Rename "loop aligner" pass to "code placement optimization" pass.
[llvm/msp430.git] / lib / ExecutionEngine / ExecutionEngine.cpp
blob9cd03dac27ecdc661d64bf39843a4472104ee4da
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/ModuleProvider.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Config/alloca.h"
22 #include "llvm/ExecutionEngine/ExecutionEngine.h"
23 #include "llvm/ExecutionEngine/GenericValue.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MutexGuard.h"
26 #include "llvm/System/DynamicLibrary.h"
27 #include "llvm/System/Host.h"
28 #include "llvm/Target/TargetData.h"
29 #include <cmath>
30 #include <cstring>
31 using namespace llvm;
33 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
34 STATISTIC(NumGlobals , "Number of global vars initialized");
36 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
37 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
38 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
41 ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
42 LazyCompilationDisabled = false;
43 GVCompilationDisabled = false;
44 SymbolSearchingDisabled = false;
45 DlsymStubsEnabled = false;
46 Modules.push_back(P);
47 assert(P && "ModuleProvider is null?");
50 ExecutionEngine::~ExecutionEngine() {
51 clearAllGlobalMappings();
52 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
53 delete Modules[i];
56 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
57 const Type *ElTy = GV->getType()->getElementType();
58 size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
59 return new char[GVSize];
62 /// removeModuleProvider - Remove a ModuleProvider from the list of modules.
63 /// Relases the Module from the ModuleProvider, materializing it in the
64 /// process, and returns the materialized Module.
65 Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
66 std::string *ErrInfo) {
67 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
68 E = Modules.end(); I != E; ++I) {
69 ModuleProvider *MP = *I;
70 if (MP == P) {
71 Modules.erase(I);
72 clearGlobalMappingsFromModule(MP->getModule());
73 return MP->releaseModule(ErrInfo);
76 return NULL;
79 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
80 /// and deletes the ModuleProvider and owned Module. Avoids materializing
81 /// the underlying module.
82 void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
83 std::string *ErrInfo) {
84 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
85 E = Modules.end(); I != E; ++I) {
86 ModuleProvider *MP = *I;
87 if (MP == P) {
88 Modules.erase(I);
89 clearGlobalMappingsFromModule(MP->getModule());
90 delete MP;
91 return;
96 /// FindFunctionNamed - Search all of the active modules to find the one that
97 /// defines FnName. This is very slow operation and shouldn't be used for
98 /// general code.
99 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
100 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
101 if (Function *F = Modules[i]->getModule()->getFunction(FnName))
102 return F;
104 return 0;
108 /// addGlobalMapping - Tell the execution engine that the specified global is
109 /// at the specified location. This is used internally as functions are JIT'd
110 /// and as global variables are laid out in memory. It can and should also be
111 /// used by clients of the EE that want to have an LLVM global overlay
112 /// existing data in memory.
113 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
114 MutexGuard locked(lock);
116 DOUT << "JIT: Map \'" << GV->getNameStart() << "\' to [" << Addr << "]\n";
117 void *&CurVal = state.getGlobalAddressMap(locked)[GV];
118 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
119 CurVal = Addr;
121 // If we are using the reverse mapping, add it too
122 if (!state.getGlobalAddressReverseMap(locked).empty()) {
123 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
124 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
125 V = GV;
129 /// clearAllGlobalMappings - Clear all global mappings and start over again
130 /// use in dynamic compilation scenarios when you want to move globals
131 void ExecutionEngine::clearAllGlobalMappings() {
132 MutexGuard locked(lock);
134 state.getGlobalAddressMap(locked).clear();
135 state.getGlobalAddressReverseMap(locked).clear();
138 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
139 /// particular module, because it has been removed from the JIT.
140 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
141 MutexGuard locked(lock);
143 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
144 state.getGlobalAddressMap(locked).erase(FI);
145 state.getGlobalAddressReverseMap(locked).erase(FI);
147 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
148 GI != GE; ++GI) {
149 state.getGlobalAddressMap(locked).erase(GI);
150 state.getGlobalAddressReverseMap(locked).erase(GI);
154 /// updateGlobalMapping - Replace an existing mapping for GV with a new
155 /// address. This updates both maps as required. If "Addr" is null, the
156 /// entry for the global is removed from the mappings.
157 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
158 MutexGuard locked(lock);
160 std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);
162 // Deleting from the mapping?
