1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. Any pointer arithmetic recurrences are raised to use array subscripts.
22 // If the trip count of a loop is computable, this pass also makes the following
24 // 1. The exit condition for the loop is canonicalized to compare the
25 // induction value against the exit value. This turns loops like:
26 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27 // 2. Any use outside of the loop of an expression derived from the indvar
28 // is changed to compute the derived value outside of the loop, eliminating
29 // the dependence on the exit value of the induction variable. If the only
30 // purpose of the loop is to compute the exit value of some derived
31 // expression, this transformation will make the loop dead.
33 // This transformation should be followed by strength reduction after all of the
34 // desired loop transformations have been performed. Additionally, on targets
35 // where it is profitable, the loop could be transformed to count down to zero
36 // (the "do loop" optimization).
38 //===----------------------------------------------------------------------===//
40 #define DEBUG_TYPE "indvars"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/BasicBlock.h"
43 #include "llvm/Constants.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/Type.h"
46 #include "llvm/Analysis/ScalarEvolutionExpander.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Support/CFG.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/GetElementPtrTypeIterator.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/SetVector.h"
57 #include "llvm/ADT/SmallPtrSet.h"
58 #include "llvm/ADT/Statistic.h"
61 STATISTIC(NumRemoved
, "Number of aux indvars removed");
62 STATISTIC(NumInserted
, "Number of canonical indvars added");
63 STATISTIC(NumReplaced
, "Number of exit values replaced");
64 STATISTIC(NumLFTR
, "Number of loop exit tests replaced");
67 class VISIBILITY_HIDDEN IndVarSimplify
: public LoopPass
{
73 static char ID
; // Pass identification, replacement for typeid
74 IndVarSimplify() : LoopPass(&ID
) {}
76 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
78 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
79 AU
.addRequired
<ScalarEvolution
>();
80 AU
.addRequiredID(LCSSAID
);
81 AU
.addRequiredID(LoopSimplifyID
);
82 AU
.addRequired
<LoopInfo
>();
83 AU
.addPreserved
<ScalarEvolution
>();
84 AU
.addPreservedID(LoopSimplifyID
);
85 AU
.addPreservedID(LCSSAID
);
91 void RewriteNonIntegerIVs(Loop
*L
);
93 void LinearFunctionTestReplace(Loop
*L
, SCEVHandle BackedgeTakenCount
,
95 BasicBlock
*ExitingBlock
,
97 SCEVExpander
&Rewriter
);
98 void RewriteLoopExitValues(Loop
*L
, const SCEV
*BackedgeTakenCount
);
100 void DeleteTriviallyDeadInstructions(SmallPtrSet
<Instruction
*, 16> &Insts
);
102 void HandleFloatingPointIV(Loop
*L
, PHINode
*PH
,
103 SmallPtrSet
<Instruction
*, 16> &DeadInsts
);
107 char IndVarSimplify::ID
= 0;
108 static RegisterPass
<IndVarSimplify
>
109 X("indvars", "Canonicalize Induction Variables");
111 Pass
*llvm::createIndVarSimplifyPass() {
112 return new IndVarSimplify();
115 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
116 /// specified set are trivially dead, delete them and see if this makes any of
117 /// their operands subsequently dead.
118 void IndVarSimplify::
119 DeleteTriviallyDeadInstructions(SmallPtrSet
<Instruction
*, 16> &Insts
) {
120 while (!Insts
.empty()) {
121 Instruction
*I
= *Insts
.begin();
123 if (isInstructionTriviallyDead(I
)) {
124 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
125 if (Instruction
*U
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
127 DOUT
<< "INDVARS: Deleting: " << *I
;
128 I
->eraseFromParent();
134 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
135 /// loop to be a canonical != comparison against the incremented loop induction
136 /// variable. This pass is able to rewrite the exit tests of any loop where the
137 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
138 /// is actually a much broader range than just linear tests.
139 void IndVarSimplify::LinearFunctionTestReplace(Loop
*L
,
140 SCEVHandle BackedgeTakenCount
,
142 BasicBlock
*ExitingBlock
,
144 SCEVExpander
&Rewriter
) {
145 // If the exiting block is not the same as the backedge block, we must compare
146 // against the preincremented value, otherwise we prefer to compare against
147 // the post-incremented value.
149 SCEVHandle RHS
= BackedgeTakenCount
;
150 if (ExitingBlock
== L
->getLoopLatch()) {
151 // Add one to the "backedge-taken" count to get the trip count.
152 // If this addition may overflow, we have to be more pessimistic and
153 // cast the induction variable before doing the add.
154 SCEVHandle Zero
= SE
->getIntegerSCEV(0, BackedgeTakenCount
->getType());
156 SE
->getAddExpr(BackedgeTakenCount
,
157 SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType()));
158 if ((isa
<SCEVConstant
>(N
) && !N
->isZero()) ||
159 SE
->isLoopGuardedByCond(L
, ICmpInst::ICMP_NE
, N
, Zero
)) {
160 // No overflow. Cast the sum.
161 RHS
= SE
->getTruncateOrZeroExtend(N
, IndVar
->getType());
163 // Potential overflow. Cast before doing the add.
164 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
166 RHS
= SE
->getAddExpr(RHS
,
167 SE
->getIntegerSCEV(1, IndVar
->getType()));
170 // The BackedgeTaken expression contains the number of times that the
171 // backedge branches to the loop header. This is one less than the
172 // number of times the loop executes, so use the incremented indvar.
173 CmpIndVar
= L
->getCanonicalInductionVariableIncrement();
175 // We have to use the preincremented value...
176 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
181 // Expand the code for the iteration count into the preheader of the loop.
182 BasicBlock
*Preheader
= L
->getLoopPreheader();
183 Value
*ExitCnt
= Rewriter
.expandCodeFor(RHS
, IndVar
->getType(),
184 Preheader
->getTerminator());
186 // Insert a new icmp_ne or icmp_eq instruction before the branch.
