(Hopefully) unbreak Apple-style builds.
[llvm/msp430.git] / lib / CodeGen / RegAllocLocal.cpp
blobe1cc20cf4fb112801a67e939a07558250829496b
1 //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/BasicBlock.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/RegAllocRegistry.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/IndexedMap.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include <algorithm>
35 using namespace llvm;
37 STATISTIC(NumStores, "Number of stores added");
38 STATISTIC(NumLoads , "Number of loads added");
40 static RegisterRegAlloc
41 localRegAlloc("local", "local register allocator",
42 createLocalRegisterAllocator);
44 namespace {
45 class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass {
46 public:
47 static char ID;
48 RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
49 private:
50 const TargetMachine *TM;
51 MachineFunction *MF;
52 const TargetRegisterInfo *TRI;
53 const TargetInstrInfo *TII;
55 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
56 // values are spilled.
57 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
59 // Virt2PhysRegMap - This map contains entries for each virtual register
60 // that is currently available in a physical register.
61 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
63 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
64 return Virt2PhysRegMap[VirtReg];
67 // PhysRegsUsed - This array is effectively a map, containing entries for
68 // each physical register that currently has a value (ie, it is in
69 // Virt2PhysRegMap). The value mapped to is the virtual register
70 // corresponding to the physical register (the inverse of the
71 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
72 // because it is used by a future instruction, and to -2 if it is not
73 // allocatable. If the entry for a physical register is -1, then the
74 // physical register is "not in the map".
76 std::vector<int> PhysRegsUsed;
78 // PhysRegsUseOrder - This contains a list of the physical registers that
79 // currently have a virtual register value in them. This list provides an
80 // ordering of registers, imposing a reallocation order. This list is only
81 // used if all registers are allocated and we have to spill one, in which
82 // case we spill the least recently used register. Entries at the front of
83 // the list are the least recently used registers, entries at the back are
84 // the most recently used.
86 std::vector<unsigned> PhysRegsUseOrder;
88 // Virt2LastUseMap - This maps each virtual register to its last use
89 // (MachineInstr*, operand index pair).
90 IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
91 Virt2LastUseMap;
93 std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
94 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
95 return Virt2LastUseMap[Reg];
98 // VirtRegModified - This bitset contains information about which virtual
99 // registers need to be spilled back to memory when their registers are
100 // scavenged. If a virtual register has simply been rematerialized, there
101 // is no reason to spill it to memory when we need the register back.
103 BitVector VirtRegModified;
105 // UsedInMultipleBlocks - Tracks whether a particular register is used in
106 // more than one block.
107 BitVector UsedInMultipleBlocks;
109 void markVirtRegModified(unsigned Reg, bool Val = true) {
110 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
111 Reg -= TargetRegisterInfo::FirstVirtualRegister;
112 if (Val)
113 VirtRegModified.set(Reg);
114 else
115 VirtRegModified.reset(Reg);
118 bool isVirtRegModified(unsigned Reg) const {
119 assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
120 assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
121 && "Illegal virtual register!");
122 return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
125 void AddToPhysRegsUseOrder(unsigned Reg) {
126 std::vector<unsigned>::iterator It =
127 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
128 if (It != PhysRegsUseOrder.end())
129 PhysRegsUseOrder.erase(It);
130 PhysRegsUseOrder.push_back(Reg);
133 void MarkPhysRegRecentlyUsed(unsigned Reg) {
134 if (PhysRegsUseOrder.empty() ||
135 PhysRegsUseOrder.back() == Reg) return; // Already most recently used
137 for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
138 if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
139 unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
140 PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
141 // Add it to the end of the list
142 PhysRegsUseOrder.push_back(RegMatch);
143 if (RegMatch == Reg)
144 return; // Found an exact match, exit early
148 public:
149 virtual const char *getPassName() const {
150 return "Local Register Allocator";
153 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
154 AU.addRequiredID(PHIEliminationID);
155 AU.addRequiredID(TwoAddressInstructionPassID);
156 MachineFunctionPass::getAnalysisUsage(AU);
159 private:
160 /// runOnMachineFunction - Register allocate the whole function
161 bool runOnMachineFunction(MachineFunction &Fn);
163 /// AllocateBasicBlock - Register allocate the specified basic block.
