Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / CodeGen / RegAllocLinearScan.cpp
blobb5f581cc59417b18157cc900805b7cc1d8a2c6a5
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "Spiller.h"
17 #include "llvm/Function.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveStackAnalysis.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegAllocRegistry.h"
26 #include "llvm/CodeGen/RegisterCoalescer.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetOptions.h"
30 #include "llvm/Target/TargetInstrInfo.h"
31 #include "llvm/ADT/EquivalenceClasses.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/Compiler.h"
37 #include <algorithm>
38 #include <set>
39 #include <queue>
40 #include <memory>
41 #include <cmath>
42 using namespace llvm;
44 STATISTIC(NumIters , "Number of iterations performed");
45 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
46 STATISTIC(NumCoalesce, "Number of copies coalesced");
47 STATISTIC(NumDowngrade, "Number of registers downgraded");
49 static cl::opt<bool>
50 NewHeuristic("new-spilling-heuristic",
51 cl::desc("Use new spilling heuristic"),
52 cl::init(false), cl::Hidden);
54 static cl::opt<bool>
55 PreSplitIntervals("pre-alloc-split",
56 cl::desc("Pre-register allocation live interval splitting"),
57 cl::init(false), cl::Hidden);
59 static RegisterRegAlloc
60 linearscanRegAlloc("linearscan", "linear scan register allocator",
61 createLinearScanRegisterAllocator);
63 namespace {
64 struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass {
65 static char ID;
66 RALinScan() : MachineFunctionPass(&ID) {}
68 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
69 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
70 private:
71 /// RelatedRegClasses - This structure is built the first time a function is
72 /// compiled, and keeps track of which register classes have registers that
73 /// belong to multiple classes or have aliases that are in other classes.
74 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
75 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
77 // NextReloadMap - For each register in the map, it maps to the another
78 // register which is defined by a reload from the same stack slot and
79 // both reloads are in the same basic block.
80 DenseMap<unsigned, unsigned> NextReloadMap;
82 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
83 // un-favored for allocation.
84 SmallSet<unsigned, 8> DowngradedRegs;
86 // DowngradeMap - A map from virtual registers to physical registers being
87 // downgraded for the virtual registers.
88 DenseMap<unsigned, unsigned> DowngradeMap;
90 MachineFunction* mf_;
91 MachineRegisterInfo* mri_;
92 const TargetMachine* tm_;
93 const TargetRegisterInfo* tri_;
94 const TargetInstrInfo* tii_;
95 BitVector allocatableRegs_;
96 LiveIntervals* li_;
97 LiveStacks* ls_;
98 const MachineLoopInfo *loopInfo;
100 /// handled_ - Intervals are added to the handled_ set in the order of their
101 /// start value. This is uses for backtracking.
102 std::vector<LiveInterval*> handled_;
104 /// fixed_ - Intervals that correspond to machine registers.
106 IntervalPtrs fixed_;
108 /// active_ - Intervals that are currently being processed, and which have a
109 /// live range active for the current point.
110 IntervalPtrs active_;
112 /// inactive_ - Intervals that are currently being processed, but which have
113 /// a hold at the current point.
114 IntervalPtrs inactive_;
116 typedef std::priority_queue<LiveInterval*,
117 SmallVector<LiveInterval*, 64>,
118 greater_ptr<LiveInterval> > IntervalHeap;
119 IntervalHeap unhandled_;
121 /// regUse_ - Tracks register usage.
122 SmallVector<unsigned, 32> regUse_;
123 SmallVector<unsigned, 32> regUseBackUp_;
125 /// vrm_ - Tracks register assignments.
126 VirtRegMap* vrm_;
128 std::auto_ptr<Spiller> spiller_;
130 public:
131 virtual const char* getPassName() const {
132 return "Linear Scan Register Allocator";
135 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
136 AU.addRequired<LiveIntervals>();
137 if (StrongPHIElim)
138 AU.addRequiredID(StrongPHIEliminationID);
139 // Make sure PassManager knows which analyses to make available
140 // to coalescing and which analyses coalescing invalidates.
141 AU.addRequiredTransitive<RegisterCoalescer>();
142 if (PreSplitIntervals)
143 AU.addRequiredID(PreAllocSplittingID);
144 AU.addRequired<LiveStacks>();
145 AU.addPreserved<LiveStacks>();
146 AU.addRequired<MachineLoopInfo>();
147 AU.addPreserved<MachineLoopInfo>();
148 AU.addRequired<VirtRegMap>();
149 AU.addPreserved<VirtRegMap>();
150 AU.addPreservedID(MachineDominatorsID);
151 MachineFunctionPass::getAnalysisUsage(AU);
154 /// runOnMachineFunction - register allocate the whole function
155 bool runOnMachineFunction(MachineFunction&);
157 private:
158 /// linearScan - the linear scan algorithm
159 void linearScan();
161 /// initIntervalSets - initialize the interval sets.
163 void initIntervalSets();
165 /// processActiveIntervals - expire old intervals and move non-overlapping
166 /// ones to the inactive list.
167 void processActiveIntervals(unsigned CurPoint);
169 /// processInactiveIntervals - expire old intervals and move overlapping
170 /// ones to the active list.
171 void processInactiveIntervals(unsigned CurPoint);
173 /// hasNextReloadInterval - Return the next liveinterval that's being
174 /// defined by a reload from the same SS as the specified one.
175 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
177 /// DowngradeRegister - Downgrade a register for allocation.
