1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Constant* classes...
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "LLVMContextImpl.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/System/Mutex.h"
33 #include "llvm/System/RWMutex.h"
34 #include "llvm/System/Threading.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallVector.h"
41 //===----------------------------------------------------------------------===//
43 //===----------------------------------------------------------------------===//
45 // Constructor to create a '0' constant of arbitrary type...
46 static const uint64_t zero
[2] = {0, 0};
47 Constant
* Constant::getNullValue(const Type
* Ty
) {
48 switch (Ty
->getTypeID()) {
49 case Type::IntegerTyID
:
50 return ConstantInt::get(Ty
, 0);
52 return ConstantFP::get(Ty
->getContext(), APFloat(APInt(32, 0)));
53 case Type::DoubleTyID
:
54 return ConstantFP::get(Ty
->getContext(), APFloat(APInt(64, 0)));
55 case Type::X86_FP80TyID
:
56 return ConstantFP::get(Ty
->getContext(), APFloat(APInt(80, 2, zero
)));
58 return ConstantFP::get(Ty
->getContext(),
59 APFloat(APInt(128, 2, zero
), true));
60 case Type::PPC_FP128TyID
:
61 return ConstantFP::get(Ty
->getContext(), APFloat(APInt(128, 2, zero
)));
62 case Type::PointerTyID
:
63 return ConstantPointerNull::get(cast
<PointerType
>(Ty
));
64 case Type::StructTyID
:
66 case Type::VectorTyID
:
67 return ConstantAggregateZero::get(Ty
);
69 // Function, Label, or Opaque type?
70 assert(!"Cannot create a null constant of that type!");
75 Constant
* Constant::getIntegerValue(const Type
* Ty
, const APInt
&V
) {
76 const Type
*ScalarTy
= Ty
->getScalarType();
78 // Create the base integer constant.
79 Constant
*C
= ConstantInt::get(Ty
->getContext(), V
);
81 // Convert an integer to a pointer, if necessary.
82 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(ScalarTy
))
83 C
= ConstantExpr::getIntToPtr(C
, PTy
);
85 // Broadcast a scalar to a vector, if necessary.
86 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
87 C
= ConstantVector::get(std::vector
<Constant
*>(VTy
->getNumElements(), C
));
92 Constant
* Constant::getAllOnesValue(const Type
* Ty
) {
93 if (const IntegerType
* ITy
= dyn_cast
<IntegerType
>(Ty
))
94 return ConstantInt::get(Ty
->getContext(),
95 APInt::getAllOnesValue(ITy
->getBitWidth()));
97 std::vector
<Constant
*> Elts
;
98 const VectorType
* VTy
= cast
<VectorType
>(Ty
);
99 Elts
.resize(VTy
->getNumElements(), getAllOnesValue(VTy
->getElementType()));
100 assert(Elts
[0] && "Not a vector integer type!");
101 return cast
<ConstantVector
>(ConstantVector::get(Elts
));
104 void Constant::destroyConstantImpl() {
105 // When a Constant is destroyed, there may be lingering
106 // references to the constant by other constants in the constant pool. These
107 // constants are implicitly dependent on the module that is being deleted,
108 // but they don't know that. Because we only find out when the CPV is
109 // deleted, we must now notify all of our users (that should only be
110 // Constants) that they are, in fact, invalid now and should be deleted.
112 while (!use_empty()) {
113 Value
*V
= use_back();
114 #ifndef NDEBUG // Only in -g mode...
115 if (!isa
<Constant
>(V
)) {
116 errs() << "While deleting: " << *this
117 << "\n\nUse still stuck around after Def is destroyed: "
121 assert(isa
<Constant
>(V
) && "References remain to Constant being destroyed");
122 Constant
*CV
= cast
<Constant
>(V
);
123 CV
->destroyConstant();
125 // The constant should remove itself from our use list...
126 assert((use_empty() || use_back() != V
) && "Constant not removed!");
129 // Value has no outstanding references it is safe to delete it now...
133 /// canTrap - Return true if evaluation of this constant could trap. This is
134 /// true for things like constant expressions that could divide by zero.
135 bool Constant::canTrap() const {
136 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
137 // The only thing that could possibly trap are constant exprs.
138 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(this);
139 if (!CE
) return false;
141 // ConstantExpr traps if any operands can trap.
142 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
143 if (getOperand(i
)->canTrap())
146 // Otherwise, only specific operations can trap.
147 switch (CE
->getOpcode()) {
150 case Instruction::UDiv
:
151 case Instruction::SDiv
:
152 case Instruction::FDiv
:
153 case Instruction::URem
:
154 case Instruction::SRem
:
155 case Instruction::FRem
:
156 // Div and rem can trap if the RHS is not known to be non-zero.
157 if (!isa
<ConstantInt
>(getOperand(1)) || getOperand(1)->isNullValue())
164 /// getRelocationInfo - This method classifies the entry according to
165 /// whether or not it may generate a relocation entry. This must be
166 /// conservative, so if it might codegen to a relocatable entry, it should say
167 /// so. The return values are:
169 /// NoRelocation: This constant pool entry is guaranteed to never have a
170 /// relocation applied to it (because it holds a simple constant like
172 /// LocalRelocation: This entry has relocations, but the entries are
173 /// guaranteed to be resolvable by the static linker, so the dynamic
174 /// linker will never see them.
175 /// GlobalRelocations: This entry may have arbitrary relocations.
177 /// FIXME: This really should not be in VMCore.
178 Constant::PossibleRelocationsTy
Constant::getRelocationInfo() const {
179 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
180 if (GV
->hasLocalLinkage() || GV
->hasHiddenVisibility())
181 return LocalRelocation
; // Local to this file/library.
182 return GlobalRelocations
; // Global reference.
185 PossibleRelocationsTy Result
= NoRelocation
;
186 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
187 Result
= std::max(Result
, getOperand(i
)->getRelocationInfo());
193 /// getVectorElements - This method, which is only valid on constant of vector
194 /// type, returns the elements of the vector in the specified smallvector.
195 /// This handles breaking down a vector undef into undef elements, etc. For
196 /// constant exprs and other cases we can't handle, we return an empty vector.
197 void Constant::getVectorElements(LLVMContext
&Context
,
198 SmallVectorImpl
<Constant
*> &Elts
) const {
199 assert(isa
<VectorType
>(getType()) && "Not a vector constant!");
201 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this)) {
202 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
)
203 Elts
.push_back(CV
->getOperand(i
));
207 const VectorType
*VT
= cast
<VectorType
>(getType());
208 if (isa
<ConstantAggregateZero
>(this)) {
209 Elts
.assign(VT
->getNumElements(),
210 Constant::getNullValue(VT
->getElementType()));
214 if (isa
<UndefValue
>(this)) {
215 Elts
.assign(VT
->getNumElements(), UndefValue::get(VT
->getElementType()));
219 // Unknown type, must be constant expr etc.
224 //===----------------------------------------------------------------------===//
226 //===----------------------------------------------------------------------===//
228 ConstantInt::ConstantInt(const IntegerType
*Ty
, const APInt
& V
)
229 : Constant(Ty
, ConstantIntVal
, 0, 0), Val(V
) {
230 assert(V
.getBitWidth() == Ty
->getBitWidth() && "Invalid constant for type");
233 ConstantInt
* ConstantInt::getTrue(LLVMContext
&Context
) {
234 LLVMContextImpl
*pImpl
= Context
.pImpl
;
235 sys::SmartScopedWriter
<true>(pImpl
->ConstantsLock
);
236 if (pImpl
->TheTrueVal
)
237 return pImpl
->TheTrueVal
;
239 return (pImpl
->TheTrueVal
=
240 ConstantInt::get(IntegerType::get(Context
, 1), 1));
243 ConstantInt
* ConstantInt::getFalse(LLVMContext
&Context
) {
244 LLVMContextImpl
*pImpl
= Context
.pImpl
;
245 sys::SmartScopedWriter
<true>(pImpl
->ConstantsLock
);
246 if (pImpl
->TheFalseVal
)
247 return pImpl
->TheFalseVal
;
249 return (pImpl
->TheFalseVal
=
250 ConstantInt::get(IntegerType::get(Context
, 1), 0));
254 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
255 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
256 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
257 // compare APInt's of different widths, which would violate an APInt class
258 // invariant which generates an assertion.
259 ConstantInt
*ConstantInt::get(LLVMContext
&Context
, const APInt
& V
) {
260 // Get the corresponding integer type for the bit width of the value.
261 const IntegerType
*ITy
= IntegerType::get(Context
, V
.getBitWidth());
262 // get an existing value or the insertion position
263 DenseMapAPIntKeyInfo::KeyTy
Key(V
, ITy
);
265 Context
.pImpl
->ConstantsLock
.reader_acquire();
266 ConstantInt
*&Slot
= Context
.pImpl
->IntConstants
[Key
];
267 Context
.pImpl
->ConstantsLock
.reader_release();
270 sys::SmartScopedWriter
<true> Writer(Context
.pImpl
->ConstantsLock
);
271 ConstantInt
*&NewSlot
= Context
.pImpl
->IntConstants
[Key
];
273 NewSlot
= new ConstantInt(ITy
, V
);
282 Constant
* ConstantInt::get(const Type
* Ty
, uint64_t V
, bool isSigned
) {
283 Constant
*C
= get(cast
<IntegerType
>(Ty
->getScalarType()),
286 // For vectors, broadcast the value.
287 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
288 return ConstantVector::get(
289 std::vector
<Constant
*>(VTy
->getNumElements(), C
));
294 ConstantInt
* ConstantInt::get(const IntegerType
* Ty
, uint64_t V
,
296 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), V
, isSigned
));
299 ConstantInt
* ConstantInt::getSigned(const IntegerType
* Ty
, int64_t V
) {
300 return get(Ty
, V
, true);
303 Constant
*ConstantInt::getSigned(const Type
*Ty
, int64_t V
) {
304 return get(Ty
, V
, true);
307 Constant
* ConstantInt::get(const Type
* Ty
, const APInt
& V
) {
308 ConstantInt
*C
= get(Ty
->getContext(), V
);
309 assert(C
->getType() == Ty
->getScalarType() &&
310 "ConstantInt type doesn't match the type implied by its value!");
312 // For vectors, broadcast the value.
