1 //===-- BranchFolding.cpp - Fold machine code branch instructions ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass forwards branches to unconditional branches to make them branch
11 // directly to the target block. This pass often results in dead MBB's, which
14 // Note that this pass must be run after register allocation, it cannot handle
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "branchfolding"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/RegisterScavenging.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/STLExtras.h"
36 STATISTIC(NumDeadBlocks
, "Number of dead blocks removed");
37 STATISTIC(NumBranchOpts
, "Number of branches optimized");
38 STATISTIC(NumTailMerge
, "Number of block tails merged");
39 static cl::opt
<cl::boolOrDefault
> FlagEnableTailMerge("enable-tail-merge",
40 cl::init(cl::BOU_UNSET
), cl::Hidden
);
41 // Throttle for huge numbers of predecessors (compile speed problems)
42 static cl::opt
<unsigned>
43 TailMergeThreshold("tail-merge-threshold",
44 cl::desc("Max number of predecessors to consider tail merging"),
45 cl::init(150), cl::Hidden
);
48 struct VISIBILITY_HIDDEN BranchFolder
: public MachineFunctionPass
{
50 explicit BranchFolder(bool defaultEnableTailMerge
) :
51 MachineFunctionPass(&ID
) {
52 switch (FlagEnableTailMerge
) {
53 case cl::BOU_UNSET
: EnableTailMerge
= defaultEnableTailMerge
; break;
54 case cl::BOU_TRUE
: EnableTailMerge
= true; break;
55 case cl::BOU_FALSE
: EnableTailMerge
= false; break;
59 virtual bool runOnMachineFunction(MachineFunction
&MF
);
60 virtual const char *getPassName() const { return "Control Flow Optimizer"; }
61 const TargetInstrInfo
*TII
;
62 MachineModuleInfo
*MMI
;
67 bool TailMergeBlocks(MachineFunction
&MF
);
68 bool TryMergeBlocks(MachineBasicBlock
* SuccBB
,
69 MachineBasicBlock
* PredBB
);
70 void ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst
,
71 MachineBasicBlock
*NewDest
);
72 MachineBasicBlock
*SplitMBBAt(MachineBasicBlock
&CurMBB
,
73 MachineBasicBlock::iterator BBI1
);
74 unsigned ComputeSameTails(unsigned CurHash
, unsigned minCommonTailLength
);
75 void RemoveBlocksWithHash(unsigned CurHash
, MachineBasicBlock
* SuccBB
,
76 MachineBasicBlock
* PredBB
);
77 unsigned CreateCommonTailOnlyBlock(MachineBasicBlock
*&PredBB
,
78 unsigned maxCommonTailLength
);
80 typedef std::pair
<unsigned,MachineBasicBlock
*> MergePotentialsElt
;
81 typedef std::vector
<MergePotentialsElt
>::iterator MPIterator
;
82 std::vector
<MergePotentialsElt
> MergePotentials
;
84 typedef std::pair
<MPIterator
, MachineBasicBlock::iterator
> SameTailElt
;
85 std::vector
<SameTailElt
> SameTails
;
87 const TargetRegisterInfo
*RegInfo
;
90 bool OptimizeBranches(MachineFunction
&MF
);
91 void OptimizeBlock(MachineBasicBlock
*MBB
);
92 void RemoveDeadBlock(MachineBasicBlock
*MBB
);
93 bool OptimizeImpDefsBlock(MachineBasicBlock
*MBB
);
95 bool CanFallThrough(MachineBasicBlock
*CurBB
);
96 bool CanFallThrough(MachineBasicBlock
*CurBB
, bool BranchUnAnalyzable
,
97 MachineBasicBlock
*TBB
, MachineBasicBlock
*FBB
,
98 const SmallVectorImpl
<MachineOperand
> &Cond
);
100 char BranchFolder::ID
= 0;
103 FunctionPass
*llvm::createBranchFoldingPass(bool DefaultEnableTailMerge
) {
104 return new BranchFolder(DefaultEnableTailMerge
); }
106 /// RemoveDeadBlock - Remove the specified dead machine basic block from the
107 /// function, updating the CFG.
108 void BranchFolder::RemoveDeadBlock(MachineBasicBlock
*MBB
) {
109 assert(MBB
->pred_empty() && "MBB must be dead!");
110 DOUT
<< "\nRemoving MBB: " << *MBB
;
112 MachineFunction
*MF
= MBB
->getParent();
113 // drop all successors.
114 while (!MBB
->succ_empty())
115 MBB
->removeSuccessor(MBB
->succ_end()-1);
117 // If there are any labels in the basic block, unregister them from
118 // MachineModuleInfo.
119 if (MMI
&& !MBB
->empty()) {
120 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end();
123 // The label ID # is always operand #0, an immediate.
124 MMI
->InvalidateLabel(I
->getOperand(0).getImm());
132 /// OptimizeImpDefsBlock - If a basic block is just a bunch of implicit_def
133 /// followed by terminators, and if the implicitly defined registers are not
134 /// used by the terminators, remove those implicit_def's. e.g.
136 /// r0 = implicit_def
137 /// r1 = implicit_def
139 /// This block can be optimized away later if the implicit instructions are
141 bool BranchFolder::OptimizeImpDefsBlock(MachineBasicBlock
*MBB
) {
142 SmallSet
<unsigned, 4> ImpDefRegs
;
143 MachineBasicBlock::iterator I
= MBB
->begin();
144 while (I
!= MBB
->end()) {
145 if (I
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
)
147 unsigned Reg
= I
->getOperand(0).getReg();
148 ImpDefRegs
.insert(Reg
);
149 for (const unsigned *SubRegs
= RegInfo
->getSubRegisters(Reg
);
150 unsigned SubReg
= *SubRegs
; ++SubRegs
)
151 ImpDefRegs
.insert(SubReg
);
154 if (ImpDefRegs
.empty())
157 MachineBasicBlock::iterator FirstTerm
= I
;
158 while (I
!= MBB
->end()) {
159 if (!TII
->isUnpredicatedTerminator(I
))
161 // See if it uses any of the implicitly defined registers.
