remove all but one reference to TargetRegisterDesc::AsmName.
[llvm/avr.git] / lib / Target / SystemZ / SystemZISelDAGToDAG.cpp
blob6af2f610897f3cbb8ded659dce370404fb4f7b6c
1 //==-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
12 //===----------------------------------------------------------------------===//
14 #include "SystemZ.h"
15 #include "SystemZISelLowering.h"
16 #include "SystemZTargetMachine.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Intrinsics.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGISel.h"
28 #include "llvm/Target/TargetLowering.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
34 static const unsigned subreg_even32 = 1;
35 static const unsigned subreg_odd32 = 2;
36 static const unsigned subreg_even = 3;
37 static const unsigned subreg_odd = 4;
39 namespace {
40 /// SystemZRRIAddressMode - This corresponds to rriaddr, but uses SDValue's
41 /// instead of register numbers for the leaves of the matched tree.
42 struct SystemZRRIAddressMode {
43 enum {
44 RegBase,
45 FrameIndexBase
46 } BaseType;
48 struct { // This is really a union, discriminated by BaseType!
49 SDValue Reg;
50 int FrameIndex;
51 } Base;
53 SDValue IndexReg;
54 int64_t Disp;
55 bool isRI;
57 SystemZRRIAddressMode(bool RI = false)
58 : BaseType(RegBase), IndexReg(), Disp(0), isRI(RI) {
61 void dump() {
62 errs() << "SystemZRRIAddressMode " << this << '\n';
63 if (BaseType == RegBase) {
64 errs() << "Base.Reg ";
65 if (Base.Reg.getNode() != 0)
66 Base.Reg.getNode()->dump();
67 else
68 errs() << "nul";
69 errs() << '\n';
70 } else {
71 errs() << " Base.FrameIndex " << Base.FrameIndex << '\n';
73 if (!isRI) {
74 errs() << "IndexReg ";
75 if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
76 else errs() << "nul";
78 errs() << " Disp " << Disp << '\n';
83 /// SystemZDAGToDAGISel - SystemZ specific code to select SystemZ machine
84 /// instructions for SelectionDAG operations.
85 ///
86 namespace {
87 class SystemZDAGToDAGISel : public SelectionDAGISel {
88 SystemZTargetLowering &Lowering;
89 const SystemZSubtarget &Subtarget;
91 void getAddressOperandsRI(const SystemZRRIAddressMode &AM,
92 SDValue &Base, SDValue &Disp);
93 void getAddressOperands(const SystemZRRIAddressMode &AM,
94 SDValue &Base, SDValue &Disp,
95 SDValue &Index);
97 public:
98 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
99 : SelectionDAGISel(TM, OptLevel),
100 Lowering(*TM.getTargetLowering()),
101 Subtarget(*TM.getSubtargetImpl()) { }
103 virtual void InstructionSelect();
105 virtual const char *getPassName() const {
106 return "SystemZ DAG->DAG Pattern Instruction Selection";
109 /// getI8Imm - Return a target constant with the specified value, of type
110 /// i8.
111 inline SDValue getI8Imm(uint64_t Imm) {
112 return CurDAG->getTargetConstant(Imm, MVT::i8);
115 /// getI16Imm - Return a target constant with the specified value, of type
116 /// i16.
117 inline SDValue getI16Imm(uint64_t Imm) {
118 return CurDAG->getTargetConstant(Imm, MVT::i16);
121 /// getI32Imm - Return a target constant with the specified value, of type
122 /// i32.
123 inline SDValue getI32Imm(uint64_t Imm) {
124 return CurDAG->getTargetConstant(Imm, MVT::i32);
127 // Include the pieces autogenerated from the target description.
