pass machinemoduleinfo down into getSymbolForDwarfGlobalReference,
[llvm/avr.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
blob6d06959396952d07fabff07ffc270276944cecf1
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Analysis/Dominators.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 #include "llvm/Support/IRBuilder.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 using namespace llvm;
46 STATISTIC(NumReplaced, "Number of allocas broken up");
47 STATISTIC(NumPromoted, "Number of allocas promoted");
48 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49 STATISTIC(NumGlobals, "Number of allocas copied from constant global");
51 namespace {
52 struct SROA : public FunctionPass {
53 static char ID; // Pass identification, replacement for typeid
54 explicit SROA(signed T = -1) : FunctionPass(&ID) {
55 if (T == -1)
56 SRThreshold = 128;
57 else
58 SRThreshold = T;
61 bool runOnFunction(Function &F);
63 bool performScalarRepl(Function &F);
64 bool performPromotion(Function &F);
66 // getAnalysisUsage - This pass does not require any passes, but we know it
67 // will not alter the CFG, so say so.
68 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69 AU.addRequired<DominatorTree>();
70 AU.addRequired<DominanceFrontier>();
71 AU.setPreservesCFG();
74 private:
75 TargetData *TD;
77 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78 /// information about the uses. All these fields are initialized to false
79 /// and set to true when something is learned.
80 struct AllocaInfo {
81 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
82 bool isUnsafe : 1;
84 /// needsCleanup - This is set to true if there is some use of the alloca
85 /// that requires cleanup.
86 bool needsCleanup : 1;
88 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
89 bool isMemCpySrc : 1;
91 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
92 bool isMemCpyDst : 1;
94 AllocaInfo()
95 : isUnsafe(false), needsCleanup(false),
96 isMemCpySrc(false), isMemCpyDst(false) {}
99 unsigned SRThreshold;
101 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
103 int isSafeAllocaToScalarRepl(AllocationInst *AI);
105 void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
106 AllocaInfo &Info);
107 void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
108 AllocaInfo &Info);
109 void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
110 unsigned OpNo, AllocaInfo &Info);
111 void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
112 AllocaInfo &Info);
114 void DoScalarReplacement(AllocationInst *AI,
115 std::vector<AllocationInst*> &WorkList);
116 void CleanupGEP(GetElementPtrInst *GEP);
117 void CleanupAllocaUsers(AllocationInst *AI);
118 AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
120 void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
121 SmallVector<AllocaInst*, 32> &NewElts);
123 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
124 AllocationInst *AI,
125 SmallVector<AllocaInst*, 32> &NewElts);
126 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
127 SmallVector<AllocaInst*, 32> &NewElts);
128 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
129 SmallVector<AllocaInst*, 32> &NewElts);
131 bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
132 bool &SawVec, uint64_t Offset, unsigned AllocaSize);
133 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
134 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
135 uint64_t Offset, IRBuilder<> &Builder);
136 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
137 uint64_t Offset, IRBuilder<> &Builder);
138 static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
142 char SROA::ID = 0;
143 static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
145 // Public interface to the ScalarReplAggregates pass
146 FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
147 return new SROA(Threshold);
151 bool SROA::runOnFunction(Function &F) {
152 TD = getAnalysisIfAvailable<TargetData>();
154 bool Changed = performPromotion(F);
156 // FIXME: ScalarRepl currently depends on TargetData more than it
157 // theoretically needs to. It should be refactored in order to support
158 // target-independent IR. Until this is done, just skip the actual
159 // scalar-replacement portion of this pass.
160 if (!TD) return Changed;
162 while (1) {
163 bool LocalChange = performScalarRepl(F);
164 if (!LocalChange) break; // No need to repromote if no scalarrepl
165 Changed = true;
166 LocalChange = performPromotion(F);
167 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
170 return Changed;
174 bool SROA::performPromotion(Function &F) {
175 std::vector<AllocaInst*> Allocas;
176 DominatorTree &DT = getAnalysis<DominatorTree>();
177 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
179 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
181 bool Changed = false;
183 while (1) {
184 Allocas.clear();
186 // Find allocas that are safe to promote, by looking at all instructions in
187 // the entry node
188 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
189 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
190 if (isAllocaPromotable(AI))
191 Allocas.push_back(AI);
193 if (Allocas.empty()) break;
195 PromoteMemToReg(Allocas, DT, DF, F.getContext());
196 NumPromoted += Allocas.size();
197 Changed = true;
200 return Changed;
203 /// getNumSAElements - Return the number of elements in the specific struct or
204 /// array.
205 static uint64_t getNumSAElements(const Type *T) {
206 if (const StructType *ST = dyn_cast<StructType>(T))
207 return ST->getNumElements();
208 return cast<ArrayType>(T)->getNumElements();
211 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
212 // which runs on all of the malloc/alloca instructions in the function, removing
213 // them if they are only used by getelementptr instructions.
215 bool SROA::performScalarRepl(Function &F) {
216 std::vector<AllocationInst*> WorkList;
218 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
219 BasicBlock &BB = F.getEntryBlock();
220 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
221 if (AllocationInst *A = dyn_cast<AllocationInst>(I))
222 WorkList.push_back(A);
224 // Process the worklist
225 bool Changed = false;
226 while (!WorkList.empty()) {
227 AllocationInst *AI = WorkList.back();
228 WorkList.pop_back();
230 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
231 // with unused elements.
232 if (AI->use_empty()) {
233 AI->eraseFromParent();
234 continue;
237 // If this alloca is impossible for us to promote, reject it early.
238 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
239 continue;
241 // Check to see if this allocation is only modified by a memcpy/memmove from
242 // a constant global. If this is the case, we can change all users to use
243 // the constant global instead. This is commonly produced by the CFE by
244 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
245 // is only subsequently read.
246 if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
247 DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
248 DEBUG(errs() << " memcpy = " << *TheCopy << '\n');
249 Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
250 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
251 TheCopy->eraseFromParent(); // Don't mutate the global.
252 AI->eraseFromParent();
253 ++NumGlobals;
254 Changed = true;
255 continue;
258 // Check to see if we can perform the core SROA transformation. We cannot
259 // transform the allocation instruction if it is an array allocation
260 // (allocations OF arrays are ok though), and an allocation of a scalar
261 // value cannot be decomposed at all.
262 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
264 // Do not promote [0 x %struct].
265 if (AllocaSize == 0) continue;
267 // Do not promote any struct whose size is too big.
268 if (AllocaSize > SRThreshold) continue;
270 if ((isa<StructType>(AI->getAllocatedType()) ||
271 isa<ArrayType>(AI->getAllocatedType())) &&
272 // Do not promote any struct into more than "32" separate vars.
273 getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
274 // Check that all of the users of the allocation are capable of being
275 // transformed.
