(Hopefully) unbreak Apple-style builds.
[llvm/msp430.git] / lib / CodeGen / RegAllocLinearScan.cpp
blobc5ce455b0ae5f636642fed1b80ca4747706d4a4b
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "VirtRegRewriter.h"
17 #include "llvm/Function.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveStackAnalysis.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegAllocRegistry.h"
26 #include "llvm/CodeGen/RegisterCoalescer.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetOptions.h"
30 #include "llvm/Target/TargetInstrInfo.h"
31 #include "llvm/ADT/EquivalenceClasses.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/Compiler.h"
37 #include <algorithm>
38 #include <set>
39 #include <queue>
40 #include <memory>
41 #include <cmath>
42 using namespace llvm;
44 STATISTIC(NumIters , "Number of iterations performed");
45 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
46 STATISTIC(NumCoalesce, "Number of copies coalesced");
47 STATISTIC(NumDowngrade, "Number of registers downgraded");
49 static cl::opt<bool>
50 NewHeuristic("new-spilling-heuristic",
51 cl::desc("Use new spilling heuristic"),
52 cl::init(false), cl::Hidden);
54 static cl::opt<bool>
55 PreSplitIntervals("pre-alloc-split",
56 cl::desc("Pre-register allocation live interval splitting"),
57 cl::init(false), cl::Hidden);
59 static RegisterRegAlloc
60 linearscanRegAlloc("linearscan", "linear scan register allocator",
61 createLinearScanRegisterAllocator);
63 namespace {
64 struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass {
65 static char ID;
66 RALinScan() : MachineFunctionPass(&ID) {}
68 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
69 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
70 private:
71 /// RelatedRegClasses - This structure is built the first time a function is
72 /// compiled, and keeps track of which register classes have registers that
73 /// belong to multiple classes or have aliases that are in other classes.
74 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
75 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
77 // NextReloadMap - For each register in the map, it maps to the another
78 // register which is defined by a reload from the same stack slot and
79 // both reloads are in the same basic block.
80 DenseMap<unsigned, unsigned> NextReloadMap;
82 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
83 // un-favored for allocation.
84 SmallSet<unsigned, 8> DowngradedRegs;
86 // DowngradeMap - A map from virtual registers to physical registers being
87 // downgraded for the virtual registers.
88 DenseMap<unsigned, unsigned> DowngradeMap;
90 MachineFunction* mf_;
91 MachineRegisterInfo* mri_;
92 const TargetMachine* tm_;
93 const TargetRegisterInfo* tri_;
94 const TargetInstrInfo* tii_;
95 BitVector allocatableRegs_;
96 LiveIntervals* li_;
97 LiveStacks* ls_;
98 const MachineLoopInfo *loopInfo;
100 /// handled_ - Intervals are added to the handled_ set in the order of their
101 /// start value. This is uses for backtracking.
102 std::vector<LiveInterval*> handled_;
104 /// fixed_ - Intervals that correspond to machine registers.
106 IntervalPtrs fixed_;
108 /// active_ - Intervals that are currently being processed, and which have a
109 /// live range active for the current point.
110 IntervalPtrs active_;
112 /// inactive_ - Intervals that are currently being processed, but which have
113 /// a hold at the current point.
114 IntervalPtrs inactive_;
116 typedef std::priority_queue<LiveInterval*,
117 SmallVector<LiveInterval*, 64>,
118 greater_ptr<LiveInterval> > IntervalHeap;
119 IntervalHeap unhandled_;
121 /// regUse_ - Tracks register usage.
122 SmallVector<unsigned, 32> regUse_;
123 SmallVector<unsigned, 32> regUseBackUp_;
125 /// vrm_ - Tracks register assignments.
126 VirtRegMap* vrm_;
128 std::auto_ptr<VirtRegRewriter> rewriter_;
130 public:
131 virtual const char* getPassName() const {
132 return "Linear Scan Register Allocator";
135 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
136 AU.addRequired<LiveIntervals>();
137 if (StrongPHIElim)
138 AU.addRequiredID(StrongPHIEliminationID);
139 // Make sure PassManager knows which analyses to make available
140 // to coalescing and which analyses coalescing invalidates.
141 AU.addRequiredTransitive<RegisterCoalescer>();
142 if (PreSplitIntervals)
143 AU.addRequiredID(PreAllocSplittingID);
144 AU.addRequired<LiveStacks>();
145 AU.addPreserved<LiveStacks>();
146 AU.addRequired<MachineLoopInfo>();
147 AU.addPreserved<MachineLoopInfo>();
148 AU.addRequired<VirtRegMap>();
149 AU.addPreserved<VirtRegMap>();
150 AU.addPreservedID(MachineDominatorsID);
151 MachineFunctionPass::getAnalysisUsage(AU);
154 /// runOnMachineFunction - register allocate the whole function
155 bool runOnMachineFunction(MachineFunction&);
157 private:
158 /// linearScan - the linear scan algorithm
159 void linearScan();
161 /// initIntervalSets - initialize the interval sets.
163 void initIntervalSets();
165 /// processActiveIntervals - expire old intervals and move non-overlapping
166 /// ones to the inactive list.
167 void processActiveIntervals(unsigned CurPoint);
169 /// processInactiveIntervals - expire old intervals and move overlapping
170 /// ones to the active list.
171 void processInactiveIntervals(unsigned CurPoint);
173 /// hasNextReloadInterval - Return the next liveinterval that's being
174 /// defined by a reload from the same SS as the specified one.