128 #include "SystemZGenDAGISel.inc"
130 private:
131 bool SelectAddrRI12Only(SDValue Op, SDValue& Addr,
132 SDValue &Base, SDValue &Disp);
133 bool SelectAddrRI12(SDValue Op, SDValue& Addr,
134 SDValue &Base, SDValue &Disp,
135 bool is12BitOnly = false);
136 bool SelectAddrRI(SDValue Op, SDValue& Addr,
137 SDValue &Base, SDValue &Disp);
138 bool SelectAddrRRI12(SDValue Op, SDValue Addr,
139 SDValue &Base, SDValue &Disp, SDValue &Index);
140 bool SelectAddrRRI20(SDValue Op, SDValue Addr,
141 SDValue &Base, SDValue &Disp, SDValue &Index);
142 bool SelectLAAddr(SDValue Op, SDValue Addr,
143 SDValue &Base, SDValue &Disp, SDValue &Index);
145 SDNode *Select(SDValue Op);
147 bool TryFoldLoad(SDValue P, SDValue N,
148 SDValue &Base, SDValue &Disp, SDValue &Index);
150 bool MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
151 bool is12Bit, unsigned Depth = 0);
152 bool MatchAddressBase(SDValue N, SystemZRRIAddressMode &AM);
153 bool MatchAddressRI(SDValue N, SystemZRRIAddressMode &AM,
154 bool is12Bit);
156 #ifndef NDEBUG
157 unsigned Indent;
158 #endif
160 } // end anonymous namespace
162 /// createSystemZISelDag - This pass converts a legalized DAG into a
163 /// SystemZ-specific DAG, ready for instruction scheduling.
165 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
166 CodeGenOpt::Level OptLevel) {
167 return new SystemZDAGToDAGISel(TM, OptLevel);
170 /// isImmSExt20 - This method tests to see if the node is either a 32-bit
171 /// or 64-bit immediate, and if the value can be accurately represented as a
172 /// sign extension from a 20-bit value. If so, this returns true and the
173 /// immediate.
174 static bool isImmSExt20(int64_t Val, int64_t &Imm) {
175 if (Val >= -524288 && Val <= 524287) {
176 Imm = Val;
177 return true;
179 return false;
182 /// isImmZExt12 - This method tests to see if the node is either a 32-bit
183 /// or 64-bit immediate, and if the value can be accurately represented as a
184 /// zero extension from a 12-bit value. If so, this returns true and the
185 /// immediate.
186 static bool isImmZExt12(int64_t Val, int64_t &Imm) {
187 if (Val >= 0 && Val <= 0xFFF) {
188 Imm = Val;
189 return true;
191 return false;
194 /// MatchAddress - Add the specified node to the specified addressing mode,
195 /// returning true if it cannot be done. This just pattern matches for the
196 /// addressing mode.
197 bool SystemZDAGToDAGISel::MatchAddress(SDValue N, SystemZRRIAddressMode &AM,
198 bool is12Bit, unsigned Depth) {
199 DebugLoc dl = N.getDebugLoc();
200 DEBUG(errs() << "MatchAddress: "; AM.dump());
201 // Limit recursion.
202 if (Depth > 5)
203 return MatchAddressBase(N, AM);
205 // FIXME: We can perform better here. If we have something like
206 // (shift (add A, imm), N), we can try to reassociate stuff and fold shift of
207 // imm into addressing mode.
208 switch (N.getOpcode()) {
209 default: break;
210 case ISD::Constant: {
211 int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
212 int64_t Imm = 0;
213 bool Match = (is12Bit ?
214 isImmZExt12(AM.Disp + Val, Imm) :
215 isImmSExt20(AM.Disp + Val, Imm));
216 if (Match) {
217 AM.Disp = Imm;
218 return false;
220 break;
223 case ISD::FrameIndex:
224 if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
225 AM.Base.Reg.getNode() == 0) {
226 AM.BaseType = SystemZRRIAddressMode::FrameIndexBase;
227 AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
228 return false;
230 break;
232 case ISD::SUB: {
233 // Given A-B, if A can be completely folded into the address and
234 // the index field with the index field unused, use -B as the index.
235 // This is a win if a has multiple parts that can be folded into
236 // the address. Also, this saves a mov if the base register has
237 // other uses, since it avoids a two-address sub instruction, however
238 // it costs an additional mov if the index register has other uses.
240 // Test if the LHS of the sub can be folded.
241 SystemZRRIAddressMode Backup = AM;
242 if (MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1)) {
243 AM = Backup;
244 break;
246 // Test if the index field is free for use.
247 if (AM.IndexReg.getNode() || AM.isRI) {
248 AM = Backup;
249 break;
252 // If the base is a register with multiple uses, this transformation may
253 // save a mov. Otherwise it's probably better not to do it.