313 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
314 return ConstantVector::get(
315 std::vector
<Constant
*>(VTy
->getNumElements(), C
));
320 ConstantInt
* ConstantInt::get(const IntegerType
* Ty
, const StringRef
& Str
,
322 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), Str
, radix
));
325 //===----------------------------------------------------------------------===//
327 //===----------------------------------------------------------------------===//
329 static const fltSemantics
*TypeToFloatSemantics(const Type
*Ty
) {
330 if (Ty
== Type::getFloatTy(Ty
->getContext()))
331 return &APFloat::IEEEsingle
;
332 if (Ty
== Type::getDoubleTy(Ty
->getContext()))
333 return &APFloat::IEEEdouble
;
334 if (Ty
== Type::getX86_FP80Ty(Ty
->getContext()))
335 return &APFloat::x87DoubleExtended
;
336 else if (Ty
== Type::getFP128Ty(Ty
->getContext()))
337 return &APFloat::IEEEquad
;
339 assert(Ty
== Type::getPPC_FP128Ty(Ty
->getContext()) && "Unknown FP format");
340 return &APFloat::PPCDoubleDouble
;
343 /// get() - This returns a constant fp for the specified value in the
344 /// specified type. This should only be used for simple constant values like
345 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
346 Constant
* ConstantFP::get(const Type
* Ty
, double V
) {
347 LLVMContext
&Context
= Ty
->getContext();
351 FV
.convert(*TypeToFloatSemantics(Ty
->getScalarType()),
352 APFloat::rmNearestTiesToEven
, &ignored
);
353 Constant
*C
= get(Context
, FV
);
355 // For vectors, broadcast the value.
356 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
357 return ConstantVector::get(
358 std::vector
<Constant
*>(VTy
->getNumElements(), C
));
364 Constant
* ConstantFP::get(const Type
* Ty
, const StringRef
& Str
) {
365 LLVMContext
&Context
= Ty
->getContext();
367 APFloat
FV(*TypeToFloatSemantics(Ty
->getScalarType()), Str
);
368 Constant
*C
= get(Context
, FV
);
370 // For vectors, broadcast the value.
371 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
372 return ConstantVector::get(
373 std::vector
<Constant
*>(VTy
->getNumElements(), C
));
379 ConstantFP
* ConstantFP::getNegativeZero(const Type
* Ty
) {
380 LLVMContext
&Context
= Ty
->getContext();
381 APFloat apf
= cast
<ConstantFP
>(Constant::getNullValue(Ty
))->getValueAPF();
383 return get(Context
, apf
);
387 Constant
* ConstantFP::getZeroValueForNegation(const Type
* Ty
) {
388 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Ty
))
389 if (PTy
->getElementType()->isFloatingPoint()) {
390 std::vector
<Constant
*> zeros(PTy
->getNumElements(),
391 getNegativeZero(PTy
->getElementType()));
392 return ConstantVector::get(PTy
, zeros
);
395 if (Ty
->isFloatingPoint())
396 return getNegativeZero(Ty
);
398 return Constant::getNullValue(Ty
);
402 // ConstantFP accessors.
403 ConstantFP
* ConstantFP::get(LLVMContext
&Context
, const APFloat
& V
) {
404 DenseMapAPFloatKeyInfo::KeyTy
Key(V
);
406 LLVMContextImpl
* pImpl
= Context
.pImpl
;
408 pImpl
->ConstantsLock
.reader_acquire();
409 ConstantFP
*&Slot
= pImpl
->FPConstants
[Key
];
410 pImpl
->ConstantsLock
.reader_release();
413 sys::SmartScopedWriter
<true> Writer(pImpl
->ConstantsLock
);
414 ConstantFP
*&NewSlot
= pImpl
->FPConstants
[Key
];
417 if (&V
.getSemantics() == &APFloat::IEEEsingle
)
418 Ty
= Type::getFloatTy(Context
);
419 else if (&V
.getSemantics() == &APFloat::IEEEdouble
)
420 Ty
= Type::getDoubleTy(Context
);
421 else if (&V
.getSemantics() == &APFloat::x87DoubleExtended
)
422 Ty
= Type::getX86_FP80Ty(Context
);
423 else if (&V
.getSemantics() == &APFloat::IEEEquad
)
424 Ty
= Type::getFP128Ty(Context
);
426 assert(&V
.getSemantics() == &APFloat::PPCDoubleDouble
&&
427 "Unknown FP format");
428 Ty
= Type::getPPC_FP128Ty(Context
);
430 NewSlot
= new ConstantFP(Ty
, V
);
439 ConstantFP::ConstantFP(const Type
*Ty
, const APFloat
& V
)
440 : Constant(Ty
, ConstantFPVal
, 0, 0), Val(V
) {
441 assert(&V
.getSemantics() == TypeToFloatSemantics(Ty
) &&
445 bool ConstantFP::isNullValue() const {
446 return Val
.isZero() && !Val
.isNegative();
449 bool ConstantFP::isExactlyValue(const APFloat
& V
) const {
450 return Val
.bitwiseIsEqual(V
);
453 //===----------------------------------------------------------------------===//
454 // ConstantXXX Classes
455 //===----------------------------------------------------------------------===//
458 ConstantArray::ConstantArray(const ArrayType
*T
,
459 const std::vector
<Constant
*> &V
)
460 : Constant(T
, ConstantArrayVal
,
461 OperandTraits
<ConstantArray
>::op_end(this) - V
.size(),
463 assert(V
.size() == T
->getNumElements() &&
464 "Invalid initializer vector for constant array");
465 Use
*OL
= OperandList
;
466 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
469 assert((C
->getType() == T
->getElementType() ||
471 C
->getType()->getTypeID() == T
->getElementType()->getTypeID())) &&
472 "Initializer for array element doesn't match array element type!");
477 Constant
*ConstantArray::get(const ArrayType
*Ty
,
478 const std::vector
<Constant
*> &V
) {
479 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
480 // If this is an all-zero array, return a ConstantAggregateZero object
483 if (!C
->isNullValue()) {
484 // Implicitly locked.
485 return pImpl
->ArrayConstants
.getOrCreate(Ty
, V
);
487 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
489 // Implicitly locked.
490 return pImpl
->ArrayConstants
.getOrCreate(Ty
, V
);
494 return ConstantAggregateZero::get(Ty
);
498 Constant
* ConstantArray::get(const ArrayType
* T
, Constant
* const* Vals
,
500 // FIXME: make this the primary ctor method.
501 return get(T
, std::vector
<Constant
*>(Vals
, Vals
+NumVals
));
504 /// ConstantArray::get(const string&) - Return an array that is initialized to
505 /// contain the specified string. If length is zero then a null terminator is
506 /// added to the specified string so that it may be used in a natural way.
507 /// Otherwise, the length parameter specifies how much of the string to use
508 /// and it won't be null terminated.
510 Constant
* ConstantArray::get(LLVMContext
&Context
, const StringRef
&Str
,
512 std::vector
<Constant
*> ElementVals
;
513 for (unsigned i
= 0; i
< Str
.size(); ++i
)
514 ElementVals
.push_back(ConstantInt::get(Type::getInt8Ty(Context
), Str
[i
]));
516 // Add a null terminator to the string...
518 ElementVals
.push_back(ConstantInt::get(Type::getInt8Ty(Context
), 0));
521 ArrayType
*ATy
= ArrayType::get(Type::getInt8Ty(Context
), ElementVals
.size());
522 return get(ATy
, ElementVals
);
527 ConstantStruct::ConstantStruct(const StructType
*T
,
528 const std::vector
<Constant
*> &V
)
529 : Constant(T
, ConstantStructVal
,
530 OperandTraits
<ConstantStruct
>::op_end(this) - V
.size(),
532 assert(V
.size() == T
->getNumElements() &&
533 "Invalid initializer vector for constant structure");
534 Use
*OL
= OperandList
;
535 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
538 assert((C
->getType() == T
->getElementType(I
-V
.begin()) ||
539 ((T
->getElementType(I
-V
.begin())->isAbstract() ||
540 C
->getType()->isAbstract()) &&
541 T
->getElementType(I
-V
.begin())->getTypeID() ==
542 C
->getType()->getTypeID())) &&
543 "Initializer for struct element doesn't match struct element type!");
548 // ConstantStruct accessors.
549 Constant
* ConstantStruct::get(const StructType
* T
,
550 const std::vector
<Constant
*>& V
) {
551 LLVMContextImpl
* pImpl
= T
->getContext().pImpl
;
553 // Create a ConstantAggregateZero value if all elements are zeros...
554 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
)
555 if (!V
[i
]->isNullValue())
556 // Implicitly locked.
557 return pImpl
->StructConstants
.getOrCreate(T
, V
);
559 return ConstantAggregateZero::get(T
);
562 Constant
* ConstantStruct::get(LLVMContext
&Context
,
563 const std::vector
<Constant
*>& V
, bool packed
) {
564 std::vector
<const Type
*> StructEls
;
565 StructEls
.reserve(V
.size());
566 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
)
567 StructEls
.push_back(V
[i
]->getType());
568 return get(StructType::get(Context
, StructEls
, packed
), V
);
571 Constant
* ConstantStruct::get(LLVMContext
&Context
,
572 Constant
* const *Vals
, unsigned NumVals
,
574 // FIXME: make this the primary ctor method.
575 return get(Context
, std::vector
<Constant
*>(Vals
, Vals
+NumVals
), Packed
);
578 ConstantVector::ConstantVector(const VectorType
*T
,
579 const std::vector
<Constant
*> &V
)
580 : Constant(T
, ConstantVectorVal
,
581 OperandTraits
<ConstantVector
>::op_end(this) - V
.size(),
583 Use
*OL
= OperandList
;
584 for (std::vector
<Constant
*>::const_iterator I
= V
.begin(), E
= V
.end();
587 assert((C
->getType() == T
->getElementType() ||
589 C
->getType()->getTypeID() == T
->getElementType()->getTypeID())) &&
590 "Initializer for vector element doesn't match vector element type!");
595 // ConstantVector accessors.