276 switch (isSafeAllocaToScalarRepl(AI)) {
277 default: llvm_unreachable("Unexpected value!");
278 case 0: // Not safe to scalar replace.
279 break;
280 case 1: // Safe, but requires cleanup/canonicalizations first
281 CleanupAllocaUsers(AI);
282 // FALL THROUGH.
283 case 3: // Safe to scalar replace.
284 DoScalarReplacement(AI, WorkList);
285 Changed = true;
286 continue;
290 // If we can turn this aggregate value (potentially with casts) into a
291 // simple scalar value that can be mem2reg'd into a register value.
292 // IsNotTrivial tracks whether this is something that mem2reg could have
293 // promoted itself. If so, we don't want to transform it needlessly. Note
294 // that we can't just check based on the type: the alloca may be of an i32
295 // but that has pointer arithmetic to set byte 3 of it or something.
296 bool IsNotTrivial = false;
297 const Type *VectorTy = 0;
298 bool HadAVector = false;
299 if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
300 0, unsigned(AllocaSize)) && IsNotTrivial) {
301 AllocaInst *NewAI;
302 // If we were able to find a vector type that can handle this with
303 // insert/extract elements, and if there was at least one use that had
304 // a vector type, promote this to a vector. We don't want to promote
305 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
306 // we just get a lot of insert/extracts. If at least one vector is
307 // involved, then we probably really do have a union of vector/array.
308 if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
309 DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
310 << *VectorTy << '\n');
312 // Create and insert the vector alloca.
313 NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
314 ConvertUsesToScalar(AI, NewAI, 0);
315 } else {
316 DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
318 // Create and insert the integer alloca.
319 const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
320 NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
321 ConvertUsesToScalar(AI, NewAI, 0);
323 NewAI->takeName(AI);
324 AI->eraseFromParent();
325 ++NumConverted;
326 Changed = true;
327 continue;
330 // Otherwise, couldn't process this alloca.
333 return Changed;
336 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
337 /// predicate, do SROA now.
338 void SROA::DoScalarReplacement(AllocationInst *AI,
339 std::vector<AllocationInst*> &WorkList) {
340 DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
341 SmallVector<AllocaInst*, 32> ElementAllocas;
342 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
343 ElementAllocas.reserve(ST->getNumContainedTypes());
344 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
345 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
346 AI->getAlignment(),
347 AI->getName() + "." + Twine(i), AI);
348 ElementAllocas.push_back(NA);
349 WorkList.push_back(NA); // Add to worklist for recursive processing
351 } else {
352 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
353 ElementAllocas.reserve(AT->getNumElements());
354 const Type *ElTy = AT->getElementType();
355 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
356 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
357 AI->getName() + "." + Twine(i), AI);
358 ElementAllocas.push_back(NA);
359 WorkList.push_back(NA); // Add to worklist for recursive processing
363 // Now that we have created the alloca instructions that we want to use,
364 // expand the getelementptr instructions to use them.
366 while (!AI->use_empty()) {
367 Instruction *User = cast<Instruction>(AI->use_back());
368 if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
369 RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
370 BCInst->eraseFromParent();
371 continue;
374 // Replace:
375 // %res = load { i32, i32 }* %alloc
376 // with:
377 // %load.0 = load i32* %alloc.0
378 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
379 // %load.1 = load i32* %alloc.1
380 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
381 // (Also works for arrays instead of structs)
382 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
383 Value *Insert = UndefValue::get(LI->getType());
384 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
385 Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
386 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
388 LI->replaceAllUsesWith(Insert);
389 LI->eraseFromParent();
390 continue;
393 // Replace:
394 // store { i32, i32 } %val, { i32, i32 }* %alloc
395 // with:
396 // %val.0 = extractvalue { i32, i32 } %val, 0
397 // store i32 %val.0, i32* %alloc.0
398 // %val.1 = extractvalue { i32, i32 } %val, 1
399 // store i32 %val.1, i32* %alloc.1
400 // (Also works for arrays instead of structs)
401 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
402 Value *Val = SI->getOperand(0);
403 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
404 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
405 new StoreInst(Extract, ElementAllocas[i], SI);
407 SI->eraseFromParent();
408 continue;
411 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
412 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
413 unsigned Idx =
414 (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
416 assert(Idx < ElementAllocas.size() && "Index out of range?");
417 AllocaInst *AllocaToUse = ElementAllocas[Idx];
419 Value *RepValue;
420 if (GEPI->getNumOperands() == 3) {
421 // Do not insert a new getelementptr instruction with zero indices, only
422 // to have it optimized out later.
423 RepValue = AllocaToUse;
424 } else {
425 // We are indexing deeply into the structure, so we still need a
426 // getelement ptr instruction to finish the indexing. This may be
427 // expanded itself once the worklist is rerun.
429 SmallVector<Value*, 8> NewArgs;
430 NewArgs.push_back(Constant::getNullValue(
431 Type::getInt32Ty(AI->getContext())));
432 NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
433 RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
434 NewArgs.end(), "", GEPI);
435 RepValue->takeName(GEPI);
438 // If this GEP is to the start of the aggregate, check for memcpys.
439 if (Idx == 0 && GEPI->hasAllZeroIndices())
440 RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
442 // Move all of the users over to the new GEP.
443 GEPI->replaceAllUsesWith(RepValue);
444 // Delete the old GEP
445 GEPI->eraseFromParent();
448 // Finally, delete the Alloca instruction
449 AI->eraseFromParent();
450 NumReplaced++;
454 /// isSafeElementUse - Check to see if this use is an allowed use for a
455 /// getelementptr instruction of an array aggregate allocation. isFirstElt
456 /// indicates whether Ptr is known to the start of the aggregate.
458 void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
459 AllocaInfo &Info) {
460 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
461 I != E; ++I) {
462 Instruction *User = cast<Instruction>(*I);
463 switch (User->getOpcode()) {
464 case Instruction::Load: break;
465 case Instruction::Store:
466 // Store is ok if storing INTO the pointer, not storing the pointer
467 if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
468 break;
469 case Instruction::GetElementPtr: {
470 GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
471 bool AreAllZeroIndices = isFirstElt;
472 if (GEP->getNumOperands() > 1) {
473 if (!isa<ConstantInt>(GEP->getOperand(1)) ||
474 !cast<ConstantInt>(GEP->getOperand(1))->isZero())
475 // Using pointer arithmetic to navigate the array.
