Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / Transforms / Scalar / IndVarSimplify.cpp
blob3d9017d17e33bd142da988dfc7bfa84c0d22855f
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. Any pointer arithmetic recurrences are raised to use array subscripts.
22 // If the trip count of a loop is computable, this pass also makes the following
23 // changes:
24 // 1. The exit condition for the loop is canonicalized to compare the
25 // induction value against the exit value. This turns loops like:
26 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27 // 2. Any use outside of the loop of an expression derived from the indvar
28 // is changed to compute the derived value outside of the loop, eliminating
29 // the dependence on the exit value of the induction variable. If the only
30 // purpose of the loop is to compute the exit value of some derived
31 // expression, this transformation will make the loop dead.
33 // This transformation should be followed by strength reduction after all of the
34 // desired loop transformations have been performed. Additionally, on targets
35 // where it is profitable, the loop could be transformed to count down to zero
36 // (the "do loop" optimization).
38 //===----------------------------------------------------------------------===//
40 #define DEBUG_TYPE "indvars"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/BasicBlock.h"
43 #include "llvm/Constants.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/Type.h"
46 #include "llvm/Analysis/ScalarEvolutionExpander.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Support/CFG.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/GetElementPtrTypeIterator.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/SetVector.h"
57 #include "llvm/ADT/SmallPtrSet.h"
58 #include "llvm/ADT/Statistic.h"
59 using namespace llvm;
61 STATISTIC(NumRemoved , "Number of aux indvars removed");
62 STATISTIC(NumInserted, "Number of canonical indvars added");
63 STATISTIC(NumReplaced, "Number of exit values replaced");
64 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
66 namespace {
67 class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
68 LoopInfo *LI;
69 ScalarEvolution *SE;
70 bool Changed;
71 public:
73 static char ID; // Pass identification, replacement for typeid
74 IndVarSimplify() : LoopPass(&ID) {}
76 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
78 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.addRequired<ScalarEvolution>();
80 AU.addRequiredID(LCSSAID);
81 AU.addRequiredID(LoopSimplifyID);
82 AU.addRequired<LoopInfo>();
83 AU.addPreserved<ScalarEvolution>();
84 AU.addPreservedID(LoopSimplifyID);
85 AU.addPreservedID(LCSSAID);
86 AU.setPreservesCFG();
89 private:
91 void RewriteNonIntegerIVs(Loop *L);
93 void LinearFunctionTestReplace(Loop *L, SCEVHandle BackedgeTakenCount,
94 Value *IndVar,
95 BasicBlock *ExitingBlock,
96 BranchInst *BI,
97 SCEVExpander &Rewriter);
98 void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount);
100 void DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts);
102 void HandleFloatingPointIV(Loop *L, PHINode *PH,
103 SmallPtrSet<Instruction*, 16> &DeadInsts);
107 char IndVarSimplify::ID = 0;
108 static RegisterPass<IndVarSimplify>
109 X("indvars", "Canonicalize Induction Variables");
111 Pass *llvm::createIndVarSimplifyPass() {
112 return new IndVarSimplify();
115 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
116 /// specified set are trivially dead, delete them and see if this makes any of
117 /// their operands subsequently dead.
118 void IndVarSimplify::
119 DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
120 while (!Insts.empty()) {
121 Instruction *I = *Insts.begin();
122 Insts.erase(I);
123 if (isInstructionTriviallyDead(I)) {
124 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
125 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
126 Insts.insert(U);
127 DOUT << "INDVARS: Deleting: " << *I;
128 I->eraseFromParent();
129 Changed = true;
134 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
135 /// loop to be a canonical != comparison against the incremented loop induction
136 /// variable. This pass is able to rewrite the exit tests of any loop where the
137 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
138 /// is actually a much broader range than just linear tests.
139 void IndVarSimplify::LinearFunctionTestReplace(Loop *L,
140 SCEVHandle BackedgeTakenCount,
141 Value *IndVar,
142 BasicBlock *ExitingBlock,
143 BranchInst *BI,
144 SCEVExpander &Rewriter) {
145 // If the exiting block is not the same as the backedge block, we must compare
146 // against the preincremented value, otherwise we prefer to compare against
147 // the post-incremented value.
148 Value *CmpIndVar;
149 SCEVHandle RHS = BackedgeTakenCount;
150 if (ExitingBlock == L->getLoopLatch()) {
151 // Add one to the "backedge-taken" count to get the trip count.
152 // If this addition may overflow, we have to be more pessimistic and
153 // cast the induction variable before doing the add.
154 SCEVHandle Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
155 SCEVHandle N =
156 SE->getAddExpr(BackedgeTakenCount,
157 SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
158 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
159 SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
160 // No overflow. Cast the sum.
161 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
162 } else {
163 // Potential overflow. Cast before doing the add.
164 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
165 IndVar->getType());
166 RHS = SE->getAddExpr(RHS,
167 SE->getIntegerSCEV(1, IndVar->getType()));
170 // The BackedgeTaken expression contains the number of times that the
171 // backedge branches to the loop header. This is one less than the
172 // number of times the loop executes, so use the incremented indvar.
