1 //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/BasicBlock.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/RegAllocRegistry.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/IndexedMap.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/STLExtras.h"
37 STATISTIC(NumStores
, "Number of stores added");
38 STATISTIC(NumLoads
, "Number of loads added");
40 static RegisterRegAlloc
41 localRegAlloc("local", "local register allocator",
42 createLocalRegisterAllocator
);
45 class VISIBILITY_HIDDEN RALocal
: public MachineFunctionPass
{
48 RALocal() : MachineFunctionPass(&ID
), StackSlotForVirtReg(-1) {}
50 const TargetMachine
*TM
;
52 const TargetRegisterInfo
*TRI
;
53 const TargetInstrInfo
*TII
;
55 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
56 // values are spilled.
57 IndexedMap
<int, VirtReg2IndexFunctor
> StackSlotForVirtReg
;
59 // Virt2PhysRegMap - This map contains entries for each virtual register
60 // that is currently available in a physical register.
61 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysRegMap
;
63 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg
) {
64 return Virt2PhysRegMap
[VirtReg
];
67 // PhysRegsUsed - This array is effectively a map, containing entries for
68 // each physical register that currently has a value (ie, it is in
69 // Virt2PhysRegMap). The value mapped to is the virtual register
70 // corresponding to the physical register (the inverse of the
71 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
72 // because it is used by a future instruction, and to -2 if it is not
73 // allocatable. If the entry for a physical register is -1, then the
74 // physical register is "not in the map".
76 std::vector
<int> PhysRegsUsed
;
78 // PhysRegsUseOrder - This contains a list of the physical registers that
79 // currently have a virtual register value in them. This list provides an
80 // ordering of registers, imposing a reallocation order. This list is only
81 // used if all registers are allocated and we have to spill one, in which
82 // case we spill the least recently used register. Entries at the front of
83 // the list are the least recently used registers, entries at the back are
84 // the most recently used.
86 std::vector
<unsigned> PhysRegsUseOrder
;
88 // Virt2LastUseMap - This maps each virtual register to its last use
89 // (MachineInstr*, operand index pair).
90 IndexedMap
<std::pair
<MachineInstr
*, unsigned>, VirtReg2IndexFunctor
>
93 std::pair
<MachineInstr
*,unsigned>& getVirtRegLastUse(unsigned Reg
) {
94 assert(TargetRegisterInfo::isVirtualRegister(Reg
) && "Illegal VirtReg!");
95 return Virt2LastUseMap
[Reg
];
98 // VirtRegModified - This bitset contains information about which virtual
99 // registers need to be spilled back to memory when their registers are
100 // scavenged. If a virtual register has simply been rematerialized, there
101 // is no reason to spill it to memory when we need the register back.
103 BitVector VirtRegModified
;
105 // UsedInMultipleBlocks - Tracks whether a particular register is used in
106 // more than one block.
107 BitVector UsedInMultipleBlocks
;
109 void markVirtRegModified(unsigned Reg
, bool Val
= true) {
110 assert(TargetRegisterInfo::isVirtualRegister(Reg
) && "Illegal VirtReg!");
111 Reg
-= TargetRegisterInfo::FirstVirtualRegister
;
113 VirtRegModified
.set(Reg
);
115 VirtRegModified
.reset(Reg
);
118 bool isVirtRegModified(unsigned Reg
) const {
119 assert(TargetRegisterInfo::isVirtualRegister(Reg
) && "Illegal VirtReg!");
120 assert(Reg
- TargetRegisterInfo::FirstVirtualRegister
< VirtRegModified
.size()
121 && "Illegal virtual register!");
122 return VirtRegModified
[Reg
- TargetRegisterInfo::FirstVirtualRegister
];
125 void AddToPhysRegsUseOrder(unsigned Reg
) {
126 std::vector
<unsigned>::iterator It
=
127 std::find(PhysRegsUseOrder
.begin(), PhysRegsUseOrder
.end(), Reg
);
128 if (It
!= PhysRegsUseOrder
.end())
129 PhysRegsUseOrder
.erase(It
);
130 PhysRegsUseOrder
.push_back(Reg
);
133 void MarkPhysRegRecentlyUsed(unsigned Reg
) {
134 if (PhysRegsUseOrder
.empty() ||
135 PhysRegsUseOrder
.back() == Reg
) return; // Already most recently used
137 for (unsigned i
= PhysRegsUseOrder
.size(); i
!= 0; --i
)
138 if (areRegsEqual(Reg
, PhysRegsUseOrder
[i
-1])) {
139 unsigned RegMatch
= PhysRegsUseOrder
[i
-1]; // remove from middle
140 PhysRegsUseOrder
.erase(PhysRegsUseOrder
.begin()+i
-1);
141 // Add it to the end of the list
142 PhysRegsUseOrder
.push_back(RegMatch
);
144 return; // Found an exact match, exit early
149 virtual const char *getPassName() const {
150 return "Local Register Allocator";
153 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
154 AU
.addRequiredID(PHIEliminationID
);
155 AU
.addRequiredID(TwoAddressInstructionPassID
);
156 MachineFunctionPass::getAnalysisUsage(AU
);
160 /// runOnMachineFunction - Register allocate the whole function
161 bool runOnMachineFunction(MachineFunction
&Fn
);
163 /// AllocateBasicBlock - Register allocate the specified basic block.
164 void AllocateBasicBlock(MachineBasicBlock
&MBB
);
167 /// areRegsEqual - This method returns true if the specified registers are
168 /// related to each other. To do this, it checks to see if they are equal
169 /// or if the first register is in the alias set of the second register.
