remove a dead bool.
[llvm/avr.git] / lib / Target / X86 / X86ISelLowering.cpp
blob884efcb16ed4429422804f885b633f2fe51e0d46
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalAlias.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/VectorExtras.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/raw_ostream.h"
45 using namespace llvm;
47 static cl::opt<bool>
48 DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
50 // Disable16Bit - 16-bit operations typically have a larger encoding than
51 // corresponding 32-bit instructions, and 16-bit code is slow on some
52 // processors. This is an experimental flag to disable 16-bit operations
53 // (which forces them to be Legalized to 32-bit operations).
54 static cl::opt<bool>
55 Disable16Bit("disable-16bit", cl::Hidden,
56 cl::desc("Disable use of 16-bit instructions"));
58 // Forward declarations.
59 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60 SDValue V2);
62 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63 switch (TM.getSubtarget<X86Subtarget>().TargetType) {
64 default: llvm_unreachable("unknown subtarget type");
65 case X86Subtarget::isDarwin:
66 return new TargetLoweringObjectFileMachO();
67 case X86Subtarget::isELF:
68 return new TargetLoweringObjectFileELF();
69 case X86Subtarget::isMingw:
70 case X86Subtarget::isCygwin:
71 case X86Subtarget::isWindows:
72 return new TargetLoweringObjectFileCOFF();
77 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
78 : TargetLowering(TM, createTLOF(TM)) {
79 Subtarget = &TM.getSubtarget<X86Subtarget>();
80 X86ScalarSSEf64 = Subtarget->hasSSE2();
81 X86ScalarSSEf32 = Subtarget->hasSSE1();
82 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
84 RegInfo = TM.getRegisterInfo();
85 TD = getTargetData();
87 // Set up the TargetLowering object.
89 // X86 is weird, it always uses i8 for shift amounts and setcc results.
90 setShiftAmountType(MVT::i8);
91 setBooleanContents(ZeroOrOneBooleanContent);
92 setSchedulingPreference(SchedulingForRegPressure);
93 setStackPointerRegisterToSaveRestore(X86StackPtr);
95 if (Subtarget->isTargetDarwin()) {
96 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
97 setUseUnderscoreSetJmp(false);
98 setUseUnderscoreLongJmp(false);
99 } else if (Subtarget->isTargetMingw()) {
100 // MS runtime is weird: it exports _setjmp, but longjmp!
101 setUseUnderscoreSetJmp(true);
102 setUseUnderscoreLongJmp(false);
103 } else {
104 setUseUnderscoreSetJmp(true);
105 setUseUnderscoreLongJmp(true);
108 // Set up the register classes.
109 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
110 if (!Disable16Bit)
111 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
112 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
113 if (Subtarget->is64Bit())
114 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
116 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
118 // We don't accept any truncstore of integer registers.
119 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
120 if (!Disable16Bit)
121 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
122 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
123 if (!Disable16Bit)
124 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
128 // SETOEQ and SETUNE require checking two conditions.
129 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
136 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137 // operation.
138 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
139 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
140 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
142 if (Subtarget->is64Bit()) {
143 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
144 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
145 } else if (!UseSoftFloat) {
146 if (X86ScalarSSEf64) {
147 // We have an impenetrably clever algorithm for ui64->double only.
148 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
150 // We have an algorithm for SSE2, and we turn this into a 64-bit
151 // FILD for other targets.
152 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
155 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
156 // this operation.
157 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
158 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
160 if (!UseSoftFloat) {
161 // SSE has no i16 to fp conversion, only i32
162 if (X86ScalarSSEf32) {
163 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
164 // f32 and f64 cases are Legal, f80 case is not
165 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
166 } else {
167 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
168 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
170 } else {
171 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
172 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
175 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
176 // are Legal, f80 is custom lowered.
177 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
178 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
180 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
181 // this operation.
182 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
183 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
185 if (X86ScalarSSEf32) {
186 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
187 // f32 and f64 cases are Legal, f80 case is not
188 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
189 } else {
190 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
191 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
194 // Handle FP_TO_UINT by promoting the destination to a larger signed
195 // conversion.
196 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
197 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
198 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
200 if (Subtarget->is64Bit()) {
201 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
202 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
203 } else if (!UseSoftFloat) {
204 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
205 // Expand FP_TO_UINT into a select.
206 // FIXME: We would like to use a Custom expander here eventually to do
207 // the optimal thing for SSE vs. the default expansion in the legalizer.
208 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
209 else
210 // With SSE3 we can use fisttpll to convert to a signed i64; without
211 // SSE, we're stuck with a fistpll.
212 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
215 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
216 if (!X86ScalarSSEf64) {
217 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
218 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
221 // Scalar integer divide and remainder are lowered to use operations that
222 // produce two results, to match the available instructions. This exposes
223 // the two-result form to trivial CSE, which is able to combine x/y and x%y
224 // into a single instruction.
226 // Scalar integer multiply-high is also lowered to use two-result
227 // operations, to match the available instructions. However, plain multiply
228 // (low) operations are left as Legal, as there are single-result
229 // instructions for this in x86. Using the two-result multiply instructions
230 // when both high and low results are needed must be arranged by dagcombine.
231 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
232 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
233 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
234 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
235 setOperationAction(ISD::SREM , MVT::i8 , Expand);
236 setOperationAction(ISD::UREM , MVT::i8 , Expand);
237 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
238 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
239 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
240 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
241 setOperationAction(ISD::SREM , MVT::i16 , Expand);
242 setOperationAction(ISD::UREM , MVT::i16 , Expand);
243 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
244 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
245 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
246 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
247 setOperationAction(ISD::SREM , MVT::i32 , Expand);
248 setOperationAction(ISD::UREM , MVT::i32 , Expand);
249 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
250 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
251 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
252 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
253 setOperationAction(ISD::SREM , MVT::i64 , Expand);
254 setOperationAction(ISD::UREM , MVT::i64 , Expand);
256 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
257 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
258 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
259 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
260 if (Subtarget->is64Bit())
261 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
262 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
265 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
266 setOperationAction(ISD::FREM , MVT::f32 , Expand);
267 setOperationAction(ISD::FREM , MVT::f64 , Expand);
268 setOperationAction(ISD::FREM , MVT::f80 , Expand);
269 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
271 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
272 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
273 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
274 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
275 if (Disable16Bit) {
276 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
277 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
278 } else {
279 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
280 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
282 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
283 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
284 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
285 if (Subtarget->is64Bit()) {
286 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
287 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
288 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
291 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
292 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
294 // These should be promoted to a larger select which is supported.
295 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
296 // X86 wants to expand cmov itself.
297 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
298 if (Disable16Bit)
299 setOperationAction(ISD::SELECT , MVT::i16 , Expand);
300 else
301 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
302 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
303 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
304 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
305 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
306 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
307 if (Disable16Bit)
308 setOperationAction(ISD::SETCC , MVT::i16 , Expand);
309 else
310 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
311 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
312 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
313 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
314 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
315 if (Subtarget->is64Bit()) {
316 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
317 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
319 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
321 // Darwin ABI issue.
322 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
323 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
324 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
325 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
326 if (Subtarget->is64Bit())
327 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
328 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
329 if (Subtarget->is64Bit()) {
330 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
331 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
332 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
333 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
335 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
336 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
337 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
338 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
339 if (Subtarget->is64Bit()) {
340 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
341 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
342 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
345 if (Subtarget->hasSSE1())
346 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
348 if (!Subtarget->hasSSE2())
349 setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand);
351 // Expand certain atomics
352 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
353 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
354 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
355 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
357 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
358 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
359 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
360 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
362 if (!Subtarget->is64Bit()) {
363 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
364 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
365 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
366 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
367 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
368 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
369 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
372 // Use the default ISD::DBG_STOPPOINT.
373 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
374 // FIXME - use subtarget debug flags
375 if (!Subtarget->isTargetDarwin() &&
376 !Subtarget->isTargetELF() &&
377 !Subtarget->isTargetCygMing()) {
378 setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
379 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
383 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
384 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
385 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
386 if (Subtarget->is64Bit()) {
387 setExceptionPointerRegister(X86::RAX);
388 setExceptionSelectorRegister(X86::RDX);
389 } else {
390 setExceptionPointerRegister(X86::EAX);
391 setExceptionSelectorRegister(X86::EDX);
393 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
394 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
396 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
398 setOperationAction(ISD::TRAP, MVT::Other, Legal);
400 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
401 setOperationAction(ISD::VASTART , MVT::Other, Custom);
402 setOperationAction(ISD::VAEND , MVT::Other, Expand);
403 if (Subtarget->is64Bit()) {
404 setOperationAction(ISD::VAARG , MVT::Other, Custom);
405 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
406 } else {
407 setOperationAction(ISD::VAARG , MVT::Other, Expand);
408 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
411 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
412 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
413 if (Subtarget->is64Bit())
414 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
415 if (Subtarget->isTargetCygMing())
416 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
417 else
418 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
420 if (!UseSoftFloat && X86ScalarSSEf64) {
421 // f32 and f64 use SSE.
422 // Set up the FP register classes.
423 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
424 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
426 // Use ANDPD to simulate FABS.
427 setOperationAction(ISD::FABS , MVT::f64, Custom);
428 setOperationAction(ISD::FABS , MVT::f32, Custom);
430 // Use XORP to simulate FNEG.
431 setOperationAction(ISD::FNEG , MVT::f64, Custom);
432 setOperationAction(ISD::FNEG , MVT::f32, Custom);
434 // Use ANDPD and ORPD to simulate FCOPYSIGN.
435 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
436 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
438 // We don't support sin/cos/fmod
439 setOperationAction(ISD::FSIN , MVT::f64, Expand);
440 setOperationAction(ISD::FCOS , MVT::f64, Expand);
441 setOperationAction(ISD::FSIN , MVT::f32, Expand);
442 setOperationAction(ISD::FCOS , MVT::f32, Expand);
444 // Expand FP immediates into loads from the stack, except for the special
445 // cases we handle.
446 addLegalFPImmediate(APFloat(+0.0)); // xorpd
447 addLegalFPImmediate(APFloat(+0.0f)); // xorps
448 } else if (!UseSoftFloat && X86ScalarSSEf32) {
449 // Use SSE for f32, x87 for f64.
450 // Set up the FP register classes.
451 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
452 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
454 // Use ANDPS to simulate FABS.
455 setOperationAction(ISD::FABS , MVT::f32, Custom);
457 // Use XORP to simulate FNEG.
458 setOperationAction(ISD::FNEG , MVT::f32, Custom);
460 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
462 // Use ANDPS and ORPS to simulate FCOPYSIGN.
463 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
464 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
466 // We don't support sin/cos/fmod
467 setOperationAction(ISD::FSIN , MVT::f32, Expand);
468 setOperationAction(ISD::FCOS , MVT::f32, Expand);
470 // Special cases we handle for FP constants.
471 addLegalFPImmediate(APFloat(+0.0f)); // xorps
472 addLegalFPImmediate(APFloat(+0.0)); // FLD0
473 addLegalFPImmediate(APFloat(+1.0)); // FLD1
474 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
475 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
477 if (!UnsafeFPMath) {
478 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
479 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
481 } else if (!UseSoftFloat) {
482 // f32 and f64 in x87.
483 // Set up the FP register classes.
484 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
485 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
487 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
488 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
489 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
490 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
492 if (!UnsafeFPMath) {
493 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
494 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
496 addLegalFPImmediate(APFloat(+0.0)); // FLD0
497 addLegalFPImmediate(APFloat(+1.0)); // FLD1
498 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
499 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
500 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
501 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
502 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
503 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506 // Long double always uses X87.
507 if (!UseSoftFloat) {
508 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
509 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
510 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
512 bool ignored;
513 APFloat TmpFlt(+0.0);
514 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
515 &ignored);
516 addLegalFPImmediate(TmpFlt); // FLD0
517 TmpFlt.changeSign();
518 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
519 APFloat TmpFlt2(+1.0);
520 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
521 &ignored);
522 addLegalFPImmediate(TmpFlt2); // FLD1
523 TmpFlt2.changeSign();
524 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
527 if (!UnsafeFPMath) {
528 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
529 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
533 // Always use a library call for pow.
534 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
535 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
536 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
538 setOperationAction(ISD::FLOG, MVT::f80, Expand);
539 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
540 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
541 setOperationAction(ISD::FEXP, MVT::f80, Expand);
542 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
544 // First set operation action for all vector types to either promote
545 // (for widening) or expand (for scalarization). Then we will selectively
546 // turn on ones that can be effectively codegen'd.
547 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
548 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
549 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
550 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
551 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
552 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
553 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
554 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
555 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
556 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
557 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
558 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
559 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
560 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
561 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
562 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
563 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
564 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
565 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
566 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
567 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
568 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
569 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
570 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
571 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
572 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
573 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
574 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
575 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
576 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
577 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
578 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
579 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
580 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
581 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
582 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
583 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
584 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
585 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
586 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
587 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
588 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
589 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
590 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
591 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
592 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
593 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
594 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
595 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
596 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
600 // with -msoft-float, disable use of MMX as well.
601 if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
602 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
603 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
604 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
605 addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
606 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
608 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
609 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
610 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
611 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
613 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
614 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
615 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
616 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
618 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
619 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
621 setOperationAction(ISD::AND, MVT::v8i8, Promote);
622 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
623 setOperationAction(ISD::AND, MVT::v4i16, Promote);
624 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
625 setOperationAction(ISD::AND, MVT::v2i32, Promote);
626 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
627 setOperationAction(ISD::AND, MVT::v1i64, Legal);
629 setOperationAction(ISD::OR, MVT::v8i8, Promote);
630 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
631 setOperationAction(ISD::OR, MVT::v4i16, Promote);
632 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
633 setOperationAction(ISD::OR, MVT::v2i32, Promote);
634 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
635 setOperationAction(ISD::OR, MVT::v1i64, Legal);
637 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
638 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
639 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
640 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
641 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
642 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
643 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
645 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
646 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
647 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
648 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
649 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
650 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
651 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
652 AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64);
653 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
655 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
656 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
657 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
658 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
659 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
661 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
662 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
663 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
664 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
666 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom);
667 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
668 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
669 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
671 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
673 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
674 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Expand);
675 setOperationAction(ISD::SELECT, MVT::v8i8, Promote);
676 setOperationAction(ISD::SELECT, MVT::v4i16, Promote);
677 setOperationAction(ISD::SELECT, MVT::v2i32, Promote);
678 setOperationAction(ISD::SELECT, MVT::v1i64, Custom);
679 setOperationAction(ISD::VSETCC, MVT::v8i8, Custom);
680 setOperationAction(ISD::VSETCC, MVT::v4i16, Custom);
681 setOperationAction(ISD::VSETCC, MVT::v2i32, Custom);
684 if (!UseSoftFloat && Subtarget->hasSSE1()) {
685 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
687 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
688 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
689 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
690 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
691 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
692 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
693 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
694 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
695 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
696 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
697 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
698 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
701 if (!UseSoftFloat && Subtarget->hasSSE2()) {
702 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
704 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
705 // registers cannot be used even for integer operations.
706 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
707 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
708 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
709 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
711 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
712 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
713 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
714 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
715 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
716 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
717 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
718 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
719 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
720 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
721 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
722 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
723 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
724 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
725 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
726 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
728 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
729 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
730 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
731 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
733 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
734 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
735 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
736 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
737 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
739 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
740 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
741 EVT VT = (MVT::SimpleValueType)i;
742 // Do not attempt to custom lower non-power-of-2 vectors
743 if (!isPowerOf2_32(VT.getVectorNumElements()))
744 continue;
745 // Do not attempt to custom lower non-128-bit vectors
746 if (!VT.is128BitVector())
747 continue;
748 setOperationAction(ISD::BUILD_VECTOR,
749 VT.getSimpleVT().SimpleTy, Custom);
750 setOperationAction(ISD::VECTOR_SHUFFLE,
751 VT.getSimpleVT().SimpleTy, Custom);
752 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
753 VT.getSimpleVT().SimpleTy, Custom);
756 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
757 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
758 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
759 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
760 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
761 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
763 if (Subtarget->is64Bit()) {
764 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
765 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
768 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
769 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
770 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
771 EVT VT = SVT;
773 // Do not attempt to promote non-128-bit vectors
774 if (!VT.is128BitVector()) {
775 continue;
777 setOperationAction(ISD::AND, SVT, Promote);
778 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
779 setOperationAction(ISD::OR, SVT, Promote);
780 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
781 setOperationAction(ISD::XOR, SVT, Promote);
782 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
783 setOperationAction(ISD::LOAD, SVT, Promote);
784 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
785 setOperationAction(ISD::SELECT, SVT, Promote);
786 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
789 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
791 // Custom lower v2i64 and v2f64 selects.
792 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
793 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
794 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
795 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
797 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
798 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
799 if (!DisableMMX && Subtarget->hasMMX()) {
800 setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
801 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
805 if (Subtarget->hasSSE41()) {
806 // FIXME: Do we need to handle scalar-to-vector here?
807 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
809 // i8 and i16 vectors are custom , because the source register and source
810 // source memory operand types are not the same width. f32 vectors are
811 // custom since the immediate controlling the insert encodes additional
812 // information.
813 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
814 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
815 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
816 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
818 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
819 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
820 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
821 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
823 if (Subtarget->is64Bit()) {
824 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
825 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
829 if (Subtarget->hasSSE42()) {
830 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
833 if (!UseSoftFloat && Subtarget->hasAVX()) {
834 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
835 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
836 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
837 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
839 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
840 setOperationAction(ISD::LOAD, MVT::v8i32, Legal);
841 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
842 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
843 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
844 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
845 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
846 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
847 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
848 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
849 //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
850 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
851 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
852 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
853 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
855 // Operations to consider commented out -v16i16 v32i8
856 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
857 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
858 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
859 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
860 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
861 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
862 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
863 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
864 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
865 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
866 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
867 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
868 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
869 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
871 setOperationAction(ISD::VSETCC, MVT::v4f64, Custom);
872 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
873 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
874 setOperationAction(ISD::VSETCC, MVT::v8i32, Custom);
876 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
877 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
878 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
879 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom);
880 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom);
882 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
883 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom);
884 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom);
885 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom);
886 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom);
887 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
889 #if 0
890 // Not sure we want to do this since there are no 256-bit integer
891 // operations in AVX
893 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
894 // This includes 256-bit vectors
895 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
896 EVT VT = (MVT::SimpleValueType)i;
898 // Do not attempt to custom lower non-power-of-2 vectors
899 if (!isPowerOf2_32(VT.getVectorNumElements()))
900 continue;
902 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
903 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
904 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
907 if (Subtarget->is64Bit()) {
908 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom);
909 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
911 #endif
913 #if 0
914 // Not sure we want to do this since there are no 256-bit integer
915 // operations in AVX
917 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
918 // Including 256-bit vectors
919 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
920 EVT VT = (MVT::SimpleValueType)i;
922 if (!VT.is256BitVector()) {
923 continue;
925 setOperationAction(ISD::AND, VT, Promote);
926 AddPromotedToType (ISD::AND, VT, MVT::v4i64);
927 setOperationAction(ISD::OR, VT, Promote);
928 AddPromotedToType (ISD::OR, VT, MVT::v4i64);
929 setOperationAction(ISD::XOR, VT, Promote);
930 AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
931 setOperationAction(ISD::LOAD, VT, Promote);
932 AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
933 setOperationAction(ISD::SELECT, VT, Promote);
934 AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
937 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
938 #endif
941 // We want to custom lower some of our intrinsics.
942 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
944 // Add/Sub/Mul with overflow operations are custom lowered.
945 setOperationAction(ISD::SADDO, MVT::i32, Custom);
946 setOperationAction(ISD::SADDO, MVT::i64, Custom);
947 setOperationAction(ISD::UADDO, MVT::i32, Custom);
948 setOperationAction(ISD::UADDO, MVT::i64, Custom);
949 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
950 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
951 setOperationAction(ISD::USUBO, MVT::i32, Custom);
952 setOperationAction(ISD::USUBO, MVT::i64, Custom);
953 setOperationAction(ISD::SMULO, MVT::i32, Custom);
954 setOperationAction(ISD::SMULO, MVT::i64, Custom);
956 if (!Subtarget->is64Bit()) {
957 // These libcalls are not available in 32-bit.
958 setLibcallName(RTLIB::SHL_I128, 0);
959 setLibcallName(RTLIB::SRL_I128, 0);
960 setLibcallName(RTLIB::SRA_I128, 0);
963 // We have target-specific dag combine patterns for the following nodes:
964 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
965 setTargetDAGCombine(ISD::BUILD_VECTOR);
966 setTargetDAGCombine(ISD::SELECT);
967 setTargetDAGCombine(ISD::SHL);
968 setTargetDAGCombine(ISD::SRA);
969 setTargetDAGCombine(ISD::SRL);
970 setTargetDAGCombine(ISD::STORE);
971 setTargetDAGCombine(ISD::MEMBARRIER);
972 if (Subtarget->is64Bit())
973 setTargetDAGCombine(ISD::MUL);
975 computeRegisterProperties();
977 // FIXME: These should be based on subtarget info. Plus, the values should
978 // be smaller when we are in optimizing for size mode.
979 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
980 maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
981 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
982 setPrefLoopAlignment(16);
983 benefitFromCodePlacementOpt = true;
987 MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
988 return MVT::i8;
992 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
993 /// the desired ByVal argument alignment.
994 static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
995 if (MaxAlign == 16)
996 return;
997 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
998 if (VTy->getBitWidth() == 128)
999 MaxAlign = 16;
1000 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1001 unsigned EltAlign = 0;
1002 getMaxByValAlign(ATy->getElementType(), EltAlign);
1003 if (EltAlign > MaxAlign)
1004 MaxAlign = EltAlign;
1005 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1006 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1007 unsigned EltAlign = 0;
1008 getMaxByValAlign(STy->getElementType(i), EltAlign);
1009 if (EltAlign > MaxAlign)
1010 MaxAlign = EltAlign;
1011 if (MaxAlign == 16)
1012 break;
1015 return;
1018 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1019 /// function arguments in the caller parameter area. For X86, aggregates
1020 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1021 /// are at 4-byte boundaries.
1022 unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1023 if (Subtarget->is64Bit()) {
1024 // Max of 8 and alignment of type.
1025 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1026 if (TyAlign > 8)
1027 return TyAlign;
1028 return 8;
1031 unsigned Align = 4;
1032 if (Subtarget->hasSSE1())
1033 getMaxByValAlign(Ty, Align);
1034 return Align;
1037 /// getOptimalMemOpType - Returns the target specific optimal type for load
1038 /// and store operations as a result of memset, memcpy, and memmove
1039 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1040 /// determining it.
1042 X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1043 bool isSrcConst, bool isSrcStr,
1044 SelectionDAG &DAG) const {
1045 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1046 // linux. This is because the stack realignment code can't handle certain
1047 // cases like PR2962. This should be removed when PR2962 is fixed.
1048 const Function *F = DAG.getMachineFunction().getFunction();
1049 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1050 if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1051 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1052 return MVT::v4i32;
1053 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1054 return MVT::v4f32;
1056 if (Subtarget->is64Bit() && Size >= 8)
1057 return MVT::i64;
1058 return MVT::i32;
1061 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1062 /// jumptable.
1063 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1064 SelectionDAG &DAG) const {
1065 if (usesGlobalOffsetTable())
1066 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1067 if (!Subtarget->is64Bit())
1068 // This doesn't have DebugLoc associated with it, but is not really the
1069 // same as a Register.
1070 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1071 getPointerTy());
1072 return Table;
1075 /// getFunctionAlignment - Return the Log2 alignment of this function.
1076 unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1077 return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1080 //===----------------------------------------------------------------------===//
1081 // Return Value Calling Convention Implementation
1082 //===----------------------------------------------------------------------===//
1084 #include "X86GenCallingConv.inc"
1086 SDValue
1087 X86TargetLowering::LowerReturn(SDValue Chain,
1088 CallingConv::ID CallConv, bool isVarArg,
1089 const SmallVectorImpl<ISD::OutputArg> &Outs,
1090 DebugLoc dl, SelectionDAG &DAG) {
1092 SmallVector<CCValAssign, 16> RVLocs;
1093 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1094 RVLocs, *DAG.getContext());
1095 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1097 // If this is the first return lowered for this function, add the regs to the
1098 // liveout set for the function.
1099 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1100 for (unsigned i = 0; i != RVLocs.size(); ++i)
1101 if (RVLocs[i].isRegLoc())
1102 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1105 SDValue Flag;
1107 SmallVector<SDValue, 6> RetOps;
1108 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1109 // Operand #1 = Bytes To Pop
1110 RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1112 // Copy the result values into the output registers.
1113 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1114 CCValAssign &VA = RVLocs[i];
1115 assert(VA.isRegLoc() && "Can only return in registers!");
1116 SDValue ValToCopy = Outs[i].Val;
1118 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1119 // the RET instruction and handled by the FP Stackifier.
1120 if (VA.getLocReg() == X86::ST0 ||
1121 VA.getLocReg() == X86::ST1) {
1122 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1123 // change the value to the FP stack register class.
1124 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1125 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1126 RetOps.push_back(ValToCopy);
1127 // Don't emit a copytoreg.
1128 continue;
1131 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1132 // which is returned in RAX / RDX.
1133 if (Subtarget->is64Bit()) {
1134 EVT ValVT = ValToCopy.getValueType();
1135 if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1136 ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1137 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1138 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1142 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1143 Flag = Chain.getValue(1);
1146 // The x86-64 ABI for returning structs by value requires that we copy
1147 // the sret argument into %rax for the return. We saved the argument into
1148 // a virtual register in the entry block, so now we copy the value out
1149 // and into %rax.
1150 if (Subtarget->is64Bit() &&
1151 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1152 MachineFunction &MF = DAG.getMachineFunction();
1153 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1154 unsigned Reg = FuncInfo->getSRetReturnReg();
1155 if (!Reg) {
1156 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1157 FuncInfo->setSRetReturnReg(Reg);
1159 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1161 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1162 Flag = Chain.getValue(1);
1165 RetOps[0] = Chain; // Update chain.
1167 // Add the flag if we have it.
1168 if (Flag.getNode())
1169 RetOps.push_back(Flag);
1171 return DAG.getNode(X86ISD::RET_FLAG, dl,
1172 MVT::Other, &RetOps[0], RetOps.size());
1175 /// LowerCallResult - Lower the result values of a call into the
1176 /// appropriate copies out of appropriate physical registers.
1178 SDValue
1179 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1180 CallingConv::ID CallConv, bool isVarArg,
1181 const SmallVectorImpl<ISD::InputArg> &Ins,
1182 DebugLoc dl, SelectionDAG &DAG,
1183 SmallVectorImpl<SDValue> &InVals) {
1185 // Assign locations to each value returned by this call.
1186 SmallVector<CCValAssign, 16> RVLocs;
1187 bool Is64Bit = Subtarget->is64Bit();
1188 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1189 RVLocs, *DAG.getContext());
1190 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1192 // Copy all of the result registers out of their specified physreg.
1193 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1194 CCValAssign &VA = RVLocs[i];
1195 EVT CopyVT = VA.getValVT();
1197 // If this is x86-64, and we disabled SSE, we can't return FP values
1198 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1199 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1200 llvm_report_error("SSE register return with SSE disabled");
1203 // If this is a call to a function that returns an fp value on the floating
1204 // point stack, but where we prefer to use the value in xmm registers, copy
1205 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1206 if ((VA.getLocReg() == X86::ST0 ||
1207 VA.getLocReg() == X86::ST1) &&
1208 isScalarFPTypeInSSEReg(VA.getValVT())) {
1209 CopyVT = MVT::f80;
1212 SDValue Val;
1213 if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1214 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1215 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1216 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1217 MVT::v2i64, InFlag).getValue(1);
1218 Val = Chain.getValue(0);
1219 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1220 Val, DAG.getConstant(0, MVT::i64));
1221 } else {
1222 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1223 MVT::i64, InFlag).getValue(1);
1224 Val = Chain.getValue(0);
1226 Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1227 } else {
1228 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1229 CopyVT, InFlag).getValue(1);
1230 Val = Chain.getValue(0);
1232 InFlag = Chain.getValue(2);
1234 if (CopyVT != VA.getValVT()) {
1235 // Round the F80 the right size, which also moves to the appropriate xmm
1236 // register.
1237 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1238 // This truncation won't change the value.
1239 DAG.getIntPtrConstant(1));
1242 InVals.push_back(Val);
1245 return Chain;
1249 //===----------------------------------------------------------------------===//
1250 // C & StdCall & Fast Calling Convention implementation
1251 //===----------------------------------------------------------------------===//
1252 // StdCall calling convention seems to be standard for many Windows' API
1253 // routines and around. It differs from C calling convention just a little:
1254 // callee should clean up the stack, not caller. Symbols should be also
1255 // decorated in some fancy way :) It doesn't support any vector arguments.
1256 // For info on fast calling convention see Fast Calling Convention (tail call)
1257 // implementation LowerX86_32FastCCCallTo.
1259 /// CallIsStructReturn - Determines whether a call uses struct return
1260 /// semantics.
1261 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1262 if (Outs.empty())
1263 return false;
1265 return Outs[0].Flags.isSRet();
1268 /// ArgsAreStructReturn - Determines whether a function uses struct
1269 /// return semantics.
1270 static bool
1271 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1272 if (Ins.empty())
1273 return false;
1275 return Ins[0].Flags.isSRet();
1278 /// IsCalleePop - Determines whether the callee is required to pop its
1279 /// own arguments. Callee pop is necessary to support tail calls.
1280 bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1281 if (IsVarArg)
1282 return false;
1284 switch (CallingConv) {
1285 default:
1286 return false;
1287 case CallingConv::X86_StdCall:
1288 return !Subtarget->is64Bit();
1289 case CallingConv::X86_FastCall:
1290 return !Subtarget->is64Bit();
1291 case CallingConv::Fast:
1292 return PerformTailCallOpt;
1296 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1297 /// given CallingConvention value.
1298 CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1299 if (Subtarget->is64Bit()) {
1300 if (Subtarget->isTargetWin64())
1301 return CC_X86_Win64_C;
1302 else
1303 return CC_X86_64_C;
1306 if (CC == CallingConv::X86_FastCall)
1307 return CC_X86_32_FastCall;
1308 else if (CC == CallingConv::Fast)
1309 return CC_X86_32_FastCC;
1310 else
1311 return CC_X86_32_C;
1314 /// NameDecorationForCallConv - Selects the appropriate decoration to
1315 /// apply to a MachineFunction containing a given calling convention.
1316 NameDecorationStyle
1317 X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
1318 if (CallConv == CallingConv::X86_FastCall)
1319 return FastCall;
1320 else if (CallConv == CallingConv::X86_StdCall)
1321 return StdCall;
1322 return None;
1326 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1327 /// by "Src" to address "Dst" with size and alignment information specified by
1328 /// the specific parameter attribute. The copy will be passed as a byval
1329 /// function parameter.
1330 static SDValue
1331 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1332 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1333 DebugLoc dl) {
1334 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1335 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1336 /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1339 SDValue
1340 X86TargetLowering::LowerMemArgument(SDValue Chain,
1341 CallingConv::ID CallConv,
1342 const SmallVectorImpl<ISD::InputArg> &Ins,
1343 DebugLoc dl, SelectionDAG &DAG,
1344 const CCValAssign &VA,
1345 MachineFrameInfo *MFI,
1346 unsigned i) {
1348 // Create the nodes corresponding to a load from this parameter slot.
1349 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1350 bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
1351 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1352 EVT ValVT;
1354 // If value is passed by pointer we have address passed instead of the value
1355 // itself.
1356 if (VA.getLocInfo() == CCValAssign::Indirect)
1357 ValVT = VA.getLocVT();
1358 else
1359 ValVT = VA.getValVT();
1361 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1362 // changed with more analysis.
1363 // In case of tail call optimization mark all arguments mutable. Since they
1364 // could be overwritten by lowering of arguments in case of a tail call.
1365 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1366 VA.getLocMemOffset(), isImmutable);
1367 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1368 if (Flags.isByVal())
1369 return FIN;
1370 return DAG.getLoad(ValVT, dl, Chain, FIN,
1371 PseudoSourceValue::getFixedStack(FI), 0);
1374 SDValue
1375 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1376 CallingConv::ID CallConv,
1377 bool isVarArg,
1378 const SmallVectorImpl<ISD::InputArg> &Ins,
1379 DebugLoc dl,
1380 SelectionDAG &DAG,
1381 SmallVectorImpl<SDValue> &InVals) {
1383 MachineFunction &MF = DAG.getMachineFunction();
1384 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1386 const Function* Fn = MF.getFunction();
1387 if (Fn->hasExternalLinkage() &&
1388 Subtarget->isTargetCygMing() &&
1389 Fn->getName() == "main")
1390 FuncInfo->setForceFramePointer(true);
1392 // Decorate the function name.
1393 FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1395 MachineFrameInfo *MFI = MF.getFrameInfo();
1396 bool Is64Bit = Subtarget->is64Bit();
1397 bool IsWin64 = Subtarget->isTargetWin64();
1399 assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1400 "Var args not supported with calling convention fastcc");
1402 // Assign locations to all of the incoming arguments.
1403 SmallVector<CCValAssign, 16> ArgLocs;
1404 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1405 ArgLocs, *DAG.getContext());
1406 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1408 unsigned LastVal = ~0U;
1409 SDValue ArgValue;
1410 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1411 CCValAssign &VA = ArgLocs[i];
1412 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1413 // places.
1414 assert(VA.getValNo() != LastVal &&
1415 "Don't support value assigned to multiple locs yet");
1416 LastVal = VA.getValNo();
1418 if (VA.isRegLoc()) {
1419 EVT RegVT = VA.getLocVT();
1420 TargetRegisterClass *RC = NULL;
1421 if (RegVT == MVT::i32)
1422 RC = X86::GR32RegisterClass;
1423 else if (Is64Bit && RegVT == MVT::i64)
1424 RC = X86::GR64RegisterClass;
1425 else if (RegVT == MVT::f32)
1426 RC = X86::FR32RegisterClass;
1427 else if (RegVT == MVT::f64)
1428 RC = X86::FR64RegisterClass;
1429 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1430 RC = X86::VR128RegisterClass;
1431 else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1432 RC = X86::VR64RegisterClass;
1433 else
1434 llvm_unreachable("Unknown argument type!");
1436 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1437 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1439 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1440 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1441 // right size.
