1 //===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the JIT interfaces for the X86 target.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jit"
15 #include "X86JITInfo.h"
16 #include "X86Relocations.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/Function.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/ErrorHandling.h"
26 // Determine the platform we're running on
27 #if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64)
29 #elif defined(__i386__) || defined(i386) || defined(_M_IX86)
33 void X86JITInfo::replaceMachineCodeForFunction(void *Old
, void *New
) {
34 unsigned char *OldByte
= (unsigned char *)Old
;
35 *OldByte
++ = 0xE9; // Emit JMP opcode.
36 unsigned *OldWord
= (unsigned *)OldByte
;
37 unsigned NewAddr
= (intptr_t)New
;
38 unsigned OldAddr
= (intptr_t)OldWord
;
39 *OldWord
= NewAddr
- OldAddr
- 4; // Emit PC-relative addr of New code.
43 /// JITCompilerFunction - This contains the address of the JIT function used to
44 /// compile a function lazily.
45 static TargetJITInfo::JITCompilerFn JITCompilerFunction
;
47 // Get the ASMPREFIX for the current host. This is often '_'.
48 #ifndef __USER_LABEL_PREFIX__
49 #define __USER_LABEL_PREFIX__
51 #define GETASMPREFIX2(X) #X
52 #define GETASMPREFIX(X) GETASMPREFIX2(X)
53 #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
55 // For ELF targets, use a .size and .type directive, to let tools
56 // know the extent of functions defined in assembler.
58 # define SIZE(sym) ".size " #sym ", . - " #sym "\n"
59 # define TYPE_FUNCTION(sym) ".type " #sym ", @function\n"
62 # define TYPE_FUNCTION(sym)
65 // Provide a convenient way for disabling usage of CFI directives.
66 // This is needed for old/broken assemblers (for example, gas on
67 // Darwin is pretty old and doesn't support these directives)
68 #if defined(__APPLE__)
71 // FIXME: Disable this until we really want to use it. Also, we will
72 // need to add some workarounds for compilers, which support
73 // only subset of these directives.
77 // Provide a wrapper for X86CompilationCallback2 that saves non-traditional
78 // callee saved registers, for the fastcc calling convention.
80 #if defined(X86_64_JIT)
82 // No need to save EAX/EDX for X86-64.
83 void X86CompilationCallback(void);
87 ".globl " ASMPREFIX
"X86CompilationCallback\n"
88 TYPE_FUNCTION(X86CompilationCallback
)
89 ASMPREFIX
"X86CompilationCallback:\n"
90 CFI(".cfi_startproc\n")
93 CFI(".cfi_def_cfa_offset 16\n")
94 CFI(".cfi_offset %rbp, -16\n")
97 CFI(".cfi_def_cfa_register %rbp\n")
98 // Save all int arg registers
100 CFI(".cfi_rel_offset %rdi, 0\n")
102 CFI(".cfi_rel_offset %rsi, 8\n")
104 CFI(".cfi_rel_offset %rdx, 16\n")
106 CFI(".cfi_rel_offset %rcx, 24\n")
108 CFI(".cfi_rel_offset %r8, 32\n")
110 CFI(".cfi_rel_offset %r9, 40\n")
111 // Align stack on 16-byte boundary. ESP might not be properly aligned
112 // (8 byte) if this is called from an indirect stub.