254 if (AM.BaseType == SystemZRRIAddressMode::RegBase &&
255 (!AM.Base.Reg.getNode() || AM.Base.Reg.getNode()->hasOneUse())) {
256 AM = Backup;
257 break;
260 // Ok, the transformation is legal and appears profitable. Go for it.
261 SDValue RHS = N.getNode()->getOperand(1);
262 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
263 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
264 AM.IndexReg = Neg;
266 // Insert the new nodes into the topological ordering.
267 if (Zero.getNode()->getNodeId() == -1 ||
268 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
269 CurDAG->RepositionNode(N.getNode(), Zero.getNode());
270 Zero.getNode()->setNodeId(N.getNode()->getNodeId());
272 if (Neg.getNode()->getNodeId() == -1 ||
273 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
274 CurDAG->RepositionNode(N.getNode(), Neg.getNode());
275 Neg.getNode()->setNodeId(N.getNode()->getNodeId());
277 return false;
280 case ISD::ADD: {
281 SystemZRRIAddressMode Backup = AM;
282 if (!MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1) &&
283 !MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1))
284 return false;
285 AM = Backup;
286 if (!MatchAddress(N.getNode()->getOperand(1), AM, is12Bit, Depth+1) &&
287 !MatchAddress(N.getNode()->getOperand(0), AM, is12Bit, Depth+1))
288 return false;
289 AM = Backup;
291 // If we couldn't fold both operands into the address at the same time,
292 // see if we can just put each operand into a register and fold at least
293 // the add.
294 if (!AM.isRI &&
295 AM.BaseType == SystemZRRIAddressMode::RegBase &&
296 !AM.Base.Reg.getNode() && !AM.IndexReg.getNode()) {
297 AM.Base.Reg = N.getNode()->getOperand(0);
298 AM.IndexReg = N.getNode()->getOperand(1);
299 return false;
301 break;
304 case ISD::OR:
305 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
306 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
307 SystemZRRIAddressMode Backup = AM;
308 int64_t Offset = CN->getSExtValue();
309 int64_t Imm = 0;
310 bool MatchOffset = (is12Bit ?
311 isImmZExt12(AM.Disp + Offset, Imm) :
312 isImmSExt20(AM.Disp + Offset, Imm));
313 // The resultant disp must fit in 12 or 20-bits.
314 if (MatchOffset &&
315 // LHS should be an addr mode.
316 !MatchAddress(N.getOperand(0), AM, is12Bit, Depth+1) &&
317 // Check to see if the LHS & C is zero.
318 CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
319 AM.Disp = Imm;
320 return false;
322 AM = Backup;
324 break;
327 return MatchAddressBase(N, AM);
330 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
331 /// specified addressing mode without any further recursion.
332 bool SystemZDAGToDAGISel::MatchAddressBase(SDValue N,
333 SystemZRRIAddressMode &AM) {
334 // Is the base register already occupied?
335 if (AM.BaseType != SystemZRRIAddressMode::RegBase || AM.Base.Reg.getNode()) {
336 // If so, check to see if the index register is set.
337 if (AM.IndexReg.getNode() == 0 && !AM.isRI) {
338 AM.IndexReg = N;
339 return false;
342 // Otherwise, we cannot select it.
343 return true;
346 // Default, generate it as a register.
347 AM.BaseType = SystemZRRIAddressMode::RegBase;
348 AM.Base.Reg = N;
349 return false;
352 void SystemZDAGToDAGISel::getAddressOperandsRI(const SystemZRRIAddressMode &AM,
353 SDValue &Base, SDValue &Disp) {
354 if (AM.BaseType == SystemZRRIAddressMode::RegBase)
355 Base = AM.Base.Reg;
356 else
357 Base = CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy());
358 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i64);
361 void SystemZDAGToDAGISel::getAddressOperands(const SystemZRRIAddressMode &AM,
362 SDValue &Base, SDValue &Disp,
363 SDValue &Index) {
364 getAddressOperandsRI(AM, Base, Disp);
365 Index = AM.IndexReg;
368 /// Returns true if the address can be represented by a base register plus
369 /// an unsigned 12-bit displacement [r+imm].