1442 if (VA.getLocInfo() == CCValAssign::SExt)
1443 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1444 DAG.getValueType(VA.getValVT()));
1445 else if (VA.getLocInfo() == CCValAssign::ZExt)
1446 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1447 DAG.getValueType(VA.getValVT()));
1448 else if (VA.getLocInfo() == CCValAssign::BCvt)
1449 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1451 if (VA.isExtInLoc()) {
1452 // Handle MMX values passed in XMM regs.
1453 if (RegVT.isVector()) {
1454 ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1455 ArgValue, DAG.getConstant(0, MVT::i64));
1456 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1457 } else
1458 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1460 } else {
1461 assert(VA.isMemLoc());
1462 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1465 // If value is passed via pointer - do a load.
1466 if (VA.getLocInfo() == CCValAssign::Indirect)
1467 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1469 InVals.push_back(ArgValue);
1472 // The x86-64 ABI for returning structs by value requires that we copy
1473 // the sret argument into %rax for the return. Save the argument into
1474 // a virtual register so that we can access it from the return points.
1475 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1476 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477 unsigned Reg = FuncInfo->getSRetReturnReg();
1478 if (!Reg) {
1479 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1480 FuncInfo->setSRetReturnReg(Reg);
1482 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1483 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1486 unsigned StackSize = CCInfo.getNextStackOffset();
1487 // align stack specially for tail calls
1488 if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1489 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1491 // If the function takes variable number of arguments, make a frame index for
1492 // the start of the first vararg value... for expansion of llvm.va_start.
1493 if (isVarArg) {
1494 if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1495 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1497 if (Is64Bit) {
1498 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1500 // FIXME: We should really autogenerate these arrays
1501 static const unsigned GPR64ArgRegsWin64[] = {
1502 X86::RCX, X86::RDX, X86::R8, X86::R9
1504 static const unsigned XMMArgRegsWin64[] = {
1505 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1507 static const unsigned GPR64ArgRegs64Bit[] = {
1508 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1510 static const unsigned XMMArgRegs64Bit[] = {
1511 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1512 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1514 const unsigned *GPR64ArgRegs, *XMMArgRegs;
1516 if (IsWin64) {
1517 TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1518 GPR64ArgRegs = GPR64ArgRegsWin64;
1519 XMMArgRegs = XMMArgRegsWin64;
1520 } else {
1521 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1522 GPR64ArgRegs = GPR64ArgRegs64Bit;
1523 XMMArgRegs = XMMArgRegs64Bit;
1525 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1526 TotalNumIntRegs);
1527 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1528 TotalNumXMMRegs);
1530 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1531 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1532 "SSE register cannot be used when SSE is disabled!");
1533 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1534 "SSE register cannot be used when SSE is disabled!");
1535 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1536 // Kernel mode asks for SSE to be disabled, so don't push them
1537 // on the stack.
1538 TotalNumXMMRegs = 0;
1540 // For X86-64, if there are vararg parameters that are passed via
1541 // registers, then we must store them to their spots on the stack so they
1542 // may be loaded by deferencing the result of va_next.
1543 VarArgsGPOffset = NumIntRegs * 8;
1544 VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1545 RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1546 TotalNumXMMRegs * 16, 16);
1548 // Store the integer parameter registers.
1549 SmallVector<SDValue, 8> MemOps;
1550 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1551 unsigned Offset = VarArgsGPOffset;
1552 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1553 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1554 DAG.getIntPtrConstant(Offset));
1555 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1556 X86::GR64RegisterClass);
1557 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1558 SDValue Store =
1559 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1560 PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1561 Offset);
1562 MemOps.push_back(Store);
1563 Offset += 8;
1566 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1567 // Now store the XMM (fp + vector) parameter registers.
1568 SmallVector<SDValue, 11> SaveXMMOps;
1569 SaveXMMOps.push_back(Chain);
1571 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1572 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1573 SaveXMMOps.push_back(ALVal);
1575 SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1576 SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1578 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1579 unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1580 X86::VR128RegisterClass);
1581 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1582 SaveXMMOps.push_back(Val);
1584 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1585 MVT::Other,
1586 &SaveXMMOps[0], SaveXMMOps.size()));
1589 if (!MemOps.empty())
1590 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1591 &MemOps[0], MemOps.size());
1595 // Some CCs need callee pop.
1596 if (IsCalleePop(isVarArg, CallConv)) {
1597 BytesToPopOnReturn = StackSize; // Callee pops everything.
1598 BytesCallerReserves = 0;
1599 } else {
1600 BytesToPopOnReturn = 0; // Callee pops nothing.
1601 // If this is an sret function, the return should pop the hidden pointer.
1602 if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1603 BytesToPopOnReturn = 4;
1604 BytesCallerReserves = StackSize;
1607 if (!Is64Bit) {
1608 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1609 if (CallConv == CallingConv::X86_FastCall)
1610 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1613 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1615 return Chain;
1618 SDValue
1619 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1620 SDValue StackPtr, SDValue Arg,
1621 DebugLoc dl, SelectionDAG &DAG,
1622 const CCValAssign &VA,
1623 ISD::ArgFlagsTy Flags) {
1624 const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1625 unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1626 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1627 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1628 if (Flags.isByVal()) {
1629 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1631 return DAG.getStore(Chain, dl, Arg, PtrOff,
1632 PseudoSourceValue::getStack(), LocMemOffset);
1635 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1636 /// optimization is performed and it is required.
1637 SDValue
1638 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1639 SDValue &OutRetAddr,
1640 SDValue Chain,
1641 bool IsTailCall,
1642 bool Is64Bit,
1643 int FPDiff,
1644 DebugLoc dl) {
1645 if (!IsTailCall || FPDiff==0) return Chain;
1647 // Adjust the Return address stack slot.
1648 EVT VT = getPointerTy();
1649 OutRetAddr = getReturnAddressFrameIndex(DAG);
1651 // Load the "old" Return address.
1652 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1653 return SDValue(OutRetAddr.getNode(), 1);
1656 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1657 /// optimization is performed and it is required (FPDiff!=0).
1658 static SDValue
1659 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1660 SDValue Chain, SDValue RetAddrFrIdx,
1661 bool Is64Bit, int FPDiff, DebugLoc dl) {
1662 // Store the return address to the appropriate stack slot.
1663 if (!FPDiff) return Chain;
1664 // Calculate the new stack slot for the return address.
1665 int SlotSize = Is64Bit ? 8 : 4;
1666 int NewReturnAddrFI =
1667 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1668 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1669 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1670 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1671 PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1672 return Chain;
1675 SDValue
1676 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1677 CallingConv::ID CallConv, bool isVarArg,
1678 bool isTailCall,
1679 const SmallVectorImpl<ISD::OutputArg> &Outs,
1680 const SmallVectorImpl<ISD::InputArg> &Ins,
1681 DebugLoc dl, SelectionDAG &DAG,
1682 SmallVectorImpl<SDValue> &InVals) {
1684 MachineFunction &MF = DAG.getMachineFunction();
1685 bool Is64Bit = Subtarget->is64Bit();
1686 bool IsStructRet = CallIsStructReturn(Outs);
1688 assert((!isTailCall ||
1689 (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
1690 "IsEligibleForTailCallOptimization missed a case!");
1691 assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1692 "Var args not supported with calling convention fastcc");
1694 // Analyze operands of the call, assigning locations to each operand.
1695 SmallVector<CCValAssign, 16> ArgLocs;
1696 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1697 ArgLocs, *DAG.getContext());
1698 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1700 // Get a count of how many bytes are to be pushed on the stack.
1701 unsigned NumBytes = CCInfo.getNextStackOffset();
1702 if (PerformTailCallOpt && CallConv == CallingConv::Fast)
1703 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1705 int FPDiff = 0;
1706 if (isTailCall) {
1707 // Lower arguments at fp - stackoffset + fpdiff.
1708 unsigned NumBytesCallerPushed =
1709 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1710 FPDiff = NumBytesCallerPushed - NumBytes;
1712 // Set the delta of movement of the returnaddr stackslot.
1713 // But only set if delta is greater than previous delta.
1714 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1715 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1718 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1720 SDValue RetAddrFrIdx;
1721 // Load return adress for tail calls.
1722 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
1723 FPDiff, dl);
1725 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1726 SmallVector<SDValue, 8> MemOpChains;
1727 SDValue StackPtr;
1729 // Walk the register/memloc assignments, inserting copies/loads. In the case
1730 // of tail call optimization arguments are handle later.
1731 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1732 CCValAssign &VA = ArgLocs[i];
1733 EVT RegVT = VA.getLocVT();
1734 SDValue Arg = Outs[i].Val;
1735 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1736 bool isByVal = Flags.isByVal();
1738 // Promote the value if needed.
1739 switch (VA.getLocInfo()) {
1740 default: llvm_unreachable("Unknown loc info!");
1741 case CCValAssign::Full: break;
1742 case CCValAssign::SExt:
1743 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1744 break;
1745 case CCValAssign::ZExt:
1746 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1747 break;
1748 case CCValAssign::AExt:
1749 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1750 // Special case: passing MMX values in XMM registers.
1751 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1752 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1753 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1754 } else
1755 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1756 break;
1757 case CCValAssign::BCvt:
1758 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1759 break;
1760 case CCValAssign::Indirect: {
1761 // Store the argument.
1762 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1763 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1764 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1765 PseudoSourceValue::getFixedStack(FI), 0);
1766 Arg = SpillSlot;
1767 break;
1771 if (VA.isRegLoc()) {
1772 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1773 } else {
1774 if (!isTailCall || (isTailCall && isByVal)) {
1775 assert(VA.isMemLoc());
1776 if (StackPtr.getNode() == 0)
1777 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1779 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1780 dl, DAG, VA, Flags));
1785 if (!MemOpChains.empty())
1786 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1787 &MemOpChains[0], MemOpChains.size());
1789 // Build a sequence of copy-to-reg nodes chained together with token chain
1790 // and flag operands which copy the outgoing args into registers.
1791 SDValue InFlag;
1792 // Tail call byval lowering might overwrite argument registers so in case of
1793 // tail call optimization the copies to registers are lowered later.
1794 if (!isTailCall)
1795 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1796 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1797 RegsToPass[i].second, InFlag);
1798 InFlag = Chain.getValue(1);
1802 if (Subtarget->isPICStyleGOT()) {
1803 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1804 // GOT pointer.
1805 if (!isTailCall) {
1806 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1807 DAG.getNode(X86ISD::GlobalBaseReg,
1808 DebugLoc::getUnknownLoc(),
1809 getPointerTy()),
1810 InFlag);
1811 InFlag = Chain.getValue(1);
1812 } else {
1813 // If we are tail calling and generating PIC/GOT style code load the
1814 // address of the callee into ECX. The value in ecx is used as target of
1815 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1816 // for tail calls on PIC/GOT architectures. Normally we would just put the
1817 // address of GOT into ebx and then call target@PLT. But for tail calls
1818 // ebx would be restored (since ebx is callee saved) before jumping to the
1819 // target@PLT.
1821 // Note: The actual moving to ECX is done further down.
1822 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1823 if (G && !G->getGlobal()->hasHiddenVisibility() &&
1824 !G->getGlobal()->hasProtectedVisibility())
1825 Callee = LowerGlobalAddress(Callee, DAG);
1826 else if (isa<ExternalSymbolSDNode>(Callee))
1827 Callee = LowerExternalSymbol(Callee, DAG);
1831 if (Is64Bit && isVarArg) {
1832 // From AMD64 ABI document:
1833 // For calls that may call functions that use varargs or stdargs
1834 // (prototype-less calls or calls to functions containing ellipsis (...) in
1835 // the declaration) %al is used as hidden argument to specify the number
1836 // of SSE registers used. The contents of %al do not need to match exactly
1837 // the number of registers, but must be an ubound on the number of SSE
1838 // registers used and is in the range 0 - 8 inclusive.
1840 // FIXME: Verify this on Win64
1841 // Count the number of XMM registers allocated.
1842 static const unsigned XMMArgRegs[] = {
1843 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1844 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1846 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1847 assert((Subtarget->hasSSE1() || !NumXMMRegs)
1848 && "SSE registers cannot be used when SSE is disabled");
1850 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1851 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1852 InFlag = Chain.getValue(1);
1856 // For tail calls lower the arguments to the 'real' stack slot.
1857 if (isTailCall) {
1858 // Force all the incoming stack arguments to be loaded from the stack
1859 // before any new outgoing arguments are stored to the stack, because the
1860 // outgoing stack slots may alias the incoming argument stack slots, and
1861 // the alias isn't otherwise explicit. This is slightly more conservative
1862 // than necessary, because it means that each store effectively depends
1863 // on every argument instead of just those arguments it would clobber.
1864 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1866 SmallVector<SDValue, 8> MemOpChains2;
1867 SDValue FIN;
1868 int FI = 0;
1869 // Do not flag preceeding copytoreg stuff together with the following stuff.
1870 InFlag = SDValue();
1871 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1872 CCValAssign &VA = ArgLocs[i];
1873 if (!VA.isRegLoc()) {
1874 assert(VA.isMemLoc());
1875 SDValue Arg = Outs[i].Val;
1876 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1877 // Create frame index.
1878 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1879 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1880 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1881 FIN = DAG.getFrameIndex(FI, getPointerTy());
1883 if (Flags.isByVal()) {
1884 // Copy relative to framepointer.
1885 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1886 if (StackPtr.getNode() == 0)
1887 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1888 getPointerTy());
1889 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1891 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1892 ArgChain,
1893 Flags, DAG, dl));
1894 } else {
1895 // Store relative to framepointer.
1896 MemOpChains2.push_back(
1897 DAG.getStore(ArgChain, dl, Arg, FIN,
1898 PseudoSourceValue::getFixedStack(FI), 0));
1903 if (!MemOpChains2.empty())
1904 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1905 &MemOpChains2[0], MemOpChains2.size());
1907 // Copy arguments to their registers.
1908 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1909 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1910 RegsToPass[i].second, InFlag);
1911 InFlag = Chain.getValue(1);
1913 InFlag =SDValue();
1915 // Store the return address to the appropriate stack slot.
1916 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1917 FPDiff, dl);
1920 // If the callee is a GlobalAddress node (quite common, every direct call is)
1921 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1922 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1923 // We should use extra load for direct calls to dllimported functions in
1924 // non-JIT mode.
1925 GlobalValue *GV = G->getGlobal();
1926 if (!GV->hasDLLImportLinkage()) {
1927 unsigned char OpFlags = 0;
1929 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1930 // external symbols most go through the PLT in PIC mode. If the symbol
1931 // has hidden or protected visibility, or if it is static or local, then
1932 // we don't need to use the PLT - we can directly call it.
1933 if (Subtarget->isTargetELF() &&
1934 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1935 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1936 OpFlags = X86II::MO_PLT;
1937 } else if (Subtarget->isPICStyleStubAny() &&
1938 (GV->isDeclaration() || GV->isWeakForLinker()) &&
1939 Subtarget->getDarwinVers() < 9) {
1940 // PC-relative references to external symbols should go through $stub,
1941 // unless we're building with the leopard linker or later, which
1942 // automatically synthesizes these stubs.
1943 OpFlags = X86II::MO_DARWIN_STUB;
1946 Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1947 G->getOffset(), OpFlags);
1949 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1950 unsigned char OpFlags = 0;
1952 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1953 // symbols should go through the PLT.
1954 if (Subtarget->isTargetELF() &&
1955 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1956 OpFlags = X86II::MO_PLT;
1957 } else if (Subtarget->isPICStyleStubAny() &&
1958 Subtarget->getDarwinVers() < 9) {
1959 // PC-relative references to external symbols should go through $stub,
1960 // unless we're building with the leopard linker or later, which
1961 // automatically synthesizes these stubs.
1962 OpFlags = X86II::MO_DARWIN_STUB;
1965 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1966 OpFlags);
1967 } else if (isTailCall) {
1968 unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1970 Chain = DAG.getCopyToReg(Chain, dl,
1971 DAG.getRegister(Opc, getPointerTy()),
1972 Callee,InFlag);
1973 Callee = DAG.getRegister(Opc, getPointerTy());
1974 // Add register as live out.
1975 MF.getRegInfo().addLiveOut(Opc);
1978 // Returns a chain & a flag for retval copy to use.
1979 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1980 SmallVector<SDValue, 8> Ops;
1982 if (isTailCall) {
1983 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1984 DAG.getIntPtrConstant(0, true), InFlag);
1985 InFlag = Chain.getValue(1);
1988 Ops.push_back(Chain);
1989 Ops.push_back(Callee);
1991 if (isTailCall)
1992 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1994 // Add argument registers to the end of the list so that they are known live
1995 // into the call.
1996 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1997 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1998 RegsToPass[i].second.getValueType()));
2000 // Add an implicit use GOT pointer in EBX.
2001 if (!isTailCall && Subtarget->isPICStyleGOT())
2002 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2004 // Add an implicit use of AL for x86 vararg functions.
2005 if (Is64Bit && isVarArg)
2006 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2008 if (InFlag.getNode())
2009 Ops.push_back(InFlag);
2011 if (isTailCall) {
2012 // If this is the first return lowered for this function, add the regs
2013 // to the liveout set for the function.
2014 if (MF.getRegInfo().liveout_empty()) {
2015 SmallVector<CCValAssign, 16> RVLocs;
2016 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2017 *DAG.getContext());
2018 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2019 for (unsigned i = 0; i != RVLocs.size(); ++i)
2020 if (RVLocs[i].isRegLoc())
2021 MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2024 assert(((Callee.getOpcode() == ISD::Register &&
2025 (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2026 cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
2027 Callee.getOpcode() == ISD::TargetExternalSymbol ||
2028 Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2029 "Expecting an global address, external symbol, or register");
2031 return DAG.getNode(X86ISD::TC_RETURN, dl,
2032 NodeTys, &Ops[0], Ops.size());
2035 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2036 InFlag = Chain.getValue(1);
2038 // Create the CALLSEQ_END node.
2039 unsigned NumBytesForCalleeToPush;
2040 if (IsCalleePop(isVarArg, CallConv))
2041 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2042 else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2043 // If this is is a call to a struct-return function, the callee
2044 // pops the hidden struct pointer, so we have to push it back.
2045 // This is common for Darwin/X86, Linux & Mingw32 targets.
2046 NumBytesForCalleeToPush = 4;
2047 else
2048 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2050 // Returns a flag for retval copy to use.
2051 Chain = DAG.getCALLSEQ_END(Chain,
2052 DAG.getIntPtrConstant(NumBytes, true),
2053 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2054 true),
2055 InFlag);
2056 InFlag = Chain.getValue(1);
2058 // Handle result values, copying them out of physregs into vregs that we
2059 // return.
2060 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2061 Ins, dl, DAG, InVals);
2065 //===----------------------------------------------------------------------===//
2066 // Fast Calling Convention (tail call) implementation
2067 //===----------------------------------------------------------------------===//
2069 // Like std call, callee cleans arguments, convention except that ECX is
2070 // reserved for storing the tail called function address. Only 2 registers are
2071 // free for argument passing (inreg). Tail call optimization is performed
2072 // provided:
2073 // * tailcallopt is enabled
2074 // * caller/callee are fastcc
2075 // On X86_64 architecture with GOT-style position independent code only local
2076 // (within module) calls are supported at the moment.
2077 // To keep the stack aligned according to platform abi the function
2078 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2079 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2080 // If a tail called function callee has more arguments than the caller the
2081 // caller needs to make sure that there is room to move the RETADDR to. This is
2082 // achieved by reserving an area the size of the argument delta right after the
2083 // original REtADDR, but before the saved framepointer or the spilled registers
2084 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2085 // stack layout:
2086 // arg1
2087 // arg2
2088 // RETADDR
2089 // [ new RETADDR
2090 // move area ]
2091 // (possible EBP)
2092 // ESI
2093 // EDI
2094 // local1 ..
2096 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2097 /// for a 16 byte align requirement.
2098 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2099 SelectionDAG& DAG) {
2100 MachineFunction &MF = DAG.getMachineFunction();
2101 const TargetMachine &TM = MF.getTarget();
2102 const TargetFrameInfo &TFI = *TM.getFrameInfo();
2103 unsigned StackAlignment = TFI.getStackAlignment();
2104 uint64_t AlignMask = StackAlignment - 1;
2105 int64_t Offset = StackSize;
2106 uint64_t SlotSize = TD->getPointerSize();
2107 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2108 // Number smaller than 12 so just add the difference.
2109 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2110 } else {
2111 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2112 Offset = ((~AlignMask) & Offset) + StackAlignment +
2113 (StackAlignment-SlotSize);
2115 return Offset;
2118 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2119 /// for tail call optimization. Targets which want to do tail call
2120 /// optimization should implement this function.
2121 bool
2122 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2123 CallingConv::ID CalleeCC,
2124 bool isVarArg,
2125 const SmallVectorImpl<ISD::InputArg> &Ins,
2126 SelectionDAG& DAG) const {
2127 MachineFunction &MF = DAG.getMachineFunction();
2128 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2129 return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
2132 FastISel *
2133 X86TargetLowering::createFastISel(MachineFunction &mf,
2134 MachineModuleInfo *mmo,
2135 DwarfWriter *dw,
2136 DenseMap<const Value *, unsigned> &vm,
2137 DenseMap<const BasicBlock *,
2138 MachineBasicBlock *> &bm,
2139 DenseMap<const AllocaInst *, int> &am
2140 #ifndef NDEBUG
2141 , SmallSet<Instruction*, 8> &cil
2142 #endif
2144 return X86::createFastISel(mf, mmo, dw, vm, bm, am
2145 #ifndef NDEBUG
2146 , cil
2147 #endif
2152 //===----------------------------------------------------------------------===//
2153 // Other Lowering Hooks
2154 //===----------------------------------------------------------------------===//
2157 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2158 MachineFunction &MF = DAG.getMachineFunction();
2159 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2160 int ReturnAddrIndex = FuncInfo->getRAIndex();
2162 if (ReturnAddrIndex == 0) {
2163 // Set up a frame object for the return address.
2164 uint64_t SlotSize = TD->getPointerSize();
2165 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2166 FuncInfo->setRAIndex(ReturnAddrIndex);
2169 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2173 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2174 bool hasSymbolicDisplacement) {
2175 // Offset should fit into 32 bit immediate field.
2176 if (!isInt32(Offset))
2177 return false;
2179 // If we don't have a symbolic displacement - we don't have any extra
2180 // restrictions.
2181 if (!hasSymbolicDisplacement)
2182 return true;
2184 // FIXME: Some tweaks might be needed for medium code model.
2185 if (M != CodeModel::Small && M != CodeModel::Kernel)
2186 return false;
2188 // For small code model we assume that latest object is 16MB before end of 31
2189 // bits boundary. We may also accept pretty large negative constants knowing
2190 // that all objects are in the positive half of address space.
2191 if (M == CodeModel::Small && Offset < 16*1024*1024)
2192 return true;
2194 // For kernel code model we know that all object resist in the negative half
2195 // of 32bits address space. We may not accept negative offsets, since they may
2196 // be just off and we may accept pretty large positive ones.
2197 if (M == CodeModel::Kernel && Offset > 0)
2198 return true;
2200 return false;
2203 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2204 /// specific condition code, returning the condition code and the LHS/RHS of the
2205 /// comparison to make.
2206 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2207 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2208 if (!isFP) {
2209 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2210 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2211 // X > -1 -> X == 0, jump !sign.
2212 RHS = DAG.getConstant(0, RHS.getValueType());
2213 return X86::COND_NS;
2214 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2215 // X < 0 -> X == 0, jump on sign.
2216 return X86::COND_S;
2217 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2218 // X < 1 -> X <= 0
2219 RHS = DAG.getConstant(0, RHS.getValueType());
2220 return X86::COND_LE;
2224 switch (SetCCOpcode) {
2225 default: llvm_unreachable("Invalid integer condition!");
2226 case ISD::SETEQ: return X86::COND_E;
2227 case ISD::SETGT: return X86::COND_G;
2228 case ISD::SETGE: return X86::COND_GE;
2229 case ISD::SETLT: return X86::COND_L;
2230 case ISD::SETLE: return X86::COND_LE;
2231 case ISD::SETNE: return X86::COND_NE;
2232 case ISD::SETULT: return X86::COND_B;
2233 case ISD::SETUGT: return X86::COND_A;
2234 case ISD::SETULE: return X86::COND_BE;
2235 case ISD::SETUGE: return X86::COND_AE;
2239 // First determine if it is required or is profitable to flip the operands.
2241 // If LHS is a foldable load, but RHS is not, flip the condition.
2242 if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2243 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2244 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2245 std::swap(LHS, RHS);
2248 switch (SetCCOpcode) {
2249 default: break;
2250 case ISD::SETOLT:
2251 case ISD::SETOLE:
2252 case ISD::SETUGT:
2253 case ISD::SETUGE:
2254 std::swap(LHS, RHS);
2255 break;
2258 // On a floating point condition, the flags are set as follows:
2259 // ZF PF CF op
2260 // 0 | 0 | 0 | X > Y
2261 // 0 | 0 | 1 | X < Y
2262 // 1 | 0 | 0 | X == Y
2263 // 1 | 1 | 1 | unordered
2264 switch (SetCCOpcode) {
2265 default: llvm_unreachable("Condcode should be pre-legalized away");
2266 case ISD::SETUEQ:
2267 case ISD::SETEQ: return X86::COND_E;
2268 case ISD::SETOLT: // flipped
2269 case ISD::SETOGT:
2270 case ISD::SETGT: return X86::COND_A;
2271 case ISD::SETOLE: // flipped
2272 case ISD::SETOGE:
2273 case ISD::SETGE: return X86::COND_AE;
2274 case ISD::SETUGT: // flipped
2275 case ISD::SETULT:
2276 case ISD::SETLT: return X86::COND_B;
2277 case ISD::SETUGE: // flipped
2278 case ISD::SETULE:
2279 case ISD::SETLE: return X86::COND_BE;
2280 case ISD::SETONE:
2281 case ISD::SETNE: return X86::COND_NE;
2282 case ISD::SETUO: return X86::COND_P;
2283 case ISD::SETO: return X86::COND_NP;
2287 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2288 /// code. Current x86 isa includes the following FP cmov instructions:
2289 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2290 static bool hasFPCMov(unsigned X86CC) {
2291 switch (X86CC) {
2292 default:
2293 return false;
2294 case X86::COND_B:
2295 case X86::COND_BE:
2296 case X86::COND_E:
2297 case X86::COND_P:
2298 case X86::COND_A:
2299 case X86::COND_AE:
2300 case X86::COND_NE:
2301 case X86::COND_NP:
2302 return true;
2306 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2307 /// the specified range (L, H].
2308 static bool isUndefOrInRange(int Val, int Low, int Hi) {
2309 return (Val < 0) || (Val >= Low && Val < Hi);
2312 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2313 /// specified value.
2314 static bool isUndefOrEqual(int Val, int CmpVal) {
2315 if (Val < 0 || Val == CmpVal)
2316 return true;
2317 return false;
2320 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2321 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2322 /// the second operand.
2323 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2324 if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2325 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2326 if (VT == MVT::v2f64 || VT == MVT::v2i64)
2327 return (Mask[0] < 2 && Mask[1] < 2);
2328 return false;
2331 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2332 SmallVector<int, 8> M;
2333 N->getMask(M);
2334 return ::isPSHUFDMask(M, N->getValueType(0));
2337 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2338 /// is suitable for input to PSHUFHW.
2339 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2340 if (VT != MVT::v8i16)
2341 return false;
2343 // Lower quadword copied in order or undef.
2344 for (int i = 0; i != 4; ++i)
2345 if (Mask[i] >= 0 && Mask[i] != i)
2346 return false;
2348 // Upper quadword shuffled.
2349 for (int i = 4; i != 8; ++i)
2350 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2351 return false;
2353 return true;
2356 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2357 SmallVector<int, 8> M;
2358 N->getMask(M);
2359 return ::isPSHUFHWMask(M, N->getValueType(0));
2362 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2363 /// is suitable for input to PSHUFLW.
2364 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2365 if (VT != MVT::v8i16)
2366 return false;
2368 // Upper quadword copied in order.
2369 for (int i = 4; i != 8; ++i)
2370 if (Mask[i] >= 0 && Mask[i] != i)
2371 return false;
2373 // Lower quadword shuffled.
2374 for (int i = 0; i != 4; ++i)
2375 if (Mask[i] >= 4)
2376 return false;
2378 return true;
2381 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2382 SmallVector<int, 8> M;
2383 N->getMask(M);
2384 return ::isPSHUFLWMask(M, N->getValueType(0));
2387 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2388 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2389 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2390 int NumElems = VT.getVectorNumElements();
2391 if (NumElems != 2 && NumElems != 4)
2392 return false;
2394 int Half = NumElems / 2;
2395 for (int i = 0; i < Half; ++i)
2396 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2397 return false;
2398 for (int i = Half; i < NumElems; ++i)
2399 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2400 return false;
2402 return true;
2405 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2406 SmallVector<int, 8> M;
2407 N->getMask(M);
2408 return ::isSHUFPMask(M, N->getValueType(0));
2411 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2412 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2413 /// half elements to come from vector 1 (which would equal the dest.) and
2414 /// the upper half to come from vector 2.
2415 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2416 int NumElems = VT.getVectorNumElements();
2418 if (NumElems != 2 && NumElems != 4)
2419 return false;
2421 int Half = NumElems / 2;
2422 for (int i = 0; i < Half; ++i)
2423 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2424 return false;
2425 for (int i = Half; i < NumElems; ++i)
2426 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2427 return false;
2428 return true;
2431 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2432 SmallVector<int, 8> M;
2433 N->getMask(M);
2434 return isCommutedSHUFPMask(M, N->getValueType(0));
2437 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2438 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2439 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2440 if (N->getValueType(0).getVectorNumElements() != 4)
2441 return false;
2443 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2444 return isUndefOrEqual(N->getMaskElt(0), 6) &&
2445 isUndefOrEqual(N->getMaskElt(1), 7) &&
2446 isUndefOrEqual(N->getMaskElt(2), 2) &&
2447 isUndefOrEqual(N->getMaskElt(3), 3);
2450 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2451 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2452 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2453 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2455 if (NumElems != 2 && NumElems != 4)
2456 return false;
2458 for (unsigned i = 0; i < NumElems/2; ++i)
2459 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2460 return false;
2462 for (unsigned i = NumElems/2; i < NumElems; ++i)
2463 if (!isUndefOrEqual(N->getMaskElt(i), i))
2464 return false;
2466 return true;
2469 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2470 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2471 /// and MOVLHPS.
2472 bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2473 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2475 if (NumElems != 2 && NumElems != 4)
2476 return false;
2478 for (unsigned i = 0; i < NumElems/2; ++i)
2479 if (!isUndefOrEqual(N->getMaskElt(i), i))
2480 return false;
2482 for (unsigned i = 0; i < NumElems/2; ++i)
2483 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2484 return false;
2486 return true;
2489 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2490 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2491 /// <2, 3, 2, 3>
2492 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2493 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2495 if (NumElems != 4)
2496 return false;
2498 return isUndefOrEqual(N->getMaskElt(0), 2) &&
2499 isUndefOrEqual(N->getMaskElt(1), 3) &&
2500 isUndefOrEqual(N->getMaskElt(2), 2) &&
2501 isUndefOrEqual(N->getMaskElt(3), 3);
2504 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2505 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2506 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2507 bool V2IsSplat = false) {
2508 int NumElts = VT.getVectorNumElements();
2509 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2510 return false;
2512 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2513 int BitI = Mask[i];
2514 int BitI1 = Mask[i+1];
2515 if (!isUndefOrEqual(BitI, j))
2516 return false;
2517 if (V2IsSplat) {
2518 if (!isUndefOrEqual(BitI1, NumElts))
2519 return false;
2520 } else {
2521 if (!isUndefOrEqual(BitI1, j + NumElts))
2522 return false;
2525 return true;
2528 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2529 SmallVector<int, 8> M;
2530 N->getMask(M);
2531 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2534 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2535 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2536 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2537 bool V2IsSplat = false) {
2538 int NumElts = VT.getVectorNumElements();
2539 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2540 return false;
2542 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2543 int BitI = Mask[i];
2544 int BitI1 = Mask[i+1];
2545 if (!isUndefOrEqual(BitI, j + NumElts/2))
2546 return false;
2547 if (V2IsSplat) {
2548 if (isUndefOrEqual(BitI1, NumElts))
2549 return false;
2550 } else {
2551 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2552 return false;
2555 return true;
2558 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2559 SmallVector<int, 8> M;
2560 N->getMask(M);
2561 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2564 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2565 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2566 /// <0, 0, 1, 1>
2567 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2568 int NumElems = VT.getVectorNumElements();
2569 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2570 return false;
2572 for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2573 int BitI = Mask[i];
2574 int BitI1 = Mask[i+1];
2575 if (!isUndefOrEqual(BitI, j))
2576 return false;
2577 if (!isUndefOrEqual(BitI1, j))
2578 return false;
2580 return true;
2583 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2584 SmallVector<int, 8> M;
2585 N->getMask(M);
2586 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2589 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2590 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2591 /// <2, 2, 3, 3>
2592 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2593 int NumElems = VT.getVectorNumElements();
2594 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2595 return false;
2597 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2598 int BitI = Mask[i];
2599 int BitI1 = Mask[i+1];
2600 if (!isUndefOrEqual(BitI, j))
2601 return false;
2602 if (!isUndefOrEqual(BitI1, j))
2603 return false;
2605 return true;
2608 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2609 SmallVector<int, 8> M;
2610 N->getMask(M);
2611 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2614 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2615 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2616 /// MOVSD, and MOVD, i.e. setting the lowest element.
2617 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2618 if (VT.getVectorElementType().getSizeInBits() < 32)
2619 return false;
2621 int NumElts = VT.getVectorNumElements();
2623 if (!isUndefOrEqual(Mask[0], NumElts))
2624 return false;
2626 for (int i = 1; i < NumElts; ++i)
2627 if (!isUndefOrEqual(Mask[i], i))
2628 return false;
2630 return true;
2633 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2634 SmallVector<int, 8> M;
2635 N->getMask(M);
2636 return ::isMOVLMask(M, N->getValueType(0));
2639 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2640 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2641 /// element of vector 2 and the other elements to come from vector 1 in order.