187 ICmpInst::Predicate Opcode
;
188 if (L
->contains(BI
->getSuccessor(0)))
189 Opcode
= ICmpInst::ICMP_NE
;
191 Opcode
= ICmpInst::ICMP_EQ
;
193 DOUT
<< "INDVARS: Rewriting loop exit condition to:\n"
194 << " LHS:" << *CmpIndVar
// includes a newline
196 << (Opcode
== ICmpInst::ICMP_NE
? "!=" : "==") << "\n"
197 << " RHS:\t" << *RHS
<< "\n";
199 Value
*Cond
= new ICmpInst(Opcode
, CmpIndVar
, ExitCnt
, "exitcond", BI
);
200 BI
->setCondition(Cond
);
205 /// RewriteLoopExitValues - Check to see if this loop has a computable
206 /// loop-invariant execution count. If so, this means that we can compute the
207 /// final value of any expressions that are recurrent in the loop, and
208 /// substitute the exit values from the loop into any instructions outside of
209 /// the loop that use the final values of the current expressions.
210 void IndVarSimplify::RewriteLoopExitValues(Loop
*L
,
211 const SCEV
*BackedgeTakenCount
) {
212 BasicBlock
*Preheader
= L
->getLoopPreheader();
214 // Scan all of the instructions in the loop, looking at those that have
215 // extra-loop users and which are recurrences.
216 SCEVExpander
Rewriter(*SE
, *LI
);
218 // We insert the code into the preheader of the loop if the loop contains
219 // multiple exit blocks, or in the exit block if there is exactly one.
220 BasicBlock
*BlockToInsertInto
;
221 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
222 L
->getUniqueExitBlocks(ExitBlocks
);
223 if (ExitBlocks
.size() == 1)
224 BlockToInsertInto
= ExitBlocks
[0];
226 BlockToInsertInto
= Preheader
;
227 BasicBlock::iterator InsertPt
= BlockToInsertInto
->getFirstNonPHI();
229 bool HasConstantItCount
= isa
<SCEVConstant
>(BackedgeTakenCount
);
231 SmallPtrSet
<Instruction
*, 16> InstructionsToDelete
;
232 std::map
<Instruction
*, Value
*> ExitValues
;
234 // Find all values that are computed inside the loop, but used outside of it.
235 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
236 // the exit blocks of the loop to find them.
237 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
238 BasicBlock
*ExitBB
= ExitBlocks
[i
];
240 // If there are no PHI nodes in this exit block, then no values defined
241 // inside the loop are used on this path, skip it.
242 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
245 unsigned NumPreds
= PN
->getNumIncomingValues();
247 // Iterate over all of the PHI nodes.
248 BasicBlock::iterator BBI
= ExitBB
->begin();
249 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
251 // Iterate over all of the values in all the PHI nodes.
252 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
253 // If the value being merged in is not integer or is not defined
254 // in the loop, skip it.
255 Value
*InVal
= PN
->getIncomingValue(i
);
256 if (!isa
<Instruction
>(InVal
) ||
257 // SCEV only supports integer expressions for now.
258 (!isa
<IntegerType
>(InVal
->getType()) &&
259 !isa
<PointerType
>(InVal
->getType())))
262 // If this pred is for a subloop, not L itself, skip it.
263 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
264 continue; // The Block is in a subloop, skip it.
266 // Check that InVal is defined in the loop.
267 Instruction
*Inst
= cast
<Instruction
>(InVal
);
268 if (!L
->contains(Inst
->getParent()))
271 // We require that this value either have a computable evolution or that
272 // the loop have a constant iteration count. In the case where the loop
273 // has a constant iteration count, we can sometimes force evaluation of
274 // the exit value through brute force.
275 SCEVHandle SH
= SE
->getSCEV(Inst
);
276 if (!SH
->hasComputableLoopEvolution(L
) && !HasConstantItCount
)
277 continue; // Cannot get exit evolution for the loop value.
279 // Okay, this instruction has a user outside of the current loop
280 // and varies predictably *inside* the loop. Evaluate the value it
281 // contains when the loop exits, if possible.
282 SCEVHandle ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
283 if (isa
<SCEVCouldNotCompute
>(ExitValue
) ||
284 !ExitValue
->isLoopInvariant(L
))
290 // See if we already computed the exit value for the instruction, if so,
292 Value
*&ExitVal
= ExitValues
[Inst
];
294 ExitVal
= Rewriter
.expandCodeFor(ExitValue
, PN
->getType(), InsertPt
);
296 DOUT
<< "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
297 << " LoopVal = " << *Inst
<< "\n";
299 PN
->setIncomingValue(i
, ExitVal
);
301 // If this instruction is dead now, schedule it to be removed.
302 if (Inst
->use_empty())
303 InstructionsToDelete
.insert(Inst
);
305 // See if this is a single-entry LCSSA PHI node. If so, we can (and
307 // the PHI entirely. This is safe, because the NewVal won't be variant
308 // in the loop, so we don't need an LCSSA phi node anymore.
310 PN
->replaceAllUsesWith(ExitVal
);
311 PN
->eraseFromParent();
318 DeleteTriviallyDeadInstructions(InstructionsToDelete
);
321 void IndVarSimplify::RewriteNonIntegerIVs(Loop
*L
) {
322 // First step. Check to see if there are any floating-point recurrences.
323 // If there are, change them into integer recurrences, permitting analysis by
324 // the SCEV routines.
326 BasicBlock
*Header
= L
->getHeader();
328 SmallPtrSet
<Instruction
*, 16> DeadInsts
;
329 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
330 PHINode
*PN
= cast
<PHINode
>(I
);
331 HandleFloatingPointIV(L
, PN
, DeadInsts
);
334 // If the loop previously had floating-point IV, ScalarEvolution
335 // may not have been able to compute a trip count. Now that we've done some
336 // re-writing, the trip count may be computable.