175 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
177 /// DowngradeRegister - Downgrade a register for allocation.
178 void DowngradeRegister(LiveInterval *li, unsigned Reg);
180 /// UpgradeRegister - Upgrade a register for allocation.
181 void UpgradeRegister(unsigned Reg);
183 /// assignRegOrStackSlotAtInterval - assign a register if one
184 /// is available, or spill.
185 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
187 void updateSpillWeights(std::vector<float> &Weights,
188 unsigned reg, float weight,
189 const TargetRegisterClass *RC);
191 /// findIntervalsToSpill - Determine the intervals to spill for the
192 /// specified interval. It's passed the physical registers whose spill
193 /// weight is the lowest among all the registers whose live intervals
194 /// conflict with the interval.
195 void findIntervalsToSpill(LiveInterval *cur,
196 std::vector<std::pair<unsigned,float> > &Candidates,
197 unsigned NumCands,
198 SmallVector<LiveInterval*, 8> &SpillIntervals);
200 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
201 /// try allocate the definition the same register as the source register
202 /// if the register is not defined during live time of the interval. This
203 /// eliminate a copy. This is used to coalesce copies which were not
204 /// coalesced away before allocation either due to dest and src being in
205 /// different register classes or because the coalescer was overly
206 /// conservative.
207 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
210 /// Register usage / availability tracking helpers.
213 void initRegUses() {
214 regUse_.resize(tri_->getNumRegs(), 0);
215 regUseBackUp_.resize(tri_->getNumRegs(), 0);
218 void finalizeRegUses() {
219 #ifndef NDEBUG
220 // Verify all the registers are "freed".
221 bool Error = false;
222 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
223 if (regUse_[i] != 0) {
224 cerr << tri_->getName(i) << " is still in use!\n";
225 Error = true;
228 if (Error)
229 abort();
230 #endif
231 regUse_.clear();
232 regUseBackUp_.clear();
235 void addRegUse(unsigned physReg) {
236 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
237 "should be physical register!");
238 ++regUse_[physReg];
239 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
240 ++regUse_[*as];
243 void delRegUse(unsigned physReg) {
244 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
245 "should be physical register!");
246 assert(regUse_[physReg] != 0);
247 --regUse_[physReg];
248 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
249 assert(regUse_[*as] != 0);
250 --regUse_[*as];
254 bool isRegAvail(unsigned physReg) const {
255 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
256 "should be physical register!");
257 return regUse_[physReg] == 0;
260 void backUpRegUses() {
261 regUseBackUp_ = regUse_;
264 void restoreRegUses() {
265 regUse_ = regUseBackUp_;
269 /// Register handling helpers.
272 /// getFreePhysReg - return a free physical register for this virtual
273 /// register interval if we have one, otherwise return 0.
274 unsigned getFreePhysReg(LiveInterval* cur);
275 unsigned getFreePhysReg(const TargetRegisterClass *RC,
276 unsigned MaxInactiveCount,
277 SmallVector<unsigned, 256> &inactiveCounts,
278 bool SkipDGRegs);
280 /// assignVirt2StackSlot - assigns this virtual register to a
281 /// stack slot. returns the stack slot
282 int assignVirt2StackSlot(unsigned virtReg);
284 void ComputeRelatedRegClasses();
286 template <typename ItTy>
287 void printIntervals(const char* const str, ItTy i, ItTy e) const {
288 if (str) DOUT << str << " intervals:\n";
289 for (; i != e; ++i) {
290 DOUT << "\t" << *i->first << " -> ";
291 unsigned reg = i->first->reg;
292 if (TargetRegisterInfo::isVirtualRegister(reg)) {
293 reg = vrm_->getPhys(reg);
295 DOUT << tri_->getName(reg) << '\n';
299 char RALinScan::ID = 0;
302 static RegisterPass<RALinScan>
303 X("linearscan-regalloc", "Linear Scan Register Allocator");
305 void RALinScan::ComputeRelatedRegClasses() {
306 // First pass, add all reg classes to the union, and determine at least one
307 // reg class that each register is in.
308 bool HasAliases = false;
309 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
310 E = tri_->regclass_end(); RCI != E; ++RCI) {
311 RelatedRegClasses.insert(*RCI);
312 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
313 I != E; ++I) {
314 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
316 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
317 if (PRC) {
318 // Already processed this register. Just make sure we know that
319 // multiple register classes share a register.
320 RelatedRegClasses.unionSets(PRC, *RCI);
321 } else {
322 PRC = *RCI;
327 // Second pass, now that we know conservatively what register classes each reg
328 // belongs to, add info about aliases. We don't need to do this for targets
329 // without register aliases.
330 if (HasAliases)
331 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
332 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
333 I != E; ++I)
334 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS)
335 RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
338 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
339 /// try allocate the definition the same register as the source register
340 /// if the register is not defined during live time of the interval. This
341 /// eliminate a copy. This is used to coalesce copies which were not
342 /// coalesced away before allocation either due to dest and src being in
343 /// different register classes or because the coalescer was overly
344 /// conservative.
345 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
346 if ((cur.preference && cur.preference == Reg) || !cur.containsOneValue())
347 return Reg;
349 VNInfo *vni = cur.begin()->valno;
350 if (!vni->def || vni->def == ~1U || vni->def == ~0U)
351 return Reg;
352 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
353 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg;
354 if (!CopyMI ||
355 !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg))
356 return Reg;
357 PhysReg = SrcReg;
358 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
359 if (!vrm_->isAssignedReg(SrcReg))
360 return Reg;
361 PhysReg = vrm_->getPhys(SrcReg);
363 if (Reg == PhysReg)
364 return Reg;
366 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
367 if (!RC->contains(PhysReg))
368 return Reg;
370 // Try to coalesce.