2642 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2643 bool V2IsSplat = false, bool V2IsUndef = false) {
2644 int NumOps = VT.getVectorNumElements();
2645 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2646 return false;
2648 if (!isUndefOrEqual(Mask[0], 0))
2649 return false;
2651 for (int i = 1; i < NumOps; ++i)
2652 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2653 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2654 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2655 return false;
2657 return true;
2660 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2661 bool V2IsUndef = false) {
2662 SmallVector<int, 8> M;
2663 N->getMask(M);
2664 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2667 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2668 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2669 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2670 if (N->getValueType(0).getVectorNumElements() != 4)
2671 return false;
2673 // Expect 1, 1, 3, 3
2674 for (unsigned i = 0; i < 2; ++i) {
2675 int Elt = N->getMaskElt(i);
2676 if (Elt >= 0 && Elt != 1)
2677 return false;
2680 bool HasHi = false;
2681 for (unsigned i = 2; i < 4; ++i) {
2682 int Elt = N->getMaskElt(i);
2683 if (Elt >= 0 && Elt != 3)
2684 return false;
2685 if (Elt == 3)
2686 HasHi = true;
2688 // Don't use movshdup if it can be done with a shufps.
2689 // FIXME: verify that matching u, u, 3, 3 is what we want.
2690 return HasHi;
2693 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2694 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2695 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2696 if (N->getValueType(0).getVectorNumElements() != 4)
2697 return false;
2699 // Expect 0, 0, 2, 2
2700 for (unsigned i = 0; i < 2; ++i)
2701 if (N->getMaskElt(i) > 0)
2702 return false;
2704 bool HasHi = false;
2705 for (unsigned i = 2; i < 4; ++i) {
2706 int Elt = N->getMaskElt(i);
2707 if (Elt >= 0 && Elt != 2)
2708 return false;
2709 if (Elt == 2)
2710 HasHi = true;
2712 // Don't use movsldup if it can be done with a shufps.
2713 return HasHi;
2716 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2717 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2718 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2719 int e = N->getValueType(0).getVectorNumElements() / 2;
2721 for (int i = 0; i < e; ++i)
2722 if (!isUndefOrEqual(N->getMaskElt(i), i))
2723 return false;
2724 for (int i = 0; i < e; ++i)
2725 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2726 return false;
2727 return true;
2730 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2731 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2732 /// instructions.
2733 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2734 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2735 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2737 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2738 unsigned Mask = 0;
2739 for (int i = 0; i < NumOperands; ++i) {
2740 int Val = SVOp->getMaskElt(NumOperands-i-1);
2741 if (Val < 0) Val = 0;
2742 if (Val >= NumOperands) Val -= NumOperands;
2743 Mask |= Val;
2744 if (i != NumOperands - 1)
2745 Mask <<= Shift;
2747 return Mask;
2750 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2751 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2752 /// instructions.
2753 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2754 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2755 unsigned Mask = 0;
2756 // 8 nodes, but we only care about the last 4.
2757 for (unsigned i = 7; i >= 4; --i) {
2758 int Val = SVOp->getMaskElt(i);
2759 if (Val >= 0)
2760 Mask |= (Val - 4);
2761 if (i != 4)
2762 Mask <<= 2;
2764 return Mask;
2767 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2768 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2769 /// instructions.
2770 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2771 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2772 unsigned Mask = 0;
2773 // 8 nodes, but we only care about the first 4.
2774 for (int i = 3; i >= 0; --i) {
2775 int Val = SVOp->getMaskElt(i);
2776 if (Val >= 0)
2777 Mask |= Val;
2778 if (i != 0)
2779 Mask <<= 2;
2781 return Mask;
2784 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2785 /// constant +0.0.
2786 bool X86::isZeroNode(SDValue Elt) {
2787 return ((isa<ConstantSDNode>(Elt) &&
2788 cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2789 (isa<ConstantFPSDNode>(Elt) &&
2790 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2793 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2794 /// their permute mask.
2795 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2796 SelectionDAG &DAG) {
2797 EVT VT = SVOp->getValueType(0);
2798 unsigned NumElems = VT.getVectorNumElements();
2799 SmallVector<int, 8> MaskVec;
2801 for (unsigned i = 0; i != NumElems; ++i) {
2802 int idx = SVOp->getMaskElt(i);
2803 if (idx < 0)
2804 MaskVec.push_back(idx);
2805 else if (idx < (int)NumElems)
2806 MaskVec.push_back(idx + NumElems);
2807 else
2808 MaskVec.push_back(idx - NumElems);
2810 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2811 SVOp->getOperand(0), &MaskVec[0]);
2814 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2815 /// the two vector operands have swapped position.
2816 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
2817 unsigned NumElems = VT.getVectorNumElements();
2818 for (unsigned i = 0; i != NumElems; ++i) {
2819 int idx = Mask[i];
2820 if (idx < 0)
2821 continue;
2822 else if (idx < (int)NumElems)
2823 Mask[i] = idx + NumElems;
2824 else
2825 Mask[i] = idx - NumElems;
2829 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2830 /// match movhlps. The lower half elements should come from upper half of
2831 /// V1 (and in order), and the upper half elements should come from the upper
2832 /// half of V2 (and in order).
2833 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2834 if (Op->getValueType(0).getVectorNumElements() != 4)
2835 return false;
2836 for (unsigned i = 0, e = 2; i != e; ++i)
2837 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2838 return false;
2839 for (unsigned i = 2; i != 4; ++i)
2840 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2841 return false;
2842 return true;
2845 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2846 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2847 /// required.
2848 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2849 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2850 return false;
2851 N = N->getOperand(0).getNode();
2852 if (!ISD::isNON_EXTLoad(N))
2853 return false;
2854 if (LD)
2855 *LD = cast<LoadSDNode>(N);
2856 return true;
2859 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2860 /// match movlp{s|d}. The lower half elements should come from lower half of
2861 /// V1 (and in order), and the upper half elements should come from the upper
2862 /// half of V2 (and in order). And since V1 will become the source of the
2863 /// MOVLP, it must be either a vector load or a scalar load to vector.
2864 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2865 ShuffleVectorSDNode *Op) {
2866 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2867 return false;
2868 // Is V2 is a vector load, don't do this transformation. We will try to use
2869 // load folding shufps op.
2870 if (ISD::isNON_EXTLoad(V2))
2871 return false;
2873 unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2875 if (NumElems != 2 && NumElems != 4)
2876 return false;
2877 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2878 if (!isUndefOrEqual(Op->getMaskElt(i), i))
2879 return false;
2880 for (unsigned i = NumElems/2; i != NumElems; ++i)
2881 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2882 return false;
2883 return true;
2886 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2887 /// all the same.
2888 static bool isSplatVector(SDNode *N) {
2889 if (N->getOpcode() != ISD::BUILD_VECTOR)
2890 return false;
2892 SDValue SplatValue = N->getOperand(0);
2893 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2894 if (N->getOperand(i) != SplatValue)
2895 return false;
2896 return true;
2899 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2900 /// to an zero vector.
2901 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2902 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2903 SDValue V1 = N->getOperand(0);
2904 SDValue V2 = N->getOperand(1);
2905 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2906 for (unsigned i = 0; i != NumElems; ++i) {
2907 int Idx = N->getMaskElt(i);
2908 if (Idx >= (int)NumElems) {
2909 unsigned Opc = V2.getOpcode();
2910 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2911 continue;
2912 if (Opc != ISD::BUILD_VECTOR ||
2913 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
2914 return false;
2915 } else if (Idx >= 0) {
2916 unsigned Opc = V1.getOpcode();
2917 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2918 continue;
2919 if (Opc != ISD::BUILD_VECTOR ||
2920 !X86::isZeroNode(V1.getOperand(Idx)))
2921 return false;
2924 return true;
2927 /// getZeroVector - Returns a vector of specified type with all zero elements.
2929 static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
2930 DebugLoc dl) {
2931 assert(VT.isVector() && "Expected a vector type");
2933 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2934 // type. This ensures they get CSE'd.
2935 SDValue Vec;
2936 if (VT.getSizeInBits() == 64) { // MMX
2937 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2938 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2939 } else if (HasSSE2) { // SSE2
2940 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2941 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2942 } else { // SSE1
2943 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2944 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2946 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2949 /// getOnesVector - Returns a vector of specified type with all bits set.
2951 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2952 assert(VT.isVector() && "Expected a vector type");
2954 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2955 // type. This ensures they get CSE'd.
2956 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2957 SDValue Vec;
2958 if (VT.getSizeInBits() == 64) // MMX
2959 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2960 else // SSE
2961 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2962 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2966 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2967 /// that point to V2 points to its first element.
2968 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2969 EVT VT = SVOp->getValueType(0);
2970 unsigned NumElems = VT.getVectorNumElements();
2972 bool Changed = false;
2973 SmallVector<int, 8> MaskVec;
2974 SVOp->getMask(MaskVec);
2976 for (unsigned i = 0; i != NumElems; ++i) {
2977 if (MaskVec[i] > (int)NumElems) {
2978 MaskVec[i] = NumElems;
2979 Changed = true;
2982 if (Changed)
2983 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2984 SVOp->getOperand(1), &MaskVec[0]);
2985 return SDValue(SVOp, 0);
2988 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2989 /// operation of specified width.
2990 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
2991 SDValue V2) {
2992 unsigned NumElems = VT.getVectorNumElements();
2993 SmallVector<int, 8> Mask;
2994 Mask.push_back(NumElems);
2995 for (unsigned i = 1; i != NumElems; ++i)
2996 Mask.push_back(i);
2997 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3000 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3001 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3002 SDValue V2) {
3003 unsigned NumElems = VT.getVectorNumElements();
3004 SmallVector<int, 8> Mask;
3005 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3006 Mask.push_back(i);
3007 Mask.push_back(i + NumElems);
3009 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3012 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3013 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3014 SDValue V2) {
3015 unsigned NumElems = VT.getVectorNumElements();
3016 unsigned Half = NumElems/2;
3017 SmallVector<int, 8> Mask;
3018 for (unsigned i = 0; i != Half; ++i) {
3019 Mask.push_back(i + Half);
3020 Mask.push_back(i + NumElems + Half);
3022 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3025 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3026 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3027 bool HasSSE2) {
3028 if (SV->getValueType(0).getVectorNumElements() <= 4)
3029 return SDValue(SV, 0);
3031 EVT PVT = MVT::v4f32;
3032 EVT VT = SV->getValueType(0);
3033 DebugLoc dl = SV->getDebugLoc();
3034 SDValue V1 = SV->getOperand(0);
3035 int NumElems = VT.getVectorNumElements();
3036 int EltNo = SV->getSplatIndex();
3038 // unpack elements to the correct location
3039 while (NumElems > 4) {
3040 if (EltNo < NumElems/2) {
3041 V1 = getUnpackl(DAG, dl, VT, V1, V1);
3042 } else {
3043 V1 = getUnpackh(DAG, dl, VT, V1, V1);
3044 EltNo -= NumElems/2;
3046 NumElems >>= 1;
3049 // Perform the splat.
3050 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3051 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3052 V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3053 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3056 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3057 /// vector of zero or undef vector. This produces a shuffle where the low
3058 /// element of V2 is swizzled into the zero/undef vector, landing at element
3059 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3060 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3061 bool isZero, bool HasSSE2,
3062 SelectionDAG &DAG) {
3063 EVT VT = V2.getValueType();
3064 SDValue V1 = isZero
3065 ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3066 unsigned NumElems = VT.getVectorNumElements();
3067 SmallVector<int, 16> MaskVec;
3068 for (unsigned i = 0; i != NumElems; ++i)
3069 // If this is the insertion idx, put the low elt of V2 here.
3070 MaskVec.push_back(i == Idx ? NumElems : i);
3071 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3074 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
3075 /// a shuffle that is zero.
3076 static
3077 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3078 bool Low, SelectionDAG &DAG) {
3079 unsigned NumZeros = 0;
3080 for (int i = 0; i < NumElems; ++i) {
3081 unsigned Index = Low ? i : NumElems-i-1;
3082 int Idx = SVOp->getMaskElt(Index);
3083 if (Idx < 0) {
3084 ++NumZeros;
3085 continue;
3087 SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3088 if (Elt.getNode() && X86::isZeroNode(Elt))
3089 ++NumZeros;
3090 else
3091 break;
3093 return NumZeros;
3096 /// isVectorShift - Returns true if the shuffle can be implemented as a
3097 /// logical left or right shift of a vector.
3098 /// FIXME: split into pslldqi, psrldqi, palignr variants.
3099 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3100 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3101 int NumElems = SVOp->getValueType(0).getVectorNumElements();
3103 isLeft = true;
3104 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3105 if (!NumZeros) {
3106 isLeft = false;
3107 NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3108 if (!NumZeros)
3109 return false;
3111 bool SeenV1 = false;
3112 bool SeenV2 = false;
3113 for (int i = NumZeros; i < NumElems; ++i) {
3114 int Val = isLeft ? (i - NumZeros) : i;
3115 int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3116 if (Idx < 0)
3117 continue;
3118 if (Idx < NumElems)
3119 SeenV1 = true;
3120 else {
3121 Idx -= NumElems;
3122 SeenV2 = true;
3124 if (Idx != Val)
3125 return false;
3127 if (SeenV1 && SeenV2)
3128 return false;
3130 ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3131 ShAmt = NumZeros;
3132 return true;
3136 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3138 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3139 unsigned NumNonZero, unsigned NumZero,
3140 SelectionDAG &DAG, TargetLowering &TLI) {
3141 if (NumNonZero > 8)
3142 return SDValue();
3144 DebugLoc dl = Op.getDebugLoc();
3145 SDValue V(0, 0);
3146 bool First = true;
3147 for (unsigned i = 0; i < 16; ++i) {
3148 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3149 if (ThisIsNonZero && First) {
3150 if (NumZero)
3151 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3152 else
3153 V = DAG.getUNDEF(MVT::v8i16);
3154 First = false;
3157 if ((i & 1) != 0) {
3158 SDValue ThisElt(0, 0), LastElt(0, 0);
3159 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3160 if (LastIsNonZero) {
3161 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3162 MVT::i16, Op.getOperand(i-1));
3164 if (ThisIsNonZero) {
3165 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3166 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3167 ThisElt, DAG.getConstant(8, MVT::i8));
3168 if (LastIsNonZero)
3169 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3170 } else
3171 ThisElt = LastElt;
3173 if (ThisElt.getNode())
3174 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3175 DAG.getIntPtrConstant(i/2));
3179 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3182 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3184 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3185 unsigned NumNonZero, unsigned NumZero,
3186 SelectionDAG &DAG, TargetLowering &TLI) {
3187 if (NumNonZero > 4)
3188 return SDValue();
3190 DebugLoc dl = Op.getDebugLoc();
3191 SDValue V(0, 0);
3192 bool First = true;
3193 for (unsigned i = 0; i < 8; ++i) {
3194 bool isNonZero = (NonZeros & (1 << i)) != 0;
3195 if (isNonZero) {
3196 if (First) {
3197 if (NumZero)
3198 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3199 else
3200 V = DAG.getUNDEF(MVT::v8i16);
3201 First = false;
3203 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3204 MVT::v8i16, V, Op.getOperand(i),
3205 DAG.getIntPtrConstant(i));
3209 return V;
3212 /// getVShift - Return a vector logical shift node.
3214 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3215 unsigned NumBits, SelectionDAG &DAG,
3216 const TargetLowering &TLI, DebugLoc dl) {
3217 bool isMMX = VT.getSizeInBits() == 64;
3218 EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3219 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3220 SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3221 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3222 DAG.getNode(Opc, dl, ShVT, SrcOp,
3223 DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3226 SDValue
3227 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3228 DebugLoc dl = Op.getDebugLoc();
3229 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3230 if (ISD::isBuildVectorAllZeros(Op.getNode())
3231 || ISD::isBuildVectorAllOnes(Op.getNode())) {
3232 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3233 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3234 // eliminated on x86-32 hosts.
3235 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3236 return Op;
3238 if (ISD::isBuildVectorAllOnes(Op.getNode()))
3239 return getOnesVector(Op.getValueType(), DAG, dl);
3240 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3243 EVT VT = Op.getValueType();
3244 EVT ExtVT = VT.getVectorElementType();
3245 unsigned EVTBits = ExtVT.getSizeInBits();
3247 unsigned NumElems = Op.getNumOperands();
3248 unsigned NumZero = 0;
3249 unsigned NumNonZero = 0;
3250 unsigned NonZeros = 0;
3251 bool IsAllConstants = true;
3252 SmallSet<SDValue, 8> Values;
3253 for (unsigned i = 0; i < NumElems; ++i) {
3254 SDValue Elt = Op.getOperand(i);
3255 if (Elt.getOpcode() == ISD::UNDEF)
3256 continue;
3257 Values.insert(Elt);
3258 if (Elt.getOpcode() != ISD::Constant &&
3259 Elt.getOpcode() != ISD::ConstantFP)
3260 IsAllConstants = false;
3261 if (X86::isZeroNode(Elt))
3262 NumZero++;
3263 else {
3264 NonZeros |= (1 << i);
3265 NumNonZero++;
3269 if (NumNonZero == 0) {
3270 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3271 return DAG.getUNDEF(VT);
3274 // Special case for single non-zero, non-undef, element.
3275 if (NumNonZero == 1) {
3276 unsigned Idx = CountTrailingZeros_32(NonZeros);
3277 SDValue Item = Op.getOperand(Idx);
3279 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3280 // the value are obviously zero, truncate the value to i32 and do the
3281 // insertion that way. Only do this if the value is non-constant or if the
3282 // value is a constant being inserted into element 0. It is cheaper to do
3283 // a constant pool load than it is to do a movd + shuffle.
3284 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3285 (!IsAllConstants || Idx == 0)) {
3286 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3287 // Handle MMX and SSE both.
3288 EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3289 unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3291 // Truncate the value (which may itself be a constant) to i32, and
3292 // convert it to a vector with movd (S2V+shuffle to zero extend).
3293 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3294 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3295 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3296 Subtarget->hasSSE2(), DAG);
3298 // Now we have our 32-bit value zero extended in the low element of
3299 // a vector. If Idx != 0, swizzle it into place.
3300 if (Idx != 0) {
3301 SmallVector<int, 4> Mask;
3302 Mask.push_back(Idx);
3303 for (unsigned i = 1; i != VecElts; ++i)
3304 Mask.push_back(i);
3305 Item = DAG.getVectorShuffle(VecVT, dl, Item,
3306 DAG.getUNDEF(Item.getValueType()),
3307 &Mask[0]);
3309 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3313 // If we have a constant or non-constant insertion into the low element of
3314 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3315 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3316 // depending on what the source datatype is.
3317 if (Idx == 0) {
3318 if (NumZero == 0) {
3319 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3320 } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3321 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3322 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3323 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3324 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3325 DAG);
3326 } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3327 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3328 EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3329 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3330 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3331 Subtarget->hasSSE2(), DAG);
3332 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3336 // Is it a vector logical left shift?
3337 if (NumElems == 2 && Idx == 1 &&
3338 X86::isZeroNode(Op.getOperand(0)) &&
3339 !X86::isZeroNode(Op.getOperand(1))) {
3340 unsigned NumBits = VT.getSizeInBits();
3341 return getVShift(true, VT,
3342 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3343 VT, Op.getOperand(1)),
3344 NumBits/2, DAG, *this, dl);
3347 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3348 return SDValue();
3350 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3351 // is a non-constant being inserted into an element other than the low one,
3352 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3353 // movd/movss) to move this into the low element, then shuffle it into
3354 // place.
3355 if (EVTBits == 32) {
3356 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3358 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3359 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3360 Subtarget->hasSSE2(), DAG);
3361 SmallVector<int, 8> MaskVec;
3362 for (unsigned i = 0; i < NumElems; i++)
3363 MaskVec.push_back(i == Idx ? 0 : 1);
3364 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3368 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3369 if (Values.size() == 1)
3370 return SDValue();
3372 // A vector full of immediates; various special cases are already
3373 // handled, so this is best done with a single constant-pool load.
3374 if (IsAllConstants)
3375 return SDValue();
3377 // Let legalizer expand 2-wide build_vectors.
3378 if (EVTBits == 64) {
3379 if (NumNonZero == 1) {
3380 // One half is zero or undef.
3381 unsigned Idx = CountTrailingZeros_32(NonZeros);
3382 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3383 Op.getOperand(Idx));
3384 return getShuffleVectorZeroOrUndef(V2, Idx, true,
3385 Subtarget->hasSSE2(), DAG);
3387 return SDValue();
3390 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3391 if (EVTBits == 8 && NumElems == 16) {
3392 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3393 *this);
3394 if (V.getNode()) return V;
3397 if (EVTBits == 16 && NumElems == 8) {
3398 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3399 *this);
3400 if (V.getNode()) return V;
3403 // If element VT is == 32 bits, turn it into a number of shuffles.
3404 SmallVector<SDValue, 8> V;
3405 V.resize(NumElems);
3406 if (NumElems == 4 && NumZero > 0) {
3407 for (unsigned i = 0; i < 4; ++i) {
3408 bool isZero = !(NonZeros & (1 << i));
3409 if (isZero)
3410 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3411 else
3412 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3415 for (unsigned i = 0; i < 2; ++i) {
3416 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3417 default: break;
3418 case 0:
3419 V[i] = V[i*2]; // Must be a zero vector.
3420 break;
3421 case 1:
3422 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3423 break;
3424 case 2:
3425 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3426 break;
3427 case 3:
3428 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3429 break;
3433 SmallVector<int, 8> MaskVec;
3434 bool Reverse = (NonZeros & 0x3) == 2;
3435 for (unsigned i = 0; i < 2; ++i)
3436 MaskVec.push_back(Reverse ? 1-i : i);
3437 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3438 for (unsigned i = 0; i < 2; ++i)
3439 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3440 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3443 if (Values.size() > 2) {
3444 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3445 // values to be inserted is equal to the number of elements, in which case
3446 // use the unpack code below in the hopes of matching the consecutive elts
3447 // load merge pattern for shuffles.
3448 // FIXME: We could probably just check that here directly.
3449 if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3450 getSubtarget()->hasSSE41()) {
3451 V[0] = DAG.getUNDEF(VT);
3452 for (unsigned i = 0; i < NumElems; ++i)
3453 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3454 V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3455 Op.getOperand(i), DAG.getIntPtrConstant(i));
3456 return V[0];
3458 // Expand into a number of unpckl*.
3459 // e.g. for v4f32
3460 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3461 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3462 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3463 for (unsigned i = 0; i < NumElems; ++i)
3464 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3465 NumElems >>= 1;
3466 while (NumElems != 0) {
3467 for (unsigned i = 0; i < NumElems; ++i)
3468 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3469 NumElems >>= 1;
3471 return V[0];
3474 return SDValue();
3477 // v8i16 shuffles - Prefer shuffles in the following order:
3478 // 1. [all] pshuflw, pshufhw, optional move
3479 // 2. [ssse3] 1 x pshufb
3480 // 3. [ssse3] 2 x pshufb + 1 x por
3481 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3482 static
3483 SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3484 SelectionDAG &DAG, X86TargetLowering &TLI) {
3485 SDValue V1 = SVOp->getOperand(0);
3486 SDValue V2 = SVOp->getOperand(1);
3487 DebugLoc dl = SVOp->getDebugLoc();
3488 SmallVector<int, 8> MaskVals;
3490 // Determine if more than 1 of the words in each of the low and high quadwords
3491 // of the result come from the same quadword of one of the two inputs. Undef
3492 // mask values count as coming from any quadword, for better codegen.
3493 SmallVector<unsigned, 4> LoQuad(4);
3494 SmallVector<unsigned, 4> HiQuad(4);
3495 BitVector InputQuads(4);
3496 for (unsigned i = 0; i < 8; ++i) {
3497 SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3498 int EltIdx = SVOp->getMaskElt(i);
3499 MaskVals.push_back(EltIdx);
3500 if (EltIdx < 0) {
3501 ++Quad[0];
3502 ++Quad[1];
3503 ++Quad[2];
3504 ++Quad[3];
3505 continue;
3507 ++Quad[EltIdx / 4];
3508 InputQuads.set(EltIdx / 4);
3511 int BestLoQuad = -1;
3512 unsigned MaxQuad = 1;
3513 for (unsigned i = 0; i < 4; ++i) {
3514 if (LoQuad[i] > MaxQuad) {
3515 BestLoQuad = i;
3516 MaxQuad = LoQuad[i];
3520 int BestHiQuad = -1;
3521 MaxQuad = 1;
3522 for (unsigned i = 0; i < 4; ++i) {
3523 if (HiQuad[i] > MaxQuad) {
3524 BestHiQuad = i;
3525 MaxQuad = HiQuad[i];
3529 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3530 // of the two input vectors, shuffle them into one input vector so only a
3531 // single pshufb instruction is necessary. If There are more than 2 input
3532 // quads, disable the next transformation since it does not help SSSE3.
3533 bool V1Used = InputQuads[0] || InputQuads[1];
3534 bool V2Used = InputQuads[2] || InputQuads[3];
3535 if (TLI.getSubtarget()->hasSSSE3()) {
3536 if (InputQuads.count() == 2 && V1Used && V2Used) {
3537 BestLoQuad = InputQuads.find_first();
3538 BestHiQuad = InputQuads.find_next(BestLoQuad);
3540 if (InputQuads.count() > 2) {
3541 BestLoQuad = -1;
3542 BestHiQuad = -1;
3546 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3547 // the shuffle mask. If a quad is scored as -1, that means that it contains
3548 // words from all 4 input quadwords.
3549 SDValue NewV;
3550 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3551 SmallVector<int, 8> MaskV;
3552 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3553 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3554 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3555 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3556 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3557 NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3559 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3560 // source words for the shuffle, to aid later transformations.
3561 bool AllWordsInNewV = true;
3562 bool InOrder[2] = { true, true };
3563 for (unsigned i = 0; i != 8; ++i) {
3564 int idx = MaskVals[i];
3565 if (idx != (int)i)
3566 InOrder[i/4] = false;
3567 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3568 continue;
3569 AllWordsInNewV = false;
3570 break;
3573 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3574 if (AllWordsInNewV) {
3575 for (int i = 0; i != 8; ++i) {
3576 int idx = MaskVals[i];
3577 if (idx < 0)
3578 continue;
3579 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3580 if ((idx != i) && idx < 4)
3581 pshufhw = false;
3582 if ((idx != i) && idx > 3)
3583 pshuflw = false;
3585 V1 = NewV;
3586 V2Used = false;
3587 BestLoQuad = 0;
3588 BestHiQuad = 1;
3591 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3592 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3593 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3594 return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3595 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3599 // If we have SSSE3, and all words of the result are from 1 input vector,
3600 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3601 // is present, fall back to case 4.
3602 if (TLI.getSubtarget()->hasSSSE3()) {
3603 SmallVector<SDValue,16> pshufbMask;
3605 // If we have elements from both input vectors, set the high bit of the
3606 // shuffle mask element to zero out elements that come from V2 in the V1
3607 // mask, and elements that come from V1 in the V2 mask, so that the two
3608 // results can be OR'd together.
3609 bool TwoInputs = V1Used && V2Used;
3610 for (unsigned i = 0; i != 8; ++i) {
3611 int EltIdx = MaskVals[i] * 2;
3612 if (TwoInputs && (EltIdx >= 16)) {
3613 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3614 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3615 continue;
3617 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3618 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3620 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3621 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3622 DAG.getNode(ISD::BUILD_VECTOR, dl,
3623 MVT::v16i8, &pshufbMask[0], 16));
3624 if (!TwoInputs)
3625 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3627 // Calculate the shuffle mask for the second input, shuffle it, and
3628 // OR it with the first shuffled input.
3629 pshufbMask.clear();
3630 for (unsigned i = 0; i != 8; ++i) {
3631 int EltIdx = MaskVals[i] * 2;
3632 if (EltIdx < 16) {
3633 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3634 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3635 continue;
3637 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3638 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3640 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3641 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3642 DAG.getNode(ISD::BUILD_VECTOR, dl,
3643 MVT::v16i8, &pshufbMask[0], 16));
3644 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3645 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3648 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3649 // and update MaskVals with new element order.
3650 BitVector InOrder(8);
3651 if (BestLoQuad >= 0) {
3652 SmallVector<int, 8> MaskV;
3653 for (int i = 0; i != 4; ++i) {
3654 int idx = MaskVals[i];
3655 if (idx < 0) {
3656 MaskV.push_back(-1);
3657 InOrder.set(i);
3658 } else if ((idx / 4) == BestLoQuad) {
3659 MaskV.push_back(idx & 3);
3660 InOrder.set(i);
3661 } else {
3662 MaskV.push_back(-1);
3665 for (unsigned i = 4; i != 8; ++i)
3666 MaskV.push_back(i);
3667 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3668 &MaskV[0]);
3671 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3672 // and update MaskVals with the new element order.
3673 if (BestHiQuad >= 0) {
3674 SmallVector<int, 8> MaskV;
3675 for (unsigned i = 0; i != 4; ++i)
3676 MaskV.push_back(i);
3677 for (unsigned i = 4; i != 8; ++i) {
3678 int idx = MaskVals[i];
3679 if (idx < 0) {
3680 MaskV.push_back(-1);
3681 InOrder.set(i);
3682 } else if ((idx / 4) == BestHiQuad) {
3683 MaskV.push_back((idx & 3) + 4);
3684 InOrder.set(i);
3685 } else {
3686 MaskV.push_back(-1);
3689 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3690 &MaskV[0]);
3693 // In case BestHi & BestLo were both -1, which means each quadword has a word
3694 // from each of the four input quadwords, calculate the InOrder bitvector now
3695 // before falling through to the insert/extract cleanup.
3696 if (BestLoQuad == -1 && BestHiQuad == -1) {
3697 NewV = V1;
3698 for (int i = 0; i != 8; ++i)
3699 if (MaskVals[i] < 0 || MaskVals[i] == i)
3700 InOrder.set(i);
3703 // The other elements are put in the right place using pextrw and pinsrw.
3704 for (unsigned i = 0; i != 8; ++i) {
3705 if (InOrder[i])
3706 continue;
3707 int EltIdx = MaskVals[i];
3708 if (EltIdx < 0)
3709 continue;
3710 SDValue ExtOp = (EltIdx < 8)
3711 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3712 DAG.getIntPtrConstant(EltIdx))
3713 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3714 DAG.getIntPtrConstant(EltIdx - 8));
3715 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3716 DAG.getIntPtrConstant(i));
3718 return NewV;
3721 // v16i8 shuffles - Prefer shuffles in the following order:
3722 // 1. [ssse3] 1 x pshufb
3723 // 2. [ssse3] 2 x pshufb + 1 x por
3724 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3725 static
3726 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3727 SelectionDAG &DAG, X86TargetLowering &TLI) {
3728 SDValue V1 = SVOp->getOperand(0);
3729 SDValue V2 = SVOp->getOperand(1);
3730 DebugLoc dl = SVOp->getDebugLoc();
3731 SmallVector<int, 16> MaskVals;
3732 SVOp->getMask(MaskVals);
3734 // If we have SSSE3, case 1 is generated when all result bytes come from
3735 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3736 // present, fall back to case 3.
3737 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3738 bool V1Only = true;
3739 bool V2Only = true;
3740 for (unsigned i = 0; i < 16; ++i) {
3741 int EltIdx = MaskVals[i];
3742 if (EltIdx < 0)
3743 continue;
3744 if (EltIdx < 16)
3745 V2Only = false;
3746 else
3747 V1Only = false;
3750 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3751 if (TLI.getSubtarget()->hasSSSE3()) {
3752 SmallVector<SDValue,16> pshufbMask;
3754 // If all result elements are from one input vector, then only translate
3755 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3757 // Otherwise, we have elements from both input vectors, and must zero out
3758 // elements that come from V2 in the first mask, and V1 in the second mask
3759 // so that we can OR them together.
3760 bool TwoInputs = !(V1Only || V2Only);
3761 for (unsigned i = 0; i != 16; ++i) {
3762 int EltIdx = MaskVals[i];
3763 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3764 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3765 continue;
3767 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3769 // If all the elements are from V2, assign it to V1 and return after
3770 // building the first pshufb.
3771 if (V2Only)
3772 V1 = V2;
3773 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3774 DAG.getNode(ISD::BUILD_VECTOR, dl,
3775 MVT::v16i8, &pshufbMask[0], 16));
3776 if (!TwoInputs)
3777 return V1;
3779 // Calculate the shuffle mask for the second input, shuffle it, and
3780 // OR it with the first shuffled input.
3781 pshufbMask.clear();
3782 for (unsigned i = 0; i != 16; ++i) {
3783 int EltIdx = MaskVals[i];
3784 if (EltIdx < 16) {
3785 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3786 continue;
3788 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3790 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3791 DAG.getNode(ISD::BUILD_VECTOR, dl,
3792 MVT::v16i8, &pshufbMask[0], 16));
3793 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3796 // No SSSE3 - Calculate in place words and then fix all out of place words
3797 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3798 // the 16 different words that comprise the two doublequadword input vectors.
3799 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3800 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3801 SDValue NewV = V2Only ? V2 : V1;
3802 for (int i = 0; i != 8; ++i) {
3803 int Elt0 = MaskVals[i*2];
3804 int Elt1 = MaskVals[i*2+1];
3806 // This word of the result is all undef, skip it.
3807 if (Elt0 < 0 && Elt1 < 0)
3808 continue;
3810 // This word of the result is already in the correct place, skip it.
3811 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3812 continue;
3813 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3814 continue;
3816 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3817 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3818 SDValue InsElt;
3820 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3821 // using a single extract together, load it and store it.
3822 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3823 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3824 DAG.getIntPtrConstant(Elt1 / 2));
3825 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3826 DAG.getIntPtrConstant(i));
3827 continue;
3830 // If Elt1 is defined, extract it from the appropriate source. If the
3831 // source byte is not also odd, shift the extracted word left 8 bits
3832 // otherwise clear the bottom 8 bits if we need to do an or.
3833 if (Elt1 >= 0) {
3834 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3835 DAG.getIntPtrConstant(Elt1 / 2));
3836 if ((Elt1 & 1) == 0)
3837 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3838 DAG.getConstant(8, TLI.getShiftAmountTy()));
3839 else if (Elt0 >= 0)
3840 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3841 DAG.getConstant(0xFF00, MVT::i16));
3843 // If Elt0 is defined, extract it from the appropriate source. If the
3844 // source byte is not also even, shift the extracted word right 8 bits. If
3845 // Elt1 was also defined, OR the extracted values together before
3846 // inserting them in the result.
