1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the common interface used by the various execution engine
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/ModuleProvider.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Config/alloca.h"
22 #include "llvm/ExecutionEngine/ExecutionEngine.h"
23 #include "llvm/ExecutionEngine/GenericValue.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MutexGuard.h"
26 #include "llvm/System/DynamicLibrary.h"
27 #include "llvm/System/Host.h"
28 #include "llvm/Target/TargetData.h"
33 STATISTIC(NumInitBytes
, "Number of bytes of global vars initialized");
34 STATISTIC(NumGlobals
, "Number of global vars initialized");
36 ExecutionEngine::EECtorFn
ExecutionEngine::JITCtor
= 0;
37 ExecutionEngine::EECtorFn
ExecutionEngine::InterpCtor
= 0;
38 ExecutionEngine::EERegisterFn
ExecutionEngine::ExceptionTableRegister
= 0;
41 ExecutionEngine::ExecutionEngine(ModuleProvider
*P
) : LazyFunctionCreator(0) {
42 LazyCompilationDisabled
= false;
43 GVCompilationDisabled
= false;
44 SymbolSearchingDisabled
= false;
45 DlsymStubsEnabled
= false;
47 assert(P
&& "ModuleProvider is null?");
50 ExecutionEngine::~ExecutionEngine() {
51 clearAllGlobalMappings();
52 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
)
56 char* ExecutionEngine::getMemoryForGV(const GlobalVariable
* GV
) {
57 const Type
*ElTy
= GV
->getType()->getElementType();
58 size_t GVSize
= (size_t)getTargetData()->getTypePaddedSize(ElTy
);
59 return new char[GVSize
];
62 /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
63 /// Relases the Module from the ModuleProvider, materializing it in the
64 /// process, and returns the materialized Module.
65 Module
* ExecutionEngine::removeModuleProvider(ModuleProvider
*P
,
66 std::string
*ErrInfo
) {
67 for(SmallVector
<ModuleProvider
*, 1>::iterator I
= Modules
.begin(),
68 E
= Modules
.end(); I
!= E
; ++I
) {
69 ModuleProvider
*MP
= *I
;
72 clearGlobalMappingsFromModule(MP
->getModule());
73 return MP
->releaseModule(ErrInfo
);
79 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
80 /// and deletes the ModuleProvider and owned Module. Avoids materializing
81 /// the underlying module.
82 void ExecutionEngine::deleteModuleProvider(ModuleProvider
*P
,
83 std::string
*ErrInfo
) {
84 for(SmallVector
<ModuleProvider
*, 1>::iterator I
= Modules
.begin(),
85 E
= Modules
.end(); I
!= E
; ++I
) {
86 ModuleProvider
*MP
= *I
;
89 clearGlobalMappingsFromModule(MP
->getModule());
96 /// FindFunctionNamed - Search all of the active modules to find the one that
97 /// defines FnName. This is very slow operation and shouldn't be used for
99 Function
*ExecutionEngine::FindFunctionNamed(const char *FnName
) {
100 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
) {
101 if (Function
*F
= Modules
[i
]->getModule()->getFunction(FnName
))
108 /// addGlobalMapping - Tell the execution engine that the specified global is
109 /// at the specified location. This is used internally as functions are JIT'd
110 /// and as global variables are laid out in memory. It can and should also be
111 /// used by clients of the EE that want to have an LLVM global overlay
112 /// existing data in memory.
113 void ExecutionEngine::addGlobalMapping(const GlobalValue
*GV
, void *Addr
) {
114 MutexGuard
locked(lock
);
116 DOUT
<< "JIT: Map \'" << GV
->getNameStart() << "\' to [" << Addr
<< "]\n";
117 void *&CurVal
= state
.getGlobalAddressMap(locked
)[GV
];
118 assert((CurVal
== 0 || Addr
== 0) && "GlobalMapping already established!");
121 // If we are using the reverse mapping, add it too
122 if (!state
.getGlobalAddressReverseMap(locked
).empty()) {
123 const GlobalValue
*&V
= state
.getGlobalAddressReverseMap(locked
)[Addr
];
124 assert((V
== 0 || GV
== 0) && "GlobalMapping already established!");
129 /// clearAllGlobalMappings - Clear all global mappings and start over again
130 /// use in dynamic compilation scenarios when you want to move globals
131 void ExecutionEngine::clearAllGlobalMappings() {
132 MutexGuard
locked(lock
);
134 state
.getGlobalAddressMap(locked
).clear();
135 state
.getGlobalAddressReverseMap(locked
).clear();
138 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
139 /// particular module, because it has been removed from the JIT.
140 void ExecutionEngine::clearGlobalMappingsFromModule(Module
*M
) {
141 MutexGuard
locked(lock
);
143 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; ++FI
) {
144 state
.getGlobalAddressMap(locked
).erase(FI
);
145 state
.getGlobalAddressReverseMap(locked
).erase(FI
);
147 for (Module::global_iterator GI
= M
->global_begin(), GE
= M
->global_end();
149 state
.getGlobalAddressMap(locked
).erase(GI
);
150 state
.getGlobalAddressReverseMap(locked
).erase(GI
);
154 /// updateGlobalMapping - Replace an existing mapping for GV with a new
155 /// address. This updates both maps as required. If "Addr" is null, the
156 /// entry for the global is removed from the mappings.