476 return MarkUnsafe(Info);
478 if (AreAllZeroIndices)
479 AreAllZeroIndices = GEP->hasAllZeroIndices();
481 isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
482 if (Info.isUnsafe) return;
483 break;
485 case Instruction::BitCast:
486 if (isFirstElt) {
487 isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
488 if (Info.isUnsafe) return;
489 break;
491 DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
492 return MarkUnsafe(Info);
493 case Instruction::Call:
494 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
495 if (isFirstElt) {
496 isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
497 if (Info.isUnsafe) return;
498 break;
501 DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
502 return MarkUnsafe(Info);
503 default:
504 DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
505 return MarkUnsafe(Info);
508 return; // All users look ok :)
511 /// AllUsersAreLoads - Return true if all users of this value are loads.
512 static bool AllUsersAreLoads(Value *Ptr) {
513 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
514 I != E; ++I)
515 if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
516 return false;
517 return true;
520 /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
521 /// aggregate allocation.
523 void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
524 AllocaInfo &Info) {
525 if (BitCastInst *C = dyn_cast<BitCastInst>(User))
526 return isSafeUseOfBitCastedAllocation(C, AI, Info);
528 if (LoadInst *LI = dyn_cast<LoadInst>(User))
529 if (!LI->isVolatile())
530 return;// Loads (returning a first class aggregrate) are always rewritable
532 if (StoreInst *SI = dyn_cast<StoreInst>(User))
533 if (!SI->isVolatile() && SI->getOperand(0) != AI)
534 return;// Store is ok if storing INTO the pointer, not storing the pointer
536 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
537 if (GEPI == 0)
538 return MarkUnsafe(Info);
540 gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
542 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
543 if (I == E ||
544 I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
545 return MarkUnsafe(Info);
548 ++I;
549 if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
551 bool IsAllZeroIndices = true;
553 // If the first index is a non-constant index into an array, see if we can
554 // handle it as a special case.
555 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
556 if (!isa<ConstantInt>(I.getOperand())) {
557 IsAllZeroIndices = 0;
558 uint64_t NumElements = AT->getNumElements();
560 // If this is an array index and the index is not constant, we cannot
561 // promote... that is unless the array has exactly one or two elements in
562 // it, in which case we CAN promote it, but we have to canonicalize this
563 // out if this is the only problem.
564 if ((NumElements == 1 || NumElements == 2) &&
565 AllUsersAreLoads(GEPI)) {
566 Info.needsCleanup = true;
567 return; // Canonicalization required!
569 return MarkUnsafe(Info);
573 // Walk through the GEP type indices, checking the types that this indexes
574 // into.
575 for (; I != E; ++I) {
576 // Ignore struct elements, no extra checking needed for these.
577 if (isa<StructType>(*I))
578 continue;
580 ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
581 if (!IdxVal) return MarkUnsafe(Info);
583 // Are all indices still zero?
584 IsAllZeroIndices &= IdxVal->isZero();
586 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
587 // This GEP indexes an array. Verify that this is an in-range constant
588 // integer. Specifically, consider A[0][i]. We cannot know that the user
589 // isn't doing invalid things like allowing i to index an out-of-range
590 // subscript that accesses A[1]. Because of this, we have to reject SROA
591 // of any accesses into structs where any of the components are variables.
592 if (IdxVal->getZExtValue() >= AT->getNumElements())
593 return MarkUnsafe(Info);
594 } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
595 if (IdxVal->getZExtValue() >= VT->getNumElements())
596 return MarkUnsafe(Info);
600 // If there are any non-simple uses of this getelementptr, make sure to reject
601 // them.
602 return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
605 /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
606 /// intrinsic can be promoted by SROA. At this point, we know that the operand
607 /// of the memintrinsic is a pointer to the beginning of the allocation.
608 void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
609 unsigned OpNo, AllocaInfo &Info) {
610 // If not constant length, give up.
611 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
612 if (!Length) return MarkUnsafe(Info);
614 // If not the whole aggregate, give up.
615 if (Length->getZExtValue() !=
616 TD->getTypeAllocSize(AI->getType()->getElementType()))
617 return MarkUnsafe(Info);
619 // We only know about memcpy/memset/memmove.
620 if (!isa<MemIntrinsic>(MI))
621 return MarkUnsafe(Info);
623 // Otherwise, we can transform it. Determine whether this is a memcpy/set
624 // into or out of the aggregate.
625 if (OpNo == 1)
626 Info.isMemCpyDst = true;
627 else {
628 assert(OpNo == 2);
629 Info.isMemCpySrc = true;
633 /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
634 /// are
635 void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
636 AllocaInfo &Info) {
637 for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
638 UI != E; ++UI) {
639 if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
640 isSafeUseOfBitCastedAllocation(BCU, AI, Info);
641 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
642 isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
643 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
644 if (SI->isVolatile())
645 return MarkUnsafe(Info);
647 // If storing the entire alloca in one chunk through a bitcasted pointer
648 // to integer, we can transform it. This happens (for example) when you
649 // cast a {i32,i32}* to i64* and store through it. This is similar to the
650 // memcpy case and occurs in various "byval" cases and emulated memcpys.
651 if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
652 TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
653 TD->getTypeAllocSize(AI->getType()->getElementType())) {
654 Info.isMemCpyDst = true;
655 continue;
657 return MarkUnsafe(Info);
658 } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
659 if (LI->isVolatile())
660 return MarkUnsafe(Info);
662 // If loading the entire alloca in one chunk through a bitcasted pointer
663 // to integer, we can transform it. This happens (for example) when you
664 // cast a {i32,i32}* to i64* and load through it. This is similar to the
665 // memcpy case and occurs in various "byval" cases and emulated memcpys.
666 if (isa<IntegerType>(LI->getType()) &&
667 TD->getTypeAllocSize(LI->getType()) ==
668 TD->getTypeAllocSize(AI->getType()->getElementType())) {
669 Info.isMemCpySrc = true;
670 continue;
672 return MarkUnsafe(Info);
673 } else if (isa<DbgInfoIntrinsic>(UI)) {
674 // If one user is DbgInfoIntrinsic then check if all users are
675 // DbgInfoIntrinsics.
676 if (OnlyUsedByDbgInfoIntrinsics(BC)) {
677 Info.needsCleanup = true;
678 return;
680 else
681 MarkUnsafe(Info);
683 else {
684 return MarkUnsafe(Info);
686 if (Info.isUnsafe) return;
690 /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
691 /// to its first element. Transform users of the cast to use the new values
692 /// instead.
693 void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
694 SmallVector<AllocaInst*, 32> &NewElts) {
695 Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
696 while (UI != UE) {
697 Instruction *User = cast<Instruction>(*UI++);
698 if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
699 RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
700 if (BCU->use_empty()) BCU->eraseFromParent();
701 continue;
704 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
705 // This must be memcpy/memmove/memset of the entire aggregate.
706 // Split into one per element.
707 RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
708 continue;
711 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
712 // If this is a store of the entire alloca from an integer, rewrite it.
