remove a dead bool.
[llvm/avr.git] / lib / VMCore / Constants.cpp
blob743462a4ed3f33e8e992b634571fa4d714d26421
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes...
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "LLVMContextImpl.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/System/Mutex.h"
33 #include "llvm/System/RWMutex.h"
34 #include "llvm/System/Threading.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include <algorithm>
38 #include <map>
39 using namespace llvm;
41 //===----------------------------------------------------------------------===//
42 // Constant Class
43 //===----------------------------------------------------------------------===//
45 // Constructor to create a '0' constant of arbitrary type...
46 static const uint64_t zero[2] = {0, 0};
47 Constant* Constant::getNullValue(const Type* Ty) {
48 switch (Ty->getTypeID()) {
49 case Type::IntegerTyID:
50 return ConstantInt::get(Ty, 0);
51 case Type::FloatTyID:
52 return ConstantFP::get(Ty->getContext(), APFloat(APInt(32, 0)));
53 case Type::DoubleTyID:
54 return ConstantFP::get(Ty->getContext(), APFloat(APInt(64, 0)));
55 case Type::X86_FP80TyID:
56 return ConstantFP::get(Ty->getContext(), APFloat(APInt(80, 2, zero)));
57 case Type::FP128TyID:
58 return ConstantFP::get(Ty->getContext(),
59 APFloat(APInt(128, 2, zero), true));
60 case Type::PPC_FP128TyID:
61 return ConstantFP::get(Ty->getContext(), APFloat(APInt(128, 2, zero)));
62 case Type::PointerTyID:
63 return ConstantPointerNull::get(cast<PointerType>(Ty));
64 case Type::StructTyID:
65 case Type::ArrayTyID:
66 case Type::VectorTyID:
67 return ConstantAggregateZero::get(Ty);
68 default:
69 // Function, Label, or Opaque type?
70 assert(!"Cannot create a null constant of that type!");
71 return 0;
75 Constant* Constant::getIntegerValue(const Type* Ty, const APInt &V) {
76 const Type *ScalarTy = Ty->getScalarType();
78 // Create the base integer constant.
79 Constant *C = ConstantInt::get(Ty->getContext(), V);
81 // Convert an integer to a pointer, if necessary.
82 if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
83 C = ConstantExpr::getIntToPtr(C, PTy);
85 // Broadcast a scalar to a vector, if necessary.
86 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
87 C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
89 return C;
92 Constant* Constant::getAllOnesValue(const Type* Ty) {
93 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
94 return ConstantInt::get(Ty->getContext(),
95 APInt::getAllOnesValue(ITy->getBitWidth()));
97 std::vector<Constant*> Elts;
98 const VectorType* VTy = cast<VectorType>(Ty);
99 Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
100 assert(Elts[0] && "Not a vector integer type!");
101 return cast<ConstantVector>(ConstantVector::get(Elts));
104 void Constant::destroyConstantImpl() {
105 // When a Constant is destroyed, there may be lingering
106 // references to the constant by other constants in the constant pool. These
107 // constants are implicitly dependent on the module that is being deleted,
108 // but they don't know that. Because we only find out when the CPV is
109 // deleted, we must now notify all of our users (that should only be
110 // Constants) that they are, in fact, invalid now and should be deleted.
112 while (!use_empty()) {
113 Value *V = use_back();
114 #ifndef NDEBUG // Only in -g mode...
115 if (!isa<Constant>(V)) {
116 errs() << "While deleting: " << *this
117 << "\n\nUse still stuck around after Def is destroyed: "
118 << *V << "\n\n";
120 #endif
121 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
122 Constant *CV = cast<Constant>(V);
123 CV->destroyConstant();
125 // The constant should remove itself from our use list...
126 assert((use_empty() || use_back() != V) && "Constant not removed!");
129 // Value has no outstanding references it is safe to delete it now...
130 delete this;
133 /// canTrap - Return true if evaluation of this constant could trap. This is
134 /// true for things like constant expressions that could divide by zero.
135 bool Constant::canTrap() const {
136 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
137 // The only thing that could possibly trap are constant exprs.
138 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
139 if (!CE) return false;
141 // ConstantExpr traps if any operands can trap.
142 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
143 if (getOperand(i)->canTrap())
144 return true;
146 // Otherwise, only specific operations can trap.
147 switch (CE->getOpcode()) {
148 default:
149 return false;
150 case Instruction::UDiv:
151 case Instruction::SDiv:
152 case Instruction::FDiv:
153 case Instruction::URem:
154 case Instruction::SRem:
155 case Instruction::FRem:
156 // Div and rem can trap if the RHS is not known to be non-zero.
157 if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
158 return true;
159 return false;
164 /// getRelocationInfo - This method classifies the entry according to
165 /// whether or not it may generate a relocation entry. This must be
166 /// conservative, so if it might codegen to a relocatable entry, it should say
167 /// so. The return values are:
168 ///
169 /// NoRelocation: This constant pool entry is guaranteed to never have a
170 /// relocation applied to it (because it holds a simple constant like
171 /// '4').
172 /// LocalRelocation: This entry has relocations, but the entries are
173 /// guaranteed to be resolvable by the static linker, so the dynamic
174 /// linker will never see them.
175 /// GlobalRelocations: This entry may have arbitrary relocations.
177 /// FIXME: This really should not be in VMCore.
178 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
179 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
180 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
181 return LocalRelocation; // Local to this file/library.
182 return GlobalRelocations; // Global reference.
185 PossibleRelocationsTy Result = NoRelocation;
186 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
187 Result = std::max(Result, getOperand(i)->getRelocationInfo());
189 return Result;
193 /// getVectorElements - This method, which is only valid on constant of vector
194 /// type, returns the elements of the vector in the specified smallvector.
195 /// This handles breaking down a vector undef into undef elements, etc. For
196 /// constant exprs and other cases we can't handle, we return an empty vector.
197 void Constant::getVectorElements(LLVMContext &Context,
198 SmallVectorImpl<Constant*> &Elts) const {
199 assert(isa<VectorType>(getType()) && "Not a vector constant!");
201 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
202 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
203 Elts.push_back(CV->getOperand(i));
204 return;
207 const VectorType *VT = cast<VectorType>(getType());
208 if (isa<ConstantAggregateZero>(this)) {
209 Elts.assign(VT->getNumElements(),
210 Constant::getNullValue(VT->getElementType()));
211 return;
214 if (isa<UndefValue>(this)) {
215 Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
216 return;
219 // Unknown type, must be constant expr etc.
224 //===----------------------------------------------------------------------===//
225 // ConstantInt
226 //===----------------------------------------------------------------------===//
228 ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
229 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
230 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
233 ConstantInt* ConstantInt::getTrue(LLVMContext &Context) {
234 LLVMContextImpl *pImpl = Context.pImpl;
235 sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
236 if (pImpl->TheTrueVal)
237 return pImpl->TheTrueVal;
238 else
239 return (pImpl->TheTrueVal =
240 ConstantInt::get(IntegerType::get(Context, 1), 1));
243 ConstantInt* ConstantInt::getFalse(LLVMContext &Context) {
244 LLVMContextImpl *pImpl = Context.pImpl;
245 sys::SmartScopedWriter<true>(pImpl->ConstantsLock);
246 if (pImpl->TheFalseVal)
247 return pImpl->TheFalseVal;
248 else
249 return (pImpl->TheFalseVal =
250 ConstantInt::get(IntegerType::get(Context, 1), 0));
254 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
255 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
256 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
257 // compare APInt's of different widths, which would violate an APInt class
258 // invariant which generates an assertion.
259 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt& V) {
260 // Get the corresponding integer type for the bit width of the value.
261 const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
262 // get an existing value or the insertion position
263 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
265 Context.pImpl->ConstantsLock.reader_acquire();
266 ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
267 Context.pImpl->ConstantsLock.reader_release();
269 if (!Slot) {
270 sys::SmartScopedWriter<true> Writer(Context.pImpl->ConstantsLock);
271 ConstantInt *&NewSlot = Context.pImpl->IntConstants[Key];
272 if (!Slot) {
273 NewSlot = new ConstantInt(ITy, V);
276 return NewSlot;
277 } else {
278 return Slot;
282 Constant* ConstantInt::get(const Type* Ty, uint64_t V, bool isSigned) {
283 Constant *C = get(cast<IntegerType>(Ty->getScalarType()),
284 V, isSigned);
286 // For vectors, broadcast the value.