371 if (!li_->conflictsWithPhysRegDef(cur, *vrm_, PhysReg)) {
372 DOUT << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg)
373 << '\n';
374 vrm_->clearVirt(cur.reg);
375 vrm_->assignVirt2Phys(cur.reg, PhysReg);
377 // Remove unnecessary kills since a copy does not clobber the register.
378 if (li_->hasInterval(SrcReg)) {
379 LiveInterval &SrcLI = li_->getInterval(SrcReg);
380 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(cur.reg),
381 E = mri_->reg_end(); I != E; ++I) {
382 MachineOperand &O = I.getOperand();
383 if (!O.isUse() || !O.isKill())
384 continue;
385 MachineInstr *MI = &*I;
386 if (SrcLI.liveAt(li_->getDefIndex(li_->getInstructionIndex(MI))))
387 O.setIsKill(false);
391 ++NumCoalesce;
392 return SrcReg;
395 return Reg;
398 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
399 mf_ = &fn;
400 mri_ = &fn.getRegInfo();
401 tm_ = &fn.getTarget();
402 tri_ = tm_->getRegisterInfo();
403 tii_ = tm_->getInstrInfo();
404 allocatableRegs_ = tri_->getAllocatableSet(fn);
405 li_ = &getAnalysis<LiveIntervals>();
406 ls_ = &getAnalysis<LiveStacks>();
407 loopInfo = &getAnalysis<MachineLoopInfo>();
409 // We don't run the coalescer here because we have no reason to
410 // interact with it. If the coalescer requires interaction, it
411 // won't do anything. If it doesn't require interaction, we assume
412 // it was run as a separate pass.
414 // If this is the first function compiled, compute the related reg classes.
415 if (RelatedRegClasses.empty())
416 ComputeRelatedRegClasses();
418 // Also resize register usage trackers.
419 initRegUses();
421 vrm_ = &getAnalysis<VirtRegMap>();
422 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
424 initIntervalSets();
426 linearScan();
428 // Rewrite spill code and update the PhysRegsUsed set.
429 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
431 assert(unhandled_.empty() && "Unhandled live intervals remain!");
433 finalizeRegUses();
435 fixed_.clear();
436 active_.clear();
437 inactive_.clear();
438 handled_.clear();
439 NextReloadMap.clear();
440 DowngradedRegs.clear();
441 DowngradeMap.clear();
443 return true;
446 /// initIntervalSets - initialize the interval sets.
448 void RALinScan::initIntervalSets()
450 assert(unhandled_.empty() && fixed_.empty() &&
451 active_.empty() && inactive_.empty() &&
452 "interval sets should be empty on initialization");
454 handled_.reserve(li_->getNumIntervals());
456 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
457 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
458 mri_->setPhysRegUsed(i->second->reg);
459 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
460 } else
461 unhandled_.push(i->second);
465 void RALinScan::linearScan()
467 // linear scan algorithm
468 DOUT << "********** LINEAR SCAN **********\n";
469 DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n';
471 DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
473 while (!unhandled_.empty()) {
474 // pick the interval with the earliest start point
475 LiveInterval* cur = unhandled_.top();
476 unhandled_.pop();
477 ++NumIters;
478 DOUT << "\n*** CURRENT ***: " << *cur << '\n';
480 if (!cur->empty()) {
481 processActiveIntervals(cur->beginNumber());
482 processInactiveIntervals(cur->beginNumber());
484 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
485 "Can only allocate virtual registers!");
488 // Allocating a virtual register. try to find a free
489 // physical register or spill an interval (possibly this one) in order to
490 // assign it one.
491 assignRegOrStackSlotAtInterval(cur);
493 DEBUG(printIntervals("active", active_.begin(), active_.end()));
494 DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
497 // Expire any remaining active intervals
498 while (!active_.empty()) {
499 IntervalPtr &IP = active_.back();
500 unsigned reg = IP.first->reg;
501 DOUT << "\tinterval " << *IP.first << " expired\n";
502 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
503 "Can only allocate virtual registers!");
504 reg = vrm_->getPhys(reg);
505 delRegUse(reg);
506 active_.pop_back();
509 // Expire any remaining inactive intervals
510 DEBUG(for (IntervalPtrs::reverse_iterator
511 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
512 DOUT << "\tinterval " << *i->first << " expired\n");
513 inactive_.clear();
515 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
516 MachineFunction::iterator EntryMBB = mf_->begin();
517 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
518 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
519 LiveInterval &cur = *i->second;
520 unsigned Reg = 0;
521 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
522 if (isPhys)
523 Reg = cur.reg;
524 else if (vrm_->isAssignedReg(cur.reg))
525 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
526 if (!Reg)
527 continue;
528 // Ignore splited live intervals.
529 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
530 continue;
531 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
532 I != E; ++I) {
533 const LiveRange &LR = *I;
534 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
535 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
536 if (LiveInMBBs[i] != EntryMBB)
537 LiveInMBBs[i]->addLiveIn(Reg);
538 LiveInMBBs.clear();
543 DOUT << *vrm_;
545 // Look for physical registers that end up not being allocated even though
546 // register allocator had to spill other registers in its register class.
