remove a dead bool.
[llvm/avr.git] / lib / VMCore / ConstantsContext.h
blob526b4b1b7ee344fa02f02225aa188d02d08e22cc
1 //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines various helper methods and classes used by
11 // LLVMContextImpl for creating and managing constants.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CONSTANTSCONTEXT_H
16 #define LLVM_CONSTANTSCONTEXT_H
18 #include "llvm/Instructions.h"
19 #include "llvm/Operator.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/System/Mutex.h"
24 #include "llvm/System/RWMutex.h"
25 #include <map>
27 namespace llvm {
28 template<class ValType>
29 struct ConstantTraits;
31 /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
32 /// behind the scenes to implement unary constant exprs.
33 class UnaryConstantExpr : public ConstantExpr {
34 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
35 public:
36 // allocate space for exactly one operand
37 void *operator new(size_t s) {
38 return User::operator new(s, 1);
40 UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
41 : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
42 Op<0>() = C;
44 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
47 /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
48 /// behind the scenes to implement binary constant exprs.
49 class BinaryConstantExpr : public ConstantExpr {
50 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
51 public:
52 // allocate space for exactly two operands
53 void *operator new(size_t s) {
54 return User::operator new(s, 2);
56 BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
57 unsigned Flags)
58 : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
59 Op<0>() = C1;
60 Op<1>() = C2;
61 SubclassOptionalData = Flags;
63 /// Transparently provide more efficient getOperand methods.
64 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
67 /// SelectConstantExpr - This class is private to Constants.cpp, and is used
68 /// behind the scenes to implement select constant exprs.
69 class SelectConstantExpr : public ConstantExpr {
70 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
71 public:
72 // allocate space for exactly three operands
73 void *operator new(size_t s) {
74 return User::operator new(s, 3);
76 SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
77 : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
78 Op<0>() = C1;
79 Op<1>() = C2;
80 Op<2>() = C3;
82 /// Transparently provide more efficient getOperand methods.
83 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
86 /// ExtractElementConstantExpr - This class is private to
87 /// Constants.cpp, and is used behind the scenes to implement
88 /// extractelement constant exprs.
89 class ExtractElementConstantExpr : public ConstantExpr {
90 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
91 public:
92 // allocate space for exactly two operands
93 void *operator new(size_t s) {
94 return User::operator new(s, 2);
96 ExtractElementConstantExpr(Constant *C1, Constant *C2)
97 : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
98 Instruction::ExtractElement, &Op<0>(), 2) {
99 Op<0>() = C1;
100 Op<1>() = C2;
102 /// Transparently provide more efficient getOperand methods.
103 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
106 /// InsertElementConstantExpr - This class is private to
107 /// Constants.cpp, and is used behind the scenes to implement
108 /// insertelement constant exprs.
109 class InsertElementConstantExpr : public ConstantExpr {
110 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
111 public:
112 // allocate space for exactly three operands
113 void *operator new(size_t s) {
114 return User::operator new(s, 3);
116 InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
117 : ConstantExpr(C1->getType(), Instruction::InsertElement,
118 &Op<0>(), 3) {
119 Op<0>() = C1;
120 Op<1>() = C2;
121 Op<2>() = C3;
123 /// Transparently provide more efficient getOperand methods.
124 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
127 /// ShuffleVectorConstantExpr - This class is private to
128 /// Constants.cpp, and is used behind the scenes to implement
129 /// shufflevector constant exprs.
130 class ShuffleVectorConstantExpr : public ConstantExpr {
131 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
132 public:
133 // allocate space for exactly three operands
134 void *operator new(size_t s) {
135 return User::operator new(s, 3);
137 ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
138 : ConstantExpr(VectorType::get(
139 cast<VectorType>(C1->getType())->getElementType(),
140 cast<VectorType>(C3->getType())->getNumElements()),
141 Instruction::ShuffleVector,
142 &Op<0>(), 3) {
143 Op<0>() = C1;
144 Op<1>() = C2;
145 Op<2>() = C3;
147 /// Transparently provide more efficient getOperand methods.