171 bool areRegsEqual(unsigned R1
, unsigned R2
) const {
172 if (R1
== R2
) return true;
173 for (const unsigned *AliasSet
= TRI
->getAliasSet(R2
);
174 *AliasSet
; ++AliasSet
) {
175 if (*AliasSet
== R1
) return true;
180 /// getStackSpaceFor - This returns the frame index of the specified virtual
181 /// register on the stack, allocating space if necessary.
182 int getStackSpaceFor(unsigned VirtReg
, const TargetRegisterClass
*RC
);
184 /// removePhysReg - This method marks the specified physical register as no
185 /// longer being in use.
187 void removePhysReg(unsigned PhysReg
);
189 /// spillVirtReg - This method spills the value specified by PhysReg into
190 /// the virtual register slot specified by VirtReg. It then updates the RA
191 /// data structures to indicate the fact that PhysReg is now available.
193 void spillVirtReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
194 unsigned VirtReg
, unsigned PhysReg
);
196 /// spillPhysReg - This method spills the specified physical register into
197 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
198 /// true, then the request is ignored if the physical register does not
199 /// contain a virtual register.
201 void spillPhysReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
202 unsigned PhysReg
, bool OnlyVirtRegs
= false);
204 /// assignVirtToPhysReg - This method updates local state so that we know
205 /// that PhysReg is the proper container for VirtReg now. The physical
206 /// register must not be used for anything else when this is called.
208 void assignVirtToPhysReg(unsigned VirtReg
, unsigned PhysReg
);
210 /// isPhysRegAvailable - Return true if the specified physical register is
211 /// free and available for use. This also includes checking to see if
212 /// aliased registers are all free...
214 bool isPhysRegAvailable(unsigned PhysReg
) const;
216 /// getFreeReg - Look to see if there is a free register available in the
217 /// specified register class. If not, return 0.
219 unsigned getFreeReg(const TargetRegisterClass
*RC
);
221 /// getReg - Find a physical register to hold the specified virtual
222 /// register. If all compatible physical registers are used, this method
223 /// spills the last used virtual register to the stack, and uses that
224 /// register. If NoFree is true, that means the caller knows there isn't
225 /// a free register, do not call getFreeReg().
226 unsigned getReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
227 unsigned VirtReg
, bool NoFree
= false);
229 /// reloadVirtReg - This method transforms the specified virtual
230 /// register use to refer to a physical register. This method may do this
231 /// in one of several ways: if the register is available in a physical
232 /// register already, it uses that physical register. If the value is not
233 /// in a physical register, and if there are physical registers available,
234 /// it loads it into a register. If register pressure is high, and it is
235 /// possible, it tries to fold the load of the virtual register into the
236 /// instruction itself. It avoids doing this if register pressure is low to
237 /// improve the chance that subsequent instructions can use the reloaded
238 /// value. This method returns the modified instruction.
240 MachineInstr
*reloadVirtReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
241 unsigned OpNum
, SmallSet
<unsigned, 4> &RRegs
);
243 /// ComputeLocalLiveness - Computes liveness of registers within a basic
244 /// block, setting the killed/dead flags as appropriate.
245 void ComputeLocalLiveness(MachineBasicBlock
& MBB
);
247 void reloadPhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&I
,
250 char RALocal::ID
= 0;
253 /// getStackSpaceFor - This allocates space for the specified virtual register
254 /// to be held on the stack.
255 int RALocal::getStackSpaceFor(unsigned VirtReg
, const TargetRegisterClass
*RC
) {
256 // Find the location Reg would belong...
257 int SS
= StackSlotForVirtReg
[VirtReg
];
259 return SS
; // Already has space allocated?
261 // Allocate a new stack object for this spill location...
262 int FrameIdx
= MF
->getFrameInfo()->CreateStackObject(RC
->getSize(),
265 // Assign the slot...
266 StackSlotForVirtReg
[VirtReg
] = FrameIdx
;
271 /// removePhysReg - This method marks the specified physical register as no
272 /// longer being in use.
274 void RALocal::removePhysReg(unsigned PhysReg
) {
275 PhysRegsUsed
[PhysReg
] = -1; // PhyReg no longer used
277 std::vector
<unsigned>::iterator It
=
278 std::find(PhysRegsUseOrder
.begin(), PhysRegsUseOrder
.end(), PhysReg
);
279 if (It
!= PhysRegsUseOrder
.end())
280 PhysRegsUseOrder
.erase(It
);
284 /// spillVirtReg - This method spills the value specified by PhysReg into the
285 /// virtual register slot specified by VirtReg. It then updates the RA data
286 /// structures to indicate the fact that PhysReg is now available.
288 void RALocal::spillVirtReg(MachineBasicBlock
&MBB
,
289 MachineBasicBlock::iterator I
,
290 unsigned VirtReg
, unsigned PhysReg
) {
291 assert(VirtReg
&& "Spilling a physical register is illegal!"
292 " Must not have appropriate kill for the register or use exists beyond"
293 " the intended one.");
294 DOUT
<< " Spilling register " << TRI
->getName(PhysReg
)
295 << " containing %reg" << VirtReg
;
297 if (!isVirtRegModified(VirtReg
)) {
298 DOUT
<< " which has not been modified, so no store necessary!";
299 std::pair
<MachineInstr
*, unsigned> &LastUse
= getVirtRegLastUse(VirtReg
);
301 LastUse
.first
->getOperand(LastUse
.second
).setIsKill();
303 // Otherwise, there is a virtual register corresponding to this physical
304 // register. We only need to spill it into its stack slot if it has been
306 const TargetRegisterClass
*RC
= MF
->getRegInfo().getRegClass(VirtReg
);
307 int FrameIndex
= getStackSpaceFor(VirtReg
, RC
);
308 DOUT
<< " to stack slot #" << FrameIndex
;
309 // If the instruction reads the register that's spilled, (e.g. this can
310 // happen if it is a move to a physical register), then the spill
311 // instruction is not a kill.