287 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
288 return ConstantVector::get(
289 std::vector<Constant *>(VTy->getNumElements(), C));
291 return C;
294 ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
295 bool isSigned) {
296 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
299 ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
300 return get(Ty, V, true);
303 Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
304 return get(Ty, V, true);
307 Constant* ConstantInt::get(const Type* Ty, const APInt& V) {
308 ConstantInt *C = get(Ty->getContext(), V);
309 assert(C->getType() == Ty->getScalarType() &&
310 "ConstantInt type doesn't match the type implied by its value!");
312 // For vectors, broadcast the value.
313 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
314 return ConstantVector::get(
315 std::vector<Constant *>(VTy->getNumElements(), C));
317 return C;
320 ConstantInt* ConstantInt::get(const IntegerType* Ty, const StringRef& Str,
321 uint8_t radix) {
322 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
325 //===----------------------------------------------------------------------===//
326 // ConstantFP
327 //===----------------------------------------------------------------------===//
329 static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
330 if (Ty == Type::getFloatTy(Ty->getContext()))
331 return &APFloat::IEEEsingle;
332 if (Ty == Type::getDoubleTy(Ty->getContext()))
333 return &APFloat::IEEEdouble;
334 if (Ty == Type::getX86_FP80Ty(Ty->getContext()))
335 return &APFloat::x87DoubleExtended;
336 else if (Ty == Type::getFP128Ty(Ty->getContext()))
337 return &APFloat::IEEEquad;
339 assert(Ty == Type::getPPC_FP128Ty(Ty->getContext()) && "Unknown FP format");
340 return &APFloat::PPCDoubleDouble;
343 /// get() - This returns a constant fp for the specified value in the
344 /// specified type. This should only be used for simple constant values like
345 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
346 Constant* ConstantFP::get(const Type* Ty, double V) {
347 LLVMContext &Context = Ty->getContext();
349 APFloat FV(V);
350 bool ignored;
351 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
352 APFloat::rmNearestTiesToEven, &ignored);
353 Constant *C = get(Context, FV);
355 // For vectors, broadcast the value.
356 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
357 return ConstantVector::get(
358 std::vector<Constant *>(VTy->getNumElements(), C));
360 return C;
364 Constant* ConstantFP::get(const Type* Ty, const StringRef& Str) {
365 LLVMContext &Context = Ty->getContext();
367 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
368 Constant *C = get(Context, FV);
370 // For vectors, broadcast the value.
371 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
372 return ConstantVector::get(
373 std::vector<Constant *>(VTy->getNumElements(), C));
375 return C;
379 ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
380 LLVMContext &Context = Ty->getContext();
381 APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
382 apf.changeSign();
383 return get(Context, apf);
387 Constant* ConstantFP::getZeroValueForNegation(const Type* Ty) {
388 if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
389 if (PTy->getElementType()->isFloatingPoint()) {
390 std::vector<Constant*> zeros(PTy->getNumElements(),
391 getNegativeZero(PTy->getElementType()));
392 return ConstantVector::get(PTy, zeros);
395 if (Ty->isFloatingPoint())
396 return getNegativeZero(Ty);
398 return Constant::getNullValue(Ty);
402 // ConstantFP accessors.
403 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
404 DenseMapAPFloatKeyInfo::KeyTy Key(V);
406 LLVMContextImpl* pImpl = Context.pImpl;
408 pImpl->ConstantsLock.reader_acquire();
409 ConstantFP *&Slot = pImpl->FPConstants[Key];
410 pImpl->ConstantsLock.reader_release();
412 if (!Slot) {
413 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
414 ConstantFP *&NewSlot = pImpl->FPConstants[Key];
415 if (!NewSlot) {
416 const Type *Ty;
417 if (&V.getSemantics() == &APFloat::IEEEsingle)
418 Ty = Type::getFloatTy(Context);
419 else if (&V.getSemantics() == &APFloat::IEEEdouble)
420 Ty = Type::getDoubleTy(Context);
421 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
422 Ty = Type::getX86_FP80Ty(Context);
423 else if (&V.getSemantics() == &APFloat::IEEEquad)
424 Ty = Type::getFP128Ty(Context);
425 else {
426 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
427 "Unknown FP format");
428 Ty = Type::getPPC_FP128Ty(Context);
430 NewSlot = new ConstantFP(Ty, V);
433 return NewSlot;
436 return Slot;
439 ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
440 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
441 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
442 "FP type Mismatch");
445 bool ConstantFP::isNullValue() const {
446 return Val.isZero() && !Val.isNegative();
449 bool ConstantFP::isExactlyValue(const APFloat& V) const {
450 return Val.bitwiseIsEqual(V);
453 //===----------------------------------------------------------------------===//
454 // ConstantXXX Classes
455 //===----------------------------------------------------------------------===//
458 ConstantArray::ConstantArray(const ArrayType *T,
459 const std::vector<Constant*> &V)
460 : Constant(T, ConstantArrayVal,
461 OperandTraits<ConstantArray>::op_end(this) - V.size(),
462 V.size()) {
463 assert(V.size() == T->getNumElements() &&
464 "Invalid initializer vector for constant array");
465 Use *OL = OperandList;
466 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
467 I != E; ++I, ++OL) {
468 Constant *C = *I;
469 assert((C->getType() == T->getElementType() ||
470 (T->isAbstract() &&
471 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
472 "Initializer for array element doesn't match array element type!");
473 *OL = C;
477 Constant *ConstantArray::get(const ArrayType *Ty,
478 const std::vector<Constant*> &V) {
479 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
480 // If this is an all-zero array, return a ConstantAggregateZero object
481 if (!V.empty()) {
482 Constant *C = V[0];
483 if (!C->isNullValue()) {
484 // Implicitly locked.
485 return pImpl->ArrayConstants.getOrCreate(Ty, V);
487 for (unsigned i = 1, e = V.size(); i != e; ++i)
488 if (V[i] != C) {
489 // Implicitly locked.
490 return pImpl->ArrayConstants.getOrCreate(Ty, V);
494 return ConstantAggregateZero::get(Ty);
498 Constant* ConstantArray::get(const ArrayType* T, Constant* const* Vals,
499 unsigned NumVals) {
500 // FIXME: make this the primary ctor method.
501 return get(T, std::vector<Constant*>(Vals, Vals+NumVals));
504 /// ConstantArray::get(const string&) - Return an array that is initialized to
505 /// contain the specified string. If length is zero then a null terminator is
506 /// added to the specified string so that it may be used in a natural way.
507 /// Otherwise, the length parameter specifies how much of the string to use
508 /// and it won't be null terminated.
510 Constant* ConstantArray::get(LLVMContext &Context, const StringRef &Str,
511 bool AddNull) {
512 std::vector<Constant*> ElementVals;
513 for (unsigned i = 0; i < Str.size(); ++i)
514 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
516 // Add a null terminator to the string...
517 if (AddNull) {
518 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
521 ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
522 return get(ATy, ElementVals);
527 ConstantStruct::ConstantStruct(const StructType *T,
528 const std::vector<Constant*> &V)
529 : Constant(T, ConstantStructVal,
530 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
531 V.size()) {
532 assert(V.size() == T->getNumElements() &&
533 "Invalid initializer vector for constant structure");
534 Use *OL = OperandList;
535 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
536 I != E; ++I, ++OL) {
537 Constant *C = *I;
538 assert((C->getType() == T->getElementType(I-V.begin()) ||
539 ((T->getElementType(I-V.begin())->isAbstract() ||
540 C->getType()->isAbstract()) &&
541 T->getElementType(I-V.begin())->getTypeID() ==
542 C->getType()->getTypeID())) &&
543 "Initializer for struct element doesn't match struct element type!");
544 *OL = C;
548 // ConstantStruct accessors.
549 Constant* ConstantStruct::get(const StructType* T,
550 const std::vector<Constant*>& V) {
551 LLVMContextImpl* pImpl = T->getContext().pImpl;
553 // Create a ConstantAggregateZero value if all elements are zeros...
554 for (unsigned i = 0, e = V.size(); i != e; ++i)
555 if (!V[i]->isNullValue())
556 // Implicitly locked.