713 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
714 continue;
717 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
718 // If this is a load of the entire alloca to an integer, rewrite it.
719 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
720 continue;
723 // Otherwise it must be some other user of a gep of the first pointer. Just
724 // leave these alone.
725 continue;
729 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
730 /// Rewrite it to copy or set the elements of the scalarized memory.
731 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
732 AllocationInst *AI,
733 SmallVector<AllocaInst*, 32> &NewElts) {
735 // If this is a memcpy/memmove, construct the other pointer as the
736 // appropriate type. The "Other" pointer is the pointer that goes to memory
737 // that doesn't have anything to do with the alloca that we are promoting. For
738 // memset, this Value* stays null.
739 Value *OtherPtr = 0;
740 LLVMContext &Context = MI->getContext();
741 unsigned MemAlignment = MI->getAlignment();
742 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
743 if (BCInst == MTI->getRawDest())
744 OtherPtr = MTI->getRawSource();
745 else {
746 assert(BCInst == MTI->getRawSource());
747 OtherPtr = MTI->getRawDest();
751 // If there is an other pointer, we want to convert it to the same pointer
752 // type as AI has, so we can GEP through it safely.
753 if (OtherPtr) {
754 // It is likely that OtherPtr is a bitcast, if so, remove it.
755 if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
756 OtherPtr = BC->getOperand(0);
757 // All zero GEPs are effectively bitcasts.
758 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
759 if (GEP->hasAllZeroIndices())
760 OtherPtr = GEP->getOperand(0);
762 if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
763 if (BCE->getOpcode() == Instruction::BitCast)
764 OtherPtr = BCE->getOperand(0);
766 // If the pointer is not the right type, insert a bitcast to the right
767 // type.
768 if (OtherPtr->getType() != AI->getType())
769 OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
770 MI);
773 // Process each element of the aggregate.
774 Value *TheFn = MI->getOperand(0);
775 const Type *BytePtrTy = MI->getRawDest()->getType();
776 bool SROADest = MI->getRawDest() == BCInst;
778 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
780 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
781 // If this is a memcpy/memmove, emit a GEP of the other element address.
782 Value *OtherElt = 0;
783 unsigned OtherEltAlign = MemAlignment;
785 if (OtherPtr) {
786 Value *Idx[2] = { Zero,
787 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
788 OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
789 OtherPtr->getNameStr()+"."+Twine(i),
790 MI);
791 uint64_t EltOffset;
792 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
793 if (const StructType *ST =
794 dyn_cast<StructType>(OtherPtrTy->getElementType())) {
795 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
796 } else {
797 const Type *EltTy =
798 cast<SequentialType>(OtherPtr->getType())->getElementType();
799 EltOffset = TD->getTypeAllocSize(EltTy)*i;
802 // The alignment of the other pointer is the guaranteed alignment of the
803 // element, which is affected by both the known alignment of the whole
804 // mem intrinsic and the alignment of the element. If the alignment of
805 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
806 // known alignment is just 4 bytes.
807 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
810 Value *EltPtr = NewElts[i];
811 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
813 // If we got down to a scalar, insert a load or store as appropriate.
814 if (EltTy->isSingleValueType()) {
815 if (isa<MemTransferInst>(MI)) {
816 if (SROADest) {
817 // From Other to Alloca.
818 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
819 new StoreInst(Elt, EltPtr, MI);
820 } else {
821 // From Alloca to Other.
822 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
823 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
825 continue;
827 assert(isa<MemSetInst>(MI));
829 // If the stored element is zero (common case), just store a null
830 // constant.
831 Constant *StoreVal;
832 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
833 if (CI->isZero()) {
834 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
835 } else {
836 // If EltTy is a vector type, get the element type.
837 const Type *ValTy = EltTy->getScalarType();
839 // Construct an integer with the right value.
840 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
841 APInt OneVal(EltSize, CI->getZExtValue());
842 APInt TotalVal(OneVal);
843 // Set each byte.
844 for (unsigned i = 0; 8*i < EltSize; ++i) {
845 TotalVal = TotalVal.shl(8);
846 TotalVal |= OneVal;
849 // Convert the integer value to the appropriate type.
850 StoreVal = ConstantInt::get(Context, TotalVal);
851 if (isa<PointerType>(ValTy))
852 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
853 else if (ValTy->isFloatingPoint())
854 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
855 assert(StoreVal->getType() == ValTy && "Type mismatch!");
857 // If the requested value was a vector constant, create it.
858 if (EltTy != ValTy) {
859 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
860 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
861 StoreVal = ConstantVector::get(&Elts[0], NumElts);
864 new StoreInst(StoreVal, EltPtr, MI);
865 continue;
867 // Otherwise, if we're storing a byte variable, use a memset call for
868 // this element.
871 // Cast the element pointer to BytePtrTy.
872 if (EltPtr->getType() != BytePtrTy)
873 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
875 // Cast the other pointer (if we have one) to BytePtrTy.
876 if (OtherElt && OtherElt->getType() != BytePtrTy)
877 OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
878 MI);
880 unsigned EltSize = TD->getTypeAllocSize(EltTy);
882 // Finally, insert the meminst for this element.
883 if (isa<MemTransferInst>(MI)) {
884 Value *Ops[] = {
885 SROADest ? EltPtr : OtherElt, // Dest ptr
886 SROADest ? OtherElt : EltPtr, // Src ptr
887 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
888 // Align
889 ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
891 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
892 } else {
893 assert(isa<MemSetInst>(MI));
894 Value *Ops[] = {
895 EltPtr, MI->getOperand(2), // Dest, Value,
896 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
897 Zero // Align
899 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
902 MI->eraseFromParent();
905 /// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
906 /// overwrites the entire allocation. Extract out the pieces of the stored
907 /// integer and store them individually.
908 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
909 AllocationInst *AI,
910 SmallVector<AllocaInst*, 32> &NewElts){
911 // Extract each element out of the integer according to its structure offset
912 // and store the element value to the individual alloca.
913 Value *SrcVal = SI->getOperand(0);
914 const Type *AllocaEltTy = AI->getType()->getElementType();
915 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
917 // If this isn't a store of an integer to the whole alloca, it may be a store
918 // to the first element. Just ignore the store in this case and normal SROA
919 // will handle it.
920 if (!isa<IntegerType>(SrcVal->getType()) ||
921 TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
922 return;
923 // Handle tail padding by extending the operand
924 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
925 SrcVal = new ZExtInst(SrcVal,
926 IntegerType::get(SI->getContext(), AllocaSizeBits),
927 "", SI);
929 DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
930 << '\n');
932 // There are two forms here: AI could be an array or struct. Both cases
933 // have different ways to compute the element offset.