312 bool isKill
= !(I
!= MBB
.end() && I
->readsRegister(PhysReg
));
313 TII
->storeRegToStackSlot(MBB
, I
, PhysReg
, isKill
, FrameIndex
, RC
);
314 ++NumStores
; // Update statistics
317 getVirt2PhysRegMapSlot(VirtReg
) = 0; // VirtReg no longer available
320 removePhysReg(PhysReg
);
324 /// spillPhysReg - This method spills the specified physical register into the
325 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
326 /// then the request is ignored if the physical register does not contain a
327 /// virtual register.
329 void RALocal::spillPhysReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
330 unsigned PhysReg
, bool OnlyVirtRegs
) {
331 if (PhysRegsUsed
[PhysReg
] != -1) { // Only spill it if it's used!
332 assert(PhysRegsUsed
[PhysReg
] != -2 && "Non allocable reg used!");
333 if (PhysRegsUsed
[PhysReg
] || !OnlyVirtRegs
)
334 spillVirtReg(MBB
, I
, PhysRegsUsed
[PhysReg
], PhysReg
);
336 // If the selected register aliases any other registers, we must make
337 // sure that one of the aliases isn't alive.
338 for (const unsigned *AliasSet
= TRI
->getAliasSet(PhysReg
);
339 *AliasSet
; ++AliasSet
)
340 if (PhysRegsUsed
[*AliasSet
] != -1 && // Spill aliased register.
341 PhysRegsUsed
[*AliasSet
] != -2) // If allocatable.
342 if (PhysRegsUsed
[*AliasSet
])
343 spillVirtReg(MBB
, I
, PhysRegsUsed
[*AliasSet
], *AliasSet
);
348 /// assignVirtToPhysReg - This method updates local state so that we know
349 /// that PhysReg is the proper container for VirtReg now. The physical
350 /// register must not be used for anything else when this is called.
352 void RALocal::assignVirtToPhysReg(unsigned VirtReg
, unsigned PhysReg
) {
353 assert(PhysRegsUsed
[PhysReg
] == -1 && "Phys reg already assigned!");
354 // Update information to note the fact that this register was just used, and
356 PhysRegsUsed
[PhysReg
] = VirtReg
;
357 getVirt2PhysRegMapSlot(VirtReg
) = PhysReg
;
358 AddToPhysRegsUseOrder(PhysReg
); // New use of PhysReg
362 /// isPhysRegAvailable - Return true if the specified physical register is free
363 /// and available for use. This also includes checking to see if aliased
364 /// registers are all free...
366 bool RALocal::isPhysRegAvailable(unsigned PhysReg
) const {
367 if (PhysRegsUsed
[PhysReg
] != -1) return false;
369 // If the selected register aliases any other allocated registers, it is
371 for (const unsigned *AliasSet
= TRI
->getAliasSet(PhysReg
);
372 *AliasSet
; ++AliasSet
)
373 if (PhysRegsUsed
[*AliasSet
] >= 0) // Aliased register in use?
374 return false; // Can't use this reg then.
379 /// getFreeReg - Look to see if there is a free register available in the
380 /// specified register class. If not, return 0.
382 unsigned RALocal::getFreeReg(const TargetRegisterClass
*RC
) {
383 // Get iterators defining the range of registers that are valid to allocate in
384 // this class, which also specifies the preferred allocation order.
385 TargetRegisterClass::iterator RI
= RC
->allocation_order_begin(*MF
);
386 TargetRegisterClass::iterator RE
= RC
->allocation_order_end(*MF
);
388 for (; RI
!= RE
; ++RI
)
389 if (isPhysRegAvailable(*RI
)) { // Is reg unused?
390 assert(*RI
!= 0 && "Cannot use register!");
391 return *RI
; // Found an unused register!
397 /// getReg - Find a physical register to hold the specified virtual
398 /// register. If all compatible physical registers are used, this method spills
399 /// the last used virtual register to the stack, and uses that register.
401 unsigned RALocal::getReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
402 unsigned VirtReg
, bool NoFree
) {
403 const TargetRegisterClass
*RC
= MF
->getRegInfo().getRegClass(VirtReg
);
405 // First check to see if we have a free register of the requested type...
406 unsigned PhysReg
= NoFree
? 0 : getFreeReg(RC
);
408 // If we didn't find an unused register, scavenge one now!
410 assert(!PhysRegsUseOrder
.empty() && "No allocated registers??");
412 // Loop over all of the preallocated registers from the least recently used
413 // to the most recently used. When we find one that is capable of holding
414 // our register, use it.
415 for (unsigned i
= 0; PhysReg
== 0; ++i
) {
416 assert(i
!= PhysRegsUseOrder
.size() &&
417 "Couldn't find a register of the appropriate class!");
419 unsigned R
= PhysRegsUseOrder
[i
];
421 // We can only use this register if it holds a virtual register (ie, it
422 // can be spilled). Do not use it if it is an explicitly allocated
423 // physical register!