157 void *ExecutionEngine::updateGlobalMapping(const GlobalValue
*GV
, void *Addr
) {
158 MutexGuard
locked(lock
);
160 std::map
<const GlobalValue
*, void *> &Map
= state
.getGlobalAddressMap(locked
);
162 // Deleting from the mapping?
164 std::map
<const GlobalValue
*, void *>::iterator I
= Map
.find(GV
);
173 if (!state
.getGlobalAddressReverseMap(locked
).empty())
174 state
.getGlobalAddressReverseMap(locked
).erase(Addr
);
178 void *&CurVal
= Map
[GV
];
179 void *OldVal
= CurVal
;
181 if (CurVal
&& !state
.getGlobalAddressReverseMap(locked
).empty())
182 state
.getGlobalAddressReverseMap(locked
).erase(CurVal
);
185 // If we are using the reverse mapping, add it too
186 if (!state
.getGlobalAddressReverseMap(locked
).empty()) {
187 const GlobalValue
*&V
= state
.getGlobalAddressReverseMap(locked
)[Addr
];
188 assert((V
== 0 || GV
== 0) && "GlobalMapping already established!");
194 /// getPointerToGlobalIfAvailable - This returns the address of the specified
195 /// global value if it is has already been codegen'd, otherwise it returns null.
197 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue
*GV
) {
198 MutexGuard
locked(lock
);
200 std::map
<const GlobalValue
*, void*>::iterator I
=
201 state
.getGlobalAddressMap(locked
).find(GV
);
202 return I
!= state
.getGlobalAddressMap(locked
).end() ? I
->second
: 0;
205 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
206 /// at the specified address.
208 const GlobalValue
*ExecutionEngine::getGlobalValueAtAddress(void *Addr
) {
209 MutexGuard
locked(lock
);
211 // If we haven't computed the reverse mapping yet, do so first.
212 if (state
.getGlobalAddressReverseMap(locked
).empty()) {
213 for (std::map
<const GlobalValue
*, void *>::iterator
214 I
= state
.getGlobalAddressMap(locked
).begin(),
215 E
= state
.getGlobalAddressMap(locked
).end(); I
!= E
; ++I
)
216 state
.getGlobalAddressReverseMap(locked
).insert(std::make_pair(I
->second
,
220 std::map
<void *, const GlobalValue
*>::iterator I
=
221 state
.getGlobalAddressReverseMap(locked
).find(Addr
);
222 return I
!= state
.getGlobalAddressReverseMap(locked
).end() ? I
->second
: 0;
225 // CreateArgv - Turn a vector of strings into a nice argv style array of
226 // pointers to null terminated strings.
228 static void *CreateArgv(ExecutionEngine
*EE
,
229 const std::vector
<std::string
> &InputArgv
) {
230 unsigned PtrSize
= EE
->getTargetData()->getPointerSize();
231 char *Result
= new char[(InputArgv
.size()+1)*PtrSize
];
233 DOUT
<< "JIT: ARGV = " << (void*)Result
<< "\n";
234 const Type
*SBytePtr
= PointerType::getUnqual(Type::Int8Ty
);
236 for (unsigned i
= 0; i
!= InputArgv
.size(); ++i
) {
237 unsigned Size
= InputArgv
[i
].size()+1;
238 char *Dest
= new char[Size
];
239 DOUT
<< "JIT: ARGV[" << i
<< "] = " << (void*)Dest
<< "\n";
241 std::copy(InputArgv
[i
].begin(), InputArgv
[i
].end(), Dest
);
244 // Endian safe: Result[i] = (PointerTy)Dest;
245 EE
->StoreValueToMemory(PTOGV(Dest
), (GenericValue
*)(Result
+i
*PtrSize
),
250 EE
->StoreValueToMemory(PTOGV(0),
251 (GenericValue
*)(Result
+InputArgv
.size()*PtrSize
),
257 /// runStaticConstructorsDestructors - This method is used to execute all of
258 /// the static constructors or destructors for a module, depending on the
259 /// value of isDtors.
260 void ExecutionEngine::runStaticConstructorsDestructors(Module
*module
, bool isDtors
) {
261 const char *Name
= isDtors
? "llvm.global_dtors" : "llvm.global_ctors";
263 // Execute global ctors/dtors for each module in the program.
265 GlobalVariable
*GV
= module
->getNamedGlobal(Name
);
267 // If this global has internal linkage, or if it has a use, then it must be
268 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
269 // this is the case, don't execute any of the global ctors, __main will do
271 if (!GV
|| GV
->isDeclaration() || GV
->hasLocalLinkage()) return;
273 // Should be an array of '{ int, void ()* }' structs. The first value is
274 // the init priority, which we ignore.