557 return pImpl->StructConstants.getOrCreate(T, V);
559 return ConstantAggregateZero::get(T);
562 Constant* ConstantStruct::get(LLVMContext &Context,
563 const std::vector<Constant*>& V, bool packed) {
564 std::vector<const Type*> StructEls;
565 StructEls.reserve(V.size());
566 for (unsigned i = 0, e = V.size(); i != e; ++i)
567 StructEls.push_back(V[i]->getType());
568 return get(StructType::get(Context, StructEls, packed), V);
571 Constant* ConstantStruct::get(LLVMContext &Context,
572 Constant* const *Vals, unsigned NumVals,
573 bool Packed) {
574 // FIXME: make this the primary ctor method.
575 return get(Context, std::vector<Constant*>(Vals, Vals+NumVals), Packed);
578 ConstantVector::ConstantVector(const VectorType *T,
579 const std::vector<Constant*> &V)
580 : Constant(T, ConstantVectorVal,
581 OperandTraits<ConstantVector>::op_end(this) - V.size(),
582 V.size()) {
583 Use *OL = OperandList;
584 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
585 I != E; ++I, ++OL) {
586 Constant *C = *I;
587 assert((C->getType() == T->getElementType() ||
588 (T->isAbstract() &&
589 C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
590 "Initializer for vector element doesn't match vector element type!");
591 *OL = C;
595 // ConstantVector accessors.
596 Constant* ConstantVector::get(const VectorType* T,
597 const std::vector<Constant*>& V) {
598 assert(!V.empty() && "Vectors can't be empty");
599 LLVMContext &Context = T->getContext();
600 LLVMContextImpl *pImpl = Context.pImpl;
602 // If this is an all-undef or alll-zero vector, return a
603 // ConstantAggregateZero or UndefValue.
604 Constant *C = V[0];
605 bool isZero = C->isNullValue();
606 bool isUndef = isa<UndefValue>(C);
608 if (isZero || isUndef) {
609 for (unsigned i = 1, e = V.size(); i != e; ++i)
610 if (V[i] != C) {
611 isZero = isUndef = false;
612 break;
616 if (isZero)
617 return ConstantAggregateZero::get(T);
618 if (isUndef)
619 return UndefValue::get(T);
621 // Implicitly locked.
622 return pImpl->VectorConstants.getOrCreate(T, V);
625 Constant* ConstantVector::get(const std::vector<Constant*>& V) {
626 assert(!V.empty() && "Cannot infer type if V is empty");
627 return get(VectorType::get(V.front()->getType(),V.size()), V);
630 Constant* ConstantVector::get(Constant* const* Vals, unsigned NumVals) {
631 // FIXME: make this the primary ctor method.
632 return get(std::vector<Constant*>(Vals, Vals+NumVals));
635 Constant* ConstantExpr::getNSWAdd(Constant* C1, Constant* C2) {
636 return getTy(C1->getType(), Instruction::Add, C1, C2,
637 OverflowingBinaryOperator::NoSignedWrap);
640 Constant* ConstantExpr::getExactSDiv(Constant* C1, Constant* C2) {
641 return getTy(C1->getType(), Instruction::SDiv, C1, C2,
642 SDivOperator::IsExact);
645 // Utility function for determining if a ConstantExpr is a CastOp or not. This
646 // can't be inline because we don't want to #include Instruction.h into
647 // Constant.h
648 bool ConstantExpr::isCast() const {
649 return Instruction::isCast(getOpcode());
652 bool ConstantExpr::isCompare() const {
653 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
656 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
657 if (getOpcode() != Instruction::GetElementPtr) return false;
659 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
660 User::const_op_iterator OI = next(this->op_begin());
662 // Skip the first index, as it has no static limit.
663 ++GEPI;
664 ++OI;
666 // The remaining indices must be compile-time known integers within the
667 // bounds of the corresponding notional static array types.
668 for (; GEPI != E; ++GEPI, ++OI) {
669 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
670 if (!CI) return false;
671 if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
672 if (CI->getValue().getActiveBits() > 64 ||
673 CI->getZExtValue() >= ATy->getNumElements())
674 return false;
677 // All the indices checked out.
678 return true;
681 bool ConstantExpr::hasIndices() const {
682 return getOpcode() == Instruction::ExtractValue ||
683 getOpcode() == Instruction::InsertValue;
686 const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
687 if (const ExtractValueConstantExpr *EVCE =
688 dyn_cast<ExtractValueConstantExpr>(this))
689 return EVCE->Indices;
691 return cast<InsertValueConstantExpr>(this)->Indices;
694 unsigned ConstantExpr::getPredicate() const {
695 assert(getOpcode() == Instruction::FCmp ||
696 getOpcode() == Instruction::ICmp);
697 return ((const CompareConstantExpr*)this)->predicate;
700 /// getWithOperandReplaced - Return a constant expression identical to this
701 /// one, but with the specified operand set to the specified value.
702 Constant *
703 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
704 assert(OpNo < getNumOperands() && "Operand num is out of range!");
705 assert(Op->getType() == getOperand(OpNo)->getType() &&
706 "Replacing operand with value of different type!");
707 if (getOperand(OpNo) == Op)
708 return const_cast<ConstantExpr*>(this);
710 Constant *Op0, *Op1, *Op2;
711 switch (getOpcode()) {
712 case Instruction::Trunc:
713 case Instruction::ZExt:
714 case Instruction::SExt:
715 case Instruction::FPTrunc:
716 case Instruction::FPExt:
717 case Instruction::UIToFP:
718 case Instruction::SIToFP:
719 case Instruction::FPToUI:
720 case Instruction::FPToSI:
721 case Instruction::PtrToInt:
722 case Instruction::IntToPtr:
723 case Instruction::BitCast:
724 return ConstantExpr::getCast(getOpcode(), Op, getType());
725 case Instruction::Select:
726 Op0 = (OpNo == 0) ? Op : getOperand(0);
727 Op1 = (OpNo == 1) ? Op : getOperand(1);
728 Op2 = (OpNo == 2) ? Op : getOperand(2);
729 return ConstantExpr::getSelect(Op0, Op1, Op2);
730 case Instruction::InsertElement:
731 Op0 = (OpNo == 0) ? Op : getOperand(0);
732 Op1 = (OpNo == 1) ? Op : getOperand(1);
733 Op2 = (OpNo == 2) ? Op : getOperand(2);
734 return ConstantExpr::getInsertElement(Op0, Op1, Op2);
735 case Instruction::ExtractElement:
736 Op0 = (OpNo == 0) ? Op : getOperand(0);
737 Op1 = (OpNo == 1) ? Op : getOperand(1);
738 return ConstantExpr::getExtractElement(Op0, Op1);
739 case Instruction::ShuffleVector:
740 Op0 = (OpNo == 0) ? Op : getOperand(0);
741 Op1 = (OpNo == 1) ? Op : getOperand(1);
742 Op2 = (OpNo == 2) ? Op : getOperand(2);
743 return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
744 case Instruction::GetElementPtr: {
745 SmallVector<Constant*, 8> Ops;
746 Ops.resize(getNumOperands()-1);
747 for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
748 Ops[i-1] = getOperand(i);
749 if (OpNo == 0)
750 return cast<GEPOperator>(this)->isInBounds() ?
751 ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
752 ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
753 Ops[OpNo-1] = Op;
754 return cast<GEPOperator>(this)->isInBounds() ?
755 ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0], Ops.size()) :
756 ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
758 default:
759 assert(getNumOperands() == 2 && "Must be binary operator?");
760 Op0 = (OpNo == 0) ? Op : getOperand(0);
761 Op1 = (OpNo == 1) ? Op : getOperand(1);
762 return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassData);
766 /// getWithOperands - This returns the current constant expression with the
767 /// operands replaced with the specified values. The specified operands must
768 /// match count and type with the existing ones.
769 Constant *ConstantExpr::
770 getWithOperands(Constant* const *Ops, unsigned NumOps) const {
771 assert(NumOps == getNumOperands() && "Operand count mismatch!");
772 bool AnyChange = false;
773 for (unsigned i = 0; i != NumOps; ++i) {
774 assert(Ops[i]->getType() == getOperand(i)->getType() &&
775 "Operand type mismatch!");
776 AnyChange |= Ops[i] != getOperand(i);
778 if (!AnyChange) // No operands changed, return self.