162 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
163 MachineOperand
&MO
= I
->getOperand(i
);
164 if (!MO
.isReg() || !MO
.isUse())
166 unsigned Reg
= MO
.getReg();
167 if (ImpDefRegs
.count(Reg
))
174 while (I
!= FirstTerm
) {
175 MachineInstr
*ImpDefMI
= &*I
;
177 MBB
->erase(ImpDefMI
);
183 bool BranchFolder::runOnMachineFunction(MachineFunction
&MF
) {
184 TII
= MF
.getTarget().getInstrInfo();
185 if (!TII
) return false;
187 RegInfo
= MF
.getTarget().getRegisterInfo();
189 // Fix CFG. The later algorithms expect it to be right.
190 bool EverMadeChange
= false;
191 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; I
++) {
192 MachineBasicBlock
*MBB
= I
, *TBB
= 0, *FBB
= 0;
193 SmallVector
<MachineOperand
, 4> Cond
;
194 if (!TII
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
, true))
195 EverMadeChange
|= MBB
->CorrectExtraCFGEdges(TBB
, FBB
, !Cond
.empty());
196 EverMadeChange
|= OptimizeImpDefsBlock(MBB
);
199 RS
= RegInfo
->requiresRegisterScavenging(MF
) ? new RegScavenger() : NULL
;
201 MMI
= getAnalysisIfAvailable
<MachineModuleInfo
>();
203 bool MadeChangeThisIteration
= true;
204 while (MadeChangeThisIteration
) {
205 MadeChangeThisIteration
= false;
206 MadeChangeThisIteration
|= TailMergeBlocks(MF
);
207 MadeChangeThisIteration
|= OptimizeBranches(MF
);
208 EverMadeChange
|= MadeChangeThisIteration
;
211 // See if any jump tables have become mergable or dead as the code generator
213 MachineJumpTableInfo
*JTI
= MF
.getJumpTableInfo();
214 const std::vector
<MachineJumpTableEntry
> &JTs
= JTI
->getJumpTables();
216 // Figure out how these jump tables should be merged.
217 std::vector
<unsigned> JTMapping
;
218 JTMapping
.reserve(JTs
.size());
220 // We always keep the 0th jump table.
221 JTMapping
.push_back(0);
223 // Scan the jump tables, seeing if there are any duplicates. Note that this
224 // is N^2, which should be fixed someday.
225 for (unsigned i
= 1, e
= JTs
.size(); i
!= e
; ++i
)
226 JTMapping
.push_back(JTI
->getJumpTableIndex(JTs
[i
].MBBs
));
228 // If a jump table was merge with another one, walk the function rewriting
229 // references to jump tables to reference the new JT ID's. Keep track of
230 // whether we see a jump table idx, if not, we can delete the JT.
231 BitVector
JTIsLive(JTs
.size());
232 for (MachineFunction::iterator BB
= MF
.begin(), E
= MF
.end();
234 for (MachineBasicBlock::iterator I
= BB
->begin(), E
= BB
->end();
236 for (unsigned op
= 0, e
= I
->getNumOperands(); op
!= e
; ++op
) {
237 MachineOperand
&Op
= I
->getOperand(op
);
238 if (!Op
.isJTI()) continue;
239 unsigned NewIdx
= JTMapping
[Op
.getIndex()];
242 // Remember that this JT is live.
243 JTIsLive
.set(NewIdx
);
247 // Finally, remove dead jump tables. This happens either because the
248 // indirect jump was unreachable (and thus deleted) or because the jump
249 // table was merged with some other one.
250 for (unsigned i
= 0, e
= JTIsLive
.size(); i
!= e
; ++i
)
251 if (!JTIsLive
.test(i
)) {
252 JTI
->RemoveJumpTable(i
);
253 EverMadeChange
= true;
258 return EverMadeChange
;
261 //===----------------------------------------------------------------------===//
262 // Tail Merging of Blocks
263 //===----------------------------------------------------------------------===//
265 /// HashMachineInstr - Compute a hash value for MI and its operands.
266 static unsigned HashMachineInstr(const MachineInstr
*MI
) {
267 unsigned Hash
= MI
->getOpcode();
268 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
269 const MachineOperand
&Op
= MI
->getOperand(i
);
271 // Merge in bits from the operand if easy.
272 unsigned OperandHash
= 0;
273 switch (Op
.getType()) {
274 case MachineOperand::MO_Register
: OperandHash
= Op
.getReg(); break;
275 case MachineOperand::MO_Immediate
: OperandHash
= Op
.getImm(); break;
276 case MachineOperand::MO_MachineBasicBlock
:
277 OperandHash
= Op
.getMBB()->getNumber();
279 case MachineOperand::MO_FrameIndex
:
280 case MachineOperand::MO_ConstantPoolIndex
:
281 case MachineOperand::MO_JumpTableIndex
:
282 OperandHash
= Op
.getIndex();
284 case MachineOperand::MO_GlobalAddress
:
285 case MachineOperand::MO_ExternalSymbol
:
286 // Global address / external symbol are too hard, don't bother, but do
287 // pull in the offset.
288 OperandHash
= Op
.getOffset();
293 Hash
+= ((OperandHash
<< 3) | Op
.getType()) << (i
&31);
298 /// HashEndOfMBB - Hash the last few instructions in the MBB. For blocks
299 /// with no successors, we hash two instructions, because cross-jumping
300 /// only saves code when at least two instructions are removed (since a
301 /// branch must be inserted). For blocks with a successor, one of the
302 /// two blocks to be tail-merged will end with a branch already, so
303 /// it gains to cross-jump even for one instruction.
