switch the x86 asmprinters to use getRegisterName instead
[llvm/avr.git] / lib / Target / X86 / X86InstrInfo.h
blobaff3603fd97efe631ee129d42a561626525ef0bc
1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
17 #include "llvm/Target/TargetInstrInfo.h"
18 #include "X86.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
23 namespace llvm {
24 class X86RegisterInfo;
25 class X86TargetMachine;
27 namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
44 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
56 COND_INVALID
59 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
68 /// X86II - This namespace holds all of the target specific flags that
69 /// instruction info tracks.
70 ///
71 namespace X86II {
72 /// Target Operand Flag enum.
73 enum TOF {
74 //===------------------------------------------------------------------===//
75 // X86 Specific MachineOperand flags.
77 MO_NO_FLAG = 0,
79 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
80 /// relocation of:
81 /// SYMBOL_LABEL + [. - PICBASELABEL]
82 MO_GOT_ABSOLUTE_ADDRESS = 1,
84 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
85 /// immediate should get the value of the symbol minus the PIC base label:
86 /// SYMBOL_LABEL - PICBASELABEL
87 MO_PIC_BASE_OFFSET = 2,
89 /// MO_GOT - On a symbol operand this indicates that the immediate is the
90 /// offset to the GOT entry for the symbol name from the base of the GOT.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @GOT
94 MO_GOT = 3,
96 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
97 /// the offset to the location of the symbol name from the base of the GOT.
98 ///
99 /// See the X86-64 ELF ABI supplement for more details.
100 /// SYMBOL_LABEL @GOTOFF
101 MO_GOTOFF = 4,
103 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
104 /// offset to the GOT entry for the symbol name from the current code
105 /// location.
107 /// See the X86-64 ELF ABI supplement for more details.
108 /// SYMBOL_LABEL @GOTPCREL
109 MO_GOTPCREL = 5,
111 /// MO_PLT - On a symbol operand this indicates that the immediate is
112 /// offset to the PLT entry of symbol name from the current code location.
114 /// See the X86-64 ELF ABI supplement for more details.
115 /// SYMBOL_LABEL @PLT
116 MO_PLT = 6,
118 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
119 /// some TLS offset.
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSGD
123 MO_TLSGD = 7,
125 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126 /// some TLS offset.
128 /// See 'ELF Handling for Thread-Local Storage' for more details.
129 /// SYMBOL_LABEL @GOTTPOFF
130 MO_GOTTPOFF = 8,
132 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
133 /// some TLS offset.
135 /// See 'ELF Handling for Thread-Local Storage' for more details.
136 /// SYMBOL_LABEL @INDNTPOFF
137 MO_INDNTPOFF = 9,
139 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
140 /// some TLS offset.
142 /// See 'ELF Handling for Thread-Local Storage' for more details.
143 /// SYMBOL_LABEL @TPOFF
144 MO_TPOFF = 10,
146 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
147 /// some TLS offset.
149 /// See 'ELF Handling for Thread-Local Storage' for more details.
150 /// SYMBOL_LABEL @NTPOFF
151 MO_NTPOFF = 11,
153 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
154 /// reference is actually to the "__imp_FOO" symbol. This is used for
155 /// dllimport linkage on windows.
156 MO_DLLIMPORT = 12,
158 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
159 /// reference is actually to the "FOO$stub" symbol. This is used for calls
160 /// and jumps to external functions on Tiger and before.
161 MO_DARWIN_STUB = 13,
163 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
164 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
165 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
166 MO_DARWIN_NONLAZY = 14,
168 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
169 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
170 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
171 MO_DARWIN_NONLAZY_PIC_BASE = 15,
173 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
174 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
175 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
176 /// stub.
177 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE = 16
181 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
182 /// a reference to a stub for a global, not the global itself.
183 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
184 switch (TargetFlag) {
185 case X86II::MO_DLLIMPORT: // dllimport stub.
186 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
187 case X86II::MO_GOT: // normal GOT reference.
188 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
189 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
190 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
191 return true;
192 default:
193 return false;
197 /// isGlobalRelativeToPICBase - Return true if the specified global value
198 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
199 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
200 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
201 switch (TargetFlag) {
202 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
203 case X86II::MO_GOT: // isPICStyleGOT: other global.
