(Hopefully) unbreak Apple-style builds.
[llvm/msp430.git] / lib / CodeGen / VirtRegRewriter.cpp
blob36d169754949216a813ee3b904f455d4551bb2df
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "llvm/Support/Compiler.h"
13 #include "llvm/ADT/DepthFirstIterator.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include <algorithm>
17 using namespace llvm;
19 STATISTIC(NumDSE , "Number of dead stores elided");
20 STATISTIC(NumDSS , "Number of dead spill slots removed");
21 STATISTIC(NumCommutes, "Number of instructions commuted");
22 STATISTIC(NumDRM , "Number of re-materializable defs elided");
23 STATISTIC(NumStores , "Number of stores added");
24 STATISTIC(NumPSpills , "Number of physical register spills");
25 STATISTIC(NumOmitted , "Number of reloads omited");
26 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
27 STATISTIC(NumCopified, "Number of available reloads turned into copies");
28 STATISTIC(NumReMats , "Number of re-materialization");
29 STATISTIC(NumLoads , "Number of loads added");
30 STATISTIC(NumReused , "Number of values reused");
31 STATISTIC(NumDCE , "Number of copies elided");
32 STATISTIC(NumSUnfold , "Number of stores unfolded");
33 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
35 namespace {
36 enum RewriterName { simple, local };
39 static cl::opt<RewriterName>
40 RewriterOpt("rewriter",
41 cl::desc("Rewriter to use: (default: local)"),
42 cl::Prefix,
43 cl::values(clEnumVal(simple, "simple rewriter"),
44 clEnumVal(local, "local rewriter"),
45 clEnumValEnd),
46 cl::init(local));
48 VirtRegRewriter::~VirtRegRewriter() {}
51 // ****************************** //
52 // Simple Spiller Implementation //
53 // ****************************** //
55 struct VISIBILITY_HIDDEN SimpleRewriter : public VirtRegRewriter {
57 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
58 LiveIntervals* LIs) {
59 DOUT << "********** REWRITE MACHINE CODE **********\n";
60 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
61 const TargetMachine &TM = MF.getTarget();
62 const TargetInstrInfo &TII = *TM.getInstrInfo();
63 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
66 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
67 // each vreg once (in the case where a spilled vreg is used by multiple
68 // operands). This is always smaller than the number of operands to the
69 // current machine instr, so it should be small.
70 std::vector<unsigned> LoadedRegs;
72 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
73 MBBI != E; ++MBBI) {
74 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
75 MachineBasicBlock &MBB = *MBBI;
76 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
77 MII != E; ++MII) {
78 MachineInstr &MI = *MII;
79 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
80 MachineOperand &MO = MI.getOperand(i);
81 if (MO.isReg() && MO.getReg()) {
82 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
83 unsigned VirtReg = MO.getReg();
84 unsigned SubIdx = MO.getSubReg();
85 unsigned PhysReg = VRM.getPhys(VirtReg);
86 unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
87 if (!VRM.isAssignedReg(VirtReg)) {
88 int StackSlot = VRM.getStackSlot(VirtReg);
89 const TargetRegisterClass* RC =
90 MF.getRegInfo().getRegClass(VirtReg);
92 if (MO.isUse() &&
93 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
94 == LoadedRegs.end()) {
95 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
96 MachineInstr *LoadMI = prior(MII);
97 VRM.addSpillSlotUse(StackSlot, LoadMI);
98 LoadedRegs.push_back(VirtReg);
99 ++NumLoads;
100 DOUT << '\t' << *LoadMI;
103 if (MO.isDef()) {
104 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
105 StackSlot, RC);
106 MachineInstr *StoreMI = next(MII);
107 VRM.addSpillSlotUse(StackSlot, StoreMI);
108 ++NumStores;
111 MF.getRegInfo().setPhysRegUsed(RReg);
112 MI.getOperand(i).setReg(RReg);
113 MI.getOperand(i).setSubReg(0);
114 } else {
115 MF.getRegInfo().setPhysRegUsed(MO.getReg());
120 DOUT << '\t' << MI;
121 LoadedRegs.clear();
124 return true;
129 // ************************************************************************ //
131 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
132 /// from top down, keep track of which spill slots or remat are available in
133 /// each register.
135 /// Note that not all physregs are created equal here. In particular, some
136 /// physregs are reloads that we are allowed to clobber or ignore at any time.
137 /// Other physregs are values that the register allocated program is using
138 /// that we cannot CHANGE, but we can read if we like. We keep track of this
139 /// on a per-stack-slot / remat id basis as the low bit in the value of the
140 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
141 /// this bit and addAvailable sets it if.
142 class VISIBILITY_HIDDEN AvailableSpills {
143 const TargetRegisterInfo *TRI;
144 const TargetInstrInfo *TII;
146 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
147 // or remat'ed virtual register values that are still available, due to
148 // being loaded or stored to, but not invalidated yet.
149 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
151 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
152 // indicating which stack slot values are currently held by a physreg. This
153 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
154 // physreg is modified.
155 std::multimap<unsigned, int> PhysRegsAvailable;
157 void disallowClobberPhysRegOnly(unsigned PhysReg);
159 void ClobberPhysRegOnly(unsigned PhysReg);
160 public:
161 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
162 : TRI(tri), TII(tii) {
165 /// clear - Reset the state.
166 void clear() {
167 SpillSlotsOrReMatsAvailable.clear();
168 PhysRegsAvailable.clear();
171 const TargetRegisterInfo *getRegInfo() const { return TRI; }
173 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
174 /// available in a physical register, return that PhysReg, otherwise
175 /// return 0.
176 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
177 std::map<int, unsigned>::const_iterator I =
178 SpillSlotsOrReMatsAvailable.find(Slot);
179 if (I != SpillSlotsOrReMatsAvailable.end()) {
180 return I->second >> 1; // Remove the CanClobber bit.
182 return 0;
185 /// addAvailable - Mark that the specified stack slot / remat is available
186 /// in the specified physreg. If CanClobber is true, the physreg can be
187 /// modified at any time without changing the semantics of the program.
188 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
189 // If this stack slot is thought to be available in some other physreg,
190 // remove its record.
191 ModifyStackSlotOrReMat(SlotOrReMat);
193 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
194 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
195 (unsigned)CanClobber;
197 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
198 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
199 else
200 DOUT << "Remembering SS#" << SlotOrReMat;
201 DOUT << " in physreg " << TRI->getName(Reg) << "\n";
204 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
205 /// the value of the specified stackslot register if it desires. The
206 /// specified stack slot must be available in a physreg for this query to
207 /// make sense.
208 bool canClobberPhysRegForSS(int SlotOrReMat) const {
209 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
210 "Value not available!");
211 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
214 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
215 /// physical register where values for some stack slot(s) might be
216 /// available.
217 bool canClobberPhysReg(unsigned PhysReg) const {
218 std::multimap<unsigned, int>::const_iterator I =
219 PhysRegsAvailable.lower_bound(PhysReg);
220 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
221 int SlotOrReMat = I->second;
222 I++;
223 if (!canClobberPhysRegForSS(SlotOrReMat))
224 return false;
226 return true;
229 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
230 /// stackslot register. The register is still available but is no longer
231 /// allowed to be modifed.
232 void disallowClobberPhysReg(unsigned PhysReg);
234 /// ClobberPhysReg - This is called when the specified physreg changes
235 /// value. We use this to invalidate any info about stuff that lives in
236 /// it and any of its aliases.
237 void ClobberPhysReg(unsigned PhysReg);
239 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
240 /// slot changes. This removes information about which register the
241 /// previous value for this slot lives in (as the previous value is dead
242 /// now).
243 void ModifyStackSlotOrReMat(int SlotOrReMat);
245 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
246 /// into the specified MBB. Add available physical registers as potential
247 /// live-in's. If they are reused in the MBB, they will be added to the
248 /// live-in set to make register scavenger and post-allocation scheduler.
249 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
250 std::vector<MachineOperand*> &KillOps);
253 // ************************************************************************ //
255 // ReusedOp - For each reused operand, we keep track of a bit of information,
256 // in case we need to rollback upon processing a new operand. See comments
257 // below.
258 struct ReusedOp {
259 // The MachineInstr operand that reused an available value.
260 unsigned Operand;
262 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
263 unsigned StackSlotOrReMat;
265 // PhysRegReused - The physical register the value was available in.
266 unsigned PhysRegReused;
268 // AssignedPhysReg - The physreg that was assigned for use by the reload.
269 unsigned AssignedPhysReg;
271 // VirtReg - The virtual register itself.
272 unsigned VirtReg;
274 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
275 unsigned vreg)
276 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
277 AssignedPhysReg(apr), VirtReg(vreg) {}
280 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
281 /// is reused instead of reloaded.
282 class VISIBILITY_HIDDEN ReuseInfo {
283 MachineInstr &MI;
284 std::vector<ReusedOp> Reuses;
285 BitVector PhysRegsClobbered;
286 public:
287 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
288 PhysRegsClobbered.resize(tri->getNumRegs());
291 bool hasReuses() const {
292 return !Reuses.empty();
295 /// addReuse - If we choose to reuse a virtual register that is already
296 /// available instead of reloading it, remember that we did so.