305 static unsigned HashEndOfMBB(const MachineBasicBlock
*MBB
,
306 unsigned minCommonTailLength
) {
307 MachineBasicBlock::const_iterator I
= MBB
->end();
308 if (I
== MBB
->begin())
309 return 0; // Empty MBB.
312 unsigned Hash
= HashMachineInstr(I
);
314 if (I
== MBB
->begin() || minCommonTailLength
== 1)
315 return Hash
; // Single instr MBB.
318 // Hash in the second-to-last instruction.
319 Hash
^= HashMachineInstr(I
) << 2;
323 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
324 /// of instructions they actually have in common together at their end. Return
325 /// iterators for the first shared instruction in each block.
326 static unsigned ComputeCommonTailLength(MachineBasicBlock
*MBB1
,
327 MachineBasicBlock
*MBB2
,
328 MachineBasicBlock::iterator
&I1
,
329 MachineBasicBlock::iterator
&I2
) {
333 unsigned TailLen
= 0;
334 while (I1
!= MBB1
->begin() && I2
!= MBB2
->begin()) {
336 if (!I1
->isIdenticalTo(I2
) ||
337 // FIXME: This check is dubious. It's used to get around a problem where
338 // people incorrectly expect inline asm directives to remain in the same
339 // relative order. This is untenable because normal compiler
340 // optimizations (like this one) may reorder and/or merge these
342 I1
->getOpcode() == TargetInstrInfo::INLINEASM
) {
351 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
352 /// after it, replacing it with an unconditional branch to NewDest. This
353 /// returns true if OldInst's block is modified, false if NewDest is modified.
354 void BranchFolder::ReplaceTailWithBranchTo(MachineBasicBlock::iterator OldInst
,
355 MachineBasicBlock
*NewDest
) {
356 MachineBasicBlock
*OldBB
= OldInst
->getParent();
358 // Remove all the old successors of OldBB from the CFG.
359 while (!OldBB
->succ_empty())
360 OldBB
->removeSuccessor(OldBB
->succ_begin());
362 // Remove all the dead instructions from the end of OldBB.
363 OldBB
->erase(OldInst
, OldBB
->end());
365 // If OldBB isn't immediately before OldBB, insert a branch to it.
366 if (++MachineFunction::iterator(OldBB
) != MachineFunction::iterator(NewDest
))
367 TII
->InsertBranch(*OldBB
, NewDest
, 0, SmallVector
<MachineOperand
, 0>());
368 OldBB
->addSuccessor(NewDest
);
372 /// SplitMBBAt - Given a machine basic block and an iterator into it, split the
373 /// MBB so that the part before the iterator falls into the part starting at the
374 /// iterator. This returns the new MBB.
375 MachineBasicBlock
*BranchFolder::SplitMBBAt(MachineBasicBlock
&CurMBB
,
376 MachineBasicBlock::iterator BBI1
) {
377 MachineFunction
&MF
= *CurMBB
.getParent();
379 // Create the fall-through block.
380 MachineFunction::iterator MBBI
= &CurMBB
;
381 MachineBasicBlock
*NewMBB
=MF
.CreateMachineBasicBlock(CurMBB
.getBasicBlock());
382 CurMBB
.getParent()->insert(++MBBI
, NewMBB
);
384 // Move all the successors of this block to the specified block.
385 NewMBB
->transferSuccessors(&CurMBB
);
387 // Add an edge from CurMBB to NewMBB for the fall-through.
388 CurMBB
.addSuccessor(NewMBB
);
390 // Splice the code over.
391 NewMBB
->splice(NewMBB
->end(), &CurMBB
, BBI1
, CurMBB
.end());
393 // For targets that use the register scavenger, we must maintain LiveIns.
395 RS
->enterBasicBlock(&CurMBB
);
397 RS
->forward(prior(CurMBB
.end()));
398 BitVector
RegsLiveAtExit(RegInfo
->getNumRegs());
399 RS
->getRegsUsed(RegsLiveAtExit
, false);
400 for (unsigned int i
=0, e
=RegInfo
->getNumRegs(); i
!=e
; i
++)
401 if (RegsLiveAtExit
[i
])
402 NewMBB
->addLiveIn(i
);
408 /// EstimateRuntime - Make a rough estimate for how long it will take to run
409 /// the specified code.
410 static unsigned EstimateRuntime(MachineBasicBlock::iterator I
,
411 MachineBasicBlock::iterator E
) {
413 for (; I
!= E
; ++I
) {
414 const TargetInstrDesc
&TID
= I
->getDesc();
417 else if (TID
.mayLoad() || TID
.mayStore())
425 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
426 // branches temporarily for tail merging). In the case where CurMBB ends
427 // with a conditional branch to the next block, optimize by reversing the
428 // test and conditionally branching to SuccMBB instead.
430 static void FixTail(MachineBasicBlock
* CurMBB
, MachineBasicBlock
*SuccBB
,
431 const TargetInstrInfo
*TII
) {
432 MachineFunction
*MF
= CurMBB
->getParent();
433 MachineFunction::iterator I
= next(MachineFunction::iterator(CurMBB
));
434 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
435 SmallVector
<MachineOperand
, 4> Cond
;
436 if (I
!= MF
->end() &&
437 !TII
->AnalyzeBranch(*CurMBB
, TBB
, FBB
, Cond
, true)) {
438 MachineBasicBlock
*NextBB
= I
;
439 if (TBB
== NextBB
&& !Cond
.empty() && !FBB
) {
440 if (!TII
->ReverseBranchCondition(Cond
)) {
441 TII
->RemoveBranch(*CurMBB
);
442 TII
->InsertBranch(*CurMBB
, SuccBB
, NULL
, Cond
);
447 TII
->InsertBranch(*CurMBB
, SuccBB
, NULL
, SmallVector
<MachineOperand
, 0>());
450 static bool MergeCompare(const std::pair
<unsigned,MachineBasicBlock
*> &p
,
451 const std::pair
<unsigned,MachineBasicBlock
*> &q
) {
452 if (p
.first
< q
.first
)
454 else if (p
.first
> q
.first
)
456 else if (p
.second
->getNumber() < q
.second
->getNumber())
458 else if (p
.second
->getNumber() > q
.second
->getNumber())
461 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
462 // an object with itself.