178 void DowngradeRegister(LiveInterval *li, unsigned Reg);
180 /// UpgradeRegister - Upgrade a register for allocation.
181 void UpgradeRegister(unsigned Reg);
183 /// assignRegOrStackSlotAtInterval - assign a register if one
184 /// is available, or spill.
185 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
187 void updateSpillWeights(std::vector<float> &Weights,
188 unsigned reg, float weight,
189 const TargetRegisterClass *RC);
191 /// findIntervalsToSpill - Determine the intervals to spill for the
192 /// specified interval. It's passed the physical registers whose spill
193 /// weight is the lowest among all the registers whose live intervals
194 /// conflict with the interval.
195 void findIntervalsToSpill(LiveInterval *cur,
196 std::vector<std::pair<unsigned,float> > &Candidates,
197 unsigned NumCands,
198 SmallVector<LiveInterval*, 8> &SpillIntervals);
200 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
201 /// try allocate the definition the same register as the source register
202 /// if the register is not defined during live time of the interval. This
203 /// eliminate a copy. This is used to coalesce copies which were not
204 /// coalesced away before allocation either due to dest and src being in
205 /// different register classes or because the coalescer was overly
206 /// conservative.
207 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
210 /// Register usage / availability tracking helpers.
213 void initRegUses() {
214 regUse_.resize(tri_->getNumRegs(), 0);
215 regUseBackUp_.resize(tri_->getNumRegs(), 0);
218 void finalizeRegUses() {
219 #ifndef NDEBUG
220 // Verify all the registers are "freed".
221 bool Error = false;
222 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
223 if (regUse_[i] != 0) {
224 cerr << tri_->getName(i) << " is still in use!\n";
225 Error = true;
228 if (Error)
229 abort();
230 #endif
231 regUse_.clear();
232 regUseBackUp_.clear();
235 void addRegUse(unsigned physReg) {
236 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
237 "should be physical register!");
238 ++regUse_[physReg];
239 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
240 ++regUse_[*as];
243 void delRegUse(unsigned physReg) {
244 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
245 "should be physical register!");
246 assert(regUse_[physReg] != 0);
247 --regUse_[physReg];
248 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
249 assert(regUse_[*as] != 0);
250 --regUse_[*as];
254 bool isRegAvail(unsigned physReg) const {
255 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
256 "should be physical register!");
257 return regUse_[physReg] == 0;
260 void backUpRegUses() {
261 regUseBackUp_ = regUse_;
264 void restoreRegUses() {
265 regUse_ = regUseBackUp_;
269 /// Register handling helpers.
272 /// getFreePhysReg - return a free physical register for this virtual
273 /// register interval if we have one, otherwise return 0.
274 unsigned getFreePhysReg(LiveInterval* cur);
275 unsigned getFreePhysReg(const TargetRegisterClass *RC,
276 unsigned MaxInactiveCount,
277 SmallVector<unsigned, 256> &inactiveCounts,
278 bool SkipDGRegs);
280 /// assignVirt2StackSlot - assigns this virtual register to a
281 /// stack slot. returns the stack slot
282 int assignVirt2StackSlot(unsigned virtReg);
284 void ComputeRelatedRegClasses();
286 template <typename ItTy>
287 void printIntervals(const char* const str, ItTy i, ItTy e) const {
288 if (str) DOUT << str << " intervals:\n";
289 for (; i != e; ++i) {
290 DOUT << "\t" << *i->first << " -> ";
291 unsigned reg = i->first->reg;
292 if (TargetRegisterInfo::isVirtualRegister(reg)) {
293 reg = vrm_->getPhys(reg);
295 DOUT << tri_->getName(reg) << '\n';
299 char RALinScan::ID = 0;
302 static RegisterPass<RALinScan>
303 X("linearscan-regalloc", "Linear Scan Register Allocator");
305 void RALinScan::ComputeRelatedRegClasses() {
306 // First pass, add all reg classes to the union, and determine at least one
307 // reg class that each register is in.
308 bool HasAliases = false;
309 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
310 E = tri_->regclass_end(); RCI != E; ++RCI) {
311 RelatedRegClasses.insert(*RCI);
312 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
313 I != E; ++I) {
314 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
316 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
317 if (PRC) {
318 // Already processed this register. Just make sure we know that
319 // multiple register classes share a register.
320 RelatedRegClasses.unionSets(PRC, *RCI);
321 } else {
322 PRC = *RCI;
327 // Second pass, now that we know conservatively what register classes each reg
328 // belongs to, add info about aliases. We don't need to do this for targets
329 // without register aliases.
330 if (HasAliases)
331 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
332 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
333 I != E; ++I)
334 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS)
335 RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
338 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
339 /// try allocate the definition the same register as the source register
340 /// if the register is not defined during live time of the interval. This
341 /// eliminate a copy. This is used to coalesce copies which were not
342 /// coalesced away before allocation either due to dest and src being in
343 /// different register classes or because the coalescer was overly
344 /// conservative.
345 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
346 if ((cur.preference && cur.preference == Reg) || !cur.containsOneValue())
347 return Reg;
349 VNInfo *vni = cur.begin()->valno;
350 if (!vni->def || vni->def == ~1U || vni->def == ~0U)
351 return Reg;
352 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
353 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
354 if (!CopyMI ||
355 !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg))
356 return Reg;
357 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
358 if (!vrm_->isAssignedReg(SrcReg))
359 return Reg;
360 else
361 SrcReg = vrm_->getPhys(SrcReg);
363 if (Reg == SrcReg)
364 return Reg;
366 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
367 if (!RC->contains(SrcReg))
368 return Reg;
370 // Try to coalesce.