370 bool SystemZDAGToDAGISel::SelectAddrRI12Only(SDValue Op, SDValue& Addr,
371 SDValue &Base, SDValue &Disp) {
372 return SelectAddrRI12(Op, Addr, Base, Disp, /*is12BitOnly*/true);
375 bool SystemZDAGToDAGISel::SelectAddrRI12(SDValue Op, SDValue& Addr,
376 SDValue &Base, SDValue &Disp,
377 bool is12BitOnly) {
378 SystemZRRIAddressMode AM20(/*isRI*/true), AM12(/*isRI*/true);
379 bool Done = false;
381 if (!Addr.hasOneUse()) {
382 unsigned Opcode = Addr.getOpcode();
383 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
384 // If we are able to fold N into addressing mode, then we'll allow it even
385 // if N has multiple uses. In general, addressing computation is used as
386 // addresses by all of its uses. But watch out for CopyToReg uses, that
387 // means the address computation is liveout. It will be computed by a LA
388 // so we want to avoid computing the address twice.
389 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
390 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
391 if (UI->getOpcode() == ISD::CopyToReg) {
392 MatchAddressBase(Addr, AM12);
393 Done = true;
394 break;
399 if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
400 return false;
402 // Check, whether we can match stuff using 20-bit displacements
403 if (!Done && !is12BitOnly &&
404 !MatchAddress(Addr, AM20, /* is12Bit */ false))
405 if (AM12.Disp == 0 && AM20.Disp != 0)
406 return false;
408 DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
410 EVT VT = Addr.getValueType();
411 if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
412 if (!AM12.Base.Reg.getNode())
413 AM12.Base.Reg = CurDAG->getRegister(0, VT);
416 assert(AM12.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
418 getAddressOperandsRI(AM12, Base, Disp);
420 return true;
423 /// Returns true if the address can be represented by a base register plus
424 /// a signed 20-bit displacement [r+imm].
425 bool SystemZDAGToDAGISel::SelectAddrRI(SDValue Op, SDValue& Addr,
426 SDValue &Base, SDValue &Disp) {
427 SystemZRRIAddressMode AM(/*isRI*/true);
428 bool Done = false;
430 if (!Addr.hasOneUse()) {
431 unsigned Opcode = Addr.getOpcode();
432 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
433 // If we are able to fold N into addressing mode, then we'll allow it even
434 // if N has multiple uses. In general, addressing computation is used as
435 // addresses by all of its uses. But watch out for CopyToReg uses, that
436 // means the address computation is liveout. It will be computed by a LA
437 // so we want to avoid computing the address twice.
438 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
439 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
440 if (UI->getOpcode() == ISD::CopyToReg) {
441 MatchAddressBase(Addr, AM);
442 Done = true;
443 break;
448 if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
449 return false;
451 DEBUG(errs() << "MatchAddress (final): "; AM.dump());
453 EVT VT = Addr.getValueType();
454 if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
455 if (!AM.Base.Reg.getNode())
456 AM.Base.Reg = CurDAG->getRegister(0, VT);
459 assert(AM.IndexReg.getNode() == 0 && "Invalid reg-imm address mode!");
461 getAddressOperandsRI(AM, Base, Disp);
463 return true;
466 /// Returns true if the address can be represented by a base register plus
467 /// index register plus an unsigned 12-bit displacement [base + idx + imm].
468 bool SystemZDAGToDAGISel::SelectAddrRRI12(SDValue Op, SDValue Addr,
469 SDValue &Base, SDValue &Disp, SDValue &Index) {
470 SystemZRRIAddressMode AM20, AM12;
471 bool Done = false;
473 if (!Addr.hasOneUse()) {
474 unsigned Opcode = Addr.getOpcode();
475 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
476 // If we are able to fold N into addressing mode, then we'll allow it even
477 // if N has multiple uses. In general, addressing computation is used as
478 // addresses by all of its uses. But watch out for CopyToReg uses, that
479 // means the address computation is liveout. It will be computed by a LA
480 // so we want to avoid computing the address twice.