173 CmpIndVar = L->getCanonicalInductionVariableIncrement();
174 } else {
175 // We have to use the preincremented value...
176 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
177 IndVar->getType());
178 CmpIndVar = IndVar;
181 // Expand the code for the iteration count into the preheader of the loop.
182 BasicBlock *Preheader = L->getLoopPreheader();
183 Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(),
184 Preheader->getTerminator());
186 // Insert a new icmp_ne or icmp_eq instruction before the branch.
187 ICmpInst::Predicate Opcode;
188 if (L->contains(BI->getSuccessor(0)))
189 Opcode = ICmpInst::ICMP_NE;
190 else
191 Opcode = ICmpInst::ICMP_EQ;
193 DOUT << "INDVARS: Rewriting loop exit condition to:\n"
194 << " LHS:" << *CmpIndVar // includes a newline
195 << " op:\t"
196 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
197 << " RHS:\t" << *RHS << "\n";
199 Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
200 BI->setCondition(Cond);
201 ++NumLFTR;
202 Changed = true;
205 /// RewriteLoopExitValues - Check to see if this loop has a computable
206 /// loop-invariant execution count. If so, this means that we can compute the
207 /// final value of any expressions that are recurrent in the loop, and
208 /// substitute the exit values from the loop into any instructions outside of
209 /// the loop that use the final values of the current expressions.
210 void IndVarSimplify::RewriteLoopExitValues(Loop *L,
211 const SCEV *BackedgeTakenCount) {
212 BasicBlock *Preheader = L->getLoopPreheader();
214 // Scan all of the instructions in the loop, looking at those that have
215 // extra-loop users and which are recurrences.
216 SCEVExpander Rewriter(*SE, *LI);
218 // We insert the code into the preheader of the loop if the loop contains
219 // multiple exit blocks, or in the exit block if there is exactly one.
220 BasicBlock *BlockToInsertInto;
221 SmallVector<BasicBlock*, 8> ExitBlocks;
222 L->getUniqueExitBlocks(ExitBlocks);
223 if (ExitBlocks.size() == 1)
224 BlockToInsertInto = ExitBlocks[0];
225 else
226 BlockToInsertInto = Preheader;
227 BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
229 bool HasConstantItCount = isa<SCEVConstant>(BackedgeTakenCount);
231 SmallPtrSet<Instruction*, 16> InstructionsToDelete;
232 std::map<Instruction*, Value*> ExitValues;
234 // Find all values that are computed inside the loop, but used outside of it.
235 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
236 // the exit blocks of the loop to find them.
237 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
238 BasicBlock *ExitBB = ExitBlocks[i];
240 // If there are no PHI nodes in this exit block, then no values defined
241 // inside the loop are used on this path, skip it.
242 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
243 if (!PN) continue;
245 unsigned NumPreds = PN->getNumIncomingValues();
247 // Iterate over all of the PHI nodes.
248 BasicBlock::iterator BBI = ExitBB->begin();
249 while ((PN = dyn_cast<PHINode>(BBI++))) {
251 // Iterate over all of the values in all the PHI nodes.
252 for (unsigned i = 0; i != NumPreds; ++i) {
253 // If the value being merged in is not integer or is not defined
254 // in the loop, skip it.
255 Value *InVal = PN->getIncomingValue(i);
256 if (!isa<Instruction>(InVal) ||
257 // SCEV only supports integer expressions for now.
258 (!isa<IntegerType>(InVal->getType()) &&
259 !isa<PointerType>(InVal->getType())))
260 continue;
262 // If this pred is for a subloop, not L itself, skip it.
263 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
264 continue; // The Block is in a subloop, skip it.
266 // Check that InVal is defined in the loop.
267 Instruction *Inst = cast<Instruction>(InVal);
268 if (!L->contains(Inst->getParent()))
269 continue;
271 // We require that this value either have a computable evolution or that
272 // the loop have a constant iteration count. In the case where the loop
273 // has a constant iteration count, we can sometimes force evaluation of
274 // the exit value through brute force.
275 SCEVHandle SH = SE->getSCEV(Inst);
276 if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
277 continue; // Cannot get exit evolution for the loop value.
279 // Okay, this instruction has a user outside of the current loop
280 // and varies predictably *inside* the loop. Evaluate the value it
281 // contains when the loop exits, if possible.
282 SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
283 if (isa<SCEVCouldNotCompute>(ExitValue) ||
284 !ExitValue->isLoopInvariant(L))
285 continue;
287 Changed = true;
288 ++NumReplaced;
290 // See if we already computed the exit value for the instruction, if so,
291 // just reuse it.
292 Value *&ExitVal = ExitValues[Inst];
293 if (!ExitVal)
294 ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), InsertPt);
296 DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
297 << " LoopVal = " << *Inst << "\n";
299 PN->setIncomingValue(i, ExitVal);
301 // If this instruction is dead now, schedule it to be removed.
302 if (Inst->use_empty())
303 InstructionsToDelete.insert(Inst);
305 // See if this is a single-entry LCSSA PHI node. If so, we can (and
306 // have to) remove
307 // the PHI entirely. This is safe, because the NewVal won't be variant
308 // in the loop, so we don't need an LCSSA phi node anymore.