204 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
205 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
206 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
207 return true;
208 default:
209 return false;
213 /// X86II - This namespace holds all of the target specific flags that
214 /// instruction info tracks.
216 namespace X86II {
217 enum {
218 //===------------------------------------------------------------------===//
219 // Instruction encodings. These are the standard/most common forms for X86
220 // instructions.
223 // PseudoFrm - This represents an instruction that is a pseudo instruction
224 // or one that has not been implemented yet. It is illegal to code generate
225 // it, but tolerated for intermediate implementation stages.
226 Pseudo = 0,
228 /// Raw - This form is for instructions that don't have any operands, so
229 /// they are just a fixed opcode value, like 'leave'.
230 RawFrm = 1,
232 /// AddRegFrm - This form is used for instructions like 'push r32' that have
233 /// their one register operand added to their opcode.
234 AddRegFrm = 2,
236 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
237 /// to specify a destination, which in this case is a register.
239 MRMDestReg = 3,
241 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
242 /// to specify a destination, which in this case is memory.
244 MRMDestMem = 4,
246 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
247 /// to specify a source, which in this case is a register.
249 MRMSrcReg = 5,
251 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
252 /// to specify a source, which in this case is memory.
254 MRMSrcMem = 6,
256 /// MRM[0-7][rm] - These forms are used to represent instructions that use
257 /// a Mod/RM byte, and use the middle field to hold extended opcode
258 /// information. In the intel manual these are represented as /0, /1, ...
261 // First, instructions that operate on a register r/m operand...
262 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
263 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
265 // Next, instructions that operate on a memory r/m operand...
266 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
267 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
269 // MRMInitReg - This form is used for instructions whose source and
270 // destinations are the same register.
271 MRMInitReg = 32,
273 FormMask = 63,
275 //===------------------------------------------------------------------===//
276 // Actual flags...
278 // OpSize - Set if this instruction requires an operand size prefix (0x66),
279 // which most often indicates that the instruction operates on 16 bit data
280 // instead of 32 bit data.
281 OpSize = 1 << 6,
283 // AsSize - Set if this instruction requires an operand size prefix (0x67),
284 // which most often indicates that the instruction address 16 bit address
285 // instead of 32 bit address (or 32 bit address in 64 bit mode).
286 AdSize = 1 << 7,
288 //===------------------------------------------------------------------===//
289 // Op0Mask - There are several prefix bytes that are used to form two byte
290 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
291 // used to obtain the setting of this field. If no bits in this field is
292 // set, there is no prefix byte for obtaining a multibyte opcode.
294 Op0Shift = 8,
295 Op0Mask = 0xF << Op0Shift,
297 // TB - TwoByte - Set if this instruction has a two byte opcode, which
298 // starts with a 0x0F byte before the real opcode.
299 TB = 1 << Op0Shift,
301 // REP - The 0xF3 prefix byte indicating repetition of the following
302 // instruction.
303 REP = 2 << Op0Shift,
305 // D8-DF - These escape opcodes are used by the floating point unit. These
306 // values must remain sequential.
307 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
308 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
309 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
310 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
312 // XS, XD - These prefix codes are for single and double precision scalar
313 // floating point operations performed in the SSE registers.
314 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
316 // T8, TA - Prefix after the 0x0F prefix.
317 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
319 // TF - Prefix before and after 0x0F
320 TF = 15 << Op0Shift,
322 //===------------------------------------------------------------------===//
323 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
324 // They are used to specify GPRs and SSE registers, 64-bit operand size,
325 // etc. We only cares about REX.W and REX.R bits and only the former is
326 // statically determined.
328 REXShift = 12,
329 REX_W = 1 << REXShift,
331 //===------------------------------------------------------------------===//
332 // This three-bit field describes the size of an immediate operand. Zero is
333 // unused so that we can tell if we forgot to set a value.
334 ImmShift = 13,
335 ImmMask = 7 << ImmShift,
336 Imm8 = 1 << ImmShift,
337 Imm16 = 2 << ImmShift,
338 Imm32 = 3 << ImmShift,
339 Imm64 = 4 << ImmShift,
341 //===------------------------------------------------------------------===//
342 // FP Instruction Classification... Zero is non-fp instruction.
