8647 if (VT
== MVT::v4i32
)
8648 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8649 DAG
.getConstant(Intrinsic::x86_sse2_pslli_d
, MVT::i32
),
8651 if (VT
== MVT::v8i16
)
8652 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8653 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
),
8657 if (VT
== MVT::v4i32
)
8658 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8659 DAG
.getConstant(Intrinsic::x86_sse2_psrai_d
, MVT::i32
),
8661 if (VT
== MVT::v8i16
)
8662 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8663 DAG
.getConstant(Intrinsic::x86_sse2_psrai_w
, MVT::i32
),
8667 if (VT
== MVT::v2i64
)
8668 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8669 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
8671 if (VT
== MVT::v4i32
)
8672 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8673 DAG
.getConstant(Intrinsic::x86_sse2_psrli_d
, MVT::i32
),
8675 if (VT
== MVT::v8i16
)
8676 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8677 DAG
.getConstant(Intrinsic::x86_sse2_psrli_w
, MVT::i32
),
8684 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8685 static SDValue
PerformSTORECombine(SDNode
*N
, SelectionDAG
&DAG
,
8686 const X86Subtarget
*Subtarget
) {
8687 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8688 // the FP state in cases where an emms may be missing.
8689 // A preferable solution to the general problem is to figure out the right
8690 // places to insert EMMS. This qualifies as a quick hack.
8692 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8693 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
8694 EVT VT
= St
->getValue().getValueType();
8695 if (VT
.getSizeInBits() != 64)
8698 const Function
*F
= DAG
.getMachineFunction().getFunction();
8699 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
8700 bool F64IsLegal
= !UseSoftFloat
&& !NoImplicitFloatOps
8701 && Subtarget
->hasSSE2();
8702 if ((VT
.isVector() ||
8703 (VT
== MVT::i64
&& F64IsLegal
&& !Subtarget
->is64Bit())) &&
8704 isa
<LoadSDNode
>(St
->getValue()) &&
8705 !cast
<LoadSDNode
>(St
->getValue())->isVolatile() &&
8706 St
->getChain().hasOneUse() && !St
->isVolatile()) {
8707 SDNode
* LdVal
= St
->getValue().getNode();
8709 int TokenFactorIndex
= -1;
8710 SmallVector
<SDValue
, 8> Ops
;
8711 SDNode
* ChainVal
= St
->getChain().getNode();
8712 // Must be a store of a load. We currently handle two cases: the load
8713 // is a direct child, and it's under an intervening TokenFactor. It is
8714 // possible to dig deeper under nested TokenFactors.
8715 if (ChainVal
== LdVal
)
8716 Ld
= cast
<LoadSDNode
>(St
->getChain());
8717 else if (St
->getValue().hasOneUse() &&
8718 ChainVal
->getOpcode() == ISD::TokenFactor
) {
8719 for (unsigned i
=0, e
= ChainVal
->getNumOperands(); i
!= e
; ++i
) {
8720 if (ChainVal
->getOperand(i
).getNode() == LdVal
) {
8721 TokenFactorIndex
= i
;
8722 Ld
= cast
<LoadSDNode
>(St
->getValue());
8724 Ops
.push_back(ChainVal
->getOperand(i
));
8728 if (!Ld
|| !ISD::isNormalLoad(Ld
))
8731 // If this is not the MMX case, i.e. we are just turning i64 load/store
8732 // into f64 load/store, avoid the transformation if there are multiple
8733 // uses of the loaded value.
