1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
16 #include "X86GenInstrInfo.inc"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/MC/MCAsmInfo.h"
38 NoFusing("disable-spill-fusing",
39 cl::desc("Disable fusing of spill code into instructions"));
41 PrintFailedFusing("print-failed-fuse-candidates",
42 cl::desc("Print instructions that the allocator wants to"
43 " fuse, but the X86 backend currently can't"),
46 ReMatPICStubLoad("remat-pic-stub-load",
47 cl::desc("Re-materialize load from stub in PIC mode"),
48 cl::init(false), cl::Hidden
);
50 X86InstrInfo::X86InstrInfo(X86TargetMachine
&tm
)
51 : TargetInstrInfoImpl(X86Insts
, array_lengthof(X86Insts
)),
52 TM(tm
), RI(tm
, *this) {
53 SmallVector
<unsigned,16> AmbEntries
;
54 static const unsigned OpTbl2Addr
[][2] = {
55 { X86::ADC32ri
, X86::ADC32mi
},
56 { X86::ADC32ri8
, X86::ADC32mi8
},
57 { X86::ADC32rr
, X86::ADC32mr
},
58 { X86::ADC64ri32
, X86::ADC64mi32
},
59 { X86::ADC64ri8
, X86::ADC64mi8
},
60 { X86::ADC64rr
, X86::ADC64mr
},
61 { X86::ADD16ri
, X86::ADD16mi
},
62 { X86::ADD16ri8
, X86::ADD16mi8
},
63 { X86::ADD16rr
, X86::ADD16mr
},
64 { X86::ADD32ri
, X86::ADD32mi
},
65 { X86::ADD32ri8
, X86::ADD32mi8
},
66 { X86::ADD32rr
, X86::ADD32mr
},
67 { X86::ADD64ri32
, X86::ADD64mi32
},
68 { X86::ADD64ri8
, X86::ADD64mi8
},
69 { X86::ADD64rr
, X86::ADD64mr
},
70 { X86::ADD8ri
, X86::ADD8mi
},
71 { X86::ADD8rr
, X86::ADD8mr
},
72 { X86::AND16ri
, X86::AND16mi
},
73 { X86::AND16ri8
, X86::AND16mi8
},
74 { X86::AND16rr
, X86::AND16mr
},
75 { X86::AND32ri
, X86::AND32mi
},
76 { X86::AND32ri8
, X86::AND32mi8
},
77 { X86::AND32rr
, X86::AND32mr
},
78 { X86::AND64ri32
, X86::AND64mi32
},
79 { X86::AND64ri8
, X86::AND64mi8
},
80 { X86::AND64rr
, X86::AND64mr
},
81 { X86::AND8ri
, X86::AND8mi
},
82 { X86::AND8rr
, X86::AND8mr
},
83 { X86::DEC16r
, X86::DEC16m
},
84 { X86::DEC32r
, X86::DEC32m
},
85 { X86::DEC64_16r
, X86::DEC64_16m
},
86 { X86::DEC64_32r
, X86::DEC64_32m
},
87 { X86::DEC64r
, X86::DEC64m
},
88 { X86::DEC8r
, X86::DEC8m
},
89 { X86::INC16r
, X86::INC16m
},
90 { X86::INC32r
, X86::INC32m
},
91 { X86::INC64_16r
, X86::INC64_16m
},
92 { X86::INC64_32r
, X86::INC64_32m
},
93 { X86::INC64r
, X86::INC64m
},
94 { X86::INC8r
, X86::INC8m
},
95 { X86::NEG16r
, X86::NEG16m
},
96 { X86::NEG32r
, X86::NEG32m
},
97 { X86::NEG64r
, X86::NEG64m
},
98 { X86::NEG8r
, X86::NEG8m
},
99 { X86::NOT16r
, X86::NOT16m
},
100 { X86::NOT32r
, X86::NOT32m
},
101 { X86::NOT64r
, X86::NOT64m
},
102 { X86::NOT8r
, X86::NOT8m
},
103 { X86::OR16ri
, X86::OR16mi
},
104 { X86::OR16ri8
, X86::OR16mi8
},
105 { X86::OR16rr
, X86::OR16mr
},
106 { X86::OR32ri
, X86::OR32mi
},
107 { X86::OR32ri8
, X86::OR32mi8
},
108 { X86::OR32rr
, X86::OR32mr
},
109 { X86::OR64ri32
, X86::OR64mi32
},
110 { X86::OR64ri8
, X86::OR64mi8
},
111 { X86::OR64rr
, X86::OR64mr
},
112 { X86::OR8ri
, X86::OR8mi
},
113 { X86::OR8rr
, X86::OR8mr
},
114 { X86::ROL16r1
, X86::ROL16m1
},
115 { X86::ROL16rCL
, X86::ROL16mCL
},
116 { X86::ROL16ri
, X86::ROL16mi
},
117 { X86::ROL32r1
, X86::ROL32m1
},
118 { X86::ROL32rCL
, X86::ROL32mCL
},
119 { X86::ROL32ri
, X86::ROL32mi
},
120 { X86::ROL64r1
, X86::ROL64m1
},
121 { X86::ROL64rCL
, X86::ROL64mCL
},
122 { X86::ROL64ri
, X86::ROL64mi
},
123 { X86::ROL8r1
, X86::ROL8m1
},
124 { X86::ROL8rCL
, X86::ROL8mCL
},
125 { X86::ROL8ri
, X86::ROL8mi
},
126 { X86::ROR16r1
, X86::ROR16m1
},
127 { X86::ROR16rCL
, X86::ROR16mCL
},
128 { X86::ROR16ri
, X86::ROR16mi
},
129 { X86::ROR32r1
, X86::ROR32m1
},
130 { X86::ROR32rCL
, X86::ROR32mCL
},
131 { X86::ROR32ri
, X86::ROR32mi
},
132 { X86::ROR64r1
, X86::ROR64m1
},
133 { X86::ROR64rCL
, X86::ROR64mCL
},
134 { X86::ROR64ri
, X86::ROR64mi
},
135 { X86::ROR8r1
, X86::ROR8m1
},
136 { X86::ROR8rCL
, X86::ROR8mCL
},
137 { X86::ROR8ri
, X86::ROR8mi
},
138 { X86::SAR16r1
, X86::SAR16m1
},
139 { X86::SAR16rCL
, X86::SAR16mCL
},
140 { X86::SAR16ri
, X86::SAR16mi
},
141 { X86::SAR32r1
, X86::SAR32m1
},
142 { X86::SAR32rCL
, X86::SAR32mCL
},
143 { X86::SAR32ri
, X86::SAR32mi
},
144 { X86::SAR64r1
, X86::SAR64m1
},
145 { X86::SAR64rCL
, X86::SAR64mCL
},
146 { X86::SAR64ri
, X86::SAR64mi
},
147 { X86::SAR8r1
, X86::SAR8m1
},
148 { X86::SAR8rCL
, X86::SAR8mCL
},
149 { X86::SAR8ri
, X86::SAR8mi
},
150 { X86::SBB32ri
, X86::SBB32mi
},
151 { X86::SBB32ri8
, X86::SBB32mi8
},
152 { X86::SBB32rr
, X86::SBB32mr
},
153 { X86::SBB64ri32
, X86::SBB64mi32
},
154 { X86::SBB64ri8
, X86::SBB64mi8
},
155 { X86::SBB64rr
, X86::SBB64mr
},
156 { X86::SHL16rCL
, X86::SHL16mCL
},
157 { X86::SHL16ri
, X86::SHL16mi
},
158 { X86::SHL32rCL
, X86::SHL32mCL
},
159 { X86::SHL32ri
, X86::SHL32mi
},
160 { X86::SHL64rCL
, X86::SHL64mCL
},
161 { X86::SHL64ri
, X86::SHL64mi
},
162 { X86::SHL8rCL
, X86::SHL8mCL
},
163 { X86::SHL8ri
, X86::SHL8mi
},
164 { X86::SHLD16rrCL
, X86::SHLD16mrCL
},
165 { X86::SHLD16rri8
, X86::SHLD16mri8
},
166 { X86::SHLD32rrCL
, X86::SHLD32mrCL
},
167 { X86::SHLD32rri8
, X86::SHLD32mri8
},
168 { X86::SHLD64rrCL
, X86::SHLD64mrCL
},
169 { X86::SHLD64rri8
, X86::SHLD64mri8
},
170 { X86::SHR16r1
, X86::SHR16m1
},
171 { X86::SHR16rCL
, X86::SHR16mCL
},
172 { X86::SHR16ri
, X86::SHR16mi
},
173 { X86::SHR32r1
, X86::SHR32m1
},
174 { X86::SHR32rCL
, X86::SHR32mCL
},
175 { X86::SHR32ri
, X86::SHR32mi
},
176 { X86::SHR64r1
, X86::SHR64m1
},
177 { X86::SHR64rCL
, X86::SHR64mCL
},
178 { X86::SHR64ri
, X86::SHR64mi
},
179 { X86::SHR8r1
, X86::SHR8m1
},
180 { X86::SHR8rCL
, X86::SHR8mCL
},
181 { X86::SHR8ri
, X86::SHR8mi
},
182 { X86::SHRD16rrCL
, X86::SHRD16mrCL
},
183 { X86::SHRD16rri8
, X86::SHRD16mri8
},
184 { X86::SHRD32rrCL
, X86::SHRD32mrCL
},
185 { X86::SHRD32rri8
, X86::SHRD32mri8
},
186 { X86::SHRD64rrCL
, X86::SHRD64mrCL
},
187 { X86::SHRD64rri8
, X86::SHRD64mri8
},
188 { X86::SUB16ri
, X86::SUB16mi
},
189 { X86::SUB16ri8
, X86::SUB16mi8
},
190 { X86::SUB16rr
, X86::SUB16mr
},
191 { X86::SUB32ri
, X86::SUB32mi
},
192 { X86::SUB32ri8
, X86::SUB32mi8
},
193 { X86::SUB32rr
, X86::SUB32mr
},
194 { X86::SUB64ri32
, X86::SUB64mi32
},
195 { X86::SUB64ri8
, X86::SUB64mi8
},
196 { X86::SUB64rr
, X86::SUB64mr
},
197 { X86::SUB8ri
, X86::SUB8mi
},
198 { X86::SUB8rr
, X86::SUB8mr
},
199 { X86::XOR16ri
, X86::XOR16mi
},
200 { X86::XOR16ri8
, X86::XOR16mi8
},
201 { X86::XOR16rr
, X86::XOR16mr
},
202 { X86::XOR32ri
, X86::XOR32mi
},
203 { X86::XOR32ri8
, X86::XOR32mi8
},
204 { X86::XOR32rr
, X86::XOR32mr
},
205 { X86::XOR64ri32
, X86::XOR64mi32
},
206 { X86::XOR64ri8
, X86::XOR64mi8
},
207 { X86::XOR64rr
, X86::XOR64mr
},
208 { X86::XOR8ri
, X86::XOR8mi
},
209 { X86::XOR8rr
, X86::XOR8mr
}
212 for (unsigned i
= 0, e
= array_lengthof(OpTbl2Addr
); i
!= e
; ++i
) {
213 unsigned RegOp
= OpTbl2Addr
[i
][0];
214 unsigned MemOp
= OpTbl2Addr
[i
][1];
215 if (!RegOp2MemOpTable2Addr
.insert(std::make_pair((unsigned*)RegOp
,
216 std::make_pair(MemOp
,0))).second
)
217 assert(false && "Duplicated entries?");
218 // Index 0, folded load and store, no alignment requirement.
219 unsigned AuxInfo
= 0 | (1 << 4) | (1 << 5);
220 if (!MemOp2RegOpTable
.insert(std::make_pair((unsigned*)MemOp
,
221 std::make_pair(RegOp
,
223 AmbEntries
.push_back(MemOp
);
226 // If the third value is 1, then it's folding either a load or a store.
227 static const unsigned OpTbl0
[][4] = {
228 { X86::BT16ri8
, X86::BT16mi8
, 1, 0 },
229 { X86::BT32ri8
, X86::BT32mi8
, 1, 0 },
230 { X86::BT64ri8
, X86::BT64mi8
, 1, 0 },
231 { X86::CALL32r
, X86::CALL32m
, 1, 0 },
232 { X86::CALL64r
, X86::CALL64m
, 1, 0 },
233 { X86::CMP16ri
, X86::CMP16mi
, 1, 0 },
234 { X86::CMP16ri8
, X86::CMP16mi8
, 1, 0 },
235 { X86::CMP16rr
, X86::CMP16mr
, 1, 0 },
236 { X86::CMP32ri
, X86::CMP32mi
, 1, 0 },
237 { X86::CMP32ri8
, X86::CMP32mi8
, 1, 0 },
238 { X86::CMP32rr
, X86::CMP32mr
, 1, 0 },
239 { X86::CMP64ri32
, X86::CMP64mi32
, 1, 0 },
240 { X86::CMP64ri8
, X86::CMP64mi8
, 1, 0 },
241 { X86::CMP64rr
, X86::CMP64mr
, 1, 0 },
242 { X86::CMP8ri
, X86::CMP8mi
, 1, 0 },
243 { X86::CMP8rr
, X86::CMP8mr
, 1, 0 },
244 { X86::DIV16r
, X86::DIV16m
, 1, 0 },
245 { X86::DIV32r
, X86::DIV32m
, 1, 0 },
246 { X86::DIV64r
, X86::DIV64m
, 1, 0 },
247 { X86::DIV8r
, X86::DIV8m
, 1, 0 },
248 { X86::EXTRACTPSrr
, X86::EXTRACTPSmr
, 0, 16 },
249 { X86::FsMOVAPDrr
, X86::MOVSDmr
, 0, 0 },
250 { X86::FsMOVAPSrr
, X86::MOVSSmr
, 0, 0 },
251 { X86::IDIV16r
, X86::IDIV16m
, 1, 0 },
252 { X86::IDIV32r
, X86::IDIV32m
, 1, 0 },
253 { X86::IDIV64r
, X86::IDIV64m
, 1, 0 },
254 { X86::IDIV8r
, X86::IDIV8m
, 1, 0 },
255 { X86::IMUL16r
, X86::IMUL16m
, 1, 0 },
256 { X86::IMUL32r
, X86::IMUL32m
, 1, 0 },
257 { X86::IMUL64r
, X86::IMUL64m
, 1, 0 },
258 { X86::IMUL8r
, X86::IMUL8m
, 1, 0 },
259 { X86::JMP32r
, X86::JMP32m
, 1, 0 },
260 { X86::JMP64r
, X86::JMP64m
, 1, 0 },
261 { X86::MOV16ri
, X86::MOV16mi
, 0, 0 },
262 { X86::MOV16rr
, X86::MOV16mr
, 0, 0 },
263 { X86::MOV32ri
, X86::MOV32mi
, 0, 0 },
264 { X86::MOV32rr
, X86::MOV32mr
, 0, 0 },
265 { X86::MOV64ri32
, X86::MOV64mi32
, 0, 0 },
266 { X86::MOV64rr
, X86::MOV64mr
, 0, 0 },
267 { X86::MOV8ri
, X86::MOV8mi
, 0, 0 },
268 { X86::MOV8rr
, X86::MOV8mr
, 0, 0 },
269 { X86::MOV8rr_NOREX
, X86::MOV8mr_NOREX
, 0, 0 },
270 { X86::MOVAPDrr
, X86::MOVAPDmr
, 0, 16 },
271 { X86::MOVAPSrr
, X86::MOVAPSmr
, 0, 16 },
272 { X86::MOVDQArr
, X86::MOVDQAmr
, 0, 16 },
273 { X86::MOVPDI2DIrr
, X86::MOVPDI2DImr
, 0, 0 },
274 { X86::MOVPQIto64rr
,X86::MOVPQI2QImr
, 0, 0 },
275 { X86::MOVPS2SSrr
, X86::MOVPS2SSmr
, 0, 0 },
276 { X86::MOVSDrr
, X86::MOVSDmr
, 0, 0 },
277 { X86::MOVSDto64rr
, X86::MOVSDto64mr
, 0, 0 },
278 { X86::MOVSS2DIrr
, X86::MOVSS2DImr
, 0, 0 },
279 { X86::MOVSSrr
, X86::MOVSSmr
, 0, 0 },
280 { X86::MOVUPDrr
, X86::MOVUPDmr
, 0, 0 },
281 { X86::MOVUPSrr
, X86::MOVUPSmr
, 0, 0 },
282 { X86::MUL16r
, X86::MUL16m
, 1, 0 },
283 { X86::MUL32r
, X86::MUL32m
, 1, 0 },
284 { X86::MUL64r
, X86::MUL64m
, 1, 0 },
285 { X86::MUL8r
, X86::MUL8m
, 1, 0 },
286 { X86::SETAEr
, X86::SETAEm
, 0, 0 },
287 { X86::SETAr
, X86::SETAm
, 0, 0 },
288 { X86::SETBEr
, X86::SETBEm
, 0, 0 },
289 { X86::SETBr
, X86::SETBm
, 0, 0 },
290 { X86::SETEr
, X86::SETEm
, 0, 0 },
291 { X86::SETGEr
, X86::SETGEm
, 0, 0 },
292 { X86::SETGr
, X86::SETGm
, 0, 0 },
293 { X86::SETLEr
, X86::SETLEm
, 0, 0 },
294 { X86::SETLr
, X86::SETLm
, 0, 0 },
295 { X86::SETNEr
, X86::SETNEm
, 0, 0 },
296 { X86::SETNOr
, X86::SETNOm
, 0, 0 },
297 { X86::SETNPr
, X86::SETNPm
, 0, 0 },
298 { X86::SETNSr
, X86::SETNSm
, 0, 0 },
299 { X86::SETOr
, X86::SETOm
, 0, 0 },
300 { X86::SETPr
, X86::SETPm
, 0, 0 },
301 { X86::SETSr
, X86::SETSm
, 0, 0 },
302 { X86::TAILJMPr
, X86::TAILJMPm
, 1, 0 },
303 { X86::TEST16ri
, X86::TEST16mi
, 1, 0 },
304 { X86::TEST32ri
, X86::TEST32mi
, 1, 0 },
305 { X86::TEST64ri32
, X86::TEST64mi32
, 1, 0 },
306 { X86::TEST8ri
, X86::TEST8mi
, 1, 0 }
309 for (unsigned i
= 0, e
= array_lengthof(OpTbl0
); i
!= e
; ++i
) {
310 unsigned RegOp
= OpTbl0
[i
][0];
311 unsigned MemOp
= OpTbl0
[i
][1];
312 unsigned Align
= OpTbl0
[i
][3];
313 if (!RegOp2MemOpTable0
.insert(std::make_pair((unsigned*)RegOp
,
314 std::make_pair(MemOp
,Align
))).second
)
315 assert(false && "Duplicated entries?");
316 unsigned FoldedLoad
= OpTbl0
[i
][2];
317 // Index 0, folded load or store.