309 if (NumPreds == 1) {
310 PN->replaceAllUsesWith(ExitVal);
311 PN->eraseFromParent();
312 break;
318 DeleteTriviallyDeadInstructions(InstructionsToDelete);
321 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
322 // First step. Check to see if there are any floating-point recurrences.
323 // If there are, change them into integer recurrences, permitting analysis by
324 // the SCEV routines.
326 BasicBlock *Header = L->getHeader();
328 SmallPtrSet<Instruction*, 16> DeadInsts;
329 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
330 PHINode *PN = cast<PHINode>(I);
331 HandleFloatingPointIV(L, PN, DeadInsts);
334 // If the loop previously had floating-point IV, ScalarEvolution
335 // may not have been able to compute a trip count. Now that we've done some
336 // re-writing, the trip count may be computable.
337 if (Changed)
338 SE->forgetLoopBackedgeTakenCount(L);
340 if (!DeadInsts.empty())
341 DeleteTriviallyDeadInstructions(DeadInsts);
344 /// getEffectiveIndvarType - Determine the widest type that the
345 /// induction-variable PHINode Phi is cast to.
347 static const Type *getEffectiveIndvarType(const PHINode *Phi,
348 const ScalarEvolution *SE) {
349 const Type *Ty = Phi->getType();
351 for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end();
352 UI != UE; ++UI) {
353 const Type *CandidateType = NULL;
354 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
355 CandidateType = ZI->getDestTy();
356 else if (const SExtInst *SI = dyn_cast<SExtInst>(UI))
357 CandidateType = SI->getDestTy();
358 else if (const IntToPtrInst *IP = dyn_cast<IntToPtrInst>(UI))
359 CandidateType = IP->getDestTy();
360 else if (const PtrToIntInst *PI = dyn_cast<PtrToIntInst>(UI))
361 CandidateType = PI->getDestTy();
362 if (CandidateType &&
363 SE->isSCEVable(CandidateType) &&
364 SE->getTypeSizeInBits(CandidateType) > SE->getTypeSizeInBits(Ty))
365 Ty = CandidateType;
368 return Ty;
371 /// TestOrigIVForWrap - Analyze the original induction variable that
372 /// controls the loop's iteration to determine whether it would ever
373 /// undergo signed or unsigned overflow.
375 /// In addition to setting the NoSignedWrap and NoUnsignedWrap
376 /// variables to true when appropriate (they are not set to false here),
377 /// return the PHI for this induction variable. Also record the initial
378 /// and final values and the increment; these are not meaningful unless
379 /// either NoSignedWrap or NoUnsignedWrap is true, and are always meaningful
380 /// in that case, although the final value may be 0 indicating a nonconstant.
382 /// TODO: This duplicates a fair amount of ScalarEvolution logic.
383 /// Perhaps this can be merged with
384 /// ScalarEvolution::getBackedgeTakenCount
385 /// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
387 static const PHINode *TestOrigIVForWrap(const Loop *L,
388 const BranchInst *BI,
389 const Instruction *OrigCond,
390 const ScalarEvolution &SE,
391 bool &NoSignedWrap,
392 bool &NoUnsignedWrap,
393 const ConstantInt* &InitialVal,
394 const ConstantInt* &IncrVal,
395 const ConstantInt* &LimitVal) {
396 // Verify that the loop is sane and find the exit condition.
397 const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
398 if (!Cmp) return 0;
400 const Value *CmpLHS = Cmp->getOperand(0);
401 const Value *CmpRHS = Cmp->getOperand(1);
402 const BasicBlock *TrueBB = BI->getSuccessor(0);
403 const BasicBlock *FalseBB = BI->getSuccessor(1);
404 ICmpInst::Predicate Pred = Cmp->getPredicate();
406 // Canonicalize a constant to the RHS.
407 if (isa<ConstantInt>(CmpLHS)) {
408 Pred = ICmpInst::getSwappedPredicate(Pred);
409 std::swap(CmpLHS, CmpRHS);
411 // Canonicalize SLE to SLT.
412 if (Pred == ICmpInst::ICMP_SLE)
413 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
414 if (!CI->getValue().isMaxSignedValue()) {
415 CmpRHS = ConstantInt::get(CI->getValue() + 1);
416 Pred = ICmpInst::ICMP_SLT;
418 // Canonicalize SGT to SGE.
419 if (Pred == ICmpInst::ICMP_SGT)
420 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
421 if (!CI->getValue().isMaxSignedValue()) {
422 CmpRHS = ConstantInt::get(CI->getValue() + 1);
423 Pred = ICmpInst::ICMP_SGE;
425 // Canonicalize SGE to SLT.
426 if (Pred == ICmpInst::ICMP_SGE) {
427 std::swap(TrueBB, FalseBB);
428 Pred = ICmpInst::ICMP_SLT;
430 // Canonicalize ULE to ULT.
431 if (Pred == ICmpInst::ICMP_ULE)
432 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
433 if (!CI->getValue().isMaxValue()) {
434 CmpRHS = ConstantInt::get(CI->getValue() + 1);
435 Pred = ICmpInst::ICMP_ULT;
437 // Canonicalize UGT to UGE.
