add a new MachineModuleInfoMachO class, which is the per-module
[llvm/avr.git] / lib / ExecutionEngine / ExecutionEngine.cpp
blob5be3aa87e0a58e38f774f7d1009ab5a3a3a460b9
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ModuleProvider.h"
22 #include "llvm/ExecutionEngine/GenericValue.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MutexGuard.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/System/DynamicLibrary.h"
30 #include "llvm/System/Host.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cmath>
33 #include <cstring>
34 using namespace llvm;
36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
37 STATISTIC(NumGlobals , "Number of global vars initialized");
39 ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
40 std::string *ErrorStr,
41 JITMemoryManager *JMM,
42 CodeGenOpt::Level OptLevel,
43 bool GVsWithCode) = 0;
44 ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
45 std::string *ErrorStr) = 0;
46 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
49 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
50 LazyCompilationDisabled = false;
51 GVCompilationDisabled = false;
52 SymbolSearchingDisabled = false;
53 DlsymStubsEnabled = false;
54 Modules.push_back(P);
55 assert(P && "ModuleProvider is null?");
58 ExecutionEngine::~ExecutionEngine() {
59 clearAllGlobalMappings();
60 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
61 delete Modules[i];
64 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
65 const Type *ElTy = GV->getType()->getElementType();
66 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
67 return new char[GVSize];
70 /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
71 /// Relases the Module from the ModuleProvider, materializing it in the
72 /// process, and returns the materialized Module.
73 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
74 std::string *ErrInfo) {
75 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
76 E = Modules.end(); I != E; ++I) {
77 ModuleProvider *MP = *I;
78 if (MP == P) {
79 Modules.erase(I);
80 clearGlobalMappingsFromModule(MP->getModule());
81 return MP->releaseModule(ErrInfo);
84 return NULL;
87 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
88 /// and deletes the ModuleProvider and owned Module. Avoids materializing
89 /// the underlying module.
90 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
91 std::string *ErrInfo) {
92 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
93 E = Modules.end(); I != E; ++I) {
94 ModuleProvider *MP = *I;
95 if (MP == P) {
96 Modules.erase(I);
97 clearGlobalMappingsFromModule(MP->getModule());
98 delete MP;
99 return;
104 /// FindFunctionNamed - Search all of the active modules to find the one that
105 /// defines FnName. This is very slow operation and shouldn't be used for
106 /// general code.
107 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
108 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
109 if (Function *F = Modules[i]->getModule()->getFunction(FnName))
110 return F;
112 return 0;
116 /// addGlobalMapping - Tell the execution engine that the specified global is
117 /// at the specified location. This is used internally as functions are JIT'd
118 /// and as global variables are laid out in memory. It can and should also be
119 /// used by clients of the EE that want to have an LLVM global overlay
120 /// existing data in memory.
121 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
122 MutexGuard locked(lock);
124 DEBUG(errs() << "JIT: Map \'" << GV->getName()
125 << "\' to [" << Addr << "]\n";);
126 void *&CurVal = state.getGlobalAddressMap(locked)[GV];
127 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
128 CurVal = Addr;
130 // If we are using the reverse mapping, add it too
131 if (!state.getGlobalAddressReverseMap(locked).empty()) {
132 AssertingVH<const GlobalValue> &V =
133 state.getGlobalAddressReverseMap(locked)[Addr];
134 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
135 V = GV;
139 /// clearAllGlobalMappings - Clear all global mappings and start over again
140 /// use in dynamic compilation scenarios when you want to move globals
141 void ExecutionEngine::clearAllGlobalMappings() {
142 MutexGuard locked(lock);
144 state.getGlobalAddressMap(locked).clear();
145 state.getGlobalAddressReverseMap(locked).clear();
148 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
149 /// particular module, because it has been removed from the JIT.