318 unsigned AuxInfo
= 0 | (FoldedLoad
<< 4) | ((FoldedLoad
^1) << 5);
319 if (RegOp
!= X86::FsMOVAPDrr
&& RegOp
!= X86::FsMOVAPSrr
)
320 if (!MemOp2RegOpTable
.insert(std::make_pair((unsigned*)MemOp
,
321 std::make_pair(RegOp
, AuxInfo
))).second
)
322 AmbEntries
.push_back(MemOp
);
325 static const unsigned OpTbl1
[][3] = {
326 { X86::CMP16rr
, X86::CMP16rm
, 0 },
327 { X86::CMP32rr
, X86::CMP32rm
, 0 },
328 { X86::CMP64rr
, X86::CMP64rm
, 0 },
329 { X86::CMP8rr
, X86::CMP8rm
, 0 },
330 { X86::CVTSD2SSrr
, X86::CVTSD2SSrm
, 0 },
331 { X86::CVTSI2SD64rr
, X86::CVTSI2SD64rm
, 0 },
332 { X86::CVTSI2SDrr
, X86::CVTSI2SDrm
, 0 },
333 { X86::CVTSI2SS64rr
, X86::CVTSI2SS64rm
, 0 },
334 { X86::CVTSI2SSrr
, X86::CVTSI2SSrm
, 0 },
335 { X86::CVTSS2SDrr
, X86::CVTSS2SDrm
, 0 },
336 { X86::CVTTSD2SI64rr
, X86::CVTTSD2SI64rm
, 0 },
337 { X86::CVTTSD2SIrr
, X86::CVTTSD2SIrm
, 0 },
338 { X86::CVTTSS2SI64rr
, X86::CVTTSS2SI64rm
, 0 },
339 { X86::CVTTSS2SIrr
, X86::CVTTSS2SIrm
, 0 },
340 { X86::FsMOVAPDrr
, X86::MOVSDrm
, 0 },
341 { X86::FsMOVAPSrr
, X86::MOVSSrm
, 0 },
342 { X86::IMUL16rri
, X86::IMUL16rmi
, 0 },
343 { X86::IMUL16rri8
, X86::IMUL16rmi8
, 0 },
344 { X86::IMUL32rri
, X86::IMUL32rmi
, 0 },
345 { X86::IMUL32rri8
, X86::IMUL32rmi8
, 0 },
346 { X86::IMUL64rri32
, X86::IMUL64rmi32
, 0 },
347 { X86::IMUL64rri8
, X86::IMUL64rmi8
, 0 },
348 { X86::Int_CMPSDrr
, X86::Int_CMPSDrm
, 0 },
349 { X86::Int_CMPSSrr
, X86::Int_CMPSSrm
, 0 },
350 { X86::Int_COMISDrr
, X86::Int_COMISDrm
, 0 },
351 { X86::Int_COMISSrr
, X86::Int_COMISSrm
, 0 },
352 { X86::Int_CVTDQ2PDrr
, X86::Int_CVTDQ2PDrm
, 16 },
353 { X86::Int_CVTDQ2PSrr
, X86::Int_CVTDQ2PSrm
, 16 },
354 { X86::Int_CVTPD2DQrr
, X86::Int_CVTPD2DQrm
, 16 },
355 { X86::Int_CVTPD2PSrr
, X86::Int_CVTPD2PSrm
, 16 },
356 { X86::Int_CVTPS2DQrr
, X86::Int_CVTPS2DQrm
, 16 },
357 { X86::Int_CVTPS2PDrr
, X86::Int_CVTPS2PDrm
, 0 },
358 { X86::Int_CVTSD2SI64rr
,X86::Int_CVTSD2SI64rm
, 0 },
359 { X86::Int_CVTSD2SIrr
, X86::Int_CVTSD2SIrm
, 0 },
360 { X86::Int_CVTSD2SSrr
, X86::Int_CVTSD2SSrm
, 0 },
361 { X86::Int_CVTSI2SD64rr
,X86::Int_CVTSI2SD64rm
, 0 },
362 { X86::Int_CVTSI2SDrr
, X86::Int_CVTSI2SDrm
, 0 },
363 { X86::Int_CVTSI2SS64rr
,X86::Int_CVTSI2SS64rm
, 0 },
364 { X86::Int_CVTSI2SSrr
, X86::Int_CVTSI2SSrm
, 0 },
365 { X86::Int_CVTSS2SDrr
, X86::Int_CVTSS2SDrm
, 0 },
366 { X86::Int_CVTSS2SI64rr
,X86::Int_CVTSS2SI64rm
, 0 },
367 { X86::Int_CVTSS2SIrr
, X86::Int_CVTSS2SIrm
, 0 },
368 { X86::Int_CVTTPD2DQrr
, X86::Int_CVTTPD2DQrm
, 16 },
369 { X86::Int_CVTTPS2DQrr
, X86::Int_CVTTPS2DQrm
, 16 },
370 { X86::Int_CVTTSD2SI64rr
,X86::Int_CVTTSD2SI64rm
, 0 },
371 { X86::Int_CVTTSD2SIrr
, X86::Int_CVTTSD2SIrm
, 0 },
372 { X86::Int_CVTTSS2SI64rr
,X86::Int_CVTTSS2SI64rm
, 0 },
373 { X86::Int_CVTTSS2SIrr
, X86::Int_CVTTSS2SIrm
, 0 },
374 { X86::Int_UCOMISDrr
, X86::Int_UCOMISDrm
, 0 },
375 { X86::Int_UCOMISSrr
, X86::Int_UCOMISSrm
, 0 },
376 { X86::MOV16rr
, X86::MOV16rm
, 0 },
377 { X86::MOV32rr
, X86::MOV32rm
, 0 },
378 { X86::MOV64rr
, X86::MOV64rm
, 0 },
379 { X86::MOV64toPQIrr
, X86::MOVQI2PQIrm
, 0 },
380 { X86::MOV64toSDrr
, X86::MOV64toSDrm
, 0 },
381 { X86::MOV8rr
, X86::MOV8rm
, 0 },
382 { X86::MOVAPDrr
, X86::MOVAPDrm
, 16 },
383 { X86::MOVAPSrr
, X86::MOVAPSrm
, 16 },
384 { X86::MOVDDUPrr
, X86::MOVDDUPrm
, 0 },
385 { X86::MOVDI2PDIrr
, X86::MOVDI2PDIrm
, 0 },
386 { X86::MOVDI2SSrr
, X86::MOVDI2SSrm
, 0 },
387 { X86::MOVDQArr
, X86::MOVDQArm
, 16 },
388 { X86::MOVSD2PDrr
, X86::MOVSD2PDrm
, 0 },
389 { X86::MOVSDrr
, X86::MOVSDrm
, 0 },
390 { X86::MOVSHDUPrr
, X86::MOVSHDUPrm
, 16 },
391 { X86::MOVSLDUPrr
, X86::MOVSLDUPrm
, 16 },
392 { X86::MOVSS2PSrr
, X86::MOVSS2PSrm
, 0 },
393 { X86::MOVSSrr
, X86::MOVSSrm
, 0 },
394 { X86::MOVSX16rr8
, X86::MOVSX16rm8
, 0 },
395 { X86::MOVSX32rr16
, X86::MOVSX32rm16
, 0 },
396 { X86::MOVSX32rr8
, X86::MOVSX32rm8
, 0 },
397 { X86::MOVSX64rr16
, X86::MOVSX64rm16
, 0 },
398 { X86::MOVSX64rr32
, X86::MOVSX64rm32
, 0 },
399 { X86::MOVSX64rr8
, X86::MOVSX64rm8
, 0 },
400 { X86::MOVUPDrr
, X86::MOVUPDrm
, 16 },
401 { X86::MOVUPSrr
, X86::MOVUPSrm
, 16 },
402 { X86::MOVZDI2PDIrr
, X86::MOVZDI2PDIrm
, 0 },
403 { X86::MOVZQI2PQIrr
, X86::MOVZQI2PQIrm
, 0 },
404 { X86::MOVZPQILo2PQIrr
, X86::MOVZPQILo2PQIrm
, 16 },
405 { X86::MOVZX16rr8
, X86::MOVZX16rm8
, 0 },
406 { X86::MOVZX32rr16
, X86::MOVZX32rm16
, 0 },
407 { X86::MOVZX32_NOREXrr8
, X86::MOVZX32_NOREXrm8
, 0 },
408 { X86::MOVZX32rr8
, X86::MOVZX32rm8
, 0 },
409 { X86::MOVZX64rr16
, X86::MOVZX64rm16
, 0 },
410 { X86::MOVZX64rr32
, X86::MOVZX64rm32
, 0 },
411 { X86::MOVZX64rr8
, X86::MOVZX64rm8
, 0 },
412 { X86::PSHUFDri
, X86::PSHUFDmi
, 16 },
413 { X86::PSHUFHWri
, X86::PSHUFHWmi
, 16 },
414 { X86::PSHUFLWri
, X86::PSHUFLWmi
, 16 },
415 { X86::RCPPSr
, X86::RCPPSm
, 16 },
416 { X86::RCPPSr_Int
, X86::RCPPSm_Int
, 16 },
417 { X86::RSQRTPSr
, X86::RSQRTPSm
, 16 },
418 { X86::RSQRTPSr_Int
, X86::RSQRTPSm_Int
, 16 },
419 { X86::RSQRTSSr
, X86::RSQRTSSm
, 0 },
420 { X86::RSQRTSSr_Int
, X86::RSQRTSSm_Int
, 0 },
421 { X86::SQRTPDr
, X86::SQRTPDm
, 16 },
422 { X86::SQRTPDr_Int
, X86::SQRTPDm_Int
, 16 },
423 { X86::SQRTPSr
, X86::SQRTPSm
, 16 },
424 { X86::SQRTPSr_Int
, X86::SQRTPSm_Int
, 16 },
425 { X86::SQRTSDr
, X86::SQRTSDm
, 0 },
426 { X86::SQRTSDr_Int
, X86::SQRTSDm_Int
, 0 },
427 { X86::SQRTSSr
, X86::SQRTSSm
, 0 },
428 { X86::SQRTSSr_Int
, X86::SQRTSSm_Int
, 0 },
429 { X86::TEST16rr
, X86::TEST16rm
, 0 },
430 { X86::TEST32rr
, X86::TEST32rm
, 0 },
431 { X86::TEST64rr
, X86::TEST64rm
, 0 },
432 { X86::TEST8rr
, X86::TEST8rm
, 0 },
433 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
434 { X86::UCOMISDrr
, X86::UCOMISDrm
, 0 },
435 { X86::UCOMISSrr
, X86::UCOMISSrm
, 0 }
438 for (unsigned i
= 0, e
= array_lengthof(OpTbl1
); i
!= e
; ++i
) {
439 unsigned RegOp
= OpTbl1
[i
][0];
440 unsigned MemOp
= OpTbl1
[i
][1];
441 unsigned Align
= OpTbl1
[i
][2];
442 if (!RegOp2MemOpTable1
.insert(std::make_pair((unsigned*)RegOp
,
443 std::make_pair(MemOp
,Align
))).second
)
444 assert(false && "Duplicated entries?");
445 // Index 1, folded load
446 unsigned AuxInfo
= 1 | (1 << 4);
447 if (RegOp
!= X86::FsMOVAPDrr
&& RegOp
!= X86::FsMOVAPSrr
)
448 if (!MemOp2RegOpTable
.insert(std::make_pair((unsigned*)MemOp
,
449 std::make_pair(RegOp
, AuxInfo
))).second
)
450 AmbEntries
.push_back(MemOp
);
453 static const unsigned OpTbl2
[][3] = {
454 { X86::ADC32rr
, X86::ADC32rm
, 0 },
455 { X86::ADC64rr
, X86::ADC64rm
, 0 },
456 { X86::ADD16rr
, X86::ADD16rm
, 0 },
457 { X86::ADD32rr
, X86::ADD32rm
, 0 },
458 { X86::ADD64rr
, X86::ADD64rm
, 0 },
459 { X86::ADD8rr
, X86::ADD8rm
, 0 },
460 { X86::ADDPDrr
, X86::ADDPDrm
, 16 },
461 { X86::ADDPSrr
, X86::ADDPSrm
, 16 },
462 { X86::ADDSDrr
, X86::ADDSDrm
, 0 },
463 { X86::ADDSSrr
, X86::ADDSSrm
, 0 },
464 { X86::ADDSUBPDrr
, X86::ADDSUBPDrm
, 16 },
465 { X86::ADDSUBPSrr
, X86::ADDSUBPSrm
, 16 },
466 { X86::AND16rr
, X86::AND16rm
, 0 },
467 { X86::AND32rr
, X86::AND32rm
, 0 },
468 { X86::AND64rr
, X86::AND64rm
, 0 },
469 { X86::AND8rr
, X86::AND8rm
, 0 },
470 { X86::ANDNPDrr
, X86::ANDNPDrm
, 16 },
471 { X86::ANDNPSrr
, X86::ANDNPSrm
, 16 },
472 { X86::ANDPDrr
, X86::ANDPDrm
, 16 },
473 { X86::ANDPSrr
, X86::ANDPSrm
, 16 },
474 { X86::CMOVA16rr
, X86::CMOVA16rm
, 0 },
475 { X86::CMOVA32rr
, X86::CMOVA32rm
, 0 },
476 { X86::CMOVA64rr
, X86::CMOVA64rm
, 0 },
477 { X86::CMOVAE16rr
, X86::CMOVAE16rm
, 0 },
478 { X86::CMOVAE32rr
, X86::CMOVAE32rm
, 0 },
479 { X86::CMOVAE64rr
, X86::CMOVAE64rm
, 0 },
480 { X86::CMOVB16rr
, X86::CMOVB16rm
, 0 },
481 { X86::CMOVB32rr
, X86::CMOVB32rm
, 0 },
482 { X86::CMOVB64rr
, X86::CMOVB64rm
, 0 },
483 { X86::CMOVBE16rr
, X86::CMOVBE16rm
, 0 },
484 { X86::CMOVBE32rr
, X86::CMOVBE32rm
, 0 },
485 { X86::CMOVBE64rr
, X86::CMOVBE64rm
, 0 },
486 { X86::CMOVE16rr
, X86::CMOVE16rm
, 0 },
487 { X86::CMOVE32rr
, X86::CMOVE32rm
, 0 },
488 { X86::CMOVE64rr
, X86::CMOVE64rm
, 0 },
489 { X86::CMOVG16rr
, X86::CMOVG16rm
, 0 },
490 { X86::CMOVG32rr
, X86::CMOVG32rm
, 0 },
491 { X86::CMOVG64rr
, X86::CMOVG64rm
, 0 },
492 { X86::CMOVGE16rr
, X86::CMOVGE16rm
, 0 },
493 { X86::CMOVGE32rr
, X86::CMOVGE32rm
, 0 },
494 { X86::CMOVGE64rr
, X86::CMOVGE64rm
, 0 },
495 { X86::CMOVL16rr
, X86::CMOVL16rm
, 0 },
496 { X86::CMOVL32rr
, X86::CMOVL32rm
, 0 },
497 { X86::CMOVL64rr
, X86::CMOVL64rm
, 0 },
498 { X86::CMOVLE16rr
, X86::CMOVLE16rm
, 0 },
499 { X86::CMOVLE32rr
, X86::CMOVLE32rm
, 0 },
500 { X86::CMOVLE64rr
, X86::CMOVLE64rm
, 0 },
501 { X86::CMOVNE16rr
, X86::CMOVNE16rm
, 0 },
502 { X86::CMOVNE32rr
, X86::CMOVNE32rm
, 0 },
503 { X86::CMOVNE64rr
, X86::CMOVNE64rm
, 0 },
504 { X86::CMOVNO16rr
, X86::CMOVNO16rm
, 0 },
505 { X86::CMOVNO32rr
, X86::CMOVNO32rm
, 0 },
506 { X86::CMOVNO64rr
, X86::CMOVNO64rm
, 0 },
507 { X86::CMOVNP16rr
, X86::CMOVNP16rm
, 0 },
508 { X86::CMOVNP32rr
, X86::CMOVNP32rm
, 0 },
509 { X86::CMOVNP64rr
, X86::CMOVNP64rm
, 0 },
510 { X86::CMOVNS16rr
, X86::CMOVNS16rm
, 0 },
511 { X86::CMOVNS32rr
, X86::CMOVNS32rm
, 0 },
512 { X86::CMOVNS64rr
, X86::CMOVNS64rm
, 0 },
513 { X86::CMOVO16rr
, X86::CMOVO16rm
, 0 },
514 { X86::CMOVO32rr
, X86::CMOVO32rm
, 0 },
515 { X86::CMOVO64rr
, X86::CMOVO64rm
, 0 },
516 { X86::CMOVP16rr
, X86::CMOVP16rm
, 0 },
517 { X86::CMOVP32rr
, X86::CMOVP32rm
, 0 },
518 { X86::CMOVP64rr
, X86::CMOVP64rm
, 0 },
519 { X86::CMOVS16rr
, X86::CMOVS16rm
, 0 },
520 { X86::CMOVS32rr
, X86::CMOVS32rm
, 0 },
521 { X86::CMOVS64rr
, X86::CMOVS64rm
, 0 },
522 { X86::CMPPDrri
, X86::CMPPDrmi
, 16 },
523 { X86::CMPPSrri
, X86::CMPPSrmi
, 16 },
524 { X86::CMPSDrr
, X86::CMPSDrm
, 0 },
525 { X86::CMPSSrr
, X86::CMPSSrm
, 0 },
526 { X86::DIVPDrr
, X86::DIVPDrm
, 16 },
527 { X86::DIVPSrr
, X86::DIVPSrm
, 16 },
528 { X86::DIVSDrr
, X86::DIVSDrm
, 0 },
529 { X86::DIVSSrr
, X86::DIVSSrm
, 0 },
530 { X86::FsANDNPDrr
, X86::FsANDNPDrm
, 16 },
531 { X86::FsANDNPSrr
, X86::FsANDNPSrm
, 16 },
532 { X86::FsANDPDrr
, X86::FsANDPDrm
, 16 },
533 { X86::FsANDPSrr
, X86::FsANDPSrm
, 16 },
534 { X86::FsORPDrr
, X86::FsORPDrm
, 16 },
535 { X86::FsORPSrr
, X86::FsORPSrm
, 16 },
536 { X86::FsXORPDrr
, X86::FsXORPDrm
, 16 },
537 { X86::FsXORPSrr
, X86::FsXORPSrm
, 16 },
538 { X86::HADDPDrr
, X86::HADDPDrm
, 16 },
539 { X86::HADDPSrr
, X86::HADDPSrm
, 16 },
540 { X86::HSUBPDrr
, X86::HSUBPDrm
, 16 },
541 { X86::HSUBPSrr
, X86::HSUBPSrm
, 16 },
542 { X86::IMUL16rr
, X86::IMUL16rm
, 0 },
543 { X86::IMUL32rr
, X86::IMUL32rm
, 0 },
544 { X86::IMUL64rr
, X86::IMUL64rm
, 0 },
545 { X86::MAXPDrr
, X86::MAXPDrm
, 16 },