297 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
298 unsigned PhysRegReused, unsigned AssignedPhysReg,
299 unsigned VirtReg) {
300 // If the reload is to the assigned register anyway, no undo will be
301 // required.
302 if (PhysRegReused == AssignedPhysReg) return;
304 // Otherwise, remember this.
305 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
306 AssignedPhysReg, VirtReg));
309 void markClobbered(unsigned PhysReg) {
310 PhysRegsClobbered.set(PhysReg);
313 bool isClobbered(unsigned PhysReg) const {
314 return PhysRegsClobbered.test(PhysReg);
317 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
318 /// is some other operand that is using the specified register, either pick
319 /// a new register to use, or evict the previous reload and use this reg.
320 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
321 AvailableSpills &Spills,
322 std::vector<MachineInstr*> &MaybeDeadStores,
323 SmallSet<unsigned, 8> &Rejected,
324 BitVector &RegKills,
325 std::vector<MachineOperand*> &KillOps,
326 VirtRegMap &VRM);
328 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
329 /// 'Rejected' set to remember which registers have been considered and
330 /// rejected for the reload. This avoids infinite looping in case like
331 /// this:
332 /// t1 := op t2, t3
333 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
334 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
335 /// t1 <- desires r1
336 /// sees r1 is taken by t2, tries t2's reload register r0
337 /// sees r0 is taken by t3, tries t3's reload register r1
338 /// sees r1 is taken by t2, tries t2's reload register r0 ...
339 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
340 AvailableSpills &Spills,
341 std::vector<MachineInstr*> &MaybeDeadStores,
342 BitVector &RegKills,
343 std::vector<MachineOperand*> &KillOps,
344 VirtRegMap &VRM) {
345 SmallSet<unsigned, 8> Rejected;
346 return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
347 RegKills, KillOps, VRM);
352 // ****************** //
353 // Utility Functions //
354 // ****************** //
356 /// findSinglePredSuccessor - Return via reference a vector of machine basic
357 /// blocks each of which is a successor of the specified BB and has no other
358 /// predecessor.
359 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
360 SmallVectorImpl<MachineBasicBlock *> &Succs) {
361 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
362 SE = MBB->succ_end(); SI != SE; ++SI) {
363 MachineBasicBlock *SuccMBB = *SI;
364 if (SuccMBB->pred_size() == 1)
365 Succs.push_back(SuccMBB);
369 /// InvalidateKill - Invalidate register kill information for a specific
370 /// register. This also unsets the kills marker on the last kill operand.
371 static void InvalidateKill(unsigned Reg,
372 const TargetRegisterInfo* TRI,
373 BitVector &RegKills,
374 std::vector<MachineOperand*> &KillOps) {
375 if (RegKills[Reg]) {
376 KillOps[Reg]->setIsKill(false);
377 KillOps[Reg] = NULL;
378 RegKills.reset(Reg);
379 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
380 if (RegKills[*SR]) {
381 KillOps[*SR]->setIsKill(false);
382 KillOps[*SR] = NULL;
383 RegKills.reset(*SR);
389 /// InvalidateKills - MI is going to be deleted. If any of its operands are
390 /// marked kill, then invalidate the information.
391 static void InvalidateKills(MachineInstr &MI,
392 const TargetRegisterInfo* TRI,
393 BitVector &RegKills,
394 std::vector<MachineOperand*> &KillOps,
395 SmallVector<unsigned, 2> *KillRegs = NULL) {
396 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
397 MachineOperand &MO = MI.getOperand(i);
398 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
399 continue;
400 unsigned Reg = MO.getReg();
401 if (TargetRegisterInfo::isVirtualRegister(Reg))
402 continue;
403 if (KillRegs)
404 KillRegs->push_back(Reg);
405 assert(Reg < KillOps.size());
406 if (KillOps[Reg] == &MO) {
407 KillOps[Reg] = NULL;
408 RegKills.reset(Reg);
409 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
410 if (RegKills[*SR]) {
411 KillOps[*SR] = NULL;
412 RegKills.reset(*SR);
419 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
420 /// (since it's spill instruction is removed), mark it isDead. Also checks if
421 /// the def MI has other definition operands that are not dead. Returns it by
422 /// reference.
423 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
424 MachineInstr &NewDef, unsigned Reg,
425 bool &HasLiveDef) {
426 // Due to remat, it's possible this reg isn't being reused. That is,
427 // the def of this reg (by prev MI) is now dead.
428 MachineInstr *DefMI = I;
429 MachineOperand *DefOp = NULL;
430 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
431 MachineOperand &MO = DefMI->getOperand(i);
432 if (MO.isReg() && MO.isDef()) {
433 if (MO.getReg() == Reg)
434 DefOp = &MO;
435 else if (!MO.isDead())
436 HasLiveDef = true;
439 if (!DefOp)
440 return false;
442 bool FoundUse = false, Done = false;
443 MachineBasicBlock::iterator E = &NewDef;
444 ++I; ++E;
445 for (; !Done && I != E; ++I) {
446 MachineInstr *NMI = I;
447 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
448 MachineOperand &MO = NMI->getOperand(j);
449 if (!MO.isReg() || MO.getReg() != Reg)
450 continue;
451 if (MO.isUse())
452 FoundUse = true;
453 Done = true; // Stop after scanning all the operands of this MI.
456 if (!FoundUse) {
457 // Def is dead!
458 DefOp->setIsDead();
459 return true;
461 return false;
464 /// UpdateKills - Track and update kill info. If a MI reads a register that is
465 /// marked kill, then it must be due to register reuse. Transfer the kill info
466 /// over.
467 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
468 BitVector &RegKills,
469 std::vector<MachineOperand*> &KillOps) {
470 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
471 MachineOperand &MO = MI.getOperand(i);
472 if (!MO.isReg() || !MO.isUse())
473 continue;
474 unsigned Reg = MO.getReg();
475 if (Reg == 0)
476 continue;
478 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
479 // That can't be right. Register is killed but not re-defined and it's
480 // being reused. Let's fix that.
481 KillOps[Reg]->setIsKill(false);
482 KillOps[Reg] = NULL;
483 RegKills.reset(Reg);
484 if (!MI.isRegTiedToDefOperand(i))
485 // Unless it's a two-address operand, this is the new kill.
486 MO.setIsKill();
488 if (MO.isKill()) {
489 RegKills.set(Reg);
490 KillOps[Reg] = &MO;
491 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
492 RegKills.set(*SR);
493 KillOps[*SR] = &MO;
498 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
499 const MachineOperand &MO = MI.getOperand(i);
500 if (!MO.isReg() || !MO.isDef())
501 continue;
502 unsigned Reg = MO.getReg();
503 RegKills.reset(Reg);
504 KillOps[Reg] = NULL;
505 // It also defines (or partially define) aliases.
506 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
507 RegKills.reset(*SR);
508 KillOps[*SR] = NULL;
513 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
515 static void ReMaterialize(MachineBasicBlock &MBB,
516 MachineBasicBlock::iterator &MII,
517 unsigned DestReg, unsigned Reg,
518 const TargetInstrInfo *TII,
519 const TargetRegisterInfo *TRI,
520 VirtRegMap &VRM) {
521 TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
522 MachineInstr *NewMI = prior(MII);
523 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
524 MachineOperand &MO = NewMI->getOperand(i);
525 if (!MO.isReg() || MO.getReg() == 0)
526 continue;
527 unsigned VirtReg = MO.getReg();
528 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
529 continue;
530 assert(MO.isUse());
531 unsigned SubIdx = MO.getSubReg();
532 unsigned Phys = VRM.getPhys(VirtReg);
533 assert(Phys);
534 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
535 MO.setReg(RReg);
536 MO.setSubReg(0);
538 ++NumReMats;
541 /// findSuperReg - Find the SubReg's super-register of given register class
542 /// where its SubIdx sub-register is SubReg.
543 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
544 unsigned SubIdx, const TargetRegisterInfo *TRI) {
545 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
546 I != E; ++I) {
547 unsigned Reg = *I;
548 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
549 return Reg;
551 return 0;
554 // ******************************** //
555 // Available Spills Implementation //
556 // ******************************** //
558 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
559 /// stackslot register. The register is still available but is no longer
560 /// allowed to be modifed.
561 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
562 std::multimap<unsigned, int>::iterator I =
563 PhysRegsAvailable.lower_bound(PhysReg);
564 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
565 int SlotOrReMat = I->second;
566 I++;
567 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
568 "Bidirectional map mismatch!");
569 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
570 DOUT << "PhysReg " << TRI->getName(PhysReg)
571 << " copied, it is available for use but can no longer be modified\n";
575 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
576 /// stackslot register and its aliases. The register and its aliases may
577 /// still available but is no longer allowed to be modifed.