779 return const_cast<ConstantExpr*>(this);
781 switch (getOpcode()) {
782 case Instruction::Trunc:
783 case Instruction::ZExt:
784 case Instruction::SExt:
785 case Instruction::FPTrunc:
786 case Instruction::FPExt:
787 case Instruction::UIToFP:
788 case Instruction::SIToFP:
789 case Instruction::FPToUI:
790 case Instruction::FPToSI:
791 case Instruction::PtrToInt:
792 case Instruction::IntToPtr:
793 case Instruction::BitCast:
794 return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
795 case Instruction::Select:
796 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
797 case Instruction::InsertElement:
798 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
799 case Instruction::ExtractElement:
800 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
801 case Instruction::ShuffleVector:
802 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
803 case Instruction::GetElementPtr:
804 return cast<GEPOperator>(this)->isInBounds() ?
805 ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], NumOps-1) :
806 ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
807 case Instruction::ICmp:
808 case Instruction::FCmp:
809 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
810 default:
811 assert(getNumOperands() == 2 && "Must be binary operator?");
812 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassData);
817 //===----------------------------------------------------------------------===//
818 // isValueValidForType implementations
820 bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
821 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
822 if (Ty == Type::getInt1Ty(Ty->getContext()))
823 return Val == 0 || Val == 1;
824 if (NumBits >= 64)
825 return true; // always true, has to fit in largest type
826 uint64_t Max = (1ll << NumBits) - 1;
827 return Val <= Max;
830 bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
831 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
832 if (Ty == Type::getInt1Ty(Ty->getContext()))
833 return Val == 0 || Val == 1 || Val == -1;
834 if (NumBits >= 64)
835 return true; // always true, has to fit in largest type
836 int64_t Min = -(1ll << (NumBits-1));
837 int64_t Max = (1ll << (NumBits-1)) - 1;
838 return (Val >= Min && Val <= Max);
841 bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
842 // convert modifies in place, so make a copy.
843 APFloat Val2 = APFloat(Val);
844 bool losesInfo;
845 switch (Ty->getTypeID()) {
846 default:
847 return false; // These can't be represented as floating point!
849 // FIXME rounding mode needs to be more flexible
850 case Type::FloatTyID: {
851 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
852 return true;
853 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
854 return !losesInfo;
856 case Type::DoubleTyID: {
857 if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
858 &Val2.getSemantics() == &APFloat::IEEEdouble)
859 return true;
860 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
861 return !losesInfo;
863 case Type::X86_FP80TyID:
864 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
865 &Val2.getSemantics() == &APFloat::IEEEdouble ||
866 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
867 case Type::FP128TyID:
868 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
869 &Val2.getSemantics() == &APFloat::IEEEdouble ||
870 &Val2.getSemantics() == &APFloat::IEEEquad;
871 case Type::PPC_FP128TyID:
872 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
873 &Val2.getSemantics() == &APFloat::IEEEdouble ||
874 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
878 //===----------------------------------------------------------------------===//
879 // Factory Function Implementation
881 ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
882 assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
883 "Cannot create an aggregate zero of non-aggregate type!");
885 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
886 // Implicitly locked.
887 return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
890 /// destroyConstant - Remove the constant from the constant table...
892 void ConstantAggregateZero::destroyConstant() {
893 // Implicitly locked.
894 getType()->getContext().pImpl->AggZeroConstants.remove(this);
895 destroyConstantImpl();
898 /// destroyConstant - Remove the constant from the constant table...
900 void ConstantArray::destroyConstant() {
901 // Implicitly locked.
902 getType()->getContext().pImpl->ArrayConstants.remove(this);
903 destroyConstantImpl();
906 /// isString - This method returns true if the array is an array of i8, and
907 /// if the elements of the array are all ConstantInt's.
908 bool ConstantArray::isString() const {
909 // Check the element type for i8...
910 if (getType()->getElementType() != Type::getInt8Ty(getContext()))
911 return false;
912 // Check the elements to make sure they are all integers, not constant
913 // expressions.
914 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
915 if (!isa<ConstantInt>(getOperand(i)))
916 return false;
917 return true;
920 /// isCString - This method returns true if the array is a string (see
921 /// isString) and it ends in a null byte \\0 and does not contains any other
922 /// null bytes except its terminator.
923 bool ConstantArray::isCString() const {
924 // Check the element type for i8...
925 if (getType()->getElementType() != Type::getInt8Ty(getContext()))
926 return false;
928 // Last element must be a null.
929 if (!getOperand(getNumOperands()-1)->isNullValue())
930 return false;
931 // Other elements must be non-null integers.
932 for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
933 if (!isa<ConstantInt>(getOperand(i)))
934 return false;
935 if (getOperand(i)->isNullValue())
936 return false;
938 return true;
942 /// getAsString - If the sub-element type of this array is i8
943 /// then this method converts the array to an std::string and returns it.
944 /// Otherwise, it asserts out.
946 std::string ConstantArray::getAsString() const {
947 assert(isString() && "Not a string!");
948 std::string Result;
949 Result.reserve(getNumOperands());
950 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
951 Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
952 return Result;
956 //---- ConstantStruct::get() implementation...
959 namespace llvm {
963 // destroyConstant - Remove the constant from the constant table...
965 void ConstantStruct::destroyConstant() {
966 // Implicitly locked.
967 getType()->getContext().pImpl->StructConstants.remove(this);
968 destroyConstantImpl();
971 // destroyConstant - Remove the constant from the constant table...
973 void ConstantVector::destroyConstant() {
974 // Implicitly locked.
975 getType()->getContext().pImpl->VectorConstants.remove(this);
976 destroyConstantImpl();
979 /// This function will return true iff every element in this vector constant
980 /// is set to all ones.
981 /// @returns true iff this constant's emements are all set to all ones.
982 /// @brief Determine if the value is all ones.
983 bool ConstantVector::isAllOnesValue() const {
984 // Check out first element.
985 const Constant *Elt = getOperand(0);
986 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
987 if (!CI || !CI->isAllOnesValue()) return false;
988 // Then make sure all remaining elements point to the same value.
989 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
990 if (getOperand(I) != Elt) return false;
992 return true;
995 /// getSplatValue - If this is a splat constant, where all of the
996 /// elements have the same value, return that value. Otherwise return null.
997 Constant *ConstantVector::getSplatValue() {
998 // Check out first element.
999 Constant *Elt = getOperand(0);
1000 // Then make sure all remaining elements point to the same value.
1001 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1002 if (getOperand(I) != Elt) return 0;
1003 return Elt;
1006 //---- ConstantPointerNull::get() implementation...
1009 ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
1010 // Implicitly locked.
1011 return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
1014 // destroyConstant - Remove the constant from the constant table...
1016 void ConstantPointerNull::destroyConstant() {
1017 // Implicitly locked.
1018 getType()->getContext().pImpl->NullPtrConstants.remove(this);
1019 destroyConstantImpl();
1023 //---- UndefValue::get() implementation...
1026 UndefValue *UndefValue::get(const Type *Ty) {
1027 // Implicitly locked.
1028 return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
1031 // destroyConstant - Remove the constant from the constant table.
1033 void UndefValue::destroyConstant() {
1034 // Implicitly locked.
1035 getType()->getContext().pImpl->UndefValueConstants.remove(this);
1036 destroyConstantImpl();
1039 //---- ConstantExpr::get() implementations...
1042 /// This is a utility function to handle folding of casts and lookup of the
1043 /// cast in the ExprConstants map. It is used by the various get* methods below.
1044 static inline Constant *getFoldedCast(
1045 Instruction::CastOps opc, Constant *C, const Type *Ty) {
1046 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1047 // Fold a few common cases
1048 if (Constant *FC = ConstantFoldCastInstruction(Ty->getContext(), opc, C, Ty))
1049 return FC;
1051 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1053 // Look up the constant in the table first to ensure uniqueness
1054 std::vector<Constant*> argVec(1, C);
1055 ExprMapKeyType Key(opc, argVec);
1057 // Implicitly locked.