547 if (ls_->getNumIntervals() == 0)
548 return;
549 if (!vrm_->FindUnusedRegisters(tri_, li_))
550 return;
553 /// processActiveIntervals - expire old intervals and move non-overlapping ones
554 /// to the inactive list.
555 void RALinScan::processActiveIntervals(unsigned CurPoint)
557 DOUT << "\tprocessing active intervals:\n";
559 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
560 LiveInterval *Interval = active_[i].first;
561 LiveInterval::iterator IntervalPos = active_[i].second;
562 unsigned reg = Interval->reg;
564 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
566 if (IntervalPos == Interval->end()) { // Remove expired intervals.
567 DOUT << "\t\tinterval " << *Interval << " expired\n";
568 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
569 "Can only allocate virtual registers!");
570 reg = vrm_->getPhys(reg);
571 delRegUse(reg);
573 // Pop off the end of the list.
574 active_[i] = active_.back();
575 active_.pop_back();
576 --i; --e;
578 } else if (IntervalPos->start > CurPoint) {
579 // Move inactive intervals to inactive list.
580 DOUT << "\t\tinterval " << *Interval << " inactive\n";
581 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
582 "Can only allocate virtual registers!");
583 reg = vrm_->getPhys(reg);
584 delRegUse(reg);
585 // add to inactive.
586 inactive_.push_back(std::make_pair(Interval, IntervalPos));
588 // Pop off the end of the list.
589 active_[i] = active_.back();
590 active_.pop_back();
591 --i; --e;
592 } else {
593 // Otherwise, just update the iterator position.
594 active_[i].second = IntervalPos;
599 /// processInactiveIntervals - expire old intervals and move overlapping
600 /// ones to the active list.
601 void RALinScan::processInactiveIntervals(unsigned CurPoint)
603 DOUT << "\tprocessing inactive intervals:\n";
605 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
606 LiveInterval *Interval = inactive_[i].first;
607 LiveInterval::iterator IntervalPos = inactive_[i].second;
608 unsigned reg = Interval->reg;
610 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
612 if (IntervalPos == Interval->end()) { // remove expired intervals.
613 DOUT << "\t\tinterval " << *Interval << " expired\n";
615 // Pop off the end of the list.
616 inactive_[i] = inactive_.back();
617 inactive_.pop_back();
618 --i; --e;
619 } else if (IntervalPos->start <= CurPoint) {
620 // move re-activated intervals in active list
621 DOUT << "\t\tinterval " << *Interval << " active\n";
622 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
623 "Can only allocate virtual registers!");
624 reg = vrm_->getPhys(reg);
625 addRegUse(reg);
626 // add to active
627 active_.push_back(std::make_pair(Interval, IntervalPos));
629 // Pop off the end of the list.
630 inactive_[i] = inactive_.back();
631 inactive_.pop_back();
632 --i; --e;
633 } else {
634 // Otherwise, just update the iterator position.
635 inactive_[i].second = IntervalPos;
640 /// updateSpillWeights - updates the spill weights of the specifed physical
641 /// register and its weight.
642 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
643 unsigned reg, float weight,
644 const TargetRegisterClass *RC) {
645 SmallSet<unsigned, 4> Processed;
646 SmallSet<unsigned, 4> SuperAdded;
647 SmallVector<unsigned, 4> Supers;
648 Weights[reg] += weight;
649 Processed.insert(reg);
650 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
651 Weights[*as] += weight;
652 Processed.insert(*as);
653 if (tri_->isSubRegister(*as, reg) &&
654 SuperAdded.insert(*as) &&
655 RC->contains(*as)) {
656 Supers.push_back(*as);
660 // If the alias is a super-register, and the super-register is in the
661 // register class we are trying to allocate. Then add the weight to all
662 // sub-registers of the super-register even if they are not aliases.
663 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
664 // bl should get the same spill weight otherwise it will be choosen
665 // as a spill candidate since spilling bh doesn't make ebx available.
666 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
667 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
668 if (!Processed.count(*sr))
669 Weights[*sr] += weight;
673 static
674 RALinScan::IntervalPtrs::iterator
675 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
676 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
677 I != E; ++I)
678 if (I->first == LI) return I;
679 return IP.end();
682 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){
683 for (unsigned i = 0, e = V.size(); i != e; ++i) {
684 RALinScan::IntervalPtr &IP = V[i];
685 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
686 IP.second, Point);
687 if (I != IP.first->begin()) --I;
688 IP.second = I;
692 /// addStackInterval - Create a LiveInterval for stack if the specified live
693 /// interval has been spilled.
694 static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
695 LiveIntervals *li_,
696 MachineRegisterInfo* mri_, VirtRegMap &vrm_) {
697 int SS = vrm_.getStackSlot(cur->reg);
698 if (SS == VirtRegMap::NO_STACK_SLOT)
699 return;
701 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
702 LiveInterval &SI = ls_->getOrCreateInterval(SS, RC);
704 VNInfo *VNI;
705 if (SI.hasAtLeastOneValue())
706 VNI = SI.getValNumInfo(0);
707 else
708 VNI = SI.getNextValue(~0U, 0, ls_->getVNInfoAllocator());
710 LiveInterval &RI = li_->getInterval(cur->reg);
711 // FIXME: This may be overly conservative.
712 SI.MergeRangesInAsValue(RI, VNI);
715 /// getConflictWeight - Return the number of conflicts between cur
716 /// live interval and defs and uses of Reg weighted by loop depthes.
