1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Instruction class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Type.h"
15 #include "llvm/Instructions.h"
16 #include "llvm/Function.h"
17 #include "llvm/Constants.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/Support/CallSite.h"
20 #include "llvm/Support/LeakDetector.h"
23 Instruction::Instruction(const Type
*ty
, unsigned it
, Use
*Ops
, unsigned NumOps
,
24 Instruction
*InsertBefore
)
25 : User(ty
, Value::InstructionVal
+ it
, Ops
, NumOps
), Parent(0) {
26 // Make sure that we get added to a basicblock
27 LeakDetector::addGarbageObject(this);
29 // If requested, insert this instruction into a basic block...
31 assert(InsertBefore
->getParent() &&
32 "Instruction to insert before is not in a basic block!");
33 InsertBefore
->getParent()->getInstList().insert(InsertBefore
, this);
37 Instruction::Instruction(const Type
*ty
, unsigned it
, Use
*Ops
, unsigned NumOps
,
38 BasicBlock
*InsertAtEnd
)
39 : User(ty
, Value::InstructionVal
+ it
, Ops
, NumOps
), Parent(0) {
40 // Make sure that we get added to a basicblock
41 LeakDetector::addGarbageObject(this);
43 // append this instruction into the basic block
44 assert(InsertAtEnd
&& "Basic block to append to may not be NULL!");
45 InsertAtEnd
->getInstList().push_back(this);
49 // Out of line virtual method, so the vtable, etc has a home.
50 Instruction::~Instruction() {
51 assert(Parent
== 0 && "Instruction still linked in the program!");
55 void Instruction::setParent(BasicBlock
*P
) {
57 if (!P
) LeakDetector::addGarbageObject(this);
59 if (P
) LeakDetector::removeGarbageObject(this);
65 void Instruction::removeFromParent() {
66 getParent()->getInstList().remove(this);
69 void Instruction::eraseFromParent() {
70 getParent()->getInstList().erase(this);
73 /// insertBefore - Insert an unlinked instructions into a basic block
74 /// immediately before the specified instruction.
75 void Instruction::insertBefore(Instruction
*InsertPos
) {
76 InsertPos
->getParent()->getInstList().insert(InsertPos
, this);
79 /// insertAfter - Insert an unlinked instructions into a basic block
80 /// immediately after the specified instruction.
81 void Instruction::insertAfter(Instruction
*InsertPos
) {
82 InsertPos
->getParent()->getInstList().insertAfter(InsertPos
, this);
85 /// moveBefore - Unlink this instruction from its current basic block and
86 /// insert it into the basic block that MovePos lives in, right before
88 void Instruction::moveBefore(Instruction
*MovePos
) {
89 MovePos
->getParent()->getInstList().splice(MovePos
,getParent()->getInstList(),
94 const char *Instruction::getOpcodeName(unsigned OpCode
) {
97 case Ret
: return "ret";
99 case Switch
: return "switch";
100 case Invoke
: return "invoke";
101 case Unwind
: return "unwind";
102 case Unreachable
: return "unreachable";
104 // Standard binary operators...
105 case Add
: return "add";
106 case FAdd
: return "fadd";
107 case Sub
: return "sub";
108 case FSub
: return "fsub";
109 case Mul
: return "mul";
110 case FMul
: return "fmul";
111 case UDiv
: return "udiv";
112 case SDiv
: return "sdiv";
113 case FDiv
: return "fdiv";
114 case URem
: return "urem";
115 case SRem
: return "srem";
116 case FRem
: return "frem";
118 // Logical operators...
119 case And
: return "and";
120 case Or
: return "or";
121 case Xor
: return "xor";
123 // Memory instructions...
124 case Malloc
: return "malloc";
125 case Free
: return "free";
126 case Alloca
: return "alloca";
127 case Load
: return "load";
128 case Store
: return "store";
129 case GetElementPtr
: return "getelementptr";
131 // Convert instructions...
132 case Trunc
: return "trunc";
133 case ZExt
: return "zext";
134 case SExt
: return "sext";
135 case FPTrunc
: return "fptrunc";
136 case FPExt
: return "fpext";
137 case FPToUI
: return "fptoui";
138 case FPToSI
: return "fptosi";
139 case UIToFP
: return "uitofp";
140 case SIToFP
: return "sitofp";
141 case IntToPtr
: return "inttoptr";
142 case PtrToInt
: return "ptrtoint";
143 case BitCast
: return "bitcast";
145 // Other instructions...