164 void AllocateBasicBlock(MachineBasicBlock &MBB);
167 /// areRegsEqual - This method returns true if the specified registers are
168 /// related to each other. To do this, it checks to see if they are equal
169 /// or if the first register is in the alias set of the second register.
171 bool areRegsEqual(unsigned R1, unsigned R2) const {
172 if (R1 == R2) return true;
173 for (const unsigned *AliasSet = TRI->getAliasSet(R2);
174 *AliasSet; ++AliasSet) {
175 if (*AliasSet == R1) return true;
177 return false;
180 /// getStackSpaceFor - This returns the frame index of the specified virtual
181 /// register on the stack, allocating space if necessary.
182 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
184 /// removePhysReg - This method marks the specified physical register as no
185 /// longer being in use.
187 void removePhysReg(unsigned PhysReg);
189 /// spillVirtReg - This method spills the value specified by PhysReg into
190 /// the virtual register slot specified by VirtReg. It then updates the RA
191 /// data structures to indicate the fact that PhysReg is now available.
193 void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
194 unsigned VirtReg, unsigned PhysReg);
196 /// spillPhysReg - This method spills the specified physical register into
197 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
198 /// true, then the request is ignored if the physical register does not
199 /// contain a virtual register.
201 void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
202 unsigned PhysReg, bool OnlyVirtRegs = false);
204 /// assignVirtToPhysReg - This method updates local state so that we know
205 /// that PhysReg is the proper container for VirtReg now. The physical
206 /// register must not be used for anything else when this is called.
208 void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
210 /// isPhysRegAvailable - Return true if the specified physical register is
211 /// free and available for use. This also includes checking to see if
212 /// aliased registers are all free...
214 bool isPhysRegAvailable(unsigned PhysReg) const;
216 /// getFreeReg - Look to see if there is a free register available in the
217 /// specified register class. If not, return 0.
219 unsigned getFreeReg(const TargetRegisterClass *RC);
221 /// getReg - Find a physical register to hold the specified virtual
222 /// register. If all compatible physical registers are used, this method
223 /// spills the last used virtual register to the stack, and uses that
224 /// register. If NoFree is true, that means the caller knows there isn't
225 /// a free register, do not call getFreeReg().
226 unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
227 unsigned VirtReg, bool NoFree = false);
229 /// reloadVirtReg - This method transforms the specified virtual
230 /// register use to refer to a physical register. This method may do this
231 /// in one of several ways: if the register is available in a physical
232 /// register already, it uses that physical register. If the value is not
233 /// in a physical register, and if there are physical registers available,
234 /// it loads it into a register. If register pressure is high, and it is
235 /// possible, it tries to fold the load of the virtual register into the
236 /// instruction itself. It avoids doing this if register pressure is low to
237 /// improve the chance that subsequent instructions can use the reloaded
238 /// value. This method returns the modified instruction.
240 MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
241 unsigned OpNum, SmallSet<unsigned, 4> &RRegs);
243 /// ComputeLocalLiveness - Computes liveness of registers within a basic
244 /// block, setting the killed/dead flags as appropriate.
245 void ComputeLocalLiveness(MachineBasicBlock& MBB);
247 void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
248 unsigned PhysReg);
250 char RALocal::ID = 0;
253 /// getStackSpaceFor - This allocates space for the specified virtual register
254 /// to be held on the stack.
255 int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
256 // Find the location Reg would belong...
257 int SS = StackSlotForVirtReg[VirtReg];
258 if (SS != -1)
259 return SS; // Already has space allocated?
261 // Allocate a new stack object for this spill location...
262 int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
263 RC->getAlignment());
265 // Assign the slot...
266 StackSlotForVirtReg[VirtReg] = FrameIdx;
267 return FrameIdx;
271 /// removePhysReg - This method marks the specified physical register as no
272 /// longer being in use.
274 void RALocal::removePhysReg(unsigned PhysReg) {
275 PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
277 std::vector<unsigned>::iterator It =
278 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
279 if (It != PhysRegsUseOrder.end())
280 PhysRegsUseOrder.erase(It);
284 /// spillVirtReg - This method spills the value specified by PhysReg into the
285 /// virtual register slot specified by VirtReg. It then updates the RA data
286 /// structures to indicate the fact that PhysReg is now available.