596 Constant
* ConstantVector::get(const VectorType
* T
,
597 const std::vector
<Constant
*>& V
) {
598 assert(!V
.empty() && "Vectors can't be empty");
599 LLVMContext
&Context
= T
->getContext();
600 LLVMContextImpl
*pImpl
= Context
.pImpl
;
602 // If this is an all-undef or alll-zero vector, return a
603 // ConstantAggregateZero or UndefValue.
605 bool isZero
= C
->isNullValue();
606 bool isUndef
= isa
<UndefValue
>(C
);
608 if (isZero
|| isUndef
) {
609 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
611 isZero
= isUndef
= false;
617 return ConstantAggregateZero::get(T
);
619 return UndefValue::get(T
);
621 // Implicitly locked.
622 return pImpl
->VectorConstants
.getOrCreate(T
, V
);
625 Constant
* ConstantVector::get(const std::vector
<Constant
*>& V
) {
626 assert(!V
.empty() && "Cannot infer type if V is empty");
627 return get(VectorType::get(V
.front()->getType(),V
.size()), V
);
630 Constant
* ConstantVector::get(Constant
* const* Vals
, unsigned NumVals
) {
631 // FIXME: make this the primary ctor method.
632 return get(std::vector
<Constant
*>(Vals
, Vals
+NumVals
));
635 Constant
* ConstantExpr::getNSWAdd(Constant
* C1
, Constant
* C2
) {
636 return getTy(C1
->getType(), Instruction::Add
, C1
, C2
,
637 OverflowingBinaryOperator::NoSignedWrap
);
640 Constant
* ConstantExpr::getExactSDiv(Constant
* C1
, Constant
* C2
) {
641 return getTy(C1
->getType(), Instruction::SDiv
, C1
, C2
,
642 SDivOperator::IsExact
);
645 // Utility function for determining if a ConstantExpr is a CastOp or not. This
646 // can't be inline because we don't want to #include Instruction.h into
648 bool ConstantExpr::isCast() const {
649 return Instruction::isCast(getOpcode());
652 bool ConstantExpr::isCompare() const {
653 return getOpcode() == Instruction::ICmp
|| getOpcode() == Instruction::FCmp
;
656 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
657 if (getOpcode() != Instruction::GetElementPtr
) return false;
659 gep_type_iterator GEPI
= gep_type_begin(this), E
= gep_type_end(this);
660 User::const_op_iterator OI
= next(this->op_begin());
662 // Skip the first index, as it has no static limit.
666 // The remaining indices must be compile-time known integers within the
667 // bounds of the corresponding notional static array types.
668 for (; GEPI
!= E
; ++GEPI
, ++OI
) {
669 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*OI
);
670 if (!CI
) return false;
671 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(*GEPI
))
672 if (CI
->getValue().getActiveBits() > 64 ||
673 CI
->getZExtValue() >= ATy
->getNumElements())
677 // All the indices checked out.
681 bool ConstantExpr::hasIndices() const {
682 return getOpcode() == Instruction::ExtractValue
||
683 getOpcode() == Instruction::InsertValue
;
686 const SmallVector
<unsigned, 4> &ConstantExpr::getIndices() const {
687 if (const ExtractValueConstantExpr
*EVCE
=
688 dyn_cast
<ExtractValueConstantExpr
>(this))
689 return EVCE
->Indices
;
691 return cast
<InsertValueConstantExpr
>(this)->Indices
;
694 unsigned ConstantExpr::getPredicate() const {
695 assert(getOpcode() == Instruction::FCmp
||
696 getOpcode() == Instruction::ICmp
);
697 return ((const CompareConstantExpr
*)this)->predicate
;
700 /// getWithOperandReplaced - Return a constant expression identical to this
701 /// one, but with the specified operand set to the specified value.
703 ConstantExpr::getWithOperandReplaced(unsigned OpNo
, Constant
*Op
) const {
704 assert(OpNo
< getNumOperands() && "Operand num is out of range!");
705 assert(Op
->getType() == getOperand(OpNo
)->getType() &&
706 "Replacing operand with value of different type!");
707 if (getOperand(OpNo
) == Op
)
708 return const_cast<ConstantExpr
*>(this);
710 Constant
*Op0
, *Op1
, *Op2
;
711 switch (getOpcode()) {
712 case Instruction::Trunc
:
713 case Instruction::ZExt
:
714 case Instruction::SExt
:
715 case Instruction::FPTrunc
:
716 case Instruction::FPExt
:
717 case Instruction::UIToFP
:
718 case Instruction::SIToFP
:
719 case Instruction::FPToUI
:
720 case Instruction::FPToSI
:
721 case Instruction::PtrToInt
:
722 case Instruction::IntToPtr
:
723 case Instruction::BitCast
:
724 return ConstantExpr::getCast(getOpcode(), Op
, getType());
725 case Instruction::Select
:
726 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
727 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
728 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
729 return ConstantExpr::getSelect(Op0
, Op1
, Op2
);
730 case Instruction::InsertElement
:
731 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
732 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
733 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
734 return ConstantExpr::getInsertElement(Op0
, Op1
, Op2
);
735 case Instruction::ExtractElement
:
736 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
737 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
738 return ConstantExpr::getExtractElement(Op0
, Op1
);
739 case Instruction::ShuffleVector
:
740 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
741 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
742 Op2
= (OpNo
== 2) ? Op
: getOperand(2);
743 return ConstantExpr::getShuffleVector(Op0
, Op1
, Op2
);
744 case Instruction::GetElementPtr
: {
745 SmallVector
<Constant
*, 8> Ops
;
746 Ops
.resize(getNumOperands()-1);
747 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
)
748 Ops
[i
-1] = getOperand(i
);
750 return cast
<GEPOperator
>(this)->isInBounds() ?
751 ConstantExpr::getInBoundsGetElementPtr(Op
, &Ops
[0], Ops
.size()) :
752 ConstantExpr::getGetElementPtr(Op
, &Ops
[0], Ops
.size());
754 return cast
<GEPOperator
>(this)->isInBounds() ?
755 ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops
[0], Ops
.size()) :
756 ConstantExpr::getGetElementPtr(getOperand(0), &Ops
[0], Ops
.size());
759 assert(getNumOperands() == 2 && "Must be binary operator?");
760 Op0
= (OpNo
== 0) ? Op
: getOperand(0);
761 Op1
= (OpNo
== 1) ? Op
: getOperand(1);
762 return ConstantExpr::get(getOpcode(), Op0
, Op1
, SubclassData
);
766 /// getWithOperands - This returns the current constant expression with the
767 /// operands replaced with the specified values. The specified operands must
768 /// match count and type with the existing ones.
769 Constant
*ConstantExpr::
770 getWithOperands(Constant
* const *Ops
, unsigned NumOps
) const {
771 assert(NumOps
== getNumOperands() && "Operand count mismatch!");
772 bool AnyChange
= false;
773 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
774 assert(Ops
[i
]->getType() == getOperand(i
)->getType() &&
775 "Operand type mismatch!");
776 AnyChange
|= Ops
[i
] != getOperand(i
);
778 if (!AnyChange
) // No operands changed, return self.
779 return const_cast<ConstantExpr
*>(this);
781 switch (getOpcode()) {
782 case Instruction::Trunc
:
783 case Instruction::ZExt
:
784 case Instruction::SExt
:
785 case Instruction::FPTrunc
:
786 case Instruction::FPExt
:
787 case Instruction::UIToFP
:
788 case Instruction::SIToFP
:
789 case Instruction::FPToUI
:
790 case Instruction::FPToSI
:
791 case Instruction::PtrToInt
:
792 case Instruction::IntToPtr
:
793 case Instruction::BitCast
:
794 return ConstantExpr::getCast(getOpcode(), Ops
[0], getType());
795 case Instruction::Select
:
796 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
797 case Instruction::InsertElement
:
798 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
799 case Instruction::ExtractElement
:
800 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
801 case Instruction::ShuffleVector
:
802 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
803 case Instruction::GetElementPtr
:
804 return cast
<GEPOperator
>(this)->isInBounds() ?
805 ConstantExpr::getInBoundsGetElementPtr(Ops
[0], &Ops
[1], NumOps
-1) :
806 ConstantExpr::getGetElementPtr(Ops
[0], &Ops
[1], NumOps
-1);
807 case Instruction::ICmp
:
808 case Instruction::FCmp
:
809 return ConstantExpr::getCompare(getPredicate(), Ops
[0], Ops
[1]);
811 assert(getNumOperands() == 2 && "Must be binary operator?");
812 return ConstantExpr::get(getOpcode(), Ops
[0], Ops
[1], SubclassData
);
817 //===----------------------------------------------------------------------===//
818 // isValueValidForType implementations
820 bool ConstantInt::isValueValidForType(const Type
*Ty
, uint64_t Val
) {
821 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth(); // assert okay
822 if (Ty
== Type::getInt1Ty(Ty
->getContext()))
823 return Val
== 0 || Val
== 1;
825 return true; // always true, has to fit in largest type
826 uint64_t Max
= (1ll << NumBits
) - 1;
830 bool ConstantInt::isValueValidForType(const Type
*Ty
, int64_t Val
) {
831 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth(); // assert okay
832 if (Ty
== Type::getInt1Ty(Ty
->getContext()))
833 return Val
== 0 || Val
== 1 || Val
== -1;
835 return true; // always true, has to fit in largest type
836 int64_t Min
= -(1ll << (NumBits
-1));
837 int64_t Max
= (1ll << (NumBits
-1)) - 1;
838 return (Val
>= Min
&& Val
<= Max
);
841 bool ConstantFP::isValueValidForType(const Type
*Ty
, const APFloat
& Val
) {
842 // convert modifies in place, so make a copy.
843 APFloat Val2
= APFloat(Val
);
845 switch (Ty
->getTypeID()) {
847 return false; // These can't be represented as floating point!