163 if (Addr == 0) {
164 std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
165 void *OldVal;
166 if (I == Map.end())
167 OldVal = 0;
168 else {
169 OldVal = I->second;
170 Map.erase(I);
173 if (!state.getGlobalAddressReverseMap(locked).empty())
174 state.getGlobalAddressReverseMap(locked).erase(Addr);
175 return OldVal;
178 void *&CurVal = Map[GV];
179 void *OldVal = CurVal;
181 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
182 state.getGlobalAddressReverseMap(locked).erase(CurVal);
183 CurVal = Addr;
185 // If we are using the reverse mapping, add it too
186 if (!state.getGlobalAddressReverseMap(locked).empty()) {
187 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
188 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
189 V = GV;
191 return OldVal;
194 /// getPointerToGlobalIfAvailable - This returns the address of the specified
195 /// global value if it is has already been codegen'd, otherwise it returns null.
197 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
198 MutexGuard locked(lock);
200 std::map<const GlobalValue*, void*>::iterator I =
201 state.getGlobalAddressMap(locked).find(GV);
202 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
205 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
206 /// at the specified address.
208 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
209 MutexGuard locked(lock);
211 // If we haven't computed the reverse mapping yet, do so first.
212 if (state.getGlobalAddressReverseMap(locked).empty()) {
213 for (std::map<const GlobalValue*, void *>::iterator
214 I = state.getGlobalAddressMap(locked).begin(),
215 E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
216 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
217 I->first));
220 std::map<void *, const GlobalValue*>::iterator I =
221 state.getGlobalAddressReverseMap(locked).find(Addr);
222 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
225 // CreateArgv - Turn a vector of strings into a nice argv style array of
226 // pointers to null terminated strings.
228 static void *CreateArgv(ExecutionEngine *EE,
229 const std::vector<std::string> &InputArgv) {
230 unsigned PtrSize = EE->getTargetData()->getPointerSize();
231 char *Result = new char[(InputArgv.size()+1)*PtrSize];
233 DOUT << "JIT: ARGV = " << (void*)Result << "\n";
234 const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);
236 for (unsigned i = 0; i != InputArgv.size(); ++i) {
237 unsigned Size = InputArgv[i].size()+1;
238 char *Dest = new char[Size];
239 DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
241 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
242 Dest[Size-1] = 0;
244 // Endian safe: Result[i] = (PointerTy)Dest;
245 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
246 SBytePtr);
249 // Null terminate it
250 EE->StoreValueToMemory(PTOGV(0),
251 (GenericValue*)(Result+InputArgv.size()*PtrSize),
252 SBytePtr);
253 return Result;
257 /// runStaticConstructorsDestructors - This method is used to execute all of
258 /// the static constructors or destructors for a module, depending on the
259 /// value of isDtors.
260 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
261 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
263 // Execute global ctors/dtors for each module in the program.
265 GlobalVariable *GV = module->getNamedGlobal(Name);
267 // If this global has internal linkage, or if it has a use, then it must be
268 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
269 // this is the case, don't execute any of the global ctors, __main will do
270 // it.
271 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
273 // Should be an array of '{ int, void ()* }' structs. The first value is
274 // the init priority, which we ignore.
275 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
276 if (!InitList) return;
277 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
278 if (ConstantStruct *CS =
279 dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
280 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
282 Constant *FP = CS->getOperand(1);
283 if (FP->isNullValue())
284 break; // Found a null terminator, exit.
286 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
287 if (CE->isCast())
288 FP = CE->getOperand(0);
289 if (Function *F = dyn_cast<Function>(FP)) {
290 // Execute the ctor/dtor function!
291 runFunction(F, std::vector<GenericValue>());
296 /// runStaticConstructorsDestructors - This method is used to execute all of
297 /// the static constructors or destructors for a program, depending on the
298 /// value of isDtors.
299 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
300 // Execute global ctors/dtors for each module in the program.
301 for (unsigned m = 0, e = Modules.size(); m != e; ++m)
302 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
305 #ifndef NDEBUG
306 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
307 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
308 unsigned PtrSize = EE->getTargetData()->getPointerSize();
309 for (unsigned i = 0; i < PtrSize; ++i)
310 if (*(i + (uint8_t*)Loc))
311 return false;
312 return true;
314 #endif
316 /// runFunctionAsMain - This is a helper function which wraps runFunction to
317 /// handle the common task of starting up main with the specified argc, argv,
318 /// and envp parameters.