288 void RALocal::spillVirtReg(MachineBasicBlock &MBB,
289 MachineBasicBlock::iterator I,
290 unsigned VirtReg, unsigned PhysReg) {
291 assert(VirtReg && "Spilling a physical register is illegal!"
292 " Must not have appropriate kill for the register or use exists beyond"
293 " the intended one.");
294 DOUT << " Spilling register " << TRI->getName(PhysReg)
295 << " containing %reg" << VirtReg;
297 if (!isVirtRegModified(VirtReg)) {
298 DOUT << " which has not been modified, so no store necessary!";
299 std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
300 if (LastUse.first)
301 LastUse.first->getOperand(LastUse.second).setIsKill();
302 } else {
303 // Otherwise, there is a virtual register corresponding to this physical
304 // register. We only need to spill it into its stack slot if it has been
305 // modified.
306 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
307 int FrameIndex = getStackSpaceFor(VirtReg, RC);
308 DOUT << " to stack slot #" << FrameIndex;
309 // If the instruction reads the register that's spilled, (e.g. this can
310 // happen if it is a move to a physical register), then the spill
311 // instruction is not a kill.
312 bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
313 TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
314 ++NumStores; // Update statistics
317 getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
319 DOUT << "\n";
320 removePhysReg(PhysReg);
324 /// spillPhysReg - This method spills the specified physical register into the
325 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
326 /// then the request is ignored if the physical register does not contain a
327 /// virtual register.
329 void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
330 unsigned PhysReg, bool OnlyVirtRegs) {
331 if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
332 assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
333 if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
334 spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
335 } else {
336 // If the selected register aliases any other registers, we must make
337 // sure that one of the aliases isn't alive.
338 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
339 *AliasSet; ++AliasSet)
340 if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
341 PhysRegsUsed[*AliasSet] != -2) // If allocatable.
342 if (PhysRegsUsed[*AliasSet])
343 spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
348 /// assignVirtToPhysReg - This method updates local state so that we know
349 /// that PhysReg is the proper container for VirtReg now. The physical
350 /// register must not be used for anything else when this is called.
352 void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
353 assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
354 // Update information to note the fact that this register was just used, and
355 // it holds VirtReg.
356 PhysRegsUsed[PhysReg] = VirtReg;
357 getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
358 AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg
362 /// isPhysRegAvailable - Return true if the specified physical register is free
363 /// and available for use. This also includes checking to see if aliased
364 /// registers are all free...
366 bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
367 if (PhysRegsUsed[PhysReg] != -1) return false;
369 // If the selected register aliases any other allocated registers, it is
370 // not free!
371 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
372 *AliasSet; ++AliasSet)
373 if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
374 return false; // Can't use this reg then.
375 return true;
379 /// getFreeReg - Look to see if there is a free register available in the
380 /// specified register class. If not, return 0.
382 unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
383 // Get iterators defining the range of registers that are valid to allocate in
384 // this class, which also specifies the preferred allocation order.
385 TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
386 TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
388 for (; RI != RE; ++RI)
389 if (isPhysRegAvailable(*RI)) { // Is reg unused?
390 assert(*RI != 0 && "Cannot use register!");
391 return *RI; // Found an unused register!
393 return 0;
397 /// getReg - Find a physical register to hold the specified virtual
398 /// register. If all compatible physical registers are used, this method spills
399 /// the last used virtual register to the stack, and uses that register.
401 unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
402 unsigned VirtReg, bool NoFree) {
403 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
405 // First check to see if we have a free register of the requested type...
406 unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);
408 // If we didn't find an unused register, scavenge one now!
409 if (PhysReg == 0) {
410 assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
412 // Loop over all of the preallocated registers from the least recently used
413 // to the most recently used. When we find one that is capable of holding
414 // our register, use it.
415 for (unsigned i = 0; PhysReg == 0; ++i) {
416 assert(i != PhysRegsUseOrder.size() &&
417 "Couldn't find a register of the appropriate class!");
419 unsigned R = PhysRegsUseOrder[i];
421 // We can only use this register if it holds a virtual register (ie, it
422 // can be spilled). Do not use it if it is an explicitly allocated
423 // physical register!