338 SE
->forgetLoopBackedgeTakenCount(L
);
340 if (!DeadInsts
.empty())
341 DeleteTriviallyDeadInstructions(DeadInsts
);
344 /// getEffectiveIndvarType - Determine the widest type that the
345 /// induction-variable PHINode Phi is cast to.
347 static const Type
*getEffectiveIndvarType(const PHINode
*Phi
,
348 const ScalarEvolution
*SE
) {
349 const Type
*Ty
= Phi
->getType();
351 for (Value::use_const_iterator UI
= Phi
->use_begin(), UE
= Phi
->use_end();
353 const Type
*CandidateType
= NULL
;
354 if (const ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(UI
))
355 CandidateType
= ZI
->getDestTy();
356 else if (const SExtInst
*SI
= dyn_cast
<SExtInst
>(UI
))
357 CandidateType
= SI
->getDestTy();
358 else if (const IntToPtrInst
*IP
= dyn_cast
<IntToPtrInst
>(UI
))
359 CandidateType
= IP
->getDestTy();
360 else if (const PtrToIntInst
*PI
= dyn_cast
<PtrToIntInst
>(UI
))
361 CandidateType
= PI
->getDestTy();
363 SE
->isSCEVable(CandidateType
) &&
364 SE
->getTypeSizeInBits(CandidateType
) > SE
->getTypeSizeInBits(Ty
))
371 /// TestOrigIVForWrap - Analyze the original induction variable that
372 /// controls the loop's iteration to determine whether it would ever
373 /// undergo signed or unsigned overflow.
375 /// In addition to setting the NoSignedWrap and NoUnsignedWrap
376 /// variables to true when appropriate (they are not set to false here),
377 /// return the PHI for this induction variable. Also record the initial
378 /// and final values and the increment; these are not meaningful unless
379 /// either NoSignedWrap or NoUnsignedWrap is true, and are always meaningful
380 /// in that case, although the final value may be 0 indicating a nonconstant.
382 /// TODO: This duplicates a fair amount of ScalarEvolution logic.
383 /// Perhaps this can be merged with
384 /// ScalarEvolution::getBackedgeTakenCount
385 /// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
387 static const PHINode
*TestOrigIVForWrap(const Loop
*L
,
388 const BranchInst
*BI
,
389 const Instruction
*OrigCond
,
390 const ScalarEvolution
&SE
,
392 bool &NoUnsignedWrap
,
393 const ConstantInt
* &InitialVal
,
394 const ConstantInt
* &IncrVal
,
395 const ConstantInt
* &LimitVal
) {
396 // Verify that the loop is sane and find the exit condition.
397 const ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(OrigCond
);
400 const Value
*CmpLHS
= Cmp
->getOperand(0);
401 const Value
*CmpRHS
= Cmp
->getOperand(1);
402 const BasicBlock
*TrueBB
= BI
->getSuccessor(0);
403 const BasicBlock
*FalseBB
= BI
->getSuccessor(1);
404 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
406 // Canonicalize a constant to the RHS.
407 if (isa
<ConstantInt
>(CmpLHS
)) {
408 Pred
= ICmpInst::getSwappedPredicate(Pred
);
409 std::swap(CmpLHS
, CmpRHS
);
411 // Canonicalize SLE to SLT.
412 if (Pred
== ICmpInst::ICMP_SLE
)
413 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
))
414 if (!CI
->getValue().isMaxSignedValue()) {
415 CmpRHS
= ConstantInt::get(CI
->getValue() + 1);
416 Pred
= ICmpInst::ICMP_SLT
;
418 // Canonicalize SGT to SGE.
419 if (Pred
== ICmpInst::ICMP_SGT
)
420 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
))
421 if (!CI
->getValue().isMaxSignedValue()) {
422 CmpRHS
= ConstantInt::get(CI
->getValue() + 1);
423 Pred
= ICmpInst::ICMP_SGE
;
425 // Canonicalize SGE to SLT.
426 if (Pred
== ICmpInst::ICMP_SGE
) {
427 std::swap(TrueBB
, FalseBB
);
428 Pred
= ICmpInst::ICMP_SLT
;
430 // Canonicalize ULE to ULT.
431 if (Pred
== ICmpInst::ICMP_ULE
)
432 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
))
433 if (!CI
->getValue().isMaxValue()) {
434 CmpRHS
= ConstantInt::get(CI
->getValue() + 1);
435 Pred
= ICmpInst::ICMP_ULT
;
437 // Canonicalize UGT to UGE.
438 if (Pred
== ICmpInst::ICMP_UGT
)
439 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
))
440 if (!CI
->getValue().isMaxValue()) {
441 CmpRHS
= ConstantInt::get(CI
->getValue() + 1);
442 Pred
= ICmpInst::ICMP_UGE
;
444 // Canonicalize UGE to ULT.
445 if (Pred
== ICmpInst::ICMP_UGE
) {
446 std::swap(TrueBB
, FalseBB
);
447 Pred
= ICmpInst::ICMP_ULT
;
449 // For now, analyze only LT loops for signed overflow.
450 if (Pred
!= ICmpInst::ICMP_SLT
&& Pred
!= ICmpInst::ICMP_ULT
)
453 bool isSigned
= Pred
== ICmpInst::ICMP_SLT
;
455 // Get the increment instruction. Look past casts if we will
456 // be able to prove that the original induction variable doesn't
457 // undergo signed or unsigned overflow, respectively.
458 const Value
*IncrInst
= CmpLHS
;
460 if (const SExtInst
*SI
= dyn_cast
<SExtInst
>(CmpLHS
)) {
461 if (!isa
<ConstantInt
>(CmpRHS
) ||
462 !cast
<ConstantInt
>(CmpRHS
)->getValue()
463 .isSignedIntN(SE
.getTypeSizeInBits(IncrInst
->getType())))
465 IncrInst
= SI
->getOperand(0);
468 if (const ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(CmpLHS
)) {
469 if (!isa
<ConstantInt
>(CmpRHS
) ||
470 !cast
<ConstantInt
>(CmpRHS
)->getValue()
471 .isIntN(SE
.getTypeSizeInBits(IncrInst
->getType())))
473 IncrInst
= ZI
->getOperand(0);
477 // For now, only analyze induction variables that have simple increments.
