1 //===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the X86 specific subclass of TargetSubtarget.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "subtarget"
15 #include "X86Subtarget.h"
16 #include "X86InstrInfo.h"
17 #include "X86GenSubtarget.inc"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Target/TargetMachine.h"
22 #include "llvm/Target/TargetOptions.h"
29 /// ClassifyGlobalReference - Classify a global variable reference for the
30 /// current subtarget according to how we should reference it in a non-pcrel
32 unsigned char X86Subtarget::
33 ClassifyGlobalReference(const GlobalValue
*GV
, const TargetMachine
&TM
) const {
34 // DLLImport only exists on windows, it is implemented as a load from a
36 if (GV
->hasDLLImportLinkage())
37 return X86II::MO_DLLIMPORT
;
39 // GV with ghost linkage (in JIT lazy compilation mode) do not require an
40 // extra load from stub.
41 bool isDecl
= GV
->isDeclaration() && !GV
->hasNotBeenReadFromBitcode();
43 // X86-64 in PIC mode.
44 if (isPICStyleRIPRel()) {
45 // Large model never uses stubs.
46 if (TM
.getCodeModel() == CodeModel::Large
)
47 return X86II::MO_NO_FLAG
;
49 if (isTargetDarwin()) {
50 // If symbol visibility is hidden, the extra load is not needed if
51 // target is x86-64 or the symbol is definitely defined in the current
53 if (GV
->hasDefaultVisibility() &&
54 (isDecl
|| GV
->isWeakForLinker()))
55 return X86II::MO_GOTPCREL
;
57 assert(isTargetELF() && "Unknown rip-relative target");
59 // Extra load is needed for all externally visible.
60 if (!GV
->hasLocalLinkage() && GV
->hasDefaultVisibility())
61 return X86II::MO_GOTPCREL
;
64 return X86II::MO_NO_FLAG
;
67 if (isPICStyleGOT()) { // 32-bit ELF targets.
68 // Extra load is needed for all externally visible.
69 if (GV
->hasLocalLinkage() || GV
->hasHiddenVisibility())
70 return X86II::MO_GOTOFF
;
74 if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode.
75 // Determine whether we have a stub reference and/or whether the reference
76 // is relative to the PIC base or not.
78 // If this is a strong reference to a definition, it is definitely not
80 if (!isDecl
&& !GV
->isWeakForLinker())
81 return X86II::MO_PIC_BASE_OFFSET
;
83 // Unless we have a symbol with hidden visibility, we have to go through a
84 // normal $non_lazy_ptr stub because this symbol might be resolved late.
85 if (!GV
->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
86 return X86II::MO_DARWIN_NONLAZY_PIC_BASE
;
88 // If symbol visibility is hidden, we have a stub for common symbol
89 // references and external declarations.
90 if (isDecl
|| GV
->hasCommonLinkage()) {
91 // Hidden $non_lazy_ptr reference.
92 return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE
;
95 // Otherwise, no stub.
96 return X86II::MO_PIC_BASE_OFFSET
;
99 if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode.
100 // Determine whether we have a stub reference.
102 // If this is a strong reference to a definition, it is definitely not
104 if (!isDecl
&& !GV
->isWeakForLinker())
105 return X86II::MO_NO_FLAG
;
107 // Unless we have a symbol with hidden visibility, we have to go through a
108 // normal $non_lazy_ptr stub because this symbol might be resolved late.
109 if (!GV
->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference.
110 return X86II::MO_DARWIN_NONLAZY
;
112 // Otherwise, no stub.
113 return X86II::MO_NO_FLAG
;
116 // Direct static reference to global.
117 return X86II::MO_NO_FLAG
;
121 /// getBZeroEntry - This function returns the name of a function which has an
122 /// interface like the non-standard bzero function, if such a function exists on
123 /// the current subtarget and it is considered prefereable over memset with zero
124 /// passed as the second argument. Otherwise it returns null.
125 const char *X86Subtarget::getBZeroEntry() const {
126 // Darwin 10 has a __bzero entry point for this purpose.
127 if (getDarwinVers() >= 10)
133 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
134 /// to immediate address.
135 bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine
&TM
) const {
138 return isTargetELF() || TM
.getRelocationModel() == Reloc::Static
;
141 /// getSpecialAddressLatency - For targets where it is beneficial to
142 /// backschedule instructions that compute addresses, return a value
143 /// indicating the number of scheduling cycles of backscheduling that
144 /// should be attempted.
