Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / Transforms / Scalar / GVN.cpp
blobd605ffb6602ed81488b00280bad956c8e5a93a9c
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "gvn"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/BasicBlock.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Function.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/Value.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/Dominators.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
35 #include "llvm/Support/CFG.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include <cstdio>
41 using namespace llvm;
43 STATISTIC(NumGVNInstr, "Number of instructions deleted");
44 STATISTIC(NumGVNLoad, "Number of loads deleted");
45 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
46 STATISTIC(NumGVNBlocks, "Number of blocks merged");
47 STATISTIC(NumPRELoad, "Number of loads PRE'd");
49 static cl::opt<bool> EnablePRE("enable-pre",
50 cl::init(true), cl::Hidden);
51 cl::opt<bool> EnableLoadPRE("enable-load-pre"/*, cl::init(true)*/);
53 //===----------------------------------------------------------------------===//
54 // ValueTable Class
55 //===----------------------------------------------------------------------===//
57 /// This class holds the mapping between values and value numbers. It is used
58 /// as an efficient mechanism to determine the expression-wise equivalence of
59 /// two values.
60 namespace {
61 struct VISIBILITY_HIDDEN Expression {
62 enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
63 FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
64 ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
65 ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
66 FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
67 FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
68 FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
69 SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
70 FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
71 PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
72 EMPTY, TOMBSTONE };
74 ExpressionOpcode opcode;
75 const Type* type;
76 uint32_t firstVN;
77 uint32_t secondVN;
78 uint32_t thirdVN;
79 SmallVector<uint32_t, 4> varargs;
80 Value* function;
82 Expression() { }
83 Expression(ExpressionOpcode o) : opcode(o) { }
85 bool operator==(const Expression &other) const {
86 if (opcode != other.opcode)
87 return false;
88 else if (opcode == EMPTY || opcode == TOMBSTONE)
89 return true;
90 else if (type != other.type)
91 return false;
92 else if (function != other.function)
93 return false;
94 else if (firstVN != other.firstVN)
95 return false;
96 else if (secondVN != other.secondVN)
97 return false;
98 else if (thirdVN != other.thirdVN)
99 return false;
100 else {
101 if (varargs.size() != other.varargs.size())
102 return false;
104 for (size_t i = 0; i < varargs.size(); ++i)
105 if (varargs[i] != other.varargs[i])
106 return false;
108 return true;
112 bool operator!=(const Expression &other) const {
113 return !(*this == other);
117 class VISIBILITY_HIDDEN ValueTable {
118 private:
119 DenseMap<Value*, uint32_t> valueNumbering;
120 DenseMap<Expression, uint32_t> expressionNumbering;
121 AliasAnalysis* AA;
122 MemoryDependenceAnalysis* MD;
123 DominatorTree* DT;
125 uint32_t nextValueNumber;
127 Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
128 Expression::ExpressionOpcode getOpcode(CmpInst* C);
129 Expression::ExpressionOpcode getOpcode(CastInst* C);
130 Expression create_expression(BinaryOperator* BO);
131 Expression create_expression(CmpInst* C);
132 Expression create_expression(ShuffleVectorInst* V);
133 Expression create_expression(ExtractElementInst* C);
134 Expression create_expression(InsertElementInst* V);
135 Expression create_expression(SelectInst* V);
136 Expression create_expression(CastInst* C);
137 Expression create_expression(GetElementPtrInst* G);
138 Expression create_expression(CallInst* C);
139 Expression create_expression(Constant* C);
140 public:
141 ValueTable() : nextValueNumber(1) { }
142 uint32_t lookup_or_add(Value* V);
143 uint32_t lookup(Value* V) const;
144 void add(Value* V, uint32_t num);
145 void clear();
146 void erase(Value* v);
147 unsigned size();
148 void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
149 AliasAnalysis *getAliasAnalysis() const { return AA; }
150 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
151 void setDomTree(DominatorTree* D) { DT = D; }
152 uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
153 void verifyRemoved(const Value *) const;
157 namespace llvm {
158 template <> struct DenseMapInfo<Expression> {
159 static inline Expression getEmptyKey() {
160 return Expression(Expression::EMPTY);
163 static inline Expression getTombstoneKey() {
164 return Expression(Expression::TOMBSTONE);
167 static unsigned getHashValue(const Expression e) {
168 unsigned hash = e.opcode;
170 hash = e.firstVN + hash * 37;
171 hash = e.secondVN + hash * 37;
172 hash = e.thirdVN + hash * 37;
174 hash = ((unsigned)((uintptr_t)e.type >> 4) ^
175 (unsigned)((uintptr_t)e.type >> 9)) +
176 hash * 37;
178 for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
179 E = e.varargs.end(); I != E; ++I)
180 hash = *I + hash * 37;
182 hash = ((unsigned)((uintptr_t)e.function >> 4) ^
183 (unsigned)((uintptr_t)e.function >> 9)) +
184 hash * 37;
186 return hash;
188 static bool isEqual(const Expression &LHS, const Expression &RHS) {
189 return LHS == RHS;
191 static bool isPod() { return true; }
195 //===----------------------------------------------------------------------===//
196 // ValueTable Internal Functions
197 //===----------------------------------------------------------------------===//
198 Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
199 switch(BO->getOpcode()) {
200 default: // THIS SHOULD NEVER HAPPEN
201 assert(0 && "Binary operator with unknown opcode?");
202 case Instruction::Add: return Expression::ADD;
203 case Instruction::Sub: return Expression::SUB;
204 case Instruction::Mul: return Expression::MUL;
205 case Instruction::UDiv: return Expression::UDIV;
206 case Instruction::SDiv: return Expression::SDIV;
207 case Instruction::FDiv: return Expression::FDIV;
208 case Instruction::URem: return Expression::UREM;
209 case Instruction::SRem: return Expression::SREM;
210 case Instruction::FRem: return Expression::FREM;
211 case Instruction::Shl: return Expression::SHL;