478 const BinaryOperator
*IncrOp
= dyn_cast
<BinaryOperator
>(IncrInst
);
479 if (!IncrOp
|| IncrOp
->getOpcode() != Instruction::Add
)
481 IncrVal
= dyn_cast
<ConstantInt
>(IncrOp
->getOperand(1));
485 // Make sure the PHI looks like a normal IV.
486 const PHINode
*PN
= dyn_cast
<PHINode
>(IncrOp
->getOperand(0));
487 if (!PN
|| PN
->getNumIncomingValues() != 2)
489 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
490 unsigned BackEdge
= !IncomingEdge
;
491 if (!L
->contains(PN
->getIncomingBlock(BackEdge
)) ||
492 PN
->getIncomingValue(BackEdge
) != IncrOp
)
494 if (!L
->contains(TrueBB
))
497 // For now, only analyze loops with a constant start value, so that
498 // we can easily determine if the start value is not a maximum value
499 // which would wrap on the first iteration.
500 InitialVal
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(IncomingEdge
));
504 // The upper limit need not be a constant; we'll check later.
505 LimitVal
= dyn_cast
<ConstantInt
>(CmpRHS
);
507 // We detect the impossibility of wrapping in two cases, both of
508 // which require starting with a non-max value:
509 // - The IV counts up by one, and the loop iterates only while it remains
510 // less than a limiting value (any) in the same type.
511 // - The IV counts up by a positive increment other than 1, and the
512 // constant limiting value + the increment is less than the max value
513 // (computed as max-increment to avoid overflow)
514 if (isSigned
&& !InitialVal
->getValue().isMaxSignedValue()) {
515 if (IncrVal
->equalsInt(1))
516 NoSignedWrap
= true; // LimitVal need not be constant
518 uint64_t numBits
= LimitVal
->getValue().getBitWidth();
519 if (IncrVal
->getValue().sgt(APInt::getNullValue(numBits
)) &&
520 (APInt::getSignedMaxValue(numBits
) - IncrVal
->getValue())
521 .sgt(LimitVal
->getValue()))
524 } else if (!isSigned
&& !InitialVal
->getValue().isMaxValue()) {
525 if (IncrVal
->equalsInt(1))
526 NoUnsignedWrap
= true; // LimitVal need not be constant
528 uint64_t numBits
= LimitVal
->getValue().getBitWidth();
529 if (IncrVal
->getValue().ugt(APInt::getNullValue(numBits
)) &&
530 (APInt::getMaxValue(numBits
) - IncrVal
->getValue())
531 .ugt(LimitVal
->getValue()))
532 NoUnsignedWrap
= true;
538 static Value
*getSignExtendedTruncVar(const SCEVAddRecExpr
*AR
,
540 const Type
*LargestType
, Loop
*L
,
542 SCEVExpander
&Rewriter
) {
543 SCEVHandle ExtendedStart
=
544 SE
->getSignExtendExpr(AR
->getStart(), LargestType
);
545 SCEVHandle ExtendedStep
=
546 SE
->getSignExtendExpr(AR
->getStepRecurrence(*SE
), LargestType
);
547 SCEVHandle ExtendedAddRec
=
548 SE
->getAddRecExpr(ExtendedStart
, ExtendedStep
, L
);
549 if (LargestType
!= myType
)
550 ExtendedAddRec
= SE
->getTruncateExpr(ExtendedAddRec
, myType
);
551 return Rewriter
.expandCodeFor(ExtendedAddRec
, myType
);
554 static Value
*getZeroExtendedTruncVar(const SCEVAddRecExpr
*AR
,
556 const Type
*LargestType
, Loop
*L
,
558 SCEVExpander
&Rewriter
) {
559 SCEVHandle ExtendedStart
=
560 SE
->getZeroExtendExpr(AR
->getStart(), LargestType
);
561 SCEVHandle ExtendedStep
=
562 SE
->getZeroExtendExpr(AR
->getStepRecurrence(*SE
), LargestType
);
563 SCEVHandle ExtendedAddRec
=
564 SE
->getAddRecExpr(ExtendedStart
, ExtendedStep
, L
);
565 if (LargestType
!= myType
)
566 ExtendedAddRec
= SE
->getTruncateExpr(ExtendedAddRec
, myType
);
567 return Rewriter
.expandCodeFor(ExtendedAddRec
, myType
);
570 /// allUsesAreSameTyped - See whether all Uses of I are instructions
571 /// with the same Opcode and the same type.
572 static bool allUsesAreSameTyped(unsigned int Opcode
, Instruction
*I
) {
573 const Type
* firstType
= NULL
;
574 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
576 Instruction
*II
= dyn_cast
<Instruction
>(*UI
);
577 if (!II
|| II
->getOpcode() != Opcode
)
580 firstType
= II
->getType();
581 else if (firstType
!= II
->getType())
587 bool IndVarSimplify::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
588 LI
= &getAnalysis
<LoopInfo
>();
589 SE
= &getAnalysis
<ScalarEvolution
>();
592 // If there are any floating-point recurrences, attempt to
593 // transform them to use integer recurrences.
594 RewriteNonIntegerIVs(L
);
596 BasicBlock
*Header
= L
->getHeader();
597 BasicBlock
*ExitingBlock
= L
->getExitingBlock();
598 SmallPtrSet
<Instruction
*, 16> DeadInsts
;
600 // Verify the input to the pass in already in LCSSA form.
601 assert(L
->isLCSSAForm());
603 // Check to see if this loop has a computable loop-invariant execution count.