3847 if (Elt0 >= 0) {
3848 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3849 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3850 if ((Elt0 & 1) != 0)
3851 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3852 DAG.getConstant(8, TLI.getShiftAmountTy()));
3853 else if (Elt1 >= 0)
3854 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3855 DAG.getConstant(0x00FF, MVT::i16));
3856 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3857 : InsElt0;
3859 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3860 DAG.getIntPtrConstant(i));
3862 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3865 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3866 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3867 /// done when every pair / quad of shuffle mask elements point to elements in
3868 /// the right sequence. e.g.
3869 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3870 static
3871 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3872 SelectionDAG &DAG,
3873 TargetLowering &TLI, DebugLoc dl) {
3874 EVT VT = SVOp->getValueType(0);
3875 SDValue V1 = SVOp->getOperand(0);
3876 SDValue V2 = SVOp->getOperand(1);
3877 unsigned NumElems = VT.getVectorNumElements();
3878 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3879 EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3880 EVT MaskEltVT = MaskVT.getVectorElementType();
3881 EVT NewVT = MaskVT;
3882 switch (VT.getSimpleVT().SimpleTy) {
3883 default: assert(false && "Unexpected!");
3884 case MVT::v4f32: NewVT = MVT::v2f64; break;
3885 case MVT::v4i32: NewVT = MVT::v2i64; break;
3886 case MVT::v8i16: NewVT = MVT::v4i32; break;
3887 case MVT::v16i8: NewVT = MVT::v4i32; break;
3890 if (NewWidth == 2) {
3891 if (VT.isInteger())
3892 NewVT = MVT::v2i64;
3893 else
3894 NewVT = MVT::v2f64;
3896 int Scale = NumElems / NewWidth;
3897 SmallVector<int, 8> MaskVec;
3898 for (unsigned i = 0; i < NumElems; i += Scale) {
3899 int StartIdx = -1;
3900 for (int j = 0; j < Scale; ++j) {
3901 int EltIdx = SVOp->getMaskElt(i+j);
3902 if (EltIdx < 0)
3903 continue;
3904 if (StartIdx == -1)
3905 StartIdx = EltIdx - (EltIdx % Scale);
3906 if (EltIdx != StartIdx + j)
3907 return SDValue();
3909 if (StartIdx == -1)
3910 MaskVec.push_back(-1);
3911 else
3912 MaskVec.push_back(StartIdx / Scale);
3915 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3916 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3917 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3920 /// getVZextMovL - Return a zero-extending vector move low node.
3922 static SDValue getVZextMovL(EVT VT, EVT OpVT,
3923 SDValue SrcOp, SelectionDAG &DAG,
3924 const X86Subtarget *Subtarget, DebugLoc dl) {
3925 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3926 LoadSDNode *LD = NULL;
3927 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3928 LD = dyn_cast<LoadSDNode>(SrcOp);
3929 if (!LD) {
3930 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3931 // instead.
3932 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3933 if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
3934 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3935 SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3936 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
3937 // PR2108
3938 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3939 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3940 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3941 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3942 OpVT,
3943 SrcOp.getOperand(0)
3944 .getOperand(0))));
3949 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3950 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3951 DAG.getNode(ISD::BIT_CONVERT, dl,
3952 OpVT, SrcOp)));
3955 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3956 /// shuffles.
3957 static SDValue
3958 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3959 SDValue V1 = SVOp->getOperand(0);
3960 SDValue V2 = SVOp->getOperand(1);
3961 DebugLoc dl = SVOp->getDebugLoc();
3962 EVT VT = SVOp->getValueType(0);
3964 SmallVector<std::pair<int, int>, 8> Locs;
3965 Locs.resize(4);
3966 SmallVector<int, 8> Mask1(4U, -1);
3967 SmallVector<int, 8> PermMask;
3968 SVOp->getMask(PermMask);
3970 unsigned NumHi = 0;
3971 unsigned NumLo = 0;
3972 for (unsigned i = 0; i != 4; ++i) {
3973 int Idx = PermMask[i];
3974 if (Idx < 0) {
3975 Locs[i] = std::make_pair(-1, -1);
3976 } else {
3977 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3978 if (Idx < 4) {
3979 Locs[i] = std::make_pair(0, NumLo);
3980 Mask1[NumLo] = Idx;
3981 NumLo++;
3982 } else {
3983 Locs[i] = std::make_pair(1, NumHi);
3984 if (2+NumHi < 4)
3985 Mask1[2+NumHi] = Idx;
3986 NumHi++;
3991 if (NumLo <= 2 && NumHi <= 2) {
3992 // If no more than two elements come from either vector. This can be
3993 // implemented with two shuffles. First shuffle gather the elements.
3994 // The second shuffle, which takes the first shuffle as both of its
3995 // vector operands, put the elements into the right order.
3996 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3998 SmallVector<int, 8> Mask2(4U, -1);
4000 for (unsigned i = 0; i != 4; ++i) {
4001 if (Locs[i].first == -1)
4002 continue;
4003 else {
4004 unsigned Idx = (i < 2) ? 0 : 4;
4005 Idx += Locs[i].first * 2 + Locs[i].second;
4006 Mask2[i] = Idx;
4010 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4011 } else if (NumLo == 3 || NumHi == 3) {
4012 // Otherwise, we must have three elements from one vector, call it X, and
4013 // one element from the other, call it Y. First, use a shufps to build an
4014 // intermediate vector with the one element from Y and the element from X
4015 // that will be in the same half in the final destination (the indexes don't
4016 // matter). Then, use a shufps to build the final vector, taking the half
4017 // containing the element from Y from the intermediate, and the other half
4018 // from X.
4019 if (NumHi == 3) {
4020 // Normalize it so the 3 elements come from V1.
4021 CommuteVectorShuffleMask(PermMask, VT);
4022 std::swap(V1, V2);
4025 // Find the element from V2.
4026 unsigned HiIndex;
4027 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4028 int Val = PermMask[HiIndex];
4029 if (Val < 0)
4030 continue;
4031 if (Val >= 4)
4032 break;
4035 Mask1[0] = PermMask[HiIndex];
4036 Mask1[1] = -1;
4037 Mask1[2] = PermMask[HiIndex^1];
4038 Mask1[3] = -1;
4039 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4041 if (HiIndex >= 2) {
4042 Mask1[0] = PermMask[0];
4043 Mask1[1] = PermMask[1];
4044 Mask1[2] = HiIndex & 1 ? 6 : 4;
4045 Mask1[3] = HiIndex & 1 ? 4 : 6;
4046 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4047 } else {
4048 Mask1[0] = HiIndex & 1 ? 2 : 0;
4049 Mask1[1] = HiIndex & 1 ? 0 : 2;
4050 Mask1[2] = PermMask[2];
4051 Mask1[3] = PermMask[3];
4052 if (Mask1[2] >= 0)
4053 Mask1[2] += 4;
4054 if (Mask1[3] >= 0)
4055 Mask1[3] += 4;
4056 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4060 // Break it into (shuffle shuffle_hi, shuffle_lo).
4061 Locs.clear();
4062 SmallVector<int,8> LoMask(4U, -1);
4063 SmallVector<int,8> HiMask(4U, -1);
4065 SmallVector<int,8> *MaskPtr = &LoMask;
4066 unsigned MaskIdx = 0;
4067 unsigned LoIdx = 0;
4068 unsigned HiIdx = 2;
4069 for (unsigned i = 0; i != 4; ++i) {
4070 if (i == 2) {
4071 MaskPtr = &HiMask;
4072 MaskIdx = 1;
4073 LoIdx = 0;
4074 HiIdx = 2;
4076 int Idx = PermMask[i];
4077 if (Idx < 0) {
4078 Locs[i] = std::make_pair(-1, -1);
4079 } else if (Idx < 4) {
4080 Locs[i] = std::make_pair(MaskIdx, LoIdx);
4081 (*MaskPtr)[LoIdx] = Idx;
4082 LoIdx++;
4083 } else {
4084 Locs[i] = std::make_pair(MaskIdx, HiIdx);
4085 (*MaskPtr)[HiIdx] = Idx;
4086 HiIdx++;
4090 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4091 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4092 SmallVector<int, 8> MaskOps;
4093 for (unsigned i = 0; i != 4; ++i) {
4094 if (Locs[i].first == -1) {
4095 MaskOps.push_back(-1);
4096 } else {
4097 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4098 MaskOps.push_back(Idx);
4101 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4104 SDValue
4105 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4106 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4107 SDValue V1 = Op.getOperand(0);
4108 SDValue V2 = Op.getOperand(1);
4109 EVT VT = Op.getValueType();
4110 DebugLoc dl = Op.getDebugLoc();
4111 unsigned NumElems = VT.getVectorNumElements();
4112 bool isMMX = VT.getSizeInBits() == 64;
4113 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4114 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4115 bool V1IsSplat = false;
4116 bool V2IsSplat = false;
4118 if (isZeroShuffle(SVOp))
4119 return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4121 // Promote splats to v4f32.
4122 if (SVOp->isSplat()) {
4123 if (isMMX || NumElems < 4)
4124 return Op;
4125 return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4128 // If the shuffle can be profitably rewritten as a narrower shuffle, then
4129 // do it!
4130 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4131 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4132 if (NewOp.getNode())
4133 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4134 LowerVECTOR_SHUFFLE(NewOp, DAG));
4135 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4136 // FIXME: Figure out a cleaner way to do this.
4137 // Try to make use of movq to zero out the top part.
4138 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4139 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4140 if (NewOp.getNode()) {
4141 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4142 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4143 DAG, Subtarget, dl);
4145 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4146 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4147 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4148 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4149 DAG, Subtarget, dl);
4153 if (X86::isPSHUFDMask(SVOp))
4154 return Op;
4156 // Check if this can be converted into a logical shift.
4157 bool isLeft = false;
4158 unsigned ShAmt = 0;
4159 SDValue ShVal;
4160 bool isShift = getSubtarget()->hasSSE2() &&
4161 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4162 if (isShift && ShVal.hasOneUse()) {
4163 // If the shifted value has multiple uses, it may be cheaper to use
4164 // v_set0 + movlhps or movhlps, etc.
4165 EVT EVT = VT.getVectorElementType();
4166 ShAmt *= EVT.getSizeInBits();
4167 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4170 if (X86::isMOVLMask(SVOp)) {
4171 if (V1IsUndef)
4172 return V2;
4173 if (ISD::isBuildVectorAllZeros(V1.getNode()))
4174 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4175 if (!isMMX)
4176 return Op;
4179 // FIXME: fold these into legal mask.
4180 if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4181 X86::isMOVSLDUPMask(SVOp) ||
4182 X86::isMOVHLPSMask(SVOp) ||
4183 X86::isMOVHPMask(SVOp) ||
4184 X86::isMOVLPMask(SVOp)))
4185 return Op;
4187 if (ShouldXformToMOVHLPS(SVOp) ||
4188 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4189 return CommuteVectorShuffle(SVOp, DAG);
4191 if (isShift) {
4192 // No better options. Use a vshl / vsrl.
4193 EVT EVT = VT.getVectorElementType();
4194 ShAmt *= EVT.getSizeInBits();
4195 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4198 bool Commuted = false;
4199 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4200 // 1,1,1,1 -> v8i16 though.
4201 V1IsSplat = isSplatVector(V1.getNode());
4202 V2IsSplat = isSplatVector(V2.getNode());
4204 // Canonicalize the splat or undef, if present, to be on the RHS.
4205 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4206 Op = CommuteVectorShuffle(SVOp, DAG);
4207 SVOp = cast<ShuffleVectorSDNode>(Op);
4208 V1 = SVOp->getOperand(0);
4209 V2 = SVOp->getOperand(1);
4210 std::swap(V1IsSplat, V2IsSplat);
4211 std::swap(V1IsUndef, V2IsUndef);
4212 Commuted = true;
4215 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4216 // Shuffling low element of v1 into undef, just return v1.
4217 if (V2IsUndef)
4218 return V1;
4219 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4220 // the instruction selector will not match, so get a canonical MOVL with
4221 // swapped operands to undo the commute.
4222 return getMOVL(DAG, dl, VT, V2, V1);
4225 if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4226 X86::isUNPCKH_v_undef_Mask(SVOp) ||
4227 X86::isUNPCKLMask(SVOp) ||
4228 X86::isUNPCKHMask(SVOp))
4229 return Op;
4231 if (V2IsSplat) {
4232 // Normalize mask so all entries that point to V2 points to its first
4233 // element then try to match unpck{h|l} again. If match, return a
4234 // new vector_shuffle with the corrected mask.
4235 SDValue NewMask = NormalizeMask(SVOp, DAG);
4236 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4237 if (NSVOp != SVOp) {
4238 if (X86::isUNPCKLMask(NSVOp, true)) {
4239 return NewMask;
4240 } else if (X86::isUNPCKHMask(NSVOp, true)) {
4241 return NewMask;
4246 if (Commuted) {
4247 // Commute is back and try unpck* again.
4248 // FIXME: this seems wrong.
4249 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4250 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4251 if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4252 X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4253 X86::isUNPCKLMask(NewSVOp) ||
4254 X86::isUNPCKHMask(NewSVOp))
4255 return NewOp;
4258 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4260 // Normalize the node to match x86 shuffle ops if needed
4261 if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4262 return CommuteVectorShuffle(SVOp, DAG);
4264 // Check for legal shuffle and return?
4265 SmallVector<int, 16> PermMask;
4266 SVOp->getMask(PermMask);
4267 if (isShuffleMaskLegal(PermMask, VT))
4268 return Op;
4270 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4271 if (VT == MVT::v8i16) {
4272 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4273 if (NewOp.getNode())
4274 return NewOp;
4277 if (VT == MVT::v16i8) {
4278 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4279 if (NewOp.getNode())
4280 return NewOp;
4283 // Handle all 4 wide cases with a number of shuffles except for MMX.
4284 if (NumElems == 4 && !isMMX)
4285 return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4287 return SDValue();
4290 SDValue
4291 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4292 SelectionDAG &DAG) {
4293 EVT VT = Op.getValueType();
4294 DebugLoc dl = Op.getDebugLoc();
4295 if (VT.getSizeInBits() == 8) {
4296 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4297 Op.getOperand(0), Op.getOperand(1));
4298 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4299 DAG.getValueType(VT));
4300 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4301 } else if (VT.getSizeInBits() == 16) {
4302 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4303 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4304 if (Idx == 0)
4305 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4306 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4307 DAG.getNode(ISD::BIT_CONVERT, dl,
4308 MVT::v4i32,
4309 Op.getOperand(0)),
4310 Op.getOperand(1)));
4311 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4312 Op.getOperand(0), Op.getOperand(1));
4313 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4314 DAG.getValueType(VT));
4315 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4316 } else if (VT == MVT::f32) {
4317 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4318 // the result back to FR32 register. It's only worth matching if the
4319 // result has a single use which is a store or a bitcast to i32. And in
4320 // the case of a store, it's not worth it if the index is a constant 0,
4321 // because a MOVSSmr can be used instead, which is smaller and faster.
4322 if (!Op.hasOneUse())
4323 return SDValue();
4324 SDNode *User = *Op.getNode()->use_begin();
4325 if ((User->getOpcode() != ISD::STORE ||
4326 (isa<ConstantSDNode>(Op.getOperand(1)) &&
4327 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4328 (User->getOpcode() != ISD::BIT_CONVERT ||
4329 User->getValueType(0) != MVT::i32))
4330 return SDValue();
4331 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4332 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4333 Op.getOperand(0)),
4334 Op.getOperand(1));
4335 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4336 } else if (VT == MVT::i32) {
4337 // ExtractPS works with constant index.
4338 if (isa<ConstantSDNode>(Op.getOperand(1)))
4339 return Op;
4341 return SDValue();
4345 SDValue
4346 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4347 if (!isa<ConstantSDNode>(Op.getOperand(1)))
4348 return SDValue();
4350 if (Subtarget->hasSSE41()) {
4351 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4352 if (Res.getNode())
4353 return Res;
4356 EVT VT = Op.getValueType();
4357 DebugLoc dl = Op.getDebugLoc();
4358 // TODO: handle v16i8.
4359 if (VT.getSizeInBits() == 16) {
4360 SDValue Vec = Op.getOperand(0);
4361 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4362 if (Idx == 0)
4363 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4364 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4365 DAG.getNode(ISD::BIT_CONVERT, dl,
4366 MVT::v4i32, Vec),
4367 Op.getOperand(1)));
4368 // Transform it so it match pextrw which produces a 32-bit result.
4369 EVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
4370 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4371 Op.getOperand(0), Op.getOperand(1));
4372 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4373 DAG.getValueType(VT));
4374 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4375 } else if (VT.getSizeInBits() == 32) {
4376 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4377 if (Idx == 0)
4378 return Op;
4380 // SHUFPS the element to the lowest double word, then movss.
4381 int Mask[4] = { Idx, -1, -1, -1 };
4382 EVT VVT = Op.getOperand(0).getValueType();
4383 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4384 DAG.getUNDEF(VVT), Mask);
4385 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4386 DAG.getIntPtrConstant(0));
4387 } else if (VT.getSizeInBits() == 64) {
4388 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4389 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4390 // to match extract_elt for f64.
4391 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4392 if (Idx == 0)
4393 return Op;
4395 // UNPCKHPD the element to the lowest double word, then movsd.
4396 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4397 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4398 int Mask[2] = { 1, -1 };
4399 EVT VVT = Op.getOperand(0).getValueType();
4400 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4401 DAG.getUNDEF(VVT), Mask);
4402 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4403 DAG.getIntPtrConstant(0));
4406 return SDValue();
4409 SDValue
4410 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4411 EVT VT = Op.getValueType();
4412 EVT EVT = VT.getVectorElementType();
4413 DebugLoc dl = Op.getDebugLoc();
4415 SDValue N0 = Op.getOperand(0);
4416 SDValue N1 = Op.getOperand(1);
4417 SDValue N2 = Op.getOperand(2);
4419 if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4420 isa<ConstantSDNode>(N2)) {
4421 unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4422 : X86ISD::PINSRW;
4423 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4424 // argument.
4425 if (N1.getValueType() != MVT::i32)
4426 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4427 if (N2.getValueType() != MVT::i32)
4428 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4429 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4430 } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4431 // Bits [7:6] of the constant are the source select. This will always be
4432 // zero here. The DAG Combiner may combine an extract_elt index into these
4433 // bits. For example (insert (extract, 3), 2) could be matched by putting
4434 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4435 // Bits [5:4] of the constant are the destination select. This is the
4436 // value of the incoming immediate.
4437 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4438 // combine either bitwise AND or insert of float 0.0 to set these bits.
4439 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4440 // Create this as a scalar to vector..
4441 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4442 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4443 } else if (EVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4444 // PINSR* works with constant index.
4445 return Op;
4447 return SDValue();
4450 SDValue
4451 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4452 EVT VT = Op.getValueType();
4453 EVT EVT = VT.getVectorElementType();
4455 if (Subtarget->hasSSE41())
4456 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4458 if (EVT == MVT::i8)
4459 return SDValue();
4461 DebugLoc dl = Op.getDebugLoc();
4462 SDValue N0 = Op.getOperand(0);
4463 SDValue N1 = Op.getOperand(1);
4464 SDValue N2 = Op.getOperand(2);
4466 if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4467 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4468 // as its second argument.
4469 if (N1.getValueType() != MVT::i32)
4470 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4471 if (N2.getValueType() != MVT::i32)
4472 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4473 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4475 return SDValue();
4478 SDValue
4479 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4480 DebugLoc dl = Op.getDebugLoc();
4481 if (Op.getValueType() == MVT::v2f32)
4482 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4483 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4484 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4485 Op.getOperand(0))));
4487 if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4488 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4490 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4491 EVT VT = MVT::v2i32;
4492 switch (Op.getValueType().getSimpleVT().SimpleTy) {
4493 default: break;
4494 case MVT::v16i8:
4495 case MVT::v8i16:
4496 VT = MVT::v4i32;
4497 break;
4499 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4500 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4503 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4504 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4505 // one of the above mentioned nodes. It has to be wrapped because otherwise
4506 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4507 // be used to form addressing mode. These wrapped nodes will be selected
4508 // into MOV32ri.
4509 SDValue
4510 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4511 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4513 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4514 // global base reg.
4515 unsigned char OpFlag = 0;
4516 unsigned WrapperKind = X86ISD::Wrapper;
4517 CodeModel::Model M = getTargetMachine().getCodeModel();
4519 if (Subtarget->isPICStyleRIPRel() &&
4520 (M == CodeModel::Small || M == CodeModel::Kernel))
4521 WrapperKind = X86ISD::WrapperRIP;
4522 else if (Subtarget->isPICStyleGOT())
4523 OpFlag = X86II::MO_GOTOFF;
4524 else if (Subtarget->isPICStyleStubPIC())
4525 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4527 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4528 CP->getAlignment(),
4529 CP->getOffset(), OpFlag);
4530 DebugLoc DL = CP->getDebugLoc();
4531 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4532 // With PIC, the address is actually $g + Offset.
4533 if (OpFlag) {
4534 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4535 DAG.getNode(X86ISD::GlobalBaseReg,
4536 DebugLoc::getUnknownLoc(), getPointerTy()),
4537 Result);
4540 return Result;
4543 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4544 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4546 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4547 // global base reg.
4548 unsigned char OpFlag = 0;
4549 unsigned WrapperKind = X86ISD::Wrapper;
4550 CodeModel::Model M = getTargetMachine().getCodeModel();
4552 if (Subtarget->isPICStyleRIPRel() &&
4553 (M == CodeModel::Small || M == CodeModel::Kernel))
4554 WrapperKind = X86ISD::WrapperRIP;
4555 else if (Subtarget->isPICStyleGOT())
4556 OpFlag = X86II::MO_GOTOFF;
4557 else if (Subtarget->isPICStyleStubPIC())
4558 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4560 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4561 OpFlag);
4562 DebugLoc DL = JT->getDebugLoc();
4563 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4565 // With PIC, the address is actually $g + Offset.
4566 if (OpFlag) {
4567 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4568 DAG.getNode(X86ISD::GlobalBaseReg,
4569 DebugLoc::getUnknownLoc(), getPointerTy()),
4570 Result);
4573 return Result;
4576 SDValue
4577 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4578 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4580 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4581 // global base reg.
4582 unsigned char OpFlag = 0;
4583 unsigned WrapperKind = X86ISD::Wrapper;
4584 CodeModel::Model M = getTargetMachine().getCodeModel();
4586 if (Subtarget->isPICStyleRIPRel() &&
4587 (M == CodeModel::Small || M == CodeModel::Kernel))
4588 WrapperKind = X86ISD::WrapperRIP;
4589 else if (Subtarget->isPICStyleGOT())
4590 OpFlag = X86II::MO_GOTOFF;
4591 else if (Subtarget->isPICStyleStubPIC())
4592 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4594 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4596 DebugLoc DL = Op.getDebugLoc();
4597 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4600 // With PIC, the address is actually $g + Offset.
4601 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4602 !Subtarget->is64Bit()) {
4603 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4604 DAG.getNode(X86ISD::GlobalBaseReg,
4605 DebugLoc::getUnknownLoc(),
4606 getPointerTy()),
4607 Result);
4610 return Result;
4613 SDValue
4614 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4615 int64_t Offset,
4616 SelectionDAG &DAG) const {
4617 // Create the TargetGlobalAddress node, folding in the constant
4618 // offset if it is legal.
4619 unsigned char OpFlags =
4620 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4621 CodeModel::Model M = getTargetMachine().getCodeModel();
4622 SDValue Result;
4623 if (OpFlags == X86II::MO_NO_FLAG &&
4624 X86::isOffsetSuitableForCodeModel(Offset, M)) {
4625 // A direct static reference to a global.
4626 Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4627 Offset = 0;
4628 } else {
4629 Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4632 if (Subtarget->isPICStyleRIPRel() &&
4633 (M == CodeModel::Small || M == CodeModel::Kernel))
4634 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4635 else
4636 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4638 // With PIC, the address is actually $g + Offset.
4639 if (isGlobalRelativeToPICBase(OpFlags)) {
4640 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4641 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4642 Result);
4645 // For globals that require a load from a stub to get the address, emit the
4646 // load.
4647 if (isGlobalStubReference(OpFlags))
4648 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4649 PseudoSourceValue::getGOT(), 0);
4651 // If there was a non-zero offset that we didn't fold, create an explicit
4652 // addition for it.
4653 if (Offset != 0)
4654 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4655 DAG.getConstant(Offset, getPointerTy()));
4657 return Result;
4660 SDValue
4661 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4662 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4663 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4664 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4667 static SDValue
4668 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4669 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
4670 unsigned char OperandFlags) {
4671 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4672 DebugLoc dl = GA->getDebugLoc();
4673 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4674 GA->getValueType(0),
4675 GA->getOffset(),
4676 OperandFlags);
4677 if (InFlag) {
4678 SDValue Ops[] = { Chain, TGA, *InFlag };
4679 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4680 } else {
4681 SDValue Ops[] = { Chain, TGA };
4682 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4684 SDValue Flag = Chain.getValue(1);
4685 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4688 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4689 static SDValue
4690 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4691 const EVT PtrVT) {
4692 SDValue InFlag;
4693 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
4694 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4695 DAG.getNode(X86ISD::GlobalBaseReg,
4696 DebugLoc::getUnknownLoc(),
4697 PtrVT), InFlag);
4698 InFlag = Chain.getValue(1);
4700 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4703 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4704 static SDValue
4705 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4706 const EVT PtrVT) {
4707 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4708 X86::RAX, X86II::MO_TLSGD);
4711 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4712 // "local exec" model.
4713 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4714 const EVT PtrVT, TLSModel::Model model,
4715 bool is64Bit) {
4716 DebugLoc dl = GA->getDebugLoc();
4717 // Get the Thread Pointer
4718 SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4719 DebugLoc::getUnknownLoc(), PtrVT,
4720 DAG.getRegister(is64Bit? X86::FS : X86::GS,
4721 MVT::i32));
4723 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4724 NULL, 0);
4726 unsigned char OperandFlags = 0;
4727 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
4728 // initialexec.
4729 unsigned WrapperKind = X86ISD::Wrapper;
4730 if (model == TLSModel::LocalExec) {
4731 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4732 } else if (is64Bit) {
4733 assert(model == TLSModel::InitialExec);
4734 OperandFlags = X86II::MO_GOTTPOFF;
4735 WrapperKind = X86ISD::WrapperRIP;
4736 } else {
4737 assert(model == TLSModel::InitialExec);
4738 OperandFlags = X86II::MO_INDNTPOFF;
4741 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4742 // exec)
4743 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4744 GA->getOffset(), OperandFlags);
4745 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4747 if (model == TLSModel::InitialExec)
4748 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4749 PseudoSourceValue::getGOT(), 0);
4751 // The address of the thread local variable is the add of the thread
4752 // pointer with the offset of the variable.
4753 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4756 SDValue
4757 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4758 // TODO: implement the "local dynamic" model
4759 // TODO: implement the "initial exec"model for pic executables
4760 assert(Subtarget->isTargetELF() &&
4761 "TLS not implemented for non-ELF targets");
4762 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4763 const GlobalValue *GV = GA->getGlobal();
4765 // If GV is an alias then use the aliasee for determining
4766 // thread-localness.
4767 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4768 GV = GA->resolveAliasedGlobal(false);
4770 TLSModel::Model model = getTLSModel(GV,
4771 getTargetMachine().getRelocationModel());
4773 switch (model) {
4774 case TLSModel::GeneralDynamic:
4775 case TLSModel::LocalDynamic: // not implemented
4776 if (Subtarget->is64Bit())
4777 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4778 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4780 case TLSModel::InitialExec:
4781 case TLSModel::LocalExec:
4782 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4783 Subtarget->is64Bit());
4786 llvm_unreachable("Unreachable");
4787 return SDValue();
4791 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4792 /// take a 2 x i32 value to shift plus a shift amount.
4793 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4794 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4795 EVT VT = Op.getValueType();
4796 unsigned VTBits = VT.getSizeInBits();
4797 DebugLoc dl = Op.getDebugLoc();
4798 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4799 SDValue ShOpLo = Op.getOperand(0);
4800 SDValue ShOpHi = Op.getOperand(1);
4801 SDValue ShAmt = Op.getOperand(2);
4802 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4803 DAG.getConstant(VTBits - 1, MVT::i8))
4804 : DAG.getConstant(0, VT);
4806 SDValue Tmp2, Tmp3;
4807 if (Op.getOpcode() == ISD::SHL_PARTS) {
4808 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4809 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4810 } else {
4811 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4812 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4815 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4816 DAG.getConstant(VTBits, MVT::i8));
4817 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4818 AndNode, DAG.getConstant(0, MVT::i8));
4820 SDValue Hi, Lo;
4821 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4822 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4823 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4825 if (Op.getOpcode() == ISD::SHL_PARTS) {
4826 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4827 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4828 } else {
4829 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4830 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4833 SDValue Ops[2] = { Lo, Hi };
4834 return DAG.getMergeValues(Ops, 2, dl);
4837 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4838 EVT SrcVT = Op.getOperand(0).getValueType();
4840 if (SrcVT.isVector()) {
4841 if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4842 return Op;
4844 return SDValue();
4847 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4848 "Unknown SINT_TO_FP to lower!");
4850 // These are really Legal; return the operand so the caller accepts it as
4851 // Legal.
4852 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4853 return Op;
4854 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4855 Subtarget->is64Bit()) {
4856 return Op;
4859 DebugLoc dl = Op.getDebugLoc();
4860 unsigned Size = SrcVT.getSizeInBits()/8;
4861 MachineFunction &MF = DAG.getMachineFunction();
4862 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4863 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4864 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4865 StackSlot,
4866 PseudoSourceValue::getFixedStack(SSFI), 0);
4867 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4870 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
4871 SDValue StackSlot,
4872 SelectionDAG &DAG) {
4873 // Build the FILD
4874 DebugLoc dl = Op.getDebugLoc();
4875 SDVTList Tys;
4876 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4877 if (useSSE)
4878 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4879 else
4880 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4881 SmallVector<SDValue, 8> Ops;
4882 Ops.push_back(Chain);
4883 Ops.push_back(StackSlot);
4884 Ops.push_back(DAG.getValueType(SrcVT));
4885 SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4886 Tys, &Ops[0], Ops.size());
4888 if (useSSE) {
4889 Chain = Result.getValue(1);
4890 SDValue InFlag = Result.getValue(2);
4892 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4893 // shouldn't be necessary except that RFP cannot be live across
4894 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4895 MachineFunction &MF = DAG.getMachineFunction();
4896 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4897 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4898 Tys = DAG.getVTList(MVT::Other);
4899 SmallVector<SDValue, 8> Ops;
4900 Ops.push_back(Chain);
4901 Ops.push_back(Result);
4902 Ops.push_back(StackSlot);
4903 Ops.push_back(DAG.getValueType(Op.getValueType()));
4904 Ops.push_back(InFlag);
4905 Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4906 Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4907 PseudoSourceValue::getFixedStack(SSFI), 0);
4910 return Result;
4913 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4914 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4915 // This algorithm is not obvious. Here it is in C code, more or less:
4917 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4918 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4919 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4921 // Copy ints to xmm registers.
4922 __m128i xh = _mm_cvtsi32_si128( hi );
4923 __m128i xl = _mm_cvtsi32_si128( lo );
4925 // Combine into low half of a single xmm register.
4926 __m128i x = _mm_unpacklo_epi32( xh, xl );
4927 __m128d d;
4928 double sd;
4930 // Merge in appropriate exponents to give the integer bits the right
4931 // magnitude.
4932 x = _mm_unpacklo_epi32( x, exp );
4934 // Subtract away the biases to deal with the IEEE-754 double precision
4935 // implicit 1.
4936 d = _mm_sub_pd( (__m128d) x, bias );
4938 // All conversions up to here are exact. The correctly rounded result is
4939 // calculated using the current rounding mode using the following
4940 // horizontal add.
4941 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4942 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4943 // store doesn't really need to be here (except
4944 // maybe to zero the other double)
4945 return sd;
4949 DebugLoc dl = Op.getDebugLoc();
4950 LLVMContext *Context = DAG.getContext();
4952 // Build some magic constants.
4953 std::vector<Constant*> CV0;
4954 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
4955 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
4956 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4957 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
4958 Constant *C0 = ConstantVector::get(CV0);
4959 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4961 std::vector<Constant*> CV1;
4962 CV1.push_back(
4963 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
4964 CV1.push_back(
4965 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
4966 Constant *C1 = ConstantVector::get(CV1);
4967 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4969 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4970 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4971 Op.getOperand(0),
4972 DAG.getIntPtrConstant(1)));
4973 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4974 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4975 Op.getOperand(0),
4976 DAG.getIntPtrConstant(0)));
4977 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4978 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4979 PseudoSourceValue::getConstantPool(), 0,
4980 false, 16);
4981 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4982 SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4983 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4984 PseudoSourceValue::getConstantPool(), 0,
4985 false, 16);
4986 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4988 // Add the halves; easiest way is to swap them into another reg first.
4989 int ShufMask[2] = { 1, -1 };
4990 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4991 DAG.getUNDEF(MVT::v2f64), ShufMask);
4992 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4993 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4994 DAG.getIntPtrConstant(0));
4997 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4998 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4999 DebugLoc dl = Op.getDebugLoc();
5000 // FP constant to bias correct the final result.
5001 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5002 MVT::f64);
5004 // Load the 32-bit value into an XMM register.
5005 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5006 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5007 Op.getOperand(0),
5008 DAG.getIntPtrConstant(0)));
5010 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5011 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5012 DAG.getIntPtrConstant(0));
5014 // Or the load with the bias.
5015 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5016 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5017 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5018 MVT::v2f64, Load)),
5019 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5020 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5021 MVT::v2f64, Bias)));
5022 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5023 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5024 DAG.getIntPtrConstant(0));
5026 // Subtract the bias.
5027 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5029 // Handle final rounding.
5030 EVT DestVT = Op.getValueType();
5032 if (DestVT.bitsLT(MVT::f64)) {
5033 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5034 DAG.getIntPtrConstant(0));
5035 } else if (DestVT.bitsGT(MVT::f64)) {
5036 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5039 // Handle final rounding.