546 { X86::MAXPDrr_Int
, X86::MAXPDrm_Int
, 16 },
547 { X86::MAXPSrr
, X86::MAXPSrm
, 16 },
548 { X86::MAXPSrr_Int
, X86::MAXPSrm_Int
, 16 },
549 { X86::MAXSDrr
, X86::MAXSDrm
, 0 },
550 { X86::MAXSDrr_Int
, X86::MAXSDrm_Int
, 0 },
551 { X86::MAXSSrr
, X86::MAXSSrm
, 0 },
552 { X86::MAXSSrr_Int
, X86::MAXSSrm_Int
, 0 },
553 { X86::MINPDrr
, X86::MINPDrm
, 16 },
554 { X86::MINPDrr_Int
, X86::MINPDrm_Int
, 16 },
555 { X86::MINPSrr
, X86::MINPSrm
, 16 },
556 { X86::MINPSrr_Int
, X86::MINPSrm_Int
, 16 },
557 { X86::MINSDrr
, X86::MINSDrm
, 0 },
558 { X86::MINSDrr_Int
, X86::MINSDrm_Int
, 0 },
559 { X86::MINSSrr
, X86::MINSSrm
, 0 },
560 { X86::MINSSrr_Int
, X86::MINSSrm_Int
, 0 },
561 { X86::MULPDrr
, X86::MULPDrm
, 16 },
562 { X86::MULPSrr
, X86::MULPSrm
, 16 },
563 { X86::MULSDrr
, X86::MULSDrm
, 0 },
564 { X86::MULSSrr
, X86::MULSSrm
, 0 },
565 { X86::OR16rr
, X86::OR16rm
, 0 },
566 { X86::OR32rr
, X86::OR32rm
, 0 },
567 { X86::OR64rr
, X86::OR64rm
, 0 },
568 { X86::OR8rr
, X86::OR8rm
, 0 },
569 { X86::ORPDrr
, X86::ORPDrm
, 16 },
570 { X86::ORPSrr
, X86::ORPSrm
, 16 },
571 { X86::PACKSSDWrr
, X86::PACKSSDWrm
, 16 },
572 { X86::PACKSSWBrr
, X86::PACKSSWBrm
, 16 },
573 { X86::PACKUSWBrr
, X86::PACKUSWBrm
, 16 },
574 { X86::PADDBrr
, X86::PADDBrm
, 16 },
575 { X86::PADDDrr
, X86::PADDDrm
, 16 },
576 { X86::PADDQrr
, X86::PADDQrm
, 16 },
577 { X86::PADDSBrr
, X86::PADDSBrm
, 16 },
578 { X86::PADDSWrr
, X86::PADDSWrm
, 16 },
579 { X86::PADDWrr
, X86::PADDWrm
, 16 },
580 { X86::PANDNrr
, X86::PANDNrm
, 16 },
581 { X86::PANDrr
, X86::PANDrm
, 16 },
582 { X86::PAVGBrr
, X86::PAVGBrm
, 16 },
583 { X86::PAVGWrr
, X86::PAVGWrm
, 16 },
584 { X86::PCMPEQBrr
, X86::PCMPEQBrm
, 16 },
585 { X86::PCMPEQDrr
, X86::PCMPEQDrm
, 16 },
586 { X86::PCMPEQWrr
, X86::PCMPEQWrm
, 16 },
587 { X86::PCMPGTBrr
, X86::PCMPGTBrm
, 16 },
588 { X86::PCMPGTDrr
, X86::PCMPGTDrm
, 16 },
589 { X86::PCMPGTWrr
, X86::PCMPGTWrm
, 16 },
590 { X86::PINSRWrri
, X86::PINSRWrmi
, 16 },
591 { X86::PMADDWDrr
, X86::PMADDWDrm
, 16 },
592 { X86::PMAXSWrr
, X86::PMAXSWrm
, 16 },
593 { X86::PMAXUBrr
, X86::PMAXUBrm
, 16 },
594 { X86::PMINSWrr
, X86::PMINSWrm
, 16 },
595 { X86::PMINUBrr
, X86::PMINUBrm
, 16 },
596 { X86::PMULDQrr
, X86::PMULDQrm
, 16 },
597 { X86::PMULHUWrr
, X86::PMULHUWrm
, 16 },
598 { X86::PMULHWrr
, X86::PMULHWrm
, 16 },
599 { X86::PMULLDrr
, X86::PMULLDrm
, 16 },
600 { X86::PMULLDrr_int
, X86::PMULLDrm_int
, 16 },
601 { X86::PMULLWrr
, X86::PMULLWrm
, 16 },
602 { X86::PMULUDQrr
, X86::PMULUDQrm
, 16 },
603 { X86::PORrr
, X86::PORrm
, 16 },
604 { X86::PSADBWrr
, X86::PSADBWrm
, 16 },
605 { X86::PSLLDrr
, X86::PSLLDrm
, 16 },
606 { X86::PSLLQrr
, X86::PSLLQrm
, 16 },
607 { X86::PSLLWrr
, X86::PSLLWrm
, 16 },
608 { X86::PSRADrr
, X86::PSRADrm
, 16 },
609 { X86::PSRAWrr
, X86::PSRAWrm
, 16 },
610 { X86::PSRLDrr
, X86::PSRLDrm
, 16 },
611 { X86::PSRLQrr
, X86::PSRLQrm
, 16 },
612 { X86::PSRLWrr
, X86::PSRLWrm
, 16 },
613 { X86::PSUBBrr
, X86::PSUBBrm
, 16 },
614 { X86::PSUBDrr
, X86::PSUBDrm
, 16 },
615 { X86::PSUBSBrr
, X86::PSUBSBrm
, 16 },
616 { X86::PSUBSWrr
, X86::PSUBSWrm
, 16 },
617 { X86::PSUBWrr
, X86::PSUBWrm
, 16 },
618 { X86::PUNPCKHBWrr
, X86::PUNPCKHBWrm
, 16 },
619 { X86::PUNPCKHDQrr
, X86::PUNPCKHDQrm
, 16 },
620 { X86::PUNPCKHQDQrr
, X86::PUNPCKHQDQrm
, 16 },
621 { X86::PUNPCKHWDrr
, X86::PUNPCKHWDrm
, 16 },
622 { X86::PUNPCKLBWrr
, X86::PUNPCKLBWrm
, 16 },
623 { X86::PUNPCKLDQrr
, X86::PUNPCKLDQrm
, 16 },
624 { X86::PUNPCKLQDQrr
, X86::PUNPCKLQDQrm
, 16 },
625 { X86::PUNPCKLWDrr
, X86::PUNPCKLWDrm
, 16 },
626 { X86::PXORrr
, X86::PXORrm
, 16 },
627 { X86::SBB32rr
, X86::SBB32rm
, 0 },
628 { X86::SBB64rr
, X86::SBB64rm
, 0 },
629 { X86::SHUFPDrri
, X86::SHUFPDrmi
, 16 },
630 { X86::SHUFPSrri
, X86::SHUFPSrmi
, 16 },
631 { X86::SUB16rr
, X86::SUB16rm
, 0 },
632 { X86::SUB32rr
, X86::SUB32rm
, 0 },
633 { X86::SUB64rr
, X86::SUB64rm
, 0 },
634 { X86::SUB8rr
, X86::SUB8rm
, 0 },
635 { X86::SUBPDrr
, X86::SUBPDrm
, 16 },
636 { X86::SUBPSrr
, X86::SUBPSrm
, 16 },
637 { X86::SUBSDrr
, X86::SUBSDrm
, 0 },
638 { X86::SUBSSrr
, X86::SUBSSrm
, 0 },
639 // FIXME: TEST*rr -> swapped operand of TEST*mr.
640 { X86::UNPCKHPDrr
, X86::UNPCKHPDrm
, 16 },
641 { X86::UNPCKHPSrr
, X86::UNPCKHPSrm
, 16 },
642 { X86::UNPCKLPDrr
, X86::UNPCKLPDrm
, 16 },
643 { X86::UNPCKLPSrr
, X86::UNPCKLPSrm
, 16 },
644 { X86::XOR16rr
, X86::XOR16rm
, 0 },
645 { X86::XOR32rr
, X86::XOR32rm
, 0 },
646 { X86::XOR64rr
, X86::XOR64rm
, 0 },
647 { X86::XOR8rr
, X86::XOR8rm
, 0 },
648 { X86::XORPDrr
, X86::XORPDrm
, 16 },
649 { X86::XORPSrr
, X86::XORPSrm
, 16 }
652 for (unsigned i
= 0, e
= array_lengthof(OpTbl2
); i
!= e
; ++i
) {
653 unsigned RegOp
= OpTbl2
[i
][0];
654 unsigned MemOp
= OpTbl2
[i
][1];
655 unsigned Align
= OpTbl2
[i
][2];
656 if (!RegOp2MemOpTable2
.insert(std::make_pair((unsigned*)RegOp
,
657 std::make_pair(MemOp
,Align
))).second
)
658 assert(false && "Duplicated entries?");
659 // Index 2, folded load
660 unsigned AuxInfo
= 2 | (1 << 4);
661 if (!MemOp2RegOpTable
.insert(std::make_pair((unsigned*)MemOp
,
662 std::make_pair(RegOp
, AuxInfo
))).second
)
663 AmbEntries
.push_back(MemOp
);
666 // Remove ambiguous entries.
667 assert(AmbEntries
.empty() && "Duplicated entries in unfolding maps?");
670 bool X86InstrInfo::isMoveInstr(const MachineInstr
& MI
,
671 unsigned &SrcReg
, unsigned &DstReg
,
672 unsigned &SrcSubIdx
, unsigned &DstSubIdx
) const {
673 switch (MI
.getOpcode()) {
677 case X86::MOV8rr_NOREX
:
684 // FP Stack register class copies
685 case X86::MOV_Fp3232
: case X86::MOV_Fp6464
: case X86::MOV_Fp8080
:
686 case X86::MOV_Fp3264
: case X86::MOV_Fp3280
:
687 case X86::MOV_Fp6432
: case X86::MOV_Fp8032
:
689 case X86::FsMOVAPSrr
:
690 case X86::FsMOVAPDrr
:
694 case X86::MOVSS2PSrr
:
695 case X86::MOVSD2PDrr
:
696 case X86::MOVPS2SSrr
:
697 case X86::MOVPD2SDrr
:
698 case X86::MMX_MOVQ64rr
:
699 assert(MI
.getNumOperands() >= 2 &&
700 MI
.getOperand(0).isReg() &&
701 MI
.getOperand(1).isReg() &&
702 "invalid register-register move instruction");
703 SrcReg
= MI
.getOperand(1).getReg();
704 DstReg
= MI
.getOperand(0).getReg();
705 SrcSubIdx
= MI
.getOperand(1).getSubReg();
706 DstSubIdx
= MI
.getOperand(0).getSubReg();
711 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
*MI
,
712 int &FrameIndex
) const {
713 switch (MI
->getOpcode()) {
725 case X86::MMX_MOVD64rm
:
726 case X86::MMX_MOVQ64rm
:
727 if (MI
->getOperand(1).isFI() && MI
->getOperand(2).isImm() &&
728 MI
->getOperand(3).isReg() && MI
->getOperand(4).isImm() &&
729 MI
->getOperand(2).getImm() == 1 &&
730 MI
->getOperand(3).getReg() == 0 &&
731 MI
->getOperand(4).getImm() == 0) {
732 FrameIndex
= MI
->getOperand(1).getIndex();
733 return MI
->getOperand(0).getReg();
740 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
*MI
,
741 int &FrameIndex
) const {
742 switch (MI
->getOpcode()) {
754 case X86::MMX_MOVD64mr
:
755 case X86::MMX_MOVQ64mr
:
756 case X86::MMX_MOVNTQmr
:
757 if (MI
->getOperand(0).isFI() && MI
->getOperand(1).isImm() &&
758 MI
->getOperand(2).isReg() && MI
->getOperand(3).isImm() &&
759 MI
->getOperand(1).getImm() == 1 &&
760 MI
->getOperand(2).getReg() == 0 &&
761 MI
->getOperand(3).getImm() == 0) {
762 FrameIndex
= MI
->getOperand(0).getIndex();
763 return MI
->getOperand(X86AddrNumOperands
).getReg();
770 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
772 static bool regIsPICBase(unsigned BaseReg
, const MachineRegisterInfo
&MRI
) {
773 bool isPICBase
= false;
774 for (MachineRegisterInfo::def_iterator I
= MRI
.def_begin(BaseReg
),
775 E
= MRI
.def_end(); I
!= E
; ++I
) {
776 MachineInstr
*DefMI
= I
.getOperand().getParent();
777 if (DefMI
->getOpcode() != X86::MOVPC32r
)
779 assert(!isPICBase
&& "More than one PIC base?");
785 /// CanRematLoadWithDispOperand - Return true if a load with the specified
786 /// operand is a candidate for remat: for this to be true we need to know that
787 /// the load will always return the same value, even if moved.
788 static bool CanRematLoadWithDispOperand(const MachineOperand
&MO
,
789 X86TargetMachine
&TM
) {
790 // Loads from constant pool entries can be remat'd.
791 if (MO
.isCPI()) return true;
793 // We can remat globals in some cases.
795 // If this is a load of a stub, not of the global, we can remat it. This
796 // access will always return the address of the global.
797 if (isGlobalStubReference(MO
.getTargetFlags()))
800 // If the global itself is constant, we can remat the load.
801 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(MO
.getGlobal()))
802 if (GV
->isConstant())
809 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
*MI
) const {
810 switch (MI
->getOpcode()) {
822 case X86::MMX_MOVD64rm
:
823 case X86::MMX_MOVQ64rm
: {
824 // Loads from constant pools are trivially rematerializable.
825 if (MI
->getOperand(1).isReg() &&
826 MI
->getOperand(2).isImm() &&
827 MI
->getOperand(3).isReg() && MI
->getOperand(3).getReg() == 0 &&
828 CanRematLoadWithDispOperand(MI
->getOperand(4), TM
)) {
829 unsigned BaseReg
= MI
->getOperand(1).getReg();
830 if (BaseReg
== 0 || BaseReg
== X86::RIP
)
832 // Allow re-materialization of PIC load.
833 if (!ReMatPICStubLoad
&& MI
->getOperand(4).isGlobal())
835 const MachineFunction
&MF
= *MI
->getParent()->getParent();
836 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
837 bool isPICBase
= false;
838 for (MachineRegisterInfo::def_iterator I
= MRI
.def_begin(BaseReg
),
839 E
= MRI
.def_end(); I
!= E
; ++I
) {
840 MachineInstr
*DefMI
= I
.getOperand().getParent();
841 if (DefMI
->getOpcode() != X86::MOVPC32r
)
843 assert(!isPICBase
&& "More than one PIC base?");
853 if (MI
->getOperand(2).isImm() &&
854 MI
->getOperand(3).isReg() && MI
->getOperand(3).getReg() == 0 &&
855 !MI
->getOperand(4).isReg()) {
856 // lea fi#, lea GV, etc. are all rematerializable.
857 if (!MI
->getOperand(1).isReg())
859 unsigned BaseReg
= MI
->getOperand(1).getReg();
862 // Allow re-materialization of lea PICBase + x.
863 const MachineFunction
&MF
= *MI
->getParent()->getParent();
864 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
865 return regIsPICBase(BaseReg
, MRI
);
871 // All other instructions marked M_REMATERIALIZABLE are always trivially
876 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
877 /// would clobber the EFLAGS condition register. Note the result may be
878 /// conservative. If it cannot definitely determine the safety after visiting
879 /// two instructions it assumes it's not safe.