148 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
151 /// ExtractValueConstantExpr - This class is private to
152 /// Constants.cpp, and is used behind the scenes to implement
153 /// extractvalue constant exprs.
154 class ExtractValueConstantExpr : public ConstantExpr {
155 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
156 public:
157 // allocate space for exactly one operand
158 void *operator new(size_t s) {
159 return User::operator new(s, 1);
161 ExtractValueConstantExpr(Constant *Agg,
162 const SmallVector<unsigned, 4> &IdxList,
163 const Type *DestTy)
164 : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
165 Indices(IdxList) {
166 Op<0>() = Agg;
169 /// Indices - These identify which value to extract.
170 const SmallVector<unsigned, 4> Indices;
172 /// Transparently provide more efficient getOperand methods.
173 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
176 /// InsertValueConstantExpr - This class is private to
177 /// Constants.cpp, and is used behind the scenes to implement
178 /// insertvalue constant exprs.
179 class InsertValueConstantExpr : public ConstantExpr {
180 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
181 public:
182 // allocate space for exactly one operand
183 void *operator new(size_t s) {
184 return User::operator new(s, 2);
186 InsertValueConstantExpr(Constant *Agg, Constant *Val,
187 const SmallVector<unsigned, 4> &IdxList,
188 const Type *DestTy)
189 : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
190 Indices(IdxList) {
191 Op<0>() = Agg;
192 Op<1>() = Val;
195 /// Indices - These identify the position for the insertion.
196 const SmallVector<unsigned, 4> Indices;
198 /// Transparently provide more efficient getOperand methods.
199 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
203 /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
204 /// used behind the scenes to implement getelementpr constant exprs.
205 class GetElementPtrConstantExpr : public ConstantExpr {
206 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
207 const Type *DestTy);
208 public:
209 static GetElementPtrConstantExpr *Create(Constant *C,
210 const std::vector<Constant*>&IdxList,
211 const Type *DestTy,
212 unsigned Flags) {
213 GetElementPtrConstantExpr *Result =
214 new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
215 Result->SubclassOptionalData = Flags;
216 return Result;
218 /// Transparently provide more efficient getOperand methods.
219 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
222 // CompareConstantExpr - This class is private to Constants.cpp, and is used
223 // behind the scenes to implement ICmp and FCmp constant expressions. This is
224 // needed in order to store the predicate value for these instructions.
225 struct CompareConstantExpr : public ConstantExpr {
226 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
227 // allocate space for exactly two operands
228 void *operator new(size_t s) {
229 return User::operator new(s, 2);
231 unsigned short predicate;
232 CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
233 unsigned short pred, Constant* LHS, Constant* RHS)
234 : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
235 Op<0>() = LHS;
236 Op<1>() = RHS;
238 /// Transparently provide more efficient getOperand methods.
239 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
242 template <>
243 struct OperandTraits<UnaryConstantExpr> : public FixedNumOperandTraits<1> {
245 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
247 template <>
248 struct OperandTraits<BinaryConstantExpr> : public FixedNumOperandTraits<2> {
250 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
252 template <>
253 struct OperandTraits<SelectConstantExpr> : public FixedNumOperandTraits<3> {
255 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
257 template <>
258 struct OperandTraits<ExtractElementConstantExpr> : public FixedNumOperandTraits<2> {
260 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
262 template <>
263 struct OperandTraits<InsertElementConstantExpr> : public FixedNumOperandTraits<3> {
265 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
267 template <>
268 struct OperandTraits<ShuffleVectorConstantExpr> : public FixedNumOperandTraits<3> {
270 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
272 template <>
273 struct OperandTraits<ExtractValueConstantExpr> : public FixedNumOperandTraits<1> {
275 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