1058 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1061 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
1062 Instruction::CastOps opc = Instruction::CastOps(oc);
1063 assert(Instruction::isCast(opc) && "opcode out of range");
1064 assert(C && Ty && "Null arguments to getCast");
1065 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1067 switch (opc) {
1068 default:
1069 llvm_unreachable("Invalid cast opcode");
1070 break;
1071 case Instruction::Trunc: return getTrunc(C, Ty);
1072 case Instruction::ZExt: return getZExt(C, Ty);
1073 case Instruction::SExt: return getSExt(C, Ty);
1074 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1075 case Instruction::FPExt: return getFPExtend(C, Ty);
1076 case Instruction::UIToFP: return getUIToFP(C, Ty);
1077 case Instruction::SIToFP: return getSIToFP(C, Ty);
1078 case Instruction::FPToUI: return getFPToUI(C, Ty);
1079 case Instruction::FPToSI: return getFPToSI(C, Ty);
1080 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1081 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1082 case Instruction::BitCast: return getBitCast(C, Ty);
1084 return 0;
1087 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
1088 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1089 return getCast(Instruction::BitCast, C, Ty);
1090 return getCast(Instruction::ZExt, C, Ty);
1093 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
1094 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1095 return getCast(Instruction::BitCast, C, Ty);
1096 return getCast(Instruction::SExt, C, Ty);
1099 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
1100 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1101 return getCast(Instruction::BitCast, C, Ty);
1102 return getCast(Instruction::Trunc, C, Ty);
1105 Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
1106 assert(isa<PointerType>(S->getType()) && "Invalid cast");
1107 assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
1109 if (Ty->isInteger())
1110 return getCast(Instruction::PtrToInt, S, Ty);
1111 return getCast(Instruction::BitCast, S, Ty);
1114 Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
1115 bool isSigned) {
1116 assert(C->getType()->isIntOrIntVector() &&
1117 Ty->isIntOrIntVector() && "Invalid cast");
1118 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1119 unsigned DstBits = Ty->getScalarSizeInBits();
1120 Instruction::CastOps opcode =
1121 (SrcBits == DstBits ? Instruction::BitCast :
1122 (SrcBits > DstBits ? Instruction::Trunc :
1123 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1124 return getCast(opcode, C, Ty);
1127 Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
1128 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1129 "Invalid cast");
1130 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1131 unsigned DstBits = Ty->getScalarSizeInBits();
1132 if (SrcBits == DstBits)
1133 return C; // Avoid a useless cast
1134 Instruction::CastOps opcode =
1135 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1136 return getCast(opcode, C, Ty);
1139 Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
1140 #ifndef NDEBUG
1141 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1142 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1143 #endif
1144 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1145 assert(C->getType()->isIntOrIntVector() && "Trunc operand must be integer");
1146 assert(Ty->isIntOrIntVector() && "Trunc produces only integral");
1147 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1148 "SrcTy must be larger than DestTy for Trunc!");
1150 return getFoldedCast(Instruction::Trunc, C, Ty);
1153 Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
1154 #ifndef NDEBUG
1155 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1156 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1157 #endif
1158 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1159 assert(C->getType()->isIntOrIntVector() && "SExt operand must be integral");
1160 assert(Ty->isIntOrIntVector() && "SExt produces only integer");
1161 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1162 "SrcTy must be smaller than DestTy for SExt!");
1164 return getFoldedCast(Instruction::SExt, C, Ty);
1167 Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
1168 #ifndef NDEBUG
1169 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1170 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1171 #endif
1172 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1173 assert(C->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
1174 assert(Ty->isIntOrIntVector() && "ZExt produces only integer");
1175 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1176 "SrcTy must be smaller than DestTy for ZExt!");
1178 return getFoldedCast(Instruction::ZExt, C, Ty);
1181 Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
1182 #ifndef NDEBUG
1183 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1184 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1185 #endif
1186 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1187 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1188 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1189 "This is an illegal floating point truncation!");
1190 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1193 Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
1194 #ifndef NDEBUG
1195 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1196 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1197 #endif
1198 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1199 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
1200 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1201 "This is an illegal floating point extension!");
1202 return getFoldedCast(Instruction::FPExt, C, Ty);
1205 Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
1206 #ifndef NDEBUG
1207 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1208 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1209 #endif
1210 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1211 assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
1212 "This is an illegal uint to floating point cast!");
1213 return getFoldedCast(Instruction::UIToFP, C, Ty);
1216 Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
1217 #ifndef NDEBUG
1218 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1219 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1220 #endif
1221 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1222 assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
1223 "This is an illegal sint to floating point cast!");
1224 return getFoldedCast(Instruction::SIToFP, C, Ty);
1227 Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
1228 #ifndef NDEBUG
1229 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1230 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1231 #endif
1232 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1233 assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
1234 "This is an illegal floating point to uint cast!");
1235 return getFoldedCast(Instruction::FPToUI, C, Ty);
1238 Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
1239 #ifndef NDEBUG
1240 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1241 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1242 #endif
1243 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1244 assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
1245 "This is an illegal floating point to sint cast!");
1246 return getFoldedCast(Instruction::FPToSI, C, Ty);
1249 Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
1250 assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
1251 assert(DstTy->isInteger() && "PtrToInt destination must be integral");
1252 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1255 Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
1256 assert(C->getType()->isInteger() && "IntToPtr source must be integral");
1257 assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
1258 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1261 Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
1262 // BitCast implies a no-op cast of type only. No bits change. However, you
1263 // can't cast pointers to anything but pointers.
1264 #ifndef NDEBUG
1265 const Type *SrcTy = C->getType();
1266 assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
1267 "BitCast cannot cast pointer to non-pointer and vice versa");
1269 // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
1270 // or nonptr->ptr). For all the other types, the cast is okay if source and
1271 // destination bit widths are identical.
1272 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1273 unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
1274 #endif
1275 assert(SrcBitSize == DstBitSize && "BitCast requires types of same width");
1277 // It is common to ask for a bitcast of a value to its own type, handle this
1278 // speedily.
1279 if (C->getType() == DstTy) return C;
1281 return getFoldedCast(Instruction::BitCast, C, DstTy);
1284 Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
1285 Constant *C1, Constant *C2,
1286 unsigned Flags) {
1287 // Check the operands for consistency first
1288 assert(Opcode >= Instruction::BinaryOpsBegin &&
1289 Opcode < Instruction::BinaryOpsEnd &&
1290 "Invalid opcode in binary constant expression");
1291 assert(C1->getType() == C2->getType() &&
1292 "Operand types in binary constant expression should match");
1294 if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext()))
1295 if (Constant *FC = ConstantFoldBinaryInstruction(ReqTy->getContext(),
1296 Opcode, C1, C2))
1297 return FC; // Fold a few common cases...
1299 std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
1300 ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1302 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1304 // Implicitly locked.
1305 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1308 Constant *ConstantExpr::getCompareTy(unsigned short predicate,
1309 Constant *C1, Constant *C2) {
1310 switch (predicate) {
1311 default: llvm_unreachable("Invalid CmpInst predicate");
1312 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1313 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1314 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1315 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1316 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1317 case CmpInst::FCMP_TRUE:
1318 return getFCmp(predicate, C1, C2);
1320 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1321 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1322 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1323 case CmpInst::ICMP_SLE:
1324 return getICmp(predicate, C1, C2);
1328 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1329 unsigned Flags) {
1330 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1331 if (C1->getType()->isFPOrFPVector()) {
1332 if (Opcode == Instruction::Add) Opcode = Instruction::FAdd;
1333 else if (Opcode == Instruction::Sub) Opcode = Instruction::FSub;
1334 else if (Opcode == Instruction::Mul) Opcode = Instruction::FMul;
1336 #ifndef NDEBUG
1337 switch (Opcode) {
1338 case Instruction::Add:
1339 case Instruction::Sub:
1340 case Instruction::Mul:
1341 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1342 assert(C1->getType()->isIntOrIntVector() &&
1343 "Tried to create an integer operation on a non-integer type!");
1344 break;
1345 case Instruction::FAdd:
1346 case Instruction::FSub:
1347 case Instruction::FMul:
1348 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1349 assert(C1->getType()->isFPOrFPVector() &&
1350 "Tried to create a floating-point operation on a "
1351 "non-floating-point type!");
1352 break;
1353 case Instruction::UDiv:
1354 case Instruction::SDiv:
1355 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1356 assert(C1->getType()->isIntOrIntVector() &&
1357 "Tried to create an arithmetic operation on a non-arithmetic type!");
1358 break;
1359 case Instruction::FDiv:
1360 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1361 assert(C1->getType()->isFPOrFPVector() &&
1362 "Tried to create an arithmetic operation on a non-arithmetic type!");
1363 break;
1364 case Instruction::URem:
1365 case Instruction::SRem:
1366 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1367 assert(C1->getType()->isIntOrIntVector() &&
1368 "Tried to create an arithmetic operation on a non-arithmetic type!");
1369 break;
1370 case Instruction::FRem:
1371 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1372 assert(C1->getType()->isFPOrFPVector() &&
1373 "Tried to create an arithmetic operation on a non-arithmetic type!");
1374 break;
1375 case Instruction::And:
1376 case Instruction::Or:
1377 case Instruction::Xor:
1378 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1379 assert(C1->getType()->isIntOrIntVector() &&
1380 "Tried to create a logical operation on a non-integral type!");
1381 break;
1382 case Instruction::Shl:
1383 case Instruction::LShr:
1384 case Instruction::AShr:
1385 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1386 assert(C1->getType()->isIntOrIntVector() &&
1387 "Tried to create a shift operation on a non-integer type!");
1388 break;
1389 default:
1390 break;
1392 #endif
1394 return getTy(C1->getType(), Opcode, C1, C2, Flags);
1397 Constant* ConstantExpr::getSizeOf(const Type* Ty) {
1398 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1399 // Note that a non-inbounds gep is used, as null isn't within any object.