371 if (!li_->conflictsWithPhysRegDef(cur, *vrm_, SrcReg)) {
372 DOUT << "Coalescing: " << cur << " -> " << tri_->getName(SrcReg)
373 << '\n';
374 vrm_->clearVirt(cur.reg);
375 vrm_->assignVirt2Phys(cur.reg, SrcReg);
376 ++NumCoalesce;
377 return SrcReg;
380 return Reg;
383 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
384 mf_ = &fn;
385 mri_ = &fn.getRegInfo();
386 tm_ = &fn.getTarget();
387 tri_ = tm_->getRegisterInfo();
388 tii_ = tm_->getInstrInfo();
389 allocatableRegs_ = tri_->getAllocatableSet(fn);
390 li_ = &getAnalysis<LiveIntervals>();
391 ls_ = &getAnalysis<LiveStacks>();
392 loopInfo = &getAnalysis<MachineLoopInfo>();
394 // We don't run the coalescer here because we have no reason to
395 // interact with it. If the coalescer requires interaction, it
396 // won't do anything. If it doesn't require interaction, we assume
397 // it was run as a separate pass.
399 // If this is the first function compiled, compute the related reg classes.
400 if (RelatedRegClasses.empty())
401 ComputeRelatedRegClasses();
403 // Also resize register usage trackers.
404 initRegUses();
406 vrm_ = &getAnalysis<VirtRegMap>();
407 if (!spiller_.get()) spiller_.reset(createSpiller());
409 initIntervalSets();
411 linearScan();
413 // Rewrite spill code and update the PhysRegsUsed set.
414 spiller_->runOnMachineFunction(*mf_, *vrm_, li_);
416 assert(unhandled_.empty() && "Unhandled live intervals remain!");
418 finalizeRegUses();
420 fixed_.clear();
421 active_.clear();
422 inactive_.clear();
423 handled_.clear();
424 NextReloadMap.clear();
425 DowngradedRegs.clear();
426 DowngradeMap.clear();
428 return true;
431 /// initIntervalSets - initialize the interval sets.
433 void RALinScan::initIntervalSets()
435 assert(unhandled_.empty() && fixed_.empty() &&
436 active_.empty() && inactive_.empty() &&
437 "interval sets should be empty on initialization");
439 handled_.reserve(li_->getNumIntervals());
441 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
442 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
443 mri_->setPhysRegUsed(i->second->reg);
444 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
445 } else
446 unhandled_.push(i->second);
450 void RALinScan::linearScan()
452 // linear scan algorithm
453 DOUT << "********** LINEAR SCAN **********\n";
454 DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n';
456 DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end()));
458 while (!unhandled_.empty()) {
459 // pick the interval with the earliest start point
460 LiveInterval* cur = unhandled_.top();
461 unhandled_.pop();
462 ++NumIters;
463 DOUT << "\n*** CURRENT ***: " << *cur << '\n';
465 if (!cur->empty()) {
466 processActiveIntervals(cur->beginNumber());
467 processInactiveIntervals(cur->beginNumber());
469 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
470 "Can only allocate virtual registers!");
473 // Allocating a virtual register. try to find a free
474 // physical register or spill an interval (possibly this one) in order to
475 // assign it one.
476 assignRegOrStackSlotAtInterval(cur);
478 DEBUG(printIntervals("active", active_.begin(), active_.end()));
479 DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end()));
482 // Expire any remaining active intervals
483 while (!active_.empty()) {
484 IntervalPtr &IP = active_.back();
485 unsigned reg = IP.first->reg;
486 DOUT << "\tinterval " << *IP.first << " expired\n";
487 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
488 "Can only allocate virtual registers!");
489 reg = vrm_->getPhys(reg);
490 delRegUse(reg);
491 active_.pop_back();
494 // Expire any remaining inactive intervals
495 DEBUG(for (IntervalPtrs::reverse_iterator
496 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
497 DOUT << "\tinterval " << *i->first << " expired\n");
498 inactive_.clear();
500 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
501 MachineFunction::iterator EntryMBB = mf_->begin();
502 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
503 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
504 LiveInterval &cur = *i->second;
505 unsigned Reg = 0;
506 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
507 if (isPhys)
508 Reg = cur.reg;
509 else if (vrm_->isAssignedReg(cur.reg))
510 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
511 if (!Reg)
512 continue;
513 // Ignore splited live intervals.
514 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
515 continue;
516 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
517 I != E; ++I) {
518 const LiveRange &LR = *I;
519 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
520 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
521 if (LiveInMBBs[i] != EntryMBB)
522 LiveInMBBs[i]->addLiveIn(Reg);
523 LiveInMBBs.clear();
528 DOUT << *vrm_;
530 // Look for physical registers that end up not being allocated even though
531 // register allocator had to spill other registers in its register class.
532 if (ls_->getNumIntervals() == 0)
533 return;
534 if (!vrm_->FindUnusedRegisters(tri_, li_))
535 return;
538 /// processActiveIntervals - expire old intervals and move non-overlapping ones
539 /// to the inactive list.