463 #ifndef _GLIBCXX_DEBUG
464 assert(0 && "Predecessor appears twice");
470 /// ComputeSameTails - Look through all the blocks in MergePotentials that have
471 /// hash CurHash (guaranteed to match the last element). Build the vector
472 /// SameTails of all those that have the (same) largest number of instructions
473 /// in common of any pair of these blocks. SameTails entries contain an
474 /// iterator into MergePotentials (from which the MachineBasicBlock can be
475 /// found) and a MachineBasicBlock::iterator into that MBB indicating the
476 /// instruction where the matching code sequence begins.
477 /// Order of elements in SameTails is the reverse of the order in which
478 /// those blocks appear in MergePotentials (where they are not necessarily
480 unsigned BranchFolder::ComputeSameTails(unsigned CurHash
,
481 unsigned minCommonTailLength
) {
482 unsigned maxCommonTailLength
= 0U;
484 MachineBasicBlock::iterator TrialBBI1
, TrialBBI2
;
485 MPIterator HighestMPIter
= prior(MergePotentials
.end());
486 for (MPIterator CurMPIter
= prior(MergePotentials
.end()),
487 B
= MergePotentials
.begin();
488 CurMPIter
!=B
&& CurMPIter
->first
==CurHash
;
490 for (MPIterator I
= prior(CurMPIter
); I
->first
==CurHash
; --I
) {
491 unsigned CommonTailLen
= ComputeCommonTailLength(
494 TrialBBI1
, TrialBBI2
);
495 // If we will have to split a block, there should be at least
496 // minCommonTailLength instructions in common; if not, at worst
497 // we will be replacing a fallthrough into the common tail with a
498 // branch, which at worst breaks even with falling through into
499 // the duplicated common tail, so 1 instruction in common is enough.
500 // We will always pick a block we do not have to split as the common
501 // tail if there is one.
502 // (Empty blocks will get forwarded and need not be considered.)
503 if (CommonTailLen
>= minCommonTailLength
||
504 (CommonTailLen
> 0 &&
505 (TrialBBI1
==CurMPIter
->second
->begin() ||
506 TrialBBI2
==I
->second
->begin()))) {
507 if (CommonTailLen
> maxCommonTailLength
) {
509 maxCommonTailLength
= CommonTailLen
;
510 HighestMPIter
= CurMPIter
;
511 SameTails
.push_back(std::make_pair(CurMPIter
, TrialBBI1
));
513 if (HighestMPIter
== CurMPIter
&&
514 CommonTailLen
== maxCommonTailLength
)
515 SameTails
.push_back(std::make_pair(I
, TrialBBI2
));
521 return maxCommonTailLength
;
524 /// RemoveBlocksWithHash - Remove all blocks with hash CurHash from
525 /// MergePotentials, restoring branches at ends of blocks as appropriate.
526 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash
,
527 MachineBasicBlock
* SuccBB
,
528 MachineBasicBlock
* PredBB
) {
529 MPIterator CurMPIter
, B
;
530 for (CurMPIter
= prior(MergePotentials
.end()), B
= MergePotentials
.begin();
531 CurMPIter
->first
==CurHash
;
533 // Put the unconditional branch back, if we need one.
534 MachineBasicBlock
*CurMBB
= CurMPIter
->second
;
535 if (SuccBB
&& CurMBB
!= PredBB
)
536 FixTail(CurMBB
, SuccBB
, TII
);
540 if (CurMPIter
->first
!=CurHash
)
542 MergePotentials
.erase(CurMPIter
, MergePotentials
.end());
545 /// CreateCommonTailOnlyBlock - None of the blocks to be tail-merged consist
546 /// only of the common tail. Create a block that does by splitting one.
547 unsigned BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock
*&PredBB
,
548 unsigned maxCommonTailLength
) {
549 unsigned i
, commonTailIndex
;
550 unsigned TimeEstimate
= ~0U;
551 for (i
=0, commonTailIndex
=0; i
<SameTails
.size(); i
++) {
552 // Use PredBB if possible; that doesn't require a new branch.
553 if (SameTails
[i
].first
->second
==PredBB
) {
557 // Otherwise, make a (fairly bogus) choice based on estimate of
558 // how long it will take the various blocks to execute.
559 unsigned t
= EstimateRuntime(SameTails
[i
].first
->second
->begin(),
560 SameTails
[i
].second
);
561 if (t
<=TimeEstimate
) {
567 MachineBasicBlock::iterator BBI
= SameTails
[commonTailIndex
].second
;
568 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].first
->second
;
570 DOUT
<< "\nSplitting " << MBB
->getNumber() << ", size " <<
573 MachineBasicBlock
*newMBB
= SplitMBBAt(*MBB
, BBI
);
574 SameTails
[commonTailIndex
].first
->second
= newMBB
;
575 SameTails
[commonTailIndex
].second
= newMBB
->begin();
576 // If we split PredBB, newMBB is the new predecessor.
580 return commonTailIndex
;
583 // See if any of the blocks in MergePotentials (which all have a common single
584 // successor, or all have no successor) can be tail-merged. If there is a
585 // successor, any blocks in MergePotentials that are not tail-merged and
586 // are not immediately before Succ must have an unconditional branch to
587 // Succ added (but the predecessor/successor lists need no adjustment).