424 assert(PhysRegsUsed
[R
] != -1 &&
425 "PhysReg in PhysRegsUseOrder, but is not allocated?");
426 if (PhysRegsUsed
[R
] && PhysRegsUsed
[R
] != -2) {
427 // If the current register is compatible, use it.
428 if (RC
->contains(R
)) {
432 // If one of the registers aliased to the current register is
433 // compatible, use it.
434 for (const unsigned *AliasIt
= TRI
->getAliasSet(R
);
435 *AliasIt
; ++AliasIt
) {
436 if (RC
->contains(*AliasIt
) &&
437 // If this is pinned down for some reason, don't use it. For
438 // example, if CL is pinned, and we run across CH, don't use
439 // CH as justification for using scavenging ECX (which will
441 PhysRegsUsed
[*AliasIt
] != 0 &&
443 // Make sure the register is allocatable. Don't allocate SIL on
445 PhysRegsUsed
[*AliasIt
] != -2) {
446 PhysReg
= *AliasIt
; // Take an aliased register
454 assert(PhysReg
&& "Physical register not assigned!?!?");
456 // At this point PhysRegsUseOrder[i] is the least recently used register of
457 // compatible register class. Spill it to memory and reap its remains.
458 spillPhysReg(MBB
, I
, PhysReg
);
461 // Now that we know which register we need to assign this to, do it now!
462 assignVirtToPhysReg(VirtReg
, PhysReg
);
467 /// reloadVirtReg - This method transforms the specified virtual
468 /// register use to refer to a physical register. This method may do this in
469 /// one of several ways: if the register is available in a physical register
470 /// already, it uses that physical register. If the value is not in a physical
471 /// register, and if there are physical registers available, it loads it into a
472 /// register. If register pressure is high, and it is possible, it tries to
473 /// fold the load of the virtual register into the instruction itself. It
474 /// avoids doing this if register pressure is low to improve the chance that
475 /// subsequent instructions can use the reloaded value. This method returns the
476 /// modified instruction.
478 MachineInstr
*RALocal::reloadVirtReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
480 SmallSet
<unsigned, 4> &ReloadedRegs
) {
481 unsigned VirtReg
= MI
->getOperand(OpNum
).getReg();
483 // If the virtual register is already available, just update the instruction
485 if (unsigned PR
= getVirt2PhysRegMapSlot(VirtReg
)) {
486 MarkPhysRegRecentlyUsed(PR
); // Already have this value available!
487 MI
->getOperand(OpNum
).setReg(PR
); // Assign the input register
488 getVirtRegLastUse(VirtReg
) = std::make_pair(MI
, OpNum
);
492 // Otherwise, we need to fold it into the current instruction, or reload it.
493 // If we have registers available to hold the value, use them.
494 const TargetRegisterClass
*RC
= MF
->getRegInfo().getRegClass(VirtReg
);
495 unsigned PhysReg
= getFreeReg(RC
);
496 int FrameIndex
= getStackSpaceFor(VirtReg
, RC
);
498 if (PhysReg
) { // Register is available, allocate it!
499 assignVirtToPhysReg(VirtReg
, PhysReg
);
500 } else { // No registers available.
501 // Force some poor hapless value out of the register file to
502 // make room for the new register, and reload it.
503 PhysReg
= getReg(MBB
, MI
, VirtReg
, true);
506 markVirtRegModified(VirtReg
, false); // Note that this reg was just reloaded
508 DOUT
<< " Reloading %reg" << VirtReg
<< " into "
509 << TRI
->getName(PhysReg
) << "\n";
511 // Add move instruction(s)
512 TII
->loadRegFromStackSlot(MBB
, MI
, PhysReg
, FrameIndex
, RC
);
513 ++NumLoads
; // Update statistics
515 MF
->getRegInfo().setPhysRegUsed(PhysReg
);
516 MI
->getOperand(OpNum
).setReg(PhysReg
); // Assign the input register
517 getVirtRegLastUse(VirtReg
) = std::make_pair(MI
, OpNum
);
519 if (!ReloadedRegs
.insert(PhysReg
)) {
520 cerr
<< "Ran out of registers during register allocation!\n";
521 if (MI
->getOpcode() == TargetInstrInfo::INLINEASM
) {
522 cerr
<< "Please check your inline asm statement for invalid "
524 MI
->print(cerr
.stream(), TM
);
528 for (const unsigned *SubRegs
= TRI
->getSubRegisters(PhysReg
);
529 *SubRegs
; ++SubRegs
) {
530 if (!ReloadedRegs
.insert(*SubRegs
)) {
531 cerr
<< "Ran out of registers during register allocation!\n";
532 if (MI
->getOpcode() == TargetInstrInfo::INLINEASM
) {
533 cerr
<< "Please check your inline asm statement for invalid "
535 MI
->print(cerr
.stream(), TM
);
544 /// isReadModWriteImplicitKill - True if this is an implicit kill for a
545 /// read/mod/write register, i.e. update partial register.
546 static bool isReadModWriteImplicitKill(MachineInstr
*MI
, unsigned Reg
) {
547 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
548 MachineOperand
& MO
= MI
->getOperand(i
);
549 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isImplicit() &&
550 MO
.isDef() && !MO
.isDead())
556 /// isReadModWriteImplicitDef - True if this is an implicit def for a
557 /// read/mod/write register, i.e. update partial register.
558 static bool isReadModWriteImplicitDef(MachineInstr
*MI
, unsigned Reg
) {
559 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
560 MachineOperand
& MO
= MI
->getOperand(i
);
561 if (MO
.isReg() && MO
.getReg() == Reg
&& MO
.isImplicit() &&
562 !MO
.isDef() && MO
.isKill())
568 // precedes - Helper function to determine with MachineInstr A
569 // precedes MachineInstr B within the same MBB.