540 void RALinScan::processActiveIntervals(unsigned CurPoint)
542 DOUT << "\tprocessing active intervals:\n";
544 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
545 LiveInterval *Interval = active_[i].first;
546 LiveInterval::iterator IntervalPos = active_[i].second;
547 unsigned reg = Interval->reg;
549 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
551 if (IntervalPos == Interval->end()) { // Remove expired intervals.
552 DOUT << "\t\tinterval " << *Interval << " expired\n";
553 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
554 "Can only allocate virtual registers!");
555 reg = vrm_->getPhys(reg);
556 delRegUse(reg);
558 // Pop off the end of the list.
559 active_[i] = active_.back();
560 active_.pop_back();
561 --i; --e;
563 } else if (IntervalPos->start > CurPoint) {
564 // Move inactive intervals to inactive list.
565 DOUT << "\t\tinterval " << *Interval << " inactive\n";
566 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
567 "Can only allocate virtual registers!");
568 reg = vrm_->getPhys(reg);
569 delRegUse(reg);
570 // add to inactive.
571 inactive_.push_back(std::make_pair(Interval, IntervalPos));
573 // Pop off the end of the list.
574 active_[i] = active_.back();
575 active_.pop_back();
576 --i; --e;
577 } else {
578 // Otherwise, just update the iterator position.
579 active_[i].second = IntervalPos;
584 /// processInactiveIntervals - expire old intervals and move overlapping
585 /// ones to the active list.
586 void RALinScan::processInactiveIntervals(unsigned CurPoint)
588 DOUT << "\tprocessing inactive intervals:\n";
590 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
591 LiveInterval *Interval = inactive_[i].first;
592 LiveInterval::iterator IntervalPos = inactive_[i].second;
593 unsigned reg = Interval->reg;
595 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
597 if (IntervalPos == Interval->end()) { // remove expired intervals.
598 DOUT << "\t\tinterval " << *Interval << " expired\n";
600 // Pop off the end of the list.
601 inactive_[i] = inactive_.back();
602 inactive_.pop_back();
603 --i; --e;
604 } else if (IntervalPos->start <= CurPoint) {
605 // move re-activated intervals in active list
606 DOUT << "\t\tinterval " << *Interval << " active\n";
607 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
608 "Can only allocate virtual registers!");
609 reg = vrm_->getPhys(reg);
610 addRegUse(reg);
611 // add to active
612 active_.push_back(std::make_pair(Interval, IntervalPos));
614 // Pop off the end of the list.
615 inactive_[i] = inactive_.back();
616 inactive_.pop_back();
617 --i; --e;
618 } else {
619 // Otherwise, just update the iterator position.
620 inactive_[i].second = IntervalPos;
625 /// updateSpillWeights - updates the spill weights of the specifed physical
626 /// register and its weight.
627 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
628 unsigned reg, float weight,
629 const TargetRegisterClass *RC) {
630 SmallSet<unsigned, 4> Processed;
631 SmallSet<unsigned, 4> SuperAdded;
632 SmallVector<unsigned, 4> Supers;
633 Weights[reg] += weight;
634 Processed.insert(reg);
635 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
636 Weights[*as] += weight;
637 Processed.insert(*as);
638 if (tri_->isSubRegister(*as, reg) &&
639 SuperAdded.insert(*as) &&
640 RC->contains(*as)) {
641 Supers.push_back(*as);
645 // If the alias is a super-register, and the super-register is in the
646 // register class we are trying to allocate. Then add the weight to all
647 // sub-registers of the super-register even if they are not aliases.
648 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
649 // bl should get the same spill weight otherwise it will be choosen
650 // as a spill candidate since spilling bh doesn't make ebx available.
651 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
652 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
653 if (!Processed.count(*sr))
654 Weights[*sr] += weight;
658 static
659 RALinScan::IntervalPtrs::iterator
660 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
661 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
662 I != E; ++I)
663 if (I->first == LI) return I;
664 return IP.end();
667 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){
668 for (unsigned i = 0, e = V.size(); i != e; ++i) {
669 RALinScan::IntervalPtr &IP = V[i];
670 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
671 IP.second, Point);
672 if (I != IP.first->begin()) --I;
673 IP.second = I;
677 /// addStackInterval - Create a LiveInterval for stack if the specified live
678 /// interval has been spilled.
679 static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
680 LiveIntervals *li_,
681 MachineRegisterInfo* mri_, VirtRegMap &vrm_) {
682 int SS = vrm_.getStackSlot(cur->reg);
683 if (SS == VirtRegMap::NO_STACK_SLOT)
684 return;
686 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
687 LiveInterval &SI = ls_->getOrCreateInterval(SS, RC);
689 VNInfo *VNI;
690 if (SI.hasAtLeastOneValue())
691 VNI = SI.getValNumInfo(0);
692 else
693 VNI = SI.getNextValue(~0U, 0, ls_->getVNInfoAllocator());
695 LiveInterval &RI = li_->getInterval(cur->reg);
696 // FIXME: This may be overly conservative.
697 SI.MergeRangesInAsValue(RI, VNI);
700 /// getConflictWeight - Return the number of conflicts between cur
701 /// live interval and defs and uses of Reg weighted by loop depthes.
702 static
703 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
704 MachineRegisterInfo *mri_,
705 const MachineLoopInfo *loopInfo) {
706 float Conflicts = 0;
707 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
708 E = mri_->reg_end(); I != E; ++I) {
709 MachineInstr *MI = &*I;
710 if (cur->liveAt(li_->getInstructionIndex(MI))) {
711 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
712 Conflicts += powf(10.0f, (float)loopDepth);
715 return Conflicts;
718 /// findIntervalsToSpill - Determine the intervals to spill for the
719 /// specified interval. It's passed the physical registers whose spill
720 /// weight is the lowest among all the registers whose live intervals
721 /// conflict with the interval.