8734 if (!VT
.isVector() && !Ld
->hasNUsesOfValue(1, 0))
8737 DebugLoc LdDL
= Ld
->getDebugLoc();
8738 DebugLoc StDL
= N
->getDebugLoc();
8739 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8740 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8742 if (Subtarget
->is64Bit() || F64IsLegal
) {
8743 EVT LdVT
= Subtarget
->is64Bit() ? MVT::i64
: MVT::f64
;
8744 SDValue NewLd
= DAG
.getLoad(LdVT
, LdDL
, Ld
->getChain(),
8745 Ld
->getBasePtr(), Ld
->getSrcValue(),
8746 Ld
->getSrcValueOffset(), Ld
->isVolatile(),
8747 Ld
->getAlignment());
8748 SDValue NewChain
= NewLd
.getValue(1);
8749 if (TokenFactorIndex
!= -1) {
8750 Ops
.push_back(NewChain
);
8751 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8754 return DAG
.getStore(NewChain
, StDL
, NewLd
, St
->getBasePtr(),
8755 St
->getSrcValue(), St
->getSrcValueOffset(),
8756 St
->isVolatile(), St
->getAlignment());
8759 // Otherwise, lower to two pairs of 32-bit loads / stores.
8760 SDValue LoAddr
= Ld
->getBasePtr();
8761 SDValue HiAddr
= DAG
.getNode(ISD::ADD
, LdDL
, MVT::i32
, LoAddr
,
8762 DAG
.getConstant(4, MVT::i32
));
8764 SDValue LoLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), LoAddr
,
8765 Ld
->getSrcValue(), Ld
->getSrcValueOffset(),
8766 Ld
->isVolatile(), Ld
->getAlignment());
8767 SDValue HiLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), HiAddr
,
8768 Ld
->getSrcValue(), Ld
->getSrcValueOffset()+4,
8770 MinAlign(Ld
->getAlignment(), 4));
8772 SDValue NewChain
= LoLd
.getValue(1);
8773 if (TokenFactorIndex
!= -1) {
8774 Ops
.push_back(LoLd
);
8775 Ops
.push_back(HiLd
);
8776 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8780 LoAddr
= St
->getBasePtr();
8781 HiAddr
= DAG
.getNode(ISD::ADD
, StDL
, MVT::i32
, LoAddr
,
8782 DAG
.getConstant(4, MVT::i32
));
8784 SDValue LoSt
= DAG
.getStore(NewChain
, StDL
, LoLd
, LoAddr
,
8785 St
->getSrcValue(), St
->getSrcValueOffset(),
8786 St
->isVolatile(), St
->getAlignment());
8787 SDValue HiSt
= DAG
.getStore(NewChain
, StDL
, HiLd
, HiAddr
,
8789 St
->getSrcValueOffset() + 4,
8791 MinAlign(St
->getAlignment(), 4));
8792 return DAG
.getNode(ISD::TokenFactor
, StDL
, MVT::Other
, LoSt
, HiSt
);
8797 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8798 /// X86ISD::FXOR nodes.
8799 static SDValue
PerformFORCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8800 assert(N
->getOpcode() == X86ISD::FOR
|| N
->getOpcode() == X86ISD::FXOR
);
8801 // F[X]OR(0.0, x) -> x
8802 // F[X]OR(x, 0.0) -> x
8803 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8804 if (C
->getValueAPF().isPosZero())
8805 return N
->getOperand(1);
8806 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8807 if (C
->getValueAPF().isPosZero())
8808 return N
->getOperand(0);
8812 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8813 static SDValue
PerformFANDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8814 // FAND(0.0, x) -> 0.0
8815 // FAND(x, 0.0) -> 0.0
8816 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8817 if (C
->getValueAPF().isPosZero())
8818 return N
->getOperand(0);
8819 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8820 if (C
->getValueAPF().isPosZero())
8821 return N
->getOperand(1);
8825 static SDValue
PerformBTCombine(SDNode
*N
,
8827 TargetLowering::DAGCombinerInfo
&DCI
) {
8828 // BT ignores high bits in the bit index operand.