114 // Save all XMM arg registers
116 "movaps %xmm0, (%rsp)\n"
117 "movaps %xmm1, 16(%rsp)\n"
118 "movaps %xmm2, 32(%rsp)\n"
119 "movaps %xmm3, 48(%rsp)\n"
120 "movaps %xmm4, 64(%rsp)\n"
121 "movaps %xmm5, 80(%rsp)\n"
122 "movaps %xmm6, 96(%rsp)\n"
123 "movaps %xmm7, 112(%rsp)\n"
125 "movq %rbp, %rdi\n" // Pass prev frame and return address
126 "movq 8(%rbp), %rsi\n"
127 "call " ASMPREFIX
"X86CompilationCallback2\n"
128 // Restore all XMM arg registers
129 "movaps 112(%rsp), %xmm7\n"
130 "movaps 96(%rsp), %xmm6\n"
131 "movaps 80(%rsp), %xmm5\n"
132 "movaps 64(%rsp), %xmm4\n"
133 "movaps 48(%rsp), %xmm3\n"
134 "movaps 32(%rsp), %xmm2\n"
135 "movaps 16(%rsp), %xmm1\n"
136 "movaps (%rsp), %xmm0\n"
139 CFI(".cfi_def_cfa_register %rsp\n")
140 // Restore all int arg registers
142 CFI(".cfi_adjust_cfa_offset 48\n")
144 CFI(".cfi_adjust_cfa_offset -8\n")
145 CFI(".cfi_restore %r9\n")
147 CFI(".cfi_adjust_cfa_offset -8\n")
148 CFI(".cfi_restore %r8\n")
150 CFI(".cfi_adjust_cfa_offset -8\n")
151 CFI(".cfi_restore %rcx\n")
153 CFI(".cfi_adjust_cfa_offset -8\n")
154 CFI(".cfi_restore %rdx\n")
156 CFI(".cfi_adjust_cfa_offset -8\n")
157 CFI(".cfi_restore %rsi\n")
159 CFI(".cfi_adjust_cfa_offset -8\n")
160 CFI(".cfi_restore %rdi\n")
163 CFI(".cfi_adjust_cfa_offset -8\n")
164 CFI(".cfi_restore %rbp\n")
166 CFI(".cfi_endproc\n")
167 SIZE(X86CompilationCallback
)
170 // No inline assembler support on this platform. The routine is in external
172 void X86CompilationCallback();
175 #elif defined (X86_32_JIT)
177 void X86CompilationCallback(void);
181 ".globl " ASMPREFIX
"X86CompilationCallback\n"
182 TYPE_FUNCTION(X86CompilationCallback
)
183 ASMPREFIX
"X86CompilationCallback:\n"
184 CFI(".cfi_startproc\n")
186 CFI(".cfi_def_cfa_offset 8\n")
187 CFI(".cfi_offset %ebp, -8\n")
188 "movl %esp, %ebp\n" // Standard prologue
189 CFI(".cfi_def_cfa_register %ebp\n")
191 CFI(".cfi_rel_offset %eax, 0\n")
192 "pushl %edx\n" // Save EAX/EDX/ECX
193 CFI(".cfi_rel_offset %edx, 4\n")
195 CFI(".cfi_rel_offset %ecx, 8\n")
196 # if defined(__APPLE__)
197 "andl $-16, %esp\n" // Align ESP on 16-byte boundary
200 "movl 4(%ebp), %eax\n" // Pass prev frame and return address
201 "movl %eax, 4(%esp)\n"
202 "movl %ebp, (%esp)\n"
203 "call " ASMPREFIX
"X86CompilationCallback2\n"
204 "movl %ebp, %esp\n" // Restore ESP
205 CFI(".cfi_def_cfa_register %esp\n")
207 CFI(".cfi_adjust_cfa_offset 12\n")
209 CFI(".cfi_adjust_cfa_offset -4\n")
210 CFI(".cfi_restore %ecx\n")
212 CFI(".cfi_adjust_cfa_offset -4\n")
213 CFI(".cfi_restore %edx\n")
215 CFI(".cfi_adjust_cfa_offset -4\n")
216 CFI(".cfi_restore %eax\n")
218 CFI(".cfi_adjust_cfa_offset -4\n")
219 CFI(".cfi_restore %ebp\n")
221 CFI(".cfi_endproc\n")
222 SIZE(X86CompilationCallback
)
225 // Same as X86CompilationCallback but also saves XMM argument registers.
226 void X86CompilationCallback_SSE(void);
230 ".globl " ASMPREFIX
"X86CompilationCallback_SSE\n"
231 TYPE_FUNCTION(X86CompilationCallback_SSE
)
232 ASMPREFIX
"X86CompilationCallback_SSE:\n"
233 CFI(".cfi_startproc\n")
235 CFI(".cfi_def_cfa_offset 8\n")
236 CFI(".cfi_offset %ebp, -8\n")
237 "movl %esp, %ebp\n" // Standard prologue
238 CFI(".cfi_def_cfa_register %ebp\n")
240 CFI(".cfi_rel_offset %eax, 0\n")
241 "pushl %edx\n" // Save EAX/EDX/ECX
242 CFI(".cfi_rel_offset %edx, 4\n")
244 CFI(".cfi_rel_offset %ecx, 8\n")
245 "andl $-16, %esp\n" // Align ESP on 16-byte boundary
246 // Save all XMM arg registers
248 // FIXME: provide frame move information for xmm registers.