722 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
723 std::vector<std::pair<unsigned,float> > &Candidates,
724 unsigned NumCands,
725 SmallVector<LiveInterval*, 8> &SpillIntervals) {
726 // We have figured out the *best* register to spill. But there are other
727 // registers that are pretty good as well (spill weight within 3%). Spill
728 // the one that has fewest defs and uses that conflict with cur.
729 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
730 SmallVector<LiveInterval*, 8> SLIs[3];
732 DOUT << "\tConsidering " << NumCands << " candidates: ";
733 DEBUG(for (unsigned i = 0; i != NumCands; ++i)
734 DOUT << tri_->getName(Candidates[i].first) << " ";
735 DOUT << "\n";);
737 // Calculate the number of conflicts of each candidate.
738 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
739 unsigned Reg = i->first->reg;
740 unsigned PhysReg = vrm_->getPhys(Reg);
741 if (!cur->overlapsFrom(*i->first, i->second))
742 continue;
743 for (unsigned j = 0; j < NumCands; ++j) {
744 unsigned Candidate = Candidates[j].first;
745 if (tri_->regsOverlap(PhysReg, Candidate)) {
746 if (NumCands > 1)
747 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
748 SLIs[j].push_back(i->first);
753 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
754 unsigned Reg = i->first->reg;
755 unsigned PhysReg = vrm_->getPhys(Reg);
756 if (!cur->overlapsFrom(*i->first, i->second-1))
757 continue;
758 for (unsigned j = 0; j < NumCands; ++j) {
759 unsigned Candidate = Candidates[j].first;
760 if (tri_->regsOverlap(PhysReg, Candidate)) {
761 if (NumCands > 1)
762 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
763 SLIs[j].push_back(i->first);
768 // Which is the best candidate?
769 unsigned BestCandidate = 0;
770 float MinConflicts = Conflicts[0];
771 for (unsigned i = 1; i != NumCands; ++i) {
772 if (Conflicts[i] < MinConflicts) {
773 BestCandidate = i;
774 MinConflicts = Conflicts[i];
778 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
779 std::back_inserter(SpillIntervals));
782 namespace {
783 struct WeightCompare {
784 typedef std::pair<unsigned, float> RegWeightPair;
785 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
786 return LHS.second < RHS.second;
791 static bool weightsAreClose(float w1, float w2) {
792 if (!NewHeuristic)
793 return false;
795 float diff = w1 - w2;
796 if (diff <= 0.02f) // Within 0.02f
797 return true;
798 return (diff / w2) <= 0.05f; // Within 5%.
801 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
802 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
803 if (I == NextReloadMap.end())
804 return 0;
805 return &li_->getInterval(I->second);
808 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
809 bool isNew = DowngradedRegs.insert(Reg);
810 isNew = isNew; // Silence compiler warning.
811 assert(isNew && "Multiple reloads holding the same register?");
812 DowngradeMap.insert(std::make_pair(li->reg, Reg));
813 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
814 isNew = DowngradedRegs.insert(*AS);
815 isNew = isNew; // Silence compiler warning.
816 assert(isNew && "Multiple reloads holding the same register?");
817 DowngradeMap.insert(std::make_pair(li->reg, *AS));
819 ++NumDowngrade;
822 void RALinScan::UpgradeRegister(unsigned Reg) {
823 if (Reg) {
824 DowngradedRegs.erase(Reg);
825 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
826 DowngradedRegs.erase(*AS);
830 namespace {
831 struct LISorter {
832 bool operator()(LiveInterval* A, LiveInterval* B) {
833 return A->beginNumber() < B->beginNumber();
838 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
839 /// spill.
840 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur)
842 DOUT << "\tallocating current interval: ";
844 // This is an implicitly defined live interval, just assign any register.
845 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
846 if (cur->empty()) {
847 unsigned physReg = cur->preference;
848 if (!physReg)
849 physReg = *RC->allocation_order_begin(*mf_);
850 DOUT << tri_->getName(physReg) << '\n';
851 // Note the register is not really in use.
852 vrm_->assignVirt2Phys(cur->reg, physReg);
853 return;
856 backUpRegUses();
858 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
859 unsigned StartPosition = cur->beginNumber();
860 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
862 // If start of this live interval is defined by a move instruction and its
863 // source is assigned a physical register that is compatible with the target
864 // register class, then we should try to assign it the same register.
865 // This can happen when the move is from a larger register class to a smaller
866 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
867 if (!cur->preference && cur->hasAtLeastOneValue()) {
868 VNInfo *vni = cur->begin()->valno;
869 if (vni->def && vni->def != ~1U && vni->def != ~0U) {
870 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
871 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
872 if (CopyMI &&
873 tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) {
874 unsigned Reg = 0;
875 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
876 Reg = SrcReg;
877 else if (vrm_->isAssignedReg(SrcReg))
878 Reg = vrm_->getPhys(SrcReg);
879 if (Reg) {
880 if (SrcSubReg)
881 Reg = tri_->getSubReg(Reg, SrcSubReg);
882 if (DstSubReg)
883 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
884 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
885 cur->preference = Reg;
891 // For every interval in inactive we overlap with, mark the
892 // register as not free and update spill weights.