275 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
276 if (!InitList
) return;
277 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
278 if (ConstantStruct
*CS
=
279 dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))) {
280 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
282 Constant
*FP
= CS
->getOperand(1);
283 if (FP
->isNullValue())
284 break; // Found a null terminator, exit.
286 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(FP
))
288 FP
= CE
->getOperand(0);
289 if (Function
*F
= dyn_cast
<Function
>(FP
)) {
290 // Execute the ctor/dtor function!
291 runFunction(F
, std::vector
<GenericValue
>());
296 /// runStaticConstructorsDestructors - This method is used to execute all of
297 /// the static constructors or destructors for a program, depending on the
298 /// value of isDtors.
299 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors
) {
300 // Execute global ctors/dtors for each module in the program.
301 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
)
302 runStaticConstructorsDestructors(Modules
[m
]->getModule(), isDtors
);
306 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
307 static bool isTargetNullPtr(ExecutionEngine
*EE
, void *Loc
) {
308 unsigned PtrSize
= EE
->getTargetData()->getPointerSize();
309 for (unsigned i
= 0; i
< PtrSize
; ++i
)
310 if (*(i
+ (uint8_t*)Loc
))
316 /// runFunctionAsMain - This is a helper function which wraps runFunction to
317 /// handle the common task of starting up main with the specified argc, argv,
318 /// and envp parameters.
319 int ExecutionEngine::runFunctionAsMain(Function
*Fn
,
320 const std::vector
<std::string
> &argv
,
321 const char * const * envp
) {
322 std::vector
<GenericValue
> GVArgs
;
324 GVArgc
.IntVal
= APInt(32, argv
.size());
327 unsigned NumArgs
= Fn
->getFunctionType()->getNumParams();
328 const FunctionType
*FTy
= Fn
->getFunctionType();
329 const Type
* PPInt8Ty
=
330 PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty
));
333 if (FTy
->getParamType(2) != PPInt8Ty
) {
334 cerr
<< "Invalid type for third argument of main() supplied\n";
339 if (FTy
->getParamType(1) != PPInt8Ty
) {
340 cerr
<< "Invalid type for second argument of main() supplied\n";
345 if (FTy
->getParamType(0) != Type::Int32Ty
) {
346 cerr
<< "Invalid type for first argument of main() supplied\n";
351 if (!isa
<IntegerType
>(FTy
->getReturnType()) &&
352 FTy
->getReturnType() != Type::VoidTy
) {
353 cerr
<< "Invalid return type of main() supplied\n";
358 cerr
<< "Invalid number of arguments of main() supplied\n";
363 GVArgs
.push_back(GVArgc
); // Arg #0 = argc.
365 GVArgs
.push_back(PTOGV(CreateArgv(this, argv
))); // Arg #1 = argv.
366 assert(!isTargetNullPtr(this, GVTOP(GVArgs
[1])) &&
367 "argv[0] was null after CreateArgv");
369 std::vector
<std::string
> EnvVars
;
370 for (unsigned i
= 0; envp
[i
]; ++i
)
371 EnvVars
.push_back(envp
[i
]);
372 GVArgs
.push_back(PTOGV(CreateArgv(this, EnvVars
))); // Arg #2 = envp.
376 return runFunction(Fn
, GVArgs
).IntVal
.getZExtValue();
379 /// If possible, create a JIT, unless the caller specifically requests an
380 /// Interpreter or there's an error. If even an Interpreter cannot be created,
381 /// NULL is returned.
383 ExecutionEngine
*ExecutionEngine::create(ModuleProvider
*MP
,
384 bool ForceInterpreter
,
385 std::string
*ErrorStr
,
386 CodeGenOpt::Level OptLevel
) {
387 ExecutionEngine
*EE
= 0;
389 // Make sure we can resolve symbols in the program as well. The zero arg
390 // to the function tells DynamicLibrary to load the program, not a library.
391 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr
))
394 // Unless the interpreter was explicitly selected, try making a JIT.
395 if (!ForceInterpreter
&& JITCtor
)
396 EE
= JITCtor(MP
, ErrorStr
, OptLevel
);
398 // If we can't make a JIT, make an interpreter instead.
399 if (EE
== 0 && InterpCtor
)
400 EE
= InterpCtor(MP
, ErrorStr
, OptLevel
);
405 ExecutionEngine
*ExecutionEngine::create(Module
*M
) {
406 return create(new ExistingModuleProvider(M
));
409 /// getPointerToGlobal - This returns the address of the specified global
410 /// value. This may involve code generation if it's a function.
412 void *ExecutionEngine::getPointerToGlobal(const GlobalValue
*GV
) {
413 if (Function
*F
= const_cast<Function
*>(dyn_cast
<Function
>(GV
)))
414 return getPointerToFunction(F
);
416 MutexGuard
locked(lock
);
417 void *p
= state
.getGlobalAddressMap(locked
)[GV
];
421 // Global variable might have been added since interpreter started.