150 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
151 MutexGuard locked(lock);
153 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
154 state.getGlobalAddressMap(locked).erase(&*FI);
155 state.getGlobalAddressReverseMap(locked).erase(&*FI);
157 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
158 GI != GE; ++GI) {
159 state.getGlobalAddressMap(locked).erase(&*GI);
160 state.getGlobalAddressReverseMap(locked).erase(&*GI);
164 /// updateGlobalMapping - Replace an existing mapping for GV with a new
165 /// address. This updates both maps as required. If "Addr" is null, the
166 /// entry for the global is removed from the mappings.
167 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
168 MutexGuard locked(lock);
170 std::map<AssertingVH<const GlobalValue>, void *> &Map =
171 state.getGlobalAddressMap(locked);
173 // Deleting from the mapping?
174 if (Addr == 0) {
175 std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV);
176 void *OldVal;
177 if (I == Map.end())
178 OldVal = 0;
179 else {
180 OldVal = I->second;
181 Map.erase(I);
184 if (!state.getGlobalAddressReverseMap(locked).empty())
185 state.getGlobalAddressReverseMap(locked).erase(OldVal);
186 return OldVal;
189 void *&CurVal = Map[GV];
190 void *OldVal = CurVal;
192 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
193 state.getGlobalAddressReverseMap(locked).erase(CurVal);
194 CurVal = Addr;
196 // If we are using the reverse mapping, add it too
197 if (!state.getGlobalAddressReverseMap(locked).empty()) {
198 AssertingVH<const GlobalValue> &V =
199 state.getGlobalAddressReverseMap(locked)[Addr];
200 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
201 V = GV;
203 return OldVal;
206 /// getPointerToGlobalIfAvailable - This returns the address of the specified
207 /// global value if it is has already been codegen'd, otherwise it returns null.
209 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
210 MutexGuard locked(lock);
212 std::map<AssertingVH<const GlobalValue>, void*>::iterator I =
213 state.getGlobalAddressMap(locked).find(GV);
214 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
217 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
218 /// at the specified address.
220 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
221 MutexGuard locked(lock);
223 // If we haven't computed the reverse mapping yet, do so first.
224 if (state.getGlobalAddressReverseMap(locked).empty()) {
225 for (std::map<AssertingVH<const GlobalValue>, void *>::iterator
226 I = state.getGlobalAddressMap(locked).begin(),
227 E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
228 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
229 I->first));
232 std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
233 state.getGlobalAddressReverseMap(locked).find(Addr);
234 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
237 // CreateArgv - Turn a vector of strings into a nice argv style array of
238 // pointers to null terminated strings.
240 static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
241 const std::vector<std::string> &InputArgv) {
242 unsigned PtrSize = EE->getTargetData()->getPointerSize();
243 char *Result = new char[(InputArgv.size()+1)*PtrSize];
245 DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n");
246 const Type *SBytePtr = PointerType::getUnqual(Type::getInt8Ty(C));
248 for (unsigned i = 0; i != InputArgv.size(); ++i) {
249 unsigned Size = InputArgv[i].size()+1;
250 char *Dest = new char[Size];
251 DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
253 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
254 Dest[Size-1] = 0;
256 // Endian safe: Result[i] = (PointerTy)Dest;
257 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
258 SBytePtr);
261 // Null terminate it
262 EE->StoreValueToMemory(PTOGV(0),
263 (GenericValue*)(Result+InputArgv.size()*PtrSize),
264 SBytePtr);
265 return Result;
269 /// runStaticConstructorsDestructors - This method is used to execute all of
270 /// the static constructors or destructors for a module, depending on the
271 /// value of isDtors.
272 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
273 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
275 // Execute global ctors/dtors for each module in the program.
277 GlobalVariable *GV = module->getNamedGlobal(Name);
279 // If this global has internal linkage, or if it has a use, then it must be
280 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
281 // this is the case, don't execute any of the global ctors, __main will do
282 // it.
283 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
285 // Should be an array of '{ int, void ()* }' structs. The first value is
286 // the init priority, which we ignore.