578 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
579 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
580 disallowClobberPhysRegOnly(*AS);
581 disallowClobberPhysRegOnly(PhysReg);
584 /// ClobberPhysRegOnly - This is called when the specified physreg changes
585 /// value. We use this to invalidate any info about stuff we thing lives in it.
586 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
587 std::multimap<unsigned, int>::iterator I =
588 PhysRegsAvailable.lower_bound(PhysReg);
589 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
590 int SlotOrReMat = I->second;
591 PhysRegsAvailable.erase(I++);
592 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
593 "Bidirectional map mismatch!");
594 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
595 DOUT << "PhysReg " << TRI->getName(PhysReg)
596 << " clobbered, invalidating ";
597 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
598 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
599 else
600 DOUT << "SS#" << SlotOrReMat << "\n";
604 /// ClobberPhysReg - This is called when the specified physreg changes
605 /// value. We use this to invalidate any info about stuff we thing lives in
606 /// it and any of its aliases.
607 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
608 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
609 ClobberPhysRegOnly(*AS);
610 ClobberPhysRegOnly(PhysReg);
613 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
614 /// into the specified MBB. Add available physical registers as potential
615 /// live-in's. If they are reused in the MBB, they will be added to the
616 /// live-in set to make register scavenger and post-allocation scheduler.
617 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
618 BitVector &RegKills,
619 std::vector<MachineOperand*> &KillOps) {
620 std::set<unsigned> NotAvailable;
621 for (std::multimap<unsigned, int>::iterator
622 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
623 I != E; ++I) {
624 unsigned Reg = I->first;
625 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
626 // FIXME: A temporary workaround. We can't reuse available value if it's
627 // not safe to move the def of the virtual register's class. e.g.
628 // X86::RFP* register classes. Do not add it as a live-in.
629 if (!TII->isSafeToMoveRegClassDefs(RC))
630 // This is no longer available.
631 NotAvailable.insert(Reg);
632 else {
633 MBB.addLiveIn(Reg);
634 InvalidateKill(Reg, TRI, RegKills, KillOps);
637 // Skip over the same register.
638 std::multimap<unsigned, int>::iterator NI = next(I);
639 while (NI != E && NI->first == Reg) {
640 ++I;
641 ++NI;
645 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
646 E = NotAvailable.end(); I != E; ++I) {
647 ClobberPhysReg(*I);
648 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
649 *SubRegs; ++SubRegs)
650 ClobberPhysReg(*SubRegs);
654 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
655 /// slot changes. This removes information about which register the previous
656 /// value for this slot lives in (as the previous value is dead now).
657 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
658 std::map<int, unsigned>::iterator It =
659 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
660 if (It == SpillSlotsOrReMatsAvailable.end()) return;
661 unsigned Reg = It->second >> 1;
662 SpillSlotsOrReMatsAvailable.erase(It);
664 // This register may hold the value of multiple stack slots, only remove this
665 // stack slot from the set of values the register contains.
666 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
667 for (; ; ++I) {
668 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
669 "Map inverse broken!");
670 if (I->second == SlotOrReMat) break;
672 PhysRegsAvailable.erase(I);
675 // ************************** //
676 // Reuse Info Implementation //
677 // ************************** //
679 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
680 /// is some other operand that is using the specified register, either pick
681 /// a new register to use, or evict the previous reload and use this reg.
682 unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
683 AvailableSpills &Spills,
684 std::vector<MachineInstr*> &MaybeDeadStores,
685 SmallSet<unsigned, 8> &Rejected,
686 BitVector &RegKills,
687 std::vector<MachineOperand*> &KillOps,
688 VirtRegMap &VRM) {
689 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
690 .getInstrInfo();
692 if (Reuses.empty()) return PhysReg; // This is most often empty.
694 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
695 ReusedOp &Op = Reuses[ro];
696 // If we find some other reuse that was supposed to use this register
697 // exactly for its reload, we can change this reload to use ITS reload
698 // register. That is, unless its reload register has already been
699 // considered and subsequently rejected because it has also been reused
700 // by another operand.
701 if (Op.PhysRegReused == PhysReg &&
702 Rejected.count(Op.AssignedPhysReg) == 0) {
703 // Yup, use the reload register that we didn't use before.
704 unsigned NewReg = Op.AssignedPhysReg;
705 Rejected.insert(PhysReg);
706 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
707 RegKills, KillOps, VRM);
708 } else {
709 // Otherwise, we might also have a problem if a previously reused
710 // value aliases the new register. If so, codegen the previous reload
711 // and use this one.
712 unsigned PRRU = Op.PhysRegReused;
713 const TargetRegisterInfo *TRI = Spills.getRegInfo();
714 if (TRI->areAliases(PRRU, PhysReg)) {
715 // Okay, we found out that an alias of a reused register
716 // was used. This isn't good because it means we have
717 // to undo a previous reuse.
718 MachineBasicBlock *MBB = MI->getParent();
719 const TargetRegisterClass *AliasRC =
720 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
722 // Copy Op out of the vector and remove it, we're going to insert an
723 // explicit load for it.
724 ReusedOp NewOp = Op;
725 Reuses.erase(Reuses.begin()+ro);
727 // Ok, we're going to try to reload the assigned physreg into the
728 // slot that we were supposed to in the first place. However, that
729 // register could hold a reuse. Check to see if it conflicts or
730 // would prefer us to use a different register.
731 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
732 MI, Spills, MaybeDeadStores,
733 Rejected, RegKills, KillOps, VRM);
735 MachineBasicBlock::iterator MII = MI;
736 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
737 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
738 } else {
739 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
740 NewOp.StackSlotOrReMat, AliasRC);
741 MachineInstr *LoadMI = prior(MII);
742 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
743 // Any stores to this stack slot are not dead anymore.
744 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
745 ++NumLoads;
747 Spills.ClobberPhysReg(NewPhysReg);
748 Spills.ClobberPhysReg(NewOp.PhysRegReused);
750 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
751 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
752 MI->getOperand(NewOp.Operand).setReg(RReg);
753 MI->getOperand(NewOp.Operand).setSubReg(0);
755 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
756 --MII;
757 UpdateKills(*MII, TRI, RegKills, KillOps);
758 DOUT << '\t' << *MII;
760 DOUT << "Reuse undone!\n";
761 --NumReused;
763 // Finally, PhysReg is now available, go ahead and use it.
764 return PhysReg;
768 return PhysReg;
771 // ************************************************************************ //
773 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
774 /// stack slot mod/ref. It also checks if it's possible to unfold the
775 /// instruction by having it define a specified physical register instead.
776 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
777 const TargetInstrInfo *TII,
778 const TargetRegisterInfo *TRI,
779 VirtRegMap &VRM) {
780 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
781 return false;
783 bool Found = false;
784 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
785 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
786 unsigned VirtReg = I->second.first;
787 VirtRegMap::ModRef MR = I->second.second;
788 if (MR & VirtRegMap::isModRef)
789 if (VRM.getStackSlot(VirtReg) == SS) {
790 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
791 break;
794 if (!Found)
795 return false;
797 // Does the instruction uses a register that overlaps the scratch register?
798 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
799 MachineOperand &MO = MI.getOperand(i);
800 if (!MO.isReg() || MO.getReg() == 0)
801 continue;
802 unsigned Reg = MO.getReg();
803 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
804 if (!VRM.hasPhys(Reg))
805 continue;
806 Reg = VRM.getPhys(Reg);
808 if (TRI->regsOverlap(PhysReg, Reg))
809 return false;
811 return true;
814 /// FindFreeRegister - Find a free register of a given register class by looking
815 /// at (at most) the last two machine instructions.
816 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
817 MachineBasicBlock &MBB,
818 const TargetRegisterClass *RC,
819 const TargetRegisterInfo *TRI,
820 BitVector &AllocatableRegs) {
821 BitVector Defs(TRI->getNumRegs());
822 BitVector Uses(TRI->getNumRegs());
823 SmallVector<unsigned, 4> LocalUses;
824 SmallVector<unsigned, 4> Kills;
826 // Take a look at 2 instructions at most.