319 int ExecutionEngine::runFunctionAsMain(Function *Fn,
320 const std::vector<std::string> &argv,
321 const char * const * envp) {
322 std::vector<GenericValue> GVArgs;
323 GenericValue GVArgc;
324 GVArgc.IntVal = APInt(32, argv.size());
326 // Check main() type
327 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
328 const FunctionType *FTy = Fn->getFunctionType();
329 const Type* PPInt8Ty =
330 PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
331 switch (NumArgs) {
332 case 3:
333 if (FTy->getParamType(2) != PPInt8Ty) {
334 cerr << "Invalid type for third argument of main() supplied\n";
335 abort();
337 // FALLS THROUGH
338 case 2:
339 if (FTy->getParamType(1) != PPInt8Ty) {
340 cerr << "Invalid type for second argument of main() supplied\n";
341 abort();
343 // FALLS THROUGH
344 case 1:
345 if (FTy->getParamType(0) != Type::Int32Ty) {
346 cerr << "Invalid type for first argument of main() supplied\n";
347 abort();
349 // FALLS THROUGH
350 case 0:
351 if (!isa<IntegerType>(FTy->getReturnType()) &&
352 FTy->getReturnType() != Type::VoidTy) {
353 cerr << "Invalid return type of main() supplied\n";
354 abort();
356 break;
357 default:
358 cerr << "Invalid number of arguments of main() supplied\n";
359 abort();
362 if (NumArgs) {
363 GVArgs.push_back(GVArgc); // Arg #0 = argc.
364 if (NumArgs > 1) {
365 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
366 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
367 "argv[0] was null after CreateArgv");
368 if (NumArgs > 2) {
369 std::vector<std::string> EnvVars;
370 for (unsigned i = 0; envp[i]; ++i)
371 EnvVars.push_back(envp[i]);
372 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
376 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
379 /// If possible, create a JIT, unless the caller specifically requests an
380 /// Interpreter or there's an error. If even an Interpreter cannot be created,
381 /// NULL is returned.
383 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
384 bool ForceInterpreter,
385 std::string *ErrorStr,
386 CodeGenOpt::Level OptLevel) {
387 ExecutionEngine *EE = 0;
389 // Make sure we can resolve symbols in the program as well. The zero arg
390 // to the function tells DynamicLibrary to load the program, not a library.
391 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
392 return 0;
394 // Unless the interpreter was explicitly selected, try making a JIT.
395 if (!ForceInterpreter && JITCtor)
396 EE = JITCtor(MP, ErrorStr, OptLevel);
398 // If we can't make a JIT, make an interpreter instead.
399 if (EE == 0 && InterpCtor)
400 EE = InterpCtor(MP, ErrorStr, OptLevel);
402 return EE;
405 ExecutionEngine *ExecutionEngine::create(Module *M) {
406 return create(new ExistingModuleProvider(M));
409 /// getPointerToGlobal - This returns the address of the specified global
410 /// value. This may involve code generation if it's a function.
412 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
413 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
414 return getPointerToFunction(F);
416 MutexGuard locked(lock);
417 void *p = state.getGlobalAddressMap(locked)[GV];
418 if (p)
419 return p;
421 // Global variable might have been added since interpreter started.
422 if (GlobalVariable *GVar =
423 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
424 EmitGlobalVariable(GVar);
425 else
426 assert(0 && "Global hasn't had an address allocated yet!");
427 return state.getGlobalAddressMap(locked)[GV];
430 /// This function converts a Constant* into a GenericValue. The interesting
431 /// part is if C is a ConstantExpr.
432 /// @brief Get a GenericValue for a Constant*
433 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
434 // If its undefined, return the garbage.