934 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
935 const StructLayout *Layout = TD->getStructLayout(EltSTy);
937 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
938 // Get the number of bits to shift SrcVal to get the value.
939 const Type *FieldTy = EltSTy->getElementType(i);
940 uint64_t Shift = Layout->getElementOffsetInBits(i);
942 if (TD->isBigEndian())
943 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
945 Value *EltVal = SrcVal;
946 if (Shift) {
947 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
948 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
949 "sroa.store.elt", SI);
952 // Truncate down to an integer of the right size.
953 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
955 // Ignore zero sized fields like {}, they obviously contain no data.
956 if (FieldSizeBits == 0) continue;
958 if (FieldSizeBits != AllocaSizeBits)
959 EltVal = new TruncInst(EltVal,
960 IntegerType::get(SI->getContext(), FieldSizeBits),
961 "", SI);
962 Value *DestField = NewElts[i];
963 if (EltVal->getType() == FieldTy) {
964 // Storing to an integer field of this size, just do it.
965 } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
966 // Bitcast to the right element type (for fp/vector values).
967 EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
968 } else {
969 // Otherwise, bitcast the dest pointer (for aggregates).
970 DestField = new BitCastInst(DestField,
971 PointerType::getUnqual(EltVal->getType()),
972 "", SI);
974 new StoreInst(EltVal, DestField, SI);
977 } else {
978 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
979 const Type *ArrayEltTy = ATy->getElementType();
980 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
981 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
983 uint64_t Shift;
985 if (TD->isBigEndian())
986 Shift = AllocaSizeBits-ElementOffset;
987 else
988 Shift = 0;
990 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
991 // Ignore zero sized fields like {}, they obviously contain no data.
992 if (ElementSizeBits == 0) continue;
994 Value *EltVal = SrcVal;
995 if (Shift) {
996 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
997 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
998 "sroa.store.elt", SI);
1001 // Truncate down to an integer of the right size.
1002 if (ElementSizeBits != AllocaSizeBits)
1003 EltVal = new TruncInst(EltVal,
1004 IntegerType::get(SI->getContext(),
1005 ElementSizeBits),"",SI);
1006 Value *DestField = NewElts[i];
1007 if (EltVal->getType() == ArrayEltTy) {
1008 // Storing to an integer field of this size, just do it.
1009 } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
1010 // Bitcast to the right element type (for fp/vector values).
1011 EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1012 } else {
1013 // Otherwise, bitcast the dest pointer (for aggregates).
1014 DestField = new BitCastInst(DestField,
1015 PointerType::getUnqual(EltVal->getType()),
1016 "", SI);
1018 new StoreInst(EltVal, DestField, SI);
1020 if (TD->isBigEndian())
1021 Shift -= ElementOffset;
1022 else
1023 Shift += ElementOffset;
1027 SI->eraseFromParent();
1030 /// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1031 /// an integer. Load the individual pieces to form the aggregate value.
1032 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
1033 SmallVector<AllocaInst*, 32> &NewElts) {
1034 // Extract each element out of the NewElts according to its structure offset
1035 // and form the result value.
1036 const Type *AllocaEltTy = AI->getType()->getElementType();
1037 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1039 // If this isn't a load of the whole alloca to an integer, it may be a load
1040 // of the first element. Just ignore the load in this case and normal SROA
1041 // will handle it.
1042 if (!isa<IntegerType>(LI->getType()) ||
1043 TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1044 return;
1046 DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1047 << '\n');
1049 // There are two forms here: AI could be an array or struct. Both cases
1050 // have different ways to compute the element offset.
1051 const StructLayout *Layout = 0;
1052 uint64_t ArrayEltBitOffset = 0;
1053 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1054 Layout = TD->getStructLayout(EltSTy);
1055 } else {
1056 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1057 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1060 Value *ResultVal =
1061 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1063 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1064 // Load the value from the alloca. If the NewElt is an aggregate, cast
1065 // the pointer to an integer of the same size before doing the load.
1066 Value *SrcField = NewElts[i];
1067 const Type *FieldTy =
1068 cast<PointerType>(SrcField->getType())->getElementType();
1069 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1071 // Ignore zero sized fields like {}, they obviously contain no data.
1072 if (FieldSizeBits == 0) continue;
1074 const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1075 FieldSizeBits);
1076 if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1077 !isa<VectorType>(FieldTy))
1078 SrcField = new BitCastInst(SrcField,
1079 PointerType::getUnqual(FieldIntTy),
1080 "", LI);
1081 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1083 // If SrcField is a fp or vector of the right size but that isn't an
1084 // integer type, bitcast to an integer so we can shift it.
1085 if (SrcField->getType() != FieldIntTy)
1086 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1088 // Zero extend the field to be the same size as the final alloca so that
1089 // we can shift and insert it.
1090 if (SrcField->getType() != ResultVal->getType())
1091 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1093 // Determine the number of bits to shift SrcField.
1094 uint64_t Shift;
1095 if (Layout) // Struct case.
1096 Shift = Layout->getElementOffsetInBits(i);
1097 else // Array case.
1098 Shift = i*ArrayEltBitOffset;
1100 if (TD->isBigEndian())
1101 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1103 if (Shift) {
1104 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1105 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1108 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1111 // Handle tail padding by truncating the result
1112 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1113 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1115 LI->replaceAllUsesWith(ResultVal);
1116 LI->eraseFromParent();
1120 /// HasPadding - Return true if the specified type has any structure or
1121 /// alignment padding, false otherwise.
1122 static bool HasPadding(const Type *Ty, const TargetData &TD) {
1123 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1124 const StructLayout *SL = TD.getStructLayout(STy);
1125 unsigned PrevFieldBitOffset = 0;
1126 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1127 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1129 // Padding in sub-elements?
1130 if (HasPadding(STy->getElementType(i), TD))
1131 return true;
1133 // Check to see if there is any padding between this element and the
1134 // previous one.
1135 if (i) {
1136 unsigned PrevFieldEnd =
1137 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1138 if (PrevFieldEnd < FieldBitOffset)
1139 return true;
1142 PrevFieldBitOffset = FieldBitOffset;
1145 // Check for tail padding.
1146 if (unsigned EltCount = STy->getNumElements()) {
1147 unsigned PrevFieldEnd = PrevFieldBitOffset +
1148 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1149 if (PrevFieldEnd < SL->getSizeInBits())
1150 return true;
1153 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1154 return HasPadding(ATy->getElementType(), TD);
1155 } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1156 return HasPadding(VTy->getElementType(), TD);
1158 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1161 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1162 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
1163 /// or 1 if safe after canonicalization has been performed.
1165 int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1166 // Loop over the use list of the alloca. We can only transform it if all of
1167 // the users are safe to transform.