277 template <>
278 struct OperandTraits<InsertValueConstantExpr> : public FixedNumOperandTraits<2> {
280 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
282 template <>
283 struct OperandTraits<GetElementPtrConstantExpr> : public VariadicOperandTraits<1> {
286 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
289 template <>
290 struct OperandTraits<CompareConstantExpr> : public FixedNumOperandTraits<2> {
292 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
294 struct ExprMapKeyType {
295 typedef SmallVector<unsigned, 4> IndexList;
297 ExprMapKeyType(unsigned opc,
298 const std::vector<Constant*> &ops,
299 unsigned short flags = 0,
300 unsigned short optionalflags = 0,
301 const IndexList &inds = IndexList())
302 : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
303 operands(ops), indices(inds) {}
304 uint8_t opcode;
305 uint8_t subclassoptionaldata;
306 uint16_t subclassdata;
307 std::vector<Constant*> operands;
308 IndexList indices;
309 bool operator==(const ExprMapKeyType& that) const {
310 return this->opcode == that.opcode &&
311 this->subclassdata == that.subclassdata &&
312 this->subclassoptionaldata == that.subclassoptionaldata &&
313 this->operands == that.operands &&
314 this->indices == that.indices;
316 bool operator<(const ExprMapKeyType & that) const {
317 if (this->opcode != that.opcode) return this->opcode < that.opcode;
318 if (this->operands != that.operands) return this->operands < that.operands;
319 if (this->subclassdata != that.subclassdata)
320 return this->subclassdata < that.subclassdata;
321 if (this->subclassoptionaldata != that.subclassoptionaldata)
322 return this->subclassoptionaldata < that.subclassoptionaldata;
323 if (this->indices != that.indices) return this->indices < that.indices;
324 return false;
327 bool operator!=(const ExprMapKeyType& that) const {
328 return !(*this == that);
332 // The number of operands for each ConstantCreator::create method is
333 // determined by the ConstantTraits template.
334 // ConstantCreator - A class that is used to create constants by
335 // ValueMap*. This class should be partially specialized if there is
336 // something strange that needs to be done to interface to the ctor for the
337 // constant.
339 template<typename T, typename Alloc>
340 struct ConstantTraits< std::vector<T, Alloc> > {
341 static unsigned uses(const std::vector<T, Alloc>& v) {
342 return v.size();
346 template<class ConstantClass, class TypeClass, class ValType>
347 struct ConstantCreator {
348 static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
349 return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
353 template<class ConstantClass>
354 struct ConstantKeyData {
355 typedef void ValType;
356 static ValType getValType(ConstantClass *C) {
357 llvm_unreachable("Unknown Constant type!");
361 template<>
362 struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
363 static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
364 unsigned short pred = 0) {
365 if (Instruction::isCast(V.opcode))
366 return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
367 if ((V.opcode >= Instruction::BinaryOpsBegin &&
368 V.opcode < Instruction::BinaryOpsEnd))
369 return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
370 V.subclassoptionaldata);
371 if (V.opcode == Instruction::Select)
372 return new SelectConstantExpr(V.operands[0], V.operands[1],
373 V.operands[2]);
374 if (V.opcode == Instruction::ExtractElement)
375 return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
376 if (V.opcode == Instruction::InsertElement)
377 return new InsertElementConstantExpr(V.operands[0], V.operands[1],
378 V.operands[2]);
379 if (V.opcode == Instruction::ShuffleVector)
380 return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
381 V.operands[2]);
382 if (V.opcode == Instruction::InsertValue)
383 return new InsertValueConstantExpr(V.operands[0], V.operands[1],
384 V.indices, Ty);
385 if (V.opcode == Instruction::ExtractValue)
386 return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
387 if (V.opcode == Instruction::GetElementPtr) {
388 std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
389 return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
390 V.subclassoptionaldata);
393 // The compare instructions are weird. We have to encode the predicate
394 // value and it is combined with the instruction opcode by multiplying
395 // the opcode by one hundred. We must decode this to get the predicate.