880 static bool isSafeToClobberEFLAGS(MachineBasicBlock
&MBB
,
881 MachineBasicBlock::iterator I
) {
882 // It's always safe to clobber EFLAGS at the end of a block.
886 // For compile time consideration, if we are not able to determine the
887 // safety after visiting 2 instructions, we will assume it's not safe.
888 for (unsigned i
= 0; i
< 2; ++i
) {
889 bool SeenDef
= false;
890 for (unsigned j
= 0, e
= I
->getNumOperands(); j
!= e
; ++j
) {
891 MachineOperand
&MO
= I
->getOperand(j
);
894 if (MO
.getReg() == X86::EFLAGS
) {
902 // This instruction defines EFLAGS, no need to look any further.
906 // If we make it to the end of the block, it's safe to clobber EFLAGS.
911 // Conservative answer.
915 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
916 MachineBasicBlock::iterator I
,
917 unsigned DestReg
, unsigned SubIdx
,
918 const MachineInstr
*Orig
) const {
919 DebugLoc DL
= DebugLoc::getUnknownLoc();
920 if (I
!= MBB
.end()) DL
= I
->getDebugLoc();
922 if (SubIdx
&& TargetRegisterInfo::isPhysicalRegister(DestReg
)) {
923 DestReg
= RI
.getSubReg(DestReg
, SubIdx
);
927 // MOV32r0 etc. are implemented with xor which clobbers condition code.
928 // Re-materialize them as movri instructions to avoid side effects.
930 unsigned Opc
= Orig
->getOpcode();
936 if (!isSafeToClobberEFLAGS(MBB
, I
)) {
939 case X86::MOV8r0
: Opc
= X86::MOV8ri
; break;
940 case X86::MOV16r0
: Opc
= X86::MOV16ri
; break;
941 case X86::MOV32r0
: Opc
= X86::MOV32ri
; break;
950 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(Orig
);
951 MI
->getOperand(0).setReg(DestReg
);
954 BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
).addImm(0);
957 MachineInstr
*NewMI
= prior(I
);
958 NewMI
->getOperand(0).setSubReg(SubIdx
);
961 /// isInvariantLoad - Return true if the specified instruction (which is marked
962 /// mayLoad) is loading from a location whose value is invariant across the
963 /// function. For example, loading a value from the constant pool or from
964 /// from the argument area of a function if it does not change. This should
965 /// only return true of *all* loads the instruction does are invariant (if it
966 /// does multiple loads).
967 bool X86InstrInfo::isInvariantLoad(const MachineInstr
*MI
) const {
968 // This code cares about loads from three cases: constant pool entries,
969 // invariant argument slots, and global stubs. In order to handle these cases
970 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
971 // operand and base our analysis on it. This is safe because the address of
972 // none of these three cases is ever used as anything other than a load base
973 // and X86 doesn't have any instructions that load from multiple places.
975 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
976 const MachineOperand
&MO
= MI
->getOperand(i
);
977 // Loads from constant pools are trivially invariant.
982 return isGlobalStubReference(MO
.getTargetFlags());
984 // If this is a load from an invariant stack slot, the load is a constant.
986 const MachineFrameInfo
&MFI
=
987 *MI
->getParent()->getParent()->getFrameInfo();
988 int Idx
= MO
.getIndex();
989 return MFI
.isFixedObjectIndex(Idx
) && MFI
.isImmutableObjectIndex(Idx
);
993 // All other instances of these instructions are presumed to have other
998 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
999 /// is not marked dead.
1000 static bool hasLiveCondCodeDef(MachineInstr
*MI
) {
1001 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1002 MachineOperand
&MO
= MI
->getOperand(i
);
1003 if (MO
.isReg() && MO
.isDef() &&
1004 MO
.getReg() == X86::EFLAGS
&& !MO
.isDead()) {
1011 /// convertToThreeAddress - This method must be implemented by targets that
1012 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1013 /// may be able to convert a two-address instruction into a true
1014 /// three-address instruction on demand. This allows the X86 target (for
1015 /// example) to convert ADD and SHL instructions into LEA instructions if they
1016 /// would require register copies due to two-addressness.
1018 /// This method returns a null pointer if the transformation cannot be
1019 /// performed, otherwise it returns the new instruction.
1022 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
1023 MachineBasicBlock::iterator
&MBBI
,
1024 LiveVariables
*LV
) const {
1025 MachineInstr
*MI
= MBBI
;
1026 MachineFunction
&MF
= *MI
->getParent()->getParent();
1027 // All instructions input are two-addr instructions. Get the known operands.
1028 unsigned Dest
= MI
->getOperand(0).getReg();
1029 unsigned Src
= MI
->getOperand(1).getReg();
1030 bool isDead
= MI
->getOperand(0).isDead();
1031 bool isKill
= MI
->getOperand(1).isKill();
1033 MachineInstr
*NewMI
= NULL
;
1034 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1035 // we have better subtarget support, enable the 16-bit LEA generation here.
1036 bool DisableLEA16
= true;
1038 unsigned MIOpc
= MI
->getOpcode();
1040 case X86::SHUFPSrri
: {
1041 assert(MI
->getNumOperands() == 4 && "Unknown shufps instruction!");
1042 if (!TM
.getSubtarget
<X86Subtarget
>().hasSSE2()) return 0;
1044 unsigned B
= MI
->getOperand(1).getReg();
1045 unsigned C
= MI
->getOperand(2).getReg();
1046 if (B
!= C
) return 0;
1047 unsigned A
= MI
->getOperand(0).getReg();
1048 unsigned M
= MI
->getOperand(3).getImm();
1049 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::PSHUFDri
))
1050 .addReg(A
, RegState::Define
| getDeadRegState(isDead
))
1051 .addReg(B
, getKillRegState(isKill
)).addImm(M
);
1054 case X86::SHL64ri
: {
1055 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1056 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1057 // the flags produced by a shift yet, so this is safe.
1058 unsigned ShAmt
= MI
->getOperand(2).getImm();
1059 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1061 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA64r
))
1062 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1063 .addReg(0).addImm(1 << ShAmt
)
1064 .addReg(Src
, getKillRegState(isKill
))
1068 case X86::SHL32ri
: {
1069 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1070 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1071 // the flags produced by a shift yet, so this is safe.
1072 unsigned ShAmt
= MI
->getOperand(2).getImm();
1073 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1075 unsigned Opc
= TM
.getSubtarget
<X86Subtarget
>().is64Bit() ?
1076 X86::LEA64_32r
: X86::LEA32r
;
1077 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1078 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1079 .addReg(0).addImm(1 << ShAmt
)
1080 .addReg(Src
, getKillRegState(isKill
)).addImm(0);
1083 case X86::SHL16ri
: {
1084 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1085 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1086 // the flags produced by a shift yet, so this is safe.
1087 unsigned ShAmt
= MI
->getOperand(2).getImm();
1088 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1091 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1092 MachineRegisterInfo
&RegInfo
= MFI
->getParent()->getRegInfo();
1093 unsigned Opc
= TM
.getSubtarget
<X86Subtarget
>().is64Bit()
1094 ? X86::LEA64_32r
: X86::LEA32r
;
1095 unsigned leaInReg
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
1096 unsigned leaOutReg
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
1098 // Build and insert into an implicit UNDEF value. This is OK because
1099 // well be shifting and then extracting the lower 16-bits.
1100 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(X86::IMPLICIT_DEF
), leaInReg
);
1101 MachineInstr
*InsMI
=
1102 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(X86::INSERT_SUBREG
),leaInReg
)
1104 .addReg(Src
, getKillRegState(isKill
))
1105 .addImm(X86::SUBREG_16BIT
);
1107 NewMI
= BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(Opc
), leaOutReg
)
1108 .addReg(0).addImm(1 << ShAmt
)
1109 .addReg(leaInReg
, RegState::Kill
)
1112 MachineInstr
*ExtMI
=
1113 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(X86::EXTRACT_SUBREG
))
1114 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1115 .addReg(leaOutReg
, RegState::Kill
)
1116 .addImm(X86::SUBREG_16BIT
);
1119 // Update live variables
1120 LV
->getVarInfo(leaInReg
).Kills
.push_back(NewMI
);
1121 LV
->getVarInfo(leaOutReg
).Kills
.push_back(ExtMI
);
1123 LV
->replaceKillInstruction(Src
, MI
, InsMI
);
1125 LV
->replaceKillInstruction(Dest
, MI
, ExtMI
);
1129 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1130 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1131 .addReg(0).addImm(1 << ShAmt
)
1132 .addReg(Src
, getKillRegState(isKill
))
1138 // The following opcodes also sets the condition code register(s). Only
1139 // convert them to equivalent lea if the condition code register def's
1141 if (hasLiveCondCodeDef(MI
))
1144 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
1149 case X86::INC64_32r
: {
1150 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
1151 unsigned Opc
= MIOpc
== X86::INC64r
? X86::LEA64r
1152 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1153 NewMI
= addLeaRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1154 .addReg(Dest
, RegState::Define
|
1155 getDeadRegState(isDead
)),
1160 case X86::INC64_16r
:
1161 if (DisableLEA16
) return 0;
1162 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
1163 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1164 .addReg(Dest
, RegState::Define
|
1165 getDeadRegState(isDead
)),
1170 case X86::DEC64_32r
: {
1171 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
1172 unsigned Opc
= MIOpc
== X86::DEC64r
? X86::LEA64r
1173 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1174 NewMI
= addLeaRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1175 .addReg(Dest
, RegState::Define
|
1176 getDeadRegState(isDead
)),
1181 case X86::DEC64_16r
:
1182 if (DisableLEA16
) return 0;
1183 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
1184 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1185 .addReg(Dest
, RegState::Define
|
1186 getDeadRegState(isDead
)),
1190 case X86::ADD32rr
: {
1191 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1192 unsigned Opc
= MIOpc
== X86::ADD64rr
? X86::LEA64r
1193 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1194 unsigned Src2
= MI
->getOperand(2).getReg();
1195 bool isKill2
= MI
->getOperand(2).isKill();
1196 NewMI
= addRegReg(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1197 .addReg(Dest
, RegState::Define
|
1198 getDeadRegState(isDead
)),
1199 Src
, isKill
, Src2
, isKill2
);
1201 LV
->replaceKillInstruction(Src2
, MI
, NewMI
);
1204 case X86::ADD16rr
: {
1205 if (DisableLEA16
) return 0;
1206 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1207 unsigned Src2
= MI
->getOperand(2).getReg();
1208 bool isKill2
= MI
->getOperand(2).isKill();
1209 NewMI
= addRegReg(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1210 .addReg(Dest
, RegState::Define
|
1211 getDeadRegState(isDead
)),
1212 Src
, isKill
, Src2
, isKill2
);
1214 LV
->replaceKillInstruction(Src2
, MI
, NewMI
);
1217 case X86::ADD64ri32
:
1219 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1220 if (MI
->getOperand(2).isImm())
1221 NewMI
= addLeaRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA64r
))
1222 .addReg(Dest
, RegState::Define
|
1223 getDeadRegState(isDead
)),
1224 Src
, isKill
, MI
->getOperand(2).getImm());
1228 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1229 if (MI
->getOperand(2).isImm()) {
1230 unsigned Opc
= is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1231 NewMI
= addLeaRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1232 .addReg(Dest
, RegState::Define
|
1233 getDeadRegState(isDead
)),
1234 Src
, isKill
, MI
->getOperand(2).getImm());
1239 if (DisableLEA16
) return 0;
1240 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1241 if (MI
->getOperand(2).isImm())
1242 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1243 .addReg(Dest
, RegState::Define
|
1244 getDeadRegState(isDead
)),
1245 Src
, isKill
, MI
->getOperand(2).getImm());
1248 if (DisableLEA16
) return 0;
1250 case X86::SHL64ri
: {
1251 assert(MI
->getNumOperands() >= 3 && MI
->getOperand(2).isImm() &&
1252 "Unknown shl instruction!");
1253 unsigned ShAmt
= MI
->getOperand(2).getImm();
1254 if (ShAmt
== 1 || ShAmt
== 2 || ShAmt
== 3) {
1256 AM
.Scale
= 1 << ShAmt
;
1258 unsigned Opc
= MIOpc
== X86::SHL64ri
? X86::LEA64r
1259 : (MIOpc
== X86::SHL32ri
1260 ? (is64Bit
? X86::LEA64_32r
: X86::LEA32r
) : X86::LEA16r
);
1261 NewMI
= addFullAddress(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1262 .addReg(Dest
, RegState::Define
|
1263 getDeadRegState(isDead
)), AM
);
1265 NewMI
->getOperand(3).setIsKill(true);
1273 if (!NewMI
) return 0;
1275 if (LV
) { // Update live variables
1277 LV
->replaceKillInstruction(Src
, MI
, NewMI
);
1279 LV
->replaceKillInstruction(Dest
, MI
, NewMI
);
1282 MFI
->insert(MBBI
, NewMI
); // Insert the new inst
1286 /// commuteInstruction - We have a few instructions that must be hacked on to
1290 X86InstrInfo::commuteInstruction(MachineInstr
*MI
, bool NewMI
) const {
1291 switch (MI
->getOpcode()) {
1292 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1293 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1294 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1295 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1296 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1297 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1300 switch (MI
->getOpcode()) {
1301 default: llvm_unreachable("Unreachable!");
1302 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
1303 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
1304 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
1305 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
1306 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
1307 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
1309 unsigned Amt
= MI
->getOperand(3).getImm();
1311 MachineFunction
&MF
= *MI
->getParent()->getParent();
1312 MI
= MF
.CloneMachineInstr(MI
);
1315 MI
->setDesc(get(Opc
));
1316 MI
->getOperand(3).setImm(Size
-Amt
);
1317 return TargetInstrInfoImpl::commuteInstruction(MI
, NewMI
);
1319 case X86::CMOVB16rr
:
1320 case X86::CMOVB32rr
:
1321 case X86::CMOVB64rr
:
1322 case X86::CMOVAE16rr
:
1323 case X86::CMOVAE32rr
:
1324 case X86::CMOVAE64rr
:
1325 case X86::CMOVE16rr
:
1326 case X86::CMOVE32rr
:
1327 case X86::CMOVE64rr
:
1328 case X86::CMOVNE16rr
:
1329 case X86::CMOVNE32rr
:
1330 case X86::CMOVNE64rr
:
1331 case X86::CMOVBE16rr
:
1332 case X86::CMOVBE32rr
:
1333 case X86::CMOVBE64rr
:
1334 case X86::CMOVA16rr
:
1335 case X86::CMOVA32rr
:
1336 case X86::CMOVA64rr
:
1337 case X86::CMOVL16rr
:
1338 case X86::CMOVL32rr
:
1339 case X86::CMOVL64rr
:
1340 case X86::CMOVGE16rr
:
1341 case X86::CMOVGE32rr
:
1342 case X86::CMOVGE64rr
:
1343 case X86::CMOVLE16rr
:
1344 case X86::CMOVLE32rr
:
1345 case X86::CMOVLE64rr
:
1346 case X86::CMOVG16rr
:
1347 case X86::CMOVG32rr
:
1348 case X86::CMOVG64rr
:
1349 case X86::CMOVS16rr
:
1350 case X86::CMOVS32rr
:
1351 case X86::CMOVS64rr
:
1352 case X86::CMOVNS16rr
:
1353 case X86::CMOVNS32rr
:
1354 case X86::CMOVNS64rr
:
1355 case X86::CMOVP16rr
:
1356 case X86::CMOVP32rr
:
1357 case X86::CMOVP64rr
:
1358 case X86::CMOVNP16rr
:
1359 case X86::CMOVNP32rr
:
1360 case X86::CMOVNP64rr
:
1361 case X86::CMOVO16rr
:
1362 case X86::CMOVO32rr
:
1363 case X86::CMOVO64rr
:
1364 case X86::CMOVNO16rr
:
1365 case X86::CMOVNO32rr
:
1366 case X86::CMOVNO64rr
: {
1368 switch (MI
->getOpcode()) {
1370 case X86::CMOVB16rr
: Opc
= X86::CMOVAE16rr
; break;
1371 case X86::CMOVB32rr
: Opc
= X86::CMOVAE32rr
; break;
1372 case X86::CMOVB64rr
: Opc
= X86::CMOVAE64rr
; break;
1373 case X86::CMOVAE16rr
: Opc
= X86::CMOVB16rr
; break;
1374 case X86::CMOVAE32rr
: Opc
= X86::CMOVB32rr
; break;
1375 case X86::CMOVAE64rr
: Opc
= X86::CMOVB64rr
; break;
1376 case X86::CMOVE16rr
: Opc
= X86::CMOVNE16rr
; break;
1377 case X86::CMOVE32rr
: Opc
= X86::CMOVNE32rr
; break;
1378 case X86::CMOVE64rr
: Opc
= X86::CMOVNE64rr
; break;
1379 case X86::CMOVNE16rr
: Opc
= X86::CMOVE16rr
; break;
1380 case X86::CMOVNE32rr
: Opc
= X86::CMOVE32rr
; break;
1381 case X86::CMOVNE64rr
: Opc
= X86::CMOVE64rr
; break;
1382 case X86::CMOVBE16rr
: Opc
= X86::CMOVA16rr
; break;
1383 case X86::CMOVBE32rr
: Opc
= X86::CMOVA32rr
; break;
1384 case X86::CMOVBE64rr
: Opc
= X86::CMOVA64rr
; break;
1385 case X86::CMOVA16rr
: Opc
= X86::CMOVBE16rr
; break;
1386 case X86::CMOVA32rr
: Opc
= X86::CMOVBE32rr
; break;
1387 case X86::CMOVA64rr
: Opc
= X86::CMOVBE64rr
; break;
1388 case X86::CMOVL16rr
: Opc
= X86::CMOVGE16rr
; break;
1389 case X86::CMOVL32rr
: Opc
= X86::CMOVGE32rr
; break;
1390 case X86::CMOVL64rr
: Opc
= X86::CMOVGE64rr
; break;
1391 case X86::CMOVGE16rr
: Opc
= X86::CMOVL16rr
; break;
1392 case X86::CMOVGE32rr
: Opc
= X86::CMOVL32rr
; break;
1393 case X86::CMOVGE64rr
: Opc
= X86::CMOVL64rr
; break;
1394 case X86::CMOVLE16rr
: Opc
= X86::CMOVG16rr
; break;
1395 case X86::CMOVLE32rr
: Opc
= X86::CMOVG32rr
; break;
1396 case X86::CMOVLE64rr
: Opc
= X86::CMOVG64rr
; break;
1397 case X86::CMOVG16rr
: Opc
= X86::CMOVLE16rr
; break;
1398 case X86::CMOVG32rr
: Opc
= X86::CMOVLE32rr
; break;
1399 case X86::CMOVG64rr
: Opc
= X86::CMOVLE64rr
; break;
1400 case X86::CMOVS16rr
: Opc
= X86::CMOVNS16rr
; break;
1401 case X86::CMOVS32rr
: Opc
= X86::CMOVNS32rr
; break;
1402 case X86::CMOVS64rr
: Opc
= X86::CMOVNS64rr
; break;
1403 case X86::CMOVNS16rr
: Opc
= X86::CMOVS16rr
; break;
1404 case X86::CMOVNS32rr
: Opc
= X86::CMOVS32rr
; break;
1405 case X86::CMOVNS64rr
: Opc
= X86::CMOVS64rr
; break;
1406 case X86::CMOVP16rr
: Opc
= X86::CMOVNP16rr
; break;
1407 case X86::CMOVP32rr
: Opc
= X86::CMOVNP32rr
; break;
1408 case X86::CMOVP64rr
: Opc
= X86::CMOVNP64rr
; break;
1409 case X86::CMOVNP16rr
: Opc
= X86::CMOVP16rr
; break;
1410 case X86::CMOVNP32rr
: Opc
= X86::CMOVP32rr
; break;
1411 case X86::CMOVNP64rr
: Opc
= X86::CMOVP64rr
; break;
1412 case X86::CMOVO16rr
: Opc
= X86::CMOVNO16rr
; break;
1413 case X86::CMOVO32rr
: Opc
= X86::CMOVNO32rr
; break;
1414 case X86::CMOVO64rr
: Opc
= X86::CMOVNO64rr
; break;
1415 case X86::CMOVNO16rr
: Opc
= X86::CMOVO16rr
; break;
1416 case X86::CMOVNO32rr
: Opc
= X86::CMOVO32rr
; break;
1417 case X86::CMOVNO64rr
: Opc
= X86::CMOVO64rr
; break;
1420 MachineFunction
&MF
= *MI
->getParent()->getParent();
1421 MI
= MF
.CloneMachineInstr(MI
);
1424 MI
->setDesc(get(Opc
));
1425 // Fallthrough intended.