827 for (unsigned Count = 0; Count < 2; ++Count) {
828 if (MII == MBB.begin())
829 break;
830 MachineInstr *PrevMI = prior(MII);
831 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
832 MachineOperand &MO = PrevMI->getOperand(i);
833 if (!MO.isReg() || MO.getReg() == 0)
834 continue;
835 unsigned Reg = MO.getReg();
836 if (MO.isDef()) {
837 Defs.set(Reg);
838 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
839 Defs.set(*AS);
840 } else {
841 LocalUses.push_back(Reg);
842 if (MO.isKill() && AllocatableRegs[Reg])
843 Kills.push_back(Reg);
847 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
848 unsigned Kill = Kills[i];
849 if (!Defs[Kill] && !Uses[Kill] &&
850 TRI->getPhysicalRegisterRegClass(Kill) == RC)
851 return Kill;
853 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
854 unsigned Reg = LocalUses[i];
855 Uses.set(Reg);
856 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
857 Uses.set(*AS);
860 MII = PrevMI;
863 return 0;
866 static
867 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
868 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
869 MachineOperand &MO = MI->getOperand(i);
870 if (MO.isReg() && MO.getReg() == VirtReg)
871 MO.setReg(PhysReg);
875 namespace {
876 struct RefSorter {
877 bool operator()(const std::pair<MachineInstr*, int> &A,
878 const std::pair<MachineInstr*, int> &B) {
879 return A.second < B.second;
884 // ***************************** //
885 // Local Spiller Implementation //
886 // ***************************** //
888 class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
889 MachineRegisterInfo *RegInfo;
890 const TargetRegisterInfo *TRI;
891 const TargetInstrInfo *TII;
892 BitVector AllocatableRegs;
893 DenseMap<MachineInstr*, unsigned> DistanceMap;
894 public:
896 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
897 LiveIntervals* LIs) {
898 RegInfo = &MF.getRegInfo();
899 TRI = MF.getTarget().getRegisterInfo();
900 TII = MF.getTarget().getInstrInfo();
901 AllocatableRegs = TRI->getAllocatableSet(MF);
902 DOUT << "\n**** Local spiller rewriting function '"
903 << MF.getFunction()->getName() << "':\n";
904 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
905 " ****\n";
906 DEBUG(MF.dump());
908 // Spills - Keep track of which spilled values are available in physregs
909 // so that we can choose to reuse the physregs instead of emitting
910 // reloads. This is usually refreshed per basic block.
911 AvailableSpills Spills(TRI, TII);
913 // Keep track of kill information.
914 BitVector RegKills(TRI->getNumRegs());
915 std::vector<MachineOperand*> KillOps;
916 KillOps.resize(TRI->getNumRegs(), NULL);
918 // SingleEntrySuccs - Successor blocks which have a single predecessor.
919 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
920 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
922 // Traverse the basic blocks depth first.
923 MachineBasicBlock *Entry = MF.begin();
924 SmallPtrSet<MachineBasicBlock*,16> Visited;
925 for (df_ext_iterator<MachineBasicBlock*,
926 SmallPtrSet<MachineBasicBlock*,16> >
927 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
928 DFI != E; ++DFI) {
929 MachineBasicBlock *MBB = *DFI;
930 if (!EarlyVisited.count(MBB))
931 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
933 // If this MBB is the only predecessor of a successor. Keep the
934 // availability information and visit it next.
935 do {
936 // Keep visiting single predecessor successor as long as possible.
937 SinglePredSuccs.clear();
938 findSinglePredSuccessor(MBB, SinglePredSuccs);
939 if (SinglePredSuccs.empty())
940 MBB = 0;
941 else {
942 // FIXME: More than one successors, each of which has MBB has
943 // the only predecessor.
944 MBB = SinglePredSuccs[0];
945 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
946 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
947 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
950 } while (MBB);
952 // Clear the availability info.
953 Spills.clear();
956 DOUT << "**** Post Machine Instrs ****\n";
957 DEBUG(MF.dump());
959 // Mark unused spill slots.
960 MachineFrameInfo *MFI = MF.getFrameInfo();
961 int SS = VRM.getLowSpillSlot();
962 if (SS != VirtRegMap::NO_STACK_SLOT)
963 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
964 if (!VRM.isSpillSlotUsed(SS)) {
965 MFI->RemoveStackObject(SS);
966 ++NumDSS;
969 return true;
972 private:
974 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
975 /// a scratch register is available.
976 /// xorq %r12<kill>, %r13
977 /// addq %rax, -184(%rbp)
978 /// addq %r13, -184(%rbp)
979 /// ==>
980 /// xorq %r12<kill>, %r13
981 /// movq -184(%rbp), %r12
982 /// addq %rax, %r12
983 /// addq %r13, %r12
984 /// movq %r12, -184(%rbp)
985 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
986 MachineBasicBlock &MBB,
987 MachineBasicBlock::iterator &MII,
988 std::vector<MachineInstr*> &MaybeDeadStores,
989 AvailableSpills &Spills,
990 BitVector &RegKills,
991 std::vector<MachineOperand*> &KillOps,
992 VirtRegMap &VRM) {
994 MachineBasicBlock::iterator NextMII = next(MII);
995 if (NextMII == MBB.end())
996 return false;
998 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
999 return false;
1001 // Now let's see if the last couple of instructions happens to have freed up
1002 // a register.
1003 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1004 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
1005 if (!PhysReg)
1006 return false;
1008 MachineFunction &MF = *MBB.getParent();
1009 TRI = MF.getTarget().getRegisterInfo();
1010 MachineInstr &MI = *MII;
1011 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
1012 return false;
1014 // If the next instruction also folds the same SS modref and can be unfoled,
1015 // then it's worthwhile to issue a load from SS into the free register and
1016 // then unfold these instructions.
1017 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
1018 return false;
1020 // Load from SS to the spare physical register.
1021 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1022 // This invalidates Phys.
1023 Spills.ClobberPhysReg(PhysReg);
1024 // Remember it's available.
1025 Spills.addAvailable(SS, PhysReg);
1026 MaybeDeadStores[SS] = NULL;
1028 // Unfold current MI.
1029 SmallVector<MachineInstr*, 4> NewMIs;
1030 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1031 assert(0 && "Unable unfold the load / store folding instruction!");
1032 assert(NewMIs.size() == 1);
1033 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1034 VRM.transferRestorePts(&MI, NewMIs[0]);
1035 MII = MBB.insert(MII, NewMIs[0]);
1036 InvalidateKills(MI, TRI, RegKills, KillOps);
1037 VRM.RemoveMachineInstrFromMaps(&MI);
1038 MBB.erase(&MI);
1039 ++NumModRefUnfold;
1041 // Unfold next instructions that fold the same SS.
1042 do {
1043 MachineInstr &NextMI = *NextMII;
1044 NextMII = next(NextMII);
1045 NewMIs.clear();
1046 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1047 assert(0 && "Unable unfold the load / store folding instruction!");
1048 assert(NewMIs.size() == 1);
1049 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1050 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1051 MBB.insert(NextMII, NewMIs[0]);
1052 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1053 VRM.RemoveMachineInstrFromMaps(&NextMI);
1054 MBB.erase(&NextMI);
1055 ++NumModRefUnfold;
1056 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1058 // Store the value back into SS.
1059 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1060 MachineInstr *StoreMI = prior(NextMII);
1061 VRM.addSpillSlotUse(SS, StoreMI);
1062 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1064 return true;
1067 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1068 /// instruction. e.g.
1069 /// xorl %edi, %eax
1070 /// movl %eax, -32(%ebp)
1071 /// movl -36(%ebp), %eax
1072 /// orl %eax, -32(%ebp)
1073 /// ==>
1074 /// xorl %edi, %eax
1075 /// orl -36(%ebp), %eax
1076 /// mov %eax, -32(%ebp)
1077 /// This enables unfolding optimization for a subsequent instruction which will
1078 /// also eliminate the newly introduced store instruction.
1079 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1080 MachineBasicBlock::iterator &MII,
1081 std::vector<MachineInstr*> &MaybeDeadStores,
1082 AvailableSpills &Spills,
1083 BitVector &RegKills,
1084 std::vector<MachineOperand*> &KillOps,
1085 VirtRegMap &VRM) {
1086 MachineFunction &MF = *MBB.getParent();
1087 MachineInstr &MI = *MII;
1088 unsigned UnfoldedOpc = 0;
1089 unsigned UnfoldPR = 0;
1090 unsigned UnfoldVR = 0;
1091 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1092 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1093 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1094 // Only transform a MI that folds a single register.
1095 if (UnfoldedOpc)
1096 return false;
1097 UnfoldVR = I->second.first;
1098 VirtRegMap::ModRef MR = I->second.second;
1099 // MI2VirtMap be can updated which invalidate the iterator.
1100 // Increment the iterator first.
1101 ++I;
1102 if (VRM.isAssignedReg(UnfoldVR))
1103 continue;
1104 // If this reference is not a use, any previous store is now dead.
1105 // Otherwise, the store to this stack slot is not dead anymore.
1106 FoldedSS = VRM.getStackSlot(UnfoldVR);
1107 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1108 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1109 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1110 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1111 continue;
1112 UnfoldPR = PhysReg;
1113 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1114 false, true);
1118 if (!UnfoldedOpc) {
1119 if (!UnfoldVR)
1120 return false;
1122 // Look for other unfolding opportunities.
1123 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1124 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1127 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1128 MachineOperand &MO = MI.getOperand(i);
1129 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1130 continue;
1131 unsigned VirtReg = MO.getReg();
1132 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1133 continue;
1134 if (VRM.isAssignedReg(VirtReg)) {
1135 unsigned PhysReg = VRM.getPhys(VirtReg);
1136 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1137 return false;
1138 } else if (VRM.isReMaterialized(VirtReg))
1139 continue;
1140 int SS = VRM.getStackSlot(VirtReg);
1141 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1142 if (PhysReg) {
1143 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1144 return false;
1145 continue;
1147 if (VRM.hasPhys(VirtReg)) {
1148 PhysReg = VRM.getPhys(VirtReg);
1149 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1150 continue;
1153 // Ok, we'll need to reload the value into a register which makes
1154 // it impossible to perform the store unfolding optimization later.