604 // If so, this means that we can compute the final value of any expressions
605 // that are recurrent in the loop, and substitute the exit values from the
606 // loop into any instructions outside of the loop that use the final values of
607 // the current expressions.
609 SCEVHandle BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
610 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
611 RewriteLoopExitValues(L
, BackedgeTakenCount
);
613 // Next, analyze all of the induction variables in the loop, canonicalizing
614 // auxillary induction variables.
615 std::vector
<std::pair
<PHINode
*, SCEVHandle
> > IndVars
;
617 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
618 PHINode
*PN
= cast
<PHINode
>(I
);
619 if (SE
->isSCEVable(PN
->getType())) {
620 SCEVHandle SCEV
= SE
->getSCEV(PN
);
621 // FIXME: It is an extremely bad idea to indvar substitute anything more
622 // complex than affine induction variables. Doing so will put expensive
623 // polynomial evaluations inside of the loop, and the str reduction pass
624 // currently can only reduce affine polynomials. For now just disable
625 // indvar subst on anything more complex than an affine addrec.
626 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(SCEV
))
627 if (AR
->getLoop() == L
&& AR
->isAffine())
628 IndVars
.push_back(std::make_pair(PN
, SCEV
));
632 // Compute the type of the largest recurrence expression, and collect
633 // the set of the types of the other recurrence expressions.
634 const Type
*LargestType
= 0;
635 SmallSetVector
<const Type
*, 4> SizesToInsert
;
636 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
)) {
637 LargestType
= BackedgeTakenCount
->getType();
638 LargestType
= SE
->getEffectiveSCEVType(LargestType
);
639 SizesToInsert
.insert(LargestType
);
641 for (unsigned i
= 0, e
= IndVars
.size(); i
!= e
; ++i
) {
642 const PHINode
*PN
= IndVars
[i
].first
;
643 const Type
*PNTy
= PN
->getType();
644 PNTy
= SE
->getEffectiveSCEVType(PNTy
);
645 SizesToInsert
.insert(PNTy
);
646 const Type
*EffTy
= getEffectiveIndvarType(PN
, SE
);
647 EffTy
= SE
->getEffectiveSCEVType(EffTy
);
648 SizesToInsert
.insert(EffTy
);
650 SE
->getTypeSizeInBits(EffTy
) >
651 SE
->getTypeSizeInBits(LargestType
))
655 // Create a rewriter object which we'll use to transform the code with.
656 SCEVExpander
Rewriter(*SE
, *LI
);
658 // Now that we know the largest of of the induction variables in this loop,
659 // insert a canonical induction variable of the largest size.
661 if (!SizesToInsert
.empty()) {
662 IndVar
= Rewriter
.getOrInsertCanonicalInductionVariable(L
,LargestType
);
665 DOUT
<< "INDVARS: New CanIV: " << *IndVar
;
668 // If we have a trip count expression, rewrite the loop's exit condition
669 // using it. We can currently only handle loops with a single exit.
670 bool NoSignedWrap
= false;
671 bool NoUnsignedWrap
= false;
672 const ConstantInt
* InitialVal
, * IncrVal
, * LimitVal
;
673 const PHINode
*OrigControllingPHI
= 0;
674 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) && ExitingBlock
)
675 // Can't rewrite non-branch yet.
676 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator())) {
677 if (Instruction
*OrigCond
= dyn_cast
<Instruction
>(BI
->getCondition())) {
678 // Determine if the OrigIV will ever undergo overflow.
680 TestOrigIVForWrap(L
, BI
, OrigCond
, *SE
,
681 NoSignedWrap
, NoUnsignedWrap
,
682 InitialVal
, IncrVal
, LimitVal
);
684 // We'll be replacing the original condition, so it'll be dead.
685 DeadInsts
.insert(OrigCond
);
688 LinearFunctionTestReplace(L
, BackedgeTakenCount
, IndVar
,
689 ExitingBlock
, BI
, Rewriter
);
692 // Now that we have a canonical induction variable, we can rewrite any
693 // recurrences in terms of the induction variable. Start with the auxillary
694 // induction variables, and recursively rewrite any of their uses.
695 BasicBlock::iterator InsertPt
= Header
->getFirstNonPHI();
696 Rewriter
.setInsertionPoint(InsertPt
);
698 // If there were induction variables of other sizes, cast the primary
699 // induction variable to the right size for them, avoiding the need for the
700 // code evaluation methods to insert induction variables of different sizes.
701 for (unsigned i
= 0, e
= SizesToInsert
.size(); i
!= e
; ++i
) {
702 const Type
*Ty
= SizesToInsert
[i
];
703 if (Ty
!= LargestType
) {
704 Instruction
*New
= new TruncInst(IndVar
, Ty
, "indvar", InsertPt
);
705 Rewriter
.addInsertedValue(New
, SE
->getSCEV(New
));
706 DOUT
<< "INDVARS: Made trunc IV for type " << *Ty
<< ": "
711 // Rewrite all induction variables in terms of the canonical induction
713 while (!IndVars
.empty()) {
714 PHINode
*PN
= IndVars
.back().first
;
715 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(IndVars
.back().second
);
716 Value
*NewVal
= Rewriter
.expandCodeFor(AR
, PN
->getType());
717 DOUT
<< "INDVARS: Rewrote IV '" << *AR
<< "' " << *PN
718 << " into = " << *NewVal
<< "\n";
719 NewVal
->takeName(PN
);
721 /// If the new canonical induction variable is wider than the original,
722 /// and the original has uses that are casts to wider types, see if the
723 /// truncate and extend can be omitted.