849 // FIXME rounding mode needs to be more flexible
850 case Type::FloatTyID
: {
851 if (&Val2
.getSemantics() == &APFloat::IEEEsingle
)
853 Val2
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
, &losesInfo
);
856 case Type::DoubleTyID
: {
857 if (&Val2
.getSemantics() == &APFloat::IEEEsingle
||
858 &Val2
.getSemantics() == &APFloat::IEEEdouble
)
860 Val2
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
, &losesInfo
);
863 case Type::X86_FP80TyID
:
864 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
865 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
866 &Val2
.getSemantics() == &APFloat::x87DoubleExtended
;
867 case Type::FP128TyID
:
868 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
869 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
870 &Val2
.getSemantics() == &APFloat::IEEEquad
;
871 case Type::PPC_FP128TyID
:
872 return &Val2
.getSemantics() == &APFloat::IEEEsingle
||
873 &Val2
.getSemantics() == &APFloat::IEEEdouble
||
874 &Val2
.getSemantics() == &APFloat::PPCDoubleDouble
;
878 //===----------------------------------------------------------------------===//
879 // Factory Function Implementation
881 ConstantAggregateZero
* ConstantAggregateZero::get(const Type
* Ty
) {
882 assert((isa
<StructType
>(Ty
) || isa
<ArrayType
>(Ty
) || isa
<VectorType
>(Ty
)) &&
883 "Cannot create an aggregate zero of non-aggregate type!");
885 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
886 // Implicitly locked.
887 return pImpl
->AggZeroConstants
.getOrCreate(Ty
, 0);
890 /// destroyConstant - Remove the constant from the constant table...
892 void ConstantAggregateZero::destroyConstant() {
893 // Implicitly locked.
894 getType()->getContext().pImpl
->AggZeroConstants
.remove(this);
895 destroyConstantImpl();
898 /// destroyConstant - Remove the constant from the constant table...
900 void ConstantArray::destroyConstant() {
901 // Implicitly locked.
902 getType()->getContext().pImpl
->ArrayConstants
.remove(this);
903 destroyConstantImpl();
906 /// isString - This method returns true if the array is an array of i8, and
907 /// if the elements of the array are all ConstantInt's.
908 bool ConstantArray::isString() const {
909 // Check the element type for i8...
910 if (getType()->getElementType() != Type::getInt8Ty(getContext()))
912 // Check the elements to make sure they are all integers, not constant
914 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
915 if (!isa
<ConstantInt
>(getOperand(i
)))
920 /// isCString - This method returns true if the array is a string (see
921 /// isString) and it ends in a null byte \\0 and does not contains any other
922 /// null bytes except its terminator.
923 bool ConstantArray::isCString() const {
924 // Check the element type for i8...
925 if (getType()->getElementType() != Type::getInt8Ty(getContext()))
928 // Last element must be a null.
929 if (!getOperand(getNumOperands()-1)->isNullValue())
931 // Other elements must be non-null integers.
932 for (unsigned i
= 0, e
= getNumOperands()-1; i
!= e
; ++i
) {
933 if (!isa
<ConstantInt
>(getOperand(i
)))
935 if (getOperand(i
)->isNullValue())
942 /// getAsString - If the sub-element type of this array is i8
943 /// then this method converts the array to an std::string and returns it.
944 /// Otherwise, it asserts out.
946 std::string
ConstantArray::getAsString() const {
947 assert(isString() && "Not a string!");
949 Result
.reserve(getNumOperands());
950 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
951 Result
.push_back((char)cast
<ConstantInt
>(getOperand(i
))->getZExtValue());
956 //---- ConstantStruct::get() implementation...
963 // destroyConstant - Remove the constant from the constant table...
965 void ConstantStruct::destroyConstant() {
966 // Implicitly locked.
967 getType()->getContext().pImpl
->StructConstants
.remove(this);
968 destroyConstantImpl();
971 // destroyConstant - Remove the constant from the constant table...
973 void ConstantVector::destroyConstant() {
974 // Implicitly locked.
975 getType()->getContext().pImpl
->VectorConstants
.remove(this);
976 destroyConstantImpl();
979 /// This function will return true iff every element in this vector constant
980 /// is set to all ones.
981 /// @returns true iff this constant's emements are all set to all ones.
982 /// @brief Determine if the value is all ones.
983 bool ConstantVector::isAllOnesValue() const {
984 // Check out first element.
985 const Constant
*Elt
= getOperand(0);
986 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
);
987 if (!CI
|| !CI
->isAllOnesValue()) return false;
988 // Then make sure all remaining elements point to the same value.
989 for (unsigned I
= 1, E
= getNumOperands(); I
< E
; ++I
) {
990 if (getOperand(I
) != Elt
) return false;
995 /// getSplatValue - If this is a splat constant, where all of the
996 /// elements have the same value, return that value. Otherwise return null.
997 Constant
*ConstantVector::getSplatValue() {
998 // Check out first element.
999 Constant
*Elt
= getOperand(0);
1000 // Then make sure all remaining elements point to the same value.
1001 for (unsigned I
= 1, E
= getNumOperands(); I
< E
; ++I
)
1002 if (getOperand(I
) != Elt
) return 0;
1006 //---- ConstantPointerNull::get() implementation...
1009 ConstantPointerNull
*ConstantPointerNull::get(const PointerType
*Ty
) {
1010 // Implicitly locked.
1011 return Ty
->getContext().pImpl
->NullPtrConstants
.getOrCreate(Ty
, 0);
1014 // destroyConstant - Remove the constant from the constant table...
1016 void ConstantPointerNull::destroyConstant() {
1017 // Implicitly locked.
1018 getType()->getContext().pImpl
->NullPtrConstants
.remove(this);
1019 destroyConstantImpl();
1023 //---- UndefValue::get() implementation...
1026 UndefValue
*UndefValue::get(const Type
*Ty
) {
1027 // Implicitly locked.
1028 return Ty
->getContext().pImpl
->UndefValueConstants
.getOrCreate(Ty
, 0);
1031 // destroyConstant - Remove the constant from the constant table.
1033 void UndefValue::destroyConstant() {
1034 // Implicitly locked.
1035 getType()->getContext().pImpl
->UndefValueConstants
.remove(this);
1036 destroyConstantImpl();
1039 //---- ConstantExpr::get() implementations...
1042 /// This is a utility function to handle folding of casts and lookup of the
1043 /// cast in the ExprConstants map. It is used by the various get* methods below.
1044 static inline Constant
*getFoldedCast(
1045 Instruction::CastOps opc
, Constant
*C
, const Type
*Ty
) {
1046 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1047 // Fold a few common cases
1048 if (Constant
*FC
= ConstantFoldCastInstruction(Ty
->getContext(), opc
, C
, Ty
))
1051 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
1053 // Look up the constant in the table first to ensure uniqueness
1054 std::vector
<Constant
*> argVec(1, C
);
1055 ExprMapKeyType
Key(opc
, argVec
);
1057 // Implicitly locked.
1058 return pImpl
->ExprConstants
.getOrCreate(Ty
, Key
);
1061 Constant
*ConstantExpr::getCast(unsigned oc
, Constant
*C
, const Type
*Ty
) {
1062 Instruction::CastOps opc
= Instruction::CastOps(oc
);
1063 assert(Instruction::isCast(opc
) && "opcode out of range");
1064 assert(C
&& Ty
&& "Null arguments to getCast");
1065 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1069 llvm_unreachable("Invalid cast opcode");
1071 case Instruction::Trunc
: return getTrunc(C
, Ty
);
1072 case Instruction::ZExt
: return getZExt(C
, Ty
);
1073 case Instruction::SExt
: return getSExt(C
, Ty
);
1074 case Instruction::FPTrunc
: return getFPTrunc(C
, Ty
);
1075 case Instruction::FPExt
: return getFPExtend(C
, Ty
);
1076 case Instruction::UIToFP
: return getUIToFP(C
, Ty
);
1077 case Instruction::SIToFP
: return getSIToFP(C
, Ty
);
1078 case Instruction::FPToUI
: return getFPToUI(C
, Ty
);
1079 case Instruction::FPToSI
: return getFPToSI(C
, Ty
);
1080 case Instruction::PtrToInt
: return getPtrToInt(C
, Ty
);
1081 case Instruction::IntToPtr
: return getIntToPtr(C
, Ty
);
1082 case Instruction::BitCast
: return getBitCast(C
, Ty
);
1087 Constant
*ConstantExpr::getZExtOrBitCast(Constant
*C
, const Type
*Ty
) {
1088 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1089 return getCast(Instruction::BitCast
, C
, Ty
);
1090 return getCast(Instruction::ZExt
, C
, Ty
);
1093 Constant
*ConstantExpr::getSExtOrBitCast(Constant
*C
, const Type
*Ty
) {
1094 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1095 return getCast(Instruction::BitCast
, C
, Ty
);
1096 return getCast(Instruction::SExt
, C
, Ty
);
1099 Constant
*ConstantExpr::getTruncOrBitCast(Constant
*C
, const Type
*Ty
) {
1100 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1101 return getCast(Instruction::BitCast
, C
, Ty
);
1102 return getCast(Instruction::Trunc
, C
, Ty
);
1105 Constant
*ConstantExpr::getPointerCast(Constant
*S
, const Type
*Ty
) {
1106 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
1107 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) && "Invalid cast");
1109 if (Ty
->isInteger())
1110 return getCast(Instruction::PtrToInt
, S
, Ty
);
1111 return getCast(Instruction::BitCast
, S
, Ty
);
1114 Constant
*ConstantExpr::getIntegerCast(Constant
*C
, const Type
*Ty
,
1116 assert(C
->getType()->isIntOrIntVector() &&
1117 Ty
->isIntOrIntVector() && "Invalid cast");
1118 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1119 unsigned DstBits
= Ty
->getScalarSizeInBits();
1120 Instruction::CastOps opcode
=
1121 (SrcBits
== DstBits
? Instruction::BitCast
:
1122 (SrcBits
> DstBits
? Instruction::Trunc
:
1123 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
1124 return getCast(opcode
, C
, Ty
);
1127 Constant
*ConstantExpr::getFPCast(Constant
*C
, const Type
*Ty
) {
1128 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
1130 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1131 unsigned DstBits
= Ty
->getScalarSizeInBits();
1132 if (SrcBits
== DstBits
)
1133 return C
; // Avoid a useless cast
1134 Instruction::CastOps opcode
=
1135 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
);
1136 return getCast(opcode
, C
, Ty
);
1139 Constant
*ConstantExpr::getTrunc(Constant
*C
, const Type
*Ty
) {
1141 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1142 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1144 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1145 assert(C