570 static bool precedes(MachineBasicBlock::iterator A
,
571 MachineBasicBlock::iterator B
) {
575 MachineBasicBlock::iterator I
= A
->getParent()->begin();
576 while (I
!= A
->getParent()->end()) {
588 /// ComputeLocalLiveness - Computes liveness of registers within a basic
589 /// block, setting the killed/dead flags as appropriate.
590 void RALocal::ComputeLocalLiveness(MachineBasicBlock
& MBB
) {
591 MachineRegisterInfo
& MRI
= MBB
.getParent()->getRegInfo();
592 // Keep track of the most recently seen previous use or def of each reg,
593 // so that we can update them with dead/kill markers.
594 DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> > LastUseDef
;
595 for (MachineBasicBlock::iterator I
= MBB
.begin(), E
= MBB
.end();
597 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
598 MachineOperand
& MO
= I
->getOperand(i
);
599 // Uses don't trigger any flags, but we need to save
600 // them for later. Also, we have to process these
601 // _before_ processing the defs, since an instr
602 // uses regs before it defs them.
603 if (MO
.isReg() && MO
.getReg() && MO
.isUse()) {
604 LastUseDef
[MO
.getReg()] = std::make_pair(I
, i
);
607 if (TargetRegisterInfo::isVirtualRegister(MO
.getReg())) continue;
609 const unsigned* Aliases
= TRI
->getAliasSet(MO
.getReg());
612 DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> >::iterator
613 alias
= LastUseDef
.find(*Aliases
);
615 if (alias
!= LastUseDef
.end() && alias
->second
.first
!= I
)
616 LastUseDef
[*Aliases
] = std::make_pair(I
, i
);
624 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
625 MachineOperand
& MO
= I
->getOperand(i
);
626 // Defs others than 2-addr redefs _do_ trigger flag changes:
627 // - A def followed by a def is dead
628 // - A use followed by a def is a kill
629 if (MO
.isReg() && MO
.getReg() && MO
.isDef()) {
630 DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> >::iterator
631 last
= LastUseDef
.find(MO
.getReg());
632 if (last
!= LastUseDef
.end()) {
633 // Check if this is a two address instruction. If so, then
634 // the def does not kill the use.
635 if (last
->second
.first
== I
&&
636 I
->isRegTiedToUseOperand(i
))
639 MachineOperand
& lastUD
=
640 last
->second
.first
->getOperand(last
->second
.second
);
642 lastUD
.setIsDead(true);
644 lastUD
.setIsKill(true);
647 LastUseDef
[MO
.getReg()] = std::make_pair(I
, i
);
652 // Live-out (of the function) registers contain return values of the function,
653 // so we need to make sure they are alive at return time.
654 if (!MBB
.empty() && MBB
.back().getDesc().isReturn()) {
655 MachineInstr
* Ret
= &MBB
.back();
656 for (MachineRegisterInfo::liveout_iterator
657 I
= MF
->getRegInfo().liveout_begin(),
658 E
= MF
->getRegInfo().liveout_end(); I
!= E
; ++I
)
659 if (!Ret
->readsRegister(*I
)) {
660 Ret
->addOperand(MachineOperand::CreateReg(*I
, false, true));
661 LastUseDef
[*I
] = std::make_pair(Ret
, Ret
->getNumOperands()-1);
665 // Finally, loop over the final use/def of each reg
666 // in the block and determine if it is dead.
667 for (DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> >::iterator
668 I
= LastUseDef
.begin(), E
= LastUseDef
.end(); I
!= E
; ++I
) {
669 MachineInstr
* MI
= I
->second
.first
;
670 unsigned idx
= I
->second
.second
;
671 MachineOperand
& MO
= MI
->getOperand(idx
);
673 bool isPhysReg
= TargetRegisterInfo::isPhysicalRegister(MO
.getReg());
675 // A crude approximation of "live-out" calculation
676 bool usedOutsideBlock
= isPhysReg
? false :
677 UsedInMultipleBlocks
.test(MO
.getReg() -
678 TargetRegisterInfo::FirstVirtualRegister
);
679 if (!isPhysReg
&& !usedOutsideBlock
)
680 for (MachineRegisterInfo::reg_iterator UI
= MRI
.reg_begin(MO
.getReg()),
681 UE
= MRI
.reg_end(); UI
!= UE
; ++UI
)
683 // - used in another block
684 // - used in the same block before it is defined (loop)
685 if (UI
->getParent() != &MBB
||
686 (MO
.isDef() && UI
.getOperand().isUse() && precedes(&*UI
, MI
))) {
687 UsedInMultipleBlocks
.set(MO
.getReg() -
688 TargetRegisterInfo::FirstVirtualRegister
);
689 usedOutsideBlock
= true;
693 // Physical registers and those that are not live-out of the block
694 // are killed/dead at their last use/def within this block.
695 if (isPhysReg
|| !usedOutsideBlock
) {
697 // Don't mark uses that are tied to defs as kills.
698 if (!MI
->isRegTiedToDefOperand(idx
))
706 void RALocal::AllocateBasicBlock(MachineBasicBlock
&MBB
) {
707 // loop over each instruction
708 MachineBasicBlock::iterator MII
= MBB
.begin();
710 DEBUG(const BasicBlock
*LBB
= MBB
.getBasicBlock();
711 if (LBB
) DOUT
<< "\nStarting RegAlloc of BB: " << LBB
->getName());
713 // Add live-in registers as active.