1155 // Let's see if it is possible to fold the load if the store is
1156 // unfolded. This allows us to perform the store unfolding
1157 // optimization.
1158 SmallVector<MachineInstr*, 4> NewMIs;
1159 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1160 assert(NewMIs.size() == 1);
1161 MachineInstr *NewMI = NewMIs.back();
1162 NewMIs.clear();
1163 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1164 assert(Idx != -1);
1165 SmallVector<unsigned, 1> Ops;
1166 Ops.push_back(Idx);
1167 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1168 if (FoldedMI) {
1169 VRM.addSpillSlotUse(SS, FoldedMI);
1170 if (!VRM.hasPhys(UnfoldVR))
1171 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1172 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1173 MII = MBB.insert(MII, FoldedMI);
1174 InvalidateKills(MI, TRI, RegKills, KillOps);
1175 VRM.RemoveMachineInstrFromMaps(&MI);
1176 MBB.erase(&MI);
1177 MF.DeleteMachineInstr(NewMI);
1178 return true;
1180 MF.DeleteMachineInstr(NewMI);
1184 return false;
1187 /// CommuteToFoldReload -
1188 /// Look for
1189 /// r1 = load fi#1
1190 /// r1 = op r1, r2<kill>
1191 /// store r1, fi#1
1193 /// If op is commutable and r2 is killed, then we can xform these to
1194 /// r2 = op r2, fi#1
1195 /// store r2, fi#1
1196 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1197 MachineBasicBlock::iterator &MII,
1198 unsigned VirtReg, unsigned SrcReg, int SS,
1199 AvailableSpills &Spills,
1200 BitVector &RegKills,
1201 std::vector<MachineOperand*> &KillOps,
1202 const TargetRegisterInfo *TRI,
1203 VirtRegMap &VRM) {
1204 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1205 return false;
1207 MachineFunction &MF = *MBB.getParent();
1208 MachineInstr &MI = *MII;
1209 MachineBasicBlock::iterator DefMII = prior(MII);
1210 MachineInstr *DefMI = DefMII;
1211 const TargetInstrDesc &TID = DefMI->getDesc();
1212 unsigned NewDstIdx;
1213 if (DefMII != MBB.begin() &&
1214 TID.isCommutable() &&
1215 TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1216 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1217 unsigned NewReg = NewDstMO.getReg();
1218 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1219 return false;
1220 MachineInstr *ReloadMI = prior(DefMII);
1221 int FrameIdx;
1222 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1223 if (DestReg != SrcReg || FrameIdx != SS)
1224 return false;
1225 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1226 if (UseIdx == -1)
1227 return false;
1228 unsigned DefIdx;
1229 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1230 return false;
1231 assert(DefMI->getOperand(DefIdx).isReg() &&
1232 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1234 // Now commute def instruction.
1235 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1236 if (!CommutedMI)
1237 return false;
1238 SmallVector<unsigned, 1> Ops;
1239 Ops.push_back(NewDstIdx);
1240 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1241 // Not needed since foldMemoryOperand returns new MI.
1242 MF.DeleteMachineInstr(CommutedMI);
1243 if (!FoldedMI)
1244 return false;
1246 VRM.addSpillSlotUse(SS, FoldedMI);
1247 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1248 // Insert new def MI and spill MI.
1249 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1250 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1251 MII = prior(MII);
1252 MachineInstr *StoreMI = MII;
1253 VRM.addSpillSlotUse(SS, StoreMI);
1254 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1255 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1257 // Delete all 3 old instructions.
1258 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1259 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1260 MBB.erase(ReloadMI);
1261 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1262 VRM.RemoveMachineInstrFromMaps(DefMI);
1263 MBB.erase(DefMI);
1264 InvalidateKills(MI, TRI, RegKills, KillOps);
1265 VRM.RemoveMachineInstrFromMaps(&MI);
1266 MBB.erase(&MI);
1268 // If NewReg was previously holding value of some SS, it's now clobbered.
1269 // This has to be done now because it's a physical register. When this
1270 // instruction is re-visited, it's ignored.
1271 Spills.ClobberPhysReg(NewReg);
1273 ++NumCommutes;
1274 return true;
1277 return false;
1280 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1281 /// the last store to the same slot is now dead. If so, remove the last store.
1282 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1283 MachineBasicBlock::iterator &MII,
1284 int Idx, unsigned PhysReg, int StackSlot,
1285 const TargetRegisterClass *RC,
1286 bool isAvailable, MachineInstr *&LastStore,
1287 AvailableSpills &Spills,
1288 SmallSet<MachineInstr*, 4> &ReMatDefs,
1289 BitVector &RegKills,
1290 std::vector<MachineOperand*> &KillOps,
1291 VirtRegMap &VRM) {
1293 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1294 MachineInstr *StoreMI = next(MII);
1295 VRM.addSpillSlotUse(StackSlot, StoreMI);
1296 DOUT << "Store:\t" << *StoreMI;
1298 // If there is a dead store to this stack slot, nuke it now.
1299 if (LastStore) {
1300 DOUT << "Removed dead store:\t" << *LastStore;
1301 ++NumDSE;
1302 SmallVector<unsigned, 2> KillRegs;
1303 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1304 MachineBasicBlock::iterator PrevMII = LastStore;
1305 bool CheckDef = PrevMII != MBB.begin();
1306 if (CheckDef)
1307 --PrevMII;
1308 VRM.RemoveMachineInstrFromMaps(LastStore);
1309 MBB.erase(LastStore);
1310 if (CheckDef) {
1311 // Look at defs of killed registers on the store. Mark the defs
1312 // as dead since the store has been deleted and they aren't
1313 // being reused.
1314 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1315 bool HasOtherDef = false;
1316 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1317 MachineInstr *DeadDef = PrevMII;
1318 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1319 // FIXME: This assumes a remat def does not have side
1320 // effects.
1321 VRM.RemoveMachineInstrFromMaps(DeadDef);
1322 MBB.erase(DeadDef);
1323 ++NumDRM;
1330 LastStore = next(MII);
1332 // If the stack slot value was previously available in some other
1333 // register, change it now. Otherwise, make the register available,
1334 // in PhysReg.
1335 Spills.ModifyStackSlotOrReMat(StackSlot);
1336 Spills.ClobberPhysReg(PhysReg);
1337 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1338 ++NumStores;
1341 /// TransferDeadness - A identity copy definition is dead and it's being
1342 /// removed. Find the last def or use and mark it as dead / kill.
1343 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1344 unsigned Reg, BitVector &RegKills,
1345 std::vector<MachineOperand*> &KillOps,
1346 VirtRegMap &VRM) {
1347 SmallPtrSet<MachineInstr*, 4> Seens;
1348 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1349 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1350 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1351 MachineInstr *UDMI = &*RI;
1352 if (UDMI->getParent() != MBB)
1353 continue;
1354 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1355 if (DI == DistanceMap.end() || DI->second > CurDist)
1356 continue;
1357 if (Seens.insert(UDMI))
1358 Refs.push_back(std::make_pair(UDMI, DI->second));
1361 if (Refs.empty())
1362 return;
1363 std::sort(Refs.begin(), Refs.end(), RefSorter());
1365 while (!Refs.empty()) {
1366 MachineInstr *LastUDMI = Refs.back().first;
1367 Refs.pop_back();
1369 MachineOperand *LastUD = NULL;
1370 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1371 MachineOperand &MO = LastUDMI->getOperand(i);
1372 if (!MO.isReg() || MO.getReg() != Reg)
1373 continue;
1374 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1375 LastUD = &MO;
1376 if (LastUDMI->isRegTiedToDefOperand(i))
1377 break;
1379 if (LastUD->isDef()) {
1380 // If the instruction has no side effect, delete it and propagate
1381 // backward further. Otherwise, mark is dead and we are done.
1382 const TargetInstrDesc &TID = LastUDMI->getDesc();
1383 if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
1384 TID.hasUnmodeledSideEffects()) {
1385 LastUD->setIsDead();
1386 break;
1388 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1389 MBB->erase(LastUDMI);
1390 } else {
1391 LastUD->setIsKill();
1392 RegKills.set(Reg);
1393 KillOps[Reg] = LastUD;
1394 break;
1399 /// rewriteMBB - Keep track of which spills are available even after the
1400 /// register allocator is done with them. If possible, avid reloading vregs.
1401 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1402 LiveIntervals *LIs,
1403 AvailableSpills &Spills, BitVector &RegKills,
1404 std::vector<MachineOperand*> &KillOps) {
1406 DOUT << "\n**** Local spiller rewriting MBB '"
1407 << MBB.getBasicBlock()->getName() << "':\n";
1409 MachineFunction &MF = *MBB.getParent();
1411 // MaybeDeadStores - When we need to write a value back into a stack slot,
1412 // keep track of the inserted store. If the stack slot value is never read
1413 // (because the value was used from some available register, for example), and
1414 // subsequently stored to, the original store is dead. This map keeps track
1415 // of inserted stores that are not used. If we see a subsequent store to the
1416 // same stack slot, the original store is deleted.