145 unsigned X86Subtarget::getSpecialAddressLatency() const {
146 // For x86 out-of-order targets, back-schedule address computations so
147 // that loads and stores aren't blocked.
148 // This value was chosen arbitrarily.
152 /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
153 /// specified arguments. If we can't run cpuid on the host, return true.
154 static bool GetCpuIDAndInfo(unsigned value
, unsigned *rEAX
,
155 unsigned *rEBX
, unsigned *rECX
, unsigned *rEDX
) {
156 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
157 #if defined(__GNUC__)
158 // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
159 asm ("movq\t%%rbx, %%rsi\n\t"
161 "xchgq\t%%rbx, %%rsi\n\t"
168 #elif defined(_MSC_VER)
170 __cpuid(registers
, value
);
171 *rEAX
= registers
[0];
172 *rEBX
= registers
[1];
173 *rECX
= registers
[2];
174 *rEDX
= registers
[3];
177 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
178 #if defined(__GNUC__)
179 asm ("movl\t%%ebx, %%esi\n\t"
181 "xchgl\t%%ebx, %%esi\n\t"
188 #elif defined(_MSC_VER)
193 mov dword ptr
[esi
],eax
195 mov dword ptr
[esi
],ebx
197 mov dword ptr
[esi
],ecx
199 mov dword ptr
[esi
],edx
207 static void DetectFamilyModel(unsigned EAX
, unsigned &Family
, unsigned &Model
) {
208 Family
= (EAX
>> 8) & 0xf; // Bits 8 - 11
209 Model
= (EAX
>> 4) & 0xf; // Bits 4 - 7
210 if (Family
== 6 || Family
== 0xf) {
212 // Examine extended family ID if family ID is F.
213 Family
+= (EAX
>> 20) & 0xff; // Bits 20 - 27
214 // Examine extended model ID if family ID is 6 or F.
215 Model
+= ((EAX
>> 16) & 0xf) << 4; // Bits 16 - 19
219 void X86Subtarget::AutoDetectSubtargetFeatures() {
220 unsigned EAX
= 0, EBX
= 0, ECX
= 0, EDX
= 0;
226 if (GetCpuIDAndInfo(0, &EAX
, text
.u
+0, text
.u
+2, text
.u
+1))
229 GetCpuIDAndInfo(0x1, &EAX
, &EBX
, &ECX
, &EDX
);
231 if ((EDX
>> 15) & 1) HasCMov
= true;
232 if ((EDX
>> 23) & 1) X86SSELevel
= MMX
;
233 if ((EDX
>> 25) & 1) X86SSELevel
= SSE1
;
234 if ((EDX
>> 26) & 1) X86SSELevel
= SSE2
;
235 if (ECX
& 0x1) X86SSELevel
= SSE3
;
236 if ((ECX
>> 9) & 1) X86SSELevel
= SSSE3
;
237 if ((ECX
>> 19) & 1) X86SSELevel
= SSE41
;
238 if ((ECX
>> 20) & 1) X86SSELevel
= SSE42
;
240 bool IsIntel
= memcmp(text
.c
, "GenuineIntel", 12) == 0;
241 bool IsAMD
= !IsIntel
&& memcmp(text
.c
, "AuthenticAMD", 12) == 0;
243 HasFMA3
= IsIntel
&& ((ECX
>> 12) & 0x1);
244 HasAVX
= ((ECX
>> 28) & 0x1);
246 if (IsIntel
|| IsAMD
) {
247 // Determine if bit test memory instructions are slow.