481 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
482 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
483 if (UI->getOpcode() == ISD::CopyToReg) {
484 MatchAddressBase(Addr, AM12);
485 Done = true;
486 break;
491 if (!Done && MatchAddress(Addr, AM12, /* is12Bit */ true))
492 return false;
494 // Check, whether we can match stuff using 20-bit displacements
495 if (!Done && !MatchAddress(Addr, AM20, /* is12Bit */ false))
496 if (AM12.Disp == 0 && AM20.Disp != 0)
497 return false;
499 DEBUG(errs() << "MatchAddress (final): "; AM12.dump());
501 EVT VT = Addr.getValueType();
502 if (AM12.BaseType == SystemZRRIAddressMode::RegBase) {
503 if (!AM12.Base.Reg.getNode())
504 AM12.Base.Reg = CurDAG->getRegister(0, VT);
507 if (!AM12.IndexReg.getNode())
508 AM12.IndexReg = CurDAG->getRegister(0, VT);
510 getAddressOperands(AM12, Base, Disp, Index);
512 return true;
515 /// Returns true if the address can be represented by a base register plus
516 /// index register plus a signed 20-bit displacement [base + idx + imm].
517 bool SystemZDAGToDAGISel::SelectAddrRRI20(SDValue Op, SDValue Addr,
518 SDValue &Base, SDValue &Disp, SDValue &Index) {
519 SystemZRRIAddressMode AM;
520 bool Done = false;
522 if (!Addr.hasOneUse()) {
523 unsigned Opcode = Addr.getOpcode();
524 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex) {
525 // If we are able to fold N into addressing mode, then we'll allow it even
526 // if N has multiple uses. In general, addressing computation is used as
527 // addresses by all of its uses. But watch out for CopyToReg uses, that
528 // means the address computation is liveout. It will be computed by a LA
529 // so we want to avoid computing the address twice.
530 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
531 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
532 if (UI->getOpcode() == ISD::CopyToReg) {
533 MatchAddressBase(Addr, AM);
534 Done = true;
535 break;
540 if (!Done && MatchAddress(Addr, AM, /* is12Bit */ false))
541 return false;
543 DEBUG(errs() << "MatchAddress (final): "; AM.dump());
545 EVT VT = Addr.getValueType();
546 if (AM.BaseType == SystemZRRIAddressMode::RegBase) {
547 if (!AM.Base.Reg.getNode())
548 AM.Base.Reg = CurDAG->getRegister(0, VT);
551 if (!AM.IndexReg.getNode())
552 AM.IndexReg = CurDAG->getRegister(0, VT);
554 getAddressOperands(AM, Base, Disp, Index);
556 return true;
559 /// SelectLAAddr - it calls SelectAddr and determines if the maximal addressing
560 /// mode it matches can be cost effectively emitted as an LA/LAY instruction.
561 bool SystemZDAGToDAGISel::SelectLAAddr(SDValue Op, SDValue Addr,
562 SDValue &Base, SDValue &Disp, SDValue &Index) {
563 SystemZRRIAddressMode AM;
565 if (MatchAddress(Addr, AM, false))
566 return false;
568 EVT VT = Addr.getValueType();
569 unsigned Complexity = 0;
570 if (AM.BaseType == SystemZRRIAddressMode::RegBase)
571 if (AM.Base.Reg.getNode())
572 Complexity = 1;
573 else
574 AM.Base.Reg = CurDAG->getRegister(0, VT);
575 else if (AM.BaseType == SystemZRRIAddressMode::FrameIndexBase)
576 Complexity = 4;
578 if (AM.IndexReg.getNode())
579 Complexity += 1;
580 else
581 AM.IndexReg = CurDAG->getRegister(0, VT);
583 if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
584 Complexity += 1;
586 if (Complexity > 2) {
587 getAddressOperands(AM, Base, Disp, Index);
588 return true;
591 return false;
594 bool SystemZDAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
595 SDValue &Base, SDValue &Disp, SDValue &Index) {
596 if (ISD::isNON_EXTLoad(N.getNode()) &&
597 N.hasOneUse() &&
598 IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
599 return SelectAddrRRI20(P, N.getOperand(1), Base, Disp, Index);
600 return false;
603 /// InstructionSelect - This callback is invoked by
604 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
605 void SystemZDAGToDAGISel::InstructionSelect() {
606 DEBUG(BB->dump());
608 // Codegen the basic block.