212 case Instruction::LShr: return Expression::LSHR;
213 case Instruction::AShr: return Expression::ASHR;
214 case Instruction::And: return Expression::AND;
215 case Instruction::Or: return Expression::OR;
216 case Instruction::Xor: return Expression::XOR;
220 Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
221 if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
222 switch (C->getPredicate()) {
223 default: // THIS SHOULD NEVER HAPPEN
224 assert(0 && "Comparison with unknown predicate?");
225 case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
226 case ICmpInst::ICMP_NE: return Expression::ICMPNE;
227 case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
228 case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
229 case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
230 case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
231 case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
232 case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
233 case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
234 case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
237 assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
238 switch (C->getPredicate()) {
239 default: // THIS SHOULD NEVER HAPPEN
240 assert(0 && "Comparison with unknown predicate?");
241 case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
242 case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
243 case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
244 case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
245 case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
246 case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
247 case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
248 case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
249 case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
250 case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
251 case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
252 case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
253 case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
254 case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
258 Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
259 switch(C->getOpcode()) {
260 default: // THIS SHOULD NEVER HAPPEN
261 assert(0 && "Cast operator with unknown opcode?");
262 case Instruction::Trunc: return Expression::TRUNC;
263 case Instruction::ZExt: return Expression::ZEXT;
264 case Instruction::SExt: return Expression::SEXT;
265 case Instruction::FPToUI: return Expression::FPTOUI;
266 case Instruction::FPToSI: return Expression::FPTOSI;
267 case Instruction::UIToFP: return Expression::UITOFP;
268 case Instruction::SIToFP: return Expression::SITOFP;
269 case Instruction::FPTrunc: return Expression::FPTRUNC;
270 case Instruction::FPExt: return Expression::FPEXT;
271 case Instruction::PtrToInt: return Expression::PTRTOINT;
272 case Instruction::IntToPtr: return Expression::INTTOPTR;
273 case Instruction::BitCast: return Expression::BITCAST;
277 Expression ValueTable::create_expression(CallInst* C) {
278 Expression e;
280 e.type = C->getType();
281 e.firstVN = 0;
282 e.secondVN = 0;
283 e.thirdVN = 0;
284 e.function = C->getCalledFunction();
285 e.opcode = Expression::CALL;
287 for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
288 I != E; ++I)
289 e.varargs.push_back(lookup_or_add(*I));
291 return e;
294 Expression ValueTable::create_expression(BinaryOperator* BO) {
295 Expression e;
297 e.firstVN = lookup_or_add(BO->getOperand(0));
298 e.secondVN = lookup_or_add(BO->getOperand(1));
299 e.thirdVN = 0;
300 e.function = 0;
301 e.type = BO->getType();
302 e.opcode = getOpcode(BO);
304 return e;
307 Expression ValueTable::create_expression(CmpInst* C) {
308 Expression e;
310 e.firstVN = lookup_or_add(C->getOperand(0));
311 e.secondVN = lookup_or_add(C->getOperand(1));
312 e.thirdVN = 0;
313 e.function = 0;
314 e.type = C->getType();
315 e.opcode = getOpcode(C);
317 return e;
320 Expression ValueTable::create_expression(CastInst* C) {
321 Expression e;
323 e.firstVN = lookup_or_add(C->getOperand(0));
324 e.secondVN = 0;
325 e.thirdVN = 0;
326 e.function = 0;
327 e.type = C->getType();
328 e.opcode = getOpcode(C);
330 return e;
333 Expression ValueTable::create_expression(ShuffleVectorInst* S) {
334 Expression e;
336 e.firstVN = lookup_or_add(S->getOperand(0));
337 e.secondVN = lookup_or_add(S->getOperand(1));
338 e.thirdVN = lookup_or_add(S->getOperand(2));
339 e.function = 0;
340 e.type = S->getType();
341 e.opcode = Expression::SHUFFLE;
343 return e;
346 Expression ValueTable::create_expression(ExtractElementInst* E) {
347 Expression e;
349 e.firstVN = lookup_or_add(E->getOperand(0));
350 e.secondVN = lookup_or_add(E->getOperand(1));
351 e.thirdVN = 0;
352 e.function = 0;
353 e.type = E->getType();
354 e.opcode = Expression::EXTRACT;
356 return e;
359 Expression ValueTable::create_expression(InsertElementInst* I) {
360 Expression e;
362 e.firstVN = lookup_or_add(I->getOperand(0));
363 e.secondVN = lookup_or_add(I->getOperand(1));
364 e.thirdVN = lookup_or_add(I->getOperand(2));
365 e.function = 0;
366 e.type = I->getType();
367 e.opcode = Expression::INSERT;
369 return e;
372 Expression ValueTable::create_expression(SelectInst* I) {
373 Expression e;
375 e.firstVN = lookup_or_add(I->getCondition());
376 e.secondVN = lookup_or_add(I->getTrueValue());
377 e.thirdVN = lookup_or_add(I->getFalseValue());
378 e.function = 0;
379 e.type = I->getType();
380 e.opcode = Expression::SELECT;
382 return e;
385 Expression ValueTable::create_expression(GetElementPtrInst* G) {
386 Expression e;
388 e.firstVN = lookup_or_add(G->getPointerOperand());
389 e.secondVN = 0;
390 e.thirdVN = 0;
391 e.function = 0;
392 e.type = G->getType();
393 e.opcode = Expression::GEP;
395 for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
396 I != E; ++I)
397 e.varargs.push_back(lookup_or_add(*I));
399 return e;
402 //===----------------------------------------------------------------------===//
403 // ValueTable External Functions
404 //===----------------------------------------------------------------------===//
406 /// add - Insert a value into the table with a specified value number.
407 void ValueTable::add(Value* V, uint32_t num) {
408 valueNumbering.insert(std::make_pair(V, num));
411 /// lookup_or_add - Returns the value number for the specified value, assigning
412 /// it a new number if it did not have one before.