1168 AllocaInfo Info;
1170 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1171 I != E; ++I) {
1172 isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1173 if (Info.isUnsafe) {
1174 DEBUG(errs() << "Cannot transform: " << *AI << "\n due to user: "
1175 << **I << '\n');
1176 return 0;
1180 // Okay, we know all the users are promotable. If the aggregate is a memcpy
1181 // source and destination, we have to be careful. In particular, the memcpy
1182 // could be moving around elements that live in structure padding of the LLVM
1183 // types, but may actually be used. In these cases, we refuse to promote the
1184 // struct.
1185 if (Info.isMemCpySrc && Info.isMemCpyDst &&
1186 HasPadding(AI->getType()->getElementType(), *TD))
1187 return 0;
1189 // If we require cleanup, return 1, otherwise return 3.
1190 return Info.needsCleanup ? 1 : 3;
1193 /// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1194 /// is canonicalized here.
1195 void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1196 gep_type_iterator I = gep_type_begin(GEPI);
1197 ++I;
1199 const ArrayType *AT = dyn_cast<ArrayType>(*I);
1200 if (!AT)
1201 return;
1203 uint64_t NumElements = AT->getNumElements();
1205 if (isa<ConstantInt>(I.getOperand()))
1206 return;
1208 if (NumElements == 1) {
1209 GEPI->setOperand(2,
1210 Constant::getNullValue(Type::getInt32Ty(GEPI->getContext())));
1211 return;
1214 assert(NumElements == 2 && "Unhandled case!");
1215 // All users of the GEP must be loads. At each use of the GEP, insert
1216 // two loads of the appropriate indexed GEP and select between them.
1217 Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1218 Constant::getNullValue(I.getOperand()->getType()),
1219 "isone");
1220 // Insert the new GEP instructions, which are properly indexed.
1221 SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1222 Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
1223 Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1224 Indices.begin(),
1225 Indices.end(),
1226 GEPI->getName()+".0", GEPI);
1227 Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
1228 Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1229 Indices.begin(),
1230 Indices.end(),
1231 GEPI->getName()+".1", GEPI);
1232 // Replace all loads of the variable index GEP with loads from both
1233 // indexes and a select.
1234 while (!GEPI->use_empty()) {
1235 LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1236 Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1237 Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
1238 Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1239 LI->replaceAllUsesWith(R);
1240 LI->eraseFromParent();
1242 GEPI->eraseFromParent();
1246 /// CleanupAllocaUsers - If SROA reported that it can promote the specified
1247 /// allocation, but only if cleaned up, perform the cleanups required.
1248 void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1249 // At this point, we know that the end result will be SROA'd and promoted, so
1250 // we can insert ugly code if required so long as sroa+mem2reg will clean it
1251 // up.
1252 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1253 UI != E; ) {
1254 User *U = *UI++;
1255 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1256 CleanupGEP(GEPI);
1257 else {
1258 Instruction *I = cast<Instruction>(U);
1259 SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1260 if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1261 // Safe to remove debug info uses.
1262 while (!DbgInUses.empty()) {
1263 DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1264 DI->eraseFromParent();
1266 I->eraseFromParent();
1272 /// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1273 /// the offset specified by Offset (which is specified in bytes).
1275 /// There are two cases we handle here:
1276 /// 1) A union of vector types of the same size and potentially its elements.
1277 /// Here we turn element accesses into insert/extract element operations.
1278 /// This promotes a <4 x float> with a store of float to the third element
1279 /// into a <4 x float> that uses insert element.
1280 /// 2) A fully general blob of memory, which we turn into some (potentially
1281 /// large) integer type with extract and insert operations where the loads
1282 /// and stores would mutate the memory.
1283 static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1284 unsigned AllocaSize, const TargetData &TD,
1285 LLVMContext &Context) {
1286 // If this could be contributing to a vector, analyze it.
1287 if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
1289 // If the In type is a vector that is the same size as the alloca, see if it
1290 // matches the existing VecTy.
1291 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1292 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1293 // If we're storing/loading a vector of the right size, allow it as a
1294 // vector. If this the first vector we see, remember the type so that
1295 // we know the element size.
1296 if (VecTy == 0)
1297 VecTy = VInTy;
1298 return;
1300 } else if (In == Type::getFloatTy(Context) ||
1301 In == Type::getDoubleTy(Context) ||
1302 (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1303 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1304 // If we're accessing something that could be an element of a vector, see
1305 // if the implied vector agrees with what we already have and if Offset is
1306 // compatible with it.
1307 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1308 if (Offset % EltSize == 0 &&
1309 AllocaSize % EltSize == 0 &&
1310 (VecTy == 0 ||
1311 cast<VectorType>(VecTy)->getElementType()
1312 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1313 if (VecTy == 0)
1314 VecTy = VectorType::get(In, AllocaSize/EltSize);
1315 return;
1320 // Otherwise, we have a case that we can't handle with an optimized vector
1321 // form. We can still turn this into a large integer.
1322 VecTy = Type::getVoidTy(Context);
1325 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
1326 /// its accesses to use a to single vector type, return true, and set VecTy to
1327 /// the new type. If we could convert the alloca into a single promotable
1328 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
1329 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
1330 /// is the current offset from the base of the alloca being analyzed.
1332 /// If we see at least one access to the value that is as a vector type, set the
1333 /// SawVec flag.
1335 bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1336 bool &SawVec, uint64_t Offset,
1337 unsigned AllocaSize) {
1338 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1339 Instruction *User = cast<Instruction>(*UI);
1341 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1342 // Don't break volatile loads.
1343 if (LI->isVolatile())
1344 return false;
1345 MergeInType(LI->getType(), Offset, VecTy,
1346 AllocaSize, *TD, V->getContext());
1347 SawVec |= isa<VectorType>(LI->getType());
1348 continue;
1351 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1352 // Storing the pointer, not into the value?
1353 if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1354 MergeInType(SI->getOperand(0)->getType(), Offset,
1355 VecTy, AllocaSize, *TD, V->getContext());
1356 SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1357 continue;
1360 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1361 if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1362 AllocaSize))
1363 return false;
1364 IsNotTrivial = true;
1365 continue;
1368 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1369 // If this is a GEP with a variable indices, we can't handle it.
1370 if (!GEP->hasAllConstantIndices())
1371 return false;
1373 // Compute the offset that this GEP adds to the pointer.
1374 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1375 uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1376 &Indices[0], Indices.size());
1377 // See if all uses can be converted.
1378 if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1379 AllocaSize))
1380 return false;
1381 IsNotTrivial = true;
1382 continue;
1385 // If this is a constant sized memset of a constant value (e.g. 0) we can
1386 // handle it.
1387 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1388 // Store of constant value and constant size.