5040 return Sub;
5043 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5044 SDValue N0 = Op.getOperand(0);
5045 DebugLoc dl = Op.getDebugLoc();
5047 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5048 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5049 // the optimization here.
5050 if (DAG.SignBitIsZero(N0))
5051 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5053 EVT SrcVT = N0.getValueType();
5054 if (SrcVT == MVT::i64) {
5055 // We only handle SSE2 f64 target here; caller can expand the rest.
5056 if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5057 return SDValue();
5059 return LowerUINT_TO_FP_i64(Op, DAG);
5060 } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5061 return LowerUINT_TO_FP_i32(Op, DAG);
5064 assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5066 // Make a 64-bit buffer, and use it to build an FILD.
5067 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5068 SDValue WordOff = DAG.getConstant(4, getPointerTy());
5069 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5070 getPointerTy(), StackSlot, WordOff);
5071 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5072 StackSlot, NULL, 0);
5073 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5074 OffsetSlot, NULL, 0);
5075 return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5078 std::pair<SDValue,SDValue> X86TargetLowering::
5079 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5080 DebugLoc dl = Op.getDebugLoc();
5082 EVT DstTy = Op.getValueType();
5084 if (!IsSigned) {
5085 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5086 DstTy = MVT::i64;
5089 assert(DstTy.getSimpleVT() <= MVT::i64 &&
5090 DstTy.getSimpleVT() >= MVT::i16 &&
5091 "Unknown FP_TO_SINT to lower!");
5093 // These are really Legal.
5094 if (DstTy == MVT::i32 &&
5095 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5096 return std::make_pair(SDValue(), SDValue());
5097 if (Subtarget->is64Bit() &&
5098 DstTy == MVT::i64 &&
5099 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5100 return std::make_pair(SDValue(), SDValue());
5102 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5103 // stack slot.
5104 MachineFunction &MF = DAG.getMachineFunction();
5105 unsigned MemSize = DstTy.getSizeInBits()/8;
5106 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5107 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5109 unsigned Opc;
5110 switch (DstTy.getSimpleVT().SimpleTy) {
5111 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5112 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5113 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5114 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5117 SDValue Chain = DAG.getEntryNode();
5118 SDValue Value = Op.getOperand(0);
5119 if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5120 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5121 Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5122 PseudoSourceValue::getFixedStack(SSFI), 0);
5123 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5124 SDValue Ops[] = {
5125 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5127 Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5128 Chain = Value.getValue(1);
5129 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5130 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5133 // Build the FP_TO_INT*_IN_MEM
5134 SDValue Ops[] = { Chain, Value, StackSlot };
5135 SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5137 return std::make_pair(FIST, StackSlot);
5140 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5141 if (Op.getValueType().isVector()) {
5142 if (Op.getValueType() == MVT::v2i32 &&
5143 Op.getOperand(0).getValueType() == MVT::v2f64) {
5144 return Op;
5146 return SDValue();
5149 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5150 SDValue FIST = Vals.first, StackSlot = Vals.second;
5151 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5152 if (FIST.getNode() == 0) return Op;
5154 // Load the result.
5155 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5156 FIST, StackSlot, NULL, 0);
5159 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5160 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5161 SDValue FIST = Vals.first, StackSlot = Vals.second;
5162 assert(FIST.getNode() && "Unexpected failure");
5164 // Load the result.
5165 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5166 FIST, StackSlot, NULL, 0);
5169 SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5170 LLVMContext *Context = DAG.getContext();
5171 DebugLoc dl = Op.getDebugLoc();
5172 EVT VT = Op.getValueType();
5173 EVT EltVT = VT;
5174 if (VT.isVector())
5175 EltVT = VT.getVectorElementType();
5176 std::vector<Constant*> CV;
5177 if (EltVT == MVT::f64) {
5178 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5179 CV.push_back(C);
5180 CV.push_back(C);
5181 } else {
5182 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5183 CV.push_back(C);
5184 CV.push_back(C);
5185 CV.push_back(C);
5186 CV.push_back(C);
5188 Constant *C = ConstantVector::get(CV);
5189 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5190 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5191 PseudoSourceValue::getConstantPool(), 0,
5192 false, 16);
5193 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5196 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5197 LLVMContext *Context = DAG.getContext();
5198 DebugLoc dl = Op.getDebugLoc();
5199 EVT VT = Op.getValueType();
5200 EVT EltVT = VT;
5201 if (VT.isVector())
5202 EltVT = VT.getVectorElementType();
5203 std::vector<Constant*> CV;
5204 if (EltVT == MVT::f64) {
5205 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5206 CV.push_back(C);
5207 CV.push_back(C);
5208 } else {
5209 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5210 CV.push_back(C);
5211 CV.push_back(C);
5212 CV.push_back(C);
5213 CV.push_back(C);
5215 Constant *C = ConstantVector::get(CV);
5216 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5217 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5218 PseudoSourceValue::getConstantPool(), 0,
5219 false, 16);
5220 if (VT.isVector()) {
5221 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5222 DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5223 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5224 Op.getOperand(0)),
5225 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5226 } else {
5227 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5231 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5232 LLVMContext *Context = DAG.getContext();
5233 SDValue Op0 = Op.getOperand(0);
5234 SDValue Op1 = Op.getOperand(1);
5235 DebugLoc dl = Op.getDebugLoc();
5236 EVT VT = Op.getValueType();
5237 EVT SrcVT = Op1.getValueType();
5239 // If second operand is smaller, extend it first.
5240 if (SrcVT.bitsLT(VT)) {
5241 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5242 SrcVT = VT;
5244 // And if it is bigger, shrink it first.
5245 if (SrcVT.bitsGT(VT)) {
5246 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5247 SrcVT = VT;
5250 // At this point the operands and the result should have the same
5251 // type, and that won't be f80 since that is not custom lowered.
5253 // First get the sign bit of second operand.
5254 std::vector<Constant*> CV;
5255 if (SrcVT == MVT::f64) {
5256 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5257 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5258 } else {
5259 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5260 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5261 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5262 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5264 Constant *C = ConstantVector::get(CV);
5265 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5266 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5267 PseudoSourceValue::getConstantPool(), 0,
5268 false, 16);
5269 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5271 // Shift sign bit right or left if the two operands have different types.
5272 if (SrcVT.bitsGT(VT)) {
5273 // Op0 is MVT::f32, Op1 is MVT::f64.
5274 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5275 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5276 DAG.getConstant(32, MVT::i32));
5277 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5278 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5279 DAG.getIntPtrConstant(0));
5282 // Clear first operand sign bit.
5283 CV.clear();
5284 if (VT == MVT::f64) {
5285 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5286 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5287 } else {
5288 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5289 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5290 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5291 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5293 C = ConstantVector::get(CV);
5294 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5295 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5296 PseudoSourceValue::getConstantPool(), 0,
5297 false, 16);
5298 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5300 // Or the value with the sign bit.
5301 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5304 /// Emit nodes that will be selected as "test Op0,Op0", or something
5305 /// equivalent.
5306 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5307 SelectionDAG &DAG) {
5308 DebugLoc dl = Op.getDebugLoc();
5310 // CF and OF aren't always set the way we want. Determine which
5311 // of these we need.
5312 bool NeedCF = false;
5313 bool NeedOF = false;
5314 switch (X86CC) {
5315 case X86::COND_A: case X86::COND_AE:
5316 case X86::COND_B: case X86::COND_BE:
5317 NeedCF = true;
5318 break;
5319 case X86::COND_G: case X86::COND_GE:
5320 case X86::COND_L: case X86::COND_LE:
5321 case X86::COND_O: case X86::COND_NO:
5322 NeedOF = true;
5323 break;
5324 default: break;
5327 // See if we can use the EFLAGS value from the operand instead of
5328 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5329 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5330 if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5331 unsigned Opcode = 0;
5332 unsigned NumOperands = 0;
5333 switch (Op.getNode()->getOpcode()) {
5334 case ISD::ADD:
5335 // Due to an isel shortcoming, be conservative if this add is likely to
5336 // be selected as part of a load-modify-store instruction. When the root
5337 // node in a match is a store, isel doesn't know how to remap non-chain
5338 // non-flag uses of other nodes in the match, such as the ADD in this
5339 // case. This leads to the ADD being left around and reselected, with
5340 // the result being two adds in the output.
5341 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5342 UE = Op.getNode()->use_end(); UI != UE; ++UI)
5343 if (UI->getOpcode() == ISD::STORE)
5344 goto default_case;
5345 if (ConstantSDNode *C =
5346 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5347 // An add of one will be selected as an INC.
5348 if (C->getAPIntValue() == 1) {
5349 Opcode = X86ISD::INC;
5350 NumOperands = 1;
5351 break;
5353 // An add of negative one (subtract of one) will be selected as a DEC.
5354 if (C->getAPIntValue().isAllOnesValue()) {
5355 Opcode = X86ISD::DEC;
5356 NumOperands = 1;
5357 break;
5360 // Otherwise use a regular EFLAGS-setting add.
5361 Opcode = X86ISD::ADD;
5362 NumOperands = 2;
5363 break;
5364 case ISD::SUB:
5365 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5366 // likely to be selected as part of a load-modify-store instruction.
5367 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5368 UE = Op.getNode()->use_end(); UI != UE; ++UI)
5369 if (UI->getOpcode() == ISD::STORE)
5370 goto default_case;
5371 // Otherwise use a regular EFLAGS-setting sub.
5372 Opcode = X86ISD::SUB;
5373 NumOperands = 2;
5374 break;
5375 case X86ISD::ADD:
5376 case X86ISD::SUB:
5377 case X86ISD::INC:
5378 case X86ISD::DEC:
5379 return SDValue(Op.getNode(), 1);
5380 default:
5381 default_case:
5382 break;
5384 if (Opcode != 0) {
5385 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5386 SmallVector<SDValue, 4> Ops;
5387 for (unsigned i = 0; i != NumOperands; ++i)
5388 Ops.push_back(Op.getOperand(i));
5389 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5390 DAG.ReplaceAllUsesWith(Op, New);
5391 return SDValue(New.getNode(), 1);
5395 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5396 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5397 DAG.getConstant(0, Op.getValueType()));
5400 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5401 /// equivalent.
5402 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5403 SelectionDAG &DAG) {
5404 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5405 if (C->getAPIntValue() == 0)
5406 return EmitTest(Op0, X86CC, DAG);
5408 DebugLoc dl = Op0.getDebugLoc();
5409 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5412 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5413 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5414 SDValue Op0 = Op.getOperand(0);
5415 SDValue Op1 = Op.getOperand(1);
5416 DebugLoc dl = Op.getDebugLoc();
5417 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5419 // Lower (X & (1 << N)) == 0 to BT(X, N).
5420 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5421 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5422 if (Op0.getOpcode() == ISD::AND &&
5423 Op0.hasOneUse() &&
5424 Op1.getOpcode() == ISD::Constant &&
5425 cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5426 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5427 SDValue LHS, RHS;
5428 if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5429 if (ConstantSDNode *Op010C =
5430 dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5431 if (Op010C->getZExtValue() == 1) {
5432 LHS = Op0.getOperand(0);
5433 RHS = Op0.getOperand(1).getOperand(1);
5435 } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5436 if (ConstantSDNode *Op000C =
5437 dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5438 if (Op000C->getZExtValue() == 1) {
5439 LHS = Op0.getOperand(1);
5440 RHS = Op0.getOperand(0).getOperand(1);
5442 } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5443 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5444 SDValue AndLHS = Op0.getOperand(0);
5445 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5446 LHS = AndLHS.getOperand(0);
5447 RHS = AndLHS.getOperand(1);
5451 if (LHS.getNode()) {
5452 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5453 // instruction. Since the shift amount is in-range-or-undefined, we know
5454 // that doing a bittest on the i16 value is ok. We extend to i32 because
5455 // the encoding for the i16 version is larger than the i32 version.
5456 if (LHS.getValueType() == MVT::i8)
5457 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5459 // If the operand types disagree, extend the shift amount to match. Since
5460 // BT ignores high bits (like shifts) we can use anyextend.
5461 if (LHS.getValueType() != RHS.getValueType())
5462 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5464 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5465 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5466 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5467 DAG.getConstant(Cond, MVT::i8), BT);
5471 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5472 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5474 SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5475 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5476 DAG.getConstant(X86CC, MVT::i8), Cond);
5479 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5480 SDValue Cond;
5481 SDValue Op0 = Op.getOperand(0);
5482 SDValue Op1 = Op.getOperand(1);
5483 SDValue CC = Op.getOperand(2);
5484 EVT VT = Op.getValueType();
5485 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5486 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5487 DebugLoc dl = Op.getDebugLoc();
5489 if (isFP) {
5490 unsigned SSECC = 8;
5491 EVT VT0 = Op0.getValueType();
5492 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5493 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5494 bool Swap = false;
5496 switch (SetCCOpcode) {
5497 default: break;
5498 case ISD::SETOEQ:
5499 case ISD::SETEQ: SSECC = 0; break;
5500 case ISD::SETOGT:
5501 case ISD::SETGT: Swap = true; // Fallthrough
5502 case ISD::SETLT:
5503 case ISD::SETOLT: SSECC = 1; break;
5504 case ISD::SETOGE:
5505 case ISD::SETGE: Swap = true; // Fallthrough
5506 case ISD::SETLE:
5507 case ISD::SETOLE: SSECC = 2; break;
5508 case ISD::SETUO: SSECC = 3; break;
5509 case ISD::SETUNE:
5510 case ISD::SETNE: SSECC = 4; break;
5511 case ISD::SETULE: Swap = true;
5512 case ISD::SETUGE: SSECC = 5; break;
5513 case ISD::SETULT: Swap = true;
5514 case ISD::SETUGT: SSECC = 6; break;
5515 case ISD::SETO: SSECC = 7; break;
5517 if (Swap)
5518 std::swap(Op0, Op1);
5520 // In the two special cases we can't handle, emit two comparisons.
5521 if (SSECC == 8) {
5522 if (SetCCOpcode == ISD::SETUEQ) {
5523 SDValue UNORD, EQ;
5524 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5525 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5526 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5528 else if (SetCCOpcode == ISD::SETONE) {
5529 SDValue ORD, NEQ;
5530 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5531 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5532 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5534 llvm_unreachable("Illegal FP comparison");
5536 // Handle all other FP comparisons here.
5537 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5540 // We are handling one of the integer comparisons here. Since SSE only has
5541 // GT and EQ comparisons for integer, swapping operands and multiple
5542 // operations may be required for some comparisons.
5543 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5544 bool Swap = false, Invert = false, FlipSigns = false;
5546 switch (VT.getSimpleVT().SimpleTy) {
5547 default: break;
5548 case MVT::v8i8:
5549 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5550 case MVT::v4i16:
5551 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5552 case MVT::v2i32:
5553 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5554 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5557 switch (SetCCOpcode) {
5558 default: break;
5559 case ISD::SETNE: Invert = true;
5560 case ISD::SETEQ: Opc = EQOpc; break;
5561 case ISD::SETLT: Swap = true;
5562 case ISD::SETGT: Opc = GTOpc; break;
5563 case ISD::SETGE: Swap = true;
5564 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
5565 case ISD::SETULT: Swap = true;
5566 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5567 case ISD::SETUGE: Swap = true;
5568 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5570 if (Swap)
5571 std::swap(Op0, Op1);
5573 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5574 // bits of the inputs before performing those operations.
5575 if (FlipSigns) {
5576 EVT EltVT = VT.getVectorElementType();
5577 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5578 EltVT);
5579 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5580 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5581 SignBits.size());
5582 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5583 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5586 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5588 // If the logical-not of the result is required, perform that now.
5589 if (Invert)
5590 Result = DAG.getNOT(dl, Result, VT);
5592 return Result;
5595 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5596 static bool isX86LogicalCmp(SDValue Op) {
5597 unsigned Opc = Op.getNode()->getOpcode();
5598 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5599 return true;
5600 if (Op.getResNo() == 1 &&
5601 (Opc == X86ISD::ADD ||
5602 Opc == X86ISD::SUB ||
5603 Opc == X86ISD::SMUL ||
5604 Opc == X86ISD::UMUL ||
5605 Opc == X86ISD::INC ||
5606 Opc == X86ISD::DEC))
5607 return true;
5609 return false;
5612 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5613 bool addTest = true;
5614 SDValue Cond = Op.getOperand(0);
5615 DebugLoc dl = Op.getDebugLoc();
5616 SDValue CC;
5618 if (Cond.getOpcode() == ISD::SETCC)
5619 Cond = LowerSETCC(Cond, DAG);
5621 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5622 // setting operand in place of the X86ISD::SETCC.
5623 if (Cond.getOpcode() == X86ISD::SETCC) {
5624 CC = Cond.getOperand(0);
5626 SDValue Cmp = Cond.getOperand(1);
5627 unsigned Opc = Cmp.getOpcode();
5628 EVT VT = Op.getValueType();
5630 bool IllegalFPCMov = false;
5631 if (VT.isFloatingPoint() && !VT.isVector() &&
5632 !isScalarFPTypeInSSEReg(VT)) // FPStack?
5633 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5635 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5636 Opc == X86ISD::BT) { // FIXME
5637 Cond = Cmp;
5638 addTest = false;
5642 if (addTest) {
5643 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5644 Cond = EmitTest(Cond, X86::COND_NE, DAG);
5647 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5648 SmallVector<SDValue, 4> Ops;
5649 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5650 // condition is true.
5651 Ops.push_back(Op.getOperand(2));
5652 Ops.push_back(Op.getOperand(1));
5653 Ops.push_back(CC);
5654 Ops.push_back(Cond);
5655 return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5658 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5659 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5660 // from the AND / OR.
5661 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5662 Opc = Op.getOpcode();
5663 if (Opc != ISD::OR && Opc != ISD::AND)
5664 return false;
5665 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5666 Op.getOperand(0).hasOneUse() &&
5667 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5668 Op.getOperand(1).hasOneUse());
5671 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5672 // 1 and that the SETCC node has a single use.
5673 static bool isXor1OfSetCC(SDValue Op) {
5674 if (Op.getOpcode() != ISD::XOR)
5675 return false;
5676 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5677 if (N1C && N1C->getAPIntValue() == 1) {
5678 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5679 Op.getOperand(0).hasOneUse();
5681 return false;
5684 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5685 bool addTest = true;
5686 SDValue Chain = Op.getOperand(0);
5687 SDValue Cond = Op.getOperand(1);
5688 SDValue Dest = Op.getOperand(2);
5689 DebugLoc dl = Op.getDebugLoc();
5690 SDValue CC;
5692 if (Cond.getOpcode() == ISD::SETCC)
5693 Cond = LowerSETCC(Cond, DAG);
5694 #if 0
5695 // FIXME: LowerXALUO doesn't handle these!!
5696 else if (Cond.getOpcode() == X86ISD::ADD ||
5697 Cond.getOpcode() == X86ISD::SUB ||
5698 Cond.getOpcode() == X86ISD::SMUL ||
5699 Cond.getOpcode() == X86ISD::UMUL)
5700 Cond = LowerXALUO(Cond, DAG);
5701 #endif
5703 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5704 // setting operand in place of the X86ISD::SETCC.
5705 if (Cond.getOpcode() == X86ISD::SETCC) {
5706 CC = Cond.getOperand(0);
5708 SDValue Cmp = Cond.getOperand(1);
5709 unsigned Opc = Cmp.getOpcode();
5710 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5711 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5712 Cond = Cmp;
5713 addTest = false;
5714 } else {
5715 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5716 default: break;
5717 case X86::COND_O:
5718 case X86::COND_B:
5719 // These can only come from an arithmetic instruction with overflow,
5720 // e.g. SADDO, UADDO.
5721 Cond = Cond.getNode()->getOperand(1);
5722 addTest = false;
5723 break;
5726 } else {
5727 unsigned CondOpc;
5728 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5729 SDValue Cmp = Cond.getOperand(0).getOperand(1);
5730 if (CondOpc == ISD::OR) {
5731 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5732 // two branches instead of an explicit OR instruction with a
5733 // separate test.
5734 if (Cmp == Cond.getOperand(1).getOperand(1) &&
5735 isX86LogicalCmp(Cmp)) {
5736 CC = Cond.getOperand(0).getOperand(0);
5737 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5738 Chain, Dest, CC, Cmp);
5739 CC = Cond.getOperand(1).getOperand(0);
5740 Cond = Cmp;
5741 addTest = false;
5743 } else { // ISD::AND
5744 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5745 // two branches instead of an explicit AND instruction with a
5746 // separate test. However, we only do this if this block doesn't
5747 // have a fall-through edge, because this requires an explicit
5748 // jmp when the condition is false.
5749 if (Cmp == Cond.getOperand(1).getOperand(1) &&
5750 isX86LogicalCmp(Cmp) &&
5751 Op.getNode()->hasOneUse()) {
5752 X86::CondCode CCode =
5753 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5754 CCode = X86::GetOppositeBranchCondition(CCode);
5755 CC = DAG.getConstant(CCode, MVT::i8);
5756 SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5757 // Look for an unconditional branch following this conditional branch.
5758 // We need this because we need to reverse the successors in order
5759 // to implement FCMP_OEQ.
5760 if (User.getOpcode() == ISD::BR) {
5761 SDValue FalseBB = User.getOperand(1);
5762 SDValue NewBR =
5763 DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5764 assert(NewBR == User);
5765 Dest = FalseBB;
5767 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5768 Chain, Dest, CC, Cmp);
5769 X86::CondCode CCode =
5770 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5771 CCode = X86::GetOppositeBranchCondition(CCode);
5772 CC = DAG.getConstant(CCode, MVT::i8);
5773 Cond = Cmp;
5774 addTest = false;
5778 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5779 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5780 // It should be transformed during dag combiner except when the condition
5781 // is set by a arithmetics with overflow node.
5782 X86::CondCode CCode =
5783 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5784 CCode = X86::GetOppositeBranchCondition(CCode);
5785 CC = DAG.getConstant(CCode, MVT::i8);
5786 Cond = Cond.getOperand(0).getOperand(1);
5787 addTest = false;
5791 if (addTest) {
5792 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5793 Cond = EmitTest(Cond, X86::COND_NE, DAG);
5795 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5796 Chain, Dest, CC, Cond);
5800 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5801 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5802 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5803 // that the guard pages used by the OS virtual memory manager are allocated in
5804 // correct sequence.
5805 SDValue
5806 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5807 SelectionDAG &DAG) {
5808 assert(Subtarget->isTargetCygMing() &&
5809 "This should be used only on Cygwin/Mingw targets");
5810 DebugLoc dl = Op.getDebugLoc();
5812 // Get the inputs.
5813 SDValue Chain = Op.getOperand(0);
5814 SDValue Size = Op.getOperand(1);
5815 // FIXME: Ensure alignment here
5817 SDValue Flag;
5819 EVT IntPtr = getPointerTy();
5820 EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5822 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5824 Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5825 Flag = Chain.getValue(1);
5827 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5828 SDValue Ops[] = { Chain,
5829 DAG.getTargetExternalSymbol("_alloca", IntPtr),
5830 DAG.getRegister(X86::EAX, IntPtr),
5831 DAG.getRegister(X86StackPtr, SPTy),
5832 Flag };
5833 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5834 Flag = Chain.getValue(1);
5836 Chain = DAG.getCALLSEQ_END(Chain,
5837 DAG.getIntPtrConstant(0, true),
5838 DAG.getIntPtrConstant(0, true),
5839 Flag);
5841 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5843 SDValue Ops1[2] = { Chain.getValue(0), Chain };
5844 return DAG.getMergeValues(Ops1, 2, dl);
5847 SDValue
5848 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5849 SDValue Chain,
5850 SDValue Dst, SDValue Src,
5851 SDValue Size, unsigned Align,
5852 const Value *DstSV,
5853 uint64_t DstSVOff) {
5854 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5856 // If not DWORD aligned or size is more than the threshold, call the library.
5857 // The libc version is likely to be faster for these cases. It can use the
5858 // address value and run time information about the CPU.
5859 if ((Align & 3) != 0 ||
5860 !ConstantSize ||
5861 ConstantSize->getZExtValue() >
5862 getSubtarget()->getMaxInlineSizeThreshold()) {
5863 SDValue InFlag(0, 0);
5865 // Check to see if there is a specialized entry-point for memory zeroing.
5866 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5868 if (const char *bzeroEntry = V &&
5869 V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5870 EVT IntPtr = getPointerTy();
5871 const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
5872 TargetLowering::ArgListTy Args;
5873 TargetLowering::ArgListEntry Entry;
5874 Entry.Node = Dst;
5875 Entry.Ty = IntPtrTy;
5876 Args.push_back(Entry);
5877 Entry.Node = Size;
5878 Args.push_back(Entry);
5879 std::pair<SDValue,SDValue> CallResult =
5880 LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
5881 false, false, false, false,
5882 0, CallingConv::C, false, /*isReturnValueUsed=*/false,
5883 DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5884 return CallResult.second;
5887 // Otherwise have the target-independent code call memset.
5888 return SDValue();
5891 uint64_t SizeVal = ConstantSize->getZExtValue();
5892 SDValue InFlag(0, 0);
5893 EVT AVT;
5894 SDValue Count;
5895 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5896 unsigned BytesLeft = 0;
5897 bool TwoRepStos = false;
5898 if (ValC) {
5899 unsigned ValReg;
5900 uint64_t Val = ValC->getZExtValue() & 255;
5902 // If the value is a constant, then we can potentially use larger sets.
5903 switch (Align & 3) {
5904 case 2: // WORD aligned
5905 AVT = MVT::i16;
5906 ValReg = X86::AX;
5907 Val = (Val << 8) | Val;
5908 break;
5909 case 0: // DWORD aligned
5910 AVT = MVT::i32;
5911 ValReg = X86::EAX;
5912 Val = (Val << 8) | Val;
5913 Val = (Val << 16) | Val;
5914 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
5915 AVT = MVT::i64;
5916 ValReg = X86::RAX;
5917 Val = (Val << 32) | Val;
5919 break;
5920 default: // Byte aligned
5921 AVT = MVT::i8;
5922 ValReg = X86::AL;
5923 Count = DAG.getIntPtrConstant(SizeVal);
5924 break;
5927 if (AVT.bitsGT(MVT::i8)) {
5928 unsigned UBytes = AVT.getSizeInBits() / 8;
5929 Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5930 BytesLeft = SizeVal % UBytes;
5933 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5934 InFlag);
5935 InFlag = Chain.getValue(1);
5936 } else {
5937 AVT = MVT::i8;
5938 Count = DAG.getIntPtrConstant(SizeVal);
5939 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5940 InFlag = Chain.getValue(1);
5943 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5944 X86::ECX,
5945 Count, InFlag);
5946 InFlag = Chain.getValue(1);
5947 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5948 X86::EDI,
5949 Dst, InFlag);
5950 InFlag = Chain.getValue(1);
5952 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5953 SmallVector<SDValue, 8> Ops;
5954 Ops.push_back(Chain);
5955 Ops.push_back(DAG.getValueType(AVT));
5956 Ops.push_back(InFlag);
5957 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5959 if (TwoRepStos) {
5960 InFlag = Chain.getValue(1);
5961 Count = Size;
5962 EVT CVT = Count.getValueType();
5963 SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5964 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5965 Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5966 X86::ECX,
5967 Left, InFlag);
5968 InFlag = Chain.getValue(1);
5969 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5970 Ops.clear();
5971 Ops.push_back(Chain);
5972 Ops.push_back(DAG.getValueType(MVT::i8));
5973 Ops.push_back(InFlag);
5974 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5975 } else if (BytesLeft) {
5976 // Handle the last 1 - 7 bytes.
5977 unsigned Offset = SizeVal - BytesLeft;
5978 EVT AddrVT = Dst.getValueType();
5979 EVT SizeVT = Size.getValueType();
5981 Chain = DAG.getMemset(Chain, dl,
5982 DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5983 DAG.getConstant(Offset, AddrVT)),
5984 Src,
5985 DAG.getConstant(BytesLeft, SizeVT),
5986 Align, DstSV, DstSVOff + Offset);
5989 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5990 return Chain;
5993 SDValue
5994 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5995 SDValue Chain, SDValue Dst, SDValue Src,
5996 SDValue Size, unsigned Align,
5997 bool AlwaysInline,
5998 const Value *DstSV, uint64_t DstSVOff,
5999 const Value *SrcSV, uint64_t SrcSVOff) {
6000 // This requires the copy size to be a constant, preferrably
6001 // within a subtarget-specific limit.
6002 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6003 if (!ConstantSize)
6004 return SDValue();
6005 uint64_t SizeVal = ConstantSize->getZExtValue();
6006 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6007 return SDValue();
6009 /// If not DWORD aligned, call the library.
6010 if ((Align & 3) != 0)
6011 return SDValue();
6013 // DWORD aligned
6014 EVT AVT = MVT::i32;
6015 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned
6016 AVT = MVT::i64;
6018 unsigned UBytes = AVT.getSizeInBits() / 8;
6019 unsigned CountVal = SizeVal / UBytes;
6020 SDValue Count = DAG.getIntPtrConstant(CountVal);
6021 unsigned BytesLeft = SizeVal % UBytes;
6023 SDValue InFlag(0, 0);
6024 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6025 X86::ECX,
6026 Count, InFlag);
6027 InFlag = Chain.getValue(1);
6028 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6029 X86::EDI,
6030 Dst, InFlag);
6031 InFlag = Chain.getValue(1);
6032 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6033 X86::ESI,
6034 Src, InFlag);
6035 InFlag = Chain.getValue(1);
6037 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6038 SmallVector<SDValue, 8> Ops;
6039 Ops.push_back(Chain);
6040 Ops.push_back(DAG.getValueType(AVT));
6041 Ops.push_back(InFlag);
6042 SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6044 SmallVector<SDValue, 4> Results;
6045 Results.push_back(RepMovs);
6046 if (BytesLeft) {
6047 // Handle the last 1 - 7 bytes.
6048 unsigned Offset = SizeVal - BytesLeft;
6049 EVT DstVT = Dst.getValueType();
6050 EVT SrcVT = Src.getValueType();
6051 EVT SizeVT = Size.getValueType();
6052 Results.push_back(DAG.getMemcpy(Chain, dl,
6053 DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6054 DAG.getConstant(Offset, DstVT)),
6055 DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6056 DAG.getConstant(Offset, SrcVT)),
6057 DAG.getConstant(BytesLeft, SizeVT),
6058 Align, AlwaysInline,
6059 DstSV, DstSVOff + Offset,
6060 SrcSV, SrcSVOff + Offset));
6063 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6064 &Results[0], Results.size());
6067 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6068 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6069 DebugLoc dl = Op.getDebugLoc();
6071 if (!Subtarget->is64Bit()) {
6072 // vastart just stores the address of the VarArgsFrameIndex slot into the
6073 // memory location argument.
6074 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6075 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6078 // __va_list_tag:
6079 // gp_offset (0 - 6 * 8)
6080 // fp_offset (48 - 48 + 8 * 16)
6081 // overflow_arg_area (point to parameters coming in memory).
6082 // reg_save_area
6083 SmallVector<SDValue, 8> MemOps;
6084 SDValue FIN = Op.getOperand(1);
6085 // Store gp_offset
6086 SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6087 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6088 FIN, SV, 0);
6089 MemOps.push_back(Store);
6091 // Store fp_offset
6092 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6093 FIN, DAG.getIntPtrConstant(4));
6094 Store = DAG.getStore(Op.getOperand(0), dl,
6095 DAG.getConstant(VarArgsFPOffset, MVT::i32),
6096 FIN, SV, 0);
6097 MemOps.push_back(Store);
6099 // Store ptr to overflow_arg_area
6100 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6101 FIN, DAG.getIntPtrConstant(4));
6102 SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6103 Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6104 MemOps.push_back(Store);
6106 // Store ptr to reg_save_area.
6107 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6108 FIN, DAG.getIntPtrConstant(8));
6109 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6110 Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6111 MemOps.push_back(Store);
6112 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6113 &MemOps[0], MemOps.size());
6116 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6117 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6118 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6119 SDValue Chain = Op.getOperand(0);
6120 SDValue SrcPtr = Op.getOperand(1);
6121 SDValue SrcSV = Op.getOperand(2);
6123 llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6124 return SDValue();
6127 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6128 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6129 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6130 SDValue Chain = Op.getOperand(0);
6131 SDValue DstPtr = Op.getOperand(1);
6132 SDValue SrcPtr = Op.getOperand(2);
6133 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6134 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6135 DebugLoc dl = Op.getDebugLoc();
6137 return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6138 DAG.getIntPtrConstant(24), 8, false,
6139 DstSV, 0, SrcSV, 0);
6142 SDValue
6143 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6144 DebugLoc dl = Op.getDebugLoc();
6145 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6146 switch (IntNo) {
6147 default: return SDValue(); // Don't custom lower most intrinsics.
6148 // Comparison intrinsics.