424 assert(PhysRegsUsed[R] != -1 &&
425 "PhysReg in PhysRegsUseOrder, but is not allocated?");
426 if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
427 // If the current register is compatible, use it.
428 if (RC->contains(R)) {
429 PhysReg = R;
430 break;
431 } else {
432 // If one of the registers aliased to the current register is
433 // compatible, use it.
434 for (const unsigned *AliasIt = TRI->getAliasSet(R);
435 *AliasIt; ++AliasIt) {
436 if (RC->contains(*AliasIt) &&
437 // If this is pinned down for some reason, don't use it. For
438 // example, if CL is pinned, and we run across CH, don't use
439 // CH as justification for using scavenging ECX (which will
440 // fail).
441 PhysRegsUsed[*AliasIt] != 0 &&
443 // Make sure the register is allocatable. Don't allocate SIL on
444 // x86-32.
445 PhysRegsUsed[*AliasIt] != -2) {
446 PhysReg = *AliasIt; // Take an aliased register
447 break;
454 assert(PhysReg && "Physical register not assigned!?!?");
456 // At this point PhysRegsUseOrder[i] is the least recently used register of
457 // compatible register class. Spill it to memory and reap its remains.
458 spillPhysReg(MBB, I, PhysReg);
461 // Now that we know which register we need to assign this to, do it now!
462 assignVirtToPhysReg(VirtReg, PhysReg);
463 return PhysReg;
467 /// reloadVirtReg - This method transforms the specified virtual
468 /// register use to refer to a physical register. This method may do this in
469 /// one of several ways: if the register is available in a physical register
470 /// already, it uses that physical register. If the value is not in a physical
471 /// register, and if there are physical registers available, it loads it into a
472 /// register. If register pressure is high, and it is possible, it tries to
473 /// fold the load of the virtual register into the instruction itself. It
474 /// avoids doing this if register pressure is low to improve the chance that
475 /// subsequent instructions can use the reloaded value. This method returns the
476 /// modified instruction.
478 MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
479 unsigned OpNum,
480 SmallSet<unsigned, 4> &ReloadedRegs) {
481 unsigned VirtReg = MI->getOperand(OpNum).getReg();
483 // If the virtual register is already available, just update the instruction
484 // and return.
485 if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
486 MarkPhysRegRecentlyUsed(PR); // Already have this value available!
487 MI->getOperand(OpNum).setReg(PR); // Assign the input register
488 getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
489 return MI;
492 // Otherwise, we need to fold it into the current instruction, or reload it.
493 // If we have registers available to hold the value, use them.
494 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
495 unsigned PhysReg = getFreeReg(RC);
496 int FrameIndex = getStackSpaceFor(VirtReg, RC);
498 if (PhysReg) { // Register is available, allocate it!
499 assignVirtToPhysReg(VirtReg, PhysReg);
500 } else { // No registers available.
501 // Force some poor hapless value out of the register file to
502 // make room for the new register, and reload it.
503 PhysReg = getReg(MBB, MI, VirtReg, true);
506 markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
508 DOUT << " Reloading %reg" << VirtReg << " into "
509 << TRI->getName(PhysReg) << "\n";
511 // Add move instruction(s)
512 TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
513 ++NumLoads; // Update statistics
515 MF->getRegInfo().setPhysRegUsed(PhysReg);
516 MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
517 getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
519 if (!ReloadedRegs.insert(PhysReg)) {
520 cerr << "Ran out of registers during register allocation!\n";
521 if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
522 cerr << "Please check your inline asm statement for invalid "
523 << "constraints:\n";
524 MI->print(cerr.stream(), TM);
526 exit(1);
528 for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
529 *SubRegs; ++SubRegs) {
530 if (!ReloadedRegs.insert(*SubRegs)) {
531 cerr << "Ran out of registers during register allocation!\n";
532 if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
533 cerr << "Please check your inline asm statement for invalid "
534 << "constraints:\n";
535 MI->print(cerr.stream(), TM);
537 exit(1);
541 return MI;
544 /// isReadModWriteImplicitKill - True if this is an implicit kill for a
545 /// read/mod/write register, i.e. update partial register.
546 static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
547 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
548 MachineOperand& MO = MI->getOperand(i);
549 if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
550 MO.isDef() && !MO.isDead())
551 return true;
553 return false;
556 /// isReadModWriteImplicitDef - True if this is an implicit def for a
557 /// read/mod/write register, i.e. update partial register.