438 if (Pred == ICmpInst::ICMP_UGT)
439 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
440 if (!CI->getValue().isMaxValue()) {
441 CmpRHS = ConstantInt::get(CI->getValue() + 1);
442 Pred = ICmpInst::ICMP_UGE;
444 // Canonicalize UGE to ULT.
445 if (Pred == ICmpInst::ICMP_UGE) {
446 std::swap(TrueBB, FalseBB);
447 Pred = ICmpInst::ICMP_ULT;
449 // For now, analyze only LT loops for signed overflow.
450 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_ULT)
451 return 0;
453 bool isSigned = Pred == ICmpInst::ICMP_SLT;
455 // Get the increment instruction. Look past casts if we will
456 // be able to prove that the original induction variable doesn't
457 // undergo signed or unsigned overflow, respectively.
458 const Value *IncrInst = CmpLHS;
459 if (isSigned) {
460 if (const SExtInst *SI = dyn_cast<SExtInst>(CmpLHS)) {
461 if (!isa<ConstantInt>(CmpRHS) ||
462 !cast<ConstantInt>(CmpRHS)->getValue()
463 .isSignedIntN(SE.getTypeSizeInBits(IncrInst->getType())))
464 return 0;
465 IncrInst = SI->getOperand(0);
467 } else {
468 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(CmpLHS)) {
469 if (!isa<ConstantInt>(CmpRHS) ||
470 !cast<ConstantInt>(CmpRHS)->getValue()
471 .isIntN(SE.getTypeSizeInBits(IncrInst->getType())))
472 return 0;
473 IncrInst = ZI->getOperand(0);
477 // For now, only analyze induction variables that have simple increments.
478 const BinaryOperator *IncrOp = dyn_cast<BinaryOperator>(IncrInst);
479 if (!IncrOp || IncrOp->getOpcode() != Instruction::Add)
480 return 0;
481 IncrVal = dyn_cast<ConstantInt>(IncrOp->getOperand(1));
482 if (!IncrVal)
483 return 0;
485 // Make sure the PHI looks like a normal IV.
486 const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
487 if (!PN || PN->getNumIncomingValues() != 2)
488 return 0;
489 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
490 unsigned BackEdge = !IncomingEdge;
491 if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
492 PN->getIncomingValue(BackEdge) != IncrOp)
493 return 0;
494 if (!L->contains(TrueBB))
495 return 0;
497 // For now, only analyze loops with a constant start value, so that
498 // we can easily determine if the start value is not a maximum value
499 // which would wrap on the first iteration.
500 InitialVal = dyn_cast<ConstantInt>(PN->getIncomingValue(IncomingEdge));
501 if (!InitialVal)
502 return 0;
504 // The upper limit need not be a constant; we'll check later.
505 LimitVal = dyn_cast<ConstantInt>(CmpRHS);
507 // We detect the impossibility of wrapping in two cases, both of
508 // which require starting with a non-max value:
509 // - The IV counts up by one, and the loop iterates only while it remains
510 // less than a limiting value (any) in the same type.
511 // - The IV counts up by a positive increment other than 1, and the
512 // constant limiting value + the increment is less than the max value
513 // (computed as max-increment to avoid overflow)
514 if (isSigned && !InitialVal->getValue().isMaxSignedValue()) {
515 if (IncrVal->equalsInt(1))
516 NoSignedWrap = true; // LimitVal need not be constant
517 else if (LimitVal) {
518 uint64_t numBits = LimitVal->getValue().getBitWidth();
519 if (IncrVal->getValue().sgt(APInt::getNullValue(numBits)) &&
520 (APInt::getSignedMaxValue(numBits) - IncrVal->getValue())
521 .sgt(LimitVal->getValue()))
522 NoSignedWrap = true;
524 } else if (!isSigned && !InitialVal->getValue().isMaxValue()) {
525 if (IncrVal->equalsInt(1))
526 NoUnsignedWrap = true; // LimitVal need not be constant
527 else if (LimitVal) {
528 uint64_t numBits = LimitVal->getValue().getBitWidth();
529 if (IncrVal->getValue().ugt(APInt::getNullValue(numBits)) &&
530 (APInt::getMaxValue(numBits) - IncrVal->getValue())
531 .ugt(LimitVal->getValue()))
532 NoUnsignedWrap = true;
535 return PN;
538 static Value *getSignExtendedTruncVar(const SCEVAddRecExpr *AR,
539 ScalarEvolution *SE,
540 const Type *LargestType, Loop *L,
541 const Type *myType,
542 SCEVExpander &Rewriter) {
543 SCEVHandle ExtendedStart =
544 SE->getSignExtendExpr(AR->getStart(), LargestType);
545 SCEVHandle ExtendedStep =
546 SE->getSignExtendExpr(AR->getStepRecurrence(*SE), LargestType);
547 SCEVHandle ExtendedAddRec =
548 SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
549 if (LargestType != myType)
550 ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType);
551 return Rewriter.expandCodeFor(ExtendedAddRec, myType);
554 static Value *getZeroExtendedTruncVar(const SCEVAddRecExpr *AR,
555 ScalarEvolution *SE,
556 const Type *LargestType, Loop *L,
557 const Type *myType,
558 SCEVExpander &Rewriter) {
559 SCEVHandle ExtendedStart =
560 SE->getZeroExtendExpr(AR->getStart(), LargestType);
561 SCEVHandle ExtendedStep =
562 SE->getZeroExtendExpr(AR->getStepRecurrence(*SE), LargestType);
563 SCEVHandle ExtendedAddRec =
564 SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
565 if (LargestType != myType)
566 ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType);
567 return Rewriter.expandCodeFor(ExtendedAddRec, myType);
570 /// allUsesAreSameTyped - See whether all Uses of I are instructions
571 /// with the same Opcode and the same type.