422 if (GlobalVariable
*GVar
=
423 const_cast<GlobalVariable
*>(dyn_cast
<GlobalVariable
>(GV
)))
424 EmitGlobalVariable(GVar
);
426 assert(0 && "Global hasn't had an address allocated yet!");
427 return state
.getGlobalAddressMap(locked
)[GV
];
430 /// This function converts a Constant* into a GenericValue. The interesting
431 /// part is if C is a ConstantExpr.
432 /// @brief Get a GenericValue for a Constant*
433 GenericValue
ExecutionEngine::getConstantValue(const Constant
*C
) {
434 // If its undefined, return the garbage.
435 if (isa
<UndefValue
>(C
))
436 return GenericValue();
438 // If the value is a ConstantExpr
439 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
440 Constant
*Op0
= CE
->getOperand(0);
441 switch (CE
->getOpcode()) {
442 case Instruction::GetElementPtr
: {
444 GenericValue Result
= getConstantValue(Op0
);
445 SmallVector
<Value
*, 8> Indices(CE
->op_begin()+1, CE
->op_end());
447 TD
->getIndexedOffset(Op0
->getType(), &Indices
[0], Indices
.size());
449 char* tmp
= (char*) Result
.PointerVal
;
450 Result
= PTOGV(tmp
+ Offset
);
453 case Instruction::Trunc
: {
454 GenericValue GV
= getConstantValue(Op0
);
455 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
456 GV
.IntVal
= GV
.IntVal
.trunc(BitWidth
);
459 case Instruction::ZExt
: {
460 GenericValue GV
= getConstantValue(Op0
);
461 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
462 GV
.IntVal
= GV
.IntVal
.zext(BitWidth
);
465 case Instruction::SExt
: {
466 GenericValue GV
= getConstantValue(Op0
);
467 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
468 GV
.IntVal
= GV
.IntVal
.sext(BitWidth
);
471 case Instruction::FPTrunc
: {
473 GenericValue GV
= getConstantValue(Op0
);
474 GV
.FloatVal
= float(GV
.DoubleVal
);
477 case Instruction::FPExt
:{
479 GenericValue GV
= getConstantValue(Op0
);
480 GV
.DoubleVal
= double(GV
.FloatVal
);
483 case Instruction::UIToFP
: {
484 GenericValue GV
= getConstantValue(Op0
);
485 if (CE
->getType() == Type::FloatTy
)
486 GV
.FloatVal
= float(GV
.IntVal
.roundToDouble());
487 else if (CE
->getType() == Type::DoubleTy
)
488 GV
.DoubleVal
= GV
.IntVal
.roundToDouble();
489 else if (CE
->getType() == Type::X86_FP80Ty
) {
490 const uint64_t zero
[] = {0, 0};
491 APFloat apf
= APFloat(APInt(80, 2, zero
));
492 (void)apf
.convertFromAPInt(GV
.IntVal
,
494 APFloat::rmNearestTiesToEven
);
495 GV
.IntVal
= apf
.bitcastToAPInt();
499 case Instruction::SIToFP
: {
500 GenericValue GV
= getConstantValue(Op0
);
501 if (CE
->getType() == Type::FloatTy
)
502 GV
.FloatVal
= float(GV
.IntVal
.signedRoundToDouble());
503 else if (CE
->getType() == Type::DoubleTy
)
504 GV
.DoubleVal
= GV
.IntVal
.signedRoundToDouble();
505 else if (CE
->getType() == Type::X86_FP80Ty
) {
506 const uint64_t zero
[] = { 0, 0};
507 APFloat apf
= APFloat(APInt(80, 2, zero
));
508 (void)apf
.convertFromAPInt(GV
.IntVal
,
510 APFloat::rmNearestTiesToEven
);
511 GV
.IntVal
= apf
.bitcastToAPInt();
515 case Instruction::FPToUI
: // double->APInt conversion handles sign
516 case Instruction::FPToSI
: {
517 GenericValue GV
= getConstantValue(Op0
);
518 uint32_t BitWidth
= cast
<IntegerType
>(CE
->getType())->getBitWidth();
519 if (Op0
->getType() == Type::FloatTy
)
520 GV
.IntVal
= APIntOps::RoundFloatToAPInt(GV
.FloatVal
, BitWidth
);
521 else if (Op0
->getType() == Type::DoubleTy
)
522 GV
.IntVal
= APIntOps::RoundDoubleToAPInt(GV
.DoubleVal
, BitWidth
);
523 else if (Op0
->getType() == Type::X86_FP80Ty
) {
524 APFloat apf
= APFloat(GV
.IntVal
);
527 (void)apf
.convertToInteger(&v
, BitWidth
,
528 CE
->getOpcode()==Instruction::FPToSI
,
529 APFloat::rmTowardZero
, &ignored
);
530 GV
.IntVal
= v
; // endian?