249 // This can be tricky, because CFA register is ebp (unaligned)
250 // and we need to produce offsets relative to it.
251 "movaps %xmm0, (%esp)\n"
252 "movaps %xmm1, 16(%esp)\n"
253 "movaps %xmm2, 32(%esp)\n"
254 "movaps %xmm3, 48(%esp)\n"
256 "movl 4(%ebp), %eax\n" // Pass prev frame and return address
257 "movl %eax, 4(%esp)\n"
258 "movl %ebp, (%esp)\n"
259 "call " ASMPREFIX
"X86CompilationCallback2\n"
261 "movaps 48(%esp), %xmm3\n"
262 CFI(".cfi_restore %xmm3\n")
263 "movaps 32(%esp), %xmm2\n"
264 CFI(".cfi_restore %xmm2\n")
265 "movaps 16(%esp), %xmm1\n"
266 CFI(".cfi_restore %xmm1\n")
267 "movaps (%esp), %xmm0\n"
268 CFI(".cfi_restore %xmm0\n")
269 "movl %ebp, %esp\n" // Restore ESP
270 CFI(".cfi_def_cfa_register esp\n")
272 CFI(".cfi_adjust_cfa_offset 12\n")
274 CFI(".cfi_adjust_cfa_offset -4\n")
275 CFI(".cfi_restore %ecx\n")
277 CFI(".cfi_adjust_cfa_offset -4\n")
278 CFI(".cfi_restore %edx\n")
280 CFI(".cfi_adjust_cfa_offset -4\n")
281 CFI(".cfi_restore %eax\n")
283 CFI(".cfi_adjust_cfa_offset -4\n")
284 CFI(".cfi_restore %ebp\n")
286 CFI(".cfi_endproc\n")
287 SIZE(X86CompilationCallback_SSE
)
290 void X86CompilationCallback2(intptr_t *StackPtr
, intptr_t RetAddr
);
292 _declspec(naked
) void X86CompilationCallback(void) {
300 mov eax
, dword ptr
[ebp
+4]
301 mov dword ptr
[esp
+4], eax
302 mov dword ptr
[esp
], ebp
303 call X86CompilationCallback2
316 #else // Not an i386 host
317 void X86CompilationCallback() {
318 llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!");
323 /// X86CompilationCallback2 - This is the target-specific function invoked by the
324 /// function stub when we did not know the real target of a call. This function
325 /// must locate the start of the stub or call site and pass it into the JIT
326 /// compiler function.
328 #if !(defined (X86_64_JIT) && defined(_MSC_VER))
329 // the following function is called only from this translation unit,
330 // unless we are under 64bit Windows with MSC, where there is
331 // no support for inline assembly
335 X86CompilationCallback2(intptr_t *StackPtr
, intptr_t RetAddr
) {
336 intptr_t *RetAddrLoc
= &StackPtr
[1];
337 assert(*RetAddrLoc
== RetAddr
&&
338 "Could not find return address on the stack!");
340 // It's a stub if there is an interrupt marker after the call.
341 bool isStub
= ((unsigned char*)RetAddr
)[0] == 0xCD;
343 // The call instruction should have pushed the return value onto the stack...
344 #if defined (X86_64_JIT)
345 RetAddr
--; // Backtrack to the reference itself...
347 RetAddr
-= 4; // Backtrack to the reference itself...
351 DEBUG(errs() << "In callback! Addr=" << (void*)RetAddr
352 << " ESP=" << (void*)StackPtr
353 << ": Resolving call to function: "
354 << TheVM
->getFunctionReferencedName((void*)RetAddr
) << "\n");
357 // Sanity check to make sure this really is a call instruction.