344 // FPTypeMask - Mask for all of the FP types...
345 FPTypeShift = 16,
346 FPTypeMask = 7 << FPTypeShift,
348 // NotFP - The default, set for instructions that do not use FP registers.
349 NotFP = 0 << FPTypeShift,
351 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
352 ZeroArgFP = 1 << FPTypeShift,
354 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
355 OneArgFP = 2 << FPTypeShift,
357 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
358 // result back to ST(0). For example, fcos, fsqrt, etc.
360 OneArgFPRW = 3 << FPTypeShift,
362 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
363 // explicit argument, storing the result to either ST(0) or the implicit
364 // argument. For example: fadd, fsub, fmul, etc...
365 TwoArgFP = 4 << FPTypeShift,
367 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
368 // explicit argument, but have no destination. Example: fucom, fucomi, ...
369 CompareFP = 5 << FPTypeShift,
371 // CondMovFP - "2 operand" floating point conditional move instructions.
372 CondMovFP = 6 << FPTypeShift,
374 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
375 SpecialFP = 7 << FPTypeShift,
377 // Lock prefix
378 LOCKShift = 19,
379 LOCK = 1 << LOCKShift,
381 // Segment override prefixes. Currently we just need ability to address
382 // stuff in gs and fs segments.
383 SegOvrShift = 20,
384 SegOvrMask = 3 << SegOvrShift,
385 FS = 1 << SegOvrShift,
386 GS = 2 << SegOvrShift,
388 // Bits 22 -> 23 are unused
389 OpcodeShift = 24,
390 OpcodeMask = 0xFF << OpcodeShift
394 const int X86AddrNumOperands = 5;
396 inline static bool isScale(const MachineOperand &MO) {
397 return MO.isImm() &&
398 (MO.getImm() == 1 || MO.getImm() == 2 ||
399 MO.getImm() == 4 || MO.getImm() == 8);
402 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
403 if (MI->getOperand(Op).isFI()) return true;
404 return Op+4 <= MI->getNumOperands() &&
405 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
406 MI->getOperand(Op+2).isReg() &&
407 (MI->getOperand(Op+3).isImm() ||
408 MI->getOperand(Op+3).isGlobal() ||
409 MI->getOperand(Op+3).isCPI() ||
410 MI->getOperand(Op+3).isJTI());
413 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
414 if (MI->getOperand(Op).isFI()) return true;
415 return Op+5 <= MI->getNumOperands() &&
416 MI->getOperand(Op+4).isReg() &&
417 isLeaMem(MI, Op);
420 class X86InstrInfo : public TargetInstrInfoImpl {
421 X86TargetMachine &TM;
422 const X86RegisterInfo RI;
424 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
425 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
427 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
428 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
429 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
430 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
432 /// MemOp2RegOpTable - Load / store unfolding opcode map.
434 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
436 public:
437 explicit X86InstrInfo(X86TargetMachine &tm);
439 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
440 /// such, whenever a client has an instance of instruction info, it should
441 /// always be able to get register info as well (through this method).
443 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
445 /// Return true if the instruction is a register to register move and return
446 /// the source and dest operands and their sub-register indices by reference.
447 virtual bool isMoveInstr(const MachineInstr &MI,
448 unsigned &SrcReg, unsigned &DstReg,
449 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
451 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
452 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
454 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
455 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
456 unsigned DestReg, unsigned SubIdx,
457 const MachineInstr *Orig) const;
459 bool isInvariantLoad(const MachineInstr *MI) const;
461 /// convertToThreeAddress - This method must be implemented by targets that
462 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
463 /// may be able to convert a two-address instruction into a true
464 /// three-address instruction on demand. This allows the X86 target (for
465 /// example) to convert ADD and SHL instructions into LEA instructions if they
466 /// would require register copies due to two-addressness.
468 /// This method returns a null pointer if the transformation cannot be
469 /// performed, otherwise it returns the new instruction.
471 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
472 MachineBasicBlock::iterator &MBBI,
473 LiveVariables *LV) const;
475 /// commuteInstruction - We have a few instructions that must be hacked on to
476 /// commute them.
478 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
480 // Branch analysis.