717 static
718 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
719 MachineRegisterInfo *mri_,
720 const MachineLoopInfo *loopInfo) {
721 float Conflicts = 0;
722 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
723 E = mri_->reg_end(); I != E; ++I) {
724 MachineInstr *MI = &*I;
725 if (cur->liveAt(li_->getInstructionIndex(MI))) {
726 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
727 Conflicts += powf(10.0f, (float)loopDepth);
730 return Conflicts;
733 /// findIntervalsToSpill - Determine the intervals to spill for the
734 /// specified interval. It's passed the physical registers whose spill
735 /// weight is the lowest among all the registers whose live intervals
736 /// conflict with the interval.
737 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
738 std::vector<std::pair<unsigned,float> > &Candidates,
739 unsigned NumCands,
740 SmallVector<LiveInterval*, 8> &SpillIntervals) {
741 // We have figured out the *best* register to spill. But there are other
742 // registers that are pretty good as well (spill weight within 3%). Spill
743 // the one that has fewest defs and uses that conflict with cur.
744 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
745 SmallVector<LiveInterval*, 8> SLIs[3];
747 DOUT << "\tConsidering " << NumCands << " candidates: ";
748 DEBUG(for (unsigned i = 0; i != NumCands; ++i)
749 DOUT << tri_->getName(Candidates[i].first) << " ";
750 DOUT << "\n";);
752 // Calculate the number of conflicts of each candidate.
753 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
754 unsigned Reg = i->first->reg;
755 unsigned PhysReg = vrm_->getPhys(Reg);
756 if (!cur->overlapsFrom(*i->first, i->second))
757 continue;
758 for (unsigned j = 0; j < NumCands; ++j) {
759 unsigned Candidate = Candidates[j].first;
760 if (tri_->regsOverlap(PhysReg, Candidate)) {
761 if (NumCands > 1)
762 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
763 SLIs[j].push_back(i->first);
768 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
769 unsigned Reg = i->first->reg;
770 unsigned PhysReg = vrm_->getPhys(Reg);
771 if (!cur->overlapsFrom(*i->first, i->second-1))
772 continue;
773 for (unsigned j = 0; j < NumCands; ++j) {
774 unsigned Candidate = Candidates[j].first;
775 if (tri_->regsOverlap(PhysReg, Candidate)) {
776 if (NumCands > 1)
777 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
778 SLIs[j].push_back(i->first);
783 // Which is the best candidate?
784 unsigned BestCandidate = 0;
785 float MinConflicts = Conflicts[0];
786 for (unsigned i = 1; i != NumCands; ++i) {
787 if (Conflicts[i] < MinConflicts) {
788 BestCandidate = i;
789 MinConflicts = Conflicts[i];
793 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
794 std::back_inserter(SpillIntervals));
797 namespace {
798 struct WeightCompare {
799 typedef std::pair<unsigned, float> RegWeightPair;
800 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
801 return LHS.second < RHS.second;
806 static bool weightsAreClose(float w1, float w2) {
807 if (!NewHeuristic)
808 return false;
810 float diff = w1 - w2;
811 if (diff <= 0.02f) // Within 0.02f
812 return true;
813 return (diff / w2) <= 0.05f; // Within 5%.
816 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
817 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
818 if (I == NextReloadMap.end())
819 return 0;
820 return &li_->getInterval(I->second);
823 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
824 bool isNew = DowngradedRegs.insert(Reg);
825 isNew = isNew; // Silence compiler warning.
826 assert(isNew && "Multiple reloads holding the same register?");
827 DowngradeMap.insert(std::make_pair(li->reg, Reg));
828 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
829 isNew = DowngradedRegs.insert(*AS);
830 isNew = isNew; // Silence compiler warning.
831 assert(isNew && "Multiple reloads holding the same register?");
832 DowngradeMap.insert(std::make_pair(li->reg, *AS));
834 ++NumDowngrade;
837 void RALinScan::UpgradeRegister(unsigned Reg) {
838 if (Reg) {
839 DowngradedRegs.erase(Reg);
840 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
841 DowngradedRegs.erase(*AS);
845 namespace {
846 struct LISorter {
847 bool operator()(LiveInterval* A, LiveInterval* B) {
848 return A->beginNumber() < B->beginNumber();
853 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
854 /// spill.
855 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
857 DOUT << "\tallocating current interval: ";
859 // This is an implicitly defined live interval, just assign any register.
860 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
861 if (cur->empty()) {
862 unsigned physReg = cur->preference;
863 if (!physReg)
864 physReg = *RC->allocation_order_begin(*mf_);
865 DOUT << tri_->getName(physReg) << '\n';
866 // Note the register is not really in use.
867 vrm_->assignVirt2Phys(cur->reg, physReg);
868 return;
871 backUpRegUses();
873 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
874 unsigned StartPosition = cur->beginNumber();
875 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
877 // If start of this live interval is defined by a move instruction and its
878 // source is assigned a physical register that is compatible with the target
879 // register class, then we should try to assign it the same register.
880 // This can happen when the move is from a larger register class to a smaller
881 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
882 if (!cur->preference && cur->hasAtLeastOneValue()) {
883 VNInfo *vni = cur->begin()->valno;
884 if (vni->def && vni->def != ~1U && vni->def != ~0U) {
885 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
886 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
887 if (CopyMI &&
888 tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) {
889 unsigned Reg = 0;
890 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
891 Reg = SrcReg;
892 else if (vrm_->isAssignedReg(SrcReg))
893 Reg = vrm_->getPhys(SrcReg);
894 if (Reg) {
895 if (SrcSubReg)
896 Reg = tri_->getSubReg(Reg, SrcSubReg);
897 if (DstSubReg)
898 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
899 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
900 cur->preference = Reg;
906 // For every interval in inactive we overlap with, mark the
907 // register as not free and update spill weights.