435 if (isa<UndefValue>(C))
436 return GenericValue();
438 // If the value is a ConstantExpr
439 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
440 Constant *Op0 = CE->getOperand(0);
441 switch (CE->getOpcode()) {
442 case Instruction::GetElementPtr: {
443 // Compute the index
444 GenericValue Result = getConstantValue(Op0);
445 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
446 uint64_t Offset =
447 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
449 char* tmp = (char*) Result.PointerVal;
450 Result = PTOGV(tmp + Offset);
451 return Result;
453 case Instruction::Trunc: {
454 GenericValue GV = getConstantValue(Op0);
455 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
456 GV.IntVal = GV.IntVal.trunc(BitWidth);
457 return GV;
459 case Instruction::ZExt: {
460 GenericValue GV = getConstantValue(Op0);
461 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
462 GV.IntVal = GV.IntVal.zext(BitWidth);
463 return GV;
465 case Instruction::SExt: {
466 GenericValue GV = getConstantValue(Op0);
467 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
468 GV.IntVal = GV.IntVal.sext(BitWidth);
469 return GV;
471 case Instruction::FPTrunc: {
472 // FIXME long double
473 GenericValue GV = getConstantValue(Op0);
474 GV.FloatVal = float(GV.DoubleVal);
475 return GV;
477 case Instruction::FPExt:{
478 // FIXME long double
479 GenericValue GV = getConstantValue(Op0);
480 GV.DoubleVal = double(GV.FloatVal);
481 return GV;
483 case Instruction::UIToFP: {
484 GenericValue GV = getConstantValue(Op0);
485 if (CE->getType() == Type::FloatTy)
486 GV.FloatVal = float(GV.IntVal.roundToDouble());
487 else if (CE->getType() == Type::DoubleTy)
488 GV.DoubleVal = GV.IntVal.roundToDouble();
489 else if (CE->getType() == Type::X86_FP80Ty) {
490 const uint64_t zero[] = {0, 0};
491 APFloat apf = APFloat(APInt(80, 2, zero));
492 (void)apf.convertFromAPInt(GV.IntVal,
493 false,
494 APFloat::rmNearestTiesToEven);
495 GV.IntVal = apf.bitcastToAPInt();
497 return GV;
499 case Instruction::SIToFP: {
500 GenericValue GV = getConstantValue(Op0);
501 if (CE->getType() == Type::FloatTy)
502 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
503 else if (CE->getType() == Type::DoubleTy)
504 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
505 else if (CE->getType() == Type::X86_FP80Ty) {
506 const uint64_t zero[] = { 0, 0};
507 APFloat apf = APFloat(APInt(80, 2, zero));
508 (void)apf.convertFromAPInt(GV.IntVal,
509 true,
510 APFloat::rmNearestTiesToEven);
511 GV.IntVal = apf.bitcastToAPInt();
513 return GV;
515 case Instruction::FPToUI: // double->APInt conversion handles sign
516 case Instruction::FPToSI: {
517 GenericValue GV = getConstantValue(Op0);
518 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
519 if (Op0->getType() == Type::FloatTy)
520 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
521 else if (Op0->getType() == Type::DoubleTy)
522 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
523 else if (Op0->getType() == Type::X86_FP80Ty) {
524 APFloat apf = APFloat(GV.IntVal);
525 uint64_t v;
526 bool ignored;