481 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
482 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
483 MachineBasicBlock *&FBB,
484 SmallVectorImpl<MachineOperand> &Cond,
485 bool AllowModify) const;
486 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
487 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
488 MachineBasicBlock *FBB,
489 const SmallVectorImpl<MachineOperand> &Cond) const;
490 virtual bool copyRegToReg(MachineBasicBlock &MBB,
491 MachineBasicBlock::iterator MI,
492 unsigned DestReg, unsigned SrcReg,
493 const TargetRegisterClass *DestRC,
494 const TargetRegisterClass *SrcRC) const;
495 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
496 MachineBasicBlock::iterator MI,
497 unsigned SrcReg, bool isKill, int FrameIndex,
498 const TargetRegisterClass *RC) const;
500 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
501 SmallVectorImpl<MachineOperand> &Addr,
502 const TargetRegisterClass *RC,
503 SmallVectorImpl<MachineInstr*> &NewMIs) const;
505 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
506 MachineBasicBlock::iterator MI,
507 unsigned DestReg, int FrameIndex,
508 const TargetRegisterClass *RC) const;
510 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
511 SmallVectorImpl<MachineOperand> &Addr,
512 const TargetRegisterClass *RC,
513 SmallVectorImpl<MachineInstr*> &NewMIs) const;
515 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
516 MachineBasicBlock::iterator MI,
517 const std::vector<CalleeSavedInfo> &CSI) const;
519 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
520 MachineBasicBlock::iterator MI,
521 const std::vector<CalleeSavedInfo> &CSI) const;
523 /// foldMemoryOperand - If this target supports it, fold a load or store of
524 /// the specified stack slot into the specified machine instruction for the
525 /// specified operand(s). If this is possible, the target should perform the
526 /// folding and return true, otherwise it should return false. If it folds
527 /// the instruction, it is likely that the MachineInstruction the iterator
528 /// references has been changed.
529 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
530 MachineInstr* MI,
531 const SmallVectorImpl<unsigned> &Ops,
532 int FrameIndex) const;
534 /// foldMemoryOperand - Same as the previous version except it allows folding
535 /// of any load and store from / to any address, not just from a specific
536 /// stack slot.
537 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
538 MachineInstr* MI,
539 const SmallVectorImpl<unsigned> &Ops,
540 MachineInstr* LoadMI) const;
542 /// canFoldMemoryOperand - Returns true if the specified load / store is
543 /// folding is possible.
544 virtual bool canFoldMemoryOperand(const MachineInstr*,
545 const SmallVectorImpl<unsigned> &) const;
547 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
548 /// a store or a load and a store into two or more instruction. If this is
549 /// possible, returns true as well as the new instructions by reference.
550 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
551 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
552 SmallVectorImpl<MachineInstr*> &NewMIs) const;
554 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
555 SmallVectorImpl<SDNode*> &NewNodes) const;
557 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
558 /// instruction after load / store are unfolded from an instruction of the
559 /// specified opcode. It returns zero if the specified unfolding is not
560 /// possible.
561 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
562 bool UnfoldLoad, bool UnfoldStore) const;
564 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
565 virtual
566 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
568 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
569 /// instruction that defines the specified register class.
570 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
572 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
573 // specified machine instruction.
575 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
576 return TID->TSFlags >> X86II::OpcodeShift;
578 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
579 return getBaseOpcodeFor(&get(Opcode));
582 static bool isX86_64NonExtLowByteReg(unsigned reg) {
583 return (reg == X86::SPL || reg == X86::BPL ||
584 reg == X86::SIL || reg == X86::DIL);
587 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
588 static bool isX86_64ExtendedReg(const MachineOperand &MO);
589 static unsigned determineREX(const MachineInstr &MI);
591 /// GetInstSize - Returns the size of the specified MachineInstr.
593 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
595 /// getGlobalBaseReg - Return a virtual register initialized with the
596 /// the global base register value. Output instructions required to
597 /// initialize the register in the function entry block, if necessary.
599 unsigned getGlobalBaseReg(MachineFunction *MF) const;
601 private:
602 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
603 MachineInstr* MI,
604 unsigned OpNum,
605 const SmallVectorImpl<MachineOperand> &MOs,
606 unsigned Size, unsigned Alignment) const;
609 } // End llvm namespace
611 #endif