714 for (MachineBasicBlock::livein_iterator I
= MBB
.livein_begin(),
715 E
= MBB
.livein_end(); I
!= E
; ++I
) {
717 MF
->getRegInfo().setPhysRegUsed(Reg
);
718 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
719 AddToPhysRegsUseOrder(Reg
);
720 for (const unsigned *SubRegs
= TRI
->getSubRegisters(Reg
);
721 *SubRegs
; ++SubRegs
) {
722 if (PhysRegsUsed
[*SubRegs
] != -2) {
723 AddToPhysRegsUseOrder(*SubRegs
);
724 PhysRegsUsed
[*SubRegs
] = 0; // It is free and reserved now
725 MF
->getRegInfo().setPhysRegUsed(*SubRegs
);
730 ComputeLocalLiveness(MBB
);
732 // Otherwise, sequentially allocate each instruction in the MBB.
733 while (MII
!= MBB
.end()) {
734 MachineInstr
*MI
= MII
++;
735 const TargetInstrDesc
&TID
= MI
->getDesc();
736 DEBUG(DOUT
<< "\nStarting RegAlloc of: " << *MI
;
737 DOUT
<< " Regs have values: ";
738 for (unsigned i
= 0; i
!= TRI
->getNumRegs(); ++i
)
739 if (PhysRegsUsed
[i
] != -1 && PhysRegsUsed
[i
] != -2)
740 DOUT
<< "[" << TRI
->getName(i
)
741 << ",%reg" << PhysRegsUsed
[i
] << "] ";
744 // Loop over the implicit uses, making sure that they are at the head of the
745 // use order list, so they don't get reallocated.
746 if (TID
.ImplicitUses
) {
747 for (const unsigned *ImplicitUses
= TID
.ImplicitUses
;
748 *ImplicitUses
; ++ImplicitUses
)
749 MarkPhysRegRecentlyUsed(*ImplicitUses
);
752 SmallVector
<unsigned, 8> Kills
;
753 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
754 MachineOperand
& MO
= MI
->getOperand(i
);
755 if (MO
.isReg() && MO
.isKill()) {
756 if (!MO
.isImplicit())
757 Kills
.push_back(MO
.getReg());
758 else if (!isReadModWriteImplicitKill(MI
, MO
.getReg()))
759 // These are extra physical register kills when a sub-register
760 // is defined (def of a sub-register is a read/mod/write of the
761 // larger registers). Ignore.
762 Kills
.push_back(MO
.getReg());
766 // If any physical regs are earlyclobber, spill any value they might
767 // have in them, then mark them unallocatable.
768 // If any virtual regs are earlyclobber, allocate them now (before
769 // freeing inputs that are killed).
770 if (MI
->getOpcode()==TargetInstrInfo::INLINEASM
) {
771 for (unsigned i
= 0; i
!= MI
->getNumOperands(); ++i
) {
772 MachineOperand
& MO
= MI
->getOperand(i
);
773 if (MO
.isReg() && MO
.isDef() && MO
.isEarlyClobber() &&
775 if (TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
776 unsigned DestVirtReg
= MO
.getReg();
777 unsigned DestPhysReg
;
779 // If DestVirtReg already has a value, use it.
780 if (!(DestPhysReg
= getVirt2PhysRegMapSlot(DestVirtReg
)))
781 DestPhysReg
= getReg(MBB
, MI
, DestVirtReg
);
782 MF
->getRegInfo().setPhysRegUsed(DestPhysReg
);
783 markVirtRegModified(DestVirtReg
);
784 getVirtRegLastUse(DestVirtReg
) =
785 std::make_pair((MachineInstr
*)0, 0);
786 DOUT
<< " Assigning " << TRI
->getName(DestPhysReg
)
787 << " to %reg" << DestVirtReg
<< "\n";
788 MO
.setReg(DestPhysReg
); // Assign the earlyclobber register
790 unsigned Reg
= MO
.getReg();
791 if (PhysRegsUsed
[Reg
] == -2) continue; // Something like ESP.
792 // These are extra physical register defs when a sub-register
793 // is defined (def of a sub-register is a read/mod/write of the
794 // larger registers). Ignore.
795 if (isReadModWriteImplicitDef(MI
, MO
.getReg())) continue;
797 MF
->getRegInfo().setPhysRegUsed(Reg
);
798 spillPhysReg(MBB
, MI
, Reg
, true); // Spill any existing value in reg
799 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
800 AddToPhysRegsUseOrder(Reg
);
802 for (const unsigned *SubRegs
= TRI
->getSubRegisters(Reg
);
803 *SubRegs
; ++SubRegs
) {
804 if (PhysRegsUsed
[*SubRegs
] != -2) {
805 MF
->getRegInfo().setPhysRegUsed(*SubRegs
);
806 PhysRegsUsed
[*SubRegs
] = 0; // It is free and reserved now
807 AddToPhysRegsUseOrder(*SubRegs
);
815 // Get the used operands into registers. This has the potential to spill
816 // incoming values if we are out of registers. Note that we completely
817 // ignore physical register uses here. We assume that if an explicit
818 // physical register is referenced by the instruction, that it is guaranteed
819 // to be live-in, or the input is badly hosed.