588 // The lone predecessor of Succ that falls through into Succ,
589 // if any, is given in PredBB.
591 bool BranchFolder::TryMergeBlocks(MachineBasicBlock
*SuccBB
,
592 MachineBasicBlock
* PredBB
) {
593 // It doesn't make sense to save a single instruction since tail merging
595 // FIXME: Ask the target to provide the threshold?
596 unsigned minCommonTailLength
= (SuccBB
? 1 : 2) + 1;
599 DOUT
<< "\nTryMergeBlocks " << MergePotentials
.size() << '\n';
601 // Sort by hash value so that blocks with identical end sequences sort
603 std::stable_sort(MergePotentials
.begin(), MergePotentials
.end(),MergeCompare
);
605 // Walk through equivalence sets looking for actual exact matches.
606 while (MergePotentials
.size() > 1) {
607 unsigned CurHash
= prior(MergePotentials
.end())->first
;
609 // Build SameTails, identifying the set of blocks with this hash code
610 // and with the maximum number of instructions in common.
611 unsigned maxCommonTailLength
= ComputeSameTails(CurHash
,
612 minCommonTailLength
);
614 // If we didn't find any pair that has at least minCommonTailLength
615 // instructions in common, remove all blocks with this hash code and retry.
616 if (SameTails
.empty()) {
617 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
621 // If one of the blocks is the entire common tail (and not the entry
622 // block, which we can't jump to), we can treat all blocks with this same
623 // tail at once. Use PredBB if that is one of the possibilities, as that
624 // will not introduce any extra branches.
625 MachineBasicBlock
*EntryBB
= MergePotentials
.begin()->second
->
626 getParent()->begin();
627 unsigned int commonTailIndex
, i
;
628 for (commonTailIndex
=SameTails
.size(), i
=0; i
<SameTails
.size(); i
++) {
629 MachineBasicBlock
*MBB
= SameTails
[i
].first
->second
;
630 if (MBB
->begin() == SameTails
[i
].second
&& MBB
!= EntryBB
) {
637 if (commonTailIndex
==SameTails
.size()) {
638 // None of the blocks consist entirely of the common tail.
639 // Split a block so that one does.
640 commonTailIndex
= CreateCommonTailOnlyBlock(PredBB
, maxCommonTailLength
);
643 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].first
->second
;
644 // MBB is common tail. Adjust all other BB's to jump to this one.
645 // Traversal must be forwards so erases work.
646 DOUT
<< "\nUsing common tail " << MBB
->getNumber() << " for ";
647 for (unsigned int i
=0; i
<SameTails
.size(); ++i
) {
648 if (commonTailIndex
==i
)
650 DOUT
<< SameTails
[i
].first
->second
->getNumber() << ",";
651 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
652 ReplaceTailWithBranchTo(SameTails
[i
].second
, MBB
);
653 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
654 MergePotentials
.erase(SameTails
[i
].first
);
657 // We leave commonTailIndex in the worklist in case there are other blocks
658 // that match it with a smaller number of instructions.
664 bool BranchFolder::TailMergeBlocks(MachineFunction
&MF
) {
666 if (!EnableTailMerge
) return false;
670 // First find blocks with no successors.
671 MergePotentials
.clear();
672 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
) {
674 MergePotentials
.push_back(std::make_pair(HashEndOfMBB(I
, 2U), I
));
676 // See if we can do any tail merging on those.
677 if (MergePotentials
.size() < TailMergeThreshold
&&
678 MergePotentials
.size() >= 2)
679 MadeChange
|= TryMergeBlocks(NULL
, NULL
);
681 // Look at blocks (IBB) with multiple predecessors (PBB).
682 // We change each predecessor to a canonical form, by
683 // (1) temporarily removing any unconditional branch from the predecessor
685 // (2) alter conditional branches so they branch to the other block
686 // not IBB; this may require adding back an unconditional branch to IBB
687 // later, where there wasn't one coming in. E.g.
689 // fallthrough to QBB
692 // with a conceptual B to IBB after that, which never actually exists.
693 // With those changes, we see whether the predecessors' tails match,
694 // and merge them if so. We change things out of canonical form and
695 // back to the way they were later in the process. (OptimizeBranches
696 // would undo some of this, but we can't use it, because we'd get into
697 // a compile-time infinite loop repeatedly doing and undoing the same
700 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
) {
701 if (I
->pred_size() >= 2 && I
->pred_size() < TailMergeThreshold
) {
702 MachineBasicBlock
*IBB
= I
;
703 MachineBasicBlock
*PredBB
= prior(I
);
704 MergePotentials
.clear();
705 for (MachineBasicBlock::pred_iterator P
= I
->pred_begin(),
708 MachineBasicBlock
* PBB
= *P
;
709 // Skip blocks that loop to themselves, can't tail merge these.
712 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
713 SmallVector
<MachineOperand
, 4> Cond
;
714 if (!TII
->AnalyzeBranch(*PBB
, TBB
, FBB
, Cond
, true)) {
715 // Failing case: IBB is the target of a cbr, and
716 // we cannot reverse the branch.
717 SmallVector
<MachineOperand
, 4> NewCond(Cond
);
718 if (!Cond
.empty() && TBB
==IBB
) {
719 if (TII
->ReverseBranchCondition(NewCond
))
721 // This is the QBB case described above
723 FBB
= next(MachineFunction::iterator(PBB
));
725 // Failing case: the only way IBB can be reached from PBB is via
726 // exception handling. Happens for landing pads. Would be nice
727 // to have a bit in the edge so we didn't have to do all this.
728 if (IBB
->isLandingPad()) {
729 MachineFunction::iterator IP
= PBB
; IP
++;
730 MachineBasicBlock
* PredNextBB
= NULL
;
734 if (IBB
!=PredNextBB
) // fallthrough
737 if (TBB
!=IBB
&& FBB
!=IBB
) // cbr then ubr
739 } else if (Cond
.empty()) {
743 if (TBB
!=IBB
&& IBB
!=PredNextBB
) // cbr
747 // Remove the unconditional branch at the end, if any.