413 uint32_t ValueTable::lookup_or_add(Value* V) {
414 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
415 if (VI != valueNumbering.end())
416 return VI->second;
418 if (CallInst* C = dyn_cast<CallInst>(V)) {
419 if (AA->doesNotAccessMemory(C)) {
420 Expression e = create_expression(C);
422 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
423 if (EI != expressionNumbering.end()) {
424 valueNumbering.insert(std::make_pair(V, EI->second));
425 return EI->second;
426 } else {
427 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
428 valueNumbering.insert(std::make_pair(V, nextValueNumber));
430 return nextValueNumber++;
432 } else if (AA->onlyReadsMemory(C)) {
433 Expression e = create_expression(C);
435 if (expressionNumbering.find(e) == expressionNumbering.end()) {
436 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
437 valueNumbering.insert(std::make_pair(V, nextValueNumber));
438 return nextValueNumber++;
441 MemDepResult local_dep = MD->getDependency(C);
443 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
444 valueNumbering.insert(std::make_pair(V, nextValueNumber));
445 return nextValueNumber++;
448 if (local_dep.isDef()) {
449 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
451 if (local_cdep->getNumOperands() != C->getNumOperands()) {
452 valueNumbering.insert(std::make_pair(V, nextValueNumber));
453 return nextValueNumber++;
456 for (unsigned i = 1; i < C->getNumOperands(); ++i) {
457 uint32_t c_vn = lookup_or_add(C->getOperand(i));
458 uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
459 if (c_vn != cd_vn) {
460 valueNumbering.insert(std::make_pair(V, nextValueNumber));
461 return nextValueNumber++;
465 uint32_t v = lookup_or_add(local_cdep);
466 valueNumbering.insert(std::make_pair(V, v));
467 return v;
470 // Non-local case.
471 const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
472 MD->getNonLocalCallDependency(CallSite(C));
473 // FIXME: call/call dependencies for readonly calls should return def, not
474 // clobber! Move the checking logic to MemDep!
475 CallInst* cdep = 0;
477 // Check to see if we have a single dominating call instruction that is
478 // identical to C.
479 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
480 const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
481 // Ignore non-local dependencies.
482 if (I->second.isNonLocal())
483 continue;
485 // We don't handle non-depedencies. If we already have a call, reject
486 // instruction dependencies.
487 if (I->second.isClobber() || cdep != 0) {
488 cdep = 0;
489 break;
492 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
493 // FIXME: All duplicated with non-local case.
494 if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
495 cdep = NonLocalDepCall;
496 continue;
499 cdep = 0;
500 break;
503 if (!cdep) {
504 valueNumbering.insert(std::make_pair(V, nextValueNumber));
505 return nextValueNumber++;
508 if (cdep->getNumOperands() != C->getNumOperands()) {
509 valueNumbering.insert(std::make_pair(V, nextValueNumber));
510 return nextValueNumber++;
512 for (unsigned i = 1; i < C->getNumOperands(); ++i) {
513 uint32_t c_vn = lookup_or_add(C->getOperand(i));
514 uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
515 if (c_vn != cd_vn) {
516 valueNumbering.insert(std::make_pair(V, nextValueNumber));
517 return nextValueNumber++;
521 uint32_t v = lookup_or_add(cdep);
522 valueNumbering.insert(std::make_pair(V, v));
523 return v;
525 } else {
526 valueNumbering.insert(std::make_pair(V, nextValueNumber));
527 return nextValueNumber++;
529 } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
530 Expression e = create_expression(BO);
532 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
533 if (EI != expressionNumbering.end()) {
534 valueNumbering.insert(std::make_pair(V, EI->second));
535 return EI->second;
536 } else {
537 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
538 valueNumbering.insert(std::make_pair(V, nextValueNumber));
540 return nextValueNumber++;
542 } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
543 Expression e = create_expression(C);
545 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
546 if (EI != expressionNumbering.end()) {
547 valueNumbering.insert(std::make_pair(V, EI->second));
548 return EI->second;
549 } else {
550 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
551 valueNumbering.insert(std::make_pair(V, nextValueNumber));
553 return nextValueNumber++;
555 } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
556 Expression e = create_expression(U);
558 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
559 if (EI != expressionNumbering.end()) {
560 valueNumbering.insert(std::make_pair(V, EI->second));
561 return EI->second;
562 } else {
563 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
564 valueNumbering.insert(std::make_pair(V, nextValueNumber));
566 return nextValueNumber++;
568 } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
569 Expression e = create_expression(U);
571 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
572 if (EI != expressionNumbering.end()) {
573 valueNumbering.insert(std::make_pair(V, EI->second));
574 return EI->second;
575 } else {
576 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
577 valueNumbering.insert(std::make_pair(V, nextValueNumber));
579 return nextValueNumber++;
581 } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
582 Expression e = create_expression(U);
584 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
585 if (EI != expressionNumbering.end()) {
586 valueNumbering.insert(std::make_pair(V, EI->second));
587 return EI->second;
588 } else {
589 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
590 valueNumbering.insert(std::make_pair(V, nextValueNumber));
592 return nextValueNumber++;
594 } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
595 Expression e = create_expression(U);
597 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
598 if (EI != expressionNumbering.end()) {
599 valueNumbering.insert(std::make_pair(V, EI->second));
600 return EI->second;
601 } else {
602 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
603 valueNumbering.insert(std::make_pair(V, nextValueNumber));
605 return nextValueNumber++;
607 } else if (CastInst* U = dyn_cast<CastInst>(V)) {
608 Expression e = create_expression(U);
610 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
611 if (EI != expressionNumbering.end()) {
612 valueNumbering.insert(std::make_pair(V, EI->second));
613 return EI->second;
614 } else {
615 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
616 valueNumbering.insert(std::make_pair(V, nextValueNumber));
618 return nextValueNumber++;
620 } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
621 Expression e = create_expression(U);
623 DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
624 if (EI != expressionNumbering.end()) {
625 valueNumbering.insert(std::make_pair(V, EI->second));
626 return EI->second;
627 } else {
628 expressionNumbering.insert(std::make_pair(e, nextValueNumber));
629 valueNumbering.insert(std::make_pair(V, nextValueNumber));
631 return nextValueNumber++;
633 } else {
634 valueNumbering.insert(std::make_pair(V, nextValueNumber));
635 return nextValueNumber++;
639 /// lookup - Returns the value number of the specified value. Fails if
640 /// the value has not yet been numbered.
641 uint32_t ValueTable::lookup(Value* V) const {
642 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
643 assert(VI != valueNumbering.end() && "Value not numbered?");
644 return VI->second;
647 /// clear - Remove all entries from the ValueTable
648 void ValueTable::clear() {
649 valueNumbering.clear();
650 expressionNumbering.clear();
651 nextValueNumber = 1;
654 /// erase - Remove a value from the value numbering
655 void ValueTable::erase(Value* V) {
656 valueNumbering.erase(V);
659 /// verifyRemoved - Verify that the value is removed from all internal data
660 /// structures.