1389 if (isa<ConstantInt>(MSI->getValue()) &&
1390 isa<ConstantInt>(MSI->getLength())) {
1391 IsNotTrivial = true;
1392 continue;
1396 // If this is a memcpy or memmove into or out of the whole allocation, we
1397 // can handle it like a load or store of the scalar type.
1398 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1399 if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1400 if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1401 IsNotTrivial = true;
1402 continue;
1406 // Ignore dbg intrinsic.
1407 if (isa<DbgInfoIntrinsic>(User))
1408 continue;
1410 // Otherwise, we cannot handle this!
1411 return false;
1414 return true;
1418 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1419 /// directly. This happens when we are converting an "integer union" to a
1420 /// single integer scalar, or when we are converting a "vector union" to a
1421 /// vector with insert/extractelement instructions.
1423 /// Offset is an offset from the original alloca, in bits that need to be
1424 /// shifted to the right. By the end of this, there should be no uses of Ptr.
1425 void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1426 while (!Ptr->use_empty()) {
1427 Instruction *User = cast<Instruction>(Ptr->use_back());
1429 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1430 ConvertUsesToScalar(CI, NewAI, Offset);
1431 CI->eraseFromParent();
1432 continue;
1435 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1436 // Compute the offset that this GEP adds to the pointer.
1437 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1438 uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1439 &Indices[0], Indices.size());
1440 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1441 GEP->eraseFromParent();
1442 continue;
1445 IRBuilder<> Builder(User->getParent(), User);
1447 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1448 // The load is a bit extract from NewAI shifted right by Offset bits.
1449 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1450 Value *NewLoadVal
1451 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1452 LI->replaceAllUsesWith(NewLoadVal);
1453 LI->eraseFromParent();
1454 continue;
1457 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1458 assert(SI->getOperand(0) != Ptr && "Consistency error!");
1459 // FIXME: Remove once builder has Twine API.
1460 Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
1461 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1462 Builder);
1463 Builder.CreateStore(New, NewAI);
1464 SI->eraseFromParent();
1465 continue;
1468 // If this is a constant sized memset of a constant value (e.g. 0) we can
1469 // transform it into a store of the expanded constant value.
1470 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1471 assert(MSI->getRawDest() == Ptr && "Consistency error!");
1472 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1473 if (NumBytes != 0) {
1474 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1476 // Compute the value replicated the right number of times.
1477 APInt APVal(NumBytes*8, Val);
1479 // Splat the value if non-zero.
1480 if (Val)
1481 for (unsigned i = 1; i != NumBytes; ++i)
1482 APVal |= APVal << 8;
1484 // FIXME: Remove once builder has Twine API.
1485 Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").str().c_str());
1486 Value *New = ConvertScalar_InsertValue(
1487 ConstantInt::get(User->getContext(), APVal),
1488 Old, Offset, Builder);
1489 Builder.CreateStore(New, NewAI);
1491 MSI->eraseFromParent();
1492 continue;
1495 // If this is a memcpy or memmove into or out of the whole allocation, we
1496 // can handle it like a load or store of the scalar type.
1497 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1498 assert(Offset == 0 && "must be store to start of alloca");
1500 // If the source and destination are both to the same alloca, then this is
1501 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
1502 // as appropriate.
1503 AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1505 if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1506 // Dest must be OrigAI, change this to be a load from the original
1507 // pointer (bitcasted), then a store to our new alloca.
1508 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1509 Value *SrcPtr = MTI->getSource();
1510 SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1512 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1513 SrcVal->setAlignment(MTI->getAlignment());
1514 Builder.CreateStore(SrcVal, NewAI);
1515 } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1516 // Src must be OrigAI, change this to be a load from NewAI then a store
1517 // through the original dest pointer (bitcasted).
1518 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1519 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1521 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1522 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1523 NewStore->setAlignment(MTI->getAlignment());
1524 } else {
1525 // Noop transfer. Src == Dst
1529 MTI->eraseFromParent();
1530 continue;
1533 // If user is a dbg info intrinsic then it is safe to remove it.
1534 if (isa<DbgInfoIntrinsic>(User)) {
1535 User->eraseFromParent();
1536 continue;
1539 llvm_unreachable("Unsupported operation!");
1543 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1544 /// or vector value FromVal, extracting the bits from the offset specified by
1545 /// Offset. This returns the value, which is of type ToType.
1547 /// This happens when we are converting an "integer union" to a single
1548 /// integer scalar, or when we are converting a "vector union" to a vector with
1549 /// insert/extractelement instructions.
1551 /// Offset is an offset from the original alloca, in bits that need to be
1552 /// shifted to the right.
1553 Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1554 uint64_t Offset, IRBuilder<> &Builder) {
1555 // If the load is of the whole new alloca, no conversion is needed.
1556 if (FromVal->getType() == ToType && Offset == 0)
1557 return FromVal;
1559 // If the result alloca is a vector type, this is either an element
1560 // access or a bitcast to another vector type of the same size.
1561 if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1562 if (isa<VectorType>(ToType))
1563 return Builder.CreateBitCast(FromVal, ToType, "tmp");
1565 // Otherwise it must be an element access.
1566 unsigned Elt = 0;
1567 if (Offset) {
1568 unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1569 Elt = Offset/EltSize;
1570 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1572 // Return the element extracted out of it.
1573 Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
1574 Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
1575 if (V->getType() != ToType)
1576 V = Builder.CreateBitCast(V, ToType, "tmp");
1577 return V;
1580 // If ToType is a first class aggregate, extract out each of the pieces and
1581 // use insertvalue's to form the FCA.
1582 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1583 const StructLayout &Layout = *TD->getStructLayout(ST);
1584 Value *Res = UndefValue::get(ST);
1585 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1586 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1587 Offset+Layout.getElementOffsetInBits(i),
1588 Builder);
1589 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1591 return Res;
1594 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1595 uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1596 Value *Res = UndefValue::get(AT);
1597 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1598 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1599 Offset+i*EltSize, Builder);
1600 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1602 return Res;
1605 // Otherwise, this must be a union that was converted to an integer value.
1606 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1608 // If this is a big-endian system and the load is narrower than the
1609 // full alloca type, we need to do a shift to get the right bits.
1610 int ShAmt = 0;
1611 if (TD->isBigEndian()) {
1612 // On big-endian machines, the lowest bit is stored at the bit offset
1613 // from the pointer given by getTypeStoreSizeInBits. This matters for
1614 // integers with a bitwidth that is not a multiple of 8.
1615 ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1616 TD->getTypeStoreSizeInBits(ToType) - Offset;
1617 } else {
1618 ShAmt = Offset;
1621 // Note: we support negative bitwidths (with shl) which are not defined.
1622 // We do this to support (f.e.) loads off the end of a structure where
1623 // only some bits are used.