724 if (PN
== OrigControllingPHI
&& PN
->getType() != LargestType
)
725 for (Value::use_iterator UI
= PN
->use_begin(), UE
= PN
->use_end();
727 Instruction
*UInst
= dyn_cast
<Instruction
>(*UI
);
728 if (UInst
&& isa
<SExtInst
>(UInst
) && NoSignedWrap
) {
729 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
, L
,
730 UInst
->getType(), Rewriter
);
731 UInst
->replaceAllUsesWith(TruncIndVar
);
732 DeadInsts
.insert(UInst
);
734 // See if we can figure out sext(i+constant) doesn't wrap, so we can
735 // use a larger add. This is common in subscripting.
736 if (UInst
&& UInst
->getOpcode()==Instruction::Add
&&
737 !UInst
->use_empty() &&
738 allUsesAreSameTyped(Instruction::SExt
, UInst
) &&
739 isa
<ConstantInt
>(UInst
->getOperand(1)) &&
740 NoSignedWrap
&& LimitVal
) {
741 uint64_t oldBitSize
= LimitVal
->getValue().getBitWidth();
742 uint64_t newBitSize
= LargestType
->getPrimitiveSizeInBits();
743 ConstantInt
* AddRHS
= dyn_cast
<ConstantInt
>(UInst
->getOperand(1));
744 if (((APInt::getSignedMaxValue(oldBitSize
) - IncrVal
->getValue()) -
745 AddRHS
->getValue()).sgt(LimitVal
->getValue())) {
746 // We've determined this is (i+constant) and it won't overflow.
747 if (isa
<SExtInst
>(UInst
->use_begin())) {
748 SExtInst
* oldSext
= dyn_cast
<SExtInst
>(UInst
->use_begin());
749 uint64_t truncSize
= oldSext
->getType()->getPrimitiveSizeInBits();
750 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
,
751 L
, oldSext
->getType(), Rewriter
);
752 APInt APnewAddRHS
= APInt(AddRHS
->getValue()).sext(newBitSize
);
753 if (newBitSize
> truncSize
)
754 APnewAddRHS
= APnewAddRHS
.trunc(truncSize
);
755 ConstantInt
* newAddRHS
=ConstantInt::get(APnewAddRHS
);
757 BinaryOperator::CreateAdd(TruncIndVar
, newAddRHS
,
758 UInst
->getName()+".nosex", UInst
);
759 for (Value::use_iterator UI2
= UInst
->use_begin(),
760 UE2
= UInst
->use_end(); UI2
!= UE2
; ++UI2
) {
761 Instruction
*II
= dyn_cast
<Instruction
>(UI2
);
762 II
->replaceAllUsesWith(NewAdd
);
763 DeadInsts
.insert(II
);
765 DeadInsts
.insert(UInst
);
769 // Try for sext(i | constant). This is safe as long as the
770 // high bit of the constant is not set.
771 if (UInst
&& UInst
->getOpcode()==Instruction::Or
&&
772 !UInst
->use_empty() &&
773 allUsesAreSameTyped(Instruction::SExt
, UInst
) && NoSignedWrap
&&
774 isa
<ConstantInt
>(UInst
->getOperand(1))) {
775 ConstantInt
* RHS
= dyn_cast
<ConstantInt
>(UInst
->getOperand(1));
776 if (!RHS
->getValue().isNegative()) {
777 uint64_t newBitSize
= LargestType
->getPrimitiveSizeInBits();
778 SExtInst
* oldSext
= dyn_cast
<SExtInst
>(UInst
->use_begin());
779 uint64_t truncSize
= oldSext
->getType()->getPrimitiveSizeInBits();
780 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
,
781 L
, oldSext
->getType(), Rewriter
);
782 APInt APnewOrRHS
= APInt(RHS
->getValue()).sext(newBitSize
);
783 if (newBitSize
> truncSize
)
784 APnewOrRHS
= APnewOrRHS
.trunc(truncSize
);
785 ConstantInt
* newOrRHS
=ConstantInt::get(APnewOrRHS
);
787 BinaryOperator::CreateOr(TruncIndVar
, newOrRHS
,
788 UInst
->getName()+".nosex", UInst
);
789 for (Value::use_iterator UI2
= UInst
->use_begin(),
790 UE2
= UInst
->use_end(); UI2
!= UE2
; ++UI2
) {
791 Instruction
*II
= dyn_cast
<Instruction
>(UI2
);
792 II
->replaceAllUsesWith(NewOr
);
793 DeadInsts
.insert(II
);
795 DeadInsts
.insert(UInst
);
798 // A zext of a signed variable known not to overflow is still safe.
799 if (UInst
&& isa
<ZExtInst
>(UInst
) && (NoUnsignedWrap
|| NoSignedWrap
)) {
800 Value
*TruncIndVar
= getZeroExtendedTruncVar(AR
, SE
, LargestType
, L
,
801 UInst
->getType(), Rewriter
);
802 UInst
->replaceAllUsesWith(TruncIndVar
);
803 DeadInsts
.insert(UInst
);
805 // If we have zext(i&constant), it's always safe to use the larger
806 // variable. This is not common but is a bottleneck in Openssl.
807 // (RHS doesn't have to be constant. There should be a better approach
808 // than bottom-up pattern matching for this...)