527 (void)apf.convertToInteger(&v, BitWidth,
528 CE->getOpcode()==Instruction::FPToSI,
529 APFloat::rmTowardZero, &ignored);
530 GV.IntVal = v; // endian?
532 return GV;
534 case Instruction::PtrToInt: {
535 GenericValue GV = getConstantValue(Op0);
536 uint32_t PtrWidth = TD->getPointerSizeInBits();
537 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
538 return GV;
540 case Instruction::IntToPtr: {
541 GenericValue GV = getConstantValue(Op0);
542 uint32_t PtrWidth = TD->getPointerSizeInBits();
543 if (PtrWidth != GV.IntVal.getBitWidth())
544 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
545 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
546 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
547 return GV;
549 case Instruction::BitCast: {
550 GenericValue GV = getConstantValue(Op0);
551 const Type* DestTy = CE->getType();
552 switch (Op0->getType()->getTypeID()) {
553 default: assert(0 && "Invalid bitcast operand");
554 case Type::IntegerTyID:
555 assert(DestTy->isFloatingPoint() && "invalid bitcast");
556 if (DestTy == Type::FloatTy)
557 GV.FloatVal = GV.IntVal.bitsToFloat();
558 else if (DestTy == Type::DoubleTy)
559 GV.DoubleVal = GV.IntVal.bitsToDouble();
560 break;
561 case Type::FloatTyID:
562 assert(DestTy == Type::Int32Ty && "Invalid bitcast");
563 GV.IntVal.floatToBits(GV.FloatVal);
564 break;
565 case Type::DoubleTyID:
566 assert(DestTy == Type::Int64Ty && "Invalid bitcast");
567 GV.IntVal.doubleToBits(GV.DoubleVal);
568 break;
569 case Type::PointerTyID:
570 assert(isa<PointerType>(DestTy) && "Invalid bitcast");
571 break; // getConstantValue(Op0) above already converted it
573 return GV;
575 case Instruction::Add:
576 case Instruction::Sub:
577 case Instruction::Mul:
578 case Instruction::UDiv:
579 case Instruction::SDiv:
580 case Instruction::URem:
581 case Instruction::SRem:
582 case Instruction::And:
583 case Instruction::Or:
584 case Instruction::Xor: {
585 GenericValue LHS = getConstantValue(Op0);
586 GenericValue RHS = getConstantValue(CE->getOperand(1));
587 GenericValue GV;
588 switch (CE->getOperand(0)->getType()->getTypeID()) {
589 default: assert(0 && "Bad add type!"); abort();
590 case Type::IntegerTyID:
591 switch (CE->getOpcode()) {
592 default: assert(0 && "Invalid integer opcode");
593 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
594 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
595 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
596 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
597 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
598 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
599 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
600 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
601 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
602 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
604 break;
605 case Type::FloatTyID:
606 switch (CE->getOpcode()) {
607 default: assert(0 && "Invalid float opcode"); abort();
608 case Instruction::Add:
609 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
610 case Instruction::Sub:
611 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
612 case Instruction::Mul:
613 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
614 case Instruction::FDiv:
615 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
616 case Instruction::FRem:
617 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
619 break;
620 case Type::DoubleTyID:
621 switch (CE->getOpcode()) {
622 default: assert(0 && "Invalid double opcode"); abort();
623 case Instruction::Add:
624 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
625 case Instruction::Sub:
626 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
627 case Instruction::Mul:
628 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
629 case Instruction::FDiv:
630 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
631 case Instruction::FRem:
632 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
634 break;
635 case Type::X86_FP80TyID:
636 case Type::PPC_FP128TyID:
637 case Type::FP128TyID: {
638 APFloat apfLHS = APFloat(LHS.IntVal);
639 switch (CE->getOpcode()) {
640 default: assert(0 && "Invalid long double opcode"); abort();
641 case Instruction::Add:
642 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
643 GV.IntVal = apfLHS.bitcastToAPInt();
644 break;
645 case Instruction::Sub:
646 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
647 GV.IntVal = apfLHS.bitcastToAPInt();
648 break;
649 case Instruction::Mul:
650 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
651 GV.IntVal = apfLHS.bitcastToAPInt();
652 break;
653 case Instruction::FDiv:
654 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
655 GV.IntVal = apfLHS.bitcastToAPInt();
656 break;
657 case Instruction::FRem:
658 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
659 GV.IntVal = apfLHS.bitcastToAPInt();
660 break;
663 break;
665 return GV;
667 default:
668 break;
670 cerr << "ConstantExpr not handled: " << *CE << "\n";
671 abort();
674 GenericValue Result;
675 switch (C->getType()->getTypeID()) {
676 case Type::FloatTyID:
677 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
678 break;
679 case Type::DoubleTyID:
680 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
681 break;
682 case Type::X86_FP80TyID:
683 case Type::FP128TyID:
684 case Type::PPC_FP128TyID:
685 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
686 break;
687 case Type::IntegerTyID:
688 Result.IntVal = cast<ConstantInt>(C)->getValue();
689 break;
690 case Type::PointerTyID:
691 if (isa<ConstantPointerNull>(C))
692 Result.PointerVal = 0;
693 else if (const Function *F = dyn_cast<Function>(C))
694 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
695 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
696 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
697 else
698 assert(0 && "Unknown constant pointer type!");
699 break;
700 default:
701 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
702 abort();
704 return Result;
707 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
708 /// with the integer held in IntVal.
709 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
710 unsigned StoreBytes) {
711 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
712 uint8_t *Src = (uint8_t *)IntVal.getRawData();
714 if (sys::isLittleEndianHost())
715 // Little-endian host - the source is ordered from LSB to MSB. Order the
716 // destination from LSB to MSB: Do a straight copy.