908 for (IntervalPtrs::const_iterator i = inactive_.begin(),
909 e = inactive_.end(); i != e; ++i) {
910 unsigned Reg = i->first->reg;
911 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
912 "Can only allocate virtual registers!");
913 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
914 // If this is not in a related reg class to the register we're allocating,
915 // don't check it.
916 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
917 cur->overlapsFrom(*i->first, i->second-1)) {
918 Reg = vrm_->getPhys(Reg);
919 addRegUse(Reg);
920 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
924 // Speculatively check to see if we can get a register right now. If not,
925 // we know we won't be able to by adding more constraints. If so, we can
926 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
927 // is very bad (it contains all callee clobbered registers for any functions
928 // with a call), so we want to avoid doing that if possible.
929 unsigned physReg = getFreePhysReg(cur);
930 unsigned BestPhysReg = physReg;
931 if (physReg) {
932 // We got a register. However, if it's in the fixed_ list, we might
933 // conflict with it. Check to see if we conflict with it or any of its
934 // aliases.
935 SmallSet<unsigned, 8> RegAliases;
936 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
937 RegAliases.insert(*AS);
939 bool ConflictsWithFixed = false;
940 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
941 IntervalPtr &IP = fixed_[i];
942 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
943 // Okay, this reg is on the fixed list. Check to see if we actually
944 // conflict.
945 LiveInterval *I = IP.first;
946 if (I->endNumber() > StartPosition) {
947 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
948 IP.second = II;
949 if (II != I->begin() && II->start > StartPosition)
950 --II;
951 if (cur->overlapsFrom(*I, II)) {
952 ConflictsWithFixed = true;
953 break;
959 // Okay, the register picked by our speculative getFreePhysReg call turned
960 // out to be in use. Actually add all of the conflicting fixed registers to
961 // regUse_ so we can do an accurate query.
962 if (ConflictsWithFixed) {
963 // For every interval in fixed we overlap with, mark the register as not
964 // free and update spill weights.
965 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
966 IntervalPtr &IP = fixed_[i];
967 LiveInterval *I = IP.first;
969 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
970 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
971 I->endNumber() > StartPosition) {
972 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
973 IP.second = II;
974 if (II != I->begin() && II->start > StartPosition)
975 --II;
976 if (cur->overlapsFrom(*I, II)) {
977 unsigned reg = I->reg;
978 addRegUse(reg);
979 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
984 // Using the newly updated regUse_ object, which includes conflicts in the
985 // future, see if there are any registers available.
986 physReg = getFreePhysReg(cur);
990 // Restore the physical register tracker, removing information about the
991 // future.
992 restoreRegUses();
994 // If we find a free register, we are done: assign this virtual to
995 // the free physical register and add this interval to the active
996 // list.
997 if (physReg) {
998 DOUT << tri_->getName(physReg) << '\n';
999 vrm_->assignVirt2Phys(cur->reg, physReg);
1000 addRegUse(physReg);
1001 active_.push_back(std::make_pair(cur, cur->begin()));
1002 handled_.push_back(cur);
1004 // "Upgrade" the physical register since it has been allocated.
1005 UpgradeRegister(physReg);
1006 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1007 // "Downgrade" physReg to try to keep physReg from being allocated until
1008 // the next reload from the same SS is allocated.
1009 NextReloadLI->preference = physReg;
1010 DowngradeRegister(cur, physReg);
1012 return;
1014 DOUT << "no free registers\n";
1016 // Compile the spill weights into an array that is better for scanning.
1017 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1018 for (std::vector<std::pair<unsigned, float> >::iterator
1019 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1020 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1022 // for each interval in active, update spill weights.
1023 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1024 i != e; ++i) {
1025 unsigned reg = i->first->reg;
1026 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1027 "Can only allocate virtual registers!");
1028 reg = vrm_->getPhys(reg);
1029 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1032 DOUT << "\tassigning stack slot at interval "<< *cur << ":\n";
1034 // Find a register to spill.
1035 float minWeight = HUGE_VALF;
1036 unsigned minReg = 0; /*cur->preference*/; // Try the pref register first.
1038 bool Found = false;
1039 std::vector<std::pair<unsigned,float> > RegsWeights;
1040 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1041 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1042 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1043 unsigned reg = *i;
1044 float regWeight = SpillWeights[reg];
1045 if (minWeight > regWeight)
1046 Found = true;
1047 RegsWeights.push_back(std::make_pair(reg, regWeight));
1050 // If we didn't find a register that is spillable, try aliases?
1051 if (!Found) {
1052 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1053 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1054 unsigned reg = *i;
1055 // No need to worry about if the alias register size < regsize of RC.
1056 // We are going to spill all registers that alias it anyway.
1057 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1058 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1062 // Sort all potential spill candidates by weight.
1063 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
1064 minReg = RegsWeights[0].first;
1065 minWeight = RegsWeights[0].second;
1066 if (minWeight == HUGE_VALF) {
1067 // All registers must have inf weight. Just grab one!
1068 minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
1069 if (cur->weight == HUGE_VALF ||
1070 li_->getApproximateInstructionCount(*cur) == 0) {
1071 // Spill a physical register around defs and uses.
1072 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1073 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1074 // in fixed_. Reset them.