748 if (TBB
&& (Cond
.empty() || FBB
)) {
749 TII
->RemoveBranch(*PBB
);
751 // reinsert conditional branch only, for now
752 TII
->InsertBranch(*PBB
, (TBB
==IBB
) ? FBB
: TBB
, 0, NewCond
);
754 MergePotentials
.push_back(std::make_pair(HashEndOfMBB(PBB
, 1U), *P
));
757 if (MergePotentials
.size() >= 2)
758 MadeChange
|= TryMergeBlocks(I
, PredBB
);
759 // Reinsert an unconditional branch if needed.
760 // The 1 below can occur as a result of removing blocks in TryMergeBlocks.
761 PredBB
= prior(I
); // this may have been changed in TryMergeBlocks
762 if (MergePotentials
.size()==1 &&
763 MergePotentials
.begin()->second
!= PredBB
)
764 FixTail(MergePotentials
.begin()->second
, I
, TII
);
770 //===----------------------------------------------------------------------===//
771 // Branch Optimization
772 //===----------------------------------------------------------------------===//
774 bool BranchFolder::OptimizeBranches(MachineFunction
&MF
) {
777 // Make sure blocks are numbered in order
780 for (MachineFunction::iterator I
= ++MF
.begin(), E
= MF
.end(); I
!= E
; ) {
781 MachineBasicBlock
*MBB
= I
++;
784 // If it is dead, remove it.
785 if (MBB
->pred_empty()) {
786 RemoveDeadBlock(MBB
);
795 /// CanFallThrough - Return true if the specified block (with the specified
796 /// branch condition) can implicitly transfer control to the block after it by
797 /// falling off the end of it. This should return false if it can reach the
798 /// block after it, but it uses an explicit branch to do so (e.g. a table jump).
800 /// True is a conservative answer.
802 bool BranchFolder::CanFallThrough(MachineBasicBlock
*CurBB
,
803 bool BranchUnAnalyzable
,
804 MachineBasicBlock
*TBB
,
805 MachineBasicBlock
*FBB
,
806 const SmallVectorImpl
<MachineOperand
> &Cond
) {
807 MachineFunction::iterator Fallthrough
= CurBB
;
809 // If FallthroughBlock is off the end of the function, it can't fall through.
810 if (Fallthrough
== CurBB
->getParent()->end())
813 // If FallthroughBlock isn't a successor of CurBB, no fallthrough is possible.
814 if (!CurBB
->isSuccessor(Fallthrough
))
817 // If we couldn't analyze the branch, assume it could fall through.
818 if (BranchUnAnalyzable
) return true;
820 // If there is no branch, control always falls through.
821 if (TBB
== 0) return true;
823 // If there is some explicit branch to the fallthrough block, it can obviously
824 // reach, even though the branch should get folded to fall through implicitly.
825 if (MachineFunction::iterator(TBB
) == Fallthrough
||
826 MachineFunction::iterator(FBB
) == Fallthrough
)
829 // If it's an unconditional branch to some block not the fall through, it
830 // doesn't fall through.
831 if (Cond
.empty()) return false;
833 // Otherwise, if it is conditional and has no explicit false block, it falls
838 /// CanFallThrough - Return true if the specified can implicitly transfer
839 /// control to the block after it by falling off the end of it. This should
840 /// return false if it can reach the block after it, but it uses an explicit
841 /// branch to do so (e.g. a table jump).
843 /// True is a conservative answer.
845 bool BranchFolder::CanFallThrough(MachineBasicBlock
*CurBB
) {
846 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
847 SmallVector
<MachineOperand
, 4> Cond
;
848 bool CurUnAnalyzable
= TII
->AnalyzeBranch(*CurBB
, TBB
, FBB
, Cond
, true);
849 return CanFallThrough(CurBB
, CurUnAnalyzable
, TBB
, FBB
, Cond
);
852 /// IsBetterFallthrough - Return true if it would be clearly better to
853 /// fall-through to MBB1 than to fall through into MBB2. This has to return
854 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
855 /// result in infinite loops.
856 static bool IsBetterFallthrough(MachineBasicBlock
*MBB1
,
857 MachineBasicBlock
*MBB2
) {
858 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
859 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
860 // optimize branches that branch to either a return block or an assert block
861 // into a fallthrough to the return.
862 if (MBB1
->empty() || MBB2
->empty()) return false;
864 // If there is a clear successor ordering we make sure that one block
865 // will fall through to the next
866 if (MBB1
->isSuccessor(MBB2
)) return true;
867 if (MBB2
->isSuccessor(MBB1
)) return false;
869 MachineInstr
*MBB1I
= --MBB1
->end();
870 MachineInstr
*MBB2I
= --MBB2
->end();
871 return MBB2I
->getDesc().isCall() && !MBB1I
->getDesc().isCall();
874 /// OptimizeBlock - Analyze and optimize control flow related to the specified
875 /// block. This is never called on the entry block.
876 void BranchFolder::OptimizeBlock(MachineBasicBlock
*MBB
) {
877 MachineFunction::iterator FallThrough
= MBB
;
880 // If this block is empty, make everyone use its fall-through, not the block
881 // explicitly. Landing pads should not do this since the landing-pad table
882 // points to this block.
883 if (MBB
->empty() && !MBB
->isLandingPad()) {
884 // Dead block? Leave for cleanup later.
885 if (MBB
->pred_empty()) return;
887 if (FallThrough
== MBB
->getParent()->end()) {
888 // TODO: Simplify preds to not branch here if possible!