717 memcpy(Dst, Src, StoreBytes);
718 else {
719 // Big-endian host - the source is an array of 64 bit words ordered from
720 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
721 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
722 while (StoreBytes > sizeof(uint64_t)) {
723 StoreBytes -= sizeof(uint64_t);
724 // May not be aligned so use memcpy.
725 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
726 Src += sizeof(uint64_t);
729 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
733 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
734 /// is the address of the memory at which to store Val, cast to GenericValue *.
735 /// It is not a pointer to a GenericValue containing the address at which to
736 /// store Val.
737 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
738 GenericValue *Ptr, const Type *Ty) {
739 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
741 switch (Ty->getTypeID()) {
742 case Type::IntegerTyID:
743 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
744 break;
745 case Type::FloatTyID:
746 *((float*)Ptr) = Val.FloatVal;
747 break;
748 case Type::DoubleTyID:
749 *((double*)Ptr) = Val.DoubleVal;
750 break;
751 case Type::X86_FP80TyID:
752 memcpy(Ptr, Val.IntVal.getRawData(), 10);
753 break;
754 case Type::PointerTyID:
755 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
756 if (StoreBytes != sizeof(PointerTy))
757 memset(Ptr, 0, StoreBytes);
759 *((PointerTy*)Ptr) = Val.PointerVal;
760 break;
761 default:
762 cerr << "Cannot store value of type " << *Ty << "!\n";
765 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
766 // Host and target are different endian - reverse the stored bytes.
767 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
770 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
771 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
772 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
773 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
774 uint8_t *Dst = (uint8_t *)IntVal.getRawData();
776 if (sys::isLittleEndianHost())
777 // Little-endian host - the destination must be ordered from LSB to MSB.
778 // The source is ordered from LSB to MSB: Do a straight copy.
779 memcpy(Dst, Src, LoadBytes);
780 else {
781 // Big-endian - the destination is an array of 64 bit words ordered from
782 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
783 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
784 // a word.
785 while (LoadBytes > sizeof(uint64_t)) {
786 LoadBytes -= sizeof(uint64_t);
787 // May not be aligned so use memcpy.
788 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
789 Dst += sizeof(uint64_t);
792 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
796 /// FIXME: document
798 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
799 GenericValue *Ptr,
800 const Type *Ty) {
801 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
803 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
804 // Host and target are different endian - reverse copy the stored
805 // bytes into a buffer, and load from that.
806 uint8_t *Src = (uint8_t*)Ptr;
807 uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
808 std::reverse_copy(Src, Src + LoadBytes, Buf);
809 Ptr = (GenericValue*)Buf;
812 switch (Ty->getTypeID()) {
813 case Type::IntegerTyID:
814 // An APInt with all words initially zero.
815 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
816 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
817 break;
818 case Type::FloatTyID:
819 Result.FloatVal = *((float*)Ptr);
820 break;
821 case Type::DoubleTyID:
822 Result.DoubleVal = *((double*)Ptr);
823 break;
824 case Type::PointerTyID:
825 Result.PointerVal = *((PointerTy*)Ptr);
826 break;
827 case Type::X86_FP80TyID: {
828 // This is endian dependent, but it will only work on x86 anyway.
829 // FIXME: Will not trap if loading a signaling NaN.
830 uint64_t y[2];
831 memcpy(y, Ptr, 10);
832 Result.IntVal = APInt(80, 2, y);
833 break;
835 default:
836 cerr << "Cannot load value of type " << *Ty << "!\n";
837 abort();
841 // InitializeMemory - Recursive function to apply a Constant value into the
842 // specified memory location...
844 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
845 DOUT << "JIT: Initializing " << Addr << " ";
846 DEBUG(Init->dump());
847 if (isa<UndefValue>(Init)) {
848 return;
849 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
850 unsigned ElementSize =
851 getTargetData()->getTypePaddedSize(CP->getType()->getElementType());
852 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
853 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
854 return;
855 } else if (isa<ConstantAggregateZero>(Init)) {
856 memset(Addr, 0, (size_t)getTargetData()->getTypePaddedSize(Init->getType()));
857 return;
858 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
859 unsigned ElementSize =
860 getTargetData()->getTypePaddedSize(CPA->getType()->getElementType());
861 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
862 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
863 return;
864 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
865 const StructLayout *SL =
866 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
867 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
868 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
869 return;
870 } else if (Init->getType()->isFirstClassType()) {
871 GenericValue Val = getConstantValue(Init);
872 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
873 return;
876 cerr << "Bad Type: " << *Init->getType() << "\n";
877 assert(0 && "Unknown constant type to initialize memory with!");
880 /// EmitGlobals - Emit all of the global variables to memory, storing their
881 /// addresses into GlobalAddress. This must make sure to copy the contents of
882 /// their initializers into the memory.