396 if (V.opcode == Instruction::ICmp)
397 return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
398 V.operands[0], V.operands[1]);
399 if (V.opcode == Instruction::FCmp)
400 return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
401 V.operands[0], V.operands[1]);
402 llvm_unreachable("Invalid ConstantExpr!");
403 return 0;
407 template<>
408 struct ConstantKeyData<ConstantExpr> {
409 typedef ExprMapKeyType ValType;
410 static ValType getValType(ConstantExpr *CE) {
411 std::vector<Constant*> Operands;
412 Operands.reserve(CE->getNumOperands());
413 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
414 Operands.push_back(cast<Constant>(CE->getOperand(i)));
415 return ExprMapKeyType(CE->getOpcode(), Operands,
416 CE->isCompare() ? CE->getPredicate() : 0,
417 CE->getRawSubclassOptionalData(),
418 CE->hasIndices() ?
419 CE->getIndices() : SmallVector<unsigned, 4>());
423 // ConstantAggregateZero does not take extra "value" argument...
424 template<class ValType>
425 struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
426 static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
427 return new ConstantAggregateZero(Ty);
431 template<>
432 struct ConstantKeyData<ConstantVector> {
433 typedef std::vector<Constant*> ValType;
434 static ValType getValType(ConstantVector *CP) {
435 std::vector<Constant*> Elements;
436 Elements.reserve(CP->getNumOperands());
437 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
438 Elements.push_back(CP->getOperand(i));
439 return Elements;
443 template<>
444 struct ConstantKeyData<ConstantAggregateZero> {
445 typedef char ValType;
446 static ValType getValType(ConstantAggregateZero *C) {
447 return 0;
451 template<>
452 struct ConstantKeyData<ConstantArray> {
453 typedef std::vector<Constant*> ValType;
454 static ValType getValType(ConstantArray *CA) {
455 std::vector<Constant*> Elements;
456 Elements.reserve(CA->getNumOperands());
457 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
458 Elements.push_back(cast<Constant>(CA->getOperand(i)));
459 return Elements;
463 template<>
464 struct ConstantKeyData<ConstantStruct> {
465 typedef std::vector<Constant*> ValType;
466 static ValType getValType(ConstantStruct *CS) {
467 std::vector<Constant*> Elements;
468 Elements.reserve(CS->getNumOperands());
469 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
470 Elements.push_back(cast<Constant>(CS->getOperand(i)));
471 return Elements;
475 // ConstantPointerNull does not take extra "value" argument...
476 template<class ValType>
477 struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
478 static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
479 return new ConstantPointerNull(Ty);
483 template<>
484 struct ConstantKeyData<ConstantPointerNull> {
485 typedef char ValType;
486 static ValType getValType(ConstantPointerNull *C) {
487 return 0;
491 // UndefValue does not take extra "value" argument...
492 template<class ValType>
493 struct ConstantCreator<UndefValue, Type, ValType> {
494 static UndefValue *create(const Type *Ty, const ValType &V) {
495 return new UndefValue(Ty);
499 template<>
500 struct ConstantKeyData<UndefValue> {
501 typedef char ValType;
502 static ValType getValType(UndefValue *C) {
503 return 0;
507 template<class ValType, class TypeClass, class ConstantClass,
508 bool HasLargeKey = false /*true for arrays and structs*/ >
509 class ValueMap : public AbstractTypeUser {
510 public:
511 typedef std::pair<const TypeClass*, ValType> MapKey;
512 typedef std::map<MapKey, ConstantClass *> MapTy;
513 typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
514 typedef std::map<const DerivedType*, typename MapTy::iterator>
515 AbstractTypeMapTy;
516 private:
517 /// Map - This is the main map from the element descriptor to the Constants.
518 /// This is the primary way we avoid creating two of the same shape
519 /// constant.
520 MapTy Map;
522 /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
523 /// from the constants to their element in Map. This is important for
524 /// removal of constants from the array, which would otherwise have to scan
525 /// through the map with very large keys.
526 InverseMapTy InverseMap;
528 /// AbstractTypeMap - Map for abstract type constants.
530 AbstractTypeMapTy AbstractTypeMap;
532 /// ValueMapLock - Mutex for this map.
533 sys::SmartMutex<true> ValueMapLock;
535 public:
536 // NOTE: This function is not locked. It is the caller's responsibility
537 // to enforce proper synchronization.