1400 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1401 Constant *GEP = getGetElementPtr(
1402 Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
1403 return getCast(Instruction::PtrToInt, GEP,
1404 Type::getInt64Ty(Ty->getContext()));
1407 Constant* ConstantExpr::getAlignOf(const Type* Ty) {
1408 // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
1409 // Note that a non-inbounds gep is used, as null isn't within any object.
1410 const Type *AligningTy = StructType::get(Ty->getContext(),
1411 Type::getInt8Ty(Ty->getContext()), Ty, NULL);
1412 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1413 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 0);
1414 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1415 Constant *Indices[2] = { Zero, One };
1416 Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
1417 return getCast(Instruction::PtrToInt, GEP,
1418 Type::getInt32Ty(Ty->getContext()));
1421 Constant* ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
1422 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1423 // Note that a non-inbounds gep is used, as null isn't within any object.
1424 Constant *GEPIdx[] = {
1425 ConstantInt::get(Type::getInt64Ty(STy->getContext()), 0),
1426 ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)
1428 Constant *GEP = getGetElementPtr(
1429 Constant::getNullValue(PointerType::getUnqual(STy)), GEPIdx, 2);
1430 return getCast(Instruction::PtrToInt, GEP,
1431 Type::getInt64Ty(STy->getContext()));
1434 Constant *ConstantExpr::getCompare(unsigned short pred,
1435 Constant *C1, Constant *C2) {
1436 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1437 return getCompareTy(pred, C1, C2);
1440 Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
1441 Constant *V1, Constant *V2) {
1442 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1444 if (ReqTy == V1->getType())
1445 if (Constant *SC = ConstantFoldSelectInstruction(
1446 ReqTy->getContext(), C, V1, V2))
1447 return SC; // Fold common cases
1449 std::vector<Constant*> argVec(3, C);
1450 argVec[1] = V1;
1451 argVec[2] = V2;
1452 ExprMapKeyType Key(Instruction::Select, argVec);
1454 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1456 // Implicitly locked.
1457 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1460 Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
1461 Value* const *Idxs,
1462 unsigned NumIdx) {
1463 assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
1464 Idxs+NumIdx) ==
1465 cast<PointerType>(ReqTy)->getElementType() &&
1466 "GEP indices invalid!");
1468 if (Constant *FC = ConstantFoldGetElementPtr(
1469 ReqTy->getContext(), C, /*inBounds=*/false,
1470 (Constant**)Idxs, NumIdx))
1471 return FC; // Fold a few common cases...
1473 assert(isa<PointerType>(C->getType()) &&
1474 "Non-pointer type for constant GetElementPtr expression");
1475 // Look up the constant in the table first to ensure uniqueness
1476 std::vector<Constant*> ArgVec;
1477 ArgVec.reserve(NumIdx+1);
1478 ArgVec.push_back(C);
1479 for (unsigned i = 0; i != NumIdx; ++i)
1480 ArgVec.push_back(cast<Constant>(Idxs[i]));
1481 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
1483 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1485 // Implicitly locked.
1486 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1489 Constant *ConstantExpr::getInBoundsGetElementPtrTy(const Type *ReqTy,
1490 Constant *C,
1491 Value* const *Idxs,
1492 unsigned NumIdx) {
1493 assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
1494 Idxs+NumIdx) ==
1495 cast<PointerType>(ReqTy)->getElementType() &&
1496 "GEP indices invalid!");
1498 if (Constant *FC = ConstantFoldGetElementPtr(
1499 ReqTy->getContext(), C, /*inBounds=*/true,
1500 (Constant**)Idxs, NumIdx))
1501 return FC; // Fold a few common cases...
1503 assert(isa<PointerType>(C->getType()) &&
1504 "Non-pointer type for constant GetElementPtr expression");
1505 // Look up the constant in the table first to ensure uniqueness
1506 std::vector<Constant*> ArgVec;
1507 ArgVec.reserve(NumIdx+1);
1508 ArgVec.push_back(C);
1509 for (unsigned i = 0; i != NumIdx; ++i)
1510 ArgVec.push_back(cast<Constant>(Idxs[i]));
1511 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1512 GEPOperator::IsInBounds);
1514 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1516 // Implicitly locked.
1517 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1520 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
1521 unsigned NumIdx) {
1522 // Get the result type of the getelementptr!
1523 const Type *Ty =
1524 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
1525 assert(Ty && "GEP indices invalid!");
1526 unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
1527 return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
1530 Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
1531 Value* const *Idxs,
1532 unsigned NumIdx) {
1533 // Get the result type of the getelementptr!
1534 const Type *Ty =
1535 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
1536 assert(Ty && "GEP indices invalid!");
1537 unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
1538 return getInBoundsGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
1541 Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
1542 unsigned NumIdx) {
1543 return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
1546 Constant *ConstantExpr::getInBoundsGetElementPtr(Constant *C,
1547 Constant* const *Idxs,
1548 unsigned NumIdx) {
1549 return getInBoundsGetElementPtr(C, (Value* const *)Idxs, NumIdx);
1552 Constant *
1553 ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
1554 assert(LHS->getType() == RHS->getType());
1555 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1556 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1558 if (Constant *FC = ConstantFoldCompareInstruction(
1559 LHS->getContext(), pred, LHS, RHS))
1560 return FC; // Fold a few common cases...
1562 // Look up the constant in the table first to ensure uniqueness
1563 std::vector<Constant*> ArgVec;
1564 ArgVec.push_back(LHS);
1565 ArgVec.push_back(RHS);
1566 // Get the key type with both the opcode and predicate
1567 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1569 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1571 // Implicitly locked.
1572 return
1573 pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
1576 Constant *
1577 ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
1578 assert(LHS->getType() == RHS->getType());
1579 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1581 if (Constant *FC = ConstantFoldCompareInstruction(
1582 LHS->getContext(), pred, LHS, RHS))
1583 return FC; // Fold a few common cases...
1585 // Look up the constant in the table first to ensure uniqueness
1586 std::vector<Constant*> ArgVec;
1587 ArgVec.push_back(LHS);
1588 ArgVec.push_back(RHS);
1589 // Get the key type with both the opcode and predicate
1590 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1592 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1594 // Implicitly locked.
1595 return
1596 pImpl->ExprConstants.getOrCreate(Type::getInt1Ty(LHS->getContext()), Key);
1599 Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
1600 Constant *Idx) {
1601 if (Constant *FC = ConstantFoldExtractElementInstruction(
1602 ReqTy->getContext(), Val, Idx))
1603 return FC; // Fold a few common cases...
1604 // Look up the constant in the table first to ensure uniqueness
1605 std::vector<Constant*> ArgVec(1, Val);
1606 ArgVec.push_back(Idx);
1607 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1609 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1611 // Implicitly locked.
1612 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1615 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1616 assert(isa<VectorType>(Val->getType()) &&
1617 "Tried to create extractelement operation on non-vector type!");
1618 assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
1619 "Extractelement index must be i32 type!");
1620 return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
1621 Val, Idx);
1624 Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
1625 Constant *Elt, Constant *Idx) {
1626 if (Constant *FC = ConstantFoldInsertElementInstruction(
1627 ReqTy->getContext(), Val, Elt, Idx))
1628 return FC; // Fold a few common cases...
1629 // Look up the constant in the table first to ensure uniqueness
1630 std::vector<Constant*> ArgVec(1, Val);
1631 ArgVec.push_back(Elt);
1632 ArgVec.push_back(Idx);
1633 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1635 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1637 // Implicitly locked.