890 // Rewrite all predecessors of the old block to go to the fallthrough
892 while (!MBB
->pred_empty()) {
893 MachineBasicBlock
*Pred
= *(MBB
->pred_end()-1);
894 Pred
->ReplaceUsesOfBlockWith(MBB
, FallThrough
);
897 // If MBB was the target of a jump table, update jump tables to go to the
898 // fallthrough instead.
899 MBB
->getParent()->getJumpTableInfo()->
900 ReplaceMBBInJumpTables(MBB
, FallThrough
);
906 // Check to see if we can simplify the terminator of the block before this
908 MachineBasicBlock
&PrevBB
= *prior(MachineFunction::iterator(MBB
));
910 MachineBasicBlock
*PriorTBB
= 0, *PriorFBB
= 0;
911 SmallVector
<MachineOperand
, 4> PriorCond
;
912 bool PriorUnAnalyzable
=
913 TII
->AnalyzeBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, true);
914 if (!PriorUnAnalyzable
) {
915 // If the CFG for the prior block has extra edges, remove them.
916 MadeChange
|= PrevBB
.CorrectExtraCFGEdges(PriorTBB
, PriorFBB
,
919 // If the previous branch is conditional and both conditions go to the same
920 // destination, remove the branch, replacing it with an unconditional one or
922 if (PriorTBB
&& PriorTBB
== PriorFBB
) {
923 TII
->RemoveBranch(PrevBB
);
926 TII
->InsertBranch(PrevBB
, PriorTBB
, 0, PriorCond
);
929 return OptimizeBlock(MBB
);
932 // If the previous branch *only* branches to *this* block (conditional or
933 // not) remove the branch.
934 if (PriorTBB
== MBB
&& PriorFBB
== 0) {
935 TII
->RemoveBranch(PrevBB
);
938 return OptimizeBlock(MBB
);
941 // If the prior block branches somewhere else on the condition and here if
942 // the condition is false, remove the uncond second branch.
943 if (PriorFBB
== MBB
) {
944 TII
->RemoveBranch(PrevBB
);
945 TII
->InsertBranch(PrevBB
, PriorTBB
, 0, PriorCond
);
948 return OptimizeBlock(MBB
);
951 // If the prior block branches here on true and somewhere else on false, and
952 // if the branch condition is reversible, reverse the branch to create a
954 if (PriorTBB
== MBB
) {
955 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
956 if (!TII
->ReverseBranchCondition(NewPriorCond
)) {
957 TII
->RemoveBranch(PrevBB
);
958 TII
->InsertBranch(PrevBB
, PriorFBB
, 0, NewPriorCond
);
961 return OptimizeBlock(MBB
);
965 // If this block doesn't fall through (e.g. it ends with an uncond branch or
966 // has no successors) and if the pred falls through into this block, and if
967 // it would otherwise fall through into the block after this, move this
968 // block to the end of the function.
970 // We consider it more likely that execution will stay in the function (e.g.
971 // due to loops) than it is to exit it. This asserts in loops etc, moving
972 // the assert condition out of the loop body.
973 if (!PriorCond
.empty() && PriorFBB
== 0 &&
974 MachineFunction::iterator(PriorTBB
) == FallThrough
&&
975 !CanFallThrough(MBB
)) {
976 bool DoTransform
= true;
978 // We have to be careful that the succs of PredBB aren't both no-successor
979 // blocks. If neither have successors and if PredBB is the second from
980 // last block in the function, we'd just keep swapping the two blocks for
981 // last. Only do the swap if one is clearly better to fall through than
983 if (FallThrough
== --MBB
->getParent()->end() &&
984 !IsBetterFallthrough(PriorTBB
, MBB
))
987 // We don't want to do this transformation if we have control flow like:
996 // In this case, we could actually be moving the return block *into* a
998 if (DoTransform
&& !MBB
->succ_empty() &&
999 (!CanFallThrough(PriorTBB
) || PriorTBB
->empty()))
1000 DoTransform
= false;
1004 // Reverse the branch so we will fall through on the previous true cond.
1005 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1006 if (!TII
->ReverseBranchCondition(NewPriorCond
)) {
1007 DOUT
<< "\nMoving MBB: " << *MBB
;
1008 DOUT
<< "To make fallthrough to: " << *PriorTBB
<< "\n";
1010 TII
->RemoveBranch(PrevBB
);
1011 TII
->InsertBranch(PrevBB
, MBB
, 0, NewPriorCond
);
1013 // Move this block to the end of the function.
1014 MBB
->moveAfter(--MBB
->getParent()->end());
1023 // Analyze the branch in the current block.
1024 MachineBasicBlock
*CurTBB
= 0, *CurFBB
= 0;
1025 SmallVector
<MachineOperand
, 4> CurCond
;
1026 bool CurUnAnalyzable
= TII
->AnalyzeBranch(*MBB
, CurTBB
, CurFBB
, CurCond
, true);
1027 if (!CurUnAnalyzable
) {
1028 // If the CFG for the prior block has extra edges, remove them.
1029 MadeChange
|= MBB
->CorrectExtraCFGEdges(CurTBB
, CurFBB
, !CurCond
.empty());
1031 // If this is a two-way branch, and the FBB branches to this block, reverse
1032 // the condition so the single-basic-block loop is faster. Instead of:
1033 // Loop: xxx; jcc Out; jmp Loop
1035 // Loop: xxx; jncc Loop; jmp Out
1036 if (CurTBB
&& CurFBB
&& CurFBB
== MBB
&& CurTBB
!= MBB
) {
1037 SmallVector
<MachineOperand
, 4> NewCond(CurCond
);
1038 if (!TII
->ReverseBranchCondition(NewCond
)) {
1039 TII
->RemoveBranch(*MBB
);
1040 TII
->InsertBranch(*MBB
, CurFBB
, CurTBB
, NewCond
);
1043 return OptimizeBlock(MBB
);
1048 // If this branch is the only thing in its block, see if we can forward
1049 // other blocks across it.