6149 case Intrinsic::x86_sse_comieq_ss:
6150 case Intrinsic::x86_sse_comilt_ss:
6151 case Intrinsic::x86_sse_comile_ss:
6152 case Intrinsic::x86_sse_comigt_ss:
6153 case Intrinsic::x86_sse_comige_ss:
6154 case Intrinsic::x86_sse_comineq_ss:
6155 case Intrinsic::x86_sse_ucomieq_ss:
6156 case Intrinsic::x86_sse_ucomilt_ss:
6157 case Intrinsic::x86_sse_ucomile_ss:
6158 case Intrinsic::x86_sse_ucomigt_ss:
6159 case Intrinsic::x86_sse_ucomige_ss:
6160 case Intrinsic::x86_sse_ucomineq_ss:
6161 case Intrinsic::x86_sse2_comieq_sd:
6162 case Intrinsic::x86_sse2_comilt_sd:
6163 case Intrinsic::x86_sse2_comile_sd:
6164 case Intrinsic::x86_sse2_comigt_sd:
6165 case Intrinsic::x86_sse2_comige_sd:
6166 case Intrinsic::x86_sse2_comineq_sd:
6167 case Intrinsic::x86_sse2_ucomieq_sd:
6168 case Intrinsic::x86_sse2_ucomilt_sd:
6169 case Intrinsic::x86_sse2_ucomile_sd:
6170 case Intrinsic::x86_sse2_ucomigt_sd:
6171 case Intrinsic::x86_sse2_ucomige_sd:
6172 case Intrinsic::x86_sse2_ucomineq_sd: {
6173 unsigned Opc = 0;
6174 ISD::CondCode CC = ISD::SETCC_INVALID;
6175 switch (IntNo) {
6176 default: break;
6177 case Intrinsic::x86_sse_comieq_ss:
6178 case Intrinsic::x86_sse2_comieq_sd:
6179 Opc = X86ISD::COMI;
6180 CC = ISD::SETEQ;
6181 break;
6182 case Intrinsic::x86_sse_comilt_ss:
6183 case Intrinsic::x86_sse2_comilt_sd:
6184 Opc = X86ISD::COMI;
6185 CC = ISD::SETLT;
6186 break;
6187 case Intrinsic::x86_sse_comile_ss:
6188 case Intrinsic::x86_sse2_comile_sd:
6189 Opc = X86ISD::COMI;
6190 CC = ISD::SETLE;
6191 break;
6192 case Intrinsic::x86_sse_comigt_ss:
6193 case Intrinsic::x86_sse2_comigt_sd:
6194 Opc = X86ISD::COMI;
6195 CC = ISD::SETGT;
6196 break;
6197 case Intrinsic::x86_sse_comige_ss:
6198 case Intrinsic::x86_sse2_comige_sd:
6199 Opc = X86ISD::COMI;
6200 CC = ISD::SETGE;
6201 break;
6202 case Intrinsic::x86_sse_comineq_ss:
6203 case Intrinsic::x86_sse2_comineq_sd:
6204 Opc = X86ISD::COMI;
6205 CC = ISD::SETNE;
6206 break;
6207 case Intrinsic::x86_sse_ucomieq_ss:
6208 case Intrinsic::x86_sse2_ucomieq_sd:
6209 Opc = X86ISD::UCOMI;
6210 CC = ISD::SETEQ;
6211 break;
6212 case Intrinsic::x86_sse_ucomilt_ss:
6213 case Intrinsic::x86_sse2_ucomilt_sd:
6214 Opc = X86ISD::UCOMI;
6215 CC = ISD::SETLT;
6216 break;
6217 case Intrinsic::x86_sse_ucomile_ss:
6218 case Intrinsic::x86_sse2_ucomile_sd:
6219 Opc = X86ISD::UCOMI;
6220 CC = ISD::SETLE;
6221 break;
6222 case Intrinsic::x86_sse_ucomigt_ss:
6223 case Intrinsic::x86_sse2_ucomigt_sd:
6224 Opc = X86ISD::UCOMI;
6225 CC = ISD::SETGT;
6226 break;
6227 case Intrinsic::x86_sse_ucomige_ss:
6228 case Intrinsic::x86_sse2_ucomige_sd:
6229 Opc = X86ISD::UCOMI;
6230 CC = ISD::SETGE;
6231 break;
6232 case Intrinsic::x86_sse_ucomineq_ss:
6233 case Intrinsic::x86_sse2_ucomineq_sd:
6234 Opc = X86ISD::UCOMI;
6235 CC = ISD::SETNE;
6236 break;
6239 SDValue LHS = Op.getOperand(1);
6240 SDValue RHS = Op.getOperand(2);
6241 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6242 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6243 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6244 DAG.getConstant(X86CC, MVT::i8), Cond);
6245 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6247 // ptest intrinsics. The intrinsic these come from are designed to return
6248 // an integer value, not just an instruction so lower it to the ptest
6249 // pattern and a setcc for the result.
6250 case Intrinsic::x86_sse41_ptestz:
6251 case Intrinsic::x86_sse41_ptestc:
6252 case Intrinsic::x86_sse41_ptestnzc:{
6253 unsigned X86CC = 0;
6254 switch (IntNo) {
6255 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6256 case Intrinsic::x86_sse41_ptestz:
6257 // ZF = 1
6258 X86CC = X86::COND_E;
6259 break;
6260 case Intrinsic::x86_sse41_ptestc:
6261 // CF = 1
6262 X86CC = X86::COND_B;
6263 break;
6264 case Intrinsic::x86_sse41_ptestnzc:
6265 // ZF and CF = 0
6266 X86CC = X86::COND_A;
6267 break;
6270 SDValue LHS = Op.getOperand(1);
6271 SDValue RHS = Op.getOperand(2);
6272 SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6273 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6274 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6275 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6278 // Fix vector shift instructions where the last operand is a non-immediate
6279 // i32 value.
6280 case Intrinsic::x86_sse2_pslli_w:
6281 case Intrinsic::x86_sse2_pslli_d:
6282 case Intrinsic::x86_sse2_pslli_q:
6283 case Intrinsic::x86_sse2_psrli_w:
6284 case Intrinsic::x86_sse2_psrli_d:
6285 case Intrinsic::x86_sse2_psrli_q:
6286 case Intrinsic::x86_sse2_psrai_w:
6287 case Intrinsic::x86_sse2_psrai_d:
6288 case Intrinsic::x86_mmx_pslli_w:
6289 case Intrinsic::x86_mmx_pslli_d:
6290 case Intrinsic::x86_mmx_pslli_q:
6291 case Intrinsic::x86_mmx_psrli_w:
6292 case Intrinsic::x86_mmx_psrli_d:
6293 case Intrinsic::x86_mmx_psrli_q:
6294 case Intrinsic::x86_mmx_psrai_w:
6295 case Intrinsic::x86_mmx_psrai_d: {
6296 SDValue ShAmt = Op.getOperand(2);
6297 if (isa<ConstantSDNode>(ShAmt))
6298 return SDValue();
6300 unsigned NewIntNo = 0;
6301 EVT ShAmtVT = MVT::v4i32;
6302 switch (IntNo) {
6303 case Intrinsic::x86_sse2_pslli_w:
6304 NewIntNo = Intrinsic::x86_sse2_psll_w;
6305 break;
6306 case Intrinsic::x86_sse2_pslli_d:
6307 NewIntNo = Intrinsic::x86_sse2_psll_d;
6308 break;
6309 case Intrinsic::x86_sse2_pslli_q:
6310 NewIntNo = Intrinsic::x86_sse2_psll_q;
6311 break;
6312 case Intrinsic::x86_sse2_psrli_w:
6313 NewIntNo = Intrinsic::x86_sse2_psrl_w;
6314 break;
6315 case Intrinsic::x86_sse2_psrli_d:
6316 NewIntNo = Intrinsic::x86_sse2_psrl_d;
6317 break;
6318 case Intrinsic::x86_sse2_psrli_q:
6319 NewIntNo = Intrinsic::x86_sse2_psrl_q;
6320 break;
6321 case Intrinsic::x86_sse2_psrai_w:
6322 NewIntNo = Intrinsic::x86_sse2_psra_w;
6323 break;
6324 case Intrinsic::x86_sse2_psrai_d:
6325 NewIntNo = Intrinsic::x86_sse2_psra_d;
6326 break;
6327 default: {
6328 ShAmtVT = MVT::v2i32;
6329 switch (IntNo) {
6330 case Intrinsic::x86_mmx_pslli_w:
6331 NewIntNo = Intrinsic::x86_mmx_psll_w;
6332 break;
6333 case Intrinsic::x86_mmx_pslli_d:
6334 NewIntNo = Intrinsic::x86_mmx_psll_d;
6335 break;
6336 case Intrinsic::x86_mmx_pslli_q:
6337 NewIntNo = Intrinsic::x86_mmx_psll_q;
6338 break;
6339 case Intrinsic::x86_mmx_psrli_w:
6340 NewIntNo = Intrinsic::x86_mmx_psrl_w;
6341 break;
6342 case Intrinsic::x86_mmx_psrli_d:
6343 NewIntNo = Intrinsic::x86_mmx_psrl_d;
6344 break;
6345 case Intrinsic::x86_mmx_psrli_q:
6346 NewIntNo = Intrinsic::x86_mmx_psrl_q;
6347 break;
6348 case Intrinsic::x86_mmx_psrai_w:
6349 NewIntNo = Intrinsic::x86_mmx_psra_w;
6350 break;
6351 case Intrinsic::x86_mmx_psrai_d:
6352 NewIntNo = Intrinsic::x86_mmx_psra_d;
6353 break;
6354 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6356 break;
6360 // The vector shift intrinsics with scalars uses 32b shift amounts but
6361 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6362 // to be zero.
6363 SDValue ShOps[4];
6364 ShOps[0] = ShAmt;
6365 ShOps[1] = DAG.getConstant(0, MVT::i32);
6366 if (ShAmtVT == MVT::v4i32) {
6367 ShOps[2] = DAG.getUNDEF(MVT::i32);
6368 ShOps[3] = DAG.getUNDEF(MVT::i32);
6369 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6370 } else {
6371 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6374 EVT VT = Op.getValueType();
6375 ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6376 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6377 DAG.getConstant(NewIntNo, MVT::i32),
6378 Op.getOperand(1), ShAmt);
6383 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6384 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6385 DebugLoc dl = Op.getDebugLoc();
6387 if (Depth > 0) {
6388 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6389 SDValue Offset =
6390 DAG.getConstant(TD->getPointerSize(),
6391 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6392 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6393 DAG.getNode(ISD::ADD, dl, getPointerTy(),
6394 FrameAddr, Offset),
6395 NULL, 0);
6398 // Just load the return address.
6399 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6400 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6401 RetAddrFI, NULL, 0);
6404 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6405 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6406 MFI->setFrameAddressIsTaken(true);
6407 EVT VT = Op.getValueType();
6408 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
6409 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6410 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6411 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6412 while (Depth--)
6413 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6414 return FrameAddr;
6417 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6418 SelectionDAG &DAG) {
6419 return DAG.getIntPtrConstant(2*TD->getPointerSize());
6422 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6424 MachineFunction &MF = DAG.getMachineFunction();
6425 SDValue Chain = Op.getOperand(0);
6426 SDValue Offset = Op.getOperand(1);
6427 SDValue Handler = Op.getOperand(2);
6428 DebugLoc dl = Op.getDebugLoc();
6430 SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6431 getPointerTy());
6432 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6434 SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6435 DAG.getIntPtrConstant(-TD->getPointerSize()));
6436 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6437 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6438 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6439 MF.getRegInfo().addLiveOut(StoreAddrReg);
6441 return DAG.getNode(X86ISD::EH_RETURN, dl,
6442 MVT::Other,
6443 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6446 SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6447 SelectionDAG &DAG) {
6448 SDValue Root = Op.getOperand(0);
6449 SDValue Trmp = Op.getOperand(1); // trampoline
6450 SDValue FPtr = Op.getOperand(2); // nested function
6451 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6452 DebugLoc dl = Op.getDebugLoc();
6454 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6456 const X86InstrInfo *TII =
6457 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6459 if (Subtarget->is64Bit()) {
6460 SDValue OutChains[6];
6462 // Large code-model.
6464 const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r);
6465 const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6467 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6468 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6470 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6472 // Load the pointer to the nested function into R11.
6473 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6474 SDValue Addr = Trmp;
6475 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6476 Addr, TrmpAddr, 0);
6478 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6479 DAG.getConstant(2, MVT::i64));
6480 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6482 // Load the 'nest' parameter value into R10.
6483 // R10 is specified in X86CallingConv.td
6484 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6485 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6486 DAG.getConstant(10, MVT::i64));
6487 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6488 Addr, TrmpAddr, 10);
6490 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6491 DAG.getConstant(12, MVT::i64));
6492 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6494 // Jump to the nested function.
6495 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6496 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6497 DAG.getConstant(20, MVT::i64));
6498 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6499 Addr, TrmpAddr, 20);
6501 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6502 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6503 DAG.getConstant(22, MVT::i64));
6504 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6505 TrmpAddr, 22);
6507 SDValue Ops[] =
6508 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6509 return DAG.getMergeValues(Ops, 2, dl);
6510 } else {
6511 const Function *Func =
6512 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6513 CallingConv::ID CC = Func->getCallingConv();
6514 unsigned NestReg;
6516 switch (CC) {
6517 default:
6518 llvm_unreachable("Unsupported calling convention");
6519 case CallingConv::C:
6520 case CallingConv::X86_StdCall: {
6521 // Pass 'nest' parameter in ECX.
6522 // Must be kept in sync with X86CallingConv.td
6523 NestReg = X86::ECX;
6525 // Check that ECX wasn't needed by an 'inreg' parameter.
6526 const FunctionType *FTy = Func->getFunctionType();
6527 const AttrListPtr &Attrs = Func->getAttributes();
6529 if (!Attrs.isEmpty() && !Func->isVarArg()) {
6530 unsigned InRegCount = 0;
6531 unsigned Idx = 1;
6533 for (FunctionType::param_iterator I = FTy->param_begin(),
6534 E = FTy->param_end(); I != E; ++I, ++Idx)
6535 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6536 // FIXME: should only count parameters that are lowered to integers.
6537 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6539 if (InRegCount > 2) {
6540 llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6543 break;
6545 case CallingConv::X86_FastCall:
6546 case CallingConv::Fast:
6547 // Pass 'nest' parameter in EAX.
6548 // Must be kept in sync with X86CallingConv.td
6549 NestReg = X86::EAX;
6550 break;
6553 SDValue OutChains[4];
6554 SDValue Addr, Disp;
6556 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6557 DAG.getConstant(10, MVT::i32));
6558 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6560 const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6561 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6562 OutChains[0] = DAG.getStore(Root, dl,
6563 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6564 Trmp, TrmpAddr, 0);
6566 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6567 DAG.getConstant(1, MVT::i32));
6568 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6570 const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6571 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6572 DAG.getConstant(5, MVT::i32));
6573 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6574 TrmpAddr, 5, false, 1);
6576 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6577 DAG.getConstant(6, MVT::i32));
6578 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6580 SDValue Ops[] =
6581 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6582 return DAG.getMergeValues(Ops, 2, dl);
6586 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6588 The rounding mode is in bits 11:10 of FPSR, and has the following
6589 settings:
6590 00 Round to nearest
6591 01 Round to -inf
6592 10 Round to +inf
6593 11 Round to 0
6595 FLT_ROUNDS, on the other hand, expects the following:
6596 -1 Undefined
6597 0 Round to 0
6598 1 Round to nearest
6599 2 Round to +inf
6600 3 Round to -inf
6602 To perform the conversion, we do:
6603 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6606 MachineFunction &MF = DAG.getMachineFunction();
6607 const TargetMachine &TM = MF.getTarget();
6608 const TargetFrameInfo &TFI = *TM.getFrameInfo();
6609 unsigned StackAlignment = TFI.getStackAlignment();
6610 EVT VT = Op.getValueType();
6611 DebugLoc dl = Op.getDebugLoc();
6613 // Save FP Control Word to stack slot
6614 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6615 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6617 SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6618 DAG.getEntryNode(), StackSlot);
6620 // Load FP Control Word from stack slot
6621 SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6623 // Transform as necessary
6624 SDValue CWD1 =
6625 DAG.getNode(ISD::SRL, dl, MVT::i16,
6626 DAG.getNode(ISD::AND, dl, MVT::i16,
6627 CWD, DAG.getConstant(0x800, MVT::i16)),
6628 DAG.getConstant(11, MVT::i8));
6629 SDValue CWD2 =
6630 DAG.getNode(ISD::SRL, dl, MVT::i16,
6631 DAG.getNode(ISD::AND, dl, MVT::i16,
6632 CWD, DAG.getConstant(0x400, MVT::i16)),
6633 DAG.getConstant(9, MVT::i8));
6635 SDValue RetVal =
6636 DAG.getNode(ISD::AND, dl, MVT::i16,
6637 DAG.getNode(ISD::ADD, dl, MVT::i16,
6638 DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6639 DAG.getConstant(1, MVT::i16)),
6640 DAG.getConstant(3, MVT::i16));
6643 return DAG.getNode((VT.getSizeInBits() < 16 ?
6644 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6647 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6648 EVT VT = Op.getValueType();
6649 EVT OpVT = VT;
6650 unsigned NumBits = VT.getSizeInBits();
6651 DebugLoc dl = Op.getDebugLoc();
6653 Op = Op.getOperand(0);
6654 if (VT == MVT::i8) {
6655 // Zero extend to i32 since there is not an i8 bsr.
6656 OpVT = MVT::i32;
6657 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6660 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6661 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6662 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6664 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6665 SmallVector<SDValue, 4> Ops;
6666 Ops.push_back(Op);
6667 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6668 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6669 Ops.push_back(Op.getValue(1));
6670 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6672 // Finally xor with NumBits-1.
6673 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6675 if (VT == MVT::i8)
6676 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6677 return Op;
6680 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6681 EVT VT = Op.getValueType();
6682 EVT OpVT = VT;
6683 unsigned NumBits = VT.getSizeInBits();
6684 DebugLoc dl = Op.getDebugLoc();
6686 Op = Op.getOperand(0);
6687 if (VT == MVT::i8) {
6688 OpVT = MVT::i32;
6689 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6692 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6693 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6694 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6696 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6697 SmallVector<SDValue, 4> Ops;
6698 Ops.push_back(Op);
6699 Ops.push_back(DAG.getConstant(NumBits, OpVT));
6700 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6701 Ops.push_back(Op.getValue(1));
6702 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6704 if (VT == MVT::i8)
6705 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6706 return Op;
6709 SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6710 EVT VT = Op.getValueType();
6711 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6712 DebugLoc dl = Op.getDebugLoc();
6714 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6715 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6716 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6717 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6718 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6720 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6721 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6722 // return AloBlo + AloBhi + AhiBlo;
6724 SDValue A = Op.getOperand(0);
6725 SDValue B = Op.getOperand(1);
6727 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6728 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6729 A, DAG.getConstant(32, MVT::i32));
6730 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6731 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6732 B, DAG.getConstant(32, MVT::i32));
6733 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6734 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6735 A, B);
6736 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6737 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6738 A, Bhi);
6739 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6740 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6741 Ahi, B);
6742 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6743 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6744 AloBhi, DAG.getConstant(32, MVT::i32));
6745 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6746 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6747 AhiBlo, DAG.getConstant(32, MVT::i32));
6748 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6749 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6750 return Res;
6754 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6755 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6756 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6757 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6758 // has only one use.
6759 SDNode *N = Op.getNode();
6760 SDValue LHS = N->getOperand(0);
6761 SDValue RHS = N->getOperand(1);
6762 unsigned BaseOp = 0;
6763 unsigned Cond = 0;
6764 DebugLoc dl = Op.getDebugLoc();
6766 switch (Op.getOpcode()) {
6767 default: llvm_unreachable("Unknown ovf instruction!");
6768 case ISD::SADDO:
6769 // A subtract of one will be selected as a INC. Note that INC doesn't
6770 // set CF, so we can't do this for UADDO.
6771 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6772 if (C->getAPIntValue() == 1) {
6773 BaseOp = X86ISD::INC;
6774 Cond = X86::COND_O;
6775 break;
6777 BaseOp = X86ISD::ADD;
6778 Cond = X86::COND_O;
6779 break;
6780 case ISD::UADDO:
6781 BaseOp = X86ISD::ADD;
6782 Cond = X86::COND_B;
6783 break;
6784 case ISD::SSUBO:
6785 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6786 // set CF, so we can't do this for USUBO.
6787 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6788 if (C->getAPIntValue() == 1) {
6789 BaseOp = X86ISD::DEC;
6790 Cond = X86::COND_O;
6791 break;
6793 BaseOp = X86ISD::SUB;
6794 Cond = X86::COND_O;
6795 break;
6796 case ISD::USUBO:
6797 BaseOp = X86ISD::SUB;
6798 Cond = X86::COND_B;
6799 break;
6800 case ISD::SMULO:
6801 BaseOp = X86ISD::SMUL;
6802 Cond = X86::COND_O;
6803 break;
6804 case ISD::UMULO:
6805 BaseOp = X86ISD::UMUL;
6806 Cond = X86::COND_B;
6807 break;
6810 // Also sets EFLAGS.
6811 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6812 SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6814 SDValue SetCC =
6815 DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6816 DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6818 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6819 return Sum;
6822 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6823 EVT T = Op.getValueType();
6824 DebugLoc dl = Op.getDebugLoc();
6825 unsigned Reg = 0;
6826 unsigned size = 0;
6827 switch(T.getSimpleVT().SimpleTy) {
6828 default:
6829 assert(false && "Invalid value type!");
6830 case MVT::i8: Reg = X86::AL; size = 1; break;
6831 case MVT::i16: Reg = X86::AX; size = 2; break;
6832 case MVT::i32: Reg = X86::EAX; size = 4; break;
6833 case MVT::i64:
6834 assert(Subtarget->is64Bit() && "Node not type legal!");
6835 Reg = X86::RAX; size = 8;
6836 break;
6838 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6839 Op.getOperand(2), SDValue());
6840 SDValue Ops[] = { cpIn.getValue(0),
6841 Op.getOperand(1),
6842 Op.getOperand(3),
6843 DAG.getTargetConstant(size, MVT::i8),
6844 cpIn.getValue(1) };
6845 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6846 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6847 SDValue cpOut =
6848 DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6849 return cpOut;
6852 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6853 SelectionDAG &DAG) {
6854 assert(Subtarget->is64Bit() && "Result not type legalized?");
6855 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6856 SDValue TheChain = Op.getOperand(0);
6857 DebugLoc dl = Op.getDebugLoc();
6858 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6859 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6860 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6861 rax.getValue(2));
6862 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6863 DAG.getConstant(32, MVT::i8));
6864 SDValue Ops[] = {
6865 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6866 rdx.getValue(1)
6868 return DAG.getMergeValues(Ops, 2, dl);
6871 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6872 SDNode *Node = Op.getNode();
6873 DebugLoc dl = Node->getDebugLoc();
6874 EVT T = Node->getValueType(0);
6875 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6876 DAG.getConstant(0, T), Node->getOperand(2));
6877 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6878 cast<AtomicSDNode>(Node)->getMemoryVT(),
6879 Node->getOperand(0),
6880 Node->getOperand(1), negOp,
6881 cast<AtomicSDNode>(Node)->getSrcValue(),
6882 cast<AtomicSDNode>(Node)->getAlignment());
6885 /// LowerOperation - Provide custom lowering hooks for some operations.
6887 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6888 switch (Op.getOpcode()) {
6889 default: llvm_unreachable("Should not custom lower this!");
6890 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
6891 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
6892 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
6893 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6894 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6895 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
6896 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
6897 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
6898 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
6899 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6900 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
6901 case ISD::SHL_PARTS:
6902 case ISD::SRA_PARTS:
6903 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
6904 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
6905 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
6906 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
6907 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
6908 case ISD::FABS: return LowerFABS(Op, DAG);
6909 case ISD::FNEG: return LowerFNEG(Op, DAG);
6910 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
6911 case ISD::SETCC: return LowerSETCC(Op, DAG);
6912 case ISD::VSETCC: return LowerVSETCC(Op, DAG);
6913 case ISD::SELECT: return LowerSELECT(Op, DAG);
6914 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
6915 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
6916 case ISD::VASTART: return LowerVASTART(Op, DAG);
6917 case ISD::VAARG: return LowerVAARG(Op, DAG);
6918 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
6919 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6920 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
6921 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
6922 case ISD::FRAME_TO_ARGS_OFFSET:
6923 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6924 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6925 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
6926 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
6927 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
6928 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
6929 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
6930 case ISD::MUL: return LowerMUL_V2I64(Op, DAG);
6931 case ISD::SADDO:
6932 case ISD::UADDO:
6933 case ISD::SSUBO:
6934 case ISD::USUBO:
6935 case ISD::SMULO:
6936 case ISD::UMULO: return LowerXALUO(Op, DAG);
6937 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
6941 void X86TargetLowering::
6942 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6943 SelectionDAG &DAG, unsigned NewOp) {
6944 EVT T = Node->getValueType(0);
6945 DebugLoc dl = Node->getDebugLoc();
6946 assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6948 SDValue Chain = Node->getOperand(0);
6949 SDValue In1 = Node->getOperand(1);
6950 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6951 Node->getOperand(2), DAG.getIntPtrConstant(0));
6952 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6953 Node->getOperand(2), DAG.getIntPtrConstant(1));
6954 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6955 // have a MemOperand. Pass the info through as a normal operand.
6956 SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6957 SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6958 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6959 SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6960 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6961 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6962 Results.push_back(Result.getValue(2));
6965 /// ReplaceNodeResults - Replace a node with an illegal result type
6966 /// with a new node built out of custom code.
6967 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6968 SmallVectorImpl<SDValue>&Results,
6969 SelectionDAG &DAG) {
6970 DebugLoc dl = N->getDebugLoc();
6971 switch (N->getOpcode()) {
6972 default:
6973 assert(false && "Do not know how to custom type legalize this operation!");
6974 return;
6975 case ISD::FP_TO_SINT: {
6976 std::pair<SDValue,SDValue> Vals =
6977 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6978 SDValue FIST = Vals.first, StackSlot = Vals.second;
6979 if (FIST.getNode() != 0) {
6980 EVT VT = N->getValueType(0);
6981 // Return a load from the stack slot.
6982 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6984 return;
6986 case ISD::READCYCLECOUNTER: {
6987 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6988 SDValue TheChain = N->getOperand(0);
6989 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6990 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6991 rd.getValue(1));
6992 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6993 eax.getValue(2));
6994 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6995 SDValue Ops[] = { eax, edx };
6996 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6997 Results.push_back(edx.getValue(1));
6998 return;
7000 case ISD::ATOMIC_CMP_SWAP: {
7001 EVT T = N->getValueType(0);
7002 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7003 SDValue cpInL, cpInH;
7004 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7005 DAG.getConstant(0, MVT::i32));
7006 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7007 DAG.getConstant(1, MVT::i32));
7008 cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7009 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7010 cpInL.getValue(1));
7011 SDValue swapInL, swapInH;
7012 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7013 DAG.getConstant(0, MVT::i32));
7014 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7015 DAG.getConstant(1, MVT::i32));
7016 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7017 cpInH.getValue(1));
7018 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7019 swapInL.getValue(1));
7020 SDValue Ops[] = { swapInH.getValue(0),
7021 N->getOperand(1),
7022 swapInH.getValue(1) };
7023 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7024 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7025 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7026 MVT::i32, Result.getValue(1));
7027 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7028 MVT::i32, cpOutL.getValue(2));
7029 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7030 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7031 Results.push_back(cpOutH.getValue(1));
7032 return;
7034 case ISD::ATOMIC_LOAD_ADD:
7035 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7036 return;
7037 case ISD::ATOMIC_LOAD_AND:
7038 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7039 return;
7040 case ISD::ATOMIC_LOAD_NAND:
7041 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7042 return;
7043 case ISD::ATOMIC_LOAD_OR:
7044 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7045 return;
7046 case ISD::ATOMIC_LOAD_SUB:
7047 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7048 return;
7049 case ISD::ATOMIC_LOAD_XOR:
7050 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7051 return;
7052 case ISD::ATOMIC_SWAP:
7053 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7054 return;
7058 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7059 switch (Opcode) {
7060 default: return NULL;
7061 case X86ISD::BSF: return "X86ISD::BSF";
7062 case X86ISD::BSR: return "X86ISD::BSR";
7063 case X86ISD::SHLD: return "X86ISD::SHLD";
7064 case X86ISD::SHRD: return "X86ISD::SHRD";
7065 case X86ISD::FAND: return "X86ISD::FAND";
7066 case X86ISD::FOR: return "X86ISD::FOR";
7067 case X86ISD::FXOR: return "X86ISD::FXOR";
7068 case X86ISD::FSRL: return "X86ISD::FSRL";
7069 case X86ISD::FILD: return "X86ISD::FILD";
7070 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
7071 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7072 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7073 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7074 case X86ISD::FLD: return "X86ISD::FLD";
7075 case X86ISD::FST: return "X86ISD::FST";
7076 case X86ISD::CALL: return "X86ISD::CALL";
7077 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
7078 case X86ISD::BT: return "X86ISD::BT";
7079 case X86ISD::CMP: return "X86ISD::CMP";
7080 case X86ISD::COMI: return "X86ISD::COMI";
7081 case X86ISD::UCOMI: return "X86ISD::UCOMI";
7082 case X86ISD::SETCC: return "X86ISD::SETCC";
7083 case X86ISD::CMOV: return "X86ISD::CMOV";
7084 case X86ISD::BRCOND: return "X86ISD::BRCOND";
7085 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
7086 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
7087 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
7088 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
7089 case X86ISD::Wrapper: return "X86ISD::Wrapper";
7090 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
7091 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
7092 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
7093 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
7094 case X86ISD::PINSRB: return "X86ISD::PINSRB";
7095 case X86ISD::PINSRW: return "X86ISD::PINSRW";
7096 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
7097 case X86ISD::FMAX: return "X86ISD::FMAX";
7098 case X86ISD::FMIN: return "X86ISD::FMIN";
7099 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
7100 case X86ISD::FRCP: return "X86ISD::FRCP";
7101 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
7102 case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7103 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
7104 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
7105 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
7106 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
7107 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
7108 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
7109 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
7110 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
7111 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
7112 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
7113 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
7114 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
7115 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
7116 case X86ISD::VSHL: return "X86ISD::VSHL";
7117 case X86ISD::VSRL: return "X86ISD::VSRL";
7118 case X86ISD::CMPPD: return "X86ISD::CMPPD";
7119 case X86ISD::CMPPS: return "X86ISD::CMPPS";
7120 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
7121 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
7122 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
7123 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
7124 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
7125 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
7126 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
7127 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
7128 case X86ISD::ADD: return "X86ISD::ADD";
7129 case X86ISD::SUB: return "X86ISD::SUB";
7130 case X86ISD::SMUL: return "X86ISD::SMUL";
7131 case X86ISD::UMUL: return "X86ISD::UMUL";
7132 case X86ISD::INC: return "X86ISD::INC";
7133 case X86ISD::DEC: return "X86ISD::DEC";
7134 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
7135 case X86ISD::PTEST: return "X86ISD::PTEST";
7136 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7140 // isLegalAddressingMode - Return true if the addressing mode represented
7141 // by AM is legal for this target, for a load/store of the specified type.
7142 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7143 const Type *Ty) const {
7144 // X86 supports extremely general addressing modes.
7145 CodeModel::Model M = getTargetMachine().getCodeModel();
7147 // X86 allows a sign-extended 32-bit immediate field as a displacement.
7148 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7149 return false;
7151 if (AM.BaseGV) {
7152 unsigned GVFlags =
7153 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7155 // If a reference to this global requires an extra load, we can't fold it.
7156 if (isGlobalStubReference(GVFlags))
7157 return false;
7159 // If BaseGV requires a register for the PIC base, we cannot also have a
7160 // BaseReg specified.
7161 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7162 return false;
7164 // If lower 4G is not available, then we must use rip-relative addressing.
7165 if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7166 return false;
7169 switch (AM.Scale) {
7170 case 0:
7171 case 1:
7172 case 2:
7173 case 4:
7174 case 8:
7175 // These scales always work.
7176 break;
7177 case 3:
7178 case 5:
7179 case 9:
7180 // These scales are formed with basereg+scalereg. Only accept if there is
7181 // no basereg yet.
7182 if (AM.HasBaseReg)
7183 return false;
7184 break;
7185 default: // Other stuff never works.
7186 return false;
7189 return true;
7193 bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7194 if (!Ty1->isInteger() || !Ty2->isInteger())
7195 return false;
7196 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7197 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7198 if (NumBits1 <= NumBits2)
7199 return false;
7200 return Subtarget->is64Bit() || NumBits1 < 64;
7203 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7204 if (!VT1.isInteger() || !VT2.isInteger())
7205 return false;
7206 unsigned NumBits1 = VT1.getSizeInBits();
7207 unsigned NumBits2 = VT2.getSizeInBits();
7208 if (NumBits1 <= NumBits2)
7209 return false;
7210 return Subtarget->is64Bit() || NumBits1 < 64;
7213 bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7214 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7215 return Ty1 == Type::getInt32Ty(Ty1->getContext()) &&
7216 Ty2 == Type::getInt64Ty(Ty1->getContext()) && Subtarget->is64Bit();
7219 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7220 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7221 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7224 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7225 // i16 instructions are longer (0x66 prefix) and potentially slower.
7226 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7229 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7230 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7231 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7232 /// are assumed to be legal.
7233 bool
7234 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7235 EVT VT) const {
7236 // Only do shuffles on 128-bit vector types for now.
7237 if (VT.getSizeInBits() == 64)
7238 return false;
7240 // FIXME: pshufb, blends, palignr, shifts.
7241 return (VT.getVectorNumElements() == 2 ||
7242 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7243 isMOVLMask(M, VT) ||
7244 isSHUFPMask(M, VT) ||
7245 isPSHUFDMask(M, VT) ||
7246 isPSHUFHWMask(M, VT) ||
7247 isPSHUFLWMask(M, VT) ||
7248 isUNPCKLMask(M, VT) ||
7249 isUNPCKHMask(M, VT) ||
7250 isUNPCKL_v_undef_Mask(M, VT) ||
7251 isUNPCKH_v_undef_Mask(M, VT));
7254 bool
7255 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7256 EVT VT) const {
7257 unsigned NumElts = VT.getVectorNumElements();
7258 // FIXME: This collection of masks seems suspect.