8829 SDValue Op1
= N
->getOperand(1);
8830 if (Op1
.hasOneUse()) {
8831 unsigned BitWidth
= Op1
.getValueSizeInBits();
8832 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, Log2_32(BitWidth
));
8833 APInt KnownZero
, KnownOne
;
8834 TargetLowering::TargetLoweringOpt
TLO(DAG
);
8835 TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8836 if (TLO
.ShrinkDemandedConstant(Op1
, DemandedMask
) ||
8837 TLI
.SimplifyDemandedBits(Op1
, DemandedMask
, KnownZero
, KnownOne
, TLO
))
8838 DCI
.CommitTargetLoweringOpt(TLO
);
8843 static SDValue
PerformVZEXT_MOVLCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8844 SDValue Op
= N
->getOperand(0);
8845 if (Op
.getOpcode() == ISD::BIT_CONVERT
)
8846 Op
= Op
.getOperand(0);
8847 EVT VT
= N
->getValueType(0), OpVT
= Op
.getValueType();
8848 if (Op
.getOpcode() == X86ISD::VZEXT_LOAD
&&
8849 VT
.getVectorElementType().getSizeInBits() ==
8850 OpVT
.getVectorElementType().getSizeInBits()) {
8851 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, Op
);
8856 // On X86 and X86-64, atomic operations are lowered to locked instructions.
8857 // Locked instructions, in turn, have implicit fence semantics (all memory
8858 // operations are flushed before issuing the locked instruction, and the
8859 // are not buffered), so we can fold away the common pattern of
8860 // fence-atomic-fence.
8861 static SDValue
PerformMEMBARRIERCombine(SDNode
* N
, SelectionDAG
&DAG
) {
8862 SDValue atomic
= N
->getOperand(0);
8863 switch (atomic
.getOpcode()) {
8864 case ISD::ATOMIC_CMP_SWAP
:
8865 case ISD::ATOMIC_SWAP
:
8866 case ISD::ATOMIC_LOAD_ADD
:
8867 case ISD::ATOMIC_LOAD_SUB
:
8868 case ISD::ATOMIC_LOAD_AND
:
8869 case ISD::ATOMIC_LOAD_OR
:
8870 case ISD::ATOMIC_LOAD_XOR
:
8871 case ISD::ATOMIC_LOAD_NAND
:
8872 case ISD::ATOMIC_LOAD_MIN
:
8873 case ISD::ATOMIC_LOAD_MAX
:
8874 case ISD::ATOMIC_LOAD_UMIN
:
8875 case ISD::ATOMIC_LOAD_UMAX
:
8881 SDValue fence
= atomic
.getOperand(0);
8882 if (fence
.getOpcode() != ISD::MEMBARRIER
)
8885 switch (atomic
.getOpcode()) {
8886 case ISD::ATOMIC_CMP_SWAP
:
8887 return DAG
.UpdateNodeOperands(atomic
, fence
.getOperand(0),
8888 atomic
.getOperand(1), atomic
.getOperand(2),
8889 atomic
.getOperand(3));
8890 case ISD::ATOMIC_SWAP
:
8891 case ISD::ATOMIC_LOAD_ADD
:
8892 case ISD::ATOMIC_LOAD_SUB
:
8893 case ISD::ATOMIC_LOAD_AND
:
8894 case ISD::ATOMIC_LOAD_OR
:
8895 case ISD::ATOMIC_LOAD_XOR
:
8896 case ISD::ATOMIC_LOAD_NAND
:
8897 case ISD::ATOMIC_LOAD_MIN
:
8898 case ISD::ATOMIC_LOAD_MAX
:
8899 case ISD::ATOMIC_LOAD_UMIN
:
8900 case ISD::ATOMIC_LOAD_UMAX
:
8901 return DAG
.UpdateNodeOperands(atomic
, fence
.getOperand(0),
8902 atomic
.getOperand(1), atomic
.getOperand(2));
8908 SDValue
X86TargetLowering::PerformDAGCombine(SDNode
*N
,
8909 DAGCombinerInfo
&DCI
) const {
8910 SelectionDAG
&DAG
= DCI
.DAG
;
8911 switch (N
->getOpcode()) {