358 #if defined (X86_64_JIT)
359 assert(((unsigned char*)RetAddr
)[-2] == 0x41 &&"Not a call instr!");
360 assert(((unsigned char*)RetAddr
)[-1] == 0xFF &&"Not a call instr!");
362 assert(((unsigned char*)RetAddr
)[-1] == 0xE8 &&"Not a call instr!");
365 intptr_t NewVal
= (intptr_t)JITCompilerFunction((void*)RetAddr
);
367 // Rewrite the call target... so that we don't end up here every time we
369 #if defined (X86_64_JIT)
371 *(intptr_t *)(RetAddr
- 0xa) = NewVal
;
373 *(intptr_t *)RetAddr
= (intptr_t)(NewVal
-RetAddr
-4);
377 // If this is a stub, rewrite the call into an unconditional branch
378 // instruction so that two return addresses are not pushed onto the stack
379 // when the requested function finally gets called. This also makes the
380 // 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
381 #if defined (X86_64_JIT)
382 // If the target address is within 32-bit range of the stub, use a
383 // PC-relative branch instead of loading the actual address. (This is
384 // considerably shorter than the 64-bit immediate load already there.)
385 // We assume here intptr_t is 64 bits.
386 intptr_t diff
= NewVal
-RetAddr
+7;
387 if (diff
>= -2147483648LL && diff
<= 2147483647LL) {
388 *(unsigned char*)(RetAddr
-0xc) = 0xE9;
389 *(intptr_t *)(RetAddr
-0xb) = diff
& 0xffffffff;
391 *(intptr_t *)(RetAddr
- 0xa) = NewVal
;
392 ((unsigned char*)RetAddr
)[0] = (2 | (4 << 3) | (3 << 6));
395 ((unsigned char*)RetAddr
)[-1] = 0xE9;
399 // Change the return address to reexecute the call instruction...
400 #if defined (X86_64_JIT)
408 TargetJITInfo::LazyResolverFn
409 X86JITInfo::getLazyResolverFunction(JITCompilerFn F
) {
410 JITCompilerFunction
= F
;
412 #if defined (X86_32_JIT) && !defined (_MSC_VER)
413 if (Subtarget
->hasSSE1())
414 return X86CompilationCallback_SSE
;
417 return X86CompilationCallback
;
420 X86JITInfo::X86JITInfo(X86TargetMachine
&tm
) : TM(tm
) {
421 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
426 void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue
* GV
, void *ptr
,
427 JITCodeEmitter
&JCE
) {
428 #if defined (X86_64_JIT)
429 JCE
.startGVStub(GV
, 8, 8);
430 JCE
.emitWordLE((unsigned)(intptr_t)ptr
);
431 JCE
.emitWordLE((unsigned)(((intptr_t)ptr
) >> 32));
433 JCE
.startGVStub(GV
, 4, 4);
434 JCE
.emitWordLE((intptr_t)ptr
);
436 return JCE
.finishGVStub(GV
);
439 void *X86JITInfo::emitFunctionStub(const Function
* F
, void *Fn
,
440 JITCodeEmitter
&JCE
) {
441 // Note, we cast to intptr_t here to silence a -pedantic warning that
442 // complains about casting a function pointer to a normal pointer.
443 #if defined (X86_32_JIT) && !defined (_MSC_VER)
444 bool NotCC
= (Fn
!= (void*)(intptr_t)X86CompilationCallback
&&
445 Fn
!= (void*)(intptr_t)X86CompilationCallback_SSE
);
447 bool NotCC
= Fn
!= (void*)(intptr_t)X86CompilationCallback
;
450 #if defined (X86_64_JIT)
451 JCE
.startGVStub(F
, 13, 4);
452 JCE
.emitByte(0x49); // REX prefix
453 JCE
.emitByte(0xB8+2); // movabsq r10
454 JCE
.emitWordLE((unsigned)(intptr_t)Fn
);
455 JCE
.emitWordLE((unsigned)(((intptr_t)Fn
) >> 32));
456 JCE
.emitByte(0x41); // REX prefix
457 JCE
.emitByte(0xFF); // jmpq *r10
458 JCE
.emitByte(2 | (4 << 3) | (3 << 6));
460 JCE
.startGVStub(F
, 5, 4);
462 JCE
.emitWordLE((intptr_t)Fn
-JCE
.getCurrentPCValue()-4);
464 return JCE
.finishGVStub(F
);
467 #if defined (X86_64_JIT)
468 JCE
.startGVStub(F
, 14, 4);
469 JCE
.emitByte(0x49); // REX prefix
470 JCE
.emitByte(0xB8+2); // movabsq r10
471 JCE
.emitWordLE((unsigned)(intptr_t)Fn
);
472 JCE
.emitWordLE((unsigned)(((intptr_t)Fn
) >> 32));
473 JCE
.emitByte(0x41); // REX prefix
474 JCE
.emitByte(0xFF); // callq *r10
475 JCE
.emitByte(2 | (2 << 3) | (3 << 6));
477 JCE
.startGVStub(F
, 6, 4);
478 JCE
.emitByte(0xE8); // Call with 32 bit pc-rel destination...