250 DetectFamilyModel(EAX
, Family
, Model
);
251 IsBTMemSlow
= IsAMD
|| (Family
== 6 && Model
>= 13);
253 GetCpuIDAndInfo(0x80000001, &EAX
, &EBX
, &ECX
, &EDX
);
254 HasX86_64
= (EDX
>> 29) & 0x1;
255 HasSSE4A
= IsAMD
&& ((ECX
>> 6) & 0x1);
256 HasFMA4
= IsAMD
&& ((ECX
>> 16) & 0x1);
260 static const char *GetCurrentX86CPU() {
261 unsigned EAX
= 0, EBX
= 0, ECX
= 0, EDX
= 0;
262 if (GetCpuIDAndInfo(0x1, &EAX
, &EBX
, &ECX
, &EDX
))
266 DetectFamilyModel(EAX
, Family
, Model
);
268 GetCpuIDAndInfo(0x80000001, &EAX
, &EBX
, &ECX
, &EDX
);
269 bool Em64T
= (EDX
>> 29) & 0x1;
270 bool HasSSE3
= (ECX
& 0x1);
277 GetCpuIDAndInfo(0, &EAX
, text
.u
+0, text
.u
+2, text
.u
+1);
278 if (memcmp(text
.c
, "GenuineIntel", 12) == 0) {
286 case 4: return "pentium-mmx";
287 default: return "pentium";
291 case 1: return "pentiumpro";
294 case 6: return "pentium2";
298 case 11: return "pentium3";
300 case 13: return "pentium-m";
301 case 14: return "yonah";
303 case 22: // Celeron M 540
305 case 23: // 45nm: Penryn , Wolfdale, Yorkfield (XE)
307 default: return "i686";
313 case 6: // same as 4, but 65nm
314 return (Em64T
) ? "nocona" : "prescott";
320 return (Em64T
) ? "x86-64" : "pentium4";
327 } else if (memcmp(text
.c
, "AuthenticAMD", 12) == 0) {
328 // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
329 // appears to be no way to generate the wide variety of AMD-specific targets
330 // from the information returned from CPUID.
338 case 8: return "k6-2";
340 case 13: return "k6-3";
341 default: return "pentium";
345 case 4: return "athlon-tbird";
348 case 8: return "athlon-mp";
349 case 10: return "athlon-xp";
350 default: return "athlon";
357 case 1: return "opteron";
358 case 5: return "athlon-fx"; // also opteron
359 default: return "athlon64";
372 X86Subtarget::X86Subtarget(const std::string
&TT
, const std::string
&FS
,
374 : PICStyle(PICStyles::None
)
375 , X86SSELevel(NoMMXSSE
)
376 , X863DNowLevel(NoThreeDNow
)
387 // FIXME: this is a known good value for Yonah. How about others?
388 , MaxInlineSizeThreshold(128)
390 , TargetType(isELF
) { // Default to ELF unless otherwise specified.
392 // default to hard float ABI
393 if (FloatABIType
== FloatABI::Default
)
394 FloatABIType
= FloatABI::Hard
;
396 // Determine default and user specified characteristics
398 // If feature string is not empty, parse features string.
399 std::string CPU
= GetCurrentX86CPU();
400 ParseSubtargetFeatures(FS
, CPU
);
401 // All X86-64 CPUs also have SSE2, however user might request no SSE via
402 // -mattr, so don't force SSELevel here.
404 // Otherwise, use CPUID to auto-detect feature set.
405 AutoDetectSubtargetFeatures();
406 // Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
407 if (Is64Bit
&& X86SSELevel
< SSE2
)
411 // If requesting codegen for X86-64, make sure that 64-bit features
416 DEBUG(errs() << "Subtarget features: SSELevel " << X86SSELevel
417 << ", 3DNowLevel " << X863DNowLevel
418 << ", 64bit " << HasX86_64
<< "\n");
419 assert((!Is64Bit
|| HasX86_64
) &&
420 "64-bit code requested on a subtarget that doesn't support it!");
422 // Set the boolean corresponding to the current target triple, or the default
423 // if one cannot be determined, to true.
424 if (TT
.length() > 5) {
426 if ((Pos
= TT
.find("-darwin")) != std::string::npos
) {
427 TargetType
= isDarwin
;
429 // Compute the darwin version number.
430 if (isdigit(TT
[Pos
+7]))
431 DarwinVers
= atoi(&TT
[Pos
+7]);
433 DarwinVers
= 8; // Minimum supported darwin is Tiger.
434 } else if (TT
.find("linux") != std::string::npos
) {
435 // Linux doesn't imply ELF, but we don't currently support anything else.
438 } else if (TT
.find("cygwin") != std::string::npos
) {
439 TargetType
= isCygwin
;
440 } else if (TT
.find("mingw") != std::string::npos
) {
441 TargetType
= isMingw
;
442 } else if (TT
.find("win32") != std::string::npos
) {
443 TargetType
= isWindows
;
444 } else if (TT
.find("windows") != std::string::npos
) {
445 TargetType
= isWindows
;
446 } else if (TT
.find("-cl") != std::string::npos
) {
447 TargetType
= isDarwin
;
452 // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64
454 if (TargetType
== isDarwin
|| Is64Bit
)
458 stackAlignment
= StackAlignment
;