534 case Instruction::PtrToInt
: {
535 GenericValue GV
= getConstantValue(Op0
);
536 uint32_t PtrWidth
= TD
->getPointerSizeInBits();
537 GV
.IntVal
= APInt(PtrWidth
, uintptr_t(GV
.PointerVal
));
540 case Instruction::IntToPtr
: {
541 GenericValue GV
= getConstantValue(Op0
);
542 uint32_t PtrWidth
= TD
->getPointerSizeInBits();
543 if (PtrWidth
!= GV
.IntVal
.getBitWidth())
544 GV
.IntVal
= GV
.IntVal
.zextOrTrunc(PtrWidth
);
545 assert(GV
.IntVal
.getBitWidth() <= 64 && "Bad pointer width");
546 GV
.PointerVal
= PointerTy(uintptr_t(GV
.IntVal
.getZExtValue()));
549 case Instruction::BitCast
: {
550 GenericValue GV
= getConstantValue(Op0
);
551 const Type
* DestTy
= CE
->getType();
552 switch (Op0
->getType()->getTypeID()) {
553 default: assert(0 && "Invalid bitcast operand");
554 case Type::IntegerTyID
:
555 assert(DestTy
->isFloatingPoint() && "invalid bitcast");
556 if (DestTy
== Type::FloatTy
)
557 GV
.FloatVal
= GV
.IntVal
.bitsToFloat();
558 else if (DestTy
== Type::DoubleTy
)
559 GV
.DoubleVal
= GV
.IntVal
.bitsToDouble();
561 case Type::FloatTyID
:
562 assert(DestTy
== Type::Int32Ty
&& "Invalid bitcast");
563 GV
.IntVal
.floatToBits(GV
.FloatVal
);
565 case Type::DoubleTyID
:
566 assert(DestTy
== Type::Int64Ty
&& "Invalid bitcast");
567 GV
.IntVal
.doubleToBits(GV
.DoubleVal
);
569 case Type::PointerTyID
:
570 assert(isa
<PointerType
>(DestTy
) && "Invalid bitcast");
571 break; // getConstantValue(Op0) above already converted it
575 case Instruction::Add
:
576 case Instruction::Sub
:
577 case Instruction::Mul
:
578 case Instruction::UDiv
:
579 case Instruction::SDiv
:
580 case Instruction::URem
:
581 case Instruction::SRem
:
582 case Instruction::And
:
583 case Instruction::Or
:
584 case Instruction::Xor
: {
585 GenericValue LHS
= getConstantValue(Op0
);
586 GenericValue RHS
= getConstantValue(CE
->getOperand(1));
588 switch (CE
->getOperand(0)->getType()->getTypeID()) {
589 default: assert(0 && "Bad add type!"); abort();
590 case Type::IntegerTyID
:
591 switch (CE
->getOpcode()) {
592 default: assert(0 && "Invalid integer opcode");
593 case Instruction::Add
: GV
.IntVal
= LHS
.IntVal
+ RHS
.IntVal
; break;
594 case Instruction::Sub
: GV
.IntVal
= LHS
.IntVal
- RHS
.IntVal
; break;
595 case Instruction::Mul
: GV
.IntVal
= LHS
.IntVal
* RHS
.IntVal
; break;
596 case Instruction::UDiv
:GV
.IntVal
= LHS
.IntVal
.udiv(RHS
.IntVal
); break;
597 case Instruction::SDiv
:GV
.IntVal
= LHS
.IntVal
.sdiv(RHS
.IntVal
); break;
598 case Instruction::URem
:GV
.IntVal
= LHS
.IntVal
.urem(RHS
.IntVal
); break;
599 case Instruction::SRem
:GV
.IntVal
= LHS
.IntVal
.srem(RHS
.IntVal
); break;
600 case Instruction::And
: GV
.IntVal
= LHS
.IntVal
& RHS
.IntVal
; break;
601 case Instruction::Or
: GV
.IntVal
= LHS
.IntVal
| RHS
.IntVal
; break;
602 case Instruction::Xor
: GV
.IntVal
= LHS
.IntVal
^ RHS
.IntVal
; break;
605 case Type::FloatTyID
:
606 switch (CE
->getOpcode()) {
607 default: assert(0 && "Invalid float opcode"); abort();
608 case Instruction::Add
:
609 GV
.FloatVal
= LHS
.FloatVal
+ RHS
.FloatVal
; break;
610 case Instruction::Sub
:
611 GV
.FloatVal
= LHS
.FloatVal
- RHS
.FloatVal
; break;
612 case Instruction::Mul
:
613 GV
.FloatVal
= LHS
.FloatVal
* RHS
.FloatVal
; break;
614 case Instruction::FDiv
:
615 GV
.FloatVal
= LHS
.FloatVal
/ RHS
.FloatVal
; break;
616 case Instruction::FRem
:
617 GV
.FloatVal
= ::fmodf(LHS
.FloatVal
,RHS
.FloatVal
); break;
620 case Type::DoubleTyID
:
621 switch (CE
->getOpcode()) {
622 default: assert(0 && "Invalid double opcode"); abort();
623 case Instruction::Add
:
624 GV
.DoubleVal
= LHS
.DoubleVal
+ RHS
.DoubleVal
; break;
625 case Instruction::Sub
:
626 GV
.DoubleVal
= LHS
.DoubleVal
- RHS
.DoubleVal
; break;
627 case Instruction::Mul
:
628 GV
.DoubleVal
= LHS
.DoubleVal
* RHS
.DoubleVal
; break;
629 case Instruction::FDiv
:
630 GV
.DoubleVal
= LHS
.DoubleVal
/ RHS
.DoubleVal
; break;
631 case Instruction::FRem
:
632 GV
.DoubleVal
= ::fmod(LHS
.DoubleVal
,RHS
.DoubleVal
); break;
635 case Type::X86_FP80TyID
:
636 case Type::PPC_FP128TyID
:
637 case Type::FP128TyID
: {