146 case ICmp
: return "icmp";
147 case FCmp
: return "fcmp";
148 case PHI
: return "phi";
149 case Select
: return "select";
150 case Call
: return "call";
151 case Shl
: return "shl";
152 case LShr
: return "lshr";
153 case AShr
: return "ashr";
154 case VAArg
: return "va_arg";
155 case ExtractElement
: return "extractelement";
156 case InsertElement
: return "insertelement";
157 case ShuffleVector
: return "shufflevector";
158 case ExtractValue
: return "extractvalue";
159 case InsertValue
: return "insertvalue";
161 default: return "<Invalid operator> ";
167 /// isIdenticalTo - Return true if the specified instruction is exactly
168 /// identical to the current one. This means that all operands match and any
169 /// extra information (e.g. load is volatile) agree.
170 bool Instruction::isIdenticalTo(const Instruction
*I
) const {
171 return isIdenticalToWhenDefined(I
) &&
172 SubclassOptionalData
== I
->SubclassOptionalData
;
175 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
176 /// ignores the SubclassOptionalData flags, which specify conditions
177 /// under which the instruction's result is undefined.
178 bool Instruction::isIdenticalToWhenDefined(const Instruction
*I
) const {
179 if (getOpcode() != I
->getOpcode() ||
180 getNumOperands() != I
->getNumOperands() ||
181 getType() != I
->getType())
184 // We have two instructions of identical opcode and #operands. Check to see
185 // if all operands are the same.
186 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
187 if (getOperand(i
) != I
->getOperand(i
))
190 // Check special state that is a part of some instructions.
191 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(this))
192 return LI
->isVolatile() == cast
<LoadInst
>(I
)->isVolatile() &&
193 LI
->getAlignment() == cast
<LoadInst
>(I
)->getAlignment();
194 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(this))
195 return SI
->isVolatile() == cast
<StoreInst
>(I
)->isVolatile() &&
196 SI
->getAlignment() == cast
<StoreInst
>(I
)->getAlignment();
197 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(this))
198 return CI
->getPredicate() == cast
<CmpInst
>(I
)->getPredicate();
199 if (const CallInst
*CI
= dyn_cast
<CallInst
>(this))
200 return CI
->isTailCall() == cast
<CallInst
>(I
)->isTailCall() &&
201 CI
->getCallingConv() == cast
<CallInst
>(I
)->getCallingConv() &&
202 CI
->getAttributes().getRawPointer() ==
203 cast
<CallInst
>(I
)->getAttributes().getRawPointer();
204 if (const InvokeInst
*CI
= dyn_cast
<InvokeInst
>(this))
205 return CI
->getCallingConv() == cast
<InvokeInst
>(I
)->getCallingConv() &&
206 CI
->getAttributes().getRawPointer() ==
207 cast
<InvokeInst
>(I
)->getAttributes().getRawPointer();
208 if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(this)) {
209 if (IVI
->getNumIndices() != cast
<InsertValueInst
>(I
)->getNumIndices())
211 for (unsigned i
= 0, e
= IVI
->getNumIndices(); i
!= e
; ++i
)
212 if (IVI
->idx_begin()[i
] != cast
<InsertValueInst
>(I
)->idx_begin()[i
])
216 if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(this)) {
217 if (EVI
->getNumIndices() != cast
<ExtractValueInst
>(I
)->getNumIndices())
219 for (unsigned i
= 0, e
= EVI
->getNumIndices(); i
!= e
; ++i
)
220 if (EVI
->idx_begin()[i
] != cast
<ExtractValueInst
>(I
)->idx_begin()[i
])
229 // This should be kept in sync with isEquivalentOperation in
230 // lib/Transforms/IPO/MergeFunctions.cpp.
231 bool Instruction::isSameOperationAs(const Instruction
*I
) const {
232 if (getOpcode() != I
->getOpcode() ||
233 getNumOperands() != I
->getNumOperands() ||
234 getType() != I
->getType())
237 // We have two instructions of identical opcode and #operands. Check to see
238 // if all operands are the same type
239 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
240 if (getOperand(i
)->getType() != I
->getOperand(i
)->getType())
243 // Check special state that is a part of some instructions.