287 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
288 if (!InitList) return;
289 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
290 if (ConstantStruct *CS =
291 dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
292 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
294 Constant *FP = CS->getOperand(1);
295 if (FP->isNullValue())
296 break; // Found a null terminator, exit.
298 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
299 if (CE->isCast())
300 FP = CE->getOperand(0);
301 if (Function *F = dyn_cast<Function>(FP)) {
302 // Execute the ctor/dtor function!
303 runFunction(F, std::vector<GenericValue>());
308 /// runStaticConstructorsDestructors - This method is used to execute all of
309 /// the static constructors or destructors for a program, depending on the
310 /// value of isDtors.
311 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
312 // Execute global ctors/dtors for each module in the program.
313 for (unsigned m = 0, e = Modules.size(); m != e; ++m)
314 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
317 #ifndef NDEBUG
318 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
319 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
320 unsigned PtrSize = EE->getTargetData()->getPointerSize();
321 for (unsigned i = 0; i < PtrSize; ++i)
322 if (*(i + (uint8_t*)Loc))
323 return false;
324 return true;
326 #endif
328 /// runFunctionAsMain - This is a helper function which wraps runFunction to
329 /// handle the common task of starting up main with the specified argc, argv,
330 /// and envp parameters.
331 int ExecutionEngine::runFunctionAsMain(Function *Fn,
332 const std::vector<std::string> &argv,
333 const char * const * envp) {
334 std::vector<GenericValue> GVArgs;
335 GenericValue GVArgc;
336 GVArgc.IntVal = APInt(32, argv.size());
338 // Check main() type
339 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
340 const FunctionType *FTy = Fn->getFunctionType();
341 const Type* PPInt8Ty =
342 PointerType::getUnqual(PointerType::getUnqual(
343 Type::getInt8Ty(Fn->getContext())));
344 switch (NumArgs) {
345 case 3:
346 if (FTy->getParamType(2) != PPInt8Ty) {
347 llvm_report_error("Invalid type for third argument of main() supplied");
349 // FALLS THROUGH
350 case 2:
351 if (FTy->getParamType(1) != PPInt8Ty) {
352 llvm_report_error("Invalid type for second argument of main() supplied");
354 // FALLS THROUGH
355 case 1:
356 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) {
357 llvm_report_error("Invalid type for first argument of main() supplied");
359 // FALLS THROUGH
360 case 0:
361 if (!isa<IntegerType>(FTy->getReturnType()) &&
362 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) {
363 llvm_report_error("Invalid return type of main() supplied");
365 break;
366 default:
367 llvm_report_error("Invalid number of arguments of main() supplied");
370 if (NumArgs) {
371 GVArgs.push_back(GVArgc); // Arg #0 = argc.
372 if (NumArgs > 1) {
373 // Arg #1 = argv.
374 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv)));
375 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
376 "argv[0] was null after CreateArgv");
377 if (NumArgs > 2) {
378 std::vector<std::string> EnvVars;
379 for (unsigned i = 0; envp[i]; ++i)
380 EnvVars.push_back(envp[i]);
381 // Arg #2 = envp.
382 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
386 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
389 /// If possible, create a JIT, unless the caller specifically requests an
390 /// Interpreter or there's an error. If even an Interpreter cannot be created,
391 /// NULL is returned.
393 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
394 bool ForceInterpreter,
395 std::string *ErrorStr,
396 CodeGenOpt::Level OptLevel,
397 bool GVsWithCode) {
398 return EngineBuilder(MP)
399 .setEngineKind(ForceInterpreter
400 ? EngineKind::Interpreter
401 : EngineKind::JIT)
402 .setErrorStr(ErrorStr)
403 .setOptLevel(OptLevel)
404 .setAllocateGVsWithCode(GVsWithCode)
405 .create();
408 ExecutionEngine *ExecutionEngine::create(Module *M) {
409 return EngineBuilder(M).create();
412 /// EngineBuilder - Overloaded constructor that automatically creates an
413 /// ExistingModuleProvider for an existing module.