638 APFloat apfLHS
= APFloat(LHS
.IntVal
);
639 switch (CE
->getOpcode()) {
640 default: assert(0 && "Invalid long double opcode"); abort();
641 case Instruction::Add
:
642 apfLHS
.add(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
643 GV
.IntVal
= apfLHS
.bitcastToAPInt();
645 case Instruction::Sub
:
646 apfLHS
.subtract(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
647 GV
.IntVal
= apfLHS
.bitcastToAPInt();
649 case Instruction::Mul
:
650 apfLHS
.multiply(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
651 GV
.IntVal
= apfLHS
.bitcastToAPInt();
653 case Instruction::FDiv
:
654 apfLHS
.divide(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
655 GV
.IntVal
= apfLHS
.bitcastToAPInt();
657 case Instruction::FRem
:
658 apfLHS
.mod(APFloat(RHS
.IntVal
), APFloat::rmNearestTiesToEven
);
659 GV
.IntVal
= apfLHS
.bitcastToAPInt();
670 cerr
<< "ConstantExpr not handled: " << *CE
<< "\n";
675 switch (C
->getType()->getTypeID()) {
676 case Type::FloatTyID
:
677 Result
.FloatVal
= cast
<ConstantFP
>(C
)->getValueAPF().convertToFloat();
679 case Type::DoubleTyID
:
680 Result
.DoubleVal
= cast
<ConstantFP
>(C
)->getValueAPF().convertToDouble();
682 case Type::X86_FP80TyID
:
683 case Type::FP128TyID
:
684 case Type::PPC_FP128TyID
:
685 Result
.IntVal
= cast
<ConstantFP
>(C
)->getValueAPF().bitcastToAPInt();
687 case Type::IntegerTyID
:
688 Result
.IntVal
= cast
<ConstantInt
>(C
)->getValue();
690 case Type::PointerTyID
:
691 if (isa
<ConstantPointerNull
>(C
))
692 Result
.PointerVal
= 0;
693 else if (const Function
*F
= dyn_cast
<Function
>(C
))
694 Result
= PTOGV(getPointerToFunctionOrStub(const_cast<Function
*>(F
)));
695 else if (const GlobalVariable
* GV
= dyn_cast
<GlobalVariable
>(C
))
696 Result
= PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable
*>(GV
)));
698 assert(0 && "Unknown constant pointer type!");
701 cerr
<< "ERROR: Constant unimplemented for type: " << *C
->getType() << "\n";
707 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
708 /// with the integer held in IntVal.
709 static void StoreIntToMemory(const APInt
&IntVal
, uint8_t *Dst
,
710 unsigned StoreBytes
) {
711 assert((IntVal
.getBitWidth()+7)/8 >= StoreBytes
&& "Integer too small!");
712 uint8_t *Src
= (uint8_t *)IntVal
.getRawData();
714 if (sys::isLittleEndianHost())
715 // Little-endian host - the source is ordered from LSB to MSB. Order the
716 // destination from LSB to MSB: Do a straight copy.
717 memcpy(Dst
, Src
, StoreBytes
);
719 // Big-endian host - the source is an array of 64 bit words ordered from
720 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
721 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
722 while (StoreBytes
> sizeof(uint64_t)) {
723 StoreBytes
-= sizeof(uint64_t);
724 // May not be aligned so use memcpy.
725 memcpy(Dst
+ StoreBytes
, Src
, sizeof(uint64_t));
726 Src
+= sizeof(uint64_t);
729 memcpy(Dst
, Src
+ sizeof(uint64_t) - StoreBytes
, StoreBytes
);
733 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
734 /// is the address of the memory at which to store Val, cast to GenericValue *.
735 /// It is not a pointer to a GenericValue containing the address at which to
737 void ExecutionEngine::StoreValueToMemory(const GenericValue
&Val
,
738 GenericValue
*Ptr
, const Type
*Ty
) {
739 const unsigned StoreBytes
= getTargetData()->getTypeStoreSize(Ty
);
741 switch (Ty
->getTypeID()) {
742 case Type::IntegerTyID
:
743 StoreIntToMemory(Val
.IntVal
, (uint8_t*)Ptr
, StoreBytes
);
745 case Type::FloatTyID
:
746 *((float*)Ptr
) = Val
.FloatVal
;
748 case Type::DoubleTyID
:
749 *((double*)Ptr
) = Val
.DoubleVal
;
751 case Type::X86_FP80TyID
:
752 memcpy(Ptr
, Val
.IntVal
.getRawData(), 10);
754 case Type::PointerTyID
:
755 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
756 if (StoreBytes
!= sizeof(PointerTy
))
757 memset(Ptr
, 0, StoreBytes
);
759 *((PointerTy
*)Ptr
) = Val
.PointerVal
;
762 cerr
<< "Cannot store value of type " << *Ty
<< "!\n";
765 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
766 // Host and target are different endian - reverse the stored bytes.