572 static bool allUsesAreSameTyped(unsigned int Opcode, Instruction *I) {
573 const Type* firstType = NULL;
574 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
575 UI != UE; ++UI) {
576 Instruction *II = dyn_cast<Instruction>(*UI);
577 if (!II || II->getOpcode() != Opcode)
578 return false;
579 if (!firstType)
580 firstType = II->getType();
581 else if (firstType != II->getType())
582 return false;
584 return true;
587 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
588 LI = &getAnalysis<LoopInfo>();
589 SE = &getAnalysis<ScalarEvolution>();
590 Changed = false;
592 // If there are any floating-point recurrences, attempt to
593 // transform them to use integer recurrences.
594 RewriteNonIntegerIVs(L);
596 BasicBlock *Header = L->getHeader();
597 BasicBlock *ExitingBlock = L->getExitingBlock();
598 SmallPtrSet<Instruction*, 16> DeadInsts;
600 // Verify the input to the pass in already in LCSSA form.
601 assert(L->isLCSSAForm());
603 // Check to see if this loop has a computable loop-invariant execution count.
604 // If so, this means that we can compute the final value of any expressions
605 // that are recurrent in the loop, and substitute the exit values from the
606 // loop into any instructions outside of the loop that use the final values of
607 // the current expressions.
609 SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
610 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
611 RewriteLoopExitValues(L, BackedgeTakenCount);
613 // Next, analyze all of the induction variables in the loop, canonicalizing
614 // auxillary induction variables.
615 std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
617 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
618 PHINode *PN = cast<PHINode>(I);
619 if (SE->isSCEVable(PN->getType())) {
620 SCEVHandle SCEV = SE->getSCEV(PN);
621 // FIXME: It is an extremely bad idea to indvar substitute anything more
622 // complex than affine induction variables. Doing so will put expensive
623 // polynomial evaluations inside of the loop, and the str reduction pass
624 // currently can only reduce affine polynomials. For now just disable
625 // indvar subst on anything more complex than an affine addrec.
626 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
627 if (AR->getLoop() == L && AR->isAffine())
628 IndVars.push_back(std::make_pair(PN, SCEV));
632 // Compute the type of the largest recurrence expression, and collect
633 // the set of the types of the other recurrence expressions.
634 const Type *LargestType = 0;
635 SmallSetVector<const Type *, 4> SizesToInsert;
636 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
637 LargestType = BackedgeTakenCount->getType();
638 LargestType = SE->getEffectiveSCEVType(LargestType);
639 SizesToInsert.insert(LargestType);
641 for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
642 const PHINode *PN = IndVars[i].first;
643 const Type *PNTy = PN->getType();
644 PNTy = SE->getEffectiveSCEVType(PNTy);
645 SizesToInsert.insert(PNTy);
646 const Type *EffTy = getEffectiveIndvarType(PN, SE);
647 EffTy = SE->getEffectiveSCEVType(EffTy);
648 SizesToInsert.insert(EffTy);
649 if (!LargestType ||
650 SE->getTypeSizeInBits(EffTy) >
651 SE->getTypeSizeInBits(LargestType))
652 LargestType = EffTy;
655 // Create a rewriter object which we'll use to transform the code with.
656 SCEVExpander Rewriter(*SE, *LI);
658 // Now that we know the largest of of the induction variables in this loop,
659 // insert a canonical induction variable of the largest size.
660 Value *IndVar = 0;
661 if (!SizesToInsert.empty()) {
662 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
663 ++NumInserted;
664 Changed = true;
665 DOUT << "INDVARS: New CanIV: " << *IndVar;
668 // If we have a trip count expression, rewrite the loop's exit condition
669 // using it. We can currently only handle loops with a single exit.
670 bool NoSignedWrap = false;
671 bool NoUnsignedWrap = false;
672 const ConstantInt* InitialVal, * IncrVal, * LimitVal;
673 const PHINode *OrigControllingPHI = 0;
674 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock)
675 // Can't rewrite non-branch yet.
676 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
677 if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
678 // Determine if the OrigIV will ever undergo overflow.
679 OrigControllingPHI =
680 TestOrigIVForWrap(L, BI, OrigCond, *SE,
681 NoSignedWrap, NoUnsignedWrap,
682 InitialVal, IncrVal, LimitVal);
684 // We'll be replacing the original condition, so it'll be dead.
685 DeadInsts.insert(OrigCond);
688 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
689 ExitingBlock, BI, Rewriter);
692 // Now that we have a canonical induction variable, we can rewrite any
693 // recurrences in terms of the induction variable. Start with the auxillary
694 // induction variables, and recursively rewrite any of their uses.