414 EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
415 InitEngine();
418 ExecutionEngine *EngineBuilder::create() {
419 // Make sure we can resolve symbols in the program as well. The zero arg
420 // to the function tells DynamicLibrary to load the program, not a library.
421 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
422 return 0;
424 // If the user specified a memory manager but didn't specify which engine to
425 // create, we assume they only want the JIT, and we fail if they only want
426 // the interpreter.
427 if (JMM) {
428 if (WhichEngine & EngineKind::JIT) {
429 WhichEngine = EngineKind::JIT;
430 } else {
431 *ErrorStr = "Cannot create an interpreter with a memory manager.";
435 ExecutionEngine *EE = 0;
437 // Unless the interpreter was explicitly selected or the JIT is not linked,
438 // try making a JIT.
439 if (WhichEngine & EngineKind::JIT && ExecutionEngine::JITCtor) {
440 EE = ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
441 AllocateGVsWithCode);
444 // If we can't make a JIT and we didn't request one specifically, try making
445 // an interpreter instead.
446 if (WhichEngine & EngineKind::Interpreter && EE == 0 &&
447 ExecutionEngine::InterpCtor) {
448 EE = ExecutionEngine::InterpCtor(MP, ErrorStr);
451 return EE;
454 /// getPointerToGlobal - This returns the address of the specified global
455 /// value. This may involve code generation if it's a function.
457 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
458 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
459 return getPointerToFunction(F);
461 MutexGuard locked(lock);
462 void *p = state.getGlobalAddressMap(locked)[GV];
463 if (p)
464 return p;
466 // Global variable might have been added since interpreter started.
467 if (GlobalVariable *GVar =
468 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
469 EmitGlobalVariable(GVar);
470 else
471 llvm_unreachable("Global hasn't had an address allocated yet!");
472 return state.getGlobalAddressMap(locked)[GV];
475 /// This function converts a Constant* into a GenericValue. The interesting
476 /// part is if C is a ConstantExpr.
477 /// @brief Get a GenericValue for a Constant*
478 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
479 // If its undefined, return the garbage.
480 if (isa<UndefValue>(C))
481 return GenericValue();
483 // If the value is a ConstantExpr
484 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
485 Constant *Op0 = CE->getOperand(0);
486 switch (CE->getOpcode()) {
487 case Instruction::GetElementPtr: {
488 // Compute the index
489 GenericValue Result = getConstantValue(Op0);
490 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
491 uint64_t Offset =
492 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
494 char* tmp = (char*) Result.PointerVal;
495 Result = PTOGV(tmp + Offset);
496 return Result;
498 case Instruction::Trunc: {
499 GenericValue GV = getConstantValue(Op0);
500 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
501 GV.IntVal = GV.IntVal.trunc(BitWidth);
502 return GV;
504 case Instruction::ZExt: {
505 GenericValue GV = getConstantValue(Op0);
506 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
507 GV.IntVal = GV.IntVal.zext(BitWidth);
508 return GV;
510 case Instruction::SExt: {
511 GenericValue GV = getConstantValue(Op0);
512 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
513 GV.IntVal = GV.IntVal.sext(BitWidth);
514 return GV;
516 case Instruction::FPTrunc: {
517 // FIXME long double
518 GenericValue GV = getConstantValue(Op0);
519 GV.FloatVal = float(GV.DoubleVal);
520 return GV;
522 case Instruction::FPExt:{
523 // FIXME long double
524 GenericValue GV = getConstantValue(Op0);
525 GV.DoubleVal = double(GV.FloatVal);
526 return GV;
528 case Instruction::UIToFP: {
529 GenericValue GV = getConstantValue(Op0);
530 if (CE->getType() == Type::getFloatTy(CE->getContext()))
531 GV.FloatVal = float(GV.IntVal.roundToDouble());
532 else if (CE->getType() == Type::getDoubleTy(CE->getContext()))
533 GV.DoubleVal = GV.IntVal.roundToDouble();
534 else if (CE->getType() == Type::getX86_FP80Ty(Op0->getContext())) {
535 const uint64_t zero[] = {0, 0};
536 APFloat apf = APFloat(APInt(80, 2, zero));
537 (void)apf.convertFromAPInt(GV.IntVal,
538 false,