558 static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
559 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
560 MachineOperand& MO = MI->getOperand(i);
561 if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
562 !MO.isDef() && MO.isKill())
563 return true;
565 return false;
568 // precedes - Helper function to determine with MachineInstr A
569 // precedes MachineInstr B within the same MBB.
570 static bool precedes(MachineBasicBlock::iterator A,
571 MachineBasicBlock::iterator B) {
572 if (A == B)
573 return false;
575 MachineBasicBlock::iterator I = A->getParent()->begin();
576 while (I != A->getParent()->end()) {
577 if (I == A)
578 return true;
579 else if (I == B)
580 return false;
582 ++I;
585 return false;
588 /// ComputeLocalLiveness - Computes liveness of registers within a basic
589 /// block, setting the killed/dead flags as appropriate.
590 void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
591 MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
592 // Keep track of the most recently seen previous use or def of each reg,
593 // so that we can update them with dead/kill markers.
594 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
595 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
596 I != E; ++I) {
597 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
598 MachineOperand& MO = I->getOperand(i);
599 // Uses don't trigger any flags, but we need to save
600 // them for later. Also, we have to process these
601 // _before_ processing the defs, since an instr
602 // uses regs before it defs them.
603 if (MO.isReg() && MO.getReg() && MO.isUse()) {
604 LastUseDef[MO.getReg()] = std::make_pair(I, i);
607 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
609 const unsigned* Aliases = TRI->getAliasSet(MO.getReg());
610 if (Aliases) {
611 while (*Aliases) {
612 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
613 alias = LastUseDef.find(*Aliases);
615 if (alias != LastUseDef.end() && alias->second.first != I)
616 LastUseDef[*Aliases] = std::make_pair(I, i);
618 ++Aliases;
624 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
625 MachineOperand& MO = I->getOperand(i);
626 // Defs others than 2-addr redefs _do_ trigger flag changes:
627 // - A def followed by a def is dead
628 // - A use followed by a def is a kill
629 if (MO.isReg() && MO.getReg() && MO.isDef()) {
630 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
631 last = LastUseDef.find(MO.getReg());
632 if (last != LastUseDef.end()) {
633 // Check if this is a two address instruction. If so, then
634 // the def does not kill the use.
635 if (last->second.first == I &&
636 I->isRegTiedToUseOperand(i))
637 continue;
639 MachineOperand& lastUD =
640 last->second.first->getOperand(last->second.second);
641 if (lastUD.isDef())
642 lastUD.setIsDead(true);
643 else
644 lastUD.setIsKill(true);
647 LastUseDef[MO.getReg()] = std::make_pair(I, i);
652 // Live-out (of the function) registers contain return values of the function,
653 // so we need to make sure they are alive at return time.
654 if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
655 MachineInstr* Ret = &MBB.back();
656 for (MachineRegisterInfo::liveout_iterator
657 I = MF->getRegInfo().liveout_begin(),
658 E = MF->getRegInfo().liveout_end(); I != E; ++I)
659 if (!Ret->readsRegister(*I)) {
660 Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
661 LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
665 // Finally, loop over the final use/def of each reg
666 // in the block and determine if it is dead.
667 for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
668 I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
669 MachineInstr* MI = I->second.first;
670 unsigned idx = I->second.second;
671 MachineOperand& MO = MI->getOperand(idx);
673 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
675 // A crude approximation of "live-out" calculation
676 bool usedOutsideBlock = isPhysReg ? false :
677 UsedInMultipleBlocks.test(MO.getReg() -
678 TargetRegisterInfo::FirstVirtualRegister);
679 if (!isPhysReg && !usedOutsideBlock)
680 for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
681 UE = MRI.reg_end(); UI != UE; ++UI)
682 // Two cases:
683 // - used in another block
684 // - used in the same block before it is defined (loop)
685 if (UI->getParent() != &MBB ||
686 (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
687 UsedInMultipleBlocks.set(MO.getReg() -
688 TargetRegisterInfo::FirstVirtualRegister);
689 usedOutsideBlock = true;
690 break;
693 // Physical registers and those that are not live-out of the block
694 // are killed/dead at their last use/def within this block.