->getType()->isIntOrIntVector() && "Trunc operand must be integer");
1146 assert(Ty
->isIntOrIntVector() && "Trunc produces only integral");
1147 assert(C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1148 "SrcTy must be larger than DestTy for Trunc!");
1150 return getFoldedCast(Instruction::Trunc
, C
, Ty
);
1153 Constant
*ConstantExpr::getSExt(Constant
*C
, const Type
*Ty
) {
1155 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1156 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1158 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1159 assert(C
->getType()->isIntOrIntVector() && "SExt operand must be integral");
1160 assert(Ty
->isIntOrIntVector() && "SExt produces only integer");
1161 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1162 "SrcTy must be smaller than DestTy for SExt!");
1164 return getFoldedCast(Instruction::SExt
, C
, Ty
);
1167 Constant
*ConstantExpr::getZExt(Constant
*C
, const Type
*Ty
) {
1169 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1170 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1172 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1173 assert(C
->getType()->isIntOrIntVector() && "ZEXt operand must be integral");
1174 assert(Ty
->isIntOrIntVector() && "ZExt produces only integer");
1175 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1176 "SrcTy must be smaller than DestTy for ZExt!");
1178 return getFoldedCast(Instruction::ZExt
, C
, Ty
);
1181 Constant
*ConstantExpr::getFPTrunc(Constant
*C
, const Type
*Ty
) {
1183 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1184 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1186 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1187 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
1188 C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1189 "This is an illegal floating point truncation!");
1190 return getFoldedCast(Instruction::FPTrunc
, C
, Ty
);
1193 Constant
*ConstantExpr::getFPExtend(Constant
*C
, const Type
*Ty
) {
1195 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1196 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1198 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1199 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
1200 C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1201 "This is an illegal floating point extension!");
1202 return getFoldedCast(Instruction::FPExt
, C
, Ty
);
1205 Constant
*ConstantExpr::getUIToFP(Constant
*C
, const Type
*Ty
) {
1207 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1208 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1210 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1211 assert(C
->getType()->isIntOrIntVector() && Ty
->isFPOrFPVector() &&
1212 "This is an illegal uint to floating point cast!");
1213 return getFoldedCast(Instruction::UIToFP
, C
, Ty
);
1216 Constant
*ConstantExpr::getSIToFP(Constant
*C
, const Type
*Ty
) {
1218 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1219 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1221 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1222 assert(C
->getType()->isIntOrIntVector() && Ty
->isFPOrFPVector() &&
1223 "This is an illegal sint to floating point cast!");
1224 return getFoldedCast(Instruction::SIToFP
, C
, Ty
);
1227 Constant
*ConstantExpr::getFPToUI(Constant
*C
, const Type
*Ty
) {
1229 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1230 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1232 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1233 assert(C
->getType()->isFPOrFPVector() && Ty
->isIntOrIntVector() &&
1234 "This is an illegal floating point to uint cast!");
1235 return getFoldedCast(Instruction::FPToUI
, C
, Ty
);
1238 Constant
*ConstantExpr::getFPToSI(Constant
*C
, const Type
*Ty
) {
1240 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1241 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1243 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1244 assert(C
->getType()->isFPOrFPVector() && Ty
->isIntOrIntVector() &&
1245 "This is an illegal floating point to sint cast!");
1246 return getFoldedCast(Instruction::FPToSI
, C
, Ty
);
1249 Constant
*ConstantExpr::getPtrToInt(Constant
*C
, const Type
*DstTy
) {
1250 assert(isa
<PointerType
>(C
->getType()) && "PtrToInt source must be pointer");
1251 assert(DstTy
->isInteger() && "PtrToInt destination must be integral");
1252 return getFoldedCast(Instruction::PtrToInt
, C
, DstTy
);
1255 Constant
*ConstantExpr::getIntToPtr(Constant
*C
, const Type
*DstTy
) {
1256 assert(C
->getType()->isInteger() && "IntToPtr source must be integral");
1257 assert(isa
<PointerType
>(DstTy
) && "IntToPtr destination must be a pointer");
1258 return getFoldedCast(Instruction::IntToPtr
, C
, DstTy
);
1261 Constant
*ConstantExpr::getBitCast(Constant
*C
, const Type
*DstTy
) {
1262 // BitCast implies a no-op cast of type only. No bits change. However, you
1263 // can't cast pointers to anything but pointers.
1265 const Type
*SrcTy
= C
->getType();
1266 assert((isa
<PointerType
>(SrcTy
) == isa
<PointerType
>(DstTy
)) &&
1267 "BitCast cannot cast pointer to non-pointer and vice versa");
1269 // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
1270 // or nonptr->ptr). For all the other types, the cast is okay if source and
1271 // destination bit widths are identical.
1272 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
1273 unsigned DstBitSize
= DstTy
->getPrimitiveSizeInBits();
1275 assert(SrcBitSize
== DstBitSize
&& "BitCast requires types of same width");
1277 // It is common to ask for a bitcast of a value to its own type, handle this
1279 if (C
->getType() == DstTy
) return C
;
1281 return getFoldedCast(Instruction::BitCast
, C
, DstTy
);
1284 Constant
*ConstantExpr::getTy(const Type
*ReqTy
, unsigned Opcode
,
1285 Constant
*C1
, Constant
*C2
,
1287 // Check the operands for consistency first
1288 assert(Opcode
>= Instruction::BinaryOpsBegin
&&
1289 Opcode
< Instruction::BinaryOpsEnd
&&
1290 "Invalid opcode in binary constant expression");
1291 assert(C1
->getType() == C2
->getType() &&
1292 "Operand types in binary constant expression should match");
1294 if (ReqTy
== C1
->getType() || ReqTy
== Type::getInt1Ty(ReqTy
->getContext()))
1295 if (Constant
*FC
= ConstantFoldBinaryInstruction(ReqTy
->getContext(),
1297 return FC
; // Fold a few common cases...
1299 std::vector
<Constant
*> argVec(1, C1
); argVec
.push_back(C2
);
1300 ExprMapKeyType
Key(Opcode
, argVec
, 0, Flags
);
1302 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1304 // Implicitly locked.
1305 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1308 Constant
*ConstantExpr::getCompareTy(unsigned short predicate
,
1309 Constant
*C1
, Constant
*C2
) {
1310 switch (predicate
) {
1311 default: llvm_unreachable("Invalid CmpInst predicate");
1312 case CmpInst::FCMP_FALSE
: case CmpInst::FCMP_OEQ
: case CmpInst::FCMP_OGT
:
1313 case CmpInst::FCMP_OGE
: case CmpInst::FCMP_OLT
: case CmpInst::FCMP_OLE
:
1314 case CmpInst::FCMP_ONE
: case CmpInst::FCMP_ORD
: case CmpInst::FCMP_UNO
:
1315 case CmpInst::FCMP_UEQ
: case CmpInst::FCMP_UGT
: case CmpInst::FCMP_UGE
:
1316 case CmpInst::FCMP_ULT
: case CmpInst::FCMP_ULE
: case CmpInst::FCMP_UNE
:
1317 case CmpInst::FCMP_TRUE
:
1318 return getFCmp(predicate
, C1
, C2
);
1320 case CmpInst::ICMP_EQ
: case CmpInst::ICMP_NE
: case CmpInst::ICMP_UGT
:
1321 case CmpInst::ICMP_UGE
: case CmpInst::ICMP_ULT
: case CmpInst::ICMP_ULE
:
1322 case CmpInst::ICMP_SGT
: case CmpInst::ICMP_SGE
: case CmpInst::ICMP_SLT
:
1323 case CmpInst::ICMP_SLE
:
1324 return getICmp(predicate
, C1
, C2
);
1328 Constant
*ConstantExpr::get(unsigned Opcode
, Constant
*C1
, Constant
*C2
,
1330 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1331 if (C1
->getType()->isFPOrFPVector()) {
1332 if (Opcode
== Instruction::Add
) Opcode
= Instruction::FAdd
;
1333 else if (Opcode
== Instruction::Sub
) Opcode
= Instruction::FSub
;
1334 else if (Opcode
== Instruction::Mul
) Opcode
= Instruction::FMul
;
1338 case Instruction::Add
:
1339 case Instruction::Sub
:
1340 case Instruction::Mul
:
1341 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1342 assert(C1
->getType()->isIntOrIntVector() &&
1343 "Tried to create an integer operation on a non-integer type!");
1345 case Instruction::FAdd
:
1346 case Instruction::FSub
:
1347 case Instruction::FMul
:
1348 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1349 assert(C1
->getType()->isFPOrFPVector() &&
1350 "Tried to create a floating-point operation on a "
1351 "non-floating-point type!");
1353 case Instruction::UDiv
:
1354 case Instruction::SDiv
:
1355 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1356 assert(C1
->getType()->isIntOrIntVector() &&
1357 "Tried to create an arithmetic operation on a non-arithmetic type!");
1359 case Instruction::FDiv
:
1360 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1361 assert(C1
->getType()->isFPOrFPVector() &&
1362 "Tried to create an arithmetic operation on a non-arithmetic type!");
1364 case Instruction::URem
:
1365 case Instruction::SRem
:
1366 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1367 assert(C1
->getType()->isIntOrIntVector() &&
1368 "Tried to create an arithmetic operation on a non-arithmetic type!");
1370 case Instruction::FRem
:
1371 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1372 assert(C1
->getType()->isFPOrFPVector() &&
1373 "Tried to create an arithmetic operation on a non-arithmetic type!");
1375 case Instruction::And
:
1376 case Instruction::Or
:
1377 case Instruction::Xor
:
1378 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1379 assert(C1
->getType()->isIntOrIntVector() &&
1380 "Tried to create a logical operation on a non-integral type!");
1382 case Instruction::Shl
:
1383 case Instruction::LShr
:
1384 case Instruction::AShr
:
1385 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1386 assert(C1
->getType()->isIntOrIntVector() &&
1387 "Tried to create a shift operation on a non-integer type!");
1394 return getTy(C1
->getType(), Opcode
, C1
, C2
, Flags
);
1397 Constant
* ConstantExpr::getSizeOf(const Type
* Ty
) {
1398 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1399 // Note that a non-inbounds gep is used, as null isn't within any object.