539 APFloat::rmNearestTiesToEven);
540 GV.IntVal = apf.bitcastToAPInt();
542 return GV;
544 case Instruction::SIToFP: {
545 GenericValue GV = getConstantValue(Op0);
546 if (CE->getType() == Type::getFloatTy(CE->getContext()))
547 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
548 else if (CE->getType() == Type::getDoubleTy(CE->getContext()))
549 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
550 else if (CE->getType() == Type::getX86_FP80Ty(CE->getContext())) {
551 const uint64_t zero[] = { 0, 0};
552 APFloat apf = APFloat(APInt(80, 2, zero));
553 (void)apf.convertFromAPInt(GV.IntVal,
554 true,
555 APFloat::rmNearestTiesToEven);
556 GV.IntVal = apf.bitcastToAPInt();
558 return GV;
560 case Instruction::FPToUI: // double->APInt conversion handles sign
561 case Instruction::FPToSI: {
562 GenericValue GV = getConstantValue(Op0);
563 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
564 if (Op0->getType() == Type::getFloatTy(Op0->getContext()))
565 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
566 else if (Op0->getType() == Type::getDoubleTy(Op0->getContext()))
567 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
568 else if (Op0->getType() == Type::getX86_FP80Ty(Op0->getContext())) {
569 APFloat apf = APFloat(GV.IntVal);
570 uint64_t v;
571 bool ignored;
572 (void)apf.convertToInteger(&v, BitWidth,
573 CE->getOpcode()==Instruction::FPToSI,
574 APFloat::rmTowardZero, &ignored);
575 GV.IntVal = v; // endian?
577 return GV;
579 case Instruction::PtrToInt: {
580 GenericValue GV = getConstantValue(Op0);
581 uint32_t PtrWidth = TD->getPointerSizeInBits();
582 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
583 return GV;
585 case Instruction::IntToPtr: {
586 GenericValue GV = getConstantValue(Op0);
587 uint32_t PtrWidth = TD->getPointerSizeInBits();
588 if (PtrWidth != GV.IntVal.getBitWidth())
589 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
590 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
591 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
592 return GV;
594 case Instruction::BitCast: {
595 GenericValue GV = getConstantValue(Op0);
596 const Type* DestTy = CE->getType();
597 switch (Op0->getType()->getTypeID()) {
598 default: llvm_unreachable("Invalid bitcast operand");
599 case Type::IntegerTyID:
600 assert(DestTy->isFloatingPoint() && "invalid bitcast");
601 if (DestTy == Type::getFloatTy(Op0->getContext()))
602 GV.FloatVal = GV.IntVal.bitsToFloat();
603 else if (DestTy == Type::getDoubleTy(DestTy->getContext()))
604 GV.DoubleVal = GV.IntVal.bitsToDouble();
605 break;
606 case Type::FloatTyID:
607 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) &&
608 "Invalid bitcast");
609 GV.IntVal.floatToBits(GV.FloatVal);
610 break;
611 case Type::DoubleTyID:
612 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) &&
613 "Invalid bitcast");
614 GV.IntVal.doubleToBits(GV.DoubleVal);
615 break;
616 case Type::PointerTyID:
617 assert(isa<PointerType>(DestTy) && "Invalid bitcast");
618 break; // getConstantValue(Op0) above already converted it
620 return GV;
622 case Instruction::Add:
623 case Instruction::FAdd:
624 case Instruction::Sub:
625 case Instruction::FSub:
626 case Instruction::Mul:
627 case Instruction::FMul:
628 case Instruction::UDiv:
629 case Instruction::SDiv:
630 case Instruction::URem:
631 case Instruction::SRem:
632 case Instruction::And:
633 case Instruction::Or:
634 case Instruction::Xor: {
635 GenericValue LHS = getConstantValue(Op0);
636 GenericValue RHS = getConstantValue(CE->getOperand(1));
637 GenericValue GV;
638 switch (CE->getOperand(0)->getType()->getTypeID()) {
639 default: llvm_unreachable("Bad add type!");
640 case Type::IntegerTyID:
641 switch (CE->getOpcode()) {
642 default: llvm_unreachable("Invalid integer opcode");
643 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
644 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
645 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
646 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
647 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
648 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
649 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
650 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