1417 std::vector<MachineInstr*> MaybeDeadStores;
1418 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1420 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1421 SmallSet<MachineInstr*, 4> ReMatDefs;
1423 // Clear kill info.
1424 SmallSet<unsigned, 2> KilledMIRegs;
1425 RegKills.reset();
1426 KillOps.clear();
1427 KillOps.resize(TRI->getNumRegs(), NULL);
1429 unsigned Dist = 0;
1430 DistanceMap.clear();
1431 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1432 MII != E; ) {
1433 MachineBasicBlock::iterator NextMII = next(MII);
1435 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1436 bool Erased = false;
1437 bool BackTracked = false;
1438 if (OptimizeByUnfold(MBB, MII,
1439 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1440 NextMII = next(MII);
1442 MachineInstr &MI = *MII;
1444 if (VRM.hasEmergencySpills(&MI)) {
1445 // Spill physical register(s) in the rare case the allocator has run out
1446 // of registers to allocate.
1447 SmallSet<int, 4> UsedSS;
1448 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1449 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1450 unsigned PhysReg = EmSpills[i];
1451 const TargetRegisterClass *RC =
1452 TRI->getPhysicalRegisterRegClass(PhysReg);
1453 assert(RC && "Unable to determine register class!");
1454 int SS = VRM.getEmergencySpillSlot(RC);
1455 if (UsedSS.count(SS))
1456 assert(0 && "Need to spill more than one physical registers!");
1457 UsedSS.insert(SS);
1458 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1459 MachineInstr *StoreMI = prior(MII);
1460 VRM.addSpillSlotUse(SS, StoreMI);
1461 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1462 MachineInstr *LoadMI = next(MII);
1463 VRM.addSpillSlotUse(SS, LoadMI);
1464 ++NumPSpills;
1466 NextMII = next(MII);
1469 // Insert restores here if asked to.
1470 if (VRM.isRestorePt(&MI)) {
1471 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1472 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1473 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1474 if (!VRM.getPreSplitReg(VirtReg))
1475 continue; // Split interval spilled again.
1476 unsigned Phys = VRM.getPhys(VirtReg);
1477 RegInfo->setPhysRegUsed(Phys);
1479 // Check if the value being restored if available. If so, it must be
1480 // from a predecessor BB that fallthrough into this BB. We do not
1481 // expect:
1482 // BB1:
1483 // r1 = load fi#1
1484 // ...
1485 // = r1<kill>
1486 // ... # r1 not clobbered
1487 // ...
1488 // = load fi#1
1489 bool DoReMat = VRM.isReMaterialized(VirtReg);
1490 int SSorRMId = DoReMat
1491 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1492 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1493 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1494 if (InReg == Phys) {
1495 // If the value is already available in the expected register, save
1496 // a reload / remat.
1497 if (SSorRMId)
1498 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1499 else
1500 DOUT << "Reusing SS#" << SSorRMId;
1501 DOUT << " from physreg "
1502 << TRI->getName(InReg) << " for vreg"
1503 << VirtReg <<" instead of reloading into physreg "
1504 << TRI->getName(Phys) << "\n";
1505 ++NumOmitted;
1506 continue;
1507 } else if (InReg && InReg != Phys) {
1508 if (SSorRMId)
1509 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1510 else
1511 DOUT << "Reusing SS#" << SSorRMId;
1512 DOUT << " from physreg "
1513 << TRI->getName(InReg) << " for vreg"
1514 << VirtReg <<" by copying it into physreg "
1515 << TRI->getName(Phys) << "\n";
1517 // If the reloaded / remat value is available in another register,
1518 // copy it to the desired register.
1519 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1521 // This invalidates Phys.
1522 Spills.ClobberPhysReg(Phys);
1523 // Remember it's available.
1524 Spills.addAvailable(SSorRMId, Phys);
1526 // Mark is killed.
1527 MachineInstr *CopyMI = prior(MII);
1528 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1529 KillOpnd->setIsKill();
1530 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1532 DOUT << '\t' << *CopyMI;
1533 ++NumCopified;
1534 continue;
1537 if (VRM.isReMaterialized(VirtReg)) {
1538 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1539 } else {
1540 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1541 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1542 MachineInstr *LoadMI = prior(MII);
1543 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1544 ++NumLoads;
1547 // This invalidates Phys.
1548 Spills.ClobberPhysReg(Phys);
1549 // Remember it's available.
1550 Spills.addAvailable(SSorRMId, Phys);
1552 UpdateKills(*prior(MII), TRI, RegKills, KillOps);
1553 DOUT << '\t' << *prior(MII);
1557 // Insert spills here if asked to.
1558 if (VRM.isSpillPt(&MI)) {
1559 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1560 VRM.getSpillPtSpills(&MI);
1561 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1562 unsigned VirtReg = SpillRegs[i].first;
1563 bool isKill = SpillRegs[i].second;
1564 if (!VRM.getPreSplitReg(VirtReg))
1565 continue; // Split interval spilled again.
1566 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1567 unsigned Phys = VRM.getPhys(VirtReg);
1568 int StackSlot = VRM.getStackSlot(VirtReg);
1569 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1570 MachineInstr *StoreMI = next(MII);
1571 VRM.addSpillSlotUse(StackSlot, StoreMI);
1572 DOUT << "Store:\t" << *StoreMI;
1573 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1575 NextMII = next(MII);
1578 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1579 /// reuse.
1580 ReuseInfo ReusedOperands(MI, TRI);
1581 SmallVector<unsigned, 4> VirtUseOps;
1582 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1583 MachineOperand &MO = MI.getOperand(i);
1584 if (!MO.isReg() || MO.getReg() == 0)
1585 continue; // Ignore non-register operands.
1587 unsigned VirtReg = MO.getReg();
1588 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1589 // Ignore physregs for spilling, but remember that it is used by this
1590 // function.
1591 RegInfo->setPhysRegUsed(VirtReg);
1592 continue;
1595 // We want to process implicit virtual register uses first.
1596 if (MO.isImplicit())
1597 // If the virtual register is implicitly defined, emit a implicit_def
1598 // before so scavenger knows it's "defined".
1599 VirtUseOps.insert(VirtUseOps.begin(), i);
1600 else
1601 VirtUseOps.push_back(i);
1604 // Process all of the spilled uses and all non spilled reg references.
1605 SmallVector<int, 2> PotentialDeadStoreSlots;
1606 KilledMIRegs.clear();
1607 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1608 unsigned i = VirtUseOps[j];
1609 MachineOperand &MO = MI.getOperand(i);
1610 unsigned VirtReg = MO.getReg();
1611 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1612 "Not a virtual register?");
1614 unsigned SubIdx = MO.getSubReg();
1615 if (VRM.isAssignedReg(VirtReg)) {
1616 // This virtual register was assigned a physreg!
1617 unsigned Phys = VRM.getPhys(VirtReg);
1618 RegInfo->setPhysRegUsed(Phys);
1619 if (MO.isDef())
1620 ReusedOperands.markClobbered(Phys);
1621 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1622 MI.getOperand(i).setReg(RReg);
1623 MI.getOperand(i).setSubReg(0);
1624 if (VRM.isImplicitlyDefined(VirtReg))
1625 BuildMI(MBB, &MI, MI.getDebugLoc(),
1626 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1627 continue;
1630 // This virtual register is now known to be a spilled value.
1631 if (!MO.isUse())
1632 continue; // Handle defs in the loop below (handle use&def here though)
1634 bool AvoidReload = false;
1635 if (LIs->hasInterval(VirtReg)) {
1636 LiveInterval &LI = LIs->getInterval(VirtReg);
1637 if (!LI.liveAt(LIs->getUseIndex(LI.beginNumber())))
1638 // Must be defined by an implicit def. It should not be spilled. Note,
1639 // this is for correctness reason. e.g.
1640 // 8 %reg1024<def> = IMPLICIT_DEF
1641 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1642 // The live range [12, 14) are not part of the r1024 live interval since
1643 // it's defined by an implicit def. It will not conflicts with live
1644 // interval of r1025. Now suppose both registers are spilled, you can
1645 // easily see a situation where both registers are reloaded before
1646 // the INSERT_SUBREG and both target registers that would overlap.
1647 AvoidReload = true;
1650 bool DoReMat = VRM.isReMaterialized(VirtReg);
1651 int SSorRMId = DoReMat
1652 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1653 int ReuseSlot = SSorRMId;
1655 // Check to see if this stack slot is available.
1656 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1658 // If this is a sub-register use, make sure the reuse register is in the
1659 // right register class. For example, for x86 not all of the 32-bit
1660 // registers have accessible sub-registers.
1661 // Similarly so for EXTRACT_SUBREG. Consider this:
1662 // EDI = op
1663 // MOV32_mr fi#1, EDI
1664 // ...
1665 // = EXTRACT_SUBREG fi#1
1666 // fi#1 is available in EDI, but it cannot be reused because it's not in
1667 // the right register file.