809 if (UInst
&& UInst
->getOpcode()==Instruction::And
&&
810 !UInst
->use_empty() &&
811 allUsesAreSameTyped(Instruction::ZExt
, UInst
) &&
812 isa
<ConstantInt
>(UInst
->getOperand(1))) {
813 uint64_t newBitSize
= LargestType
->getPrimitiveSizeInBits();
814 ConstantInt
* AndRHS
= dyn_cast
<ConstantInt
>(UInst
->getOperand(1));
815 ZExtInst
* oldZext
= dyn_cast
<ZExtInst
>(UInst
->use_begin());
816 uint64_t truncSize
= oldZext
->getType()->getPrimitiveSizeInBits();
817 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
,
818 L
, oldZext
->getType(), Rewriter
);
819 APInt APnewAndRHS
= APInt(AndRHS
->getValue()).zext(newBitSize
);
820 if (newBitSize
> truncSize
)
821 APnewAndRHS
= APnewAndRHS
.trunc(truncSize
);
822 ConstantInt
* newAndRHS
= ConstantInt::get(APnewAndRHS
);
824 BinaryOperator::CreateAnd(TruncIndVar
, newAndRHS
,
825 UInst
->getName()+".nozex", UInst
);
826 for (Value::use_iterator UI2
= UInst
->use_begin(),
827 UE2
= UInst
->use_end(); UI2
!= UE2
; ++UI2
) {
828 Instruction
*II
= dyn_cast
<Instruction
>(UI2
);
829 II
->replaceAllUsesWith(NewAnd
);
830 DeadInsts
.insert(II
);
832 DeadInsts
.insert(UInst
);
834 // If we have zext((i+constant)&constant), we can use the larger
835 // variable even if the add does overflow. This works whenever the
836 // constant being ANDed is the same size as i, which it presumably is.
837 // We don't need to restrict the expression being and'ed to i+const,
838 // but we have to promote everything in it, so it's convenient.
839 // zext((i | constant)&constant) is also valid and accepted here.
840 if (UInst
&& (UInst
->getOpcode()==Instruction::Add
||
841 UInst
->getOpcode()==Instruction::Or
) &&
842 UInst
->hasOneUse() &&
843 isa
<ConstantInt
>(UInst
->getOperand(1))) {
844 uint64_t newBitSize
= LargestType
->getPrimitiveSizeInBits();
845 ConstantInt
* AddRHS
= dyn_cast
<ConstantInt
>(UInst
->getOperand(1));
846 Instruction
*UInst2
= dyn_cast
<Instruction
>(UInst
->use_begin());
847 if (UInst2
&& UInst2
->getOpcode() == Instruction::And
&&
848 !UInst2
->use_empty() &&
849 allUsesAreSameTyped(Instruction::ZExt
, UInst2
) &&
850 isa
<ConstantInt
>(UInst2
->getOperand(1))) {
851 ZExtInst
* oldZext
= dyn_cast
<ZExtInst
>(UInst2
->use_begin());
852 uint64_t truncSize
= oldZext
->getType()->getPrimitiveSizeInBits();
853 Value
*TruncIndVar
= getSignExtendedTruncVar(AR
, SE
, LargestType
,
854 L
, oldZext
->getType(), Rewriter
);
855 ConstantInt
* AndRHS
= dyn_cast
<ConstantInt
>(UInst2
->getOperand(1));
856 APInt APnewAddRHS
= APInt(AddRHS
->getValue()).zext(newBitSize
);
857 if (newBitSize
> truncSize
)
858 APnewAddRHS
= APnewAddRHS
.trunc(truncSize
);
859 ConstantInt
* newAddRHS
= ConstantInt::get(APnewAddRHS
);
860 Value
*NewAdd
= ((UInst
->getOpcode()==Instruction::Add
) ?
861 BinaryOperator::CreateAdd(TruncIndVar
, newAddRHS
,
862 UInst
->getName()+".nozex", UInst2
) :
863 BinaryOperator::CreateOr(TruncIndVar
, newAddRHS
,
864 UInst
->getName()+".nozex", UInst2
));
865 APInt APcopy2
= APInt(AndRHS
->getValue());
866 ConstantInt
* newAndRHS
= ConstantInt::get(APcopy2
.zext(newBitSize
));
868 BinaryOperator::CreateAnd(NewAdd
, newAndRHS
,
869 UInst
->getName()+".nozex", UInst2
);
870 for (Value::use_iterator UI2
= UInst2
->use_begin(),
871 UE2
= UInst2
->use_end(); UI2
!= UE2
; ++UI2
) {
872 Instruction
*II
= dyn_cast
<Instruction
>(UI2
);
873 II
->replaceAllUsesWith(NewAnd
);
874 DeadInsts
.insert(II
);
876 DeadInsts
.insert(UInst
);
877 DeadInsts
.insert(UInst2
);
882 // Replace the old PHI Node with the inserted computation.
883 PN
->replaceAllUsesWith(NewVal
);
884 DeadInsts
.insert(PN
);
890 DeleteTriviallyDeadInstructions(DeadInsts
);
891 assert(L
->isLCSSAForm());
895 /// Return true if it is OK to use SIToFPInst for an inducation variable
896 /// with given inital and exit values.
897 static bool useSIToFPInst(ConstantFP
&InitV
, ConstantFP
&ExitV
,
898 uint64_t intIV
, uint64_t intEV
) {
900 if (InitV
.getValueAPF().isNegative() || ExitV
.getValueAPF().isNegative())
903 // If the iteration range can be handled by SIToFPInst then use it.
904 APInt Max
= APInt::getSignedMaxValue(32);
905 if (Max
.getZExtValue() > static_cast<uint64_t>(abs(intEV
- intIV
)))
911 /// convertToInt - Convert APF to an integer, if possible.
912 static bool convertToInt(const APFloat
&APF
, uint64_t *intVal
) {
914 bool isExact
= false;
915 if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble
)
917 if (APF
.convertToInteger(intVal
, 32, APF
.isNegative(),
918 APFloat::rmTowardZero
, &isExact
)
927 /// HandleFloatingPointIV - If the loop has floating induction variable
928 /// then insert corresponding integer induction variable if possible.
930 /// for(double i = 0; i < 10000; ++i)
932 /// is converted into
933 /// for(int i = 0; i < 10000; ++i)
936 void IndVarSimplify::HandleFloatingPointIV(Loop
*L
, PHINode
*PH
,
937 SmallPtrSet
<Instruction
*, 16> &DeadInsts
) {
939 unsigned IncomingEdge
= L
->contains(PH
->getIncomingBlock(0));
940 unsigned BackEdge
= IncomingEdge
^1;
942 // Check incoming value.