538 typename MapTy::iterator map_begin() { return Map.begin(); }
539 typename MapTy::iterator map_end() { return Map.end(); }
541 void freeConstants() {
542 for (typename MapTy::iterator I=Map.begin(), E=Map.end();
543 I != E; ++I) {
544 if (I->second->use_empty())
545 delete I->second;
549 /// InsertOrGetItem - Return an iterator for the specified element.
550 /// If the element exists in the map, the returned iterator points to the
551 /// entry and Exists=true. If not, the iterator points to the newly
552 /// inserted entry and returns Exists=false. Newly inserted entries have
553 /// I->second == 0, and should be filled in.
554 /// NOTE: This function is not locked. It is the caller's responsibility
555 // to enforce proper synchronization.
556 typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
557 &InsertVal,
558 bool &Exists) {
559 std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
560 Exists = !IP.second;
561 return IP.first;
564 private:
565 typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
566 if (HasLargeKey) {
567 typename InverseMapTy::iterator IMI = InverseMap.find(CP);
568 assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
569 IMI->second->second == CP &&
570 "InverseMap corrupt!");
571 return IMI->second;
574 typename MapTy::iterator I =
575 Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
576 ConstantKeyData<ConstantClass>::getValType(CP)));
577 if (I == Map.end() || I->second != CP) {
578 // FIXME: This should not use a linear scan. If this gets to be a
579 // performance problem, someone should look at this.
580 for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
581 /* empty */;
583 return I;
586 void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) {
587 // If the type of the constant is abstract, make sure that an entry
588 // exists for it in the AbstractTypeMap.
589 if (Ty->isAbstract()) {
590 const DerivedType *DTy = static_cast<const DerivedType *>(Ty);
591 typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy);
593 if (TI == AbstractTypeMap.end()) {
594 // Add ourselves to the ATU list of the type.
595 cast<DerivedType>(DTy)->addAbstractTypeUser(this);
597 AbstractTypeMap.insert(TI, std::make_pair(DTy, I));
602 ConstantClass* Create(const TypeClass *Ty, const ValType &V,
603 typename MapTy::iterator I) {
604 ConstantClass* Result =
605 ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
607 assert(Result->getType() == Ty && "Type specified is not correct!");
608 I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
610 if (HasLargeKey) // Remember the reverse mapping if needed.
611 InverseMap.insert(std::make_pair(Result, I));
613 AddAbstractTypeUser(Ty, I);
615 return Result;
617 public:
619 /// getOrCreate - Return the specified constant from the map, creating it if
620 /// necessary.
621 ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
622 sys::SmartScopedLock<true> Lock(ValueMapLock);
623 MapKey Lookup(Ty, V);
624 ConstantClass* Result = 0;
626 typename MapTy::iterator I = Map.find(Lookup);
627 // Is it in the map?
628 if (I != Map.end())
629 Result = I->second;
631 if (!Result) {
632 // If no preexisting value, create one now...
633 Result = Create(Ty, V, I);
636 return Result;
639 void UpdateAbstractTypeMap(const DerivedType *Ty,
640 typename MapTy::iterator I) {
641 assert(AbstractTypeMap.count(Ty) &&
642 "Abstract type not in AbstractTypeMap?");
643 typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
644 if (ATMEntryIt == I) {
645 // Yes, we are removing the representative entry for this type.
646 // See if there are any other entries of the same type.
647 typename MapTy::iterator TmpIt = ATMEntryIt;
649 // First check the entry before this one...
650 if (TmpIt != Map.begin()) {
651 --TmpIt;
652 if (TmpIt->first.first != Ty) // Not the same type, move back...
653 ++TmpIt;
656 // If we didn't find the same type, try to move forward...
657 if (TmpIt == ATMEntryIt) {
658 ++TmpIt;
659 if (TmpIt == Map.end() || TmpIt->first.first != Ty)
660 --TmpIt; // No entry afterwards with the same type
663 // If there is another entry in the map of the same abstract type,
664 // update the AbstractTypeMap entry now.
665 if (TmpIt != ATMEntryIt) {
666 ATMEntryIt = TmpIt;
667 } else {
668 // Otherwise, we are removing the last instance of this type
669 // from the table. Remove from the ATM, and from user list.