8913 case ISD::VECTOR_SHUFFLE
: return PerformShuffleCombine(N
, DAG
, *this);
8914 case ISD::SELECT
: return PerformSELECTCombine(N
, DAG
, Subtarget
);
8915 case X86ISD::CMOV
: return PerformCMOVCombine(N
, DAG
, DCI
);
8916 case ISD::MUL
: return PerformMulCombine(N
, DAG
, DCI
);
8919 case ISD::SRL
: return PerformShiftCombine(N
, DAG
, Subtarget
);
8920 case ISD::STORE
: return PerformSTORECombine(N
, DAG
, Subtarget
);
8922 case X86ISD::FOR
: return PerformFORCombine(N
, DAG
);
8923 case X86ISD::FAND
: return PerformFANDCombine(N
, DAG
);
8924 case X86ISD::BT
: return PerformBTCombine(N
, DAG
, DCI
);
8925 case X86ISD::VZEXT_MOVL
: return PerformVZEXT_MOVLCombine(N
, DAG
);
8926 case ISD::MEMBARRIER
: return PerformMEMBARRIERCombine(N
, DAG
);
8932 //===----------------------------------------------------------------------===//
8933 // X86 Inline Assembly Support
8934 //===----------------------------------------------------------------------===//
8936 static bool LowerToBSwap(CallInst
*CI
) {
8937 // FIXME: this should verify that we are targetting a 486 or better. If not,
8938 // we will turn this bswap into something that will be lowered to logical ops
8939 // instead of emitting the bswap asm. For now, we don't support 486 or lower
8940 // so don't worry about this.
8942 // Verify this is a simple bswap.
8943 if (CI
->getNumOperands() != 2 ||
8944 CI
->getType() != CI
->getOperand(1)->getType() ||
8945 !CI
->getType()->isInteger())
8948 const IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
8949 if (!Ty
|| Ty
->getBitWidth() % 16 != 0)
8952 // Okay, we can do this xform, do so now.
8953 const Type
*Tys
[] = { Ty
};
8954 Module
*M
= CI
->getParent()->getParent()->getParent();
8955 Constant
*Int
= Intrinsic::getDeclaration(M
, Intrinsic::bswap
, Tys
, 1);
8957 Value
*Op
= CI
->getOperand(1);
8958 Op
= CallInst::Create(Int
, Op
, CI
->getName(), CI
);
8960 CI
->replaceAllUsesWith(Op
);
8961 CI
->eraseFromParent();
8965 bool X86TargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
8966 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
8967 std::vector
<InlineAsm::ConstraintInfo
> Constraints
= IA
->ParseConstraints();
8969 std::string AsmStr
= IA
->getAsmString();
8971 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
8972 std::vector
<std::string
> AsmPieces
;
8973 SplitString(AsmStr
, AsmPieces
, "\n"); // ; as separator?
8975 switch (AsmPieces
.size()) {
8976 default: return false;
8978 AsmStr
= AsmPieces
[0];
8980 SplitString(AsmStr
, AsmPieces
, " \t"); // Split with whitespace.
8983 if (AsmPieces
.size() == 2 &&
8984 (AsmPieces
[0] == "bswap" ||
8985 AsmPieces
[0] == "bswapq" ||
8986 AsmPieces
[0] == "bswapl") &&
8987 (AsmPieces
[1] == "$0" ||
8988 AsmPieces
[1] == "${0:q}")) {
8989 // No need to check constraints, nothing other than the equivalent of
8990 // "=r,0" would be valid here.