695 if (isPhysReg || !usedOutsideBlock) {
696 if (MO.isUse()) {
697 // Don't mark uses that are tied to defs as kills.
698 if (!MI->isRegTiedToDefOperand(idx))
699 MO.setIsKill(true);
700 } else
701 MO.setIsDead(true);
706 void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
707 // loop over each instruction
708 MachineBasicBlock::iterator MII = MBB.begin();
710 DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
711 if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
713 // Add live-in registers as active.
714 for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
715 E = MBB.livein_end(); I != E; ++I) {
716 unsigned Reg = *I;
717 MF->getRegInfo().setPhysRegUsed(Reg);
718 PhysRegsUsed[Reg] = 0; // It is free and reserved now
719 AddToPhysRegsUseOrder(Reg);
720 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
721 *SubRegs; ++SubRegs) {
722 if (PhysRegsUsed[*SubRegs] != -2) {
723 AddToPhysRegsUseOrder(*SubRegs);
724 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
725 MF->getRegInfo().setPhysRegUsed(*SubRegs);
730 ComputeLocalLiveness(MBB);
732 // Otherwise, sequentially allocate each instruction in the MBB.
733 while (MII != MBB.end()) {
734 MachineInstr *MI = MII++;
735 const TargetInstrDesc &TID = MI->getDesc();
736 DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
737 DOUT << " Regs have values: ";
738 for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
739 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
740 DOUT << "[" << TRI->getName(i)
741 << ",%reg" << PhysRegsUsed[i] << "] ";
742 DOUT << "\n");
744 // Loop over the implicit uses, making sure that they are at the head of the
745 // use order list, so they don't get reallocated.
746 if (TID.ImplicitUses) {
747 for (const unsigned *ImplicitUses = TID.ImplicitUses;
748 *ImplicitUses; ++ImplicitUses)
749 MarkPhysRegRecentlyUsed(*ImplicitUses);
752 SmallVector<unsigned, 8> Kills;
753 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
754 MachineOperand& MO = MI->getOperand(i);
755 if (MO.isReg() && MO.isKill()) {
756 if (!MO.isImplicit())
757 Kills.push_back(MO.getReg());
758 else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
759 // These are extra physical register kills when a sub-register
760 // is defined (def of a sub-register is a read/mod/write of the
761 // larger registers). Ignore.
762 Kills.push_back(MO.getReg());
766 // If any physical regs are earlyclobber, spill any value they might
767 // have in them, then mark them unallocatable.
768 // If any virtual regs are earlyclobber, allocate them now (before
769 // freeing inputs that are killed).
770 if (MI->getOpcode()==TargetInstrInfo::INLINEASM) {
771 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
772 MachineOperand& MO = MI->getOperand(i);
773 if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
774 MO.getReg()) {
775 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
776 unsigned DestVirtReg = MO.getReg();
777 unsigned DestPhysReg;
779 // If DestVirtReg already has a value, use it.
780 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
781 DestPhysReg = getReg(MBB, MI, DestVirtReg);
782 MF->getRegInfo().setPhysRegUsed(DestPhysReg);
783 markVirtRegModified(DestVirtReg);
784 getVirtRegLastUse(DestVirtReg) =
785 std::make_pair((MachineInstr*)0, 0);
786 DOUT << " Assigning " << TRI->getName(DestPhysReg)
787 << " to %reg" << DestVirtReg << "\n";
788 MO.setReg(DestPhysReg); // Assign the earlyclobber register
789 } else {
790 unsigned Reg = MO.getReg();
791 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
792 // These are extra physical register defs when a sub-register
793 // is defined (def of a sub-register is a read/mod/write of the
794 // larger registers). Ignore.
795 if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
797 MF->getRegInfo().setPhysRegUsed(Reg);
798 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
799 PhysRegsUsed[Reg] = 0; // It is free and reserved now
800 AddToPhysRegsUseOrder(Reg);
802 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
803 *SubRegs; ++SubRegs) {
804 if (PhysRegsUsed[*SubRegs] != -2) {
805 MF->getRegInfo().setPhysRegUsed(*SubRegs);
806 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
807 AddToPhysRegsUseOrder(*SubRegs);
815 // Get the used operands into registers. This has the potential to spill
816 // incoming values if we are out of registers. Note that we completely
817 // ignore physical register uses here. We assume that if an explicit
818 // physical register is referenced by the instruction, that it is guaranteed
819 // to be live-in, or the input is badly hosed.