1400 Constant
*GEPIdx
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1401 Constant
*GEP
= getGetElementPtr(
1402 Constant::getNullValue(PointerType::getUnqual(Ty
)), &GEPIdx
, 1);
1403 return getCast(Instruction::PtrToInt
, GEP
,
1404 Type::getInt64Ty(Ty
->getContext()));
1407 Constant
* ConstantExpr::getAlignOf(const Type
* Ty
) {
1408 // alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
1409 // Note that a non-inbounds gep is used, as null isn't within any object.
1410 const Type
*AligningTy
= StructType::get(Ty
->getContext(),
1411 Type::getInt8Ty(Ty
->getContext()), Ty
, NULL
);
1412 Constant
*NullPtr
= Constant::getNullValue(AligningTy
->getPointerTo());
1413 Constant
*Zero
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 0);
1414 Constant
*One
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1415 Constant
*Indices
[2] = { Zero
, One
};
1416 Constant
*GEP
= getGetElementPtr(NullPtr
, Indices
, 2);
1417 return getCast(Instruction::PtrToInt
, GEP
,
1418 Type::getInt32Ty(Ty
->getContext()));
1421 Constant
* ConstantExpr::getOffsetOf(const StructType
* STy
, unsigned FieldNo
) {
1422 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1423 // Note that a non-inbounds gep is used, as null isn't within any object.
1424 Constant
*GEPIdx
[] = {
1425 ConstantInt::get(Type::getInt64Ty(STy
->getContext()), 0),
1426 ConstantInt::get(Type::getInt32Ty(STy
->getContext()), FieldNo
)
1428 Constant
*GEP
= getGetElementPtr(
1429 Constant::getNullValue(PointerType::getUnqual(STy
)), GEPIdx
, 2);
1430 return getCast(Instruction::PtrToInt
, GEP
,
1431 Type::getInt64Ty(STy
->getContext()));
1434 Constant
*ConstantExpr::getCompare(unsigned short pred
,
1435 Constant
*C1
, Constant
*C2
) {
1436 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1437 return getCompareTy(pred
, C1
, C2
);
1440 Constant
*ConstantExpr::getSelectTy(const Type
*ReqTy
, Constant
*C
,
1441 Constant
*V1
, Constant
*V2
) {
1442 assert(!SelectInst::areInvalidOperands(C
, V1
, V2
)&&"Invalid select operands");
1444 if (ReqTy
== V1
->getType())
1445 if (Constant
*SC
= ConstantFoldSelectInstruction(
1446 ReqTy
->getContext(), C
, V1
, V2
))
1447 return SC
; // Fold common cases
1449 std::vector
<Constant
*> argVec(3, C
);
1452 ExprMapKeyType
Key(Instruction::Select
, argVec
);
1454 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1456 // Implicitly locked.
1457 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1460 Constant
*ConstantExpr::getGetElementPtrTy(const Type
*ReqTy
, Constant
*C
,
1463 assert(GetElementPtrInst::getIndexedType(C
->getType(), Idxs
,
1465 cast
<PointerType
>(ReqTy
)->getElementType() &&
1466 "GEP indices invalid!");
1468 if (Constant
*FC
= ConstantFoldGetElementPtr(
1469 ReqTy
->getContext(), C
, /*inBounds=*/false,
1470 (Constant
**)Idxs
, NumIdx
))
1471 return FC
; // Fold a few common cases...
1473 assert(isa
<PointerType
>(C
->getType()) &&
1474 "Non-pointer type for constant GetElementPtr expression");
1475 // Look up the constant in the table first to ensure uniqueness
1476 std::vector
<Constant
*> ArgVec
;
1477 ArgVec
.reserve(NumIdx
+1);
1478 ArgVec
.push_back(C
);
1479 for (unsigned i
= 0; i
!= NumIdx
; ++i
)
1480 ArgVec
.push_back(cast
<Constant
>(Idxs
[i
]));
1481 const ExprMapKeyType
Key(Instruction::GetElementPtr
, ArgVec
);
1483 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1485 // Implicitly locked.
1486 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1489 Constant
*ConstantExpr::getInBoundsGetElementPtrTy(const Type
*ReqTy
,
1493 assert(GetElementPtrInst::getIndexedType(C
->getType(), Idxs
,
1495 cast
<PointerType
>(ReqTy
)->getElementType() &&
1496 "GEP indices invalid!");
1498 if (Constant
*FC
= ConstantFoldGetElementPtr(
1499 ReqTy
->getContext(), C
, /*inBounds=*/true,
1500 (Constant
**)Idxs
, NumIdx
))
1501 return FC
; // Fold a few common cases...
1503 assert(isa
<PointerType
>(C
->getType()) &&
1504 "Non-pointer type for constant GetElementPtr expression");
1505 // Look up the constant in the table first to ensure uniqueness
1506 std::vector
<Constant
*> ArgVec
;
1507 ArgVec
.reserve(NumIdx
+1);
1508 ArgVec
.push_back(C
);
1509 for (unsigned i
= 0; i
!= NumIdx
; ++i
)
1510 ArgVec
.push_back(cast
<Constant
>(Idxs
[i
]));
1511 const ExprMapKeyType
Key(Instruction::GetElementPtr
, ArgVec
, 0,
1512 GEPOperator::IsInBounds
);
1514 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1516 // Implicitly locked.
1517 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1520 Constant
*ConstantExpr::getGetElementPtr(Constant
*C
, Value
* const *Idxs
,
1522 // Get the result type of the getelementptr!
1524 GetElementPtrInst::getIndexedType(C
->getType(), Idxs
, Idxs
+NumIdx
);
1525 assert(Ty
&& "GEP indices invalid!");
1526 unsigned As
= cast
<PointerType
>(C
->getType())->getAddressSpace();
1527 return getGetElementPtrTy(PointerType::get(Ty
, As
), C
, Idxs
, NumIdx
);
1530 Constant
*ConstantExpr::getInBoundsGetElementPtr(Constant
*C
,
1533 // Get the result type of the getelementptr!
1535 GetElementPtrInst::getIndexedType(C
->getType(), Idxs
, Idxs
+NumIdx
);
1536 assert(Ty
&& "GEP indices invalid!");
1537 unsigned As
= cast
<PointerType
>(C
->getType())->getAddressSpace();
1538 return getInBoundsGetElementPtrTy(PointerType::get(Ty
, As
), C
, Idxs
, NumIdx
);
1541 Constant
*ConstantExpr::getGetElementPtr(Constant
*C
, Constant
* const *Idxs
,
1543 return getGetElementPtr(C
, (Value
* const *)Idxs
, NumIdx
);
1546 Constant
*ConstantExpr::getInBoundsGetElementPtr(Constant
*C
,
1547 Constant
* const *Idxs
,
1549 return getInBoundsGetElementPtr(C
, (Value
* const *)Idxs
, NumIdx
);
1553 ConstantExpr::getICmp(unsigned short pred
, Constant
* LHS
, Constant
* RHS
) {
1554 assert(LHS
->getType() == RHS
->getType());
1555 assert(pred
>= ICmpInst::FIRST_ICMP_PREDICATE
&&
1556 pred
<= ICmpInst::LAST_ICMP_PREDICATE
&& "Invalid ICmp Predicate");
1558 if (Constant
*FC
= ConstantFoldCompareInstruction(
1559 LHS
->getContext(), pred
, LHS
, RHS
))
1560 return FC
; // Fold a few common cases...
1562 // Look up the constant in the table first to ensure uniqueness
1563 std::vector
<Constant
*> ArgVec
;
1564 ArgVec
.push_back(LHS
);
1565 ArgVec
.push_back(RHS
);
1566 // Get the key type with both the opcode and predicate
1567 const ExprMapKeyType
Key(Instruction::ICmp
, ArgVec
, pred
);
1569 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
1571 // Implicitly locked.
1573 pImpl
->ExprConstants
.getOrCreate(Type::getInt1Ty(LHS
->getContext()), Key
);
1577 ConstantExpr::getFCmp(unsigned short pred
, Constant
* LHS
, Constant
* RHS
) {
1578 assert(LHS
->getType() == RHS
->getType());
1579 assert(pred
<= FCmpInst::LAST_FCMP_PREDICATE
&& "Invalid FCmp Predicate");
1581 if (Constant
*FC
= ConstantFoldCompareInstruction(
1582 LHS
->getContext(), pred
, LHS
, RHS
))
1583 return FC
; // Fold a few common cases...
1585 // Look up the constant in the table first to ensure uniqueness
1586 std::vector
<Constant
*> ArgVec
;
1587 ArgVec
.push_back(LHS
);
1588 ArgVec
.push_back(RHS
);
1589 // Get the key type with both the opcode and predicate
1590 const ExprMapKeyType
Key(Instruction::FCmp
, ArgVec
, pred
);
1592 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
1594 // Implicitly locked.
1596 pImpl
->ExprConstants
.getOrCreate(Type::getInt1Ty(LHS
->getContext()), Key
);
1599 Constant
*ConstantExpr::getExtractElementTy(const Type
*ReqTy
, Constant
*Val
,
1601 if (Constant
*FC
= ConstantFoldExtractElementInstruction(
1602 ReqTy
->getContext(), Val
, Idx
))
1603 return FC
; // Fold a few common cases...
1604 // Look up the constant in the table first to ensure uniqueness
1605 std::vector
<Constant
*> ArgVec(1, Val
);
1606 ArgVec
.push_back(Idx
);
1607 const ExprMapKeyType
Key(Instruction::ExtractElement
,ArgVec
);
1609 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1611 // Implicitly locked.
1612 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1615 Constant
*ConstantExpr::getExtractElement(Constant
*Val
, Constant
*Idx
) {
1616 assert(isa
<VectorType
>(Val
->getType()) &&
1617 "Tried to create extractelement operation on non-vector type!");
1618 assert(Idx
->getType() == Type::getInt32Ty(Val
->getContext()) &&
1619 "Extractelement index must be i32 type!");
1620 return getExtractElementTy(cast
<VectorType
>(Val
->getType())->getElementType(),
1624 Constant
*ConstantExpr::getInsertElementTy(const Type
*ReqTy
, Constant
*Val
,
1625 Constant
*Elt
, Constant
*Idx
) {
1626 if (Constant
*FC
= ConstantFoldInsertElementInstruction(
1627 ReqTy
->getContext(), Val
, Elt
, Idx
))
1628 return FC
; // Fold a few common cases...