8991 return LowerToBSwap(CI
);
8993 // rorw $$8, ${0:w} --> llvm.bswap.i16
8994 if (CI
->getType() == Type::getInt16Ty(CI
->getContext()) &&
8995 AsmPieces
.size() == 3 &&
8996 AsmPieces
[0] == "rorw" &&
8997 AsmPieces
[1] == "$$8," &&
8998 AsmPieces
[2] == "${0:w}" &&
8999 IA
->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9000 return LowerToBSwap(CI
);
9004 if (CI
->getType() == Type::getInt64Ty(CI
->getContext()) &&
9005 Constraints
.size() >= 2 &&
9006 Constraints
[0].Codes
.size() == 1 && Constraints
[0].Codes
[0] == "A" &&
9007 Constraints
[1].Codes
.size() == 1 && Constraints
[1].Codes
[0] == "0") {
9008 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
9009 std::vector
<std::string
> Words
;
9010 SplitString(AsmPieces
[0], Words
, " \t");
9011 if (Words
.size() == 2 && Words
[0] == "bswap" && Words
[1] == "%eax") {
9013 SplitString(AsmPieces
[1], Words
, " \t");
9014 if (Words
.size() == 2 && Words
[0] == "bswap" && Words
[1] == "%edx") {
9016 SplitString(AsmPieces
[2], Words
, " \t,");
9017 if (Words
.size() == 3 && Words
[0] == "xchgl" && Words
[1] == "%eax" &&
9018 Words
[2] == "%edx") {
9019 return LowerToBSwap(CI
);
9031 /// getConstraintType - Given a constraint letter, return the type of
9032 /// constraint it is for this target.
9033 X86TargetLowering::ConstraintType
9034 X86TargetLowering::getConstraintType(const std::string
&Constraint
) const {
9035 if (Constraint
.size() == 1) {
9036 switch (Constraint
[0]) {
9048 return C_RegisterClass
;
9056 return TargetLowering::getConstraintType(Constraint
);
9059 /// LowerXConstraint - try to replace an X constraint, which matches anything,
9060 /// with another that has more specific requirements based on the type of the
9061 /// corresponding operand.
9062 const char *X86TargetLowering::
9063 LowerXConstraint(EVT ConstraintVT
) const {
9064 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9065 // 'f' like normal targets.
9066 if (ConstraintVT
.isFloatingPoint()) {
9067 if (Subtarget
->hasSSE2())
9069 if (Subtarget
->hasSSE1())
9073 return TargetLowering::LowerXConstraint(ConstraintVT
);
9076 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9077 /// vector. If it is invalid, don't add anything to Ops.
9078 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
9081 std::vector
<SDValue
>&Ops
,
9082 SelectionDAG
&DAG
) const {
9083 SDValue
Result(0, 0);
9085 switch (Constraint
) {
9088 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
9089 if (C
->getZExtValue() <= 31) {
9090 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
9096 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
9097 if (C
->getZExtValue() <= 63) {
9098 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
9104 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
9105 if ((int8_t)C
->getSExtValue() == C
->getSExtValue()) {
9106 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
9112 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
9113 if (C
->getZExtValue() <= 255) {
9114 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
9120 // 32-bit signed value
9121 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
9122 const ConstantInt
*CI
= C
->getConstantIntValue();
9123 if (CI
->isValueValidForType(Type::getInt32Ty(*DAG
.getContext()),
9124 C
->getSExtValue())) {
9125 // Widen to 64 bits here to get it sign extended.
9126 Result
= DAG
.getTargetConstant(C
->getSExtValue(), MVT::i64
);
9129 // FIXME gcc accepts some relocatable values here too, but only in certain
9130 // memory models; it's complicated.
9135 // 32-bit unsigned value
9136 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
9137 const ConstantInt
*CI
= C
->getConstantIntValue();
9138 if (CI
->isValueValidForType(Type::getInt32Ty(*DAG
.getContext()),
9139 C
->getZExtValue())) {
9140 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
9144 // FIXME gcc accepts some relocatable values here too, but only in certain
9145 // memory models; it's complicated.
9149 // Literal immediates are always ok.
9150 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
)) {
9151 // Widen to 64 bits here to get it sign extended.