1075 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1076 IntervalPtr &IP = fixed_[i];
1077 LiveInterval *I = IP.first;
1078 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1079 IP.second = I->advanceTo(I->begin(), StartPosition);
1082 DowngradedRegs.clear();
1083 assignRegOrStackSlotAtInterval(cur);
1084 } else {
1085 cerr << "Ran out of registers during register allocation!\n";
1086 exit(1);
1088 return;
1092 // Find up to 3 registers to consider as spill candidates.
1093 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1094 while (LastCandidate > 1) {
1095 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1096 break;
1097 --LastCandidate;
1100 DOUT << "\t\tregister(s) with min weight(s): ";
1101 DEBUG(for (unsigned i = 0; i != LastCandidate; ++i)
1102 DOUT << tri_->getName(RegsWeights[i].first)
1103 << " (" << RegsWeights[i].second << ")\n");
1105 // If the current has the minimum weight, we need to spill it and
1106 // add any added intervals back to unhandled, and restart
1107 // linearscan.
1108 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1109 DOUT << "\t\t\tspilling(c): " << *cur << '\n';
1110 SmallVector<LiveInterval*, 8> spillIs;
1111 std::vector<LiveInterval*> added =
1112 li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_);
1113 std::sort(added.begin(), added.end(), LISorter());
1114 addStackInterval(cur, ls_, li_, mri_, *vrm_);
1115 if (added.empty())
1116 return; // Early exit if all spills were folded.
1118 // Merge added with unhandled. Note that we have already sorted
1119 // intervals returned by addIntervalsForSpills by their starting
1120 // point.
1121 // This also update the NextReloadMap. That is, it adds mapping from a
1122 // register defined by a reload from SS to the next reload from SS in the
1123 // same basic block.
1124 MachineBasicBlock *LastReloadMBB = 0;
1125 LiveInterval *LastReload = 0;
1126 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1127 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1128 LiveInterval *ReloadLi = added[i];
1129 if (ReloadLi->weight == HUGE_VALF &&
1130 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1131 unsigned ReloadIdx = ReloadLi->beginNumber();
1132 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1133 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1134 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1135 // Last reload of same SS is in the same MBB. We want to try to
1136 // allocate both reloads the same register and make sure the reg
1137 // isn't clobbered in between if at all possible.
1138 assert(LastReload->beginNumber() < ReloadIdx);
1139 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1141 LastReloadMBB = ReloadMBB;
1142 LastReload = ReloadLi;
1143 LastReloadSS = ReloadSS;
1145 unhandled_.push(ReloadLi);
1147 return;
1150 ++NumBacktracks;
1152 // Push the current interval back to unhandled since we are going
1153 // to re-run at least this iteration. Since we didn't modify it it
1154 // should go back right in the front of the list
1155 unhandled_.push(cur);
1157 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1158 "did not choose a register to spill?");
1160 // We spill all intervals aliasing the register with
1161 // minimum weight, rollback to the interval with the earliest
1162 // start point and let the linear scan algorithm run again
1163 SmallVector<LiveInterval*, 8> spillIs;
1165 // Determine which intervals have to be spilled.
1166 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1168 // Set of spilled vregs (used later to rollback properly)
1169 SmallSet<unsigned, 8> spilled;
1171 // The earliest start of a Spilled interval indicates up to where
1172 // in handled we need to roll back
1173 unsigned earliestStart = cur->beginNumber();
1175 // Spill live intervals of virtual regs mapped to the physical register we
1176 // want to clear (and its aliases). We only spill those that overlap with the
1177 // current interval as the rest do not affect its allocation. we also keep
1178 // track of the earliest start of all spilled live intervals since this will
1179 // mark our rollback point.
1180 std::vector<LiveInterval*> added;
1181 while (!spillIs.empty()) {
1182 LiveInterval *sli = spillIs.back();
1183 spillIs.pop_back();
1184 DOUT << "\t\t\tspilling(a): " << *sli << '\n';
1185 earliestStart = std::min(earliestStart, sli->beginNumber());
1186 std::vector<LiveInterval*> newIs =
1187 li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_);
1188 addStackInterval(sli, ls_, li_, mri_, *vrm_);
1189 std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
1190 spilled.insert(sli->reg);
1193 DOUT << "\t\trolling back to: " << earliestStart << '\n';
1195 // Scan handled in reverse order up to the earliest start of a
1196 // spilled live interval and undo each one, restoring the state of
1197 // unhandled.
1198 while (!handled_.empty()) {
1199 LiveInterval* i = handled_.back();
1200 // If this interval starts before t we are done.
1201 if (i->beginNumber() < earliestStart)
1202 break;
1203 DOUT << "\t\t\tundo changes for: " << *i << '\n';
1204 handled_.pop_back();
1206 // When undoing a live interval allocation we must know if it is active or
1207 // inactive to properly update regUse_ and the VirtRegMap.
1208 IntervalPtrs::iterator it;
1209 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1210 active_.erase(it);
1211 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1212 if (!spilled.count(i->reg))
1213 unhandled_.push(i);
1214 delRegUse(vrm_->getPhys(i->reg));
1215 vrm_->clearVirt(i->reg);
1216 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1217 inactive_.erase(it);
1218 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1219 if (!spilled.count(i->reg))
1220 unhandled_.push(i);
1221 vrm_->clearVirt(i->reg);
1222 } else {
1223 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1224 "Can only allocate virtual registers!");
1225 vrm_->clearVirt(i->reg);
1226 unhandled_.push(i);
1229 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1230 if (ii == DowngradeMap.end())
1231 // It interval has a preference, it must be defined by a copy. Clear the
1232 // preference now since the source interval allocation may have been
1233 // undone as well.