767 std::reverse((uint8_t*)Ptr
, StoreBytes
+ (uint8_t*)Ptr
);
770 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
771 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
772 static void LoadIntFromMemory(APInt
&IntVal
, uint8_t *Src
, unsigned LoadBytes
) {
773 assert((IntVal
.getBitWidth()+7)/8 >= LoadBytes
&& "Integer too small!");
774 uint8_t *Dst
= (uint8_t *)IntVal
.getRawData();
776 if (sys::isLittleEndianHost())
777 // Little-endian host - the destination must be ordered from LSB to MSB.
778 // The source is ordered from LSB to MSB: Do a straight copy.
779 memcpy(Dst
, Src
, LoadBytes
);
781 // Big-endian - the destination is an array of 64 bit words ordered from
782 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
783 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
785 while (LoadBytes
> sizeof(uint64_t)) {
786 LoadBytes
-= sizeof(uint64_t);
787 // May not be aligned so use memcpy.
788 memcpy(Dst
, Src
+ LoadBytes
, sizeof(uint64_t));
789 Dst
+= sizeof(uint64_t);
792 memcpy(Dst
+ sizeof(uint64_t) - LoadBytes
, Src
, LoadBytes
);
798 void ExecutionEngine::LoadValueFromMemory(GenericValue
&Result
,
801 const unsigned LoadBytes
= getTargetData()->getTypeStoreSize(Ty
);
803 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
804 // Host and target are different endian - reverse copy the stored
805 // bytes into a buffer, and load from that.
806 uint8_t *Src
= (uint8_t*)Ptr
;
807 uint8_t *Buf
= (uint8_t*)alloca(LoadBytes
);
808 std::reverse_copy(Src
, Src
+ LoadBytes
, Buf
);
809 Ptr
= (GenericValue
*)Buf
;
812 switch (Ty
->getTypeID()) {
813 case Type::IntegerTyID
:
814 // An APInt with all words initially zero.
815 Result
.IntVal
= APInt(cast
<IntegerType
>(Ty
)->getBitWidth(), 0);
816 LoadIntFromMemory(Result
.IntVal
, (uint8_t*)Ptr
, LoadBytes
);
818 case Type::FloatTyID
:
819 Result
.FloatVal
= *((float*)Ptr
);
821 case Type::DoubleTyID
:
822 Result
.DoubleVal
= *((double*)Ptr
);
824 case Type::PointerTyID
:
825 Result
.PointerVal
= *((PointerTy
*)Ptr
);
827 case Type::X86_FP80TyID
: {
828 // This is endian dependent, but it will only work on x86 anyway.
829 // FIXME: Will not trap if loading a signaling NaN.
832 Result
.IntVal
= APInt(80, 2, y
);
836 cerr
<< "Cannot load value of type " << *Ty
<< "!\n";
841 // InitializeMemory - Recursive function to apply a Constant value into the
842 // specified memory location...
844 void ExecutionEngine::InitializeMemory(const Constant
*Init
, void *Addr
) {
845 DOUT
<< "JIT: Initializing " << Addr
<< " ";
847 if (isa
<UndefValue
>(Init
)) {
849 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Init
)) {
850 unsigned ElementSize
=
851 getTargetData()->getTypePaddedSize(CP
->getType()->getElementType());
852 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
853 InitializeMemory(CP
->getOperand(i
), (char*)Addr
+i
*ElementSize
);
855 } else if (isa
<ConstantAggregateZero
>(Init
)) {
856 memset(Addr
, 0, (size_t)getTargetData()->getTypePaddedSize(Init
->getType()));
858 } else if (const ConstantArray
*CPA
= dyn_cast
<ConstantArray
>(Init
)) {
859 unsigned ElementSize
=
860 getTargetData()->getTypePaddedSize(CPA
->getType()->getElementType());
861 for (unsigned i
= 0, e
= CPA
->getNumOperands(); i
!= e
; ++i
)
862 InitializeMemory(CPA
->getOperand(i
), (char*)Addr
+i
*ElementSize
);
864 } else if (const ConstantStruct
*CPS
= dyn_cast
<ConstantStruct
>(Init
)) {
865 const StructLayout
*SL
=
866 getTargetData()->getStructLayout(cast
<StructType
>(CPS
->getType()));
867 for (unsigned i
= 0, e
= CPS
->getNumOperands(); i
!= e
; ++i
)
868 InitializeMemory(CPS
->getOperand(i
), (char*)Addr
+SL
->getElementOffset(i
));
870 } else if (Init
->getType()->isFirstClassType()) {
871 GenericValue Val
= getConstantValue(Init
);
872 StoreValueToMemory(Val
, (GenericValue
*)Addr
, Init
->getType());
876 cerr
<< "Bad Type: " << *Init
->getType() << "\n";
877 assert(0 && "Unknown constant type to initialize memory with!");
880 /// EmitGlobals - Emit all of the global variables to memory, storing their
881 /// addresses into GlobalAddress. This must make sure to copy the contents of
882 /// their initializers into the memory.