893 for (IntervalPtrs::const_iterator i = inactive_.begin(),
894 e = inactive_.end(); i != e; ++i) {
895 unsigned Reg = i->first->reg;
896 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
897 "Can only allocate virtual registers!");
898 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
899 // If this is not in a related reg class to the register we're allocating,
900 // don't check it.
901 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
902 cur->overlapsFrom(*i->first, i->second-1)) {
903 Reg = vrm_->getPhys(Reg);
904 addRegUse(Reg);
905 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
909 // Speculatively check to see if we can get a register right now. If not,
910 // we know we won't be able to by adding more constraints. If so, we can
911 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
912 // is very bad (it contains all callee clobbered registers for any functions
913 // with a call), so we want to avoid doing that if possible.
914 unsigned physReg = getFreePhysReg(cur);
915 unsigned BestPhysReg = physReg;
916 if (physReg) {
917 // We got a register. However, if it's in the fixed_ list, we might
918 // conflict with it. Check to see if we conflict with it or any of its
919 // aliases.
920 SmallSet<unsigned, 8> RegAliases;
921 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
922 RegAliases.insert(*AS);
924 bool ConflictsWithFixed = false;
925 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
926 IntervalPtr &IP = fixed_[i];
927 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
928 // Okay, this reg is on the fixed list. Check to see if we actually
929 // conflict.
930 LiveInterval *I = IP.first;
931 if (I->endNumber() > StartPosition) {
932 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
933 IP.second = II;
934 if (II != I->begin() && II->start > StartPosition)
935 --II;
936 if (cur->overlapsFrom(*I, II)) {
937 ConflictsWithFixed = true;
938 break;
944 // Okay, the register picked by our speculative getFreePhysReg call turned
945 // out to be in use. Actually add all of the conflicting fixed registers to
946 // regUse_ so we can do an accurate query.
947 if (ConflictsWithFixed) {
948 // For every interval in fixed we overlap with, mark the register as not
949 // free and update spill weights.
950 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
951 IntervalPtr &IP = fixed_[i];
952 LiveInterval *I = IP.first;
954 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
955 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
956 I->endNumber() > StartPosition) {
957 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
958 IP.second = II;
959 if (II != I->begin() && II->start > StartPosition)
960 --II;
961 if (cur->overlapsFrom(*I, II)) {
962 unsigned reg = I->reg;
963 addRegUse(reg);
964 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
969 // Using the newly updated regUse_ object, which includes conflicts in the
970 // future, see if there are any registers available.
971 physReg = getFreePhysReg(cur);
975 // Restore the physical register tracker, removing information about the
976 // future.
977 restoreRegUses();
979 // If we find a free register, we are done: assign this virtual to
980 // the free physical register and add this interval to the active
981 // list.
982 if (physReg) {
983 DOUT << tri_->getName(physReg) << '\n';
984 vrm_->assignVirt2Phys(cur->reg, physReg);
985 addRegUse(physReg);
986 active_.push_back(std::make_pair(cur, cur->begin()));
987 handled_.push_back(cur);
989 // "Upgrade" the physical register since it has been allocated.
990 UpgradeRegister(physReg);
991 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
992 // "Downgrade" physReg to try to keep physReg from being allocated until
993 // the next reload from the same SS is allocated.
994 NextReloadLI->preference = physReg;
995 DowngradeRegister(cur, physReg);
997 return;
999 DOUT << "no free registers\n";
1001 // Compile the spill weights into an array that is better for scanning.
1002 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1003 for (std::vector<std::pair<unsigned, float> >::iterator
1004 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1005 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1007 // for each interval in active, update spill weights.
1008 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1009 i != e; ++i) {
1010 unsigned reg = i->first->reg;
1011 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1012 "Can only allocate virtual registers!");
1013 reg = vrm_->getPhys(reg);
1014 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1017 DOUT << "\tassigning stack slot at interval "<< *cur << ":\n";
1019 // Find a register to spill.
1020 float minWeight = HUGE_VALF;
1021 unsigned minReg = 0; /*cur->preference*/; // Try the pref register first.
1023 bool Found = false;
1024 std::vector<std::pair<unsigned,float> > RegsWeights;
1025 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1026 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1027 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1028 unsigned reg = *i;
1029 float regWeight = SpillWeights[reg];
1030 if (minWeight > regWeight)
1031 Found = true;
1032 RegsWeights.push_back(std::make_pair(reg, regWeight));
1035 // If we didn't find a register that is spillable, try aliases?
1036 if (!Found) {
1037 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1038 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1039 unsigned reg = *i;
1040 // No need to worry about if the alias register size < regsize of RC.
1041 // We are going to spill all registers that alias it anyway.
1042 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1043 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1047 // Sort all potential spill candidates by weight.
1048 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
1049 minReg = RegsWeights[0].first;
1050 minWeight = RegsWeights[0].second;
1051 if (minWeight == HUGE_VALF) {
1052 // All registers must have inf weight. Just grab one!
1053 minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
1054 if (cur->weight == HUGE_VALF ||
1055 li_->getApproximateInstructionCount(*cur) == 0) {
1056 // Spill a physical register around defs and uses.
1057 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1058 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1059 // in fixed_. Reset them.
1060 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1061 IntervalPtr &IP = fixed_[i];
1062 LiveInterval *I = IP.first;
1063 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1064 IP.second = I->advanceTo(I->begin(), StartPosition);
1067 DowngradedRegs.clear();
1068 assignRegOrStackSlotAtInterval(cur);
1069 } else {
1070 cerr << "Ran out of registers during register allocation!\n";
1071 exit(1);
1073 return;
1077 // Find up to 3 registers to consider as spill candidates.