1668 if (PhysReg && !AvoidReload &&
1669 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1670 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1671 if (!RC->contains(PhysReg))
1672 PhysReg = 0;
1675 if (PhysReg && !AvoidReload) {
1676 // This spilled operand might be part of a two-address operand. If this
1677 // is the case, then changing it will necessarily require changing the
1678 // def part of the instruction as well. However, in some cases, we
1679 // aren't allowed to modify the reused register. If none of these cases
1680 // apply, reuse it.
1681 bool CanReuse = true;
1682 bool isTied = MI.isRegTiedToDefOperand(i);
1683 if (isTied) {
1684 // Okay, we have a two address operand. We can reuse this physreg as
1685 // long as we are allowed to clobber the value and there isn't an
1686 // earlier def that has already clobbered the physreg.
1687 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1688 Spills.canClobberPhysReg(PhysReg);
1691 if (CanReuse) {
1692 // If this stack slot value is already available, reuse it!
1693 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1694 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1695 else
1696 DOUT << "Reusing SS#" << ReuseSlot;
1697 DOUT << " from physreg "
1698 << TRI->getName(PhysReg) << " for vreg"
1699 << VirtReg <<" instead of reloading into physreg "
1700 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1701 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1702 MI.getOperand(i).setReg(RReg);
1703 MI.getOperand(i).setSubReg(0);
1705 // The only technical detail we have is that we don't know that
1706 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1707 // later in the instruction. In particular, consider 'op V1, V2'.
1708 // If V1 is available in physreg R0, we would choose to reuse it
1709 // here, instead of reloading it into the register the allocator
1710 // indicated (say R1). However, V2 might have to be reloaded
1711 // later, and it might indicate that it needs to live in R0. When
1712 // this occurs, we need to have information available that
1713 // indicates it is safe to use R1 for the reload instead of R0.
1715 // To further complicate matters, we might conflict with an alias,
1716 // or R0 and R1 might not be compatible with each other. In this
1717 // case, we actually insert a reload for V1 in R1, ensuring that
1718 // we can get at R0 or its alias.
1719 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1720 VRM.getPhys(VirtReg), VirtReg);
1721 if (isTied)
1722 // Only mark it clobbered if this is a use&def operand.
1723 ReusedOperands.markClobbered(PhysReg);
1724 ++NumReused;
1726 if (MI.getOperand(i).isKill() &&
1727 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1729 // The store of this spilled value is potentially dead, but we
1730 // won't know for certain until we've confirmed that the re-use
1731 // above is valid, which means waiting until the other operands
1732 // are processed. For now we just track the spill slot, we'll
1733 // remove it after the other operands are processed if valid.
1735 PotentialDeadStoreSlots.push_back(ReuseSlot);
1738 // Mark is isKill if it's there no other uses of the same virtual
1739 // register and it's not a two-address operand. IsKill will be
1740 // unset if reg is reused.
1741 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1742 MI.getOperand(i).setIsKill();
1743 KilledMIRegs.insert(VirtReg);
1746 continue;
1747 } // CanReuse
1749 // Otherwise we have a situation where we have a two-address instruction
1750 // whose mod/ref operand needs to be reloaded. This reload is already
1751 // available in some register "PhysReg", but if we used PhysReg as the
1752 // operand to our 2-addr instruction, the instruction would modify
1753 // PhysReg. This isn't cool if something later uses PhysReg and expects
1754 // to get its initial value.
1756 // To avoid this problem, and to avoid doing a load right after a store,
1757 // we emit a copy from PhysReg into the designated register for this
1758 // operand.
1759 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1760 assert(DesignatedReg && "Must map virtreg to physreg!");
1762 // Note that, if we reused a register for a previous operand, the
1763 // register we want to reload into might not actually be
1764 // available. If this occurs, use the register indicated by the
1765 // reuser.
1766 if (ReusedOperands.hasReuses())
1767 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1768 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1770 // If the mapped designated register is actually the physreg we have
1771 // incoming, we don't need to inserted a dead copy.
1772 if (DesignatedReg == PhysReg) {
1773 // If this stack slot value is already available, reuse it!
1774 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1775 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1776 else
1777 DOUT << "Reusing SS#" << ReuseSlot;
1778 DOUT << " from physreg " << TRI->getName(PhysReg)
1779 << " for vreg" << VirtReg
1780 << " instead of reloading into same physreg.\n";
1781 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1782 MI.getOperand(i).setReg(RReg);
1783 MI.getOperand(i).setSubReg(0);
1784 ReusedOperands.markClobbered(RReg);
1785 ++NumReused;
1786 continue;
1789 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1790 RegInfo->setPhysRegUsed(DesignatedReg);
1791 ReusedOperands.markClobbered(DesignatedReg);
1792 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1794 MachineInstr *CopyMI = prior(MII);
1795 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1797 // This invalidates DesignatedReg.
1798 Spills.ClobberPhysReg(DesignatedReg);
1800 Spills.addAvailable(ReuseSlot, DesignatedReg);
1801 unsigned RReg =
1802 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1803 MI.getOperand(i).setReg(RReg);
1804 MI.getOperand(i).setSubReg(0);
1805 DOUT << '\t' << *prior(MII);
1806 ++NumReused;
1807 continue;
1808 } // if (PhysReg)
1810 // Otherwise, reload it and remember that we have it.
1811 PhysReg = VRM.getPhys(VirtReg);
1812 assert(PhysReg && "Must map virtreg to physreg!");
1814 // Note that, if we reused a register for a previous operand, the
1815 // register we want to reload into might not actually be
1816 // available. If this occurs, use the register indicated by the
1817 // reuser.
1818 if (ReusedOperands.hasReuses())
1819 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1820 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1822 RegInfo->setPhysRegUsed(PhysReg);
1823 ReusedOperands.markClobbered(PhysReg);
1824 if (AvoidReload)
1825 ++NumAvoided;
1826 else {
1827 if (DoReMat) {
1828 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1829 } else {
1830 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1831 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1832 MachineInstr *LoadMI = prior(MII);
1833 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1834 ++NumLoads;
1836 // This invalidates PhysReg.
1837 Spills.ClobberPhysReg(PhysReg);
1839 // Any stores to this stack slot are not dead anymore.
1840 if (!DoReMat)
1841 MaybeDeadStores[SSorRMId] = NULL;
1842 Spills.addAvailable(SSorRMId, PhysReg);
1843 // Assumes this is the last use. IsKill will be unset if reg is reused
1844 // unless it's a two-address operand.
1845 if (!MI.isRegTiedToDefOperand(i) &&
1846 KilledMIRegs.count(VirtReg) == 0) {
1847 MI.getOperand(i).setIsKill();
1848 KilledMIRegs.insert(VirtReg);
1851 UpdateKills(*prior(MII), TRI, RegKills, KillOps);
1852 DOUT << '\t' << *prior(MII);
1854 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1855 MI.getOperand(i).setReg(RReg);
1856 MI.getOperand(i).setSubReg(0);
1859 // Ok - now we can remove stores that have been confirmed dead.
1860 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1861 // This was the last use and the spilled value is still available
1862 // for reuse. That means the spill was unnecessary!
1863 int PDSSlot = PotentialDeadStoreSlots[j];
1864 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1865 if (DeadStore) {
1866 DOUT << "Removed dead store:\t" << *DeadStore;
1867 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
1868 VRM.RemoveMachineInstrFromMaps(DeadStore);
1869 MBB.erase(DeadStore);
1870 MaybeDeadStores[PDSSlot] = NULL;
1871 ++NumDSE;
1876 DOUT << '\t' << MI;
1879 // If we have folded references to memory operands, make sure we clear all
1880 // physical registers that may contain the value of the spilled virtual
1881 // register
1882 SmallSet<int, 2> FoldedSS;
1883 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1884 unsigned VirtReg = I->second.first;
1885 VirtRegMap::ModRef MR = I->second.second;
1886 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1888 // MI2VirtMap be can updated which invalidate the iterator.
1889 // Increment the iterator first.
1890 ++I;
1891 int SS = VRM.getStackSlot(VirtReg);
1892 if (SS == VirtRegMap::NO_STACK_SLOT)
1893 continue;
1894 FoldedSS.insert(SS);
1895 DOUT << " - StackSlot: " << SS << "\n";
1897 // If this folded instruction is just a use, check to see if it's a
1898 // straight load from the virt reg slot.
1899 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1900 int FrameIdx;
1901 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1902 if (DestReg && FrameIdx == SS) {
1903 // If this spill slot is available, turn it into a copy (or nothing)
1904 // instead of leaving it as a load!
1905 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1906 DOUT << "Promoted Load To Copy: " << MI;
1907 if (DestReg != InReg) {
1908 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1909 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1910 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1911 unsigned SubIdx = DefMO->getSubReg();
1912 // Revisit the copy so we make sure to notice the effects of the
1913 // operation on the destreg (either needing to RA it if it's
1914 // virtual or needing to clobber any values if it's physical).
1915 NextMII = &MI;
1916 --NextMII; // backtrack to the copy.