651 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
652 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
654 break;
655 case Type::FloatTyID:
656 switch (CE->getOpcode()) {
657 default: llvm_unreachable("Invalid float opcode");
658 case Instruction::FAdd:
659 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
660 case Instruction::FSub:
661 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
662 case Instruction::FMul:
663 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
664 case Instruction::FDiv:
665 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
666 case Instruction::FRem:
667 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
669 break;
670 case Type::DoubleTyID:
671 switch (CE->getOpcode()) {
672 default: llvm_unreachable("Invalid double opcode");
673 case Instruction::FAdd:
674 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
675 case Instruction::FSub:
676 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
677 case Instruction::FMul:
678 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
679 case Instruction::FDiv:
680 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
681 case Instruction::FRem:
682 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
684 break;
685 case Type::X86_FP80TyID:
686 case Type::PPC_FP128TyID:
687 case Type::FP128TyID: {
688 APFloat apfLHS = APFloat(LHS.IntVal);
689 switch (CE->getOpcode()) {
690 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
691 case Instruction::FAdd:
692 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
693 GV.IntVal = apfLHS.bitcastToAPInt();
694 break;
695 case Instruction::FSub:
696 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
697 GV.IntVal = apfLHS.bitcastToAPInt();
698 break;
699 case Instruction::FMul:
700 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
701 GV.IntVal = apfLHS.bitcastToAPInt();
702 break;
703 case Instruction::FDiv:
704 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
705 GV.IntVal = apfLHS.bitcastToAPInt();
706 break;
707 case Instruction::FRem:
708 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
709 GV.IntVal = apfLHS.bitcastToAPInt();
710 break;
713 break;
715 return GV;
717 default:
718 break;
720 std::string msg;
721 raw_string_ostream Msg(msg);
722 Msg << "ConstantExpr not handled: " << *CE;
723 llvm_report_error(Msg.str());
726 GenericValue Result;
727 switch (C->getType()->getTypeID()) {
728 case Type::FloatTyID:
729 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
730 break;
731 case Type::DoubleTyID:
732 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
733 break;
734 case Type::X86_FP80TyID:
735 case Type::FP128TyID:
736 case Type::PPC_FP128TyID:
737 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
738 break;
739 case Type::IntegerTyID:
740 Result.IntVal = cast<ConstantInt>(C)->getValue();
741 break;
742 case Type::PointerTyID:
743 if (isa<ConstantPointerNull>(C))
744 Result.PointerVal = 0;
745 else if (const Function *F = dyn_cast<Function>(C))
746 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
747 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
748 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
749 else
750 llvm_unreachable("Unknown constant pointer type!");
751 break;
752 default:
753 std::string msg;
754 raw_string_ostream Msg(msg);
755 Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
756 llvm_report_error(Msg.str());
758 return Result;
761 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
762 /// with the integer held in IntVal.
763 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
764 unsigned StoreBytes) {
765 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
766 uint8_t *Src = (uint8_t *)IntVal.getRawData();
768 if (sys::isLittleEndianHost())
769 // Little-endian host - the source is ordered from LSB to MSB. Order the
770 // destination from LSB to MSB: Do a straight copy.
771 memcpy(Dst, Src, StoreBytes);
772 else {
773 // Big-endian host - the source is an array of 64 bit words ordered from
774 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
775 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
776 while (StoreBytes > sizeof(uint64_t)) {
777 StoreBytes -= sizeof(uint64_t);
778 // May not be aligned so use memcpy.