884 void ExecutionEngine::emitGlobals() {
886 // Loop over all of the global variables in the program, allocating the memory
887 // to hold them. If there is more than one module, do a prepass over globals
888 // to figure out how the different modules should link together.
890 std::map
<std::pair
<std::string
, const Type
*>,
891 const GlobalValue
*> LinkedGlobalsMap
;
893 if (Modules
.size() != 1) {
894 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
) {
895 Module
&M
= *Modules
[m
]->getModule();
896 for (Module::const_global_iterator I
= M
.global_begin(),
897 E
= M
.global_end(); I
!= E
; ++I
) {
898 const GlobalValue
*GV
= I
;
899 if (GV
->hasLocalLinkage() || GV
->isDeclaration() ||
900 GV
->hasAppendingLinkage() || !GV
->hasName())
901 continue;// Ignore external globals and globals with internal linkage.
903 const GlobalValue
*&GVEntry
=
904 LinkedGlobalsMap
[std::make_pair(GV
->getName(), GV
->getType())];
906 // If this is the first time we've seen this global, it is the canonical
913 // If the existing global is strong, never replace it.
914 if (GVEntry
->hasExternalLinkage() ||
915 GVEntry
->hasDLLImportLinkage() ||
916 GVEntry
->hasDLLExportLinkage())
919 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
920 // symbol. FIXME is this right for common?
921 if (GV
->hasExternalLinkage() || GVEntry
->hasExternalWeakLinkage())
927 std::vector
<const GlobalValue
*> NonCanonicalGlobals
;
928 for (unsigned m
= 0, e
= Modules
.size(); m
!= e
; ++m
) {
929 Module
&M
= *Modules
[m
]->getModule();
930 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
932 // In the multi-module case, see what this global maps to.
933 if (!LinkedGlobalsMap
.empty()) {
934 if (const GlobalValue
*GVEntry
=
935 LinkedGlobalsMap
[std::make_pair(I
->getName(), I
->getType())]) {
936 // If something else is the canonical global, ignore this one.
937 if (GVEntry
!= &*I
) {
938 NonCanonicalGlobals
.push_back(I
);
944 if (!I
->isDeclaration()) {
945 addGlobalMapping(I
, getMemoryForGV(I
));
947 // External variable reference. Try to use the dynamic loader to
948 // get a pointer to it.
950 sys::DynamicLibrary::SearchForAddressOfSymbol(I
->getName().c_str()))
951 addGlobalMapping(I
, SymAddr
);
953 cerr
<< "Could not resolve external global address: "
954 << I
->getName() << "\n";
960 // If there are multiple modules, map the non-canonical globals to their
961 // canonical location.
962 if (!NonCanonicalGlobals
.empty()) {
963 for (unsigned i
= 0, e
= NonCanonicalGlobals
.size(); i
!= e
; ++i
) {
964 const GlobalValue
*GV
= NonCanonicalGlobals
[i
];
965 const GlobalValue
*CGV
=
966 LinkedGlobalsMap
[std::make_pair(GV
->getName(), GV
->getType())];
967 void *Ptr
= getPointerToGlobalIfAvailable(CGV
);
968 assert(Ptr
&& "Canonical global wasn't codegen'd!");
969 addGlobalMapping(GV
, Ptr
);
973 // Now that all of the globals are set up in memory, loop through them all
974 // and initialize their contents.
975 for (Module::const_global_iterator I
= M
.global_begin(), E
= M
.global_end();
977 if (!I
->isDeclaration()) {
978 if (!LinkedGlobalsMap
.empty()) {
979 if (const GlobalValue
*GVEntry
=
980 LinkedGlobalsMap
[std::make_pair(I
->getName(), I
->getType())])
981 if (GVEntry
!= &*I
) // Not the canonical variable.
984 EmitGlobalVariable(I
);
990 // EmitGlobalVariable - This method emits the specified global variable to the
991 // address specified in GlobalAddresses, or allocates new memory if it's not
992 // already in the map.
993 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable
*GV
) {
994 void *GA
= getPointerToGlobalIfAvailable(GV
);
997 // If it's not already specified, allocate memory for the global.
998 GA
= getMemoryForGV(GV
);
999 addGlobalMapping(GV
, GA
);
1002 // Don't initialize if it's thread local, let the client do it.
1003 if (!GV
->isThreadLocal())
1004 InitializeMemory(GV
->getInitializer(), GA
);
1006 const Type
*ElTy
= GV
->getType()->getElementType();
1007 size_t GVSize
= (size_t)getTargetData()->getTypePaddedSize(ElTy
);
1008 NumInitBytes
+= (unsigned)GVSize
;