609 DEBUG(errs() << "===== Instruction selection begins:\n");
610 DEBUG(Indent = 0);
611 SelectRoot(*CurDAG);
612 DEBUG(errs() << "===== Instruction selection ends:\n");
614 CurDAG->RemoveDeadNodes();
617 SDNode *SystemZDAGToDAGISel::Select(SDValue Op) {
618 SDNode *Node = Op.getNode();
619 EVT NVT = Node->getValueType(0);
620 DebugLoc dl = Op.getDebugLoc();
621 unsigned Opcode = Node->getOpcode();
623 // Dump information about the Node being selected
624 DEBUG(errs().indent(Indent) << "Selecting: ";
625 Node->dump(CurDAG);
626 errs() << "\n");
627 DEBUG(Indent += 2);
629 // If we have a custom node, we already have selected!
630 if (Node->isMachineOpcode()) {
631 DEBUG(errs().indent(Indent-2) << "== ";
632 Node->dump(CurDAG);
633 errs() << "\n");
634 DEBUG(Indent -= 2);
635 return NULL; // Already selected.
638 switch (Opcode) {
639 default: break;
640 case ISD::SDIVREM: {
641 unsigned Opc, MOpc;
642 SDValue N0 = Node->getOperand(0);
643 SDValue N1 = Node->getOperand(1);
645 EVT ResVT;
646 bool is32Bit = false;
647 switch (NVT.getSimpleVT().SimpleTy) {
648 default: assert(0 && "Unsupported VT!");
649 case MVT::i32:
650 Opc = SystemZ::SDIVREM32r; MOpc = SystemZ::SDIVREM32m;
651 ResVT = MVT::v2i64;
652 is32Bit = true;
653 break;
654 case MVT::i64:
655 Opc = SystemZ::SDIVREM64r; MOpc = SystemZ::SDIVREM64m;
656 ResVT = MVT::v2i64;
657 break;
660 SDValue Tmp0, Tmp1, Tmp2;
661 bool foldedLoad = TryFoldLoad(Op, N1, Tmp0, Tmp1, Tmp2);
663 // Prepare the dividend
664 SDNode *Dividend;
665 if (is32Bit)
666 Dividend = CurDAG->getTargetNode(SystemZ::MOVSX64rr32, dl, MVT::i64, N0);
667 else
668 Dividend = N0.getNode();
670 // Insert prepared dividend into suitable 'subreg'
671 SDNode *Tmp = CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF,
672 dl, ResVT);
673 Dividend =
674 CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG, dl, ResVT,
675 SDValue(Tmp, 0), SDValue(Dividend, 0),
676 CurDAG->getTargetConstant(subreg_odd, MVT::i32));
678 SDNode *Result;
679 SDValue DivVal = SDValue(Dividend, 0);
680 if (foldedLoad) {
681 SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
682 Result = CurDAG->getTargetNode(MOpc, dl, ResVT, Ops, array_lengthof(Ops));
683 // Update the chain.
684 ReplaceUses(N1.getValue(1), SDValue(Result, 0));
685 } else {
686 Result = CurDAG->getTargetNode(Opc, dl, ResVT, SDValue(Dividend, 0), N1);
689 // Copy the division (odd subreg) result, if it is needed.
690 if (!Op.getValue(0).use_empty()) {
691 unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
692 SDNode *Div = CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,
693 dl, NVT,
694 SDValue(Result, 0),
695 CurDAG->getTargetConstant(SubRegIdx,
696 MVT::i32));
698 ReplaceUses(Op.getValue(0), SDValue(Div, 0));
699 DEBUG(errs().indent(Indent-2) << "=> ";
700 Result->dump(CurDAG);
701 errs() << "\n");
704 // Copy the remainder (even subreg) result, if it is needed.