779 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
780 Src += sizeof(uint64_t);
783 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
787 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
788 /// is the address of the memory at which to store Val, cast to GenericValue *.
789 /// It is not a pointer to a GenericValue containing the address at which to
790 /// store Val.
791 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
792 GenericValue *Ptr, const Type *Ty) {
793 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
795 switch (Ty->getTypeID()) {
796 case Type::IntegerTyID:
797 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
798 break;
799 case Type::FloatTyID:
800 *((float*)Ptr) = Val.FloatVal;
801 break;
802 case Type::DoubleTyID:
803 *((double*)Ptr) = Val.DoubleVal;
804 break;
805 case Type::X86_FP80TyID:
806 memcpy(Ptr, Val.IntVal.getRawData(), 10);
807 break;
808 case Type::PointerTyID:
809 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
810 if (StoreBytes != sizeof(PointerTy))
811 memset(Ptr, 0, StoreBytes);
813 *((PointerTy*)Ptr) = Val.PointerVal;
814 break;
815 default:
816 errs() << "Cannot store value of type " << *Ty << "!\n";
819 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
820 // Host and target are different endian - reverse the stored bytes.
821 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
824 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
825 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
826 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
827 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
828 uint8_t *Dst = (uint8_t *)IntVal.getRawData();
830 if (sys::isLittleEndianHost())
831 // Little-endian host - the destination must be ordered from LSB to MSB.
832 // The source is ordered from LSB to MSB: Do a straight copy.
833 memcpy(Dst, Src, LoadBytes);
834 else {
835 // Big-endian - the destination is an array of 64 bit words ordered from
836 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
837 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
838 // a word.
839 while (LoadBytes > sizeof(uint64_t)) {
840 LoadBytes -= sizeof(uint64_t);
841 // May not be aligned so use memcpy.
842 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
843 Dst += sizeof(uint64_t);
846 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
850 /// FIXME: document
852 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
853 GenericValue *Ptr,
854 const Type *Ty) {
855 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
857 switch (Ty->getTypeID()) {
858 case Type::IntegerTyID:
859 // An APInt with all words initially zero.
860 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
861 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
862 break;
863 case Type::FloatTyID:
864 Result.FloatVal = *((float*)Ptr);
865 break;
866 case Type::DoubleTyID:
867 Result.DoubleVal = *((double*)Ptr);
868 break;
869 case Type::PointerTyID:
870 Result.PointerVal = *((PointerTy*)Ptr);
871 break;
872 case Type::X86_FP80TyID: {
873 // This is endian dependent, but it will only work on x86 anyway.
874 // FIXME: Will not trap if loading a signaling NaN.
875 uint64_t y[2];
876 memcpy(y, Ptr, 10);
877 Result.IntVal = APInt(80, 2, y);
878 break;
880 default:
881 std::string msg;
882 raw_string_ostream Msg(msg);
883 Msg << "Cannot load value of type " << *Ty << "!";
884 llvm_report_error(Msg.str());
888 // InitializeMemory - Recursive function to apply a Constant value into the
889 // specified memory location...
891 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
892 DEBUG(errs() << "JIT: Initializing " << Addr << " ");
893 DEBUG(Init->dump());
894 if (isa<UndefValue>(Init)) {
895 return;
896 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
897 unsigned ElementSize =
898 getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
899 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
900 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
901 return;
902 } else if (isa<ConstantAggregateZero>(Init)) {
903 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
904 return;
905 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
906 unsigned ElementSize =
907 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
908 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
909 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
910 return;
911 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
912 const StructLayout *SL =
913 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
914 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
915 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
916 return;
917 } else if (Init->getType()->isFirstClassType()) {
918 GenericValue Val = getConstantValue(Init);
919 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
920 return;
923 errs() << "Bad Type: " << *Init->getType() << "\n";
924 llvm_unreachable("Unknown constant type to initialize memory with!");
927 /// EmitGlobals - Emit all of the global variables to memory, storing their
928 /// addresses into GlobalAddress. This must make sure to copy the contents of
929 /// their initializers into the memory.