1428 return TargetInstrInfoImpl::commuteInstruction(MI
, NewMI
);
1432 static X86::CondCode
GetCondFromBranchOpc(unsigned BrOpc
) {
1434 default: return X86::COND_INVALID
;
1435 case X86::JE
: return X86::COND_E
;
1436 case X86::JNE
: return X86::COND_NE
;
1437 case X86::JL
: return X86::COND_L
;
1438 case X86::JLE
: return X86::COND_LE
;
1439 case X86::JG
: return X86::COND_G
;
1440 case X86::JGE
: return X86::COND_GE
;
1441 case X86::JB
: return X86::COND_B
;
1442 case X86::JBE
: return X86::COND_BE
;
1443 case X86::JA
: return X86::COND_A
;
1444 case X86::JAE
: return X86::COND_AE
;
1445 case X86::JS
: return X86::COND_S
;
1446 case X86::JNS
: return X86::COND_NS
;
1447 case X86::JP
: return X86::COND_P
;
1448 case X86::JNP
: return X86::COND_NP
;
1449 case X86::JO
: return X86::COND_O
;
1450 case X86::JNO
: return X86::COND_NO
;
1454 unsigned X86::GetCondBranchFromCond(X86::CondCode CC
) {
1456 default: llvm_unreachable("Illegal condition code!");
1457 case X86::COND_E
: return X86::JE
;
1458 case X86::COND_NE
: return X86::JNE
;
1459 case X86::COND_L
: return X86::JL
;
1460 case X86::COND_LE
: return X86::JLE
;
1461 case X86::COND_G
: return X86::JG
;
1462 case X86::COND_GE
: return X86::JGE
;
1463 case X86::COND_B
: return X86::JB
;
1464 case X86::COND_BE
: return X86::JBE
;
1465 case X86::COND_A
: return X86::JA
;
1466 case X86::COND_AE
: return X86::JAE
;
1467 case X86::COND_S
: return X86::JS
;
1468 case X86::COND_NS
: return X86::JNS
;
1469 case X86::COND_P
: return X86::JP
;
1470 case X86::COND_NP
: return X86::JNP
;
1471 case X86::COND_O
: return X86::JO
;
1472 case X86::COND_NO
: return X86::JNO
;
1476 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
1477 /// e.g. turning COND_E to COND_NE.
1478 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
1480 default: llvm_unreachable("Illegal condition code!");
1481 case X86::COND_E
: return X86::COND_NE
;
1482 case X86::COND_NE
: return X86::COND_E
;
1483 case X86::COND_L
: return X86::COND_GE
;
1484 case X86::COND_LE
: return X86::COND_G
;
1485 case X86::COND_G
: return X86::COND_LE
;
1486 case X86::COND_GE
: return X86::COND_L
;
1487 case X86::COND_B
: return X86::COND_AE
;
1488 case X86::COND_BE
: return X86::COND_A
;
1489 case X86::COND_A
: return X86::COND_BE
;
1490 case X86::COND_AE
: return X86::COND_B
;
1491 case X86::COND_S
: return X86::COND_NS
;
1492 case X86::COND_NS
: return X86::COND_S
;
1493 case X86::COND_P
: return X86::COND_NP
;
1494 case X86::COND_NP
: return X86::COND_P
;
1495 case X86::COND_O
: return X86::COND_NO
;
1496 case X86::COND_NO
: return X86::COND_O
;
1500 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr
*MI
) const {
1501 const TargetInstrDesc
&TID
= MI
->getDesc();
1502 if (!TID
.isTerminator()) return false;
1504 // Conditional branch is a special case.
1505 if (TID
.isBranch() && !TID
.isBarrier())
1507 if (!TID
.isPredicable())
1509 return !isPredicated(MI
);
1512 // For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1513 static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr
*MI
,
1514 const X86InstrInfo
&TII
) {
1515 if (MI
->getOpcode() == X86::FP_REG_KILL
)
1517 return TII
.isUnpredicatedTerminator(MI
);
1520 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock
&MBB
,
1521 MachineBasicBlock
*&TBB
,
1522 MachineBasicBlock
*&FBB
,
1523 SmallVectorImpl
<MachineOperand
> &Cond
,
1524 bool AllowModify
) const {
1525 // Start from the bottom of the block and work up, examining the
1526 // terminator instructions.
1527 MachineBasicBlock::iterator I
= MBB
.end();
1528 while (I
!= MBB
.begin()) {
1530 // Working from the bottom, when we see a non-terminator
1531 // instruction, we're done.
1532 if (!isBrAnalysisUnpredicatedTerminator(I
, *this))
1534 // A terminator that isn't a branch can't easily be handled
1535 // by this analysis.
1536 if (!I
->getDesc().isBranch())
1538 // Handle unconditional branches.
1539 if (I
->getOpcode() == X86::JMP
) {
1541 TBB
= I
->getOperand(0).getMBB();
1545 // If the block has any instructions after a JMP, delete them.
1546 while (next(I
) != MBB
.end())
1547 next(I
)->eraseFromParent();
1550 // Delete the JMP if it's equivalent to a fall-through.
1551 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
1553 I
->eraseFromParent();
1557 // TBB is used to indicate the unconditinal destination.
1558 TBB
= I
->getOperand(0).getMBB();
1561 // Handle conditional branches.
1562 X86::CondCode BranchCode
= GetCondFromBranchOpc(I
->getOpcode());
1563 if (BranchCode
== X86::COND_INVALID
)
1564 return true; // Can't handle indirect branch.
1565 // Working from the bottom, handle the first conditional branch.
1568 TBB
= I
->getOperand(0).getMBB();
1569 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
1572 // Handle subsequent conditional branches. Only handle the case
1573 // where all conditional branches branch to the same destination
1574 // and their condition opcodes fit one of the special
1575 // multi-branch idioms.
1576 assert(Cond
.size() == 1);
1578 // Only handle the case where all conditional branches branch to
1579 // the same destination.
1580 if (TBB
!= I
->getOperand(0).getMBB())
1582 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
1583 // If the conditions are the same, we can leave them alone.
1584 if (OldBranchCode
== BranchCode
)
1586 // If they differ, see if they fit one of the known patterns.
1587 // Theoretically we could handle more patterns here, but
1588 // we shouldn't expect to see them if instruction selection
1589 // has done a reasonable job.
1590 if ((OldBranchCode
== X86::COND_NP
&&
1591 BranchCode
== X86::COND_E
) ||
1592 (OldBranchCode
== X86::COND_E
&&
1593 BranchCode
== X86::COND_NP
))
1594 BranchCode
= X86::COND_NP_OR_E
;
1595 else if ((OldBranchCode
== X86::COND_P
&&
1596 BranchCode
== X86::COND_NE
) ||
1597 (OldBranchCode
== X86::COND_NE
&&
1598 BranchCode
== X86::COND_P
))
1599 BranchCode
= X86::COND_NE_OR_P
;
1602 // Update the MachineOperand.
1603 Cond
[0].setImm(BranchCode
);
1609 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock
&MBB
) const {
1610 MachineBasicBlock::iterator I
= MBB
.end();
1613 while (I
!= MBB
.begin()) {
1615 if (I
->getOpcode() != X86::JMP
&&
1616 GetCondFromBranchOpc(I
->getOpcode()) == X86::COND_INVALID
)
1618 // Remove the branch.
1619 I
->eraseFromParent();
1628 X86InstrInfo::InsertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
1629 MachineBasicBlock
*FBB
,
1630 const SmallVectorImpl
<MachineOperand
> &Cond
) const {
1631 // FIXME this should probably have a DebugLoc operand
1632 DebugLoc dl
= DebugLoc::getUnknownLoc();
1633 // Shouldn't be a fall through.
1634 assert(TBB
&& "InsertBranch must not be told to insert a fallthrough");
1635 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
1636 "X86 branch conditions have one component!");
1639 // Unconditional branch?
1640 assert(!FBB
&& "Unconditional branch with multiple successors!");
1641 BuildMI(&MBB
, dl
, get(X86::JMP
)).addMBB(TBB
);
1645 // Conditional branch.
1647 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
1649 case X86::COND_NP_OR_E
:
1650 // Synthesize NP_OR_E with two branches.
1651 BuildMI(&MBB
, dl
, get(X86::JNP
)).addMBB(TBB
);
1653 BuildMI(&MBB
, dl
, get(X86::JE
)).addMBB(TBB
);
1656 case X86::COND_NE_OR_P
:
1657 // Synthesize NE_OR_P with two branches.
1658 BuildMI(&MBB
, dl
, get(X86::JNE
)).addMBB(TBB
);
1660 BuildMI(&MBB
, dl
, get(X86::JP
)).addMBB(TBB
);
1664 unsigned Opc
= GetCondBranchFromCond(CC
);
1665 BuildMI(&MBB
, dl
, get(Opc
)).addMBB(TBB
);
1670 // Two-way Conditional branch. Insert the second branch.
1671 BuildMI(&MBB
, dl
, get(X86::JMP
)).addMBB(FBB
);
1677 /// isHReg - Test if the given register is a physical h register.
1678 static bool isHReg(unsigned Reg
) {
1679 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
1682 bool X86InstrInfo::copyRegToReg(MachineBasicBlock
&MBB
,
1683 MachineBasicBlock::iterator MI
,
1684 unsigned DestReg
, unsigned SrcReg
,
1685 const TargetRegisterClass
*DestRC
,
1686 const TargetRegisterClass
*SrcRC
) const {
1687 DebugLoc DL
= DebugLoc::getUnknownLoc();
1688 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1690 // Determine if DstRC and SrcRC have a common superclass in common.
1691 const TargetRegisterClass
*CommonRC
= DestRC
;
1692 if (DestRC
== SrcRC
)
1693 /* Source and destination have the same register class. */;
1694 else if (CommonRC
->hasSuperClass(SrcRC
))
1696 else if (!DestRC
->hasSubClass(SrcRC
)) {
1697 // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
1698 // but we want to copy then as GR64. Similarly, for GR32_NOREX and
1699 // GR32_NOSP, copy as GR32.
1700 if (SrcRC
->hasSuperClass(&X86::GR64RegClass
) &&
1701 DestRC
->hasSuperClass(&X86::GR64RegClass
))
1702 CommonRC
= &X86::GR64RegClass
;
1703 else if (SrcRC
->hasSuperClass(&X86::GR32RegClass
) &&
1704 DestRC
->hasSuperClass(&X86::GR32RegClass
))
1705 CommonRC
= &X86::GR32RegClass
;
1712 if (CommonRC
== &X86::GR64RegClass
|| CommonRC
== &X86::GR64_NOSPRegClass
) {
1714 } else if (CommonRC
== &X86::GR32RegClass
||
1715 CommonRC
== &X86::GR32_NOSPRegClass
) {
1717 } else if (CommonRC
== &X86::GR16RegClass
) {
1719 } else if (CommonRC
== &X86::GR8RegClass
) {
1720 // Copying to or from a physical H register on x86-64 requires a NOREX
1721 // move. Otherwise use a normal move.
1722 if ((isHReg(DestReg
) || isHReg(SrcReg
)) &&
1723 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1724 Opc
= X86::MOV8rr_NOREX
;
1727 } else if (CommonRC
== &X86::GR64_ABCDRegClass
) {
1729 } else if (CommonRC
== &X86::GR32_ABCDRegClass
) {
1731 } else if (CommonRC
== &X86::GR16_ABCDRegClass
) {
1733 } else if (CommonRC
== &X86::GR8_ABCD_LRegClass
) {
1735 } else if (CommonRC
== &X86::GR8_ABCD_HRegClass
) {
1736 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1737 Opc
= X86::MOV8rr_NOREX
;
1740 } else if (CommonRC
== &X86::GR64_NOREXRegClass
||
1741 CommonRC
== &X86::GR64_NOREX_NOSPRegClass
) {
1743 } else if (CommonRC
== &X86::GR32_NOREXRegClass
) {
1745 } else if (CommonRC
== &X86::GR16_NOREXRegClass
) {
1747 } else if (CommonRC
== &X86::GR8_NOREXRegClass
) {
1749 } else if (CommonRC
== &X86::RFP32RegClass
) {
1750 Opc
= X86::MOV_Fp3232
;
1751 } else if (CommonRC
== &X86::RFP64RegClass
|| CommonRC
== &X86::RSTRegClass
) {
1752 Opc
= X86::MOV_Fp6464
;
1753 } else if (CommonRC
== &X86::RFP80RegClass
) {
1754 Opc
= X86::MOV_Fp8080
;
1755 } else if (CommonRC
== &X86::FR32RegClass
) {
1756 Opc
= X86::FsMOVAPSrr
;
1757 } else if (CommonRC
== &X86::FR64RegClass
) {
1758 Opc
= X86::FsMOVAPDrr
;
1759 } else if (CommonRC
== &X86::VR128RegClass
) {
1760 Opc
= X86::MOVAPSrr
;
1761 } else if (CommonRC
== &X86::VR64RegClass
) {
1762 Opc
= X86::MMX_MOVQ64rr
;
1766 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
).addReg(SrcReg
);
1770 // Moving EFLAGS to / from another register requires a push and a pop.
1771 if (SrcRC
== &X86::CCRRegClass
) {
1772 if (SrcReg
!= X86::EFLAGS
)
1774 if (DestRC
== &X86::GR64RegClass
|| DestRC
== &X86::GR64_NOSPRegClass
) {
1775 BuildMI(MBB
, MI
, DL
, get(X86::PUSHFQ
));
1776 BuildMI(MBB
, MI
, DL
, get(X86::POP64r
), DestReg
);
1778 } else if (DestRC
== &X86::GR32RegClass
||
1779 DestRC
== &X86::GR32_NOSPRegClass
) {
1780 BuildMI(MBB
, MI
, DL
, get(X86::PUSHFD
));
1781 BuildMI(MBB
, MI
, DL
, get(X86::POP32r
), DestReg
);
1784 } else if (DestRC
== &X86::CCRRegClass
) {
1785 if (DestReg
!= X86::EFLAGS
)
1787 if (SrcRC
== &X86::GR64RegClass
|| DestRC
== &X86::GR64_NOSPRegClass
) {
1788 BuildMI(MBB
, MI
, DL
, get(X86::PUSH64r
)).addReg(SrcReg
);
1789 BuildMI(MBB
, MI
, DL
, get(X86::POPFQ
));
1791 } else if (SrcRC
== &X86::GR32RegClass
||
1792 DestRC
== &X86::GR32_NOSPRegClass
) {
1793 BuildMI(MBB
, MI
, DL
, get(X86::PUSH32r
)).addReg(SrcReg
);
1794 BuildMI(MBB
, MI
, DL
, get(X86::POPFD
));
1799 // Moving from ST(0) turns into FpGET_ST0_32 etc.
1800 if (SrcRC
== &X86::RSTRegClass
) {
1801 // Copying from ST(0)/ST(1).