1050 if (CurTBB
&& CurCond
.empty() && CurFBB
== 0 &&
1051 MBB
->begin()->getDesc().isBranch() && CurTBB
!= MBB
) {
1052 // This block may contain just an unconditional branch. Because there can
1053 // be 'non-branch terminators' in the block, try removing the branch and
1054 // then seeing if the block is empty.
1055 TII
->RemoveBranch(*MBB
);
1057 // If this block is just an unconditional branch to CurTBB, we can
1058 // usually completely eliminate the block. The only case we cannot
1059 // completely eliminate the block is when the block before this one
1060 // falls through into MBB and we can't understand the prior block's branch
1063 bool PredHasNoFallThrough
= TII
->BlockHasNoFallThrough(PrevBB
);
1064 if (PredHasNoFallThrough
|| !PriorUnAnalyzable
||
1065 !PrevBB
.isSuccessor(MBB
)) {
1066 // If the prior block falls through into us, turn it into an
1067 // explicit branch to us to make updates simpler.
1068 if (!PredHasNoFallThrough
&& PrevBB
.isSuccessor(MBB
) &&
1069 PriorTBB
!= MBB
&& PriorFBB
!= MBB
) {
1070 if (PriorTBB
== 0) {
1071 assert(PriorCond
.empty() && PriorFBB
== 0 &&
1072 "Bad branch analysis");
1075 assert(PriorFBB
== 0 && "Machine CFG out of date!");
1078 TII
->RemoveBranch(PrevBB
);
1079 TII
->InsertBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
);
1082 // Iterate through all the predecessors, revectoring each in-turn.
1084 bool DidChange
= false;
1085 bool HasBranchToSelf
= false;
1086 while(PI
!= MBB
->pred_size()) {
1087 MachineBasicBlock
*PMBB
= *(MBB
->pred_begin() + PI
);
1089 // If this block has an uncond branch to itself, leave it.
1091 HasBranchToSelf
= true;
1094 PMBB
->ReplaceUsesOfBlockWith(MBB
, CurTBB
);
1098 // Change any jumptables to go to the new MBB.
1099 MBB
->getParent()->getJumpTableInfo()->
1100 ReplaceMBBInJumpTables(MBB
, CurTBB
);
1104 if (!HasBranchToSelf
) return;
1109 // Add the branch back if the block is more than just an uncond branch.
1110 TII
->InsertBranch(*MBB
, CurTBB
, 0, CurCond
);
1114 // If the prior block doesn't fall through into this block, and if this
1115 // block doesn't fall through into some other block, see if we can find a
1116 // place to move this block where a fall-through will happen.
1117 if (!CanFallThrough(&PrevBB
, PriorUnAnalyzable
,
1118 PriorTBB
, PriorFBB
, PriorCond
)) {
1119 // Now we know that there was no fall-through into this block, check to
1120 // see if it has a fall-through into its successor.
1121 bool CurFallsThru
= CanFallThrough(MBB
, CurUnAnalyzable
, CurTBB
, CurFBB
,
1124 if (!MBB
->isLandingPad()) {
1125 // Check all the predecessors of this block. If one of them has no fall
1126 // throughs, move this block right after it.
1127 for (MachineBasicBlock::pred_iterator PI
= MBB
->pred_begin(),
1128 E
= MBB
->pred_end(); PI
!= E
; ++PI
) {
1129 // Analyze the branch at the end of the pred.
1130 MachineBasicBlock
*PredBB
= *PI
;
1131 MachineFunction::iterator PredFallthrough
= PredBB
; ++PredFallthrough
;
1132 if (PredBB
!= MBB
&& !CanFallThrough(PredBB
)
1133 && (!CurFallsThru
|| !CurTBB
|| !CurFBB
)
1134 && (!CurFallsThru
|| MBB
->getNumber() >= PredBB
->getNumber())) {
1135 // If the current block doesn't fall through, just move it.
1136 // If the current block can fall through and does not end with a
1137 // conditional branch, we need to append an unconditional jump to
1138 // the (current) next block. To avoid a possible compile-time
1139 // infinite loop, move blocks only backward in this case.
1140 // Also, if there are already 2 branches here, we cannot add a third;
1141 // this means we have the case
1146 MachineBasicBlock
*NextBB
= next(MachineFunction::iterator(MBB
));
1148 TII
->InsertBranch(*MBB
, NextBB
, 0, CurCond
);
1150 MBB
->moveAfter(PredBB
);
1152 return OptimizeBlock(MBB
);
1157 if (!CurFallsThru
) {
1158 // Check all successors to see if we can move this block before it.
1159 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
1160 E
= MBB
->succ_end(); SI
!= E
; ++SI
) {
1161 // Analyze the branch at the end of the block before the succ.
1162 MachineBasicBlock
*SuccBB
= *SI
;
1163 MachineFunction::iterator SuccPrev
= SuccBB
; --SuccPrev
;
1164 std::vector
<MachineOperand
> SuccPrevCond
;
1166 // If this block doesn't already fall-through to that successor, and if
1167 // the succ doesn't already have a block that can fall through into it,
1168 // and if the successor isn't an EH destination, we can arrange for the
1169 // fallthrough to happen.
1170 if (SuccBB
!= MBB
&& !CanFallThrough(SuccPrev
) &&
1171 !SuccBB
->isLandingPad()) {
1172 MBB
->moveBefore(SuccBB
);
1174 return OptimizeBlock(MBB
);
1178 // Okay, there is no really great place to put this block. If, however,
1179 // the block before this one would be a fall-through if this block were
1180 // removed, move this block to the end of the function.
1181 if (FallThrough
!= MBB
->getParent()->end() &&
1182 PrevBB
.isSuccessor(FallThrough
)) {
1183 MBB
->moveAfter(--MBB
->getParent()->end());