661 void ValueTable::verifyRemoved(const Value *V) const {
662 for (DenseMap<Value*, uint32_t>::iterator
663 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
664 assert(I->first != V && "Inst still occurs in value numbering map!");
668 //===----------------------------------------------------------------------===//
669 // GVN Pass
670 //===----------------------------------------------------------------------===//
672 namespace {
673 struct VISIBILITY_HIDDEN ValueNumberScope {
674 ValueNumberScope* parent;
675 DenseMap<uint32_t, Value*> table;
677 ValueNumberScope(ValueNumberScope* p) : parent(p) { }
681 namespace {
683 class VISIBILITY_HIDDEN GVN : public FunctionPass {
684 bool runOnFunction(Function &F);
685 public:
686 static char ID; // Pass identification, replacement for typeid
687 GVN() : FunctionPass(&ID) { }
689 private:
690 MemoryDependenceAnalysis *MD;
691 DominatorTree *DT;
693 ValueTable VN;
694 DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
696 typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
697 PhiMapType phiMap;
700 // This transformation requires dominator postdominator info
701 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
702 AU.addRequired<DominatorTree>();
703 AU.addRequired<MemoryDependenceAnalysis>();
704 AU.addRequired<AliasAnalysis>();
706 AU.addPreserved<DominatorTree>();
707 AU.addPreserved<AliasAnalysis>();
710 // Helper fuctions
711 // FIXME: eliminate or document these better
712 bool processLoad(LoadInst* L,
713 SmallVectorImpl<Instruction*> &toErase);
714 bool processInstruction(Instruction* I,
715 SmallVectorImpl<Instruction*> &toErase);
716 bool processNonLocalLoad(LoadInst* L,
717 SmallVectorImpl<Instruction*> &toErase);
718 bool processBlock(BasicBlock* BB);
719 Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
720 DenseMap<BasicBlock*, Value*> &Phis,
721 bool top_level = false);
722 void dump(DenseMap<uint32_t, Value*>& d);
723 bool iterateOnFunction(Function &F);
724 Value* CollapsePhi(PHINode* p);
725 bool isSafeReplacement(PHINode* p, Instruction* inst);
726 bool performPRE(Function& F);
727 Value* lookupNumber(BasicBlock* BB, uint32_t num);
728 bool mergeBlockIntoPredecessor(BasicBlock* BB);
729 Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
730 void cleanupGlobalSets();
731 void verifyRemoved(const Instruction *I) const;
734 char GVN::ID = 0;
737 // createGVNPass - The public interface to this file...
738 FunctionPass *llvm::createGVNPass() { return new GVN(); }
740 static RegisterPass<GVN> X("gvn",
741 "Global Value Numbering");
743 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
744 printf("{\n");
745 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
746 E = d.end(); I != E; ++I) {
747 printf("%d\n", I->first);
748 I->second->dump();
750 printf("}\n");
753 Value* GVN::CollapsePhi(PHINode* p) {
754 Value* constVal = p->hasConstantValue();
755 if (!constVal) return 0;
757 Instruction* inst = dyn_cast<Instruction>(constVal);
758 if (!inst)
759 return constVal;
761 if (DT->dominates(inst, p))
762 if (isSafeReplacement(p, inst))
763 return inst;
764 return 0;
767 bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
768 if (!isa<PHINode>(inst))
769 return true;
771 for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
772 UI != E; ++UI)
773 if (PHINode* use_phi = dyn_cast<PHINode>(UI))
774 if (use_phi->getParent() == inst->getParent())
775 return false;
777 return true;
780 /// GetValueForBlock - Get the value to use within the specified basic block.
781 /// available values are in Phis.
782 Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
783 DenseMap<BasicBlock*, Value*> &Phis,
784 bool top_level) {
786 // If we have already computed this value, return the previously computed val.
787 DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
788 if (V != Phis.end() && !top_level) return V->second;
790 // If the block is unreachable, just return undef, since this path
791 // can't actually occur at runtime.
792 if (!DT->isReachableFromEntry(BB))
793 return Phis[BB] = UndefValue::get(orig->getType());
795 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
796 Value *ret = GetValueForBlock(Pred, orig, Phis);
797 Phis[BB] = ret;
798 return ret;
801 // Get the number of predecessors of this block so we can reserve space later.
802 // If there is already a PHI in it, use the #preds from it, otherwise count.
803 // Getting it from the PHI is constant time.
804 unsigned NumPreds;
805 if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
806 NumPreds = ExistingPN->getNumIncomingValues();
807 else
808 NumPreds = std::distance(pred_begin(BB), pred_end(BB));
810 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
811 // now, then get values to fill in the incoming values for the PHI.
812 PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
813 BB->begin());
814 PN->reserveOperandSpace(NumPreds);
816 Phis.insert(std::make_pair(BB, PN));
818 // Fill in the incoming values for the block.
819 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
820 Value* val = GetValueForBlock(*PI, orig, Phis);
821 PN->addIncoming(val, *PI);
824 VN.getAliasAnalysis()->copyValue(orig, PN);
826 // Attempt to collapse PHI nodes that are trivially redundant
827 Value* v = CollapsePhi(PN);
828 if (!v) {
829 // Cache our phi construction results
830 if (LoadInst* L = dyn_cast<LoadInst>(orig))
831 phiMap[L->getPointerOperand()].insert(PN);
832 else
833 phiMap[orig].insert(PN);
835 return PN;
838 PN->replaceAllUsesWith(v);
839 if (isa<PointerType>(v->getType()))
840 MD->invalidateCachedPointerInfo(v);
842 for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
843 E = Phis.end(); I != E; ++I)
844 if (I->second == PN)
845 I->second = v;
847 DEBUG(cerr << "GVN removed: " << *PN);
848 MD->removeInstruction(PN);
849 PN->eraseFromParent();
850 DEBUG(verifyRemoved(PN));
852 Phis[BB] = v;
853 return v;
856 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
857 /// we're analyzing is fully available in the specified block. As we go, keep
858 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
859 /// map is actually a tri-state map with the following values:
860 /// 0) we know the block *is not* fully available.
861 /// 1) we know the block *is* fully available.
862 /// 2) we do not know whether the block is fully available or not, but we are
863 /// currently speculating that it will be.
864 /// 3) we are speculating for this block and have used that to speculate for
865 /// other blocks.
866 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
867 DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
868 // Optimistically assume that the block is fully available and check to see
869 // if we already know about this block in one lookup.
870 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
871 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
873 // If the entry already existed for this block, return the precomputed value.