695 BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
696 Rewriter.setInsertionPoint(InsertPt);
698 // If there were induction variables of other sizes, cast the primary
699 // induction variable to the right size for them, avoiding the need for the
700 // code evaluation methods to insert induction variables of different sizes.
701 for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) {
702 const Type *Ty = SizesToInsert[i];
703 if (Ty != LargestType) {
704 Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt);
705 Rewriter.addInsertedValue(New, SE->getSCEV(New));
706 DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": "
707 << *New << "\n";
711 // Rewrite all induction variables in terms of the canonical induction
712 // variable.
713 while (!IndVars.empty()) {
714 PHINode *PN = IndVars.back().first;
715 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(IndVars.back().second);
716 Value *NewVal = Rewriter.expandCodeFor(AR, PN->getType());
717 DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *PN
718 << " into = " << *NewVal << "\n";
719 NewVal->takeName(PN);
721 /// If the new canonical induction variable is wider than the original,
722 /// and the original has uses that are casts to wider types, see if the
723 /// truncate and extend can be omitted.
724 if (PN == OrigControllingPHI && PN->getType() != LargestType)
725 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
726 UI != UE; ++UI) {
727 Instruction *UInst = dyn_cast<Instruction>(*UI);
728 if (UInst && isa<SExtInst>(UInst) && NoSignedWrap) {
729 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L,
730 UInst->getType(), Rewriter);
731 UInst->replaceAllUsesWith(TruncIndVar);
732 DeadInsts.insert(UInst);
734 // See if we can figure out sext(i+constant) doesn't wrap, so we can
735 // use a larger add. This is common in subscripting.
736 if (UInst && UInst->getOpcode()==Instruction::Add &&
737 !UInst->use_empty() &&
738 allUsesAreSameTyped(Instruction::SExt, UInst) &&
739 isa<ConstantInt>(UInst->getOperand(1)) &&
740 NoSignedWrap && LimitVal) {
741 uint64_t oldBitSize = LimitVal->getValue().getBitWidth();
742 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
743 ConstantInt* AddRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
744 if (((APInt::getSignedMaxValue(oldBitSize) - IncrVal->getValue()) -
745 AddRHS->getValue()).sgt(LimitVal->getValue())) {
746 // We've determined this is (i+constant) and it won't overflow.
747 if (isa<SExtInst>(UInst->use_begin())) {
748 SExtInst* oldSext = dyn_cast<SExtInst>(UInst->use_begin());
749 uint64_t truncSize = oldSext->getType()->getPrimitiveSizeInBits();
750 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
751 L, oldSext->getType(), Rewriter);
752 APInt APnewAddRHS = APInt(AddRHS->getValue()).sext(newBitSize);
753 if (newBitSize > truncSize)
754 APnewAddRHS = APnewAddRHS.trunc(truncSize);
755 ConstantInt* newAddRHS =ConstantInt::get(APnewAddRHS);
756 Value *NewAdd =
757 BinaryOperator::CreateAdd(TruncIndVar, newAddRHS,
758 UInst->getName()+".nosex", UInst);
759 for (Value::use_iterator UI2 = UInst->use_begin(),
760 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
761 Instruction *II = dyn_cast<Instruction>(UI2);
762 II->replaceAllUsesWith(NewAdd);
763 DeadInsts.insert(II);
765 DeadInsts.insert(UInst);
769 // Try for sext(i | constant). This is safe as long as the
770 // high bit of the constant is not set.
771 if (UInst && UInst->getOpcode()==Instruction::Or &&
772 !UInst->use_empty() &&
773 allUsesAreSameTyped(Instruction::SExt, UInst) && NoSignedWrap &&
774 isa<ConstantInt>(UInst->getOperand(1))) {
775 ConstantInt* RHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
776 if (!RHS->getValue().isNegative()) {
777 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
778 SExtInst* oldSext = dyn_cast<SExtInst>(UInst->use_begin());
779 uint64_t truncSize = oldSext->getType()->getPrimitiveSizeInBits();
780 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
781 L, oldSext->getType(), Rewriter);
782 APInt APnewOrRHS = APInt(RHS->getValue()).sext(newBitSize);
783 if (newBitSize > truncSize)
784 APnewOrRHS = APnewOrRHS.trunc(truncSize);
785 ConstantInt* newOrRHS =ConstantInt::get(APnewOrRHS);
786 Value *NewOr =
787 BinaryOperator::CreateOr(TruncIndVar, newOrRHS,
788 UInst->getName()+".nosex", UInst);
789 for (Value::use_iterator UI2 = UInst->use_begin(),
790 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
791 Instruction *II = dyn_cast<Instruction>(UI2);
792 II->replaceAllUsesWith(NewOr);
793 DeadInsts.insert(II);
795 DeadInsts.insert(UInst);
798 // A zext of a signed variable known not to overflow is still safe.