884 void ExecutionEngine::emitGlobals() {
886 // Loop over all of the global variables in the program, allocating the memory
887 // to hold them. If there is more than one module, do a prepass over globals
888 // to figure out how the different modules should link together.
890 std::map<std::pair<std::string, const Type*>,
891 const GlobalValue*> LinkedGlobalsMap;
893 if (Modules.size() != 1) {
894 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
895 Module &M = *Modules[m]->getModule();
896 for (Module::const_global_iterator I = M.global_begin(),
897 E = M.global_end(); I != E; ++I) {
898 const GlobalValue *GV = I;
899 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
900 GV->hasAppendingLinkage() || !GV->hasName())
901 continue;// Ignore external globals and globals with internal linkage.
903 const GlobalValue *&GVEntry =
904 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
906 // If this is the first time we've seen this global, it is the canonical
907 // version.
908 if (!GVEntry) {
909 GVEntry = GV;
910 continue;
913 // If the existing global is strong, never replace it.
914 if (GVEntry->hasExternalLinkage() ||
915 GVEntry->hasDLLImportLinkage() ||
916 GVEntry->hasDLLExportLinkage())
917 continue;
919 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
920 // symbol. FIXME is this right for common?
921 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
922 GVEntry = GV;
927 std::vector<const GlobalValue*> NonCanonicalGlobals;
928 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
929 Module &M = *Modules[m]->getModule();
930 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
931 I != E; ++I) {
932 // In the multi-module case, see what this global maps to.
933 if (!LinkedGlobalsMap.empty()) {
934 if (const GlobalValue *GVEntry =
935 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
936 // If something else is the canonical global, ignore this one.
937 if (GVEntry != &*I) {
938 NonCanonicalGlobals.push_back(I);
939 continue;
944 if (!I->isDeclaration()) {
945 addGlobalMapping(I, getMemoryForGV(I));
946 } else {
947 // External variable reference. Try to use the dynamic loader to
948 // get a pointer to it.
949 if (void *SymAddr =
950 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
951 addGlobalMapping(I, SymAddr);
952 else {
953 cerr << "Could not resolve external global address: "
954 << I->getName() << "\n";
955 abort();
960 // If there are multiple modules, map the non-canonical globals to their
961 // canonical location.
962 if (!NonCanonicalGlobals.empty()) {
963 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
964 const GlobalValue *GV = NonCanonicalGlobals[i];
965 const GlobalValue *CGV =
966 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
967 void *Ptr = getPointerToGlobalIfAvailable(CGV);
968 assert(Ptr && "Canonical global wasn't codegen'd!");
969 addGlobalMapping(GV, Ptr);
973 // Now that all of the globals are set up in memory, loop through them all
974 // and initialize their contents.
975 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
976 I != E; ++I) {
977 if (!I->isDeclaration()) {
978 if (!LinkedGlobalsMap.empty()) {
979 if (const GlobalValue *GVEntry =
980 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
981 if (GVEntry != &*I) // Not the canonical variable.
982 continue;
984 EmitGlobalVariable(I);
990 // EmitGlobalVariable - This method emits the specified global variable to the
991 // address specified in GlobalAddresses, or allocates new memory if it's not
992 // already in the map.
993 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
994 void *GA = getPointerToGlobalIfAvailable(GV);
996 if (GA == 0) {
997 // If it's not already specified, allocate memory for the global.
998 GA = getMemoryForGV(GV);
999 addGlobalMapping(GV, GA);
1002 // Don't initialize if it's thread local, let the client do it.
1003 if (!GV->isThreadLocal())
1004 InitializeMemory(GV->getInitializer(), GA);
1006 const Type *ElTy = GV->getType()->getElementType();
1007 size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
1008 NumInitBytes += (unsigned)GVSize;
1009 ++NumGlobals;