7259 if (NumElts == 2)
7260 return true;
7261 if (NumElts == 4 && VT.getSizeInBits() == 128) {
7262 return (isMOVLMask(Mask, VT) ||
7263 isCommutedMOVLMask(Mask, VT, true) ||
7264 isSHUFPMask(Mask, VT) ||
7265 isCommutedSHUFPMask(Mask, VT));
7267 return false;
7270 //===----------------------------------------------------------------------===//
7271 // X86 Scheduler Hooks
7272 //===----------------------------------------------------------------------===//
7274 // private utility function
7275 MachineBasicBlock *
7276 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7277 MachineBasicBlock *MBB,
7278 unsigned regOpc,
7279 unsigned immOpc,
7280 unsigned LoadOpc,
7281 unsigned CXchgOpc,
7282 unsigned copyOpc,
7283 unsigned notOpc,
7284 unsigned EAXreg,
7285 TargetRegisterClass *RC,
7286 bool invSrc) const {
7287 // For the atomic bitwise operator, we generate
7288 // thisMBB:
7289 // newMBB:
7290 // ld t1 = [bitinstr.addr]
7291 // op t2 = t1, [bitinstr.val]
7292 // mov EAX = t1
7293 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7294 // bz newMBB
7295 // fallthrough -->nextMBB
7296 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7297 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7298 MachineFunction::iterator MBBIter = MBB;
7299 ++MBBIter;
7301 /// First build the CFG
7302 MachineFunction *F = MBB->getParent();
7303 MachineBasicBlock *thisMBB = MBB;
7304 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7305 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7306 F->insert(MBBIter, newMBB);
7307 F->insert(MBBIter, nextMBB);
7309 // Move all successors to thisMBB to nextMBB
7310 nextMBB->transferSuccessors(thisMBB);
7312 // Update thisMBB to fall through to newMBB
7313 thisMBB->addSuccessor(newMBB);
7315 // newMBB jumps to itself and fall through to nextMBB
7316 newMBB->addSuccessor(nextMBB);
7317 newMBB->addSuccessor(newMBB);
7319 // Insert instructions into newMBB based on incoming instruction
7320 assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7321 "unexpected number of operands");
7322 DebugLoc dl = bInstr->getDebugLoc();
7323 MachineOperand& destOper = bInstr->getOperand(0);
7324 MachineOperand* argOpers[2 + X86AddrNumOperands];
7325 int numArgs = bInstr->getNumOperands() - 1;
7326 for (int i=0; i < numArgs; ++i)
7327 argOpers[i] = &bInstr->getOperand(i+1);
7329 // x86 address has 4 operands: base, index, scale, and displacement
7330 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7331 int valArgIndx = lastAddrIndx + 1;
7333 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7334 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7335 for (int i=0; i <= lastAddrIndx; ++i)
7336 (*MIB).addOperand(*argOpers[i]);
7338 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7339 if (invSrc) {
7340 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7342 else
7343 tt = t1;
7345 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7346 assert((argOpers[valArgIndx]->isReg() ||
7347 argOpers[valArgIndx]->isImm()) &&
7348 "invalid operand");
7349 if (argOpers[valArgIndx]->isReg())
7350 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7351 else
7352 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7353 MIB.addReg(tt);
7354 (*MIB).addOperand(*argOpers[valArgIndx]);
7356 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7357 MIB.addReg(t1);
7359 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7360 for (int i=0; i <= lastAddrIndx; ++i)
7361 (*MIB).addOperand(*argOpers[i]);
7362 MIB.addReg(t2);
7363 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7364 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7366 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7367 MIB.addReg(EAXreg);
7369 // insert branch
7370 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7372 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
7373 return nextMBB;
7376 // private utility function: 64 bit atomics on 32 bit host.
7377 MachineBasicBlock *
7378 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7379 MachineBasicBlock *MBB,
7380 unsigned regOpcL,
7381 unsigned regOpcH,
7382 unsigned immOpcL,
7383 unsigned immOpcH,
7384 bool invSrc) const {
7385 // For the atomic bitwise operator, we generate
7386 // thisMBB (instructions are in pairs, except cmpxchg8b)
7387 // ld t1,t2 = [bitinstr.addr]
7388 // newMBB:
7389 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7390 // op t5, t6 <- out1, out2, [bitinstr.val]
7391 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7392 // mov ECX, EBX <- t5, t6
7393 // mov EAX, EDX <- t1, t2
7394 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7395 // mov t3, t4 <- EAX, EDX
7396 // bz newMBB
7397 // result in out1, out2
7398 // fallthrough -->nextMBB
7400 const TargetRegisterClass *RC = X86::GR32RegisterClass;
7401 const unsigned LoadOpc = X86::MOV32rm;
7402 const unsigned copyOpc = X86::MOV32rr;
7403 const unsigned NotOpc = X86::NOT32r;
7404 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7405 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7406 MachineFunction::iterator MBBIter = MBB;
7407 ++MBBIter;
7409 /// First build the CFG
7410 MachineFunction *F = MBB->getParent();
7411 MachineBasicBlock *thisMBB = MBB;
7412 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7413 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7414 F->insert(MBBIter, newMBB);
7415 F->insert(MBBIter, nextMBB);
7417 // Move all successors to thisMBB to nextMBB
7418 nextMBB->transferSuccessors(thisMBB);
7420 // Update thisMBB to fall through to newMBB
7421 thisMBB->addSuccessor(newMBB);
7423 // newMBB jumps to itself and fall through to nextMBB
7424 newMBB->addSuccessor(nextMBB);
7425 newMBB->addSuccessor(newMBB);
7427 DebugLoc dl = bInstr->getDebugLoc();
7428 // Insert instructions into newMBB based on incoming instruction
7429 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7430 assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7431 "unexpected number of operands");
7432 MachineOperand& dest1Oper = bInstr->getOperand(0);
7433 MachineOperand& dest2Oper = bInstr->getOperand(1);
7434 MachineOperand* argOpers[2 + X86AddrNumOperands];
7435 for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7436 argOpers[i] = &bInstr->getOperand(i+2);
7438 // x86 address has 4 operands: base, index, scale, and displacement
7439 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7441 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7442 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7443 for (int i=0; i <= lastAddrIndx; ++i)
7444 (*MIB).addOperand(*argOpers[i]);
7445 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7446 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7447 // add 4 to displacement.
7448 for (int i=0; i <= lastAddrIndx-2; ++i)
7449 (*MIB).addOperand(*argOpers[i]);
7450 MachineOperand newOp3 = *(argOpers[3]);
7451 if (newOp3.isImm())
7452 newOp3.setImm(newOp3.getImm()+4);
7453 else
7454 newOp3.setOffset(newOp3.getOffset()+4);
7455 (*MIB).addOperand(newOp3);
7456 (*MIB).addOperand(*argOpers[lastAddrIndx]);
7458 // t3/4 are defined later, at the bottom of the loop
7459 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7460 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7461 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7462 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7463 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7464 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7466 unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7467 unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7468 if (invSrc) {
7469 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7470 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7471 } else {
7472 tt1 = t1;
7473 tt2 = t2;
7476 int valArgIndx = lastAddrIndx + 1;
7477 assert((argOpers[valArgIndx]->isReg() ||
7478 argOpers[valArgIndx]->isImm()) &&
7479 "invalid operand");
7480 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7481 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7482 if (argOpers[valArgIndx]->isReg())
7483 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7484 else
7485 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7486 if (regOpcL != X86::MOV32rr)
7487 MIB.addReg(tt1);
7488 (*MIB).addOperand(*argOpers[valArgIndx]);
7489 assert(argOpers[valArgIndx + 1]->isReg() ==
7490 argOpers[valArgIndx]->isReg());
7491 assert(argOpers[valArgIndx + 1]->isImm() ==
7492 argOpers[valArgIndx]->isImm());
7493 if (argOpers[valArgIndx + 1]->isReg())
7494 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7495 else
7496 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7497 if (regOpcH != X86::MOV32rr)
7498 MIB.addReg(tt2);
7499 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7501 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7502 MIB.addReg(t1);
7503 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7504 MIB.addReg(t2);
7506 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7507 MIB.addReg(t5);
7508 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7509 MIB.addReg(t6);
7511 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7512 for (int i=0; i <= lastAddrIndx; ++i)
7513 (*MIB).addOperand(*argOpers[i]);
7515 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7516 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7518 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7519 MIB.addReg(X86::EAX);
7520 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7521 MIB.addReg(X86::EDX);
7523 // insert branch
7524 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7526 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
7527 return nextMBB;
7530 // private utility function
7531 MachineBasicBlock *
7532 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7533 MachineBasicBlock *MBB,
7534 unsigned cmovOpc) const {
7535 // For the atomic min/max operator, we generate
7536 // thisMBB:
7537 // newMBB:
7538 // ld t1 = [min/max.addr]
7539 // mov t2 = [min/max.val]
7540 // cmp t1, t2
7541 // cmov[cond] t2 = t1
7542 // mov EAX = t1
7543 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7544 // bz newMBB
7545 // fallthrough -->nextMBB
7547 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7548 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7549 MachineFunction::iterator MBBIter = MBB;
7550 ++MBBIter;
7552 /// First build the CFG
7553 MachineFunction *F = MBB->getParent();
7554 MachineBasicBlock *thisMBB = MBB;
7555 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7556 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7557 F->insert(MBBIter, newMBB);
7558 F->insert(MBBIter, nextMBB);
7560 // Move all successors of thisMBB to nextMBB
7561 nextMBB->transferSuccessors(thisMBB);
7563 // Update thisMBB to fall through to newMBB
7564 thisMBB->addSuccessor(newMBB);
7566 // newMBB jumps to newMBB and fall through to nextMBB
7567 newMBB->addSuccessor(nextMBB);
7568 newMBB->addSuccessor(newMBB);
7570 DebugLoc dl = mInstr->getDebugLoc();
7571 // Insert instructions into newMBB based on incoming instruction
7572 assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7573 "unexpected number of operands");
7574 MachineOperand& destOper = mInstr->getOperand(0);
7575 MachineOperand* argOpers[2 + X86AddrNumOperands];
7576 int numArgs = mInstr->getNumOperands() - 1;
7577 for (int i=0; i < numArgs; ++i)
7578 argOpers[i] = &mInstr->getOperand(i+1);
7580 // x86 address has 4 operands: base, index, scale, and displacement
7581 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7582 int valArgIndx = lastAddrIndx + 1;
7584 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7585 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7586 for (int i=0; i <= lastAddrIndx; ++i)
7587 (*MIB).addOperand(*argOpers[i]);
7589 // We only support register and immediate values
7590 assert((argOpers[valArgIndx]->isReg() ||
7591 argOpers[valArgIndx]->isImm()) &&
7592 "invalid operand");
7594 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7595 if (argOpers[valArgIndx]->isReg())
7596 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7597 else
7598 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7599 (*MIB).addOperand(*argOpers[valArgIndx]);
7601 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7602 MIB.addReg(t1);
7604 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7605 MIB.addReg(t1);
7606 MIB.addReg(t2);
7608 // Generate movc
7609 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7610 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7611 MIB.addReg(t2);
7612 MIB.addReg(t1);
7614 // Cmp and exchange if none has modified the memory location
7615 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7616 for (int i=0; i <= lastAddrIndx; ++i)
7617 (*MIB).addOperand(*argOpers[i]);
7618 MIB.addReg(t3);
7619 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7620 (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7622 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7623 MIB.addReg(X86::EAX);
7625 // insert branch
7626 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7628 F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now.
7629 return nextMBB;
7632 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
7633 // all of this code can be replaced with that in the .td file.
7634 MachineBasicBlock *
7635 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
7636 unsigned numArgs, bool memArg) const {
7638 MachineFunction *F = BB->getParent();
7639 DebugLoc dl = MI->getDebugLoc();
7640 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7642 unsigned Opc;
7644 if (memArg) {
7645 Opc = numArgs == 3 ?
7646 X86::PCMPISTRM128rm :
7647 X86::PCMPESTRM128rm;
7648 } else {
7649 Opc = numArgs == 3 ?
7650 X86::PCMPISTRM128rr :
7651 X86::PCMPESTRM128rr;
7654 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
7656 for (unsigned i = 0; i < numArgs; ++i) {
7657 MachineOperand &Op = MI->getOperand(i+1);
7659 if (!(Op.isReg() && Op.isImplicit()))
7660 MIB.addOperand(Op);
7663 BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
7664 .addReg(X86::XMM0);
7666 F->DeleteMachineInstr(MI);
7668 return BB;
7671 MachineBasicBlock *
7672 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
7673 MachineInstr *MI,
7674 MachineBasicBlock *MBB) const {
7675 // Emit code to save XMM registers to the stack. The ABI says that the
7676 // number of registers to save is given in %al, so it's theoretically
7677 // possible to do an indirect jump trick to avoid saving all of them,
7678 // however this code takes a simpler approach and just executes all
7679 // of the stores if %al is non-zero. It's less code, and it's probably
7680 // easier on the hardware branch predictor, and stores aren't all that
7681 // expensive anyway.
7683 // Create the new basic blocks. One block contains all the XMM stores,
7684 // and one block is the final destination regardless of whether any
7685 // stores were performed.
7686 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7687 MachineFunction *F = MBB->getParent();
7688 MachineFunction::iterator MBBIter = MBB;
7689 ++MBBIter;
7690 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
7691 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
7692 F->insert(MBBIter, XMMSaveMBB);
7693 F->insert(MBBIter, EndMBB);
7695 // Set up the CFG.
7696 // Move any original successors of MBB to the end block.
7697 EndMBB->transferSuccessors(MBB);
7698 // The original block will now fall through to the XMM save block.
7699 MBB->addSuccessor(XMMSaveMBB);
7700 // The XMMSaveMBB will fall through to the end block.
7701 XMMSaveMBB->addSuccessor(EndMBB);
7703 // Now add the instructions.
7704 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7705 DebugLoc DL = MI->getDebugLoc();
7707 unsigned CountReg = MI->getOperand(0).getReg();
7708 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
7709 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
7711 if (!Subtarget->isTargetWin64()) {
7712 // If %al is 0, branch around the XMM save block.
7713 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
7714 BuildMI(MBB, DL, TII->get(X86::JE)).addMBB(EndMBB);
7715 MBB->addSuccessor(EndMBB);
7718 // In the XMM save block, save all the XMM argument registers.
7719 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
7720 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
7721 BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
7722 .addFrameIndex(RegSaveFrameIndex)
7723 .addImm(/*Scale=*/1)
7724 .addReg(/*IndexReg=*/0)
7725 .addImm(/*Disp=*/Offset)
7726 .addReg(/*Segment=*/0)
7727 .addReg(MI->getOperand(i).getReg())
7728 .addMemOperand(MachineMemOperand(
7729 PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
7730 MachineMemOperand::MOStore, Offset,
7731 /*Size=*/16, /*Align=*/16));
7734 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7736 return EndMBB;
7739 MachineBasicBlock *
7740 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
7741 MachineBasicBlock *BB) const {
7742 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7743 DebugLoc DL = MI->getDebugLoc();
7745 // To "insert" a SELECT_CC instruction, we actually have to insert the
7746 // diamond control-flow pattern. The incoming instruction knows the
7747 // destination vreg to set, the condition code register to branch on, the
7748 // true/false values to select between, and a branch opcode to use.
7749 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7750 MachineFunction::iterator It = BB;
7751 ++It;
7753 // thisMBB:
7754 // ...
7755 // TrueVal = ...
7756 // cmpTY ccX, r1, r2
7757 // bCC copy1MBB
7758 // fallthrough --> copy0MBB
7759 MachineBasicBlock *thisMBB = BB;
7760 MachineFunction *F = BB->getParent();
7761 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7762 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7763 unsigned Opc =
7764 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7765 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
7766 F->insert(It, copy0MBB);
7767 F->insert(It, sinkMBB);
7768 // Update machine-CFG edges by transferring all successors of the current
7769 // block to the new block which will contain the Phi node for the select.
7770 sinkMBB->transferSuccessors(BB);
7772 // Add the true and fallthrough blocks as its successors.
7773 BB->addSuccessor(copy0MBB);
7774 BB->addSuccessor(sinkMBB);
7776 // copy0MBB:
7777 // %FalseValue = ...
7778 // # fallthrough to sinkMBB
7779 BB = copy0MBB;
7781 // Update machine-CFG edges
7782 BB->addSuccessor(sinkMBB);
7784 // sinkMBB:
7785 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7786 // ...
7787 BB = sinkMBB;
7788 BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
7789 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7790 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7792 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7793 return BB;
7797 MachineBasicBlock *
7798 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7799 MachineBasicBlock *BB) const {
7800 switch (MI->getOpcode()) {
7801 default: assert(false && "Unexpected instr type to insert");
7802 case X86::CMOV_GR8:
7803 case X86::CMOV_V1I64:
7804 case X86::CMOV_FR32:
7805 case X86::CMOV_FR64:
7806 case X86::CMOV_V4F32:
7807 case X86::CMOV_V2F64:
7808 case X86::CMOV_V2I64:
7809 return EmitLoweredSelect(MI, BB);
7811 case X86::FP32_TO_INT16_IN_MEM:
7812 case X86::FP32_TO_INT32_IN_MEM:
7813 case X86::FP32_TO_INT64_IN_MEM:
7814 case X86::FP64_TO_INT16_IN_MEM:
7815 case X86::FP64_TO_INT32_IN_MEM:
7816 case X86::FP64_TO_INT64_IN_MEM:
7817 case X86::FP80_TO_INT16_IN_MEM:
7818 case X86::FP80_TO_INT32_IN_MEM:
7819 case X86::FP80_TO_INT64_IN_MEM: {
7820 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7821 DebugLoc DL = MI->getDebugLoc();
7823 // Change the floating point control register to use "round towards zero"
7824 // mode when truncating to an integer value.
7825 MachineFunction *F = BB->getParent();
7826 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7827 addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7829 // Load the old value of the high byte of the control word...
7830 unsigned OldCW =
7831 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7832 addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
7833 CWFrameIdx);
7835 // Set the high part to be round to zero...
7836 addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
7837 .addImm(0xC7F);
7839 // Reload the modified control word now...
7840 addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
7842 // Restore the memory image of control word to original value
7843 addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
7844 .addReg(OldCW);
7846 // Get the X86 opcode to use.
7847 unsigned Opc;
7848 switch (MI->getOpcode()) {
7849 default: llvm_unreachable("illegal opcode!");
7850 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7851 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7852 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7853 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7854 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7855 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7856 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7857 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7858 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7861 X86AddressMode AM;
7862 MachineOperand &Op = MI->getOperand(0);
7863 if (Op.isReg()) {
7864 AM.BaseType = X86AddressMode::RegBase;
7865 AM.Base.Reg = Op.getReg();
7866 } else {
7867 AM.BaseType = X86AddressMode::FrameIndexBase;
7868 AM.Base.FrameIndex = Op.getIndex();
7870 Op = MI->getOperand(1);
7871 if (Op.isImm())
7872 AM.Scale = Op.getImm();
7873 Op = MI->getOperand(2);
7874 if (Op.isImm())
7875 AM.IndexReg = Op.getImm();
7876 Op = MI->getOperand(3);
7877 if (Op.isGlobal()) {
7878 AM.GV = Op.getGlobal();
7879 } else {
7880 AM.Disp = Op.getImm();
7882 addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
7883 .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7885 // Reload the original control word now.
7886 addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
7888 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7889 return BB;
7891 // String/text processing lowering.
7892 case X86::PCMPISTRM128REG:
7893 return EmitPCMP(MI, BB, 3, false /* in-mem */);
7894 case X86::PCMPISTRM128MEM:
7895 return EmitPCMP(MI, BB, 3, true /* in-mem */);
7896 case X86::PCMPESTRM128REG:
7897 return EmitPCMP(MI, BB, 5, false /* in mem */);
7898 case X86::PCMPESTRM128MEM:
7899 return EmitPCMP(MI, BB, 5, true /* in mem */);
7901 // Atomic Lowering.
7902 case X86::ATOMAND32:
7903 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7904 X86::AND32ri, X86::MOV32rm,
7905 X86::LCMPXCHG32, X86::MOV32rr,
7906 X86::NOT32r, X86::EAX,
7907 X86::GR32RegisterClass);
7908 case X86::ATOMOR32:
7909 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7910 X86::OR32ri, X86::MOV32rm,
7911 X86::LCMPXCHG32, X86::MOV32rr,
7912 X86::NOT32r, X86::EAX,
7913 X86::GR32RegisterClass);
7914 case X86::ATOMXOR32:
7915 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7916 X86::XOR32ri, X86::MOV32rm,
7917 X86::LCMPXCHG32, X86::MOV32rr,
7918 X86::NOT32r, X86::EAX,
7919 X86::GR32RegisterClass);
7920 case X86::ATOMNAND32:
7921 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7922 X86::AND32ri, X86::MOV32rm,
7923 X86::LCMPXCHG32, X86::MOV32rr,
7924 X86::NOT32r, X86::EAX,
7925 X86::GR32RegisterClass, true);
7926 case X86::ATOMMIN32:
7927 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7928 case X86::ATOMMAX32:
7929 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7930 case X86::ATOMUMIN32:
7931 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7932 case X86::ATOMUMAX32:
7933 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7935 case X86::ATOMAND16:
7936 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7937 X86::AND16ri, X86::MOV16rm,
7938 X86::LCMPXCHG16, X86::MOV16rr,
7939 X86::NOT16r, X86::AX,
7940 X86::GR16RegisterClass);
7941 case X86::ATOMOR16:
7942 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7943 X86::OR16ri, X86::MOV16rm,
7944 X86::LCMPXCHG16, X86::MOV16rr,
7945 X86::NOT16r, X86::AX,
7946 X86::GR16RegisterClass);
7947 case X86::ATOMXOR16:
7948 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7949 X86::XOR16ri, X86::MOV16rm,
7950 X86::LCMPXCHG16, X86::MOV16rr,
7951 X86::NOT16r, X86::AX,
7952 X86::GR16RegisterClass);
7953 case X86::ATOMNAND16:
7954 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7955 X86::AND16ri, X86::MOV16rm,
7956 X86::LCMPXCHG16, X86::MOV16rr,
7957 X86::NOT16r, X86::AX,
7958 X86::GR16RegisterClass, true);
7959 case X86::ATOMMIN16:
7960 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7961 case X86::ATOMMAX16:
7962 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7963 case X86::ATOMUMIN16:
7964 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7965 case X86::ATOMUMAX16:
7966 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7968 case X86::ATOMAND8:
7969 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7970 X86::AND8ri, X86::MOV8rm,
7971 X86::LCMPXCHG8, X86::MOV8rr,
7972 X86::NOT8r, X86::AL,
7973 X86::GR8RegisterClass);
7974 case X86::ATOMOR8:
7975 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7976 X86::OR8ri, X86::MOV8rm,
7977 X86::LCMPXCHG8, X86::MOV8rr,
7978 X86::NOT8r, X86::AL,
7979 X86::GR8RegisterClass);
7980 case X86::ATOMXOR8:
7981 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7982 X86::XOR8ri, X86::MOV8rm,
7983 X86::LCMPXCHG8, X86::MOV8rr,
7984 X86::NOT8r, X86::AL,
7985 X86::GR8RegisterClass);
7986 case X86::ATOMNAND8:
7987 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7988 X86::AND8ri, X86::MOV8rm,
7989 X86::LCMPXCHG8, X86::MOV8rr,
7990 X86::NOT8r, X86::AL,
7991 X86::GR8RegisterClass, true);
7992 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7993 // This group is for 64-bit host.
7994 case X86::ATOMAND64:
7995 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7996 X86::AND64ri32, X86::MOV64rm,
7997 X86::LCMPXCHG64, X86::MOV64rr,
7998 X86::NOT64r, X86::RAX,
7999 X86::GR64RegisterClass);
8000 case X86::ATOMOR64:
8001 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8002 X86::OR64ri32, X86::MOV64rm,
8003 X86::LCMPXCHG64, X86::MOV64rr,
8004 X86::NOT64r, X86::RAX,
8005 X86::GR64RegisterClass);
8006 case X86::ATOMXOR64:
8007 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8008 X86::XOR64ri32, X86::MOV64rm,
8009 X86::LCMPXCHG64, X86::MOV64rr,
8010 X86::NOT64r, X86::RAX,
8011 X86::GR64RegisterClass);
8012 case X86::ATOMNAND64:
8013 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8014 X86::AND64ri32, X86::MOV64rm,
8015 X86::LCMPXCHG64, X86::MOV64rr,
8016 X86::NOT64r, X86::RAX,
8017 X86::GR64RegisterClass, true);
8018 case X86::ATOMMIN64:
8019 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8020 case X86::ATOMMAX64:
8021 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8022 case X86::ATOMUMIN64:
8023 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8024 case X86::ATOMUMAX64:
8025 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8027 // This group does 64-bit operations on a 32-bit host.
8028 case X86::ATOMAND6432:
8029 return EmitAtomicBit6432WithCustomInserter(MI, BB,
8030 X86::AND32rr, X86::AND32rr,
8031 X86::AND32ri, X86::AND32ri,
8032 false);
8033 case X86::ATOMOR6432:
8034 return EmitAtomicBit6432WithCustomInserter(MI, BB,
8035 X86::OR32rr, X86::OR32rr,
8036 X86::OR32ri, X86::OR32ri,
8037 false);
8038 case X86::ATOMXOR6432:
8039 return EmitAtomicBit6432WithCustomInserter(MI, BB,
8040 X86::XOR32rr, X86::XOR32rr,
8041 X86::XOR32ri, X86::XOR32ri,
8042 false);
8043 case X86::ATOMNAND6432:
8044 return EmitAtomicBit6432WithCustomInserter(MI, BB,
8045 X86::AND32rr, X86::AND32rr,
8046 X86::AND32ri, X86::AND32ri,
8047 true);
8048 case X86::ATOMADD6432:
8049 return EmitAtomicBit6432WithCustomInserter(MI, BB,
8050 X86::ADD32rr, X86::ADC32rr,
8051 X86::ADD32ri, X86::ADC32ri,
8052 false);
8053 case X86::ATOMSUB6432:
8054 return EmitAtomicBit6432WithCustomInserter(MI, BB,
8055 X86::SUB32rr, X86::SBB32rr,
8056 X86::SUB32ri, X86::SBB32ri,
8057 false);
8058 case X86::ATOMSWAP6432:
8059 return EmitAtomicBit6432WithCustomInserter(MI, BB,
8060 X86::MOV32rr, X86::MOV32rr,
8061 X86::MOV32ri, X86::MOV32ri,
8062 false);
8063 case X86::VASTART_SAVE_XMM_REGS:
8064 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8068 //===----------------------------------------------------------------------===//
8069 // X86 Optimization Hooks
8070 //===----------------------------------------------------------------------===//
8072 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8073 const APInt &Mask,
8074 APInt &KnownZero,
8075 APInt &KnownOne,
8076 const SelectionDAG &DAG,
8077 unsigned Depth) const {
8078 unsigned Opc = Op.getOpcode();
8079 assert((Opc >= ISD::BUILTIN_OP_END ||
8080 Opc == ISD::INTRINSIC_WO_CHAIN ||
8081 Opc == ISD::INTRINSIC_W_CHAIN ||
8082 Opc == ISD::INTRINSIC_VOID) &&
8083 "Should use MaskedValueIsZero if you don't know whether Op"
8084 " is a target node!");
8086 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
8087 switch (Opc) {
8088 default: break;
8089 case X86ISD::ADD:
8090 case X86ISD::SUB:
8091 case X86ISD::SMUL:
8092 case X86ISD::UMUL:
8093 case X86ISD::INC:
8094 case X86ISD::DEC:
8095 // These nodes' second result is a boolean.
8096 if (Op.getResNo() == 0)
8097 break;
8098 // Fallthrough
8099 case X86ISD::SETCC:
8100 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8101 Mask.getBitWidth() - 1);
8102 break;
8106 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8107 /// node is a GlobalAddress + offset.
8108 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8109 GlobalValue* &GA, int64_t &Offset) const{
8110 if (N->getOpcode() == X86ISD::Wrapper) {
8111 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8112 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8113 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8114 return true;
8117 return TargetLowering::isGAPlusOffset(N, GA, Offset);
8120 static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8121 const TargetLowering &TLI) {
8122 GlobalValue *GV;
8123 int64_t Offset = 0;
8124 if (TLI.isGAPlusOffset(Base, GV, Offset))
8125 return (GV->getAlignment() >= N && (Offset % N) == 0);
8126 // DAG combine handles the stack object case.
8127 return false;
8130 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8131 EVT EVT, LoadSDNode *&LDBase,
8132 unsigned &LastLoadedElt,
8133 SelectionDAG &DAG, MachineFrameInfo *MFI,
8134 const TargetLowering &TLI) {
8135 LDBase = NULL;
8136 LastLoadedElt = -1U;
8137 for (unsigned i = 0; i < NumElems; ++i) {
8138 if (N->getMaskElt(i) < 0) {
8139 if (!LDBase)
8140 return false;
8141 continue;
8144 SDValue Elt = DAG.getShuffleScalarElt(N, i);
8145 if (!Elt.getNode() ||
8146 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8147 return false;
8148 if (!LDBase) {
8149 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8150 return false;
8151 LDBase = cast<LoadSDNode>(Elt.getNode());
8152 LastLoadedElt = i;
8153 continue;
8155 if (Elt.getOpcode() == ISD::UNDEF)
8156 continue;
8158 LoadSDNode *LD = cast<LoadSDNode>(Elt);
8159 if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
8160 return false;
8161 LastLoadedElt = i;
8163 return true;
8166 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8167 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8168 /// if the load addresses are consecutive, non-overlapping, and in the right
8169 /// order. In the case of v2i64, it will see if it can rewrite the
8170 /// shuffle to be an appropriate build vector so it can take advantage of
8171 // performBuildVectorCombine.
8172 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8173 const TargetLowering &TLI) {
8174 DebugLoc dl = N->getDebugLoc();
8175 EVT VT = N->getValueType(0);
8176 EVT EVT = VT.getVectorElementType();
8177 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8178 unsigned NumElems = VT.getVectorNumElements();
8180 if (VT.getSizeInBits() != 128)
8181 return SDValue();
8183 // Try to combine a vector_shuffle into a 128-bit load.
8184 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8185 LoadSDNode *LD = NULL;
8186 unsigned LastLoadedElt;
8187 if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
8188 MFI, TLI))
8189 return SDValue();
8191 if (LastLoadedElt == NumElems - 1) {
8192 if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
8193 return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8194 LD->getSrcValue(), LD->getSrcValueOffset(),
8195 LD->isVolatile());
8196 return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8197 LD->getSrcValue(), LD->getSrcValueOffset(),
8198 LD->isVolatile(), LD->getAlignment());
8199 } else if (NumElems == 4 && LastLoadedElt == 1) {
8200 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8201 SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8202 SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8203 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8205 return SDValue();
8208 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8209 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8210 const X86Subtarget *Subtarget) {
8211 DebugLoc DL = N->getDebugLoc();
8212 SDValue Cond = N->getOperand(0);
8213 // Get the LHS/RHS of the select.
8214 SDValue LHS = N->getOperand(1);
8215 SDValue RHS = N->getOperand(2);
8217 // If we have SSE[12] support, try to form min/max nodes.
8218 if (Subtarget->hasSSE2() &&
8219 (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8220 Cond.getOpcode() == ISD::SETCC) {
8221 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8223 unsigned Opcode = 0;
8224 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8225 switch (CC) {
8226 default: break;
8227 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
8228 case ISD::SETULE:
8229 case ISD::SETLE:
8230 if (!UnsafeFPMath) break;
8231 // FALL THROUGH.
8232 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
8233 case ISD::SETLT:
8234 Opcode = X86ISD::FMIN;
8235 break;
8237 case ISD::SETOGT: // (X > Y) ? X : Y -> max
8238 case ISD::SETUGT:
8239 case ISD::SETGT:
8240 if (!UnsafeFPMath) break;
8241 // FALL THROUGH.
8242 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
8243 case ISD::SETGE:
8244 Opcode = X86ISD::FMAX;
8245 break;
8247 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8248 switch (CC) {
8249 default: break;
8250 case ISD::SETOGT:
8251 // This can use a min only if the LHS isn't NaN.
8252 if (DAG.isKnownNeverNaN(LHS))
8253 Opcode = X86ISD::FMIN;
8254 else if (DAG.isKnownNeverNaN(RHS)) {
8255 Opcode = X86ISD::FMIN;
8256 // Put the potential NaN in the RHS so that SSE will preserve it.
8257 std::swap(LHS, RHS);
8259 break;
8261 case ISD::SETUGT: // (X > Y) ? Y : X -> min
8262 case ISD::SETGT:
8263 if (!UnsafeFPMath) break;
8264 // FALL THROUGH.
8265 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
8266 case ISD::SETGE:
8267 Opcode = X86ISD::FMIN;
8268 break;
8270 case ISD::SETULE:
8271 // This can use a max only if the LHS isn't NaN.
8272 if (DAG.isKnownNeverNaN(LHS))
8273 Opcode = X86ISD::FMAX;
8274 else if (DAG.isKnownNeverNaN(RHS)) {
8275 Opcode = X86ISD::FMAX;
8276 // Put the potential NaN in the RHS so that SSE will preserve it.
8277 std::swap(LHS, RHS);
8279 break;
8281 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
8282 case ISD::SETLE:
8283 if (!UnsafeFPMath) break;
8284 // FALL THROUGH.
8285 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
8286 case ISD::SETLT:
8287 Opcode = X86ISD::FMAX;
8288 break;
8292 if (Opcode)
8293 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8296 // If this is a select between two integer constants, try to do some
8297 // optimizations.
8298 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8299 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8300 // Don't do this for crazy integer types.
8301 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8302 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8303 // so that TrueC (the true value) is larger than FalseC.
8304 bool NeedsCondInvert = false;
8306 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8307 // Efficiently invertible.
8308 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
8309 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
8310 isa<ConstantSDNode>(Cond.getOperand(1))))) {
8311 NeedsCondInvert = true;
8312 std::swap(TrueC, FalseC);
8315 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
8316 if (FalseC->getAPIntValue() == 0 &&
8317 TrueC->getAPIntValue().isPowerOf2()) {
8318 if (NeedsCondInvert) // Invert the condition if needed.
8319 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8320 DAG.getConstant(1, Cond.getValueType()));
8322 // Zero extend the condition if needed.
8323 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8325 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8326 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8327 DAG.getConstant(ShAmt, MVT::i8));
8330 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8331 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8332 if (NeedsCondInvert) // Invert the condition if needed.
8333 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8334 DAG.getConstant(1, Cond.getValueType()));
8336 // Zero extend the condition if needed.
8337 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8338 FalseC->getValueType(0), Cond);
8339 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8340 SDValue(FalseC, 0));
8343 // Optimize cases that will turn into an LEA instruction. This requires
8344 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8345 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8346 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8347 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8349 bool isFastMultiplier = false;
8350 if (Diff < 10) {
8351 switch ((unsigned char)Diff) {
8352 default: break;
8353 case 1: // result = add base, cond
8354 case 2: // result = lea base( , cond*2)
8355 case 3: // result = lea base(cond, cond*2)
8356 case 4: // result = lea base( , cond*4)
8357 case 5: // result = lea base(cond, cond*4)
8358 case 8: // result = lea base( , cond*8)
8359 case 9: // result = lea base(cond, cond*8)
8360 isFastMultiplier = true;
8361 break;
8365 if (isFastMultiplier) {
8366 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8367 if (NeedsCondInvert) // Invert the condition if needed.
8368 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8369 DAG.getConstant(1, Cond.getValueType()));
8371 // Zero extend the condition if needed.