799 if (UInst && isa<ZExtInst>(UInst) && (NoUnsignedWrap || NoSignedWrap)) {
800 Value *TruncIndVar = getZeroExtendedTruncVar(AR, SE, LargestType, L,
801 UInst->getType(), Rewriter);
802 UInst->replaceAllUsesWith(TruncIndVar);
803 DeadInsts.insert(UInst);
805 // If we have zext(i&constant), it's always safe to use the larger
806 // variable. This is not common but is a bottleneck in Openssl.
807 // (RHS doesn't have to be constant. There should be a better approach
808 // than bottom-up pattern matching for this...)
809 if (UInst && UInst->getOpcode()==Instruction::And &&
810 !UInst->use_empty() &&
811 allUsesAreSameTyped(Instruction::ZExt, UInst) &&
812 isa<ConstantInt>(UInst->getOperand(1))) {
813 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
814 ConstantInt* AndRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
815 ZExtInst* oldZext = dyn_cast<ZExtInst>(UInst->use_begin());
816 uint64_t truncSize = oldZext->getType()->getPrimitiveSizeInBits();
817 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
818 L, oldZext->getType(), Rewriter);
819 APInt APnewAndRHS = APInt(AndRHS->getValue()).zext(newBitSize);
820 if (newBitSize > truncSize)
821 APnewAndRHS = APnewAndRHS.trunc(truncSize);
822 ConstantInt* newAndRHS = ConstantInt::get(APnewAndRHS);
823 Value *NewAnd =
824 BinaryOperator::CreateAnd(TruncIndVar, newAndRHS,
825 UInst->getName()+".nozex", UInst);
826 for (Value::use_iterator UI2 = UInst->use_begin(),
827 UE2 = UInst->use_end(); UI2 != UE2; ++UI2) {
828 Instruction *II = dyn_cast<Instruction>(UI2);
829 II->replaceAllUsesWith(NewAnd);
830 DeadInsts.insert(II);
832 DeadInsts.insert(UInst);
834 // If we have zext((i+constant)&constant), we can use the larger
835 // variable even if the add does overflow. This works whenever the
836 // constant being ANDed is the same size as i, which it presumably is.
837 // We don't need to restrict the expression being and'ed to i+const,
838 // but we have to promote everything in it, so it's convenient.
839 // zext((i | constant)&constant) is also valid and accepted here.
840 if (UInst && (UInst->getOpcode()==Instruction::Add ||
841 UInst->getOpcode()==Instruction::Or) &&
842 UInst->hasOneUse() &&
843 isa<ConstantInt>(UInst->getOperand(1))) {
844 uint64_t newBitSize = LargestType->getPrimitiveSizeInBits();
845 ConstantInt* AddRHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
846 Instruction *UInst2 = dyn_cast<Instruction>(UInst->use_begin());
847 if (UInst2 && UInst2->getOpcode() == Instruction::And &&
848 !UInst2->use_empty() &&
849 allUsesAreSameTyped(Instruction::ZExt, UInst2) &&
850 isa<ConstantInt>(UInst2->getOperand(1))) {
851 ZExtInst* oldZext = dyn_cast<ZExtInst>(UInst2->use_begin());
852 uint64_t truncSize = oldZext->getType()->getPrimitiveSizeInBits();
853 Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType,
854 L, oldZext->getType(), Rewriter);
855 ConstantInt* AndRHS = dyn_cast<ConstantInt>(UInst2->getOperand(1));
856 APInt APnewAddRHS = APInt(AddRHS->getValue()).zext(newBitSize);
857 if (newBitSize > truncSize)
858 APnewAddRHS = APnewAddRHS.trunc(truncSize);
859 ConstantInt* newAddRHS = ConstantInt::get(APnewAddRHS);
860 Value *NewAdd = ((UInst->getOpcode()==Instruction::Add) ?
861 BinaryOperator::CreateAdd(TruncIndVar, newAddRHS,
862 UInst->getName()+".nozex", UInst2) :
863 BinaryOperator::CreateOr(TruncIndVar, newAddRHS,
864 UInst->getName()+".nozex", UInst2));
865 APInt APcopy2 = APInt(AndRHS->getValue());
866 ConstantInt* newAndRHS = ConstantInt::get(APcopy2.zext(newBitSize));
867 Value *NewAnd =
868 BinaryOperator::CreateAnd(NewAdd, newAndRHS,
869 UInst->getName()+".nozex", UInst2);
870 for (Value::use_iterator UI2 = UInst2->use_begin(),
871 UE2 = UInst2->use_end(); UI2 != UE2; ++UI2) {
872 Instruction *II = dyn_cast<Instruction>(UI2);
873 II->replaceAllUsesWith(NewAnd);
874 DeadInsts.insert(II);
876 DeadInsts.insert(UInst);
877 DeadInsts.insert(UInst2);
882 // Replace the old PHI Node with the inserted computation.
883 PN->replaceAllUsesWith(NewVal);
884 DeadInsts.insert(PN);
885 IndVars.pop_back();
886 ++NumRemoved;
887 Changed = true;
890 DeleteTriviallyDeadInstructions(DeadInsts);
891 assert(L->isLCSSAForm());
892 return Changed;
895 /// Return true if it is OK to use SIToFPInst for an inducation variable
896 /// with given inital and exit values.
897 static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
898 uint64_t intIV, uint64_t intEV) {
900 if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
901 return true;
903 // If the iteration range can be handled by SIToFPInst then use it.