1802 if (SrcReg
!= X86::ST0
&& SrcReg
!= X86::ST1
)
1803 // Can only copy from ST(0)/ST(1) right now
1805 bool isST0
= SrcReg
== X86::ST0
;
1807 if (DestRC
== &X86::RFP32RegClass
)
1808 Opc
= isST0
? X86::FpGET_ST0_32
: X86::FpGET_ST1_32
;
1809 else if (DestRC
== &X86::RFP64RegClass
)
1810 Opc
= isST0
? X86::FpGET_ST0_64
: X86::FpGET_ST1_64
;
1812 if (DestRC
!= &X86::RFP80RegClass
)
1814 Opc
= isST0
? X86::FpGET_ST0_80
: X86::FpGET_ST1_80
;
1816 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
);
1820 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1821 if (DestRC
== &X86::RSTRegClass
) {
1822 // Copying to ST(0) / ST(1).
1823 if (DestReg
!= X86::ST0
&& DestReg
!= X86::ST1
)
1824 // Can only copy to TOS right now
1826 bool isST0
= DestReg
== X86::ST0
;
1828 if (SrcRC
== &X86::RFP32RegClass
)
1829 Opc
= isST0
? X86::FpSET_ST0_32
: X86::FpSET_ST1_32
;
1830 else if (SrcRC
== &X86::RFP64RegClass
)
1831 Opc
= isST0
? X86::FpSET_ST0_64
: X86::FpSET_ST1_64
;
1833 if (SrcRC
!= &X86::RFP80RegClass
)
1835 Opc
= isST0
? X86::FpSET_ST0_80
: X86::FpSET_ST1_80
;
1837 BuildMI(MBB
, MI
, DL
, get(Opc
)).addReg(SrcReg
);
1841 // Not yet supported!
1845 static unsigned getStoreRegOpcode(unsigned SrcReg
,
1846 const TargetRegisterClass
*RC
,
1847 bool isStackAligned
,
1848 TargetMachine
&TM
) {
1850 if (RC
== &X86::GR64RegClass
|| RC
== &X86::GR64_NOSPRegClass
) {
1852 } else if (RC
== &X86::GR32RegClass
|| RC
== &X86::GR32_NOSPRegClass
) {
1854 } else if (RC
== &X86::GR16RegClass
) {
1856 } else if (RC
== &X86::GR8RegClass
) {
1857 // Copying to or from a physical H register on x86-64 requires a NOREX
1858 // move. Otherwise use a normal move.
1859 if (isHReg(SrcReg
) &&
1860 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1861 Opc
= X86::MOV8mr_NOREX
;
1864 } else if (RC
== &X86::GR64_ABCDRegClass
) {
1866 } else if (RC
== &X86::GR32_ABCDRegClass
) {
1868 } else if (RC
== &X86::GR16_ABCDRegClass
) {
1870 } else if (RC
== &X86::GR8_ABCD_LRegClass
) {
1872 } else if (RC
== &X86::GR8_ABCD_HRegClass
) {
1873 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1874 Opc
= X86::MOV8mr_NOREX
;
1877 } else if (RC
== &X86::GR64_NOREXRegClass
||
1878 RC
== &X86::GR64_NOREX_NOSPRegClass
) {
1880 } else if (RC
== &X86::GR32_NOREXRegClass
) {
1882 } else if (RC
== &X86::GR16_NOREXRegClass
) {
1884 } else if (RC
== &X86::GR8_NOREXRegClass
) {
1886 } else if (RC
== &X86::RFP80RegClass
) {
1887 Opc
= X86::ST_FpP80m
; // pops
1888 } else if (RC
== &X86::RFP64RegClass
) {
1889 Opc
= X86::ST_Fp64m
;
1890 } else if (RC
== &X86::RFP32RegClass
) {
1891 Opc
= X86::ST_Fp32m
;
1892 } else if (RC
== &X86::FR32RegClass
) {
1894 } else if (RC
== &X86::FR64RegClass
) {
1896 } else if (RC
== &X86::VR128RegClass
) {
1897 // If stack is realigned we can use aligned stores.
1898 Opc
= isStackAligned
? X86::MOVAPSmr
: X86::MOVUPSmr
;
1899 } else if (RC
== &X86::VR64RegClass
) {
1900 Opc
= X86::MMX_MOVQ64mr
;
1902 llvm_unreachable("Unknown regclass");
1908 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
1909 MachineBasicBlock::iterator MI
,
1910 unsigned SrcReg
, bool isKill
, int FrameIdx
,
1911 const TargetRegisterClass
*RC
) const {
1912 const MachineFunction
&MF
= *MBB
.getParent();
1913 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
1914 RI
.needsStackRealignment(MF
);
1915 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, TM
);
1916 DebugLoc DL
= DebugLoc::getUnknownLoc();
1917 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1918 addFrameReference(BuildMI(MBB
, MI
, DL
, get(Opc
)), FrameIdx
)
1919 .addReg(SrcReg
, getKillRegState(isKill
));
1922 void X86InstrInfo::storeRegToAddr(MachineFunction
&MF
, unsigned SrcReg
,
1924 SmallVectorImpl
<MachineOperand
> &Addr
,
1925 const TargetRegisterClass
*RC
,
1926 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1927 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
1928 RI
.needsStackRealignment(MF
);
1929 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, TM
);
1930 DebugLoc DL
= DebugLoc::getUnknownLoc();
1931 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
1932 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
1933 MIB
.addOperand(Addr
[i
]);
1934 MIB
.addReg(SrcReg
, getKillRegState(isKill
));
1935 NewMIs
.push_back(MIB
);
1938 static unsigned getLoadRegOpcode(unsigned DestReg
,
1939 const TargetRegisterClass
*RC
,
1940 bool isStackAligned
,
1941 const TargetMachine
&TM
) {
1943 if (RC
== &X86::GR64RegClass
|| RC
== &X86::GR64_NOSPRegClass
) {
1945 } else if (RC
== &X86::GR32RegClass
|| RC
== &X86::GR32_NOSPRegClass
) {
1947 } else if (RC
== &X86::GR16RegClass
) {
1949 } else if (RC
== &X86::GR8RegClass
) {
1950 // Copying to or from a physical H register on x86-64 requires a NOREX
1951 // move. Otherwise use a normal move.
1952 if (isHReg(DestReg
) &&
1953 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1954 Opc
= X86::MOV8rm_NOREX
;
1957 } else if (RC
== &X86::GR64_ABCDRegClass
) {
1959 } else if (RC
== &X86::GR32_ABCDRegClass
) {
1961 } else if (RC
== &X86::GR16_ABCDRegClass
) {
1963 } else if (RC
== &X86::GR8_ABCD_LRegClass
) {
1965 } else if (RC
== &X86::GR8_ABCD_HRegClass
) {
1966 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1967 Opc
= X86::MOV8rm_NOREX
;
1970 } else if (RC
== &X86::GR64_NOREXRegClass
||
1971 RC
== &X86::GR64_NOREX_NOSPRegClass
) {
1973 } else if (RC
== &X86::GR32_NOREXRegClass
) {
1975 } else if (RC
== &X86::GR16_NOREXRegClass
) {
1977 } else if (RC
== &X86::GR8_NOREXRegClass
) {
1979 } else if (RC
== &X86::RFP80RegClass
) {
1980 Opc
= X86::LD_Fp80m
;
1981 } else if (RC
== &X86::RFP64RegClass
) {
1982 Opc
= X86::LD_Fp64m
;
1983 } else if (RC
== &X86::RFP32RegClass
) {
1984 Opc
= X86::LD_Fp32m
;
1985 } else if (RC
== &X86::FR32RegClass
) {
1987 } else if (RC
== &X86::FR64RegClass
) {
1989 } else if (RC
== &X86::VR128RegClass
) {
1990 // If stack is realigned we can use aligned loads.
1991 Opc
= isStackAligned
? X86::MOVAPSrm
: X86::MOVUPSrm
;
1992 } else if (RC
== &X86::VR64RegClass
) {
1993 Opc
= X86::MMX_MOVQ64rm
;
1995 llvm_unreachable("Unknown regclass");
2001 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
2002 MachineBasicBlock::iterator MI
,
2003 unsigned DestReg
, int FrameIdx
,
2004 const TargetRegisterClass
*RC
) const{
2005 const MachineFunction
&MF
= *MBB
.getParent();
2006 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
2007 RI
.needsStackRealignment(MF
);
2008 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, TM
);
2009 DebugLoc DL
= DebugLoc::getUnknownLoc();
2010 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
2011 addFrameReference(BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
), FrameIdx
);
2014 void X86InstrInfo::loadRegFromAddr(MachineFunction
&MF
, unsigned DestReg
,
2015 SmallVectorImpl
<MachineOperand
> &Addr
,
2016 const TargetRegisterClass
*RC
,
2017 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2018 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
2019 RI
.needsStackRealignment(MF
);
2020 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, TM
);
2021 DebugLoc DL
= DebugLoc::getUnknownLoc();
2022 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), DestReg
);
2023 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
2024 MIB
.addOperand(Addr
[i
]);
2025 NewMIs
.push_back(MIB
);
2028 bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock
&MBB
,
2029 MachineBasicBlock::iterator MI
,
2030 const std::vector
<CalleeSavedInfo
> &CSI
) const {
2034 DebugLoc DL
= DebugLoc::getUnknownLoc();
2035 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
2037 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
2038 bool isWin64
= TM
.getSubtarget
<X86Subtarget
>().isTargetWin64();
2039 unsigned SlotSize
= is64Bit
? 8 : 4;
2041 MachineFunction
&MF
= *MBB
.getParent();
2042 unsigned FPReg
= RI
.getFrameRegister(MF
);
2043 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
2044 unsigned CalleeFrameSize
= 0;
2046 unsigned Opc
= is64Bit
? X86::PUSH64r
: X86::PUSH32r
;
2047 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2048 unsigned Reg
= CSI
[i
-1].getReg();
2049 const TargetRegisterClass
*RegClass
= CSI
[i
-1].getRegClass();
2050 // Add the callee-saved register as live-in. It's killed at the spill.
2053 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2055 if (RegClass
!= &X86::VR128RegClass
&& !isWin64
) {
2056 CalleeFrameSize
+= SlotSize
;
2057 BuildMI(MBB
, MI
, DL
, get(Opc
)).addReg(Reg
, RegState::Kill
);
2059 storeRegToStackSlot(MBB
, MI
, Reg
, true, CSI
[i
-1].getFrameIdx(), RegClass
);
2063 X86FI
->setCalleeSavedFrameSize(CalleeFrameSize
);
2067 bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock
&MBB
,
2068 MachineBasicBlock::iterator MI
,
2069 const std::vector
<CalleeSavedInfo
> &CSI
) const {
2073 DebugLoc DL
= DebugLoc::getUnknownLoc();
2074 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
2076 MachineFunction
&MF
= *MBB
.getParent();
2077 unsigned FPReg
= RI
.getFrameRegister(MF
);
2078 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
2079 bool isWin64
= TM
.getSubtarget
<X86Subtarget
>().isTargetWin64();
2080 unsigned Opc
= is64Bit
? X86::POP64r
: X86::POP32r
;
2081 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
2082 unsigned Reg
= CSI
[i
].getReg();
2084 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2086 const TargetRegisterClass
*RegClass
= CSI
[i
].getRegClass();
2087 if (RegClass
!= &X86::VR128RegClass
&& !isWin64
) {
2088 BuildMI(MBB
, MI
, DL
, get(Opc
), Reg
);
2090 loadRegFromStackSlot(MBB
, MI
, Reg
, CSI
[i
].getFrameIdx(), RegClass
);
2096 static MachineInstr
*FuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
2097 const SmallVectorImpl
<MachineOperand
> &MOs
,
2099 const TargetInstrInfo
&TII
) {
2100 // Create the base instruction with the memory operand as the first part.
2101 MachineInstr
*NewMI
= MF
.CreateMachineInstr(TII
.get(Opcode
),
2102 MI
->getDebugLoc(), true);
2103 MachineInstrBuilder
MIB(NewMI
);
2104 unsigned NumAddrOps
= MOs
.size();
2105 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2106 MIB
.addOperand(MOs
[i
]);
2107 if (NumAddrOps
< 4) // FrameIndex only
2110 // Loop over the rest of the ri operands, converting them over.
2111 unsigned NumOps
= MI
->getDesc().getNumOperands()-2;
2112 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2113 MachineOperand
&MO
= MI
->getOperand(i
+2);
2116 for (unsigned i
= NumOps
+2, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2117 MachineOperand
&MO
= MI
->getOperand(i
);
2123 static MachineInstr
*FuseInst(MachineFunction
&MF
,
2124 unsigned Opcode
, unsigned OpNo
,
2125 const SmallVectorImpl
<MachineOperand
> &MOs
,
2126 MachineInstr
*MI
, const TargetInstrInfo
&TII
) {
2127 MachineInstr
*NewMI
= MF
.CreateMachineInstr(TII
.get(Opcode
),
2128 MI
->getDebugLoc(), true);
2129 MachineInstrBuilder
MIB(NewMI
);
2131 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2132 MachineOperand
&MO
= MI
->getOperand(i
);
2134 assert(MO
.isReg() && "Expected to fold into reg operand!");
2135 unsigned NumAddrOps
= MOs
.size();
2136 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2137 MIB
.addOperand(MOs
[i
]);
2138 if (NumAddrOps
< 4) // FrameIndex only
2147 static MachineInstr
*MakeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
2148 const SmallVectorImpl
<MachineOperand
> &MOs
,
2150 MachineFunction
&MF
= *MI
->getParent()->getParent();
2151 MachineInstrBuilder MIB
= BuildMI(MF
, MI
->getDebugLoc(), TII
.get(Opcode
));
2153 unsigned NumAddrOps
= MOs
.size();
2154 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2155 MIB
.addOperand(MOs
[i
]);
2156 if (NumAddrOps
< 4) // FrameIndex only
2158 return MIB
.addImm(0);
2162 X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2163 MachineInstr
*MI
, unsigned i
,
2164 const SmallVectorImpl
<MachineOperand
> &MOs
,
2165 unsigned Size
, unsigned Align
) const {
2166 const DenseMap
<unsigned*, std::pair
<unsigned,unsigned> > *OpcodeTablePtr
=NULL
;
2167 bool isTwoAddrFold
= false;
2168 unsigned NumOps
= MI
->getDesc().getNumOperands();
2169 bool isTwoAddr
= NumOps
> 1 &&
2170 MI
->getDesc().getOperandConstraint(1, TOI::TIED_TO
) != -1;
2172 MachineInstr
*NewMI
= NULL
;
2173 // Folding a memory location into the two-address part of a two-address
2174 // instruction is different than folding it other places. It requires
2175 // replacing the *two* registers with the memory location.
2176 if (isTwoAddr
&& NumOps
>= 2 && i
< 2 &&
2177 MI
->getOperand(0).isReg() &&
2178 MI
->getOperand(1).isReg() &&
2179 MI
->getOperand(0).getReg() == MI
->getOperand(1).getReg()) {
2180 OpcodeTablePtr
= &RegOp2MemOpTable2Addr
;
2181 isTwoAddrFold
= true;
2182 } else if (i
== 0) { // If operand 0
2183 if (MI
->getOpcode() == X86::MOV16r0
)
2184 NewMI
= MakeM0Inst(*this, X86::MOV16mi
, MOs
, MI
);
2185 else if (MI
->getOpcode() == X86::MOV32r0
)
2186 NewMI
= MakeM0Inst(*this, X86::MOV32mi
, MOs
, MI
);
2187 else if (MI
->getOpcode() == X86::MOV8r0
)
2188 NewMI
= MakeM0Inst(*this, X86::MOV8mi
, MOs
, MI
);
2192 OpcodeTablePtr
= &RegOp2MemOpTable0
;
2193 } else if (i
== 1) {
2194 OpcodeTablePtr
= &RegOp2MemOpTable1
;
2195 } else if (i
== 2) {
2196 OpcodeTablePtr
= &RegOp2MemOpTable2
;
2199 // If table selected...
2200 if (OpcodeTablePtr
) {
2201 // Find the Opcode to fuse
2202 DenseMap
<unsigned*, std::pair
<unsigned,unsigned> >::iterator I
=
2203 OpcodeTablePtr
->find((unsigned*)MI
->getOpcode());
2204 if (I
!= OpcodeTablePtr
->end()) {
2205 unsigned Opcode
= I
->second
.first
;
2206 unsigned MinAlign
= I
->second
.second
;
2207 if (Align
< MinAlign
)
2209 bool NarrowToMOV32rm
= false;
2211 unsigned RCSize
= MI
->getDesc().OpInfo
[i
].getRegClass(&RI
)->getSize();
2212 if (Size
< RCSize
) {
2213 // Check if it's safe to fold the load. If the size of the object is
2214 // narrower than the load width, then it's not.
2215 if (Opcode
!= X86::MOV64rm
|| RCSize
!= 8 || Size
!= 4)
2217 // If this is a 64-bit load, but the spill slot is 32, then we can do
2218 // a 32-bit load which is implicitly zero-extended. This likely is due
2219 // to liveintervalanalysis remat'ing a load from stack slot.
2220 if (MI
->getOperand(0).getSubReg() || MI
->getOperand(1).getSubReg())
2222 Opcode
= X86::MOV32rm
;
2223 NarrowToMOV32rm
= true;
2228 NewMI
= FuseTwoAddrInst(MF
, Opcode
, MOs
, MI
, *this);
2230 NewMI
= FuseInst(MF
, Opcode
, i
, MOs
, MI
, *this);
2232 if (NarrowToMOV32rm
) {
2233 // If this is the special case where we use a MOV32rm to load a 32-bit
2234 // value and zero-extend the top bits. Change the destination register
2236 unsigned DstReg
= NewMI
->getOperand(0).getReg();
2237 if (TargetRegisterInfo::isPhysicalRegister(DstReg
))
2238 NewMI
->getOperand(0).setReg(RI
.getSubReg(DstReg
,
2239 4/*x86_subreg_32bit*/));
2241 NewMI
->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2248 if (PrintFailedFusing
)
2249 errs() << "We failed to fuse operand " << i
<< " in " << *MI
;
2254 MachineInstr
* X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2256 const SmallVectorImpl
<unsigned> &Ops
,
2257 int FrameIndex
) const {
2258 // Check switch flag
2259 if (NoFusing
) return NULL
;
2261 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
2262 unsigned Size
= MFI
->getObjectSize(FrameIndex
);
2263 unsigned Alignment
= MFI
->getObjectAlignment(FrameIndex
);
2264 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2265 unsigned NewOpc
= 0;
2266 unsigned RCSize
= 0;
2267 switch (MI
->getOpcode()) {
2268 default: return NULL
;
2269 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; RCSize
= 1; break;
2270 case X86::TEST16rr
: NewOpc
= X86::CMP16ri
; RCSize
= 2; break;
2271 case X86::TEST32rr
: NewOpc
= X86::CMP32ri
; RCSize
= 4; break;
2272 case X86::TEST64rr
: NewOpc
= X86::CMP64ri32
; RCSize
= 8; break;
2274 // Check if it's safe to fold the load. If the size of the object is
2275 // narrower than the load width, then it's not.