821 SmallSet
<unsigned, 4> ReloadedRegs
;
822 for (unsigned i
= 0; i
!= MI
->getNumOperands(); ++i
) {
823 MachineOperand
& MO
= MI
->getOperand(i
);
824 // here we are looking for only used operands (never def&use)
825 if (MO
.isReg() && !MO
.isDef() && MO
.getReg() && !MO
.isImplicit() &&
826 TargetRegisterInfo::isVirtualRegister(MO
.getReg()))
827 MI
= reloadVirtReg(MBB
, MI
, i
, ReloadedRegs
);
830 // If this instruction is the last user of this register, kill the
831 // value, freeing the register being used, so it doesn't need to be
832 // spilled to memory.
834 for (unsigned i
= 0, e
= Kills
.size(); i
!= e
; ++i
) {
835 unsigned VirtReg
= Kills
[i
];
836 unsigned PhysReg
= VirtReg
;
837 if (TargetRegisterInfo::isVirtualRegister(VirtReg
)) {
838 // If the virtual register was never materialized into a register, it
839 // might not be in the map, but it won't hurt to zero it out anyway.
840 unsigned &PhysRegSlot
= getVirt2PhysRegMapSlot(VirtReg
);
841 PhysReg
= PhysRegSlot
;
843 } else if (PhysRegsUsed
[PhysReg
] == -2) {
844 // Unallocatable register dead, ignore.
847 assert((!PhysRegsUsed
[PhysReg
] || PhysRegsUsed
[PhysReg
] == -1) &&
848 "Silently clearing a virtual register?");
852 DOUT
<< " Last use of " << TRI
->getName(PhysReg
)
853 << "[%reg" << VirtReg
<<"], removing it from live set\n";
854 removePhysReg(PhysReg
);
855 for (const unsigned *SubRegs
= TRI
->getSubRegisters(PhysReg
);
856 *SubRegs
; ++SubRegs
) {
857 if (PhysRegsUsed
[*SubRegs
] != -2) {
858 DOUT
<< " Last use of "
859 << TRI
->getName(*SubRegs
)
860 << "[%reg" << VirtReg
<<"], removing it from live set\n";
861 removePhysReg(*SubRegs
);
867 // Loop over all of the operands of the instruction, spilling registers that
868 // are defined, and marking explicit destinations in the PhysRegsUsed map.
869 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
870 MachineOperand
& MO
= MI
->getOperand(i
);
871 if (MO
.isReg() && MO
.isDef() && !MO
.isImplicit() && MO
.getReg() &&
872 !MO
.isEarlyClobber() &&
873 TargetRegisterInfo::isPhysicalRegister(MO
.getReg())) {
874 unsigned Reg
= MO
.getReg();
875 if (PhysRegsUsed
[Reg
] == -2) continue; // Something like ESP.
876 // These are extra physical register defs when a sub-register
877 // is defined (def of a sub-register is a read/mod/write of the
878 // larger registers). Ignore.
879 if (isReadModWriteImplicitDef(MI
, MO
.getReg())) continue;
881 MF
->getRegInfo().setPhysRegUsed(Reg
);
882 spillPhysReg(MBB
, MI
, Reg
, true); // Spill any existing value in reg
883 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
884 AddToPhysRegsUseOrder(Reg
);
886 for (const unsigned *SubRegs
= TRI
->getSubRegisters(Reg
);
887 *SubRegs
; ++SubRegs
) {
888 if (PhysRegsUsed
[*SubRegs
] != -2) {
889 MF
->getRegInfo().setPhysRegUsed(*SubRegs
);
890 PhysRegsUsed
[*SubRegs
] = 0; // It is free and reserved now
891 AddToPhysRegsUseOrder(*SubRegs
);
897 // Loop over the implicit defs, spilling them as well.
898 if (TID
.ImplicitDefs
) {
899 for (const unsigned *ImplicitDefs
= TID
.ImplicitDefs
;
900 *ImplicitDefs
; ++ImplicitDefs
) {
901 unsigned Reg
= *ImplicitDefs
;
902 if (PhysRegsUsed
[Reg
] != -2) {
903 spillPhysReg(MBB
, MI
, Reg
, true);
904 AddToPhysRegsUseOrder(Reg
);
905 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
907 MF
->getRegInfo().setPhysRegUsed(Reg
);
908 for (const unsigned *SubRegs
= TRI
->getSubRegisters(Reg
);
909 *SubRegs
; ++SubRegs
) {
910 if (PhysRegsUsed
[*SubRegs
] != -2) {
911 AddToPhysRegsUseOrder(*SubRegs
);
912 PhysRegsUsed
[*SubRegs
] = 0; // It is free and reserved now
913 MF
->getRegInfo().setPhysRegUsed(*SubRegs
);
919 SmallVector
<unsigned, 8> DeadDefs
;
920 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
921 MachineOperand
& MO
= MI
->getOperand(i
);
922 if (MO
.isReg() && MO
.isDead())
923 DeadDefs
.push_back(MO
.getReg());
926 // Okay, we have allocated all of the source operands and spilled any values
927 // that would be destroyed by defs of this instruction. Loop over the
928 // explicit defs and assign them to a register, spilling incoming values if
929 // we need to scavenge a register.
931 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
932 MachineOperand
& MO
= MI
->getOperand(i
);
933 if (MO
.isReg() && MO
.isDef() && MO
.getReg() &&
934 !MO
.isEarlyClobber() &&
935 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
936 unsigned DestVirtReg
= MO
.getReg();
937 unsigned DestPhysReg
;
939 // If DestVirtReg already has a value, use it.