1629 // Look up the constant in the table first to ensure uniqueness
1630 std::vector
<Constant
*> ArgVec(1, Val
);
1631 ArgVec
.push_back(Elt
);
1632 ArgVec
.push_back(Idx
);
1633 const ExprMapKeyType
Key(Instruction::InsertElement
,ArgVec
);
1635 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1637 // Implicitly locked.
1638 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1641 Constant
*ConstantExpr::getInsertElement(Constant
*Val
, Constant
*Elt
,
1643 assert(isa
<VectorType
>(Val
->getType()) &&
1644 "Tried to create insertelement operation on non-vector type!");
1645 assert(Elt
->getType() == cast
<VectorType
>(Val
->getType())->getElementType()
1646 && "Insertelement types must match!");
1647 assert(Idx
->getType() == Type::getInt32Ty(Val
->getContext()) &&
1648 "Insertelement index must be i32 type!");
1649 return getInsertElementTy(Val
->getType(), Val
, Elt
, Idx
);
1652 Constant
*ConstantExpr::getShuffleVectorTy(const Type
*ReqTy
, Constant
*V1
,
1653 Constant
*V2
, Constant
*Mask
) {
1654 if (Constant
*FC
= ConstantFoldShuffleVectorInstruction(
1655 ReqTy
->getContext(), V1
, V2
, Mask
))
1656 return FC
; // Fold a few common cases...
1657 // Look up the constant in the table first to ensure uniqueness
1658 std::vector
<Constant
*> ArgVec(1, V1
);
1659 ArgVec
.push_back(V2
);
1660 ArgVec
.push_back(Mask
);
1661 const ExprMapKeyType
Key(Instruction::ShuffleVector
,ArgVec
);
1663 LLVMContextImpl
*pImpl
= ReqTy
->getContext().pImpl
;
1665 // Implicitly locked.
1666 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
1669 Constant
*ConstantExpr::getShuffleVector(Constant
*V1
, Constant
*V2
,
1671 assert(ShuffleVectorInst::isValidOperands(V1
, V2
, Mask
) &&
1672 "Invalid shuffle vector constant expr operands!");
1674 unsigned NElts
= cast
<VectorType
>(Mask
->getType())->getNumElements();
1675 const Type
*EltTy
= cast
<VectorType
>(V1
->getType())->getElementType();
1676 const Type
*ShufTy
= VectorType::get(EltTy
, NElts
);
1677 return getShuffleVectorTy(ShufTy
, V1
, V2
, Mask
);
1680 Constant
*ConstantExpr::getInsertValueTy(const Type
*ReqTy
, Constant
*Agg
,
1682 const unsigned *Idxs
, unsigned NumIdx
) {
1683 assert(ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
,
1684 Idxs
+NumIdx
) == Val
->getType() &&
1685 "insertvalue indices invalid!");
1686 assert(Agg
->getType() == ReqTy
&&
1687 "insertvalue type invalid!");
1688 assert(Agg
->getType()->isFirstClassType() &&
1689 "Non-first-class type for constant InsertValue expression");
1690 Constant
*FC
= ConstantFoldInsertValueInstruction(
1691 ReqTy
->getContext(), Agg
, Val
, Idxs
, NumIdx
);
1692 assert(FC
&& "InsertValue constant expr couldn't be folded!");
1696 Constant
*ConstantExpr::getInsertValue(Constant
*Agg
, Constant
*Val
,
1697 const unsigned *IdxList
, unsigned NumIdx
) {
1698 assert(Agg
->getType()->isFirstClassType() &&
1699 "Tried to create insertelement operation on non-first-class type!");
1701 const Type
*ReqTy
= Agg
->getType();
1704 ExtractValueInst::getIndexedType(Agg
->getType(), IdxList
, IdxList
+NumIdx
);
1706 assert(ValTy
== Val
->getType() && "insertvalue indices invalid!");
1707 return getInsertValueTy(ReqTy
, Agg
, Val
, IdxList
, NumIdx
);
1710 Constant
*ConstantExpr::getExtractValueTy(const Type
*ReqTy
, Constant
*Agg
,
1711 const unsigned *Idxs
, unsigned NumIdx
) {
1712 assert(ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
,
1713 Idxs
+NumIdx
) == ReqTy
&&
1714 "extractvalue indices invalid!");
1715 assert(Agg
->getType()->isFirstClassType() &&
1716 "Non-first-class type for constant extractvalue expression");
1717 Constant
*FC
= ConstantFoldExtractValueInstruction(
1718 ReqTy
->getContext(), Agg
, Idxs
, NumIdx
);
1719 assert(FC
&& "ExtractValue constant expr couldn't be folded!");
1723 Constant
*ConstantExpr::getExtractValue(Constant
*Agg
,
1724 const unsigned *IdxList
, unsigned NumIdx
) {
1725 assert(Agg
->getType()->isFirstClassType() &&
1726 "Tried to create extractelement operation on non-first-class type!");
1729 ExtractValueInst::getIndexedType(Agg
->getType(), IdxList
, IdxList
+NumIdx
);
1730 assert(ReqTy
&& "extractvalue indices invalid!");
1731 return getExtractValueTy(ReqTy
, Agg
, IdxList
, NumIdx
);
1734 Constant
* ConstantExpr::getNeg(Constant
* C
) {
1735 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1736 if (C
->getType()->isFPOrFPVector())
1738 assert(C
->getType()->isIntOrIntVector() &&
1739 "Cannot NEG a nonintegral value!");
1740 return get(Instruction::Sub
,
1741 ConstantFP::getZeroValueForNegation(C
->getType()),
1745 Constant
* ConstantExpr::getFNeg(Constant
* C
) {
1746 assert(C
->getType()->isFPOrFPVector() &&
1747 "Cannot FNEG a non-floating-point value!");
1748 return get(Instruction::FSub
,
1749 ConstantFP::getZeroValueForNegation(C
->getType()),
1753 Constant
* ConstantExpr::getNot(Constant
* C
) {
1754 assert(C
->getType()->isIntOrIntVector() &&
1755 "Cannot NOT a nonintegral value!");
1756 return get(Instruction::Xor
, C
, Constant::getAllOnesValue(C
->getType()));
1759 Constant
* ConstantExpr::getAdd(Constant
* C1
, Constant
* C2
) {
1760 return get(Instruction::Add
, C1
, C2
);
1763 Constant
* ConstantExpr::getFAdd(Constant
* C1
, Constant
* C2
) {
1764 return get(Instruction::FAdd
, C1
, C2
);
1767 Constant
* ConstantExpr::getSub(Constant
* C1
, Constant
* C2
) {
1768 return get(Instruction::Sub
, C1
, C2
);
1771 Constant
* ConstantExpr::getFSub(Constant
* C1
, Constant
* C2
) {
1772 return get(Instruction::FSub
, C1
, C2
);
1775 Constant
* ConstantExpr::getMul(Constant
* C1
, Constant
* C2
) {
1776 return get(Instruction::Mul
, C1
, C2
);
1779 Constant
* ConstantExpr::getFMul(Constant
* C1
, Constant
* C2
) {
1780 return get(Instruction::FMul
, C1
, C2
);
1783 Constant
* ConstantExpr::getUDiv(Constant
* C1
, Constant
* C2
) {
1784 return get(Instruction::UDiv
, C1
, C2
);
1787 Constant
* ConstantExpr::getSDiv(Constant
* C1
, Constant
* C2
) {
1788 return get(Instruction::SDiv
, C1
, C2
);
1791 Constant
* ConstantExpr::getFDiv(Constant
* C1
, Constant
* C2
) {
1792 return get(Instruction::FDiv
, C1
, C2
);
1795 Constant
* ConstantExpr::getURem(Constant
* C1
, Constant
* C2
) {
1796 return get(Instruction::URem
, C1
, C2
);
1799 Constant
* ConstantExpr::getSRem(Constant
* C1
, Constant
* C2
) {
1800 return get(Instruction::SRem
, C1
, C2
);
1803 Constant
* ConstantExpr::getFRem(Constant
* C1
, Constant
* C2
) {
1804 return get(Instruction::FRem
, C1
, C2
);
1807 Constant
* ConstantExpr::getAnd(Constant
* C1
, Constant
* C2
) {
1808 return get(Instruction::And
, C1
, C2
);
1811 Constant
* ConstantExpr::getOr(Constant
* C1
, Constant
* C2
) {
1812 return get(Instruction::Or
, C1
, C2
);
1815 Constant
* ConstantExpr::getXor(Constant
* C1
, Constant
* C2
) {
1816 return get(Instruction::Xor
, C1
, C2
);
1819 Constant
* ConstantExpr::getShl(Constant
* C1
, Constant
* C2
) {
1820 return get(Instruction::Shl
, C1
, C2
);
1823 Constant
* ConstantExpr::getLShr(Constant
* C1
, Constant
* C2
) {
1824 return get(Instruction::LShr
, C1
, C2
);
1827 Constant
* ConstantExpr::getAShr(Constant
* C1
, Constant
* C2
) {
1828 return get(Instruction::AShr
, C1
, C2
);
1831 // destroyConstant - Remove the constant from the constant table...
1833 void ConstantExpr::destroyConstant() {
1834 // Implicitly locked.
1835 LLVMContextImpl
*pImpl
= getType()->getContext().pImpl
;
1836 pImpl
->ExprConstants
.remove(this);
1837 destroyConstantImpl();
1840 const char *ConstantExpr::getOpcodeName() const {
1841 return Instruction::getOpcodeName(getOpcode());
1844 //===----------------------------------------------------------------------===//
1845 // replaceUsesOfWithOnConstant implementations
1847 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1848 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1851 /// Note that we intentionally replace all uses of From with To here. Consider
1852 /// a large array that uses 'From' 1000 times. By handling this case all here,
1853 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1854 /// single invocation handles all 1000 uses. Handling them one at a time would
1855 /// work, but would be really slow because it would have to unique each updated
1858 void ConstantArray::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
1860 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
1861 Constant
*ToC
= cast
<Constant
>(To
);
1863 LLVMContext
&Context
= getType()->getContext();
1864 LLVMContextImpl
*pImpl
= Context
.pImpl
;
1866 std::pair
<LLVMContextImpl::ArrayConstantsTy::MapKey
, ConstantArray
*> Lookup
;
1867 Lookup
.first
.first
= getType();
1868 Lookup
.second
= this;
1870 std::vector
<Constant
*> &Values
= Lookup
.first
.second
;
1871 Values
.reserve(getNumOperands()); // Build replacement array.