874 if (!IV.second) {
875 // If this is a speculative "available" value, mark it as being used for
876 // speculation of other blocks.
877 if (IV.first->second == 2)
878 IV.first->second = 3;
879 return IV.first->second != 0;
882 // Otherwise, see if it is fully available in all predecessors.
883 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
885 // If this block has no predecessors, it isn't live-in here.
886 if (PI == PE)
887 goto SpeculationFailure;
889 for (; PI != PE; ++PI)
890 // If the value isn't fully available in one of our predecessors, then it
891 // isn't fully available in this block either. Undo our previous
892 // optimistic assumption and bail out.
893 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
894 goto SpeculationFailure;
896 return true;
898 // SpeculationFailure - If we get here, we found out that this is not, after
899 // all, a fully-available block. We have a problem if we speculated on this and
900 // used the speculation to mark other blocks as available.
901 SpeculationFailure:
902 char &BBVal = FullyAvailableBlocks[BB];
904 // If we didn't speculate on this, just return with it set to false.
905 if (BBVal == 2) {
906 BBVal = 0;
907 return false;
910 // If we did speculate on this value, we could have blocks set to 1 that are
911 // incorrect. Walk the (transitive) successors of this block and mark them as
912 // 0 if set to one.
913 SmallVector<BasicBlock*, 32> BBWorklist;
914 BBWorklist.push_back(BB);
916 while (!BBWorklist.empty()) {
917 BasicBlock *Entry = BBWorklist.pop_back_val();
918 // Note that this sets blocks to 0 (unavailable) if they happen to not
919 // already be in FullyAvailableBlocks. This is safe.
920 char &EntryVal = FullyAvailableBlocks[Entry];
921 if (EntryVal == 0) continue; // Already unavailable.
923 // Mark as unavailable.
924 EntryVal = 0;
926 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
927 BBWorklist.push_back(*I);
930 return false;
933 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
934 /// non-local by performing PHI construction.
935 bool GVN::processNonLocalLoad(LoadInst *LI,
936 SmallVectorImpl<Instruction*> &toErase) {
937 // Find the non-local dependencies of the load.
938 SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
939 MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
940 Deps);
941 //DEBUG(cerr << "INVESTIGATING NONLOCAL LOAD: " << Deps.size() << *LI);
943 // If we had to process more than one hundred blocks to find the
944 // dependencies, this load isn't worth worrying about. Optimizing
945 // it will be too expensive.
946 if (Deps.size() > 100)
947 return false;
949 // If we had a phi translation failure, we'll have a single entry which is a
950 // clobber in the current block. Reject this early.
951 if (Deps.size() == 1 && Deps[0].second.isClobber())
952 return false;
954 // Filter out useless results (non-locals, etc). Keep track of the blocks
955 // where we have a value available in repl, also keep track of whether we see
956 // dependencies that produce an unknown value for the load (such as a call
957 // that could potentially clobber the load).
958 SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
959 SmallVector<BasicBlock*, 16> UnavailableBlocks;
961 for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
962 BasicBlock *DepBB = Deps[i].first;
963 MemDepResult DepInfo = Deps[i].second;
965 if (DepInfo.isClobber()) {
966 UnavailableBlocks.push_back(DepBB);
967 continue;
970 Instruction *DepInst = DepInfo.getInst();
972 // Loading the allocation -> undef.
973 if (isa<AllocationInst>(DepInst)) {
974 ValuesPerBlock.push_back(std::make_pair(DepBB,
975 UndefValue::get(LI->getType())));
976 continue;
979 if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
980 // Reject loads and stores that are to the same address but are of
981 // different types.
982 // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
983 // of bitfield access, it would be interesting to optimize for it at some
984 // point.
985 if (S->getOperand(0)->getType() != LI->getType()) {
986 UnavailableBlocks.push_back(DepBB);
987 continue;
990 ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
992 } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
993 if (LD->getType() != LI->getType()) {
994 UnavailableBlocks.push_back(DepBB);
995 continue;
997 ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
998 } else {
999 UnavailableBlocks.push_back(DepBB);
1000 continue;
1004 // If we have no predecessors that produce a known value for this load, exit
1005 // early.
1006 if (ValuesPerBlock.empty()) return false;
1008 // If all of the instructions we depend on produce a known value for this
1009 // load, then it is fully redundant and we can use PHI insertion to compute
1010 // its value. Insert PHIs and remove the fully redundant value now.
1011 if (UnavailableBlocks.empty()) {
1012 // Use cached PHI construction information from previous runs
1013 SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1014 // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1015 for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1016 I != E; ++I) {
1017 if ((*I)->getParent() == LI->getParent()) {
1018 DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD #1: " << *LI);
1019 LI->replaceAllUsesWith(*I);
1020 if (isa<PointerType>((*I)->getType()))
1021 MD->invalidateCachedPointerInfo(*I);
1022 toErase.push_back(LI);
1023 NumGVNLoad++;
1024 return true;
1027 ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1030 DEBUG(cerr << "GVN REMOVING NONLOCAL LOAD: " << *LI);
1032 DenseMap<BasicBlock*, Value*> BlockReplValues;
1033 BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1034 // Perform PHI construction.
1035 Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1036 LI->replaceAllUsesWith(v);
1038 if (isa<PHINode>(v))
1039 v->takeName(LI);
1040 if (isa<PointerType>(v->getType()))
1041 MD->invalidateCachedPointerInfo(v);
1042 toErase.push_back(LI);
1043 NumGVNLoad++;
1044 return true;
1047 if (!EnablePRE || !EnableLoadPRE)
1048 return false;
1050 // Okay, we have *some* definitions of the value. This means that the value
1051 // is available in some of our (transitive) predecessors. Lets think about
1052 // doing PRE of this load. This will involve inserting a new load into the
1053 // predecessor when it's not available. We could do this in general, but
1054 // prefer to not increase code size. As such, we only do this when we know
1055 // that we only have to insert *one* load (which means we're basically moving
1056 // the load, not inserting a new one).
1058 // Everything we do here is based on local predecessors of LI's block. If it
1059 // only has one predecessor, bail now.
1060 BasicBlock *LoadBB = LI->getParent();
1061 if (LoadBB->getSinglePredecessor())
1062 return false;
1064 // If we have a repl set with LI itself in it, this means we have a loop where
1065 // at least one of the values is LI. Since this means that we won't be able
1066 // to eliminate LI even if we insert uses in the other predecessors, we will
1067 // end up increasing code size. Reject this by scanning for LI.