940 if (!(DestPhysReg
= getVirt2PhysRegMapSlot(DestVirtReg
)))
941 DestPhysReg
= getReg(MBB
, MI
, DestVirtReg
);
942 MF
->getRegInfo().setPhysRegUsed(DestPhysReg
);
943 markVirtRegModified(DestVirtReg
);
944 getVirtRegLastUse(DestVirtReg
) = std::make_pair((MachineInstr
*)0, 0);
945 DOUT
<< " Assigning " << TRI
->getName(DestPhysReg
)
946 << " to %reg" << DestVirtReg
<< "\n";
947 MO
.setReg(DestPhysReg
); // Assign the output register
951 // If this instruction defines any registers that are immediately dead,
954 for (unsigned i
= 0, e
= DeadDefs
.size(); i
!= e
; ++i
) {
955 unsigned VirtReg
= DeadDefs
[i
];
956 unsigned PhysReg
= VirtReg
;
957 if (TargetRegisterInfo::isVirtualRegister(VirtReg
)) {
958 unsigned &PhysRegSlot
= getVirt2PhysRegMapSlot(VirtReg
);
959 PhysReg
= PhysRegSlot
;
960 assert(PhysReg
!= 0);
962 } else if (PhysRegsUsed
[PhysReg
] == -2) {
963 // Unallocatable register dead, ignore.
968 DOUT
<< " Register " << TRI
->getName(PhysReg
)
969 << " [%reg" << VirtReg
970 << "] is never used, removing it from live set\n";
971 removePhysReg(PhysReg
);
972 for (const unsigned *AliasSet
= TRI
->getAliasSet(PhysReg
);
973 *AliasSet
; ++AliasSet
) {
974 if (PhysRegsUsed
[*AliasSet
] != -2) {
975 DOUT
<< " Register " << TRI
->getName(*AliasSet
)
976 << " [%reg" << *AliasSet
977 << "] is never used, removing it from live set\n";
978 removePhysReg(*AliasSet
);
984 // Finally, if this is a noop copy instruction, zap it. (Except that if
985 // the copy is dead, it must be kept to avoid messing up liveness info for
986 // the register scavenger. See pr4100.)
987 unsigned SrcReg
, DstReg
, SrcSubReg
, DstSubReg
;
988 if (TII
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
) &&
989 SrcReg
== DstReg
&& DeadDefs
.empty())
993 MachineBasicBlock::iterator MI
= MBB
.getFirstTerminator();
995 // Spill all physical registers holding virtual registers now.
996 for (unsigned i
= 0, e
= TRI
->getNumRegs(); i
!= e
; ++i
)
997 if (PhysRegsUsed
[i
] != -1 && PhysRegsUsed
[i
] != -2) {
998 if (unsigned VirtReg
= PhysRegsUsed
[i
])
999 spillVirtReg(MBB
, MI
, VirtReg
, i
);
1005 // This checking code is very expensive.
1007 for (unsigned i
= TargetRegisterInfo::FirstVirtualRegister
,
1008 e
= MF
->getRegInfo().getLastVirtReg(); i
<= e
; ++i
)
1009 if (unsigned PR
= Virt2PhysRegMap
[i
]) {
1010 cerr
<< "Register still mapped: " << i
<< " -> " << PR
<< "\n";
1013 assert(AllOk
&& "Virtual registers still in phys regs?");
1016 // Clear any physical register which appear live at the end of the basic
1017 // block, but which do not hold any virtual registers. e.g., the stack
1019 PhysRegsUseOrder
.clear();
1022 /// runOnMachineFunction - Register allocate the whole function
1024 bool RALocal::runOnMachineFunction(MachineFunction
&Fn
) {
1025 DOUT
<< "Machine Function " << "\n";
1027 TM
= &Fn
.getTarget();
1028 TRI
= TM
->getRegisterInfo();
1029 TII
= TM
->getInstrInfo();
1031 PhysRegsUsed
.assign(TRI
->getNumRegs(), -1);
1033 // At various places we want to efficiently check to see whether a register
1034 // is allocatable. To handle this, we mark all unallocatable registers as
1035 // being pinned down, permanently.
1037 BitVector Allocable
= TRI
->getAllocatableSet(Fn
);
1038 for (unsigned i
= 0, e
= Allocable
.size(); i
!= e
; ++i
)
1040 PhysRegsUsed
[i
] = -2; // Mark the reg unallocable.
1043 // initialize the virtual->physical register map to have a 'null'
1044 // mapping for all virtual registers
1045 unsigned LastVirtReg
= MF
->getRegInfo().getLastVirtReg();
1046 StackSlotForVirtReg
.grow(LastVirtReg
);
1047 Virt2PhysRegMap
.grow(LastVirtReg
);
1048 Virt2LastUseMap
.grow(LastVirtReg
);
1049 VirtRegModified
.resize(LastVirtReg
+1-TargetRegisterInfo::FirstVirtualRegister
);
1050 UsedInMultipleBlocks
.resize(LastVirtReg
+1-TargetRegisterInfo::FirstVirtualRegister
);
1052 // Loop over all of the basic blocks, eliminating virtual register references
1053 for (MachineFunction::iterator MBB
= Fn
.begin(), MBBe
= Fn
.end();
1055 AllocateBasicBlock(*MBB
);
1057 StackSlotForVirtReg
.clear();
1058 PhysRegsUsed
.clear();
1059 VirtRegModified
.clear();
1060 UsedInMultipleBlocks
.clear();
1061 Virt2PhysRegMap
.clear();
1062 Virt2LastUseMap
.clear();
1066 FunctionPass
*llvm::createLocalRegisterAllocator() {
1067 return new RALocal();