705 if (!Op.getValue(1).use_empty()) {
706 unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
707 SDNode *Rem = CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,
708 dl, NVT,
709 SDValue(Result, 0),
710 CurDAG->getTargetConstant(SubRegIdx,
711 MVT::i32));
713 ReplaceUses(Op.getValue(1), SDValue(Rem, 0));
714 DEBUG(errs().indent(Indent-2) << "=> ";
715 Result->dump(CurDAG);
716 errs() << "\n");
719 #ifndef NDEBUG
720 Indent -= 2;
721 #endif
723 return NULL;
725 case ISD::UDIVREM: {
726 unsigned Opc, MOpc, ClrOpc;
727 SDValue N0 = Node->getOperand(0);
728 SDValue N1 = Node->getOperand(1);
729 EVT ResVT;
731 bool is32Bit = false;
732 switch (NVT.getSimpleVT().SimpleTy) {
733 default: assert(0 && "Unsupported VT!");
734 case MVT::i32:
735 Opc = SystemZ::UDIVREM32r; MOpc = SystemZ::UDIVREM32m;
736 ClrOpc = SystemZ::MOV64Pr0_even;
737 ResVT = MVT::v2i32;
738 is32Bit = true;
739 break;
740 case MVT::i64:
741 Opc = SystemZ::UDIVREM64r; MOpc = SystemZ::UDIVREM64m;
742 ClrOpc = SystemZ::MOV128r0_even;
743 ResVT = MVT::v2i64;
744 break;
747 SDValue Tmp0, Tmp1, Tmp2;
748 bool foldedLoad = TryFoldLoad(Op, N1, Tmp0, Tmp1, Tmp2);
750 // Prepare the dividend
751 SDNode *Dividend = N0.getNode();
753 // Insert prepared dividend into suitable 'subreg'
754 SDNode *Tmp = CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF,
755 dl, ResVT);
757 unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
758 Dividend =
759 CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG, dl, ResVT,
760 SDValue(Tmp, 0), SDValue(Dividend, 0),
761 CurDAG->getTargetConstant(SubRegIdx, MVT::i32));
764 // Zero out even subreg
765 Dividend = CurDAG->getTargetNode(ClrOpc, dl, ResVT, SDValue(Dividend, 0));
767 SDValue DivVal = SDValue(Dividend, 0);
768 SDNode *Result;
769 if (foldedLoad) {
770 SDValue Ops[] = { DivVal, Tmp0, Tmp1, Tmp2, N1.getOperand(0) };
771 Result = CurDAG->getTargetNode(MOpc, dl,ResVT,
772 Ops, array_lengthof(Ops));
773 // Update the chain.
774 ReplaceUses(N1.getValue(1), SDValue(Result, 0));
775 } else {
776 Result = CurDAG->getTargetNode(Opc, dl, ResVT, DivVal, N1);
779 // Copy the division (odd subreg) result, if it is needed.
780 if (!Op.getValue(0).use_empty()) {
781 unsigned SubRegIdx = (is32Bit ? subreg_odd32 : subreg_odd);
782 SDNode *Div = CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,
783 dl, NVT,
784 SDValue(Result, 0),
785 CurDAG->getTargetConstant(SubRegIdx,
786 MVT::i32));
787 ReplaceUses(Op.getValue(0), SDValue(Div, 0));
788 DEBUG(errs().indent(Indent-2) << "=> ";
789 Result->dump(CurDAG);
790 errs() << "\n");
793 // Copy the remainder (even subreg) result, if it is needed.
794 if (!Op.getValue(1).use_empty()) {
795 unsigned SubRegIdx = (is32Bit ? subreg_even32 : subreg_even);
796 SDNode *Rem = CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,
797 dl, NVT,
798 SDValue(Result, 0),
799 CurDAG->getTargetConstant(SubRegIdx,
800 MVT::i32));
801 ReplaceUses(Op.getValue(1), SDValue(Rem, 0));
802 DEBUG(errs().indent(Indent-2) << "=> ";
803 Result->dump(CurDAG);
804 errs() << "\n");
807 #ifndef NDEBUG
808 Indent -= 2;
809 #endif
811 return NULL;
815 // Select the default instruction
816 SDNode *ResNode = SelectCode(Op);
818 DEBUG(errs().indent(Indent-2) << "=> ";
819 if (ResNode == NULL || ResNode == Op.getNode())
820 Op.getNode()->dump(CurDAG);
821 else
822 ResNode->dump(CurDAG);
823 errs() << "\n";
825 DEBUG(Indent -= 2);
827 return ResNode;