821 SmallSet<unsigned, 4> ReloadedRegs;
822 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
823 MachineOperand& MO = MI->getOperand(i);
824 // here we are looking for only used operands (never def&use)
825 if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
826 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
827 MI = reloadVirtReg(MBB, MI, i, ReloadedRegs);
830 // If this instruction is the last user of this register, kill the
831 // value, freeing the register being used, so it doesn't need to be
832 // spilled to memory.
834 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
835 unsigned VirtReg = Kills[i];
836 unsigned PhysReg = VirtReg;
837 if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
838 // If the virtual register was never materialized into a register, it
839 // might not be in the map, but it won't hurt to zero it out anyway.
840 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
841 PhysReg = PhysRegSlot;
842 PhysRegSlot = 0;
843 } else if (PhysRegsUsed[PhysReg] == -2) {
844 // Unallocatable register dead, ignore.
845 continue;
846 } else {
847 assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
848 "Silently clearing a virtual register?");
851 if (PhysReg) {
852 DOUT << " Last use of " << TRI->getName(PhysReg)
853 << "[%reg" << VirtReg <<"], removing it from live set\n";
854 removePhysReg(PhysReg);
855 for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
856 *SubRegs; ++SubRegs) {
857 if (PhysRegsUsed[*SubRegs] != -2) {
858 DOUT << " Last use of "
859 << TRI->getName(*SubRegs)
860 << "[%reg" << VirtReg <<"], removing it from live set\n";
861 removePhysReg(*SubRegs);
867 // Loop over all of the operands of the instruction, spilling registers that
868 // are defined, and marking explicit destinations in the PhysRegsUsed map.
869 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
870 MachineOperand& MO = MI->getOperand(i);
871 if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
872 !MO.isEarlyClobber() &&
873 TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
874 unsigned Reg = MO.getReg();
875 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
876 // These are extra physical register defs when a sub-register
877 // is defined (def of a sub-register is a read/mod/write of the
878 // larger registers). Ignore.
879 if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
881 MF->getRegInfo().setPhysRegUsed(Reg);
882 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
883 PhysRegsUsed[Reg] = 0; // It is free and reserved now
884 AddToPhysRegsUseOrder(Reg);
886 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
887 *SubRegs; ++SubRegs) {
888 if (PhysRegsUsed[*SubRegs] != -2) {
889 MF->getRegInfo().setPhysRegUsed(*SubRegs);
890 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
891 AddToPhysRegsUseOrder(*SubRegs);
897 // Loop over the implicit defs, spilling them as well.
898 if (TID.ImplicitDefs) {
899 for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
900 *ImplicitDefs; ++ImplicitDefs) {
901 unsigned Reg = *ImplicitDefs;
902 if (PhysRegsUsed[Reg] != -2) {
903 spillPhysReg(MBB, MI, Reg, true);
904 AddToPhysRegsUseOrder(Reg);
905 PhysRegsUsed[Reg] = 0; // It is free and reserved now
907 MF->getRegInfo().setPhysRegUsed(Reg);
908 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
909 *SubRegs; ++SubRegs) {
910 if (PhysRegsUsed[*SubRegs] != -2) {
911 AddToPhysRegsUseOrder(*SubRegs);
912 PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
913 MF->getRegInfo().setPhysRegUsed(*SubRegs);
919 SmallVector<unsigned, 8> DeadDefs;
920 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
921 MachineOperand& MO = MI->getOperand(i);
922 if (MO.isReg() && MO.isDead())
923 DeadDefs.push_back(MO.getReg());
926 // Okay, we have allocated all of the source operands and spilled any values
927 // that would be destroyed by defs of this instruction. Loop over the
928 // explicit defs and assign them to a register, spilling incoming values if
929 // we need to scavenge a register.
931 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
932 MachineOperand& MO = MI->getOperand(i);
933 if (MO.isReg() && MO.isDef() && MO.getReg() &&
934 !MO.isEarlyClobber() &&
935 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
936 unsigned DestVirtReg = MO.getReg();
937 unsigned DestPhysReg;
939 // If DestVirtReg already has a value, use it.