1917 // Propagate the sub-register index over.
1918 if (SubIdx) {
1919 DefMO = NextMII->findRegisterDefOperand(DestReg);
1920 DefMO->setSubReg(SubIdx);
1923 // Mark is killed.
1924 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1925 KillOpnd->setIsKill();
1927 BackTracked = true;
1928 } else {
1929 DOUT << "Removing now-noop copy: " << MI;
1930 // Unset last kill since it's being reused.
1931 InvalidateKill(InReg, TRI, RegKills, KillOps);
1932 Spills.disallowClobberPhysReg(InReg);
1935 InvalidateKills(MI, TRI, RegKills, KillOps);
1936 VRM.RemoveMachineInstrFromMaps(&MI);
1937 MBB.erase(&MI);
1938 Erased = true;
1939 goto ProcessNextInst;
1941 } else {
1942 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1943 SmallVector<MachineInstr*, 4> NewMIs;
1944 if (PhysReg &&
1945 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1946 MBB.insert(MII, NewMIs[0]);
1947 InvalidateKills(MI, TRI, RegKills, KillOps);
1948 VRM.RemoveMachineInstrFromMaps(&MI);
1949 MBB.erase(&MI);
1950 Erased = true;
1951 --NextMII; // backtrack to the unfolded instruction.
1952 BackTracked = true;
1953 goto ProcessNextInst;
1958 // If this reference is not a use, any previous store is now dead.
1959 // Otherwise, the store to this stack slot is not dead anymore.
1960 MachineInstr* DeadStore = MaybeDeadStores[SS];
1961 if (DeadStore) {
1962 bool isDead = !(MR & VirtRegMap::isRef);
1963 MachineInstr *NewStore = NULL;
1964 if (MR & VirtRegMap::isModRef) {
1965 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1966 SmallVector<MachineInstr*, 4> NewMIs;
1967 // We can reuse this physreg as long as we are allowed to clobber
1968 // the value and there isn't an earlier def that has already clobbered
1969 // the physreg.
1970 if (PhysReg &&
1971 !ReusedOperands.isClobbered(PhysReg) &&
1972 Spills.canClobberPhysReg(PhysReg) &&
1973 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1974 MachineOperand *KillOpnd =
1975 DeadStore->findRegisterUseOperand(PhysReg, true);
1976 // Note, if the store is storing a sub-register, it's possible the
1977 // super-register is needed below.
1978 if (KillOpnd && !KillOpnd->getSubReg() &&
1979 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1980 MBB.insert(MII, NewMIs[0]);
1981 NewStore = NewMIs[1];
1982 MBB.insert(MII, NewStore);
1983 VRM.addSpillSlotUse(SS, NewStore);
1984 InvalidateKills(MI, TRI, RegKills, KillOps);
1985 VRM.RemoveMachineInstrFromMaps(&MI);
1986 MBB.erase(&MI);
1987 Erased = true;
1988 --NextMII;
1989 --NextMII; // backtrack to the unfolded instruction.
1990 BackTracked = true;
1991 isDead = true;
1992 ++NumSUnfold;
1997 if (isDead) { // Previous store is dead.
1998 // If we get here, the store is dead, nuke it now.
1999 DOUT << "Removed dead store:\t" << *DeadStore;
2000 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2001 VRM.RemoveMachineInstrFromMaps(DeadStore);
2002 MBB.erase(DeadStore);
2003 if (!NewStore)
2004 ++NumDSE;
2007 MaybeDeadStores[SS] = NULL;
2008 if (NewStore) {
2009 // Treat this store as a spill merged into a copy. That makes the
2010 // stack slot value available.
2011 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2012 goto ProcessNextInst;
2016 // If the spill slot value is available, and this is a new definition of
2017 // the value, the value is not available anymore.
2018 if (MR & VirtRegMap::isMod) {
2019 // Notice that the value in this stack slot has been modified.
2020 Spills.ModifyStackSlotOrReMat(SS);
2022 // If this is *just* a mod of the value, check to see if this is just a
2023 // store to the spill slot (i.e. the spill got merged into the copy). If
2024 // so, realize that the vreg is available now, and add the store to the
2025 // MaybeDeadStore info.
2026 int StackSlot;
2027 if (!(MR & VirtRegMap::isRef)) {
2028 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2029 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2030 "Src hasn't been allocated yet?");
2032 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2033 Spills, RegKills, KillOps, TRI, VRM)) {
2034 NextMII = next(MII);
2035 BackTracked = true;
2036 goto ProcessNextInst;
2039 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2040 // this as a potentially dead store in case there is a subsequent
2041 // store into the stack slot without a read from it.
2042 MaybeDeadStores[StackSlot] = &MI;
2044 // If the stack slot value was previously available in some other
2045 // register, change it now. Otherwise, make the register
2046 // available in PhysReg.
2047 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2053 // Process all of the spilled defs.
2054 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2055 MachineOperand &MO = MI.getOperand(i);
2056 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2057 continue;
2059 unsigned VirtReg = MO.getReg();
2060 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2061 // Check to see if this is a noop copy. If so, eliminate the
2062 // instruction before considering the dest reg to be changed.
2063 unsigned Src, Dst, SrcSR, DstSR;
2064 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2065 ++NumDCE;
2066 DOUT << "Removing now-noop copy: " << MI;
2067 SmallVector<unsigned, 2> KillRegs;
2068 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2069 if (MO.isDead() && !KillRegs.empty()) {
2070 // Source register or an implicit super/sub-register use is killed.
2071 assert(KillRegs[0] == Dst ||
2072 TRI->isSubRegister(KillRegs[0], Dst) ||
2073 TRI->isSuperRegister(KillRegs[0], Dst));
2074 // Last def is now dead.
2075 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
2077 VRM.RemoveMachineInstrFromMaps(&MI);
2078 MBB.erase(&MI);
2079 Erased = true;
2080 Spills.disallowClobberPhysReg(VirtReg);
2081 goto ProcessNextInst;
2084 // If it's not a no-op copy, it clobbers the value in the destreg.
2085 Spills.ClobberPhysReg(VirtReg);
2086 ReusedOperands.markClobbered(VirtReg);
2088 // Check to see if this instruction is a load from a stack slot into
2089 // a register. If so, this provides the stack slot value in the reg.
2090 int FrameIdx;
2091 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2092 assert(DestReg == VirtReg && "Unknown load situation!");
2094 // If it is a folded reference, then it's not safe to clobber.
2095 bool Folded = FoldedSS.count(FrameIdx);
2096 // Otherwise, if it wasn't available, remember that it is now!
2097 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2098 goto ProcessNextInst;
2101 continue;
2104 unsigned SubIdx = MO.getSubReg();
2105 bool DoReMat = VRM.isReMaterialized(VirtReg);
2106 if (DoReMat)
2107 ReMatDefs.insert(&MI);
2109 // The only vregs left are stack slot definitions.
2110 int StackSlot = VRM.getStackSlot(VirtReg);
2111 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2113 // If this def is part of a two-address operand, make sure to execute
2114 // the store from the correct physical register.
2115 unsigned PhysReg;
2116 unsigned TiedOp;
2117 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2118 PhysReg = MI.getOperand(TiedOp).getReg();
2119 if (SubIdx) {
2120 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2121 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2122 "Can't find corresponding super-register!");
2123 PhysReg = SuperReg;
2125 } else {
2126 PhysReg = VRM.getPhys(VirtReg);
2127 if (ReusedOperands.isClobbered(PhysReg)) {
2128 // Another def has taken the assigned physreg. It must have been a
2129 // use&def which got it due to reuse. Undo the reuse!
2130 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
2131 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2135 assert(PhysReg && "VR not assigned a physical register?");
2136 RegInfo->setPhysRegUsed(PhysReg);
2137 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2138 ReusedOperands.markClobbered(RReg);
2139 MI.getOperand(i).setReg(RReg);
2140 MI.getOperand(i).setSubReg(0);
2142 if (!MO.isDead()) {
2143 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2144 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2145 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2146 NextMII = next(MII);
2148 // Check to see if this is a noop copy. If so, eliminate the
2149 // instruction before considering the dest reg to be changed.
2151 unsigned Src, Dst, SrcSR, DstSR;
2152 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2153 ++NumDCE;
2154 DOUT << "Removing now-noop copy: " << MI;
2155 InvalidateKills(MI, TRI, RegKills, KillOps);
2156 VRM.RemoveMachineInstrFromMaps(&MI);
2157 MBB.erase(&MI);
2158 Erased = true;
2159 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2160 goto ProcessNextInst;
2165 ProcessNextInst:
2166 DistanceMap.insert(std::make_pair(&MI, Dist++));
2167 if (!Erased && !BackTracked) {
2168 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2169 UpdateKills(*II, TRI, RegKills, KillOps);
2171 MII = NextMII;
2178 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2179 switch (RewriterOpt) {
2180 default: assert(0 && "Unreachable!");
2181 case local:
2182 return new LocalRewriter();
2183 case simple:
2184 return new SimpleRewriter();