480 JCE
.emitWordLE((intptr_t)Fn
-JCE
.getCurrentPCValue()-4);
483 JCE
.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
484 return JCE
.finishGVStub(F
);
487 void X86JITInfo::emitFunctionStubAtAddr(const Function
* F
, void *Fn
, void *Stub
,
488 JITCodeEmitter
&JCE
) {
489 // Note, we cast to intptr_t here to silence a -pedantic warning that
490 // complains about casting a function pointer to a normal pointer.
491 JCE
.startGVStub(F
, Stub
, 5);
493 #if defined (X86_64_JIT) && !defined (NDEBUG)
494 // Yes, we need both of these casts, or some broken versions of GCC (4.2.4)
495 // get the signed-ness of the expression wrong. Go figure.
496 intptr_t Displacement
= (intptr_t)Fn
- (intptr_t)JCE
.getCurrentPCValue() - 5;
497 assert(((Displacement
<< 32) >> 32) == Displacement
498 && "PIC displacement does not fit in displacement field!");
500 JCE
.emitWordLE((intptr_t)Fn
-JCE
.getCurrentPCValue()-4);
504 /// getPICJumpTableEntry - Returns the value of the jumptable entry for the
505 /// specific basic block.
506 uintptr_t X86JITInfo::getPICJumpTableEntry(uintptr_t BB
, uintptr_t Entry
) {
507 #if defined(X86_64_JIT)
514 /// relocate - Before the JIT can run a block of code that has been emitted,
515 /// it must rewrite the code to contain the actual addresses of any
516 /// referenced global symbols.
517 void X86JITInfo::relocate(void *Function
, MachineRelocation
*MR
,
518 unsigned NumRelocs
, unsigned char* GOTBase
) {
519 for (unsigned i
= 0; i
!= NumRelocs
; ++i
, ++MR
) {
520 void *RelocPos
= (char*)Function
+ MR
->getMachineCodeOffset();
521 intptr_t ResultPtr
= (intptr_t)MR
->getResultPointer();
522 switch ((X86::RelocationType
)MR
->getRelocationType()) {
523 case X86::reloc_pcrel_word
: {
524 // PC relative relocation, add the relocated value to the value already in
525 // memory, after we adjust it for where the PC is.
526 ResultPtr
= ResultPtr
-(intptr_t)RelocPos
- 4 - MR
->getConstantVal();
527 *((unsigned*)RelocPos
) += (unsigned)ResultPtr
;
530 case X86::reloc_picrel_word
: {
531 // PIC base relative relocation, add the relocated value to the value
532 // already in memory, after we adjust it for where the PIC base is.
533 ResultPtr
= ResultPtr
- ((intptr_t)Function
+ MR
->getConstantVal());
534 *((unsigned*)RelocPos
) += (unsigned)ResultPtr
;
537 case X86::reloc_absolute_word
:
538 case X86::reloc_absolute_word_sext
:
539 // Absolute relocation, just add the relocated value to the value already
541 *((unsigned*)RelocPos
) += (unsigned)ResultPtr
;
543 case X86::reloc_absolute_dword
:
544 *((intptr_t*)RelocPos
) += ResultPtr
;
550 char* X86JITInfo::allocateThreadLocalMemory(size_t size
) {
551 #if defined(X86_32_JIT) && !defined(__APPLE__) && !defined(_MSC_VER)
555 llvm_unreachable("Cannot allocate thread local storage on this arch!");