1078 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1079 while (LastCandidate > 1) {
1080 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1081 break;
1082 --LastCandidate;
1085 DOUT << "\t\tregister(s) with min weight(s): ";
1086 DEBUG(for (unsigned i = 0; i != LastCandidate; ++i)
1087 DOUT << tri_->getName(RegsWeights[i].first)
1088 << " (" << RegsWeights[i].second << ")\n");
1090 // If the current has the minimum weight, we need to spill it and
1091 // add any added intervals back to unhandled, and restart
1092 // linearscan.
1093 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1094 DOUT << "\t\t\tspilling(c): " << *cur << '\n';
1095 SmallVector<LiveInterval*, 8> spillIs;
1096 std::vector<LiveInterval*> added =
1097 li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_);
1098 std::sort(added.begin(), added.end(), LISorter());
1099 addStackInterval(cur, ls_, li_, mri_, *vrm_);
1100 if (added.empty())
1101 return; // Early exit if all spills were folded.
1103 // Merge added with unhandled. Note that we have already sorted
1104 // intervals returned by addIntervalsForSpills by their starting
1105 // point.
1106 // This also update the NextReloadMap. That is, it adds mapping from a
1107 // register defined by a reload from SS to the next reload from SS in the
1108 // same basic block.
1109 MachineBasicBlock *LastReloadMBB = 0;
1110 LiveInterval *LastReload = 0;
1111 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1112 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1113 LiveInterval *ReloadLi = added[i];
1114 if (ReloadLi->weight == HUGE_VALF &&
1115 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1116 unsigned ReloadIdx = ReloadLi->beginNumber();
1117 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1118 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1119 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1120 // Last reload of same SS is in the same MBB. We want to try to
1121 // allocate both reloads the same register and make sure the reg
1122 // isn't clobbered in between if at all possible.
1123 assert(LastReload->beginNumber() < ReloadIdx);
1124 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1126 LastReloadMBB = ReloadMBB;
1127 LastReload = ReloadLi;
1128 LastReloadSS = ReloadSS;
1130 unhandled_.push(ReloadLi);
1132 return;
1135 ++NumBacktracks;
1137 // Push the current interval back to unhandled since we are going
1138 // to re-run at least this iteration. Since we didn't modify it it
1139 // should go back right in the front of the list
1140 unhandled_.push(cur);
1142 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1143 "did not choose a register to spill?");
1145 // We spill all intervals aliasing the register with
1146 // minimum weight, rollback to the interval with the earliest
1147 // start point and let the linear scan algorithm run again
1148 SmallVector<LiveInterval*, 8> spillIs;
1150 // Determine which intervals have to be spilled.
1151 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1153 // Set of spilled vregs (used later to rollback properly)
1154 SmallSet<unsigned, 8> spilled;
1156 // The earliest start of a Spilled interval indicates up to where
1157 // in handled we need to roll back
1158 unsigned earliestStart = cur->beginNumber();
1160 // Spill live intervals of virtual regs mapped to the physical register we
1161 // want to clear (and its aliases). We only spill those that overlap with the
1162 // current interval as the rest do not affect its allocation. we also keep
1163 // track of the earliest start of all spilled live intervals since this will
1164 // mark our rollback point.
1165 std::vector<LiveInterval*> added;
1166 while (!spillIs.empty()) {
1167 LiveInterval *sli = spillIs.back();
1168 spillIs.pop_back();
1169 DOUT << "\t\t\tspilling(a): " << *sli << '\n';
1170 earliestStart = std::min(earliestStart, sli->beginNumber());
1171 std::vector<LiveInterval*> newIs =
1172 li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_);
1173 addStackInterval(sli, ls_, li_, mri_, *vrm_);
1174 std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
1175 spilled.insert(sli->reg);
1178 DOUT << "\t\trolling back to: " << earliestStart << '\n';
1180 // Scan handled in reverse order up to the earliest start of a
1181 // spilled live interval and undo each one, restoring the state of
1182 // unhandled.
1183 while (!handled_.empty()) {
1184 LiveInterval* i = handled_.back();
1185 // If this interval starts before t we are done.
1186 if (i->beginNumber() < earliestStart)
1187 break;
1188 DOUT << "\t\t\tundo changes for: " << *i << '\n';
1189 handled_.pop_back();
1191 // When undoing a live interval allocation we must know if it is active or
1192 // inactive to properly update regUse_ and the VirtRegMap.
1193 IntervalPtrs::iterator it;
1194 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1195 active_.erase(it);
1196 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1197 if (!spilled.count(i->reg))
1198 unhandled_.push(i);
1199 delRegUse(vrm_->getPhys(i->reg));
1200 vrm_->clearVirt(i->reg);
1201 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1202 inactive_.erase(it);
1203 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1204 if (!spilled.count(i->reg))
1205 unhandled_.push(i);
1206 vrm_->clearVirt(i->reg);
1207 } else {
1208 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1209 "Can only allocate virtual registers!");
1210 vrm_->clearVirt(i->reg);
1211 unhandled_.push(i);
1214 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1215 if (ii == DowngradeMap.end())
1216 // It interval has a preference, it must be defined by a copy. Clear the
1217 // preference now since the source interval allocation may have been
1218 // undone as well.