9152 Result
= DAG
.getTargetConstant(CST
->getSExtValue(), MVT::i64
);
9156 // If we are in non-pic codegen mode, we allow the address of a global (with
9157 // an optional displacement) to be used with 'i'.
9158 GlobalAddressSDNode
*GA
= 0;
9161 // Match either (GA), (GA+C), (GA+C1+C2), etc.
9163 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
))) {
9164 Offset
+= GA
->getOffset();
9166 } else if (Op
.getOpcode() == ISD::ADD
) {
9167 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
9168 Offset
+= C
->getZExtValue();
9169 Op
= Op
.getOperand(0);
9172 } else if (Op
.getOpcode() == ISD::SUB
) {
9173 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
9174 Offset
+= -C
->getZExtValue();
9175 Op
= Op
.getOperand(0);
9180 // Otherwise, this isn't something we can handle, reject it.
9184 GlobalValue
*GV
= GA
->getGlobal();
9185 // If we require an extra load to get this address, as in PIC mode, we
9187 if (isGlobalStubReference(Subtarget
->ClassifyGlobalReference(GV
,
9188 getTargetMachine())))
9192 Op
= LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
9194 Op
= DAG
.getTargetGlobalAddress(GV
, GA
->getValueType(0), Offset
);
9200 if (Result
.getNode()) {
9201 Ops
.push_back(Result
);
9204 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, hasMemory
,
9208 std::vector
<unsigned> X86TargetLowering::
9209 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
9211 if (Constraint
.size() == 1) {
9212 // FIXME: not handling fp-stack yet!
9213 switch (Constraint
[0]) { // GCC X86 Constraint Letters
9214 default: break; // Unknown constraint letter
9215 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9216 if (Subtarget
->is64Bit()) {
9218 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
,
9219 X86::ESI
, X86::EDI
, X86::R8D
, X86::R9D
,
9220 X86::R10D
,X86::R11D
,X86::R12D
,
9221 X86::R13D
,X86::R14D
,X86::R15D
,
9222 X86::EBP
, X86::ESP
, 0);
9223 else if (VT
== MVT::i16
)
9224 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
,
9225 X86::SI
, X86::DI
, X86::R8W
,X86::R9W
,
9226 X86::R10W
,X86::R11W
,X86::R12W
,
9227 X86::R13W
,X86::R14W
,X86::R15W
,
9228 X86::BP
, X86::SP
, 0);
9229 else if (VT
== MVT::i8
)
9230 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
,
9231 X86::SIL
, X86::DIL
, X86::R8B
,X86::R9B
,
9232 X86::R10B
,X86::R11B
,X86::R12B
,
9233 X86::R13B
,X86::R14B
,X86::R15B
,
9234 X86::BPL
, X86::SPL
, 0);
9236 else if (VT
== MVT::i64
)
9237 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
,
9238 X86::RSI
, X86::RDI
, X86::R8
, X86::R9
,
9239 X86::R10
, X86::R11
, X86::R12
,
9240 X86::R13
, X86::R14
, X86::R15
,
9241 X86::RBP
, X86::RSP
, 0);
9245 // 32-bit fallthrough
9248 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
, 0);
9249 else if (VT
== MVT::i16
)
9250 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
, 0);
9251 else if (VT
== MVT::i8
)
9252 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
, 0);
9253 else if (VT
== MVT::i64
)
9254 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
, 0);
9259 return std::vector
<unsigned>();
9262 std::pair
<unsigned, const TargetRegisterClass
*>
9263 X86TargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
9265 // First, see if this is a constraint that directly corresponds to an LLVM
9267 if (Constraint
.size() == 1) {
9268 // GCC Constraint Letters
9269 switch (Constraint
[0]) {
9271 case 'r': // GENERAL_REGS
9272 case 'R': // LEGACY_REGS
9273 case 'l': // INDEX_REGS
9275 return std::make_pair(0U, X86::GR8RegisterClass
);
9277 return std::make_pair(0U, X86::GR16RegisterClass
);
9278 if (VT
== MVT::i32
|| !Subtarget
->is64Bit())
9279 return std::make_pair(0U, X86::GR32RegisterClass
);
9280 return std::make_pair(0U, X86::GR64RegisterClass
);
9281 case 'f': // FP Stack registers.