2278 // Change to CMPXXri r, 0 first.
2279 MI
->setDesc(get(NewOpc
));
2280 MI
->getOperand(1).ChangeToImmediate(0);
2281 } else if (Ops
.size() != 1)
2284 SmallVector
<MachineOperand
,4> MOs
;
2285 MOs
.push_back(MachineOperand::CreateFI(FrameIndex
));
2286 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, Size
, Alignment
);
2289 MachineInstr
* X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2291 const SmallVectorImpl
<unsigned> &Ops
,
2292 MachineInstr
*LoadMI
) const {
2293 // Check switch flag
2294 if (NoFusing
) return NULL
;
2296 // Determine the alignment of the load.
2297 unsigned Alignment
= 0;
2298 if (LoadMI
->hasOneMemOperand())
2299 Alignment
= LoadMI
->memoperands_begin()->getAlignment();
2300 else if (LoadMI
->getOpcode() == X86::V_SET0
||
2301 LoadMI
->getOpcode() == X86::V_SETALLONES
)
2303 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2304 unsigned NewOpc
= 0;
2305 switch (MI
->getOpcode()) {
2306 default: return NULL
;
2307 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
2308 case X86::TEST16rr
: NewOpc
= X86::CMP16ri
; break;
2309 case X86::TEST32rr
: NewOpc
= X86::CMP32ri
; break;
2310 case X86::TEST64rr
: NewOpc
= X86::CMP64ri32
; break;
2312 // Change to CMPXXri r, 0 first.
2313 MI
->setDesc(get(NewOpc
));
2314 MI
->getOperand(1).ChangeToImmediate(0);
2315 } else if (Ops
.size() != 1)
2318 SmallVector
<MachineOperand
,X86AddrNumOperands
> MOs
;
2319 if (LoadMI
->getOpcode() == X86::V_SET0
||
2320 LoadMI
->getOpcode() == X86::V_SETALLONES
) {
2321 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2322 // Create a constant-pool entry and operands to load from it.
2324 // x86-32 PIC requires a PIC base register for constant pools.
2325 unsigned PICBase
= 0;
2326 if (TM
.getRelocationModel() == Reloc::PIC_
) {
2327 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
2330 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2331 // This doesn't work for several reasons.
2332 // 1. GlobalBaseReg may have been spilled.
2333 // 2. It may not be live at MI.
2337 // Create a v4i32 constant-pool entry.
2338 MachineConstantPool
&MCP
= *MF
.getConstantPool();
2339 const VectorType
*Ty
=
2340 VectorType::get(Type::getInt32Ty(MF
.getFunction()->getContext()), 4);
2341 Constant
*C
= LoadMI
->getOpcode() == X86::V_SET0
?
2342 Constant::getNullValue(Ty
) :
2343 Constant::getAllOnesValue(Ty
);
2344 unsigned CPI
= MCP
.getConstantPoolIndex(C
, 16);
2346 // Create operands to load from the constant pool entry.
2347 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
2348 MOs
.push_back(MachineOperand::CreateImm(1));
2349 MOs
.push_back(MachineOperand::CreateReg(0, false));
2350 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
2351 MOs
.push_back(MachineOperand::CreateReg(0, false));
2353 // Folding a normal load. Just copy the load's address operands.
2354 unsigned NumOps
= LoadMI
->getDesc().getNumOperands();
2355 for (unsigned i
= NumOps
- X86AddrNumOperands
; i
!= NumOps
; ++i
)
2356 MOs
.push_back(LoadMI
->getOperand(i
));
2358 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, 0, Alignment
);
2362 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr
*MI
,
2363 const SmallVectorImpl
<unsigned> &Ops
) const {
2364 // Check switch flag
2365 if (NoFusing
) return 0;
2367 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2368 switch (MI
->getOpcode()) {
2369 default: return false;
2378 if (Ops
.size() != 1)
2381 unsigned OpNum
= Ops
[0];
2382 unsigned Opc
= MI
->getOpcode();
2383 unsigned NumOps
= MI
->getDesc().getNumOperands();
2384 bool isTwoAddr
= NumOps
> 1 &&
2385 MI
->getDesc().getOperandConstraint(1, TOI::TIED_TO
) != -1;
2387 // Folding a memory location into the two-address part of a two-address
2388 // instruction is different than folding it other places. It requires
2389 // replacing the *two* registers with the memory location.
2390 const DenseMap
<unsigned*, std::pair
<unsigned,unsigned> > *OpcodeTablePtr
=NULL
;
2391 if (isTwoAddr
&& NumOps
>= 2 && OpNum
< 2) {
2392 OpcodeTablePtr
= &RegOp2MemOpTable2Addr
;
2393 } else if (OpNum
== 0) { // If operand 0
2401 OpcodeTablePtr
= &RegOp2MemOpTable0
;
2402 } else if (OpNum
== 1) {
2403 OpcodeTablePtr
= &RegOp2MemOpTable1
;
2404 } else if (OpNum
== 2) {
2405 OpcodeTablePtr
= &RegOp2MemOpTable2
;
2408 if (OpcodeTablePtr
) {
2409 // Find the Opcode to fuse
2410 DenseMap
<unsigned*, std::pair
<unsigned,unsigned> >::iterator I
=
2411 OpcodeTablePtr
->find((unsigned*)Opc
);
2412 if (I
!= OpcodeTablePtr
->end())
2418 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
*MI
,
2419 unsigned Reg
, bool UnfoldLoad
, bool UnfoldStore
,
2420 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2421 DenseMap
<unsigned*, std::pair
<unsigned,unsigned> >::iterator I
=
2422 MemOp2RegOpTable
.find((unsigned*)MI
->getOpcode());
2423 if (I
== MemOp2RegOpTable
.end())
2425 DebugLoc dl
= MI
->getDebugLoc();
2426 unsigned Opc
= I
->second
.first
;
2427 unsigned Index
= I
->second
.second
& 0xf;
2428 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2429 bool FoldedStore
= I
->second
.second
& (1 << 5);
2430 if (UnfoldLoad
&& !FoldedLoad
)
2432 UnfoldLoad
&= FoldedLoad
;
2433 if (UnfoldStore
&& !FoldedStore
)
2435 UnfoldStore
&= FoldedStore
;
2437 const TargetInstrDesc
&TID
= get(Opc
);
2438 const TargetOperandInfo
&TOI
= TID
.OpInfo
[Index
];
2439 const TargetRegisterClass
*RC
= TOI
.getRegClass(&RI
);
2440 SmallVector
<MachineOperand
, X86AddrNumOperands
> AddrOps
;
2441 SmallVector
<MachineOperand
,2> BeforeOps
;
2442 SmallVector
<MachineOperand
,2> AfterOps
;
2443 SmallVector
<MachineOperand
,4> ImpOps
;
2444 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2445 MachineOperand
&Op
= MI
->getOperand(i
);
2446 if (i
>= Index
&& i
< Index
+ X86AddrNumOperands
)
2447 AddrOps
.push_back(Op
);
2448 else if (Op
.isReg() && Op
.isImplicit())
2449 ImpOps
.push_back(Op
);
2451 BeforeOps
.push_back(Op
);
2453 AfterOps
.push_back(Op
);
2456 // Emit the load instruction.
2458 loadRegFromAddr(MF
, Reg
, AddrOps
, RC
, NewMIs
);
2460 // Address operands cannot be marked isKill.
2461 for (unsigned i
= 1; i
!= 1 + X86AddrNumOperands
; ++i
) {
2462 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
2464 MO
.setIsKill(false);
2469 // Emit the data processing instruction.
2470 MachineInstr
*DataMI
= MF
.CreateMachineInstr(TID
, MI
->getDebugLoc(), true);
2471 MachineInstrBuilder
MIB(DataMI
);
2474 MIB
.addReg(Reg
, RegState::Define
);
2475 for (unsigned i
= 0, e
= BeforeOps
.size(); i
!= e
; ++i
)
2476 MIB
.addOperand(BeforeOps
[i
]);
2479 for (unsigned i
= 0, e
= AfterOps
.size(); i
!= e
; ++i
)
2480 MIB
.addOperand(AfterOps
[i
]);
2481 for (unsigned i
= 0, e
= ImpOps
.size(); i
!= e
; ++i
) {
2482 MachineOperand
&MO
= ImpOps
[i
];
2483 MIB
.addReg(MO
.getReg(),
2484 getDefRegState(MO
.isDef()) |
2485 RegState::Implicit
|
2486 getKillRegState(MO
.isKill()) |
2487 getDeadRegState(MO
.isDead()) |
2488 getUndefRegState(MO
.isUndef()));
2490 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2491 unsigned NewOpc
= 0;
2492 switch (DataMI
->getOpcode()) {
2494 case X86::CMP64ri32
:
2498 MachineOperand
&MO0
= DataMI
->getOperand(0);
2499 MachineOperand
&MO1
= DataMI
->getOperand(1);
2500 if (MO1
.getImm() == 0) {
2501 switch (DataMI
->getOpcode()) {
2503 case X86::CMP64ri32
: NewOpc
= X86::TEST64rr
; break;
2504 case X86::CMP32ri
: NewOpc
= X86::TEST32rr
; break;
2505 case X86::CMP16ri
: NewOpc
= X86::TEST16rr
; break;
2506 case X86::CMP8ri
: NewOpc
= X86::TEST8rr
; break;
2508 DataMI
->setDesc(get(NewOpc
));
2509 MO1
.ChangeToRegister(MO0
.getReg(), false);
2513 NewMIs
.push_back(DataMI
);
2515 // Emit the store instruction.
2517 const TargetRegisterClass
*DstRC
= TID
.OpInfo
[0].getRegClass(&RI
);
2518 storeRegToAddr(MF
, Reg
, true, AddrOps
, DstRC
, NewMIs
);
2525 X86InstrInfo::unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
2526 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
2527 if (!N
->isMachineOpcode())
2530 DenseMap
<unsigned*, std::pair
<unsigned,unsigned> >::iterator I
=
2531 MemOp2RegOpTable
.find((unsigned*)N
->getMachineOpcode());
2532 if (I
== MemOp2RegOpTable
.end())
2534 unsigned Opc
= I
->second
.first
;
2535 unsigned Index
= I
->second
.second
& 0xf;
2536 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2537 bool FoldedStore
= I
->second
.second
& (1 << 5);
2538 const TargetInstrDesc
&TID
= get(Opc
);
2539 const TargetRegisterClass
*RC
= TID
.OpInfo
[Index
].getRegClass(&RI
);
2540 unsigned NumDefs
= TID
.NumDefs
;
2541 std::vector
<SDValue
> AddrOps
;
2542 std::vector
<SDValue
> BeforeOps
;
2543 std::vector
<SDValue
> AfterOps
;
2544 DebugLoc dl
= N
->getDebugLoc();
2545 unsigned NumOps
= N
->getNumOperands();
2546 for (unsigned i
= 0; i
!= NumOps
-1; ++i
) {
2547 SDValue Op
= N
->getOperand(i
);
2548 if (i
>= Index
-NumDefs
&& i
< Index
-NumDefs
+ X86AddrNumOperands
)
2549 AddrOps
.push_back(Op
);
2550 else if (i
< Index
-NumDefs
)
2551 BeforeOps
.push_back(Op
);
2552 else if (i
> Index
-NumDefs
)
2553 AfterOps
.push_back(Op
);
2555 SDValue Chain
= N
->getOperand(NumOps
-1);
2556 AddrOps
.push_back(Chain
);
2558 // Emit the load instruction.
2560 const MachineFunction
&MF
= DAG
.getMachineFunction();
2562 EVT VT
= *RC
->vt_begin();
2563 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
2564 RI
.needsStackRealignment(MF
);
2565 Load
= DAG
.getTargetNode(getLoadRegOpcode(0, RC
, isAligned
, TM
), dl
,
2566 VT
, MVT::Other
, &AddrOps
[0], AddrOps
.size());
2567 NewNodes
.push_back(Load
);
2570 // Emit the data processing instruction.
2571 std::vector
<EVT
> VTs
;
2572 const TargetRegisterClass
*DstRC
= 0;
2573 if (TID
.getNumDefs() > 0) {
2574 DstRC
= TID
.OpInfo
[0].getRegClass(&RI
);
2575 VTs
.push_back(*DstRC
->vt_begin());
2577 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
2578 EVT VT
= N
->getValueType(i
);
2579 if (VT
!= MVT::Other
&& i
>= (unsigned)TID
.getNumDefs())
2583 BeforeOps
.push_back(SDValue(Load
, 0));
2584 std::copy(AfterOps
.begin(), AfterOps
.end(), std::back_inserter(BeforeOps
));
2585 SDNode
*NewNode
= DAG
.getTargetNode(Opc
, dl
, VTs
, &BeforeOps
[0],
2587 NewNodes
.push_back(NewNode
);
2589 // Emit the store instruction.
2592 AddrOps
.push_back(SDValue(NewNode
, 0));
2593 AddrOps
.push_back(Chain
);
2594 bool isAligned
= (RI
.getStackAlignment() >= 16) ||
2595 RI
.needsStackRealignment(MF
);
2596 SDNode
*Store
= DAG
.getTargetNode(getStoreRegOpcode(0, DstRC
,
2599 &AddrOps
[0], AddrOps
.size());
2600 NewNodes
.push_back(Store
);
2606 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
,
2607 bool UnfoldLoad
, bool UnfoldStore
) const {
2608 DenseMap
<unsigned*, std::pair
<unsigned,unsigned> >::iterator I
=
2609 MemOp2RegOpTable
.find((unsigned*)Opc
);
2610 if (I
== MemOp2RegOpTable
.end())
2612 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2613 bool FoldedStore
= I
->second
.second
& (1 << 5);
2614 if (UnfoldLoad
&& !FoldedLoad
)
2616 if (UnfoldStore
&& !FoldedStore
)
2618 return I
->second
.first
;
2621 bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock
&MBB
) const {
2622 if (MBB
.empty()) return false;
2624 switch (MBB
.back().getOpcode()) {
2625 case X86::TCRETURNri
:
2626 case X86::TCRETURNdi
:
2627 case X86::RET
: // Return.
2632 case X86::JMP
: // Uncond branch.
2633 case X86::JMP32r
: // Indirect branch.
2634 case X86::JMP64r
: // Indirect branch (64-bit).
2635 case X86::JMP32m
: // Indirect branch through mem.
2636 case X86::JMP64m
: // Indirect branch through mem (64-bit).
2638 default: return false;
2643 ReverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
2644 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
2645 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
2646 if (CC
== X86::COND_NE_OR_P
|| CC
== X86::COND_NP_OR_E
)
2648 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
2653 isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
2654 // FIXME: Return false for x87 stack register classes for now. We can't
2655 // allow any loads of these registers before FpGet_ST0_80.
2656 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::RFP32RegClass
||
2657 RC
== &X86::RFP64RegClass
|| RC
== &X86::RFP80RegClass
);
2660 unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc
*Desc
) {
2661 switch (Desc
->TSFlags
& X86II::ImmMask
) {
2662 case X86II::Imm8
: return 1;
2663 case X86II::Imm16
: return 2;
2664 case X86II::Imm32
: return 4;
2665 case X86II::Imm64
: return 8;
2666 default: llvm_unreachable("Immediate size not set!");
2671 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2672 /// e.g. r8, xmm8, etc.
2673 bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand
&MO
) {
2674 if (!MO
.isReg()) return false;
2675 switch (MO
.getReg()) {
2677 case X86::R8
: case X86::R9
: case X86::R10
: case X86::R11
:
2678 case X86::R12
: case X86::R13
: case X86::R14
: case X86::R15
:
2679 case X86::R8D
: case X86::R9D
: case X86::R10D
: case X86::R11D
:
2680 case X86::R12D
: case X86::R13D
: case X86::R14D
: case X86::R15D
:
2681 case X86::R8W
: case X86::R9W
: case X86::R10W
: case X86::R11W
:
2682 case X86::R12W
: case X86::R13W
: case X86::R14W
: case X86::R15W
:
2683 case X86::R8B
: case X86::R9B
: case X86::R10B
: case X86::R11B
:
2684 case X86::R12B
: case X86::R13B
: case X86::R14B
: case X86::R15B
:
2685 case X86::XMM8
: case X86::XMM9
: case X86::XMM10
: case X86::XMM11
:
2686 case X86::XMM12
: case X86::XMM13
: case X86::XMM14
: case X86::XMM15
:
2693 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2694 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2695 /// size, and 3) use of X86-64 extended registers.
2696 unsigned X86InstrInfo::determineREX(const MachineInstr
&MI
) {
2698 const TargetInstrDesc
&Desc
= MI
.getDesc();
2700 // Pseudo instructions do not need REX prefix byte.