1234 i->preference = 0;
1235 else {
1236 UpgradeRegister(ii->second);
1240 // Rewind the iterators in the active, inactive, and fixed lists back to the
1241 // point we reverted to.
1242 RevertVectorIteratorsTo(active_, earliestStart);
1243 RevertVectorIteratorsTo(inactive_, earliestStart);
1244 RevertVectorIteratorsTo(fixed_, earliestStart);
1246 // Scan the rest and undo each interval that expired after t and
1247 // insert it in active (the next iteration of the algorithm will
1248 // put it in inactive if required)
1249 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1250 LiveInterval *HI = handled_[i];
1251 if (!HI->expiredAt(earliestStart) &&
1252 HI->expiredAt(cur->beginNumber())) {
1253 DOUT << "\t\t\tundo changes for: " << *HI << '\n';
1254 active_.push_back(std::make_pair(HI, HI->begin()));
1255 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1256 addRegUse(vrm_->getPhys(HI->reg));
1260 // Merge added with unhandled.
1261 // This also update the NextReloadMap. That is, it adds mapping from a
1262 // register defined by a reload from SS to the next reload from SS in the
1263 // same basic block.
1264 MachineBasicBlock *LastReloadMBB = 0;
1265 LiveInterval *LastReload = 0;
1266 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1267 std::sort(added.begin(), added.end(), LISorter());
1268 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1269 LiveInterval *ReloadLi = added[i];
1270 if (ReloadLi->weight == HUGE_VALF &&
1271 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1272 unsigned ReloadIdx = ReloadLi->beginNumber();
1273 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1274 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1275 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1276 // Last reload of same SS is in the same MBB. We want to try to
1277 // allocate both reloads the same register and make sure the reg
1278 // isn't clobbered in between if at all possible.
1279 assert(LastReload->beginNumber() < ReloadIdx);
1280 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1282 LastReloadMBB = ReloadMBB;
1283 LastReload = ReloadLi;
1284 LastReloadSS = ReloadSS;
1286 unhandled_.push(ReloadLi);
1290 unsigned RALinScan::getFreePhysReg(const TargetRegisterClass *RC,
1291 unsigned MaxInactiveCount,
1292 SmallVector<unsigned, 256> &inactiveCounts,
1293 bool SkipDGRegs) {
1294 unsigned FreeReg = 0;
1295 unsigned FreeRegInactiveCount = 0;
1297 TargetRegisterClass::iterator I = RC->allocation_order_begin(*mf_);
1298 TargetRegisterClass::iterator E = RC->allocation_order_end(*mf_);
1299 assert(I != E && "No allocatable register in this register class!");
1301 // Scan for the first available register.
1302 for (; I != E; ++I) {
1303 unsigned Reg = *I;
1304 // Ignore "downgraded" registers.
1305 if (SkipDGRegs && DowngradedRegs.count(Reg))
1306 continue;
1307 if (isRegAvail(Reg)) {
1308 FreeReg = Reg;
1309 if (FreeReg < inactiveCounts.size())
1310 FreeRegInactiveCount = inactiveCounts[FreeReg];
1311 else
1312 FreeRegInactiveCount = 0;
1313 break;
1317 // If there are no free regs, or if this reg has the max inactive count,
1318 // return this register.
1319 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount)
1320 return FreeReg;
1322 // Continue scanning the registers, looking for the one with the highest
1323 // inactive count. Alkis found that this reduced register pressure very
1324 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1325 // reevaluated now.
1326 for (; I != E; ++I) {
1327 unsigned Reg = *I;
1328 // Ignore "downgraded" registers.
1329 if (SkipDGRegs && DowngradedRegs.count(Reg))
1330 continue;
1331 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1332 FreeRegInactiveCount < inactiveCounts[Reg]) {
1333 FreeReg = Reg;
1334 FreeRegInactiveCount = inactiveCounts[Reg];
1335 if (FreeRegInactiveCount == MaxInactiveCount)
1336 break; // We found the one with the max inactive count.
1340 return FreeReg;
1343 /// getFreePhysReg - return a free physical register for this virtual register
1344 /// interval if we have one, otherwise return 0.
1345 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1346 SmallVector<unsigned, 256> inactiveCounts;
1347 unsigned MaxInactiveCount = 0;
1349 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1350 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1352 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1353 i != e; ++i) {
1354 unsigned reg = i->first->reg;
1355 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1356 "Can only allocate virtual registers!");
1358 // If this is not in a related reg class to the register we're allocating,
1359 // don't check it.
1360 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1361 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1362 reg = vrm_->getPhys(reg);
1363 if (inactiveCounts.size() <= reg)
1364 inactiveCounts.resize(reg+1);
1365 ++inactiveCounts[reg];
1366 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1370 // If copy coalescer has assigned a "preferred" register, check if it's
1371 // available first.
1372 if (cur->preference) {
1373 DOUT << "(preferred: " << tri_->getName(cur->preference) << ") ";
1374 if (isRegAvail(cur->preference) &&
1375 RC->contains(cur->preference))
1376 return cur->preference;
1379 if (!DowngradedRegs.empty()) {
1380 unsigned FreeReg = getFreePhysReg(RC, MaxInactiveCount, inactiveCounts,
1381 true);
1382 if (FreeReg)
1383 return FreeReg;
1385 return getFreePhysReg(RC, MaxInactiveCount, inactiveCounts, false);
1388 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1389 return new RALinScan();