943 ConstantFP
*InitValue
= dyn_cast
<ConstantFP
>(PH
->getIncomingValue(IncomingEdge
));
944 if (!InitValue
) return;
945 uint64_t newInitValue
= Type::Int32Ty
->getPrimitiveSizeInBits();
946 if (!convertToInt(InitValue
->getValueAPF(), &newInitValue
))
949 // Check IV increment. Reject this PH if increement operation is not
950 // an add or increment value can not be represented by an integer.
951 BinaryOperator
*Incr
=
952 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(BackEdge
));
954 if (Incr
->getOpcode() != Instruction::Add
) return;
955 ConstantFP
*IncrValue
= NULL
;
956 unsigned IncrVIndex
= 1;
957 if (Incr
->getOperand(1) == PH
)
959 IncrValue
= dyn_cast
<ConstantFP
>(Incr
->getOperand(IncrVIndex
));
960 if (!IncrValue
) return;
961 uint64_t newIncrValue
= Type::Int32Ty
->getPrimitiveSizeInBits();
962 if (!convertToInt(IncrValue
->getValueAPF(), &newIncrValue
))
965 // Check Incr uses. One user is PH and the other users is exit condition used
966 // by the conditional terminator.
967 Value::use_iterator IncrUse
= Incr
->use_begin();
968 Instruction
*U1
= cast
<Instruction
>(IncrUse
++);
969 if (IncrUse
== Incr
->use_end()) return;
970 Instruction
*U2
= cast
<Instruction
>(IncrUse
++);
971 if (IncrUse
!= Incr
->use_end()) return;
973 // Find exit condition.
974 FCmpInst
*EC
= dyn_cast
<FCmpInst
>(U1
);
976 EC
= dyn_cast
<FCmpInst
>(U2
);
979 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(EC
->getParent()->getTerminator())) {
980 if (!BI
->isConditional()) return;
981 if (BI
->getCondition() != EC
) return;
984 // Find exit value. If exit value can not be represented as an interger then
985 // do not handle this floating point PH.
986 ConstantFP
*EV
= NULL
;
987 unsigned EVIndex
= 1;
988 if (EC
->getOperand(1) == Incr
)
990 EV
= dyn_cast
<ConstantFP
>(EC
->getOperand(EVIndex
));
992 uint64_t intEV
= Type::Int32Ty
->getPrimitiveSizeInBits();
993 if (!convertToInt(EV
->getValueAPF(), &intEV
))
996 // Find new predicate for integer comparison.
997 CmpInst::Predicate NewPred
= CmpInst::BAD_ICMP_PREDICATE
;
998 switch (EC
->getPredicate()) {
999 case CmpInst::FCMP_OEQ
:
1000 case CmpInst::FCMP_UEQ
:
1001 NewPred
= CmpInst::ICMP_EQ
;
1003 case CmpInst::FCMP_OGT
:
1004 case CmpInst::FCMP_UGT
:
1005 NewPred
= CmpInst::ICMP_UGT
;
1007 case CmpInst::FCMP_OGE
:
1008 case CmpInst::FCMP_UGE
:
1009 NewPred
= CmpInst::ICMP_UGE
;
1011 case CmpInst::FCMP_OLT
:
1012 case CmpInst::FCMP_ULT
:
1013 NewPred
= CmpInst::ICMP_ULT
;
1015 case CmpInst::FCMP_OLE
:
1016 case CmpInst::FCMP_ULE
:
1017 NewPred
= CmpInst::ICMP_ULE
;
1022 if (NewPred
== CmpInst::BAD_ICMP_PREDICATE
) return;
1024 // Insert new integer induction variable.
1025 PHINode
*NewPHI
= PHINode::Create(Type::Int32Ty
,
1026 PH
->getName()+".int", PH
);
1027 NewPHI
->addIncoming(ConstantInt::get(Type::Int32Ty
, newInitValue
),
1028 PH
->getIncomingBlock(IncomingEdge
));
1030 Value
*NewAdd
= BinaryOperator::CreateAdd(NewPHI
,
1031 ConstantInt::get(Type::Int32Ty
,
1033 Incr
->getName()+".int", Incr
);
1034 NewPHI
->addIncoming(NewAdd
, PH
->getIncomingBlock(BackEdge
));
1036 // The back edge is edge 1 of newPHI, whatever it may have been in the
1038 ConstantInt
*NewEV
= ConstantInt::get(Type::Int32Ty
, intEV
);
1039 Value
*LHS
= (EVIndex
== 1 ? NewPHI
->getIncomingValue(1) : NewEV
);
1040 Value
*RHS
= (EVIndex
== 1 ? NewEV
: NewPHI
->getIncomingValue(1));
1041 ICmpInst
*NewEC
= new ICmpInst(NewPred
, LHS
, RHS
, EC
->getNameStart(),
1042 EC
->getParent()->getTerminator());
1044 // Delete old, floating point, exit comparision instruction.
1045 EC
->replaceAllUsesWith(NewEC
);
1046 DeadInsts
.insert(EC
);
1048 // Delete old, floating point, increment instruction.
1049 Incr
->replaceAllUsesWith(UndefValue::get(Incr
->getType()));
1050 DeadInsts
.insert(Incr
);
1052 // Replace floating induction variable. Give SIToFPInst preference over
1053 // UIToFPInst because it is faster on platforms that are widely used.
1054 if (useSIToFPInst(*InitValue
, *EV
, newInitValue
, intEV
)) {
1055 SIToFPInst
*Conv
= new SIToFPInst(NewPHI
, PH
->getType(), "indvar.conv",
1056 PH
->getParent()->getFirstNonPHI());
1057 PH
->replaceAllUsesWith(Conv
);
1059 UIToFPInst
*Conv
= new UIToFPInst(NewPHI
, PH
->getType(), "indvar.conv",
1060 PH
->getParent()->getFirstNonPHI());
1061 PH
->replaceAllUsesWith(Conv
);
1063 DeadInsts
.insert(PH
);