1638 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1641 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1642 Constant *Idx) {
1643 assert(isa<VectorType>(Val->getType()) &&
1644 "Tried to create insertelement operation on non-vector type!");
1645 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1646 && "Insertelement types must match!");
1647 assert(Idx->getType() == Type::getInt32Ty(Val->getContext()) &&
1648 "Insertelement index must be i32 type!");
1649 return getInsertElementTy(Val->getType(), Val, Elt, Idx);
1652 Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
1653 Constant *V2, Constant *Mask) {
1654 if (Constant *FC = ConstantFoldShuffleVectorInstruction(
1655 ReqTy->getContext(), V1, V2, Mask))
1656 return FC; // Fold a few common cases...
1657 // Look up the constant in the table first to ensure uniqueness
1658 std::vector<Constant*> ArgVec(1, V1);
1659 ArgVec.push_back(V2);
1660 ArgVec.push_back(Mask);
1661 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1663 LLVMContextImpl *pImpl = ReqTy->getContext().pImpl;
1665 // Implicitly locked.
1666 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1669 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1670 Constant *Mask) {
1671 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1672 "Invalid shuffle vector constant expr operands!");
1674 unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
1675 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
1676 const Type *ShufTy = VectorType::get(EltTy, NElts);
1677 return getShuffleVectorTy(ShufTy, V1, V2, Mask);
1680 Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
1681 Constant *Val,
1682 const unsigned *Idxs, unsigned NumIdx) {
1683 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1684 Idxs+NumIdx) == Val->getType() &&
1685 "insertvalue indices invalid!");
1686 assert(Agg->getType() == ReqTy &&
1687 "insertvalue type invalid!");
1688 assert(Agg->getType()->isFirstClassType() &&
1689 "Non-first-class type for constant InsertValue expression");
1690 Constant *FC = ConstantFoldInsertValueInstruction(
1691 ReqTy->getContext(), Agg, Val, Idxs, NumIdx);
1692 assert(FC && "InsertValue constant expr couldn't be folded!");
1693 return FC;
1696 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1697 const unsigned *IdxList, unsigned NumIdx) {
1698 assert(Agg->getType()->isFirstClassType() &&
1699 "Tried to create insertelement operation on non-first-class type!");
1701 const Type *ReqTy = Agg->getType();
1702 #ifndef NDEBUG
1703 const Type *ValTy =
1704 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
1705 #endif
1706 assert(ValTy == Val->getType() && "insertvalue indices invalid!");
1707 return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
1710 Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
1711 const unsigned *Idxs, unsigned NumIdx) {
1712 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1713 Idxs+NumIdx) == ReqTy &&
1714 "extractvalue indices invalid!");
1715 assert(Agg->getType()->isFirstClassType() &&
1716 "Non-first-class type for constant extractvalue expression");
1717 Constant *FC = ConstantFoldExtractValueInstruction(
1718 ReqTy->getContext(), Agg, Idxs, NumIdx);
1719 assert(FC && "ExtractValue constant expr couldn't be folded!");
1720 return FC;
1723 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1724 const unsigned *IdxList, unsigned NumIdx) {
1725 assert(Agg->getType()->isFirstClassType() &&
1726 "Tried to create extractelement operation on non-first-class type!");
1728 const Type *ReqTy =
1729 ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
1730 assert(ReqTy && "extractvalue indices invalid!");
1731 return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
1734 Constant* ConstantExpr::getNeg(Constant* C) {
1735 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1736 if (C->getType()->isFPOrFPVector())
1737 return getFNeg(C);
1738 assert(C->getType()->isIntOrIntVector() &&
1739 "Cannot NEG a nonintegral value!");
1740 return get(Instruction::Sub,
1741 ConstantFP::getZeroValueForNegation(C->getType()),
1745 Constant* ConstantExpr::getFNeg(Constant* C) {
1746 assert(C->getType()->isFPOrFPVector() &&
1747 "Cannot FNEG a non-floating-point value!");
1748 return get(Instruction::FSub,
1749 ConstantFP::getZeroValueForNegation(C->getType()),
1753 Constant* ConstantExpr::getNot(Constant* C) {
1754 assert(C->getType()->isIntOrIntVector() &&
1755 "Cannot NOT a nonintegral value!");
1756 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1759 Constant* ConstantExpr::getAdd(Constant* C1, Constant* C2) {
1760 return get(Instruction::Add, C1, C2);
1763 Constant* ConstantExpr::getFAdd(Constant* C1, Constant* C2) {
1764 return get(Instruction::FAdd, C1, C2);
1767 Constant* ConstantExpr::getSub(Constant* C1, Constant* C2) {
1768 return get(Instruction::Sub, C1, C2);
1771 Constant* ConstantExpr::getFSub(Constant* C1, Constant* C2) {
1772 return get(Instruction::FSub, C1, C2);
1775 Constant* ConstantExpr::getMul(Constant* C1, Constant* C2) {
1776 return get(Instruction::Mul, C1, C2);
1779 Constant* ConstantExpr::getFMul(Constant* C1, Constant* C2) {
1780 return get(Instruction::FMul, C1, C2);
1783 Constant* ConstantExpr::getUDiv(Constant* C1, Constant* C2) {
1784 return get(Instruction::UDiv, C1, C2);
1787 Constant* ConstantExpr::getSDiv(Constant* C1, Constant* C2) {
1788 return get(Instruction::SDiv, C1, C2);
1791 Constant* ConstantExpr::getFDiv(Constant* C1, Constant* C2) {
1792 return get(Instruction::FDiv, C1, C2);
1795 Constant* ConstantExpr::getURem(Constant* C1, Constant* C2) {
1796 return get(Instruction::URem, C1, C2);
1799 Constant* ConstantExpr::getSRem(Constant* C1, Constant* C2) {
1800 return get(Instruction::SRem, C1, C2);
1803 Constant* ConstantExpr::getFRem(Constant* C1, Constant* C2) {
1804 return get(Instruction::FRem, C1, C2);
1807 Constant* ConstantExpr::getAnd(Constant* C1, Constant* C2) {
1808 return get(Instruction::And, C1, C2);
1811 Constant* ConstantExpr::getOr(Constant* C1, Constant* C2) {
1812 return get(Instruction::Or, C1, C2);
1815 Constant* ConstantExpr::getXor(Constant* C1, Constant* C2) {
1816 return get(Instruction::Xor, C1, C2);
1819 Constant* ConstantExpr::getShl(Constant* C1, Constant* C2) {
1820 return get(Instruction::Shl, C1, C2);
1823 Constant* ConstantExpr::getLShr(Constant* C1, Constant* C2) {
1824 return get(Instruction::LShr, C1, C2);
1827 Constant* ConstantExpr::getAShr(Constant* C1, Constant* C2) {
1828 return get(Instruction::AShr, C1, C2);
1831 // destroyConstant - Remove the constant from the constant table...
1833 void ConstantExpr::destroyConstant() {
1834 // Implicitly locked.
1835 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
1836 pImpl->ExprConstants.remove(this);
1837 destroyConstantImpl();
1840 const char *ConstantExpr::getOpcodeName() const {
1841 return Instruction::getOpcodeName(getOpcode());
1844 //===----------------------------------------------------------------------===//
1845 // replaceUsesOfWithOnConstant implementations
1847 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1848 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1849 /// etc.
1851 /// Note that we intentionally replace all uses of From with To here. Consider
1852 /// a large array that uses 'From' 1000 times. By handling this case all here,
1853 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1854 /// single invocation handles all 1000 uses. Handling them one at a time would
1855 /// work, but would be really slow because it would have to unique each updated
1856 /// array instance.
1858 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1859 Use *U) {
1860 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1861 Constant *ToC = cast<Constant>(To);
1863 LLVMContext &Context = getType()->getContext();
1864 LLVMContextImpl *pImpl = Context.pImpl;
1866 std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
1867 Lookup.first.first = getType();
1868 Lookup.second = this;
1870 std::vector<Constant*> &Values = Lookup.first.second;
1871 Values.reserve(getNumOperands()); // Build replacement array.
1873 // Fill values with the modified operands of the constant array. Also,
1874 // compute whether this turns into an all-zeros array.