940 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
941 DestPhysReg = getReg(MBB, MI, DestVirtReg);
942 MF->getRegInfo().setPhysRegUsed(DestPhysReg);
943 markVirtRegModified(DestVirtReg);
944 getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
945 DOUT << " Assigning " << TRI->getName(DestPhysReg)
946 << " to %reg" << DestVirtReg << "\n";
947 MO.setReg(DestPhysReg); // Assign the output register
951 // If this instruction defines any registers that are immediately dead,
952 // kill them now.
954 for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
955 unsigned VirtReg = DeadDefs[i];
956 unsigned PhysReg = VirtReg;
957 if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
958 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
959 PhysReg = PhysRegSlot;
960 assert(PhysReg != 0);
961 PhysRegSlot = 0;
962 } else if (PhysRegsUsed[PhysReg] == -2) {
963 // Unallocatable register dead, ignore.
964 continue;
967 if (PhysReg) {
968 DOUT << " Register " << TRI->getName(PhysReg)
969 << " [%reg" << VirtReg
970 << "] is never used, removing it from live set\n";
971 removePhysReg(PhysReg);
972 for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
973 *AliasSet; ++AliasSet) {
974 if (PhysRegsUsed[*AliasSet] != -2) {
975 DOUT << " Register " << TRI->getName(*AliasSet)
976 << " [%reg" << *AliasSet
977 << "] is never used, removing it from live set\n";
978 removePhysReg(*AliasSet);
984 // Finally, if this is a noop copy instruction, zap it. (Except that if
985 // the copy is dead, it must be kept to avoid messing up liveness info for
986 // the register scavenger. See pr4100.)
987 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
988 if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
989 SrcReg == DstReg && DeadDefs.empty())
990 MBB.erase(MI);
993 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
995 // Spill all physical registers holding virtual registers now.
996 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
997 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
998 if (unsigned VirtReg = PhysRegsUsed[i])
999 spillVirtReg(MBB, MI, VirtReg, i);
1000 else
1001 removePhysReg(i);
1004 #if 0
1005 // This checking code is very expensive.
1006 bool AllOk = true;
1007 for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
1008 e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
1009 if (unsigned PR = Virt2PhysRegMap[i]) {
1010 cerr << "Register still mapped: " << i << " -> " << PR << "\n";
1011 AllOk = false;
1013 assert(AllOk && "Virtual registers still in phys regs?");
1014 #endif
1016 // Clear any physical register which appear live at the end of the basic
1017 // block, but which do not hold any virtual registers. e.g., the stack
1018 // pointer.
1019 PhysRegsUseOrder.clear();
1022 /// runOnMachineFunction - Register allocate the whole function
1024 bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
1025 DOUT << "Machine Function " << "\n";
1026 MF = &Fn;
1027 TM = &Fn.getTarget();
1028 TRI = TM->getRegisterInfo();
1029 TII = TM->getInstrInfo();
1031 PhysRegsUsed.assign(TRI->getNumRegs(), -1);
1033 // At various places we want to efficiently check to see whether a register
1034 // is allocatable. To handle this, we mark all unallocatable registers as
1035 // being pinned down, permanently.
1037 BitVector Allocable = TRI->getAllocatableSet(Fn);
1038 for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
1039 if (!Allocable[i])
1040 PhysRegsUsed[i] = -2; // Mark the reg unallocable.
1043 // initialize the virtual->physical register map to have a 'null'
1044 // mapping for all virtual registers
1045 unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
1046 StackSlotForVirtReg.grow(LastVirtReg);
1047 Virt2PhysRegMap.grow(LastVirtReg);
1048 Virt2LastUseMap.grow(LastVirtReg);
1049 VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
1050 UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
1052 // Loop over all of the basic blocks, eliminating virtual register references
1053 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
1054 MBB != MBBe; ++MBB)
1055 AllocateBasicBlock(*MBB);
1057 StackSlotForVirtReg.clear();
1058 PhysRegsUsed.clear();
1059 VirtRegModified.clear();
1060 UsedInMultipleBlocks.clear();
1061 Virt2PhysRegMap.clear();
1062 Virt2LastUseMap.clear();
1063 return true;
1066 FunctionPass *llvm::createLocalRegisterAllocator() {
1067 return new RALocal();