1068 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1069 if (ValuesPerBlock[i].second == LI)
1070 return false;
1072 // Okay, we have some hope :). Check to see if the loaded value is fully
1073 // available in all but one predecessor.
1074 // FIXME: If we could restructure the CFG, we could make a common pred with
1075 // all the preds that don't have an available LI and insert a new load into
1076 // that one block.
1077 BasicBlock *UnavailablePred = 0;
1079 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1080 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1081 FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1082 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1083 FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1085 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1086 PI != E; ++PI) {
1087 if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1088 continue;
1090 // If this load is not available in multiple predecessors, reject it.
1091 if (UnavailablePred && UnavailablePred != *PI)
1092 return false;
1093 UnavailablePred = *PI;
1096 assert(UnavailablePred != 0 &&
1097 "Fully available value should be eliminated above!");
1099 // If the loaded pointer is PHI node defined in this block, do PHI translation
1100 // to get its value in the predecessor.
1101 Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1103 // Make sure the value is live in the predecessor. If it was defined by a
1104 // non-PHI instruction in this block, we don't know how to recompute it above.
1105 if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1106 if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1107 DEBUG(cerr << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1108 << *LPInst << *LI << "\n");
1109 return false;
1112 // We don't currently handle critical edges :(
1113 if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1114 DEBUG(cerr << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1115 << UnavailablePred->getName() << "': " << *LI);
1116 return false;
1119 // Okay, we can eliminate this load by inserting a reload in the predecessor
1120 // and using PHI construction to get the value in the other predecessors, do
1121 // it.
1122 DEBUG(cerr << "GVN REMOVING PRE LOAD: " << *LI);
1124 Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1125 LI->getAlignment(),
1126 UnavailablePred->getTerminator());
1128 DenseMap<BasicBlock*, Value*> BlockReplValues;
1129 BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
1130 BlockReplValues[UnavailablePred] = NewLoad;
1132 // Perform PHI construction.
1133 Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1134 LI->replaceAllUsesWith(v);
1135 if (isa<PHINode>(v))
1136 v->takeName(LI);
1137 if (isa<PointerType>(v->getType()))
1138 MD->invalidateCachedPointerInfo(v);
1139 toErase.push_back(LI);
1140 NumPRELoad++;
1141 return true;
1144 /// processLoad - Attempt to eliminate a load, first by eliminating it
1145 /// locally, and then attempting non-local elimination if that fails.
1146 bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1147 if (L->isVolatile())
1148 return false;
1150 Value* pointer = L->getPointerOperand();
1152 // ... to a pointer that has been loaded from before...
1153 MemDepResult dep = MD->getDependency(L);
1155 // If the value isn't available, don't do anything!
1156 if (dep.isClobber())
1157 return false;
1159 // If it is defined in another block, try harder.
1160 if (dep.isNonLocal())
1161 return processNonLocalLoad(L, toErase);
1163 Instruction *DepInst = dep.getInst();
1164 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1165 // Only forward substitute stores to loads of the same type.
1166 // FIXME: Could do better!
1167 if (DepSI->getPointerOperand()->getType() != pointer->getType())
1168 return false;
1170 // Remove it!
1171 L->replaceAllUsesWith(DepSI->getOperand(0));
1172 if (isa<PointerType>(DepSI->getOperand(0)->getType()))
1173 MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
1174 toErase.push_back(L);
1175 NumGVNLoad++;
1176 return true;
1179 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1180 // Only forward substitute stores to loads of the same type.
1181 // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
1182 if (DepLI->getType() != L->getType())
1183 return false;
1185 // Remove it!
1186 L->replaceAllUsesWith(DepLI);
1187 if (isa<PointerType>(DepLI->getType()))
1188 MD->invalidateCachedPointerInfo(DepLI);
1189 toErase.push_back(L);
1190 NumGVNLoad++;
1191 return true;
1194 // If this load really doesn't depend on anything, then we must be loading an
1195 // undef value. This can happen when loading for a fresh allocation with no
1196 // intervening stores, for example.
1197 if (isa<AllocationInst>(DepInst)) {
1198 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1199 toErase.push_back(L);
1200 NumGVNLoad++;
1201 return true;
1204 return false;
1207 Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
1208 DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1209 if (I == localAvail.end())
1210 return 0;
1212 ValueNumberScope* locals = I->second;
1214 while (locals) {
1215 DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
1216 if (I != locals->table.end())
1217 return I->second;
1218 else
1219 locals = locals->parent;
1222 return 0;
1225 /// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1226 /// by inheritance from the dominator fails, see if we can perform phi
1227 /// construction to eliminate the redundancy.
1228 Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
1229 BasicBlock* BaseBlock = orig->getParent();
1231 SmallPtrSet<BasicBlock*, 4> Visited;
1232 SmallVector<BasicBlock*, 8> Stack;
1233 Stack.push_back(BaseBlock);
1235 DenseMap<BasicBlock*, Value*> Results;
1237 // Walk backwards through our predecessors, looking for instances of the
1238 // value number we're looking for. Instances are recorded in the Results
1239 // map, which is then used to perform phi construction.
1240 while (!Stack.empty()) {
1241 BasicBlock* Current = Stack.back();
1242 Stack.pop_back();
1244 // If we've walked all the way to a proper dominator, then give up. Cases
1245 // where the instance is in the dominator will have been caught by the fast
1246 // path, and any cases that require phi construction further than this are
1247 // probably not worth it anyways. Note that this is a SIGNIFICANT compile
1248 // time improvement.
1249 if (DT->properlyDominates(Current, orig->getParent())) return 0;
1251 DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1252 localAvail.find(Current);
1253 if (LA == localAvail.end()) return 0;
1254 DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1256 if (V != LA->second->table.end()) {
1257 // Found an instance, record it.
1258 Results.insert(std::make_pair(Current, V->second));
1259 continue;
1262 // If we reach the beginning of the function, then give up.
1263 if (pred_begin(Current) == pred_end(Current))
1264 return 0;
1266 for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1267 PI != PE; ++PI)
1268 if (Visited.insert(*PI))
1269 Stack.push_back(*PI);
1272 // If we didn't find instances, give up. Otherwise, perform phi construction.