904 APInt Max = APInt::getSignedMaxValue(32);
905 if (Max.getZExtValue() > static_cast<uint64_t>(abs(intEV - intIV)))
906 return true;
908 return false;
911 /// convertToInt - Convert APF to an integer, if possible.
912 static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
914 bool isExact = false;
915 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
916 return false;
917 if (APF.convertToInteger(intVal, 32, APF.isNegative(),
918 APFloat::rmTowardZero, &isExact)
919 != APFloat::opOK)
920 return false;
921 if (!isExact)
922 return false;
923 return true;
927 /// HandleFloatingPointIV - If the loop has floating induction variable
928 /// then insert corresponding integer induction variable if possible.
929 /// For example,
930 /// for(double i = 0; i < 10000; ++i)
931 /// bar(i)
932 /// is converted into
933 /// for(int i = 0; i < 10000; ++i)
934 /// bar((double)i);
936 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH,
937 SmallPtrSet<Instruction*, 16> &DeadInsts) {
939 unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
940 unsigned BackEdge = IncomingEdge^1;
942 // Check incoming value.
943 ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
944 if (!InitValue) return;
945 uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
946 if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
947 return;
949 // Check IV increment. Reject this PH if increement operation is not
950 // an add or increment value can not be represented by an integer.
951 BinaryOperator *Incr =
952 dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
953 if (!Incr) return;
954 if (Incr->getOpcode() != Instruction::Add) return;
955 ConstantFP *IncrValue = NULL;
956 unsigned IncrVIndex = 1;
957 if (Incr->getOperand(1) == PH)
958 IncrVIndex = 0;
959 IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
960 if (!IncrValue) return;
961 uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
962 if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
963 return;
965 // Check Incr uses. One user is PH and the other users is exit condition used
966 // by the conditional terminator.
967 Value::use_iterator IncrUse = Incr->use_begin();
968 Instruction *U1 = cast<Instruction>(IncrUse++);
969 if (IncrUse == Incr->use_end()) return;
970 Instruction *U2 = cast<Instruction>(IncrUse++);
971 if (IncrUse != Incr->use_end()) return;
973 // Find exit condition.
974 FCmpInst *EC = dyn_cast<FCmpInst>(U1);
975 if (!EC)
976 EC = dyn_cast<FCmpInst>(U2);
977 if (!EC) return;
979 if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
980 if (!BI->isConditional()) return;
981 if (BI->getCondition() != EC) return;
984 // Find exit value. If exit value can not be represented as an interger then
985 // do not handle this floating point PH.
986 ConstantFP *EV = NULL;
987 unsigned EVIndex = 1;
988 if (EC->getOperand(1) == Incr)
989 EVIndex = 0;
990 EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
991 if (!EV) return;
992 uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
993 if (!convertToInt(EV->getValueAPF(), &intEV))
994 return;
996 // Find new predicate for integer comparison.
997 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
998 switch (EC->getPredicate()) {
999 case CmpInst::FCMP_OEQ:
1000 case CmpInst::FCMP_UEQ:
1001 NewPred = CmpInst::ICMP_EQ;
1002 break;
1003 case CmpInst::FCMP_OGT:
1004 case CmpInst::FCMP_UGT:
1005 NewPred = CmpInst::ICMP_UGT;
1006 break;
1007 case CmpInst::FCMP_OGE:
1008 case CmpInst::FCMP_UGE:
1009 NewPred = CmpInst::ICMP_UGE;
1010 break;
1011 case CmpInst::FCMP_OLT:
1012 case CmpInst::FCMP_ULT:
1013 NewPred = CmpInst::ICMP_ULT;
1014 break;
1015 case CmpInst::FCMP_OLE:
1016 case CmpInst::FCMP_ULE:
1017 NewPred = CmpInst::ICMP_ULE;
1018 break;
1019 default:
1020 break;
1022 if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
1024 // Insert new integer induction variable.
1025 PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
1026 PH->getName()+".int", PH);
1027 NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
1028 PH->getIncomingBlock(IncomingEdge));
1030 Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
1031 ConstantInt::get(Type::Int32Ty,
1032 newIncrValue),
1033 Incr->getName()+".int", Incr);
1034 NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
1036 // The back edge is edge 1 of newPHI, whatever it may have been in the
1037 // original PHI.
1038 ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
1039 Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
1040 Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
1041 ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
1042 EC->getParent()->getTerminator());
1044 // Delete old, floating point, exit comparision instruction.
1045 EC->replaceAllUsesWith(NewEC);
1046 DeadInsts.insert(EC);
1048 // Delete old, floating point, increment instruction.
1049 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1050 DeadInsts.insert(Incr);
1052 // Replace floating induction variable. Give SIToFPInst preference over
1053 // UIToFPInst because it is faster on platforms that are widely used.
1054 if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
1055 SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
1056 PH->getParent()->getFirstNonPHI());
1057 PH->replaceAllUsesWith(Conv);
1058 } else {
1059 UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
1060 PH->getParent()->getFirstNonPHI());
1061 PH->replaceAllUsesWith(Conv);
1063 DeadInsts.insert(PH);