9282 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9283 // value to the correct fpstack register class.
9284 if (VT
== MVT::f32
&& !isScalarFPTypeInSSEReg(VT
))
9285 return std::make_pair(0U, X86::RFP32RegisterClass
);
9286 if (VT
== MVT::f64
&& !isScalarFPTypeInSSEReg(VT
))
9287 return std::make_pair(0U, X86::RFP64RegisterClass
);
9288 return std::make_pair(0U, X86::RFP80RegisterClass
);
9289 case 'y': // MMX_REGS if MMX allowed.
9290 if (!Subtarget
->hasMMX()) break;
9291 return std::make_pair(0U, X86::VR64RegisterClass
);
9292 case 'Y': // SSE_REGS if SSE2 allowed
9293 if (!Subtarget
->hasSSE2()) break;
9295 case 'x': // SSE_REGS if SSE1 allowed
9296 if (!Subtarget
->hasSSE1()) break;
9298 switch (VT
.getSimpleVT().SimpleTy
) {
9300 // Scalar SSE types.
9303 return std::make_pair(0U, X86::FR32RegisterClass
);
9306 return std::make_pair(0U, X86::FR64RegisterClass
);
9314 return std::make_pair(0U, X86::VR128RegisterClass
);
9320 // Use the default implementation in TargetLowering to convert the register
9321 // constraint into a member of a register class.
9322 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
9323 Res
= TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
9325 // Not found as a standard register?
9326 if (Res
.second
== 0) {
9327 // Map st(0) -> st(7) -> ST0
9328 if (Constraint
.size() == 7 && Constraint
[0] == '{' &&
9329 tolower(Constraint
[1]) == 's' &&
9330 tolower(Constraint
[2]) == 't' &&
9331 Constraint
[3] == '(' &&
9332 (Constraint
[4] >= '0' && Constraint
[4] <= '7') &&
9333 Constraint
[5] == ')' &&
9334 Constraint
[6] == '}') {
9336 Res
.first
= X86::ST0
+Constraint
[4]-'0';
9337 Res
.second
= X86::RFP80RegisterClass
;
9341 // GCC allows "st(0)" to be called just plain "st".
9342 if (StringsEqualNoCase("{st}", Constraint
)) {
9343 Res
.first
= X86::ST0
;
9344 Res
.second
= X86::RFP80RegisterClass
;
9349 if (StringsEqualNoCase("{flags}", Constraint
)) {
9350 Res
.first
= X86::EFLAGS
;
9351 Res
.second
= X86::CCRRegisterClass
;
9355 // 'A' means EAX + EDX.
9356 if (Constraint
== "A") {
9357 Res
.first
= X86::EAX
;
9358 Res
.second
= X86::GR32_ADRegisterClass
;
9364 // Otherwise, check to see if this is a register class of the wrong value
9365 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9366 // turn into {ax},{dx}.
9367 if (Res
.second
->hasType(VT
))
9368 return Res
; // Correct type already, nothing to do.
9370 // All of the single-register GCC register classes map their values onto
9371 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
9372 // really want an 8-bit or 32-bit register, map to the appropriate register
9373 // class and return the appropriate register.