1273 if (Results.size() == 0)
1274 return 0;
1275 else
1276 return GetValueForBlock(BaseBlock, orig, Results, true);
1279 /// processInstruction - When calculating availability, handle an instruction
1280 /// by inserting it into the appropriate sets
1281 bool GVN::processInstruction(Instruction *I,
1282 SmallVectorImpl<Instruction*> &toErase) {
1283 if (LoadInst* L = dyn_cast<LoadInst>(I)) {
1284 bool changed = processLoad(L, toErase);
1286 if (!changed) {
1287 unsigned num = VN.lookup_or_add(L);
1288 localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
1291 return changed;
1294 uint32_t nextNum = VN.getNextUnusedValueNumber();
1295 unsigned num = VN.lookup_or_add(I);
1297 if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
1298 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1300 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1301 return false;
1303 Value* branchCond = BI->getCondition();
1304 uint32_t condVN = VN.lookup_or_add(branchCond);
1306 BasicBlock* trueSucc = BI->getSuccessor(0);
1307 BasicBlock* falseSucc = BI->getSuccessor(1);
1309 if (trueSucc->getSinglePredecessor())
1310 localAvail[trueSucc]->table[condVN] = ConstantInt::getTrue();
1311 if (falseSucc->getSinglePredecessor())
1312 localAvail[falseSucc]->table[condVN] = ConstantInt::getFalse();
1314 return false;
1316 // Allocations are always uniquely numbered, so we can save time and memory
1317 // by fast failing them.
1318 } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
1319 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1320 return false;
1323 // Collapse PHI nodes
1324 if (PHINode* p = dyn_cast<PHINode>(I)) {
1325 Value* constVal = CollapsePhi(p);
1327 if (constVal) {
1328 for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1329 PI != PE; ++PI)
1330 PI->second.erase(p);
1332 p->replaceAllUsesWith(constVal);
1333 if (isa<PointerType>(constVal->getType()))
1334 MD->invalidateCachedPointerInfo(constVal);
1335 VN.erase(p);
1337 toErase.push_back(p);
1338 } else {
1339 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1342 // If the number we were assigned was a brand new VN, then we don't
1343 // need to do a lookup to see if the number already exists
1344 // somewhere in the domtree: it can't!
1345 } else if (num == nextNum) {
1346 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1348 // Perform fast-path value-number based elimination of values inherited from
1349 // dominators.
1350 } else if (Value* repl = lookupNumber(I->getParent(), num)) {
1351 // Remove it!
1352 VN.erase(I);
1353 I->replaceAllUsesWith(repl);
1354 if (isa<PointerType>(repl->getType()))
1355 MD->invalidateCachedPointerInfo(repl);
1356 toErase.push_back(I);
1357 return true;
1359 #if 0
1360 // Perform slow-pathvalue-number based elimination with phi construction.
1361 } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
1362 // Remove it!
1363 VN.erase(I);
1364 I->replaceAllUsesWith(repl);
1365 if (isa<PointerType>(repl->getType()))
1366 MD->invalidateCachedPointerInfo(repl);
1367 toErase.push_back(I);
1368 return true;
1369 #endif
1370 } else {
1371 localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
1374 return false;
1377 /// runOnFunction - This is the main transformation entry point for a function.
1378 bool GVN::runOnFunction(Function& F) {
1379 MD = &getAnalysis<MemoryDependenceAnalysis>();
1380 DT = &getAnalysis<DominatorTree>();
1381 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1382 VN.setMemDep(MD);
1383 VN.setDomTree(DT);
1385 bool changed = false;
1386 bool shouldContinue = true;
1388 // Merge unconditional branches, allowing PRE to catch more
1389 // optimization opportunities.
1390 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1391 BasicBlock* BB = FI;
1392 ++FI;
1393 bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1394 if (removedBlock) NumGVNBlocks++;
1396 changed |= removedBlock;
1399 unsigned Iteration = 0;
1401 while (shouldContinue) {
1402 DEBUG(cerr << "GVN iteration: " << Iteration << "\n");
1403 shouldContinue = iterateOnFunction(F);
1404 changed |= shouldContinue;
1405 ++Iteration;
1408 if (EnablePRE) {
1409 bool PREChanged = true;
1410 while (PREChanged) {
1411 PREChanged = performPRE(F);
1412 changed |= PREChanged;
1415 // FIXME: Should perform GVN again after PRE does something. PRE can move
1416 // computations into blocks where they become fully redundant. Note that
1417 // we can't do this until PRE's critical edge splitting updates memdep.
1418 // Actually, when this happens, we should just fully integrate PRE into GVN.
1420 cleanupGlobalSets();
1422 return changed;
1426 bool GVN::processBlock(BasicBlock* BB) {
1427 // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1428 // incrementing BI before processing an instruction).
1429 SmallVector<Instruction*, 8> toErase;
1430 bool changed_function = false;
1432 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1433 BI != BE;) {
1434 changed_function |= processInstruction(BI, toErase);
1435 if (toErase.empty()) {
1436 ++BI;
1437 continue;
1440 // If we need some instructions deleted, do it now.
1441 NumGVNInstr += toErase.size();
1443 // Avoid iterator invalidation.
1444 bool AtStart = BI == BB->begin();
1445 if (!AtStart)
1446 --BI;
1448 for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1449 E = toErase.end(); I != E; ++I) {
1450 DEBUG(cerr << "GVN removed: " << **I);
1451 MD->removeInstruction(*I);
1452 (*I)->eraseFromParent();
1453 DEBUG(verifyRemoved(*I));
1455 toErase.clear();
1457 if (AtStart)
1458 BI = BB->begin();
1459 else
1460 ++BI;
1463 return changed_function;
1466 /// performPRE - Perform a purely local form of PRE that looks for diamond
1467 /// control flow patterns and attempts to perform simple PRE at the join point.
1468 bool GVN::performPRE(Function& F) {
1469 bool Changed = false;
1470 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1471 DenseMap<BasicBlock*, Value*> predMap;
1472 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1473 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1474 BasicBlock* CurrentBlock = *DI;
1476 // Nothing to PRE in the entry block.