1624 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1625 FromVal = Builder.CreateLShr(FromVal,
1626 ConstantInt::get(FromVal->getType(),
1627 ShAmt), "tmp");
1628 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1629 FromVal = Builder.CreateShl(FromVal,
1630 ConstantInt::get(FromVal->getType(),
1631 -ShAmt), "tmp");
1633 // Finally, unconditionally truncate the integer to the right width.
1634 unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1635 if (LIBitWidth < NTy->getBitWidth())
1636 FromVal =
1637 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
1638 LIBitWidth), "tmp");
1639 else if (LIBitWidth > NTy->getBitWidth())
1640 FromVal =
1641 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
1642 LIBitWidth), "tmp");
1644 // If the result is an integer, this is a trunc or bitcast.
1645 if (isa<IntegerType>(ToType)) {
1646 // Should be done.
1647 } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1648 // Just do a bitcast, we know the sizes match up.
1649 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1650 } else {
1651 // Otherwise must be a pointer.
1652 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1654 assert(FromVal->getType() == ToType && "Didn't convert right?");
1655 return FromVal;
1659 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1660 /// or vector value "Old" at the offset specified by Offset.
1662 /// This happens when we are converting an "integer union" to a
1663 /// single integer scalar, or when we are converting a "vector union" to a
1664 /// vector with insert/extractelement instructions.
1666 /// Offset is an offset from the original alloca, in bits that need to be
1667 /// shifted to the right.
1668 Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1669 uint64_t Offset, IRBuilder<> &Builder) {
1671 // Convert the stored type to the actual type, shift it left to insert
1672 // then 'or' into place.
1673 const Type *AllocaType = Old->getType();
1674 LLVMContext &Context = Old->getContext();
1676 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1677 uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1678 uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1680 // Changing the whole vector with memset or with an access of a different
1681 // vector type?
1682 if (ValSize == VecSize)
1683 return Builder.CreateBitCast(SV, AllocaType, "tmp");
1685 uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1687 // Must be an element insertion.
1688 unsigned Elt = Offset/EltSize;
1690 if (SV->getType() != VTy->getElementType())
1691 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1693 SV = Builder.CreateInsertElement(Old, SV,
1694 ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
1695 "tmp");
1696 return SV;
1699 // If SV is a first-class aggregate value, insert each value recursively.
1700 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1701 const StructLayout &Layout = *TD->getStructLayout(ST);
1702 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1703 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1704 Old = ConvertScalar_InsertValue(Elt, Old,
1705 Offset+Layout.getElementOffsetInBits(i),
1706 Builder);
1708 return Old;
1711 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1712 uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1713 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1714 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1715 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1717 return Old;
1720 // If SV is a float, convert it to the appropriate integer type.
1721 // If it is a pointer, do the same.
1722 unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1723 unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1724 unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1725 unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1726 if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1727 SV = Builder.CreateBitCast(SV,
1728 IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1729 else if (isa<PointerType>(SV->getType()))
1730 SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
1732 // Zero extend or truncate the value if needed.
1733 if (SV->getType() != AllocaType) {
1734 if (SV->getType()->getPrimitiveSizeInBits() <
1735 AllocaType->getPrimitiveSizeInBits())
1736 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1737 else {
1738 // Truncation may be needed if storing more than the alloca can hold
1739 // (undefined behavior).
1740 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1741 SrcWidth = DestWidth;
1742 SrcStoreWidth = DestStoreWidth;
1746 // If this is a big-endian system and the store is narrower than the
1747 // full alloca type, we need to do a shift to get the right bits.
1748 int ShAmt = 0;
1749 if (TD->isBigEndian()) {
1750 // On big-endian machines, the lowest bit is stored at the bit offset
1751 // from the pointer given by getTypeStoreSizeInBits. This matters for
1752 // integers with a bitwidth that is not a multiple of 8.
1753 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1754 } else {
1755 ShAmt = Offset;
1758 // Note: we support negative bitwidths (with shr) which are not defined.
1759 // We do this to support (f.e.) stores off the end of a structure where
1760 // only some bits in the structure are set.
1761 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1762 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1763 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1764 ShAmt), "tmp");
1765 Mask <<= ShAmt;
1766 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1767 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1768 -ShAmt), "tmp");
1769 Mask = Mask.lshr(-ShAmt);
1772 // Mask out the bits we are about to insert from the old value, and or
1773 // in the new bits.
1774 if (SrcWidth != DestWidth) {
1775 assert(DestWidth > SrcWidth);
1776 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1777 SV = Builder.CreateOr(Old, SV, "ins");
1779 return SV;
1784 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1785 /// some part of a constant global variable. This intentionally only accepts
1786 /// constant expressions because we don't can't rewrite arbitrary instructions.
1787 static bool PointsToConstantGlobal(Value *V) {
1788 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1789 return GV->isConstant();
1790 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1791 if (CE->getOpcode() == Instruction::BitCast ||
1792 CE->getOpcode() == Instruction::GetElementPtr)
1793 return PointsToConstantGlobal(CE->getOperand(0));
1794 return false;
1797 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1798 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
1799 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
1800 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
1801 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1802 /// the alloca, and if the source pointer is a pointer to a constant global, we
1803 /// can optimize this.
1804 static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1805 bool isOffset) {
1806 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1807 if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1808 // Ignore non-volatile loads, they are always ok.
1809 if (!LI->isVolatile())
1810 continue;
1812 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1813 // If uses of the bitcast are ok, we are ok.
1814 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1815 return false;
1816 continue;
1818 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1819 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1820 // doesn't, it does.
1821 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1822 isOffset || !GEP->hasAllZeroIndices()))
1823 return false;
1824 continue;
1827 // If this is isn't our memcpy/memmove, reject it as something we can't
1828 // handle.
1829 if (!isa<MemTransferInst>(*UI))
1830 return false;
1832 // If we already have seen a copy, reject the second one.
1833 if (TheCopy) return false;
1835 // If the pointer has been offset from the start of the alloca, we can't
1836 // safely handle this.
1837 if (isOffset) return false;
1839 // If the memintrinsic isn't using the alloca as the dest, reject it.
1840 if (UI.getOperandNo() != 1) return false;
1842 MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1844 // If the source of the memcpy/move is not a constant global, reject it.
1845 if (!PointsToConstantGlobal(MI->getOperand(2)))
1846 return false;
1848 // Otherwise, the transform is safe. Remember the copy instruction.
1849 TheCopy = MI;
1851 return true;
1854 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1855 /// modified by a copy from a constant global. If we can prove this, we can
1856 /// replace any uses of the alloca with uses of the global directly.
1857 Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1858 Instruction *TheCopy = 0;
1859 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1860 return TheCopy;
1861 return 0;