670 cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
671 AbstractTypeMap.erase(Ty);
676 void remove(ConstantClass *CP) {
677 sys::SmartScopedLock<true> Lock(ValueMapLock);
678 typename MapTy::iterator I = FindExistingElement(CP);
679 assert(I != Map.end() && "Constant not found in constant table!");
680 assert(I->second == CP && "Didn't find correct element?");
682 if (HasLargeKey) // Remember the reverse mapping if needed.
683 InverseMap.erase(CP);
685 // Now that we found the entry, make sure this isn't the entry that
686 // the AbstractTypeMap points to.
687 const TypeClass *Ty = I->first.first;
688 if (Ty->isAbstract())
689 UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I);
691 Map.erase(I);
694 /// MoveConstantToNewSlot - If we are about to change C to be the element
695 /// specified by I, update our internal data structures to reflect this
696 /// fact.
697 /// NOTE: This function is not locked. It is the responsibility of the
698 /// caller to enforce proper synchronization if using this method.
699 void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
700 // First, remove the old location of the specified constant in the map.
701 typename MapTy::iterator OldI = FindExistingElement(C);
702 assert(OldI != Map.end() && "Constant not found in constant table!");
703 assert(OldI->second == C && "Didn't find correct element?");
705 // If this constant is the representative element for its abstract type,
706 // update the AbstractTypeMap so that the representative element is I.
707 if (C->getType()->isAbstract()) {
708 typename AbstractTypeMapTy::iterator ATI =
709 AbstractTypeMap.find(C->getType());
710 assert(ATI != AbstractTypeMap.end() &&
711 "Abstract type not in AbstractTypeMap?");
712 if (ATI->second == OldI)
713 ATI->second = I;
716 // Remove the old entry from the map.
717 Map.erase(OldI);
719 // Update the inverse map so that we know that this constant is now
720 // located at descriptor I.
721 if (HasLargeKey) {
722 assert(I->second == C && "Bad inversemap entry!");
723 InverseMap[C] = I;
727 void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
728 sys::SmartScopedLock<true> Lock(ValueMapLock);
729 typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy);
731 assert(I != AbstractTypeMap.end() &&
732 "Abstract type not in AbstractTypeMap?");
734 // Convert a constant at a time until the last one is gone. The last one
735 // leaving will remove() itself, causing the AbstractTypeMapEntry to be
736 // eliminated eventually.
737 do {
738 ConstantClass *C = I->second->second;
739 MapKey Key(cast<TypeClass>(NewTy),
740 ConstantKeyData<ConstantClass>::getValType(C));
742 std::pair<typename MapTy::iterator, bool> IP =
743 Map.insert(std::make_pair(Key, C));
744 if (IP.second) {
745 // The map didn't previously have an appropriate constant in the
746 // new type.
748 // Remove the old entry.
749 typename MapTy::iterator OldI =
750 Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second));
751 assert(OldI != Map.end() && "Constant not in map!");
752 UpdateAbstractTypeMap(OldTy, OldI);
753 Map.erase(OldI);
755 // Set the constant's type. This is done in place!
756 setType(C, NewTy);
758 // Update the inverse map so that we know that this constant is now
759 // located at descriptor I.
760 if (HasLargeKey)
761 InverseMap[C] = IP.first;
763 AddAbstractTypeUser(NewTy, IP.first);
764 } else {
765 // The map already had an appropriate constant in the new type, so
766 // there's no longer a need for the old constant.
767 C->uncheckedReplaceAllUsesWith(IP.first->second);
768 C->destroyConstant(); // This constant is now dead, destroy it.
770 I = AbstractTypeMap.find(OldTy);
771 } while (I != AbstractTypeMap.end());
774 // If the type became concrete without being refined to any other existing
775 // type, we just remove ourselves from the ATU list.
776 void typeBecameConcrete(const DerivedType *AbsTy) {
777 AbsTy->removeAbstractTypeUser(this);
780 void dump() const {
781 DEBUG(errs() << "Constant.cpp: ValueMap\n");
787 #endif