1875 bool isAllZeros = false;
1876 unsigned NumUpdated = 0;
1877 if (!ToC->isNullValue()) {
1878 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1879 Constant *Val = cast<Constant>(O->get());
1880 if (Val == From) {
1881 Val = ToC;
1882 ++NumUpdated;
1884 Values.push_back(Val);
1886 } else {
1887 isAllZeros = true;
1888 for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
1889 Constant *Val = cast<Constant>(O->get());
1890 if (Val == From) {
1891 Val = ToC;
1892 ++NumUpdated;
1894 Values.push_back(Val);
1895 if (isAllZeros) isAllZeros = Val->isNullValue();
1899 Constant *Replacement = 0;
1900 if (isAllZeros) {
1901 Replacement = ConstantAggregateZero::get(getType());
1902 } else {
1903 // Check to see if we have this array type already.
1904 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
1905 bool Exists;
1906 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
1907 pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
1909 if (Exists) {
1910 Replacement = I->second;
1911 } else {
1912 // Okay, the new shape doesn't exist in the system yet. Instead of
1913 // creating a new constant array, inserting it, replaceallusesof'ing the
1914 // old with the new, then deleting the old... just update the current one
1915 // in place!
1916 pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
1918 // Update to the new value. Optimize for the case when we have a single
1919 // operand that we're changing, but handle bulk updates efficiently.
1920 if (NumUpdated == 1) {
1921 unsigned OperandToUpdate = U - OperandList;
1922 assert(getOperand(OperandToUpdate) == From &&
1923 "ReplaceAllUsesWith broken!");
1924 setOperand(OperandToUpdate, ToC);
1925 } else {
1926 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1927 if (getOperand(i) == From)
1928 setOperand(i, ToC);
1930 return;
1934 // Otherwise, I do need to replace this with an existing value.
1935 assert(Replacement != this && "I didn't contain From!");
1937 // Everyone using this now uses the replacement.
1938 uncheckedReplaceAllUsesWith(Replacement);
1940 // Delete the old constant!
1941 destroyConstant();
1944 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
1945 Use *U) {
1946 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1947 Constant *ToC = cast<Constant>(To);
1949 unsigned OperandToUpdate = U-OperandList;
1950 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
1952 std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
1953 Lookup.first.first = getType();
1954 Lookup.second = this;
1955 std::vector<Constant*> &Values = Lookup.first.second;
1956 Values.reserve(getNumOperands()); // Build replacement struct.
1959 // Fill values with the modified operands of the constant struct. Also,
1960 // compute whether this turns into an all-zeros struct.
1961 bool isAllZeros = false;
1962 if (!ToC->isNullValue()) {
1963 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
1964 Values.push_back(cast<Constant>(O->get()));
1965 } else {
1966 isAllZeros = true;
1967 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1968 Constant *Val = cast<Constant>(O->get());
1969 Values.push_back(Val);
1970 if (isAllZeros) isAllZeros = Val->isNullValue();
1973 Values[OperandToUpdate] = ToC;
1975 LLVMContext &Context = getType()->getContext();
1976 LLVMContextImpl *pImpl = Context.pImpl;
1978 Constant *Replacement = 0;
1979 if (isAllZeros) {
1980 Replacement = ConstantAggregateZero::get(getType());
1981 } else {
1982 // Check to see if we have this array type already.
1983 sys::SmartScopedWriter<true> Writer(pImpl->ConstantsLock);
1984 bool Exists;
1985 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
1986 pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
1988 if (Exists) {
1989 Replacement = I->second;
1990 } else {
1991 // Okay, the new shape doesn't exist in the system yet. Instead of
1992 // creating a new constant struct, inserting it, replaceallusesof'ing the
1993 // old with the new, then deleting the old... just update the current one
1994 // in place!
1995 pImpl->StructConstants.MoveConstantToNewSlot(this, I);
1997 // Update to the new value.
1998 setOperand(OperandToUpdate, ToC);
1999 return;
2003 assert(Replacement != this && "I didn't contain From!");
2005 // Everyone using this now uses the replacement.
2006 uncheckedReplaceAllUsesWith(Replacement);
2008 // Delete the old constant!
2009 destroyConstant();
2012 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2013 Use *U) {
2014 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2016 std::vector<Constant*> Values;
2017 Values.reserve(getNumOperands()); // Build replacement array...
2018 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2019 Constant *Val = getOperand(i);
2020 if (Val == From) Val = cast<Constant>(To);
2021 Values.push_back(Val);
2024 Constant *Replacement = get(getType(), Values);
2025 assert(Replacement != this && "I didn't contain From!");
2027 // Everyone using this now uses the replacement.
2028 uncheckedReplaceAllUsesWith(Replacement);
2030 // Delete the old constant!
2031 destroyConstant();
2034 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2035 Use *U) {
2036 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2037 Constant *To = cast<Constant>(ToV);
2039 Constant *Replacement = 0;
2040 if (getOpcode() == Instruction::GetElementPtr) {
2041 SmallVector<Constant*, 8> Indices;
2042 Constant *Pointer = getOperand(0);
2043 Indices.reserve(getNumOperands()-1);
2044 if (Pointer == From) Pointer = To;
2046 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2047 Constant *Val = getOperand(i);
2048 if (Val == From) Val = To;
2049 Indices.push_back(Val);
2051 Replacement = ConstantExpr::getGetElementPtr(Pointer,
2052 &Indices[0], Indices.size());
2053 } else if (getOpcode() == Instruction::ExtractValue) {
2054 Constant *Agg = getOperand(0);
2055 if (Agg == From) Agg = To;
2057 const SmallVector<unsigned, 4> &Indices = getIndices();
2058 Replacement = ConstantExpr::getExtractValue(Agg,
2059 &Indices[0], Indices.size());
2060 } else if (getOpcode() == Instruction::InsertValue) {
2061 Constant *Agg = getOperand(0);
2062 Constant *Val = getOperand(1);
2063 if (Agg == From) Agg = To;
2064 if (Val == From) Val = To;
2066 const SmallVector<unsigned, 4> &Indices = getIndices();
2067 Replacement = ConstantExpr::getInsertValue(Agg, Val,
2068 &Indices[0], Indices.size());
2069 } else if (isCast()) {
2070 assert(getOperand(0) == From && "Cast only has one use!");
2071 Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
2072 } else if (getOpcode() == Instruction::Select) {
2073 Constant *C1 = getOperand(0);
2074 Constant *C2 = getOperand(1);
2075 Constant *C3 = getOperand(2);
2076 if (C1 == From) C1 = To;
2077 if (C2 == From) C2 = To;
2078 if (C3 == From) C3 = To;
2079 Replacement = ConstantExpr::getSelect(C1, C2, C3);
2080 } else if (getOpcode() == Instruction::ExtractElement) {
2081 Constant *C1 = getOperand(0);
2082 Constant *C2 = getOperand(1);
2083 if (C1 == From) C1 = To;
2084 if (C2 == From) C2 = To;
2085 Replacement = ConstantExpr::getExtractElement(C1, C2);
2086 } else if (getOpcode() == Instruction::InsertElement) {
2087 Constant *C1 = getOperand(0);
2088 Constant *C2 = getOperand(1);
2089 Constant *C3 = getOperand(1);
2090 if (C1 == From) C1 = To;
2091 if (C2 == From) C2 = To;
2092 if (C3 == From) C3 = To;
2093 Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2094 } else if (getOpcode() == Instruction::ShuffleVector) {
2095 Constant *C1 = getOperand(0);
2096 Constant *C2 = getOperand(1);
2097 Constant *C3 = getOperand(2);
2098 if (C1 == From) C1 = To;
2099 if (C2 == From) C2 = To;
2100 if (C3 == From) C3 = To;
2101 Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2102 } else if (isCompare()) {
2103 Constant *C1 = getOperand(0);
2104 Constant *C2 = getOperand(1);
2105 if (C1 == From) C1 = To;
2106 if (C2 == From) C2 = To;
2107 if (getOpcode() == Instruction::ICmp)
2108 Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2109 else {
2110 assert(getOpcode() == Instruction::FCmp);
2111 Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2113 } else if (getNumOperands() == 2) {
2114 Constant *C1 = getOperand(0);
2115 Constant *C2 = getOperand(1);
2116 if (C1 == From) C1 = To;
2117 if (C2 == From) C2 = To;
2118 Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassData);
2119 } else {
2120 llvm_unreachable("Unknown ConstantExpr type!");
2121 return;
2124 assert(Replacement != this && "I didn't contain From!");
2126 // Everyone using this now uses the replacement.
2127 uncheckedReplaceAllUsesWith(Replacement);
2129 // Delete the old constant!
2130 destroyConstant();