8372 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8373 Cond);
8374 // Scale the condition by the difference.
8375 if (Diff != 1)
8376 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8377 DAG.getConstant(Diff, Cond.getValueType()));
8379 // Add the base if non-zero.
8380 if (FalseC->getAPIntValue() != 0)
8381 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8382 SDValue(FalseC, 0));
8383 return Cond;
8389 return SDValue();
8392 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8393 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8394 TargetLowering::DAGCombinerInfo &DCI) {
8395 DebugLoc DL = N->getDebugLoc();
8397 // If the flag operand isn't dead, don't touch this CMOV.
8398 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8399 return SDValue();
8401 // If this is a select between two integer constants, try to do some
8402 // optimizations. Note that the operands are ordered the opposite of SELECT
8403 // operands.
8404 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8405 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8406 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8407 // larger than FalseC (the false value).
8408 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8410 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8411 CC = X86::GetOppositeBranchCondition(CC);
8412 std::swap(TrueC, FalseC);
8415 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
8416 // This is efficient for any integer data type (including i8/i16) and
8417 // shift amount.
8418 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8419 SDValue Cond = N->getOperand(3);
8420 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8421 DAG.getConstant(CC, MVT::i8), Cond);
8423 // Zero extend the condition if needed.
8424 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8426 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8427 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8428 DAG.getConstant(ShAmt, MVT::i8));
8429 if (N->getNumValues() == 2) // Dead flag value?
8430 return DCI.CombineTo(N, Cond, SDValue());
8431 return Cond;
8434 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
8435 // for any integer data type, including i8/i16.
8436 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8437 SDValue Cond = N->getOperand(3);
8438 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8439 DAG.getConstant(CC, MVT::i8), Cond);
8441 // Zero extend the condition if needed.
8442 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8443 FalseC->getValueType(0), Cond);
8444 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8445 SDValue(FalseC, 0));
8447 if (N->getNumValues() == 2) // Dead flag value?
8448 return DCI.CombineTo(N, Cond, SDValue());
8449 return Cond;
8452 // Optimize cases that will turn into an LEA instruction. This requires
8453 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8454 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8455 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8456 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8458 bool isFastMultiplier = false;
8459 if (Diff < 10) {
8460 switch ((unsigned char)Diff) {
8461 default: break;
8462 case 1: // result = add base, cond
8463 case 2: // result = lea base( , cond*2)
8464 case 3: // result = lea base(cond, cond*2)
8465 case 4: // result = lea base( , cond*4)
8466 case 5: // result = lea base(cond, cond*4)
8467 case 8: // result = lea base( , cond*8)
8468 case 9: // result = lea base(cond, cond*8)
8469 isFastMultiplier = true;
8470 break;
8474 if (isFastMultiplier) {
8475 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8476 SDValue Cond = N->getOperand(3);
8477 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8478 DAG.getConstant(CC, MVT::i8), Cond);
8479 // Zero extend the condition if needed.
8480 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8481 Cond);
8482 // Scale the condition by the difference.
8483 if (Diff != 1)
8484 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8485 DAG.getConstant(Diff, Cond.getValueType()));
8487 // Add the base if non-zero.
8488 if (FalseC->getAPIntValue() != 0)
8489 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8490 SDValue(FalseC, 0));
8491 if (N->getNumValues() == 2) // Dead flag value?
8492 return DCI.CombineTo(N, Cond, SDValue());
8493 return Cond;
8498 return SDValue();
8502 /// PerformMulCombine - Optimize a single multiply with constant into two
8503 /// in order to implement it with two cheaper instructions, e.g.
8504 /// LEA + SHL, LEA + LEA.
8505 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8506 TargetLowering::DAGCombinerInfo &DCI) {
8507 if (DAG.getMachineFunction().
8508 getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8509 return SDValue();
8511 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8512 return SDValue();
8514 EVT VT = N->getValueType(0);
8515 if (VT != MVT::i64)
8516 return SDValue();
8518 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8519 if (!C)
8520 return SDValue();
8521 uint64_t MulAmt = C->getZExtValue();
8522 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8523 return SDValue();
8525 uint64_t MulAmt1 = 0;
8526 uint64_t MulAmt2 = 0;
8527 if ((MulAmt % 9) == 0) {
8528 MulAmt1 = 9;
8529 MulAmt2 = MulAmt / 9;
8530 } else if ((MulAmt % 5) == 0) {
8531 MulAmt1 = 5;
8532 MulAmt2 = MulAmt / 5;
8533 } else if ((MulAmt % 3) == 0) {
8534 MulAmt1 = 3;
8535 MulAmt2 = MulAmt / 3;
8537 if (MulAmt2 &&
8538 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8539 DebugLoc DL = N->getDebugLoc();
8541 if (isPowerOf2_64(MulAmt2) &&
8542 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8543 // If second multiplifer is pow2, issue it first. We want the multiply by
8544 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8545 // is an add.
8546 std::swap(MulAmt1, MulAmt2);
8548 SDValue NewMul;
8549 if (isPowerOf2_64(MulAmt1))
8550 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8551 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8552 else
8553 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8554 DAG.getConstant(MulAmt1, VT));
8556 if (isPowerOf2_64(MulAmt2))
8557 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8558 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8559 else
8560 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8561 DAG.getConstant(MulAmt2, VT));
8563 // Do not add new nodes to DAG combiner worklist.
8564 DCI.CombineTo(N, NewMul, false);
8566 return SDValue();
8570 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8571 /// when possible.
8572 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8573 const X86Subtarget *Subtarget) {
8574 // On X86 with SSE2 support, we can transform this to a vector shift if
8575 // all elements are shifted by the same amount. We can't do this in legalize
8576 // because the a constant vector is typically transformed to a constant pool
8577 // so we have no knowledge of the shift amount.
8578 if (!Subtarget->hasSSE2())
8579 return SDValue();
8581 EVT VT = N->getValueType(0);
8582 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8583 return SDValue();
8585 SDValue ShAmtOp = N->getOperand(1);
8586 EVT EltVT = VT.getVectorElementType();
8587 DebugLoc DL = N->getDebugLoc();
8588 SDValue BaseShAmt = SDValue();
8589 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8590 unsigned NumElts = VT.getVectorNumElements();
8591 unsigned i = 0;
8592 for (; i != NumElts; ++i) {
8593 SDValue Arg = ShAmtOp.getOperand(i);
8594 if (Arg.getOpcode() == ISD::UNDEF) continue;
8595 BaseShAmt = Arg;
8596 break;
8598 for (; i != NumElts; ++i) {
8599 SDValue Arg = ShAmtOp.getOperand(i);
8600 if (Arg.getOpcode() == ISD::UNDEF) continue;
8601 if (Arg != BaseShAmt) {
8602 return SDValue();
8605 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8606 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8607 SDValue InVec = ShAmtOp.getOperand(0);
8608 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8609 unsigned NumElts = InVec.getValueType().getVectorNumElements();
8610 unsigned i = 0;
8611 for (; i != NumElts; ++i) {
8612 SDValue Arg = InVec.getOperand(i);
8613 if (Arg.getOpcode() == ISD::UNDEF) continue;
8614 BaseShAmt = Arg;
8615 break;
8617 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
8618 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
8619 unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
8620 if (C->getZExtValue() == SplatIdx)
8621 BaseShAmt = InVec.getOperand(1);
8624 if (BaseShAmt.getNode() == 0)
8625 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8626 DAG.getIntPtrConstant(0));
8627 } else
8628 return SDValue();
8630 // The shift amount is an i32.
8631 if (EltVT.bitsGT(MVT::i32))
8632 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8633 else if (EltVT.bitsLT(MVT::i32))
8634 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
8636 // The shift amount is identical so we can do a vector shift.
8637 SDValue ValOp = N->getOperand(0);
8638 switch (N->getOpcode()) {
8639 default:
8640 llvm_unreachable("Unknown shift opcode!");
8641 break;
8642 case ISD::SHL:
8643 if (VT == MVT::v2i64)
8644 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8645 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8646 ValOp, BaseShAmt);
8647 if (VT == MVT::v4i32)
8648 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8649 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8650 ValOp, BaseShAmt);
8651 if (VT == MVT::v8i16)
8652 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8653 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8654 ValOp, BaseShAmt);
8655 break;
8656 case ISD::SRA:
8657 if (VT == MVT::v4i32)
8658 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8659 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8660 ValOp, BaseShAmt);
8661 if (VT == MVT::v8i16)
8662 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8663 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8664 ValOp, BaseShAmt);
8665 break;
8666 case ISD::SRL:
8667 if (VT == MVT::v2i64)
8668 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8669 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8670 ValOp, BaseShAmt);
8671 if (VT == MVT::v4i32)
8672 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8673 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8674 ValOp, BaseShAmt);
8675 if (VT == MVT::v8i16)
8676 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8677 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8678 ValOp, BaseShAmt);
8679 break;
8681 return SDValue();
8684 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8685 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8686 const X86Subtarget *Subtarget) {
8687 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8688 // the FP state in cases where an emms may be missing.
8689 // A preferable solution to the general problem is to figure out the right
8690 // places to insert EMMS. This qualifies as a quick hack.
8692 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8693 StoreSDNode *St = cast<StoreSDNode>(N);
8694 EVT VT = St->getValue().getValueType();
8695 if (VT.getSizeInBits() != 64)
8696 return SDValue();
8698 const Function *F = DAG.getMachineFunction().getFunction();
8699 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8700 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8701 && Subtarget->hasSSE2();
8702 if ((VT.isVector() ||
8703 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8704 isa<LoadSDNode>(St->getValue()) &&
8705 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8706 St->getChain().hasOneUse() && !St->isVolatile()) {
8707 SDNode* LdVal = St->getValue().getNode();
8708 LoadSDNode *Ld = 0;
8709 int TokenFactorIndex = -1;
8710 SmallVector<SDValue, 8> Ops;
8711 SDNode* ChainVal = St->getChain().getNode();
8712 // Must be a store of a load. We currently handle two cases: the load
8713 // is a direct child, and it's under an intervening TokenFactor. It is
8714 // possible to dig deeper under nested TokenFactors.
8715 if (ChainVal == LdVal)
8716 Ld = cast<LoadSDNode>(St->getChain());
8717 else if (St->getValue().hasOneUse() &&
8718 ChainVal->getOpcode() == ISD::TokenFactor) {
8719 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8720 if (ChainVal->getOperand(i).getNode() == LdVal) {
8721 TokenFactorIndex = i;
8722 Ld = cast<LoadSDNode>(St->getValue());
8723 } else
8724 Ops.push_back(ChainVal->getOperand(i));
8728 if (!Ld || !ISD::isNormalLoad(Ld))
8729 return SDValue();
8731 // If this is not the MMX case, i.e. we are just turning i64 load/store
8732 // into f64 load/store, avoid the transformation if there are multiple
8733 // uses of the loaded value.
8734 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8735 return SDValue();
8737 DebugLoc LdDL = Ld->getDebugLoc();
8738 DebugLoc StDL = N->getDebugLoc();
8739 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8740 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8741 // pair instead.
8742 if (Subtarget->is64Bit() || F64IsLegal) {
8743 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8744 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8745 Ld->getBasePtr(), Ld->getSrcValue(),
8746 Ld->getSrcValueOffset(), Ld->isVolatile(),
8747 Ld->getAlignment());
8748 SDValue NewChain = NewLd.getValue(1);
8749 if (TokenFactorIndex != -1) {
8750 Ops.push_back(NewChain);
8751 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8752 Ops.size());
8754 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8755 St->getSrcValue(), St->getSrcValueOffset(),
8756 St->isVolatile(), St->getAlignment());
8759 // Otherwise, lower to two pairs of 32-bit loads / stores.
8760 SDValue LoAddr = Ld->getBasePtr();
8761 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8762 DAG.getConstant(4, MVT::i32));
8764 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8765 Ld->getSrcValue(), Ld->getSrcValueOffset(),
8766 Ld->isVolatile(), Ld->getAlignment());
8767 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8768 Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8769 Ld->isVolatile(),
8770 MinAlign(Ld->getAlignment(), 4));
8772 SDValue NewChain = LoLd.getValue(1);
8773 if (TokenFactorIndex != -1) {
8774 Ops.push_back(LoLd);
8775 Ops.push_back(HiLd);
8776 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8777 Ops.size());
8780 LoAddr = St->getBasePtr();
8781 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8782 DAG.getConstant(4, MVT::i32));
8784 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8785 St->getSrcValue(), St->getSrcValueOffset(),
8786 St->isVolatile(), St->getAlignment());
8787 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8788 St->getSrcValue(),
8789 St->getSrcValueOffset() + 4,
8790 St->isVolatile(),
8791 MinAlign(St->getAlignment(), 4));
8792 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8794 return SDValue();
8797 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8798 /// X86ISD::FXOR nodes.
8799 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8800 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8801 // F[X]OR(0.0, x) -> x
8802 // F[X]OR(x, 0.0) -> x
8803 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8804 if (C->getValueAPF().isPosZero())
8805 return N->getOperand(1);
8806 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8807 if (C->getValueAPF().isPosZero())
8808 return N->getOperand(0);
8809 return SDValue();
8812 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8813 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8814 // FAND(0.0, x) -> 0.0
8815 // FAND(x, 0.0) -> 0.0
8816 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8817 if (C->getValueAPF().isPosZero())
8818 return N->getOperand(0);
8819 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8820 if (C->getValueAPF().isPosZero())
8821 return N->getOperand(1);
8822 return SDValue();
8825 static SDValue PerformBTCombine(SDNode *N,
8826 SelectionDAG &DAG,
8827 TargetLowering::DAGCombinerInfo &DCI) {
8828 // BT ignores high bits in the bit index operand.
8829 SDValue Op1 = N->getOperand(1);
8830 if (Op1.hasOneUse()) {
8831 unsigned BitWidth = Op1.getValueSizeInBits();
8832 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8833 APInt KnownZero, KnownOne;
8834 TargetLowering::TargetLoweringOpt TLO(DAG);
8835 TargetLowering &TLI = DAG.getTargetLoweringInfo();
8836 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8837 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8838 DCI.CommitTargetLoweringOpt(TLO);
8840 return SDValue();
8843 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8844 SDValue Op = N->getOperand(0);
8845 if (Op.getOpcode() == ISD::BIT_CONVERT)
8846 Op = Op.getOperand(0);
8847 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
8848 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8849 VT.getVectorElementType().getSizeInBits() ==
8850 OpVT.getVectorElementType().getSizeInBits()) {
8851 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8853 return SDValue();
8856 // On X86 and X86-64, atomic operations are lowered to locked instructions.
8857 // Locked instructions, in turn, have implicit fence semantics (all memory
8858 // operations are flushed before issuing the locked instruction, and the
8859 // are not buffered), so we can fold away the common pattern of
8860 // fence-atomic-fence.
8861 static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
8862 SDValue atomic = N->getOperand(0);
8863 switch (atomic.getOpcode()) {
8864 case ISD::ATOMIC_CMP_SWAP:
8865 case ISD::ATOMIC_SWAP:
8866 case ISD::ATOMIC_LOAD_ADD:
8867 case ISD::ATOMIC_LOAD_SUB:
8868 case ISD::ATOMIC_LOAD_AND:
8869 case ISD::ATOMIC_LOAD_OR:
8870 case ISD::ATOMIC_LOAD_XOR:
8871 case ISD::ATOMIC_LOAD_NAND:
8872 case ISD::ATOMIC_LOAD_MIN:
8873 case ISD::ATOMIC_LOAD_MAX:
8874 case ISD::ATOMIC_LOAD_UMIN:
8875 case ISD::ATOMIC_LOAD_UMAX:
8876 break;
8877 default:
8878 return SDValue();
8881 SDValue fence = atomic.getOperand(0);
8882 if (fence.getOpcode() != ISD::MEMBARRIER)
8883 return SDValue();
8885 switch (atomic.getOpcode()) {
8886 case ISD::ATOMIC_CMP_SWAP:
8887 return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8888 atomic.getOperand(1), atomic.getOperand(2),
8889 atomic.getOperand(3));
8890 case ISD::ATOMIC_SWAP:
8891 case ISD::ATOMIC_LOAD_ADD:
8892 case ISD::ATOMIC_LOAD_SUB:
8893 case ISD::ATOMIC_LOAD_AND:
8894 case ISD::ATOMIC_LOAD_OR:
8895 case ISD::ATOMIC_LOAD_XOR:
8896 case ISD::ATOMIC_LOAD_NAND:
8897 case ISD::ATOMIC_LOAD_MIN:
8898 case ISD::ATOMIC_LOAD_MAX:
8899 case ISD::ATOMIC_LOAD_UMIN:
8900 case ISD::ATOMIC_LOAD_UMAX:
8901 return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8902 atomic.getOperand(1), atomic.getOperand(2));
8903 default:
8904 return SDValue();
8908 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8909 DAGCombinerInfo &DCI) const {
8910 SelectionDAG &DAG = DCI.DAG;
8911 switch (N->getOpcode()) {
8912 default: break;
8913 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8914 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
8915 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
8916 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
8917 case ISD::SHL:
8918 case ISD::SRA:
8919 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
8920 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
8921 case X86ISD::FXOR:
8922 case X86ISD::FOR: return PerformFORCombine(N, DAG);
8923 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
8924 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
8925 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
8926 case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG);
8929 return SDValue();
8932 //===----------------------------------------------------------------------===//
8933 // X86 Inline Assembly Support
8934 //===----------------------------------------------------------------------===//
8936 static bool LowerToBSwap(CallInst *CI) {
8937 // FIXME: this should verify that we are targetting a 486 or better. If not,
8938 // we will turn this bswap into something that will be lowered to logical ops
8939 // instead of emitting the bswap asm. For now, we don't support 486 or lower
8940 // so don't worry about this.
8942 // Verify this is a simple bswap.
8943 if (CI->getNumOperands() != 2 ||
8944 CI->getType() != CI->getOperand(1)->getType() ||
8945 !CI->getType()->isInteger())
8946 return false;
8948 const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8949 if (!Ty || Ty->getBitWidth() % 16 != 0)
8950 return false;
8952 // Okay, we can do this xform, do so now.
8953 const Type *Tys[] = { Ty };
8954 Module *M = CI->getParent()->getParent()->getParent();
8955 Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
8957 Value *Op = CI->getOperand(1);
8958 Op = CallInst::Create(Int, Op, CI->getName(), CI);
8960 CI->replaceAllUsesWith(Op);
8961 CI->eraseFromParent();
8962 return true;
8965 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
8966 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8967 std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
8969 std::string AsmStr = IA->getAsmString();
8971 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
8972 std::vector<std::string> AsmPieces;
8973 SplitString(AsmStr, AsmPieces, "\n"); // ; as separator?
8975 switch (AsmPieces.size()) {
8976 default: return false;
8977 case 1:
8978 AsmStr = AsmPieces[0];
8979 AsmPieces.clear();
8980 SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
8982 // bswap $0
8983 if (AsmPieces.size() == 2 &&
8984 (AsmPieces[0] == "bswap" ||
8985 AsmPieces[0] == "bswapq" ||
8986 AsmPieces[0] == "bswapl") &&
8987 (AsmPieces[1] == "$0" ||
8988 AsmPieces[1] == "${0:q}")) {
8989 // No need to check constraints, nothing other than the equivalent of
8990 // "=r,0" would be valid here.
8991 return LowerToBSwap(CI);
8993 // rorw $$8, ${0:w} --> llvm.bswap.i16
8994 if (CI->getType() == Type::getInt16Ty(CI->getContext()) &&
8995 AsmPieces.size() == 3 &&
8996 AsmPieces[0] == "rorw" &&
8997 AsmPieces[1] == "$$8," &&
8998 AsmPieces[2] == "${0:w}" &&
8999 IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9000 return LowerToBSwap(CI);
9002 break;
9003 case 3:
9004 if (CI->getType() == Type::getInt64Ty(CI->getContext()) &&
9005 Constraints.size() >= 2 &&
9006 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9007 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9008 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
9009 std::vector<std::string> Words;
9010 SplitString(AsmPieces[0], Words, " \t");
9011 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9012 Words.clear();
9013 SplitString(AsmPieces[1], Words, " \t");
9014 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9015 Words.clear();
9016 SplitString(AsmPieces[2], Words, " \t,");
9017 if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9018 Words[2] == "%edx") {
9019 return LowerToBSwap(CI);
9024 break;
9026 return false;
9031 /// getConstraintType - Given a constraint letter, return the type of
9032 /// constraint it is for this target.
9033 X86TargetLowering::ConstraintType
9034 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9035 if (Constraint.size() == 1) {
9036 switch (Constraint[0]) {
9037 case 'A':
9038 return C_Register;
9039 case 'f':
9040 case 'r':
9041 case 'R':
9042 case 'l':
9043 case 'q':
9044 case 'Q':
9045 case 'x':
9046 case 'y':
9047 case 'Y':
9048 return C_RegisterClass;
9049 case 'e':
9050 case 'Z':
9051 return C_Other;
9052 default:
9053 break;
9056 return TargetLowering::getConstraintType(Constraint);
9059 /// LowerXConstraint - try to replace an X constraint, which matches anything,
9060 /// with another that has more specific requirements based on the type of the
9061 /// corresponding operand.
9062 const char *X86TargetLowering::
9063 LowerXConstraint(EVT ConstraintVT) const {
9064 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9065 // 'f' like normal targets.
9066 if (ConstraintVT.isFloatingPoint()) {
9067 if (Subtarget->hasSSE2())
9068 return "Y";
9069 if (Subtarget->hasSSE1())
9070 return "x";
9073 return TargetLowering::LowerXConstraint(ConstraintVT);
9076 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9077 /// vector. If it is invalid, don't add anything to Ops.
9078 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9079 char Constraint,
9080 bool hasMemory,
9081 std::vector<SDValue>&Ops,
9082 SelectionDAG &DAG) const {
9083 SDValue Result(0, 0);
9085 switch (Constraint) {
9086 default: break;
9087 case 'I':
9088 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9089 if (C->getZExtValue() <= 31) {
9090 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9091 break;
9094 return;
9095 case 'J':
9096 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9097 if (C->getZExtValue() <= 63) {
9098 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9099 break;
9102 return;
9103 case 'K':
9104 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9105 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9106 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9107 break;
9110 return;
9111 case 'N':
9112 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9113 if (C->getZExtValue() <= 255) {
9114 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9115 break;
9118 return;
9119 case 'e': {
9120 // 32-bit signed value
9121 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9122 const ConstantInt *CI = C->getConstantIntValue();
9123 if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9124 C->getSExtValue())) {
9125 // Widen to 64 bits here to get it sign extended.
9126 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9127 break;
9129 // FIXME gcc accepts some relocatable values here too, but only in certain
9130 // memory models; it's complicated.
9132 return;
9134 case 'Z': {
9135 // 32-bit unsigned value
9136 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9137 const ConstantInt *CI = C->getConstantIntValue();
9138 if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9139 C->getZExtValue())) {
9140 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9141 break;
9144 // FIXME gcc accepts some relocatable values here too, but only in certain
9145 // memory models; it's complicated.
9146 return;
9148 case 'i': {
9149 // Literal immediates are always ok.
9150 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9151 // Widen to 64 bits here to get it sign extended.
9152 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9153 break;
9156 // If we are in non-pic codegen mode, we allow the address of a global (with
9157 // an optional displacement) to be used with 'i'.
9158 GlobalAddressSDNode *GA = 0;
9159 int64_t Offset = 0;
9161 // Match either (GA), (GA+C), (GA+C1+C2), etc.
9162 while (1) {
9163 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9164 Offset += GA->getOffset();
9165 break;
9166 } else if (Op.getOpcode() == ISD::ADD) {
9167 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9168 Offset += C->getZExtValue();
9169 Op = Op.getOperand(0);
9170 continue;
9172 } else if (Op.getOpcode() == ISD::SUB) {
9173 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9174 Offset += -C->getZExtValue();
9175 Op = Op.getOperand(0);
9176 continue;
9180 // Otherwise, this isn't something we can handle, reject it.
9181 return;
9184 GlobalValue *GV = GA->getGlobal();
9185 // If we require an extra load to get this address, as in PIC mode, we
9186 // can't accept it.
9187 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9188 getTargetMachine())))
9189 return;
9191 if (hasMemory)
9192 Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9193 else
9194 Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9195 Result = Op;
9196 break;
9200 if (Result.getNode()) {
9201 Ops.push_back(Result);
9202 return;
9204 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9205 Ops, DAG);
9208 std::vector<unsigned> X86TargetLowering::
9209 getRegClassForInlineAsmConstraint(const std::string &Constraint,
9210 EVT VT) const {
9211 if (Constraint.size() == 1) {
9212 // FIXME: not handling fp-stack yet!
9213 switch (Constraint[0]) { // GCC X86 Constraint Letters
9214 default: break; // Unknown constraint letter
9215 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9216 if (Subtarget->is64Bit()) {
9217 if (VT == MVT::i32)
9218 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9219 X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9220 X86::R10D,X86::R11D,X86::R12D,
9221 X86::R13D,X86::R14D,X86::R15D,
9222 X86::EBP, X86::ESP, 0);
9223 else if (VT == MVT::i16)
9224 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
9225 X86::SI, X86::DI, X86::R8W,X86::R9W,
9226 X86::R10W,X86::R11W,X86::R12W,
9227 X86::R13W,X86::R14W,X86::R15W,
9228 X86::BP, X86::SP, 0);
9229 else if (VT == MVT::i8)
9230 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL,
9231 X86::SIL, X86::DIL, X86::R8B,X86::R9B,
9232 X86::R10B,X86::R11B,X86::R12B,
9233 X86::R13B,X86::R14B,X86::R15B,
9234 X86::BPL, X86::SPL, 0);
9236 else if (VT == MVT::i64)
9237 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
9238 X86::RSI, X86::RDI, X86::R8, X86::R9,
9239 X86::R10, X86::R11, X86::R12,
9240 X86::R13, X86::R14, X86::R15,
9241 X86::RBP, X86::RSP, 0);
9243 break;
9245 // 32-bit fallthrough
9246 case 'Q': // Q_REGS
9247 if (VT == MVT::i32)
9248 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
9249 else if (VT == MVT::i16)
9250 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
9251 else if (VT == MVT::i8)
9252 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
9253 else if (VT == MVT::i64)
9254 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
9255 break;
9259 return std::vector<unsigned>();
9262 std::pair<unsigned, const TargetRegisterClass*>
9263 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9264 EVT VT) const {
9265 // First, see if this is a constraint that directly corresponds to an LLVM
9266 // register class.
9267 if (Constraint.size() == 1) {
9268 // GCC Constraint Letters
9269 switch (Constraint[0]) {
9270 default: break;
9271 case 'r': // GENERAL_REGS
9272 case 'R': // LEGACY_REGS
9273 case 'l': // INDEX_REGS
9274 if (VT == MVT::i8)
9275 return std::make_pair(0U, X86::GR8RegisterClass);
9276 if (VT == MVT::i16)
9277 return std::make_pair(0U, X86::GR16RegisterClass);
9278 if (VT == MVT::i32 || !Subtarget->is64Bit())
9279 return std::make_pair(0U, X86::GR32RegisterClass);
9280 return std::make_pair(0U, X86::GR64RegisterClass);
9281 case 'f': // FP Stack registers.
9282 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
9283 // value to the correct fpstack register class.
9284 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
9285 return std::make_pair(0U, X86::RFP32RegisterClass);
9286 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
9287 return std::make_pair(0U, X86::RFP64RegisterClass);
9288 return std::make_pair(0U, X86::RFP80RegisterClass);
9289 case 'y': // MMX_REGS if MMX allowed.
9290 if (!Subtarget->hasMMX()) break;
9291 return std::make_pair(0U, X86::VR64RegisterClass);
9292 case 'Y': // SSE_REGS if SSE2 allowed
9293 if (!Subtarget->hasSSE2()) break;
9294 // FALL THROUGH.
9295 case 'x': // SSE_REGS if SSE1 allowed
9296 if (!Subtarget->hasSSE1()) break;
9298 switch (VT.getSimpleVT().SimpleTy) {
9299 default: break;
9300 // Scalar SSE types.
9301 case MVT::f32:
9302 case MVT::i32:
9303 return std::make_pair(0U, X86::FR32RegisterClass);
9304 case MVT::f64:
9305 case MVT::i64:
9306 return std::make_pair(0U, X86::FR64RegisterClass);
9307 // Vector types.
9308 case MVT::v16i8:
9309 case MVT::v8i16:
9310 case MVT::v4i32:
9311 case MVT::v2i64:
9312 case MVT::v4f32:
9313 case MVT::v2f64:
9314 return std::make_pair(0U, X86::VR128RegisterClass);
9316 break;
9320 // Use the default implementation in TargetLowering to convert the register
9321 // constraint into a member of a register class.
9322 std::pair<unsigned, const TargetRegisterClass*> Res;
9323 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9325 // Not found as a standard register?
9326 if (Res.second == 0) {
9327 // Map st(0) -> st(7) -> ST0
9328 if (Constraint.size() == 7 && Constraint[0] == '{' &&
9329 tolower(Constraint[1]) == 's' &&
9330 tolower(Constraint[2]) == 't' &&
9331 Constraint[3] == '(' &&
9332 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
9333 Constraint[5] == ')' &&
9334 Constraint[6] == '}') {
9336 Res.first = X86::ST0+Constraint[4]-'0';
9337 Res.second = X86::RFP80RegisterClass;
9338 return Res;
9341 // GCC allows "st(0)" to be called just plain "st".
9342 if (StringsEqualNoCase("{st}", Constraint)) {
9343 Res.first = X86::ST0;
9344 Res.second = X86::RFP80RegisterClass;
9345 return Res;
9348 // flags -> EFLAGS
9349 if (StringsEqualNoCase("{flags}", Constraint)) {
9350 Res.first = X86::EFLAGS;
9351 Res.second = X86::CCRRegisterClass;
9352 return Res;
9355 // 'A' means EAX + EDX.
9356 if (Constraint == "A") {
9357 Res.first = X86::EAX;
9358 Res.second = X86::GR32_ADRegisterClass;
9359 return Res;
9361 return Res;
9364 // Otherwise, check to see if this is a register class of the wrong value
9365 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
9366 // turn into {ax},{dx}.
9367 if (Res.second->hasType(VT))
9368 return Res; // Correct type already, nothing to do.
9370 // All of the single-register GCC register classes map their values onto
9371 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
9372 // really want an 8-bit or 32-bit register, map to the appropriate register
9373 // class and return the appropriate register.
9374 if (Res.second == X86::GR16RegisterClass) {
9375 if (VT == MVT::i8) {
9376 unsigned DestReg = 0;
9377 switch (Res.first) {
9378 default: break;
9379 case X86::AX: DestReg = X86::AL; break;
9380 case X86::DX: DestReg = X86::DL; break;
9381 case X86::CX: DestReg = X86::CL; break;
9382 case X86::BX: DestReg = X86::BL; break;
9384 if (DestReg) {
9385 Res.first = DestReg;
9386 Res.second = X86::GR8RegisterClass;
9388 } else if (VT == MVT::i32) {
9389 unsigned DestReg = 0;
9390 switch (Res.first) {
9391 default: break;
9392 case X86::AX: DestReg = X86::EAX; break;
9393 case X86::DX: DestReg = X86::EDX; break;
9394 case X86::CX: DestReg = X86::ECX; break;
9395 case X86::BX: DestReg = X86::EBX; break;
9396 case X86::SI: DestReg = X86::ESI; break;
9397 case X86::DI: DestReg = X86::EDI; break;
9398 case X86::BP: DestReg = X86::EBP; break;
9399 case X86::SP: DestReg = X86::ESP; break;
9401 if (DestReg) {
9402 Res.first = DestReg;
9403 Res.second = X86::GR32RegisterClass;
9405 } else if (VT == MVT::i64) {
9406 unsigned DestReg = 0;
9407 switch (Res.first) {
9408 default: break;
9409 case X86::AX: DestReg = X86::RAX; break;
9410 case X86::DX: DestReg = X86::RDX; break;
9411 case X86::CX: DestReg = X86::RCX; break;
9412 case X86::BX: DestReg = X86::RBX; break;
9413 case X86::SI: DestReg = X86::RSI; break;
9414 case X86::DI: DestReg = X86::RDI; break;
9415 case X86::BP: DestReg = X86::RBP; break;
9416 case X86::SP: DestReg = X86::RSP; break;
9418 if (DestReg) {
9419 Res.first = DestReg;
9420 Res.second = X86::GR64RegisterClass;
9423 } else if (Res.second == X86::FR32RegisterClass ||
9424 Res.second == X86::FR64RegisterClass ||
9425 Res.second == X86::VR128RegisterClass) {
9426 // Handle references to XMM physical registers that got mapped into the
9427 // wrong class. This can happen with constraints like {xmm0} where the
9428 // target independent register mapper will just pick the first match it can
9429 // find, ignoring the required type.
9430 if (VT == MVT::f32)
9431 Res.second = X86::FR32RegisterClass;
9432 else if (VT == MVT::f64)
9433 Res.second = X86::FR64RegisterClass;
9434 else if (X86::VR128RegisterClass->hasType(VT))
9435 Res.second = X86::VR128RegisterClass;
9438 return Res;
9441 //===----------------------------------------------------------------------===//
9442 // X86 Widen vector type
9443 //===----------------------------------------------------------------------===//
9445 /// getWidenVectorType: given a vector type, returns the type to widen
9446 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9447 /// If there is no vector type that we want to widen to, returns MVT::Other
9448 /// When and where to widen is target dependent based on the cost of
9449 /// scalarizing vs using the wider vector type.
9451 EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
9452 assert(VT.isVector());
9453 if (isTypeLegal(VT))
9454 return VT;
9456 // TODO: In computeRegisterProperty, we can compute the list of legal vector
9457 // type based on element type. This would speed up our search (though
9458 // it may not be worth it since the size of the list is relatively
9459 // small).
9460 EVT EltVT = VT.getVectorElementType();
9461 unsigned NElts = VT.getVectorNumElements();
9463 // On X86, it make sense to widen any vector wider than 1
9464 if (NElts <= 1)
9465 return MVT::Other;
9467 for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9468 nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9469 EVT SVT = (MVT::SimpleValueType)nVT;
9471 if (isTypeLegal(SVT) &&
9472 SVT.getVectorElementType() == EltVT &&
9473 SVT.getVectorNumElements() > NElts)
9474 return SVT;
9476 return MVT::Other;