931 void ExecutionEngine::emitGlobals() {
933 // Loop over all of the global variables in the program, allocating the memory
934 // to hold them. If there is more than one module, do a prepass over globals
935 // to figure out how the different modules should link together.
937 std::map<std::pair<std::string, const Type*>,
938 const GlobalValue*> LinkedGlobalsMap;
940 if (Modules.size() != 1) {
941 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
942 Module &M = *Modules[m]->getModule();
943 for (Module::const_global_iterator I = M.global_begin(),
944 E = M.global_end(); I != E; ++I) {
945 const GlobalValue *GV = I;
946 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
947 GV->hasAppendingLinkage() || !GV->hasName())
948 continue;// Ignore external globals and globals with internal linkage.
950 const GlobalValue *&GVEntry =
951 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
953 // If this is the first time we've seen this global, it is the canonical
954 // version.
955 if (!GVEntry) {
956 GVEntry = GV;
957 continue;
960 // If the existing global is strong, never replace it.
961 if (GVEntry->hasExternalLinkage() ||
962 GVEntry->hasDLLImportLinkage() ||
963 GVEntry->hasDLLExportLinkage())
964 continue;
966 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
967 // symbol. FIXME is this right for common?
968 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
969 GVEntry = GV;
974 std::vector<const GlobalValue*> NonCanonicalGlobals;
975 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
976 Module &M = *Modules[m]->getModule();
977 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
978 I != E; ++I) {
979 // In the multi-module case, see what this global maps to.
980 if (!LinkedGlobalsMap.empty()) {
981 if (const GlobalValue *GVEntry =
982 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
983 // If something else is the canonical global, ignore this one.
984 if (GVEntry != &*I) {
985 NonCanonicalGlobals.push_back(I);
986 continue;
991 if (!I->isDeclaration()) {
992 addGlobalMapping(I, getMemoryForGV(I));
993 } else {
994 // External variable reference. Try to use the dynamic loader to
995 // get a pointer to it.
996 if (void *SymAddr =
997 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
998 addGlobalMapping(I, SymAddr);
999 else {
1000 llvm_report_error("Could not resolve external global address: "
1001 +I->getName());
1006 // If there are multiple modules, map the non-canonical globals to their
1007 // canonical location.
1008 if (!NonCanonicalGlobals.empty()) {
1009 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1010 const GlobalValue *GV = NonCanonicalGlobals[i];
1011 const GlobalValue *CGV =
1012 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1013 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1014 assert(Ptr && "Canonical global wasn't codegen'd!");
1015 addGlobalMapping(GV, Ptr);
1019 // Now that all of the globals are set up in memory, loop through them all
1020 // and initialize their contents.
1021 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1022 I != E; ++I) {
1023 if (!I->isDeclaration()) {
1024 if (!LinkedGlobalsMap.empty()) {
1025 if (const GlobalValue *GVEntry =
1026 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1027 if (GVEntry != &*I) // Not the canonical variable.
1028 continue;
1030 EmitGlobalVariable(I);
1036 // EmitGlobalVariable - This method emits the specified global variable to the
1037 // address specified in GlobalAddresses, or allocates new memory if it's not
1038 // already in the map.
1039 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1040 void *GA = getPointerToGlobalIfAvailable(GV);
1042 if (GA == 0) {
1043 // If it's not already specified, allocate memory for the global.
1044 GA = getMemoryForGV(GV);
1045 addGlobalMapping(GV, GA);
1048 // Don't initialize if it's thread local, let the client do it.
1049 if (!GV->isThreadLocal())
1050 InitializeMemory(GV->getInitializer(), GA);
1052 const Type *ElTy = GV->getType()->getElementType();
1053 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1054 NumInitBytes += (unsigned)GVSize;
1055 ++NumGlobals;