1219 i->preference = 0;
1220 else {
1221 UpgradeRegister(ii->second);
1225 // Rewind the iterators in the active, inactive, and fixed lists back to the
1226 // point we reverted to.
1227 RevertVectorIteratorsTo(active_, earliestStart);
1228 RevertVectorIteratorsTo(inactive_, earliestStart);
1229 RevertVectorIteratorsTo(fixed_, earliestStart);
1231 // Scan the rest and undo each interval that expired after t and
1232 // insert it in active (the next iteration of the algorithm will
1233 // put it in inactive if required)
1234 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1235 LiveInterval *HI = handled_[i];
1236 if (!HI->expiredAt(earliestStart) &&
1237 HI->expiredAt(cur->beginNumber())) {
1238 DOUT << "\t\t\tundo changes for: " << *HI << '\n';
1239 active_.push_back(std::make_pair(HI, HI->begin()));
1240 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1241 addRegUse(vrm_->getPhys(HI->reg));
1245 // Merge added with unhandled.
1246 // This also update the NextReloadMap. That is, it adds mapping from a
1247 // register defined by a reload from SS to the next reload from SS in the
1248 // same basic block.
1249 MachineBasicBlock *LastReloadMBB = 0;
1250 LiveInterval *LastReload = 0;
1251 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1252 std::sort(added.begin(), added.end(), LISorter());
1253 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1254 LiveInterval *ReloadLi = added[i];
1255 if (ReloadLi->weight == HUGE_VALF &&
1256 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1257 unsigned ReloadIdx = ReloadLi->beginNumber();
1258 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1259 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1260 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1261 // Last reload of same SS is in the same MBB. We want to try to
1262 // allocate both reloads the same register and make sure the reg
1263 // isn't clobbered in between if at all possible.
1264 assert(LastReload->beginNumber() < ReloadIdx);
1265 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1267 LastReloadMBB = ReloadMBB;
1268 LastReload = ReloadLi;
1269 LastReloadSS = ReloadSS;
1271 unhandled_.push(ReloadLi);
1275 unsigned RALinScan::getFreePhysReg(const TargetRegisterClass *RC,
1276 unsigned MaxInactiveCount,
1277 SmallVector<unsigned, 256> &inactiveCounts,
1278 bool SkipDGRegs) {
1279 unsigned FreeReg = 0;
1280 unsigned FreeRegInactiveCount = 0;
1282 TargetRegisterClass::iterator I = RC->allocation_order_begin(*mf_);
1283 TargetRegisterClass::iterator E = RC->allocation_order_end(*mf_);
1284 assert(I != E && "No allocatable register in this register class!");
1286 // Scan for the first available register.
1287 for (; I != E; ++I) {
1288 unsigned Reg = *I;
1289 // Ignore "downgraded" registers.
1290 if (SkipDGRegs && DowngradedRegs.count(Reg))
1291 continue;
1292 if (isRegAvail(Reg)) {
1293 FreeReg = Reg;
1294 if (FreeReg < inactiveCounts.size())
1295 FreeRegInactiveCount = inactiveCounts[FreeReg];
1296 else
1297 FreeRegInactiveCount = 0;
1298 break;
1302 // If there are no free regs, or if this reg has the max inactive count,
1303 // return this register.
1304 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount)
1305 return FreeReg;
1307 // Continue scanning the registers, looking for the one with the highest
1308 // inactive count. Alkis found that this reduced register pressure very
1309 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1310 // reevaluated now.
1311 for (; I != E; ++I) {
1312 unsigned Reg = *I;
1313 // Ignore "downgraded" registers.
1314 if (SkipDGRegs && DowngradedRegs.count(Reg))
1315 continue;
1316 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1317 FreeRegInactiveCount < inactiveCounts[Reg]) {
1318 FreeReg = Reg;
1319 FreeRegInactiveCount = inactiveCounts[Reg];
1320 if (FreeRegInactiveCount == MaxInactiveCount)
1321 break; // We found the one with the max inactive count.
1325 return FreeReg;
1328 /// getFreePhysReg - return a free physical register for this virtual register
1329 /// interval if we have one, otherwise return 0.
1330 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1331 SmallVector<unsigned, 256> inactiveCounts;
1332 unsigned MaxInactiveCount = 0;
1334 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1335 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1337 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1338 i != e; ++i) {
1339 unsigned reg = i->first->reg;
1340 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1341 "Can only allocate virtual registers!");
1343 // If this is not in a related reg class to the register we're allocating,
1344 // don't check it.
1345 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1346 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1347 reg = vrm_->getPhys(reg);
1348 if (inactiveCounts.size() <= reg)
1349 inactiveCounts.resize(reg+1);
1350 ++inactiveCounts[reg];
1351 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1355 // If copy coalescer has assigned a "preferred" register, check if it's
1356 // available first.
1357 if (cur->preference) {
1358 DOUT << "(preferred: " << tri_->getName(cur->preference) << ") ";
1359 if (isRegAvail(cur->preference) &&
1360 RC->contains(cur->preference))
1361 return cur->preference;
1364 if (!DowngradedRegs.empty()) {
1365 unsigned FreeReg = getFreePhysReg(RC, MaxInactiveCount, inactiveCounts,
1366 true);
1367 if (FreeReg)
1368 return FreeReg;
1370 return getFreePhysReg(RC, MaxInactiveCount, inactiveCounts, false);
1373 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1374 return new RALinScan();