9374 if (Res
.second
== X86::GR16RegisterClass
) {
9375 if (VT
== MVT::i8
) {
9376 unsigned DestReg
= 0;
9377 switch (Res
.first
) {
9379 case X86::AX
: DestReg
= X86::AL
; break;
9380 case X86::DX
: DestReg
= X86::DL
; break;
9381 case X86::CX
: DestReg
= X86::CL
; break;
9382 case X86::BX
: DestReg
= X86::BL
; break;
9385 Res
.first
= DestReg
;
9386 Res
.second
= X86::GR8RegisterClass
;
9388 } else if (VT
== MVT::i32
) {
9389 unsigned DestReg
= 0;
9390 switch (Res
.first
) {
9392 case X86::AX
: DestReg
= X86::EAX
; break;
9393 case X86::DX
: DestReg
= X86::EDX
; break;
9394 case X86::CX
: DestReg
= X86::ECX
; break;
9395 case X86::BX
: DestReg
= X86::EBX
; break;
9396 case X86::SI
: DestReg
= X86::ESI
; break;
9397 case X86::DI
: DestReg
= X86::EDI
; break;
9398 case X86::BP
: DestReg
= X86::EBP
; break;
9399 case X86::SP
: DestReg
= X86::ESP
; break;
9402 Res
.first
= DestReg
;
9403 Res
.second
= X86::GR32RegisterClass
;
9405 } else if (VT
== MVT::i64
) {
9406 unsigned DestReg
= 0;
9407 switch (Res
.first
) {
9409 case X86::AX
: DestReg
= X86::RAX
; break;
9410 case X86::DX
: DestReg
= X86::RDX
; break;
9411 case X86::CX
: DestReg
= X86::RCX
; break;
9412 case X86::BX
: DestReg
= X86::RBX
; break;
9413 case X86::SI
: DestReg
= X86::RSI
; break;
9414 case X86::DI
: DestReg
= X86::RDI
; break;
9415 case X86::BP
: DestReg
= X86::RBP
; break;
9416 case X86::SP
: DestReg
= X86::RSP
; break;
9419 Res
.first
= DestReg
;
9420 Res
.second
= X86::GR64RegisterClass
;
9423 } else if (Res
.second
== X86::FR32RegisterClass
||
9424 Res
.second
== X86::FR64RegisterClass
||
9425 Res
.second
== X86::VR128RegisterClass
) {
9426 // Handle references to XMM physical registers that got mapped into the
9427 // wrong class. This can happen with constraints like {xmm0} where the
9428 // target independent register mapper will just pick the first match it can
9429 // find, ignoring the required type.
9431 Res
.second
= X86::FR32RegisterClass
;
9432 else if (VT
== MVT::f64
)
9433 Res
.second
= X86::FR64RegisterClass
;
9434 else if (X86::VR128RegisterClass
->hasType(VT
))
9435 Res
.second
= X86::VR128RegisterClass
;
9441 //===----------------------------------------------------------------------===//
9442 // X86 Widen vector type
9443 //===----------------------------------------------------------------------===//
9445 /// getWidenVectorType: given a vector type, returns the type to widen
9446 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9447 /// If there is no vector type that we want to widen to, returns MVT::Other
9448 /// When and where to widen is target dependent based on the cost of
9449 /// scalarizing vs using the wider vector type.
9451 EVT
X86TargetLowering::getWidenVectorType(EVT VT
) const {
9452 assert(VT
.isVector());
9453 if (isTypeLegal(VT
))
9456 // TODO: In computeRegisterProperty, we can compute the list of legal vector
9457 // type based on element type. This would speed up our search (though
9458 // it may not be worth it since the size of the list is relatively
9460 EVT EltVT
= VT
.getVectorElementType();
9461 unsigned NElts
= VT
.getVectorNumElements();
9463 // On X86, it make sense to widen any vector wider than 1
9467 for (unsigned nVT
= MVT::FIRST_VECTOR_VALUETYPE
;
9468 nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
9469 EVT SVT
= (MVT::SimpleValueType
)nVT
;
9471 if (isTypeLegal(SVT
) &&
9472 SVT
.getVectorElementType() == EltVT
&&
9473 SVT
.getVectorNumElements() > NElts
)