244 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(this))
245 return LI
->isVolatile() == cast
<LoadInst
>(I
)->isVolatile() &&
246 LI
->getAlignment() == cast
<LoadInst
>(I
)->getAlignment();
247 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(this))
248 return SI
->isVolatile() == cast
<StoreInst
>(I
)->isVolatile() &&
249 SI
->getAlignment() == cast
<StoreInst
>(I
)->getAlignment();
250 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(this))
251 return CI
->getPredicate() == cast
<CmpInst
>(I
)->getPredicate();
252 if (const CallInst
*CI
= dyn_cast
<CallInst
>(this))
253 return CI
->isTailCall() == cast
<CallInst
>(I
)->isTailCall() &&
254 CI
->getCallingConv() == cast
<CallInst
>(I
)->getCallingConv() &&
255 CI
->getAttributes().getRawPointer() ==
256 cast
<CallInst
>(I
)->getAttributes().getRawPointer();
257 if (const InvokeInst
*CI
= dyn_cast
<InvokeInst
>(this))
258 return CI
->getCallingConv() == cast
<InvokeInst
>(I
)->getCallingConv() &&
259 CI
->getAttributes().getRawPointer() ==
260 cast
<InvokeInst
>(I
)->getAttributes().getRawPointer();
261 if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(this)) {
262 if (IVI
->getNumIndices() != cast
<InsertValueInst
>(I
)->getNumIndices())
264 for (unsigned i
= 0, e
= IVI
->getNumIndices(); i
!= e
; ++i
)
265 if (IVI
->idx_begin()[i
] != cast
<InsertValueInst
>(I
)->idx_begin()[i
])
269 if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(this)) {
270 if (EVI
->getNumIndices() != cast
<ExtractValueInst
>(I
)->getNumIndices())
272 for (unsigned i
= 0, e
= EVI
->getNumIndices(); i
!= e
; ++i
)
273 if (EVI
->idx_begin()[i
] != cast
<ExtractValueInst
>(I
)->idx_begin()[i
])
281 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
282 /// specified block. Note that PHI nodes are considered to evaluate their
283 /// operands in the corresponding predecessor block.
284 bool Instruction::isUsedOutsideOfBlock(const BasicBlock
*BB
) const {
285 for (use_const_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
286 // PHI nodes uses values in the corresponding predecessor block. For other
287 // instructions, just check to see whether the parent of the use matches up.
288 const PHINode
*PN
= dyn_cast
<PHINode
>(*UI
);
290 if (cast
<Instruction
>(*UI
)->getParent() != BB
)
295 if (PN
->getIncomingBlock(UI
) != BB
)
301 /// mayReadFromMemory - Return true if this instruction may read memory.
303 bool Instruction::mayReadFromMemory() const {
304 switch (getOpcode()) {
305 default: return false;
306 case Instruction::Free
:
307 case Instruction::VAArg
:
308 case Instruction::Load
:
310 case Instruction::Call
:
311 return !cast
<CallInst
>(this)->doesNotAccessMemory();
312 case Instruction::Invoke
:
313 return !cast
<InvokeInst
>(this)->doesNotAccessMemory();
314 case Instruction::Store
:
315 return cast
<StoreInst
>(this)->isVolatile();
319 /// mayWriteToMemory - Return true if this instruction may modify memory.
321 bool Instruction::mayWriteToMemory() const {
322 switch (getOpcode()) {
323 default: return false;
324 case Instruction::Free
:
325 case Instruction::Store
:
326 case Instruction::VAArg
:
328 case Instruction::Call
:
329 return !cast
<CallInst
>(this)->onlyReadsMemory();
330 case Instruction::Invoke
:
331 return !cast
<InvokeInst
>(this)->onlyReadsMemory();
332 case Instruction::Load
:
333 return cast
<LoadInst
>(this)->isVolatile();
337 /// mayThrow - Return true if this instruction may throw an exception.
339 bool Instruction::mayThrow() const {
340 if (const CallInst
*CI
= dyn_cast
<CallInst
>(this))
341 return !CI
->doesNotThrow();
345 /// isAssociative - Return true if the instruction is associative:
347 /// Associative operators satisfy: x op (y op z) === (x op y) op z
349 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
351 bool Instruction::isAssociative(unsigned Opcode
, const Type
*Ty
) {
352 return Opcode
== And
|| Opcode
== Or
|| Opcode
== Xor
||
353 Opcode
== Add
|| Opcode
== Mul
;
356 /// isCommutative - Return true if the instruction is commutative:
358 /// Commutative operators satisfy: (x op y) === (y op x)
360 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
361 /// applied to any type.
363 bool Instruction::isCommutative(unsigned op
) {
378 bool Instruction::isSafeToSpeculativelyExecute() const {
379 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
380 if (Constant
*C
= dyn_cast
<Constant
>(getOperand(i
)))
384 switch (getOpcode()) {
389 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
390 ConstantInt
*Op
= dyn_cast
<ConstantInt
>(getOperand(1));
391 return Op
&& !Op
->isNullValue();
395 // x / y is undefined if y == 0, and might be undefined if y == -1,
396 // but calcuations like x / 3 are safe.
397 ConstantInt
*Op
= dyn_cast
<ConstantInt
>(getOperand(1));
398 return Op
&& !Op
->isNullValue() && !Op
->isAllOnesValue();
401 if (cast
<LoadInst
>(this)->isVolatile())
403 if (isa
<AllocationInst
>(getOperand(0)))
405 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(getOperand(0)))
406 return !GV
->hasExternalWeakLinkage();
407 // FIXME: Handle cases involving GEPs. We have to be careful because
408 // a load of a out-of-bounds GEP has undefined behavior.
412 return false; // The called function could have undefined behavior or
414 // FIXME: We should special-case some intrinsics (bswap,
415 // overflow-checking arithmetic, etc.)
428 return false; // Misc instructions which have effects