1873 // Fill values with the modified operands of the constant array. Also,
1874 // compute whether this turns into an all-zeros array.
1875 bool isAllZeros
= false;
1876 unsigned NumUpdated
= 0;
1877 if (!ToC
->isNullValue()) {
1878 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
1879 Constant
*Val
= cast
<Constant
>(O
->get());
1884 Values
.push_back(Val
);
1888 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands();O
!= E
; ++O
) {
1889 Constant
*Val
= cast
<Constant
>(O
->get());
1894 Values
.push_back(Val
);
1895 if (isAllZeros
) isAllZeros
= Val
->isNullValue();
1899 Constant
*Replacement
= 0;
1901 Replacement
= ConstantAggregateZero::get(getType());
1903 // Check to see if we have this array type already.
1904 sys::SmartScopedWriter
<true> Writer(pImpl
->ConstantsLock
);
1906 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I
=
1907 pImpl
->ArrayConstants
.InsertOrGetItem(Lookup
, Exists
);
1910 Replacement
= I
->second
;
1912 // Okay, the new shape doesn't exist in the system yet. Instead of
1913 // creating a new constant array, inserting it, replaceallusesof'ing the
1914 // old with the new, then deleting the old... just update the current one
1916 pImpl
->ArrayConstants
.MoveConstantToNewSlot(this, I
);
1918 // Update to the new value. Optimize for the case when we have a single
1919 // operand that we're changing, but handle bulk updates efficiently.
1920 if (NumUpdated
== 1) {
1921 unsigned OperandToUpdate
= U
- OperandList
;
1922 assert(getOperand(OperandToUpdate
) == From
&&
1923 "ReplaceAllUsesWith broken!");
1924 setOperand(OperandToUpdate
, ToC
);
1926 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1927 if (getOperand(i
) == From
)
1934 // Otherwise, I do need to replace this with an existing value.
1935 assert(Replacement
!= this && "I didn't contain From!");
1937 // Everyone using this now uses the replacement.
1938 uncheckedReplaceAllUsesWith(Replacement
);
1940 // Delete the old constant!
1944 void ConstantStruct::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
1946 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
1947 Constant
*ToC
= cast
<Constant
>(To
);
1949 unsigned OperandToUpdate
= U
-OperandList
;
1950 assert(getOperand(OperandToUpdate
) == From
&& "ReplaceAllUsesWith broken!");
1952 std::pair
<LLVMContextImpl::StructConstantsTy::MapKey
, ConstantStruct
*> Lookup
;
1953 Lookup
.first
.first
= getType();
1954 Lookup
.second
= this;
1955 std::vector
<Constant
*> &Values
= Lookup
.first
.second
;
1956 Values
.reserve(getNumOperands()); // Build replacement struct.
1959 // Fill values with the modified operands of the constant struct. Also,
1960 // compute whether this turns into an all-zeros struct.
1961 bool isAllZeros
= false;
1962 if (!ToC
->isNullValue()) {
1963 for (Use
*O
= OperandList
, *E
= OperandList
+ getNumOperands(); O
!= E
; ++O
)
1964 Values
.push_back(cast
<Constant
>(O
->get()));
1967 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
1968 Constant
*Val
= cast
<Constant
>(O
->get());
1969 Values
.push_back(Val
);
1970 if (isAllZeros
) isAllZeros
= Val
->isNullValue();
1973 Values
[OperandToUpdate
] = ToC
;
1975 LLVMContext
&Context
= getType()->getContext();
1976 LLVMContextImpl
*pImpl
= Context
.pImpl
;
1978 Constant
*Replacement
= 0;
1980 Replacement
= ConstantAggregateZero::get(getType());
1982 // Check to see if we have this array type already.
1983 sys::SmartScopedWriter
<true> Writer(pImpl
->ConstantsLock
);
1985 LLVMContextImpl::StructConstantsTy::MapTy::iterator I
=
1986 pImpl
->StructConstants
.InsertOrGetItem(Lookup
, Exists
);
1989 Replacement
= I
->second
;
1991 // Okay, the new shape doesn't exist in the system yet. Instead of
1992 // creating a new constant struct, inserting it, replaceallusesof'ing the
1993 // old with the new, then deleting the old... just update the current one
1995 pImpl
->StructConstants
.MoveConstantToNewSlot(this, I
);
1997 // Update to the new value.
1998 setOperand(OperandToUpdate
, ToC
);
2003 assert(Replacement
!= this && "I didn't contain From!");
2005 // Everyone using this now uses the replacement.
2006 uncheckedReplaceAllUsesWith(Replacement
);
2008 // Delete the old constant!
2012 void ConstantVector::replaceUsesOfWithOnConstant(Value
*From
, Value
*To
,
2014 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2016 std::vector
<Constant
*> Values
;
2017 Values
.reserve(getNumOperands()); // Build replacement array...
2018 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2019 Constant
*Val
= getOperand(i
);
2020 if (Val
== From
) Val
= cast
<Constant
>(To
);
2021 Values
.push_back(Val
);
2024 Constant
*Replacement
= get(getType(), Values
);
2025 assert(Replacement
!= this && "I didn't contain From!");
2027 // Everyone using this now uses the replacement.
2028 uncheckedReplaceAllUsesWith(Replacement
);
2030 // Delete the old constant!
2034 void ConstantExpr::replaceUsesOfWithOnConstant(Value
*From
, Value
*ToV
,
2036 assert(isa
<Constant
>(ToV
) && "Cannot make Constant refer to non-constant!");
2037 Constant
*To
= cast
<Constant
>(ToV
);
2039 Constant
*Replacement
= 0;
2040 if (getOpcode() == Instruction::GetElementPtr
) {
2041 SmallVector
<Constant
*, 8> Indices
;
2042 Constant
*Pointer
= getOperand(0);
2043 Indices
.reserve(getNumOperands()-1);
2044 if (Pointer
== From
) Pointer
= To
;
2046 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
2047 Constant
*Val
= getOperand(i
);
2048 if (Val
== From
) Val
= To
;
2049 Indices
.push_back(Val
);
2051 Replacement
= ConstantExpr::getGetElementPtr(Pointer
,
2052 &Indices
[0], Indices
.size());
2053 } else if (getOpcode() == Instruction::ExtractValue
) {
2054 Constant
*Agg
= getOperand(0);
2055 if (Agg
== From
) Agg
= To
;
2057 const SmallVector
<unsigned, 4> &Indices
= getIndices();
2058 Replacement
= ConstantExpr::getExtractValue(Agg
,
2059 &Indices
[0], Indices
.size());
2060 } else if (getOpcode() == Instruction::InsertValue
) {
2061 Constant
*Agg
= getOperand(0);
2062 Constant
*Val
= getOperand(1);
2063 if (Agg
== From
) Agg
= To
;
2064 if (Val
== From
) Val
= To
;
2066 const SmallVector
<unsigned, 4> &Indices
= getIndices();
2067 Replacement
= ConstantExpr::getInsertValue(Agg
, Val
,
2068 &Indices
[0], Indices
.size());
2069 } else if (isCast()) {
2070 assert(getOperand(0) == From
&& "Cast only has one use!");
2071 Replacement
= ConstantExpr::getCast(getOpcode(), To
, getType());
2072 } else if (getOpcode() == Instruction::Select
) {
2073 Constant
*C1
= getOperand(0);
2074 Constant
*C2
= getOperand(1);
2075 Constant
*C3
= getOperand(2);
2076 if (C1
== From
) C1
= To
;
2077 if (C2
== From
) C2
= To
;
2078 if (C3
== From
) C3
= To
;
2079 Replacement
= ConstantExpr::getSelect(C1
, C2
, C3
);
2080 } else if (getOpcode() == Instruction::ExtractElement
) {
2081 Constant
*C1
= getOperand(0);
2082 Constant
*C2
= getOperand(1);
2083 if (C1
== From
) C1
= To
;
2084 if (C2
== From
) C2
= To
;
2085 Replacement
= ConstantExpr::getExtractElement(C1
, C2
);
2086 } else if (getOpcode() == Instruction::InsertElement
) {
2087 Constant
*C1
= getOperand(0);
2088 Constant
*C2
= getOperand(1);
2089 Constant
*C3
= getOperand(1);
2090 if (C1
== From
) C1
= To
;
2091 if (C2
== From
) C2
= To
;
2092 if (C3
== From
) C3
= To
;
2093 Replacement
= ConstantExpr::getInsertElement(C1
, C2
, C3
);
2094 } else if (getOpcode() == Instruction::ShuffleVector
) {
2095 Constant
*C1
= getOperand(0);
2096 Constant
*C2
= getOperand(1);
2097 Constant
*C3
= getOperand(2);
2098 if (C1
== From
) C1
= To
;
2099 if (C2
== From
) C2
= To
;
2100 if (C3
== From
) C3
= To
;
2101 Replacement
= ConstantExpr::getShuffleVector(C1
, C2
, C3
);
2102 } else if (isCompare()) {
2103 Constant
*C1
= getOperand(0);
2104 Constant
*C2
= getOperand(1);
2105 if (C1
== From
) C1
= To
;
2106 if (C2
== From
) C2
= To
;
2107 if (getOpcode() == Instruction::ICmp
)
2108 Replacement
= ConstantExpr::getICmp(getPredicate(), C1
, C2
);
2110 assert(getOpcode() == Instruction::FCmp
);
2111 Replacement
= ConstantExpr::getFCmp(getPredicate(), C1
, C2
);
2113 } else if (getNumOperands() == 2) {
2114 Constant
*C1
= getOperand(0);
2115 Constant
*C2
= getOperand(1);
2116 if (C1
== From
) C1
= To
;
2117 if (C2
== From
) C2
= To
;
2118 Replacement
= ConstantExpr::get(getOpcode(), C1
, C2
, SubclassData
);
2120 llvm_unreachable("Unknown ConstantExpr type!");
2124 assert(Replacement
!= this && "I didn't contain From!");
2126 // Everyone using this now uses the replacement.
2127 uncheckedReplaceAllUsesWith(Replacement
);
2129 // Delete the old constant!