2701 if ((Desc
.TSFlags
& X86II::FormMask
) == X86II::Pseudo
)
2703 if (Desc
.TSFlags
& X86II::REX_W
)
2706 unsigned NumOps
= Desc
.getNumOperands();
2708 bool isTwoAddr
= NumOps
> 1 &&
2709 Desc
.getOperandConstraint(1, TOI::TIED_TO
) != -1;
2711 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2712 unsigned i
= isTwoAddr
? 1 : 0;
2713 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
2714 const MachineOperand
& MO
= MI
.getOperand(i
);
2716 unsigned Reg
= MO
.getReg();
2717 if (isX86_64NonExtLowByteReg(Reg
))
2722 switch (Desc
.TSFlags
& X86II::FormMask
) {
2723 case X86II::MRMInitReg
:
2724 if (isX86_64ExtendedReg(MI
.getOperand(0)))
2725 REX
|= (1 << 0) | (1 << 2);
2727 case X86II::MRMSrcReg
: {
2728 if (isX86_64ExtendedReg(MI
.getOperand(0)))
2730 i
= isTwoAddr
? 2 : 1;
2731 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
2732 const MachineOperand
& MO
= MI
.getOperand(i
);
2733 if (isX86_64ExtendedReg(MO
))
2738 case X86II::MRMSrcMem
: {
2739 if (isX86_64ExtendedReg(MI
.getOperand(0)))
2742 i
= isTwoAddr
? 2 : 1;
2743 for (; i
!= NumOps
; ++i
) {
2744 const MachineOperand
& MO
= MI
.getOperand(i
);
2746 if (isX86_64ExtendedReg(MO
))
2753 case X86II::MRM0m
: case X86II::MRM1m
:
2754 case X86II::MRM2m
: case X86II::MRM3m
:
2755 case X86II::MRM4m
: case X86II::MRM5m
:
2756 case X86II::MRM6m
: case X86II::MRM7m
:
2757 case X86II::MRMDestMem
: {
2758 unsigned e
= (isTwoAddr
? X86AddrNumOperands
+1 : X86AddrNumOperands
);
2759 i
= isTwoAddr
? 1 : 0;
2760 if (NumOps
> e
&& isX86_64ExtendedReg(MI
.getOperand(e
)))
2763 for (; i
!= e
; ++i
) {
2764 const MachineOperand
& MO
= MI
.getOperand(i
);
2766 if (isX86_64ExtendedReg(MO
))
2774 if (isX86_64ExtendedReg(MI
.getOperand(0)))
2776 i
= isTwoAddr
? 2 : 1;
2777 for (unsigned e
= NumOps
; i
!= e
; ++i
) {
2778 const MachineOperand
& MO
= MI
.getOperand(i
);
2779 if (isX86_64ExtendedReg(MO
))
2789 /// sizePCRelativeBlockAddress - This method returns the size of a PC
2790 /// relative block address instruction
2792 static unsigned sizePCRelativeBlockAddress() {
2796 /// sizeGlobalAddress - Give the size of the emission of this global address
2798 static unsigned sizeGlobalAddress(bool dword
) {
2799 return dword
? 8 : 4;
2802 /// sizeConstPoolAddress - Give the size of the emission of this constant
2805 static unsigned sizeConstPoolAddress(bool dword
) {
2806 return dword
? 8 : 4;
2809 /// sizeExternalSymbolAddress - Give the size of the emission of this external
2812 static unsigned sizeExternalSymbolAddress(bool dword
) {
2813 return dword
? 8 : 4;
2816 /// sizeJumpTableAddress - Give the size of the emission of this jump
2819 static unsigned sizeJumpTableAddress(bool dword
) {
2820 return dword
? 8 : 4;
2823 static unsigned sizeConstant(unsigned Size
) {
2827 static unsigned sizeRegModRMByte(){
2831 static unsigned sizeSIBByte(){
2835 static unsigned getDisplacementFieldSize(const MachineOperand
*RelocOp
) {
2836 unsigned FinalSize
= 0;
2837 // If this is a simple integer displacement that doesn't require a relocation.
2839 FinalSize
+= sizeConstant(4);
2843 // Otherwise, this is something that requires a relocation.
2844 if (RelocOp
->isGlobal()) {
2845 FinalSize
+= sizeGlobalAddress(false);
2846 } else if (RelocOp
->isCPI()) {
2847 FinalSize
+= sizeConstPoolAddress(false);
2848 } else if (RelocOp
->isJTI()) {
2849 FinalSize
+= sizeJumpTableAddress(false);
2851 llvm_unreachable("Unknown value to relocate!");
2856 static unsigned getMemModRMByteSize(const MachineInstr
&MI
, unsigned Op
,
2857 bool IsPIC
, bool Is64BitMode
) {
2858 const MachineOperand
&Op3
= MI
.getOperand(Op
+3);
2860 const MachineOperand
*DispForReloc
= 0;
2861 unsigned FinalSize
= 0;
2863 // Figure out what sort of displacement we have to handle here.
2864 if (Op3
.isGlobal()) {
2865 DispForReloc
= &Op3
;
2866 } else if (Op3
.isCPI()) {
2867 if (Is64BitMode
|| IsPIC
) {
2868 DispForReloc
= &Op3
;
2872 } else if (Op3
.isJTI()) {
2873 if (Is64BitMode
|| IsPIC
) {
2874 DispForReloc
= &Op3
;
2882 const MachineOperand
&Base
= MI
.getOperand(Op
);
2883 const MachineOperand
&IndexReg
= MI
.getOperand(Op
+2);
2885 unsigned BaseReg
= Base
.getReg();
2887 // Is a SIB byte needed?
2888 if ((!Is64BitMode
|| DispForReloc
|| BaseReg
!= 0) &&
2889 IndexReg
.getReg() == 0 &&
2890 (BaseReg
== 0 || X86RegisterInfo::getX86RegNum(BaseReg
) != N86::ESP
)) {
2891 if (BaseReg
== 0) { // Just a displacement?
2892 // Emit special case [disp32] encoding
2894 FinalSize
+= getDisplacementFieldSize(DispForReloc
);
2896 unsigned BaseRegNo
= X86RegisterInfo::getX86RegNum(BaseReg
);
2897 if (!DispForReloc
&& DispVal
== 0 && BaseRegNo
!= N86::EBP
) {
2898 // Emit simple indirect register encoding... [EAX] f.e.
2900 // Be pessimistic and assume it's a disp32, not a disp8
2902 // Emit the most general non-SIB encoding: [REG+disp32]
2904 FinalSize
+= getDisplacementFieldSize(DispForReloc
);
2908 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2909 assert(IndexReg
.getReg() != X86::ESP
&&
2910 IndexReg
.getReg() != X86::RSP
&& "Cannot use ESP as index reg!");
2912 bool ForceDisp32
= false;
2913 if (BaseReg
== 0 || DispForReloc
) {
2914 // Emit the normal disp32 encoding.
2921 FinalSize
+= sizeSIBByte();
2923 // Do we need to output a displacement?
2924 if (DispVal
!= 0 || ForceDisp32
) {
2925 FinalSize
+= getDisplacementFieldSize(DispForReloc
);
2932 static unsigned GetInstSizeWithDesc(const MachineInstr
&MI
,
2933 const TargetInstrDesc
*Desc
,
2934 bool IsPIC
, bool Is64BitMode
) {
2936 unsigned Opcode
= Desc
->Opcode
;
2937 unsigned FinalSize
= 0;
2939 // Emit the lock opcode prefix as needed.
2940 if (Desc
->TSFlags
& X86II::LOCK
) ++FinalSize
;
2942 // Emit segment override opcode prefix as needed.
2943 switch (Desc
->TSFlags
& X86II::SegOvrMask
) {
2948 default: llvm_unreachable("Invalid segment!");
2949 case 0: break; // No segment override!
2952 // Emit the repeat opcode prefix as needed.
2953 if ((Desc
->TSFlags
& X86II::Op0Mask
) == X86II::REP
) ++FinalSize
;
2955 // Emit the operand size opcode prefix as needed.
2956 if (Desc
->TSFlags
& X86II::OpSize
) ++FinalSize
;
2958 // Emit the address size opcode prefix as needed.
2959 if (Desc
->TSFlags
& X86II::AdSize
) ++FinalSize
;
2961 bool Need0FPrefix
= false;
2962 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
2963 case X86II::TB
: // Two-byte opcode prefix
2964 case X86II::T8
: // 0F 38
2965 case X86II::TA
: // 0F 3A
2966 Need0FPrefix
= true;
2968 case X86II::TF
: // F2 0F 38
2970 Need0FPrefix
= true;
2972 case X86II::REP
: break; // already handled.
2973 case X86II::XS
: // F3 0F
2975 Need0FPrefix
= true;
2977 case X86II::XD
: // F2 0F
2979 Need0FPrefix
= true;
2981 case X86II::D8
: case X86II::D9
: case X86II::DA
: case X86II::DB
:
2982 case X86II::DC
: case X86II::DD
: case X86II::DE
: case X86II::DF
:
2984 break; // Two-byte opcode prefix
2985 default: llvm_unreachable("Invalid prefix!");
2986 case 0: break; // No prefix!
2991 unsigned REX
= X86InstrInfo::determineREX(MI
);
2996 // 0x0F escape code must be emitted just before the opcode.
3000 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
3001 case X86II::T8
: // 0F 38
3004 case X86II::TA
: // 0F 3A
3007 case X86II::TF
: // F2 0F 38
3012 // If this is a two-address instruction, skip one of the register operands.
3013 unsigned NumOps
= Desc
->getNumOperands();
3015 if (NumOps
> 1 && Desc
->getOperandConstraint(1, TOI::TIED_TO
) != -1)
3017 else if (NumOps
> 2 && Desc
->getOperandConstraint(NumOps
-1, TOI::TIED_TO
)== 0)
3018 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3021 switch (Desc
->TSFlags
& X86II::FormMask
) {
3022 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
3024 // Remember the current PC offset, this is the PIC relocation
3029 case TargetInstrInfo::INLINEASM
: {
3030 const MachineFunction
*MF
= MI
.getParent()->getParent();
3031 const TargetInstrInfo
&TII
= *MF
->getTarget().getInstrInfo();
3032 FinalSize
+= TII
.getInlineAsmLength(MI
.getOperand(0).getSymbolName(),
3033 *MF
->getTarget().getMCAsmInfo());
3036 case TargetInstrInfo::DBG_LABEL
:
3037 case TargetInstrInfo::EH_LABEL
:
3039 case TargetInstrInfo::IMPLICIT_DEF
:
3040 case X86::DWARF_LOC
:
3041 case X86::FP_REG_KILL
:
3043 case X86::MOVPC32r
: {
3044 // This emits the "call" portion of this pseudo instruction.
3046 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3055 if (CurOp
!= NumOps
) {
3056 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
3058 FinalSize
+= sizePCRelativeBlockAddress();
3059 } else if (MO
.isGlobal()) {
3060 FinalSize
+= sizeGlobalAddress(false);
3061 } else if (MO
.isSymbol()) {
3062 FinalSize
+= sizeExternalSymbolAddress(false);
3063 } else if (MO
.isImm()) {
3064 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3066 llvm_unreachable("Unknown RawFrm operand!");
3071 case X86II::AddRegFrm
:
3075 if (CurOp
!= NumOps
) {
3076 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
3077 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
3079 FinalSize
+= sizeConstant(Size
);
3082 if (Opcode
== X86::MOV64ri
)
3084 if (MO1
.isGlobal()) {
3085 FinalSize
+= sizeGlobalAddress(dword
);
3086 } else if (MO1
.isSymbol())
3087 FinalSize
+= sizeExternalSymbolAddress(dword
);
3088 else if (MO1
.isCPI())
3089 FinalSize
+= sizeConstPoolAddress(dword
);
3090 else if (MO1
.isJTI())
3091 FinalSize
+= sizeJumpTableAddress(dword
);
3096 case X86II::MRMDestReg
: {
3098 FinalSize
+= sizeRegModRMByte();
3100 if (CurOp
!= NumOps
) {
3102 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3106 case X86II::MRMDestMem
: {
3108 FinalSize
+= getMemModRMByteSize(MI
, CurOp
, IsPIC
, Is64BitMode
);
3109 CurOp
+= X86AddrNumOperands
+ 1;
3110 if (CurOp
!= NumOps
) {
3112 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3117 case X86II::MRMSrcReg
:
3119 FinalSize
+= sizeRegModRMByte();
3121 if (CurOp
!= NumOps
) {
3123 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3127 case X86II::MRMSrcMem
: {
3129 if (Opcode
== X86::LEA64r
|| Opcode
== X86::LEA64_32r
||
3130 Opcode
== X86::LEA16r
|| Opcode
== X86::LEA32r
)
3131 AddrOperands
= X86AddrNumOperands
- 1; // No segment register
3133 AddrOperands
= X86AddrNumOperands
;
3136 FinalSize
+= getMemModRMByteSize(MI
, CurOp
+1, IsPIC
, Is64BitMode
);
3137 CurOp
+= AddrOperands
+ 1;
3138 if (CurOp
!= NumOps
) {
3140 FinalSize
+= sizeConstant(X86InstrInfo::sizeOfImm(Desc
));
3145 case X86II::MRM0r
: case X86II::MRM1r
:
3146 case X86II::MRM2r
: case X86II::MRM3r
:
3147 case X86II::MRM4r
: case X86II::MRM5r
:
3148 case X86II::MRM6r
: case X86II::MRM7r
:
3150 if (Desc
->getOpcode() == X86::LFENCE
||
3151 Desc
->getOpcode() == X86::MFENCE
) {
3152 // Special handling of lfence and mfence;
3153 FinalSize
+= sizeRegModRMByte();
3154 } else if (Desc
->getOpcode() == X86::MONITOR
||
3155 Desc
->getOpcode() == X86::MWAIT
) {
3156 // Special handling of monitor and mwait.
3157 FinalSize
+= sizeRegModRMByte() + 1; // +1 for the opcode.
3160 FinalSize
+= sizeRegModRMByte();
3163 if (CurOp
!= NumOps
) {
3164 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
3165 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
3167 FinalSize
+= sizeConstant(Size
);
3170 if (Opcode
== X86::MOV64ri32
)
3172 if (MO1
.isGlobal()) {
3173 FinalSize
+= sizeGlobalAddress(dword
);
3174 } else if (MO1
.isSymbol())
3175 FinalSize
+= sizeExternalSymbolAddress(dword
);
3176 else if (MO1
.isCPI())
3177 FinalSize
+= sizeConstPoolAddress(dword
);
3178 else if (MO1
.isJTI())
3179 FinalSize
+= sizeJumpTableAddress(dword
);
3184 case X86II::MRM0m
: case X86II::MRM1m
:
3185 case X86II::MRM2m
: case X86II::MRM3m
:
3186 case X86II::MRM4m
: case X86II::MRM5m
:
3187 case X86II::MRM6m
: case X86II::MRM7m
: {
3190 FinalSize
+= getMemModRMByteSize(MI
, CurOp
, IsPIC
, Is64BitMode
);
3191 CurOp
+= X86AddrNumOperands
;
3193 if (CurOp
!= NumOps
) {
3194 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
3195 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
3197 FinalSize
+= sizeConstant(Size
);
3200 if (Opcode
== X86::MOV64mi32
)
3202 if (MO
.isGlobal()) {
3203 FinalSize
+= sizeGlobalAddress(dword
);
3204 } else if (MO
.isSymbol())
3205 FinalSize
+= sizeExternalSymbolAddress(dword
);
3206 else if (MO
.isCPI())
3207 FinalSize
+= sizeConstPoolAddress(dword
);
3208 else if (MO
.isJTI())
3209 FinalSize
+= sizeJumpTableAddress(dword
);
3215 case X86II::MRMInitReg
:
3217 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3218 FinalSize
+= sizeRegModRMByte();
3223 if (!Desc
->isVariadic() && CurOp
!= NumOps
) {
3225 raw_string_ostream
Msg(msg
);
3226 Msg
<< "Cannot determine size: " << MI
;
3227 llvm_report_error(Msg
.str());
3235 unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr
*MI
) const {
3236 const TargetInstrDesc
&Desc
= MI
->getDesc();
3237 bool IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
3238 bool Is64BitMode
= TM
.getSubtargetImpl()->is64Bit();
3239 unsigned Size
= GetInstSizeWithDesc(*MI
, &Desc
, IsPIC
, Is64BitMode
);
3240 if (Desc
.getOpcode() == X86::MOVPC32r
)
3241 Size
+= GetInstSizeWithDesc(*MI
, &get(X86::POP32r
), IsPIC
, Is64BitMode
);
3245 /// getGlobalBaseReg - Return a virtual register initialized with the
3246 /// the global base register value. Output instructions required to
3247 /// initialize the register in the function entry block, if necessary.
3249 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
3250 assert(!TM
.getSubtarget
<X86Subtarget
>().is64Bit() &&
3251 "X86-64 PIC uses RIP relative addressing");
3253 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
3254 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
3255 if (GlobalBaseReg
!= 0)
3256 return GlobalBaseReg
;
3258 // Insert the set of GlobalBaseReg into the first MBB of the function
3259 MachineBasicBlock
&FirstMBB
= MF
->front();
3260 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
3261 DebugLoc DL
= DebugLoc::getUnknownLoc();
3262 if (MBBI
!= FirstMBB
.end()) DL
= MBBI
->getDebugLoc();
3263 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
3264 unsigned PC
= RegInfo
.createVirtualRegister(X86::GR32RegisterClass
);
3266 const TargetInstrInfo
*TII
= TM
.getInstrInfo();
3267 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3268 // only used in JIT code emission as displacement to pc.
3269 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
).addImm(0);
3271 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3272 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3273 if (TM
.getSubtarget
<X86Subtarget
>().isPICStyleGOT()) {
3274 GlobalBaseReg
= RegInfo
.createVirtualRegister(X86::GR32RegisterClass
);
3275 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3276 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
3277 .addReg(PC
).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3278 X86II::MO_GOT_ABSOLUTE_ADDRESS
);
3283 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
3284 return GlobalBaseReg
;