1477 if (CurrentBlock == &F.getEntryBlock()) continue;
1479 for (BasicBlock::iterator BI = CurrentBlock->begin(),
1480 BE = CurrentBlock->end(); BI != BE; ) {
1481 Instruction *CurInst = BI++;
1483 if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
1484 isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
1485 CurInst->mayReadFromMemory() || CurInst->mayWriteToMemory() ||
1486 isa<DbgInfoIntrinsic>(CurInst))
1487 continue;
1489 uint32_t valno = VN.lookup(CurInst);
1491 // Look for the predecessors for PRE opportunities. We're
1492 // only trying to solve the basic diamond case, where
1493 // a value is computed in the successor and one predecessor,
1494 // but not the other. We also explicitly disallow cases
1495 // where the successor is its own predecessor, because they're
1496 // more complicated to get right.
1497 unsigned numWith = 0;
1498 unsigned numWithout = 0;
1499 BasicBlock* PREPred = 0;
1500 predMap.clear();
1502 for (pred_iterator PI = pred_begin(CurrentBlock),
1503 PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1504 // We're not interested in PRE where the block is its
1505 // own predecessor, on in blocks with predecessors
1506 // that are not reachable.
1507 if (*PI == CurrentBlock) {
1508 numWithout = 2;
1509 break;
1510 } else if (!localAvail.count(*PI)) {
1511 numWithout = 2;
1512 break;
1515 DenseMap<uint32_t, Value*>::iterator predV =
1516 localAvail[*PI]->table.find(valno);
1517 if (predV == localAvail[*PI]->table.end()) {
1518 PREPred = *PI;
1519 numWithout++;
1520 } else if (predV->second == CurInst) {
1521 numWithout = 2;
1522 } else {
1523 predMap[*PI] = predV->second;
1524 numWith++;
1528 // Don't do PRE when it might increase code size, i.e. when
1529 // we would need to insert instructions in more than one pred.
1530 if (numWithout != 1 || numWith == 0)
1531 continue;
1533 // We can't do PRE safely on a critical edge, so instead we schedule
1534 // the edge to be split and perform the PRE the next time we iterate
1535 // on the function.
1536 unsigned succNum = 0;
1537 for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1538 i != e; ++i)
1539 if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1540 succNum = i;
1541 break;
1544 if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
1545 toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
1546 continue;
1549 // Instantiate the expression the in predecessor that lacked it.
1550 // Because we are going top-down through the block, all value numbers
1551 // will be available in the predecessor by the time we need them. Any
1552 // that weren't original present will have been instantiated earlier
1553 // in this loop.
1554 Instruction* PREInstr = CurInst->clone();
1555 bool success = true;
1556 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1557 Value *Op = PREInstr->getOperand(i);
1558 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1559 continue;
1561 if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1562 PREInstr->setOperand(i, V);
1563 } else {
1564 success = false;
1565 break;
1569 // Fail out if we encounter an operand that is not available in
1570 // the PRE predecessor. This is typically because of loads which
1571 // are not value numbered precisely.
1572 if (!success) {
1573 delete PREInstr;
1574 DEBUG(verifyRemoved(PREInstr));
1575 continue;
1578 PREInstr->insertBefore(PREPred->getTerminator());
1579 PREInstr->setName(CurInst->getName() + ".pre");
1580 predMap[PREPred] = PREInstr;
1581 VN.add(PREInstr, valno);
1582 NumGVNPRE++;
1584 // Update the availability map to include the new instruction.
1585 localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
1587 // Create a PHI to make the value available in this block.
1588 PHINode* Phi = PHINode::Create(CurInst->getType(),
1589 CurInst->getName() + ".pre-phi",
1590 CurrentBlock->begin());
1591 for (pred_iterator PI = pred_begin(CurrentBlock),
1592 PE = pred_end(CurrentBlock); PI != PE; ++PI)
1593 Phi->addIncoming(predMap[*PI], *PI);
1595 VN.add(Phi, valno);
1596 localAvail[CurrentBlock]->table[valno] = Phi;
1598 CurInst->replaceAllUsesWith(Phi);
1599 if (isa<PointerType>(Phi->getType()))
1600 MD->invalidateCachedPointerInfo(Phi);
1601 VN.erase(CurInst);
1603 DEBUG(cerr << "GVN PRE removed: " << *CurInst);
1604 MD->removeInstruction(CurInst);
1605 CurInst->eraseFromParent();
1606 DEBUG(verifyRemoved(CurInst));
1607 Changed = true;
1611 for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1612 I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1613 SplitCriticalEdge(I->first, I->second, this);
1615 return Changed || toSplit.size();
1618 /// iterateOnFunction - Executes one iteration of GVN
1619 bool GVN::iterateOnFunction(Function &F) {
1620 cleanupGlobalSets();
1622 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1623 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1624 if (DI->getIDom())
1625 localAvail[DI->getBlock()] =
1626 new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1627 else
1628 localAvail[DI->getBlock()] = new ValueNumberScope(0);
1631 // Top-down walk of the dominator tree
1632 bool changed = false;
1633 #if 0
1634 // Needed for value numbering with phi construction to work.
1635 ReversePostOrderTraversal<Function*> RPOT(&F);
1636 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1637 RE = RPOT.end(); RI != RE; ++RI)
1638 changed |= processBlock(*RI);
1639 #else
1640 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1641 DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1642 changed |= processBlock(DI->getBlock());
1643 #endif
1645 return changed;
1648 void GVN::cleanupGlobalSets() {
1649 VN.clear();
1650 phiMap.clear();
1652 for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1653 I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1654 delete I->second;
1655 localAvail.clear();
1658 /// verifyRemoved - Verify that the specified instruction does not occur in our
1659 /// internal data structures.
1660 void GVN::verifyRemoved(const Instruction *Inst) const {
1661 VN.verifyRemoved(Inst);
1663 // Walk through the PHI map to make sure the instruction isn't hiding in there
1664 // somewhere.
1665 for (PhiMapType::iterator
1666 I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1667 assert(I->first != Inst && "Inst is still a key in PHI map!");
1669 for (SmallPtrSet<Instruction*, 4>::iterator
1670 II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1671 assert(*II != Inst && "Inst is still a value in PHI map!");
1675 // Walk through the value number scope to make sure the instruction isn't
1676 // ferreted away in it.
1677 for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1678 I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1679 const ValueNumberScope *VNS = I->second;
1681 while (VNS) {
1682 for (DenseMap<uint32_t, Value*>::iterator
1683 II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1684 assert(II->second != Inst && "Inst still in value numbering scope!");
1687 VNS = VNS->parent;