1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
14 // This pass combines things like:
20 // This is a simple worklist driven algorithm.
22 // This pass guarantees that the following canonicalizations are performed on
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
34 //===----------------------------------------------------------------------===//
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/IntrinsicInst.h"
39 #include "llvm/Pass.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/GlobalVariable.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Analysis/ValueTracking.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/ConstantRange.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/GetElementPtrTypeIterator.h"
51 #include "llvm/Support/InstVisitor.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/PatternMatch.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/SmallPtrSet.h"
58 #include "llvm/ADT/Statistic.h"
59 #include "llvm/ADT/STLExtras.h"
64 using namespace llvm::PatternMatch
;
66 STATISTIC(NumCombined
, "Number of insts combined");
67 STATISTIC(NumConstProp
, "Number of constant folds");
68 STATISTIC(NumDeadInst
, "Number of dead inst eliminated");
69 STATISTIC(NumDeadStore
, "Number of dead stores eliminated");
70 STATISTIC(NumSunkInst
, "Number of instructions sunk");
73 class VISIBILITY_HIDDEN InstCombiner
74 : public FunctionPass
,
75 public InstVisitor
<InstCombiner
, Instruction
*> {
76 // Worklist of all of the instructions that need to be simplified.
77 SmallVector
<Instruction
*, 256> Worklist
;
78 DenseMap
<Instruction
*, unsigned> WorklistMap
;
80 bool MustPreserveLCSSA
;
82 static char ID
; // Pass identification, replacement for typeid
83 InstCombiner() : FunctionPass(&ID
) {}
85 /// AddToWorkList - Add the specified instruction to the worklist if it
86 /// isn't already in it.
87 void AddToWorkList(Instruction
*I
) {
88 if (WorklistMap
.insert(std::make_pair(I
, Worklist
.size())).second
)
89 Worklist
.push_back(I
);
92 // RemoveFromWorkList - remove I from the worklist if it exists.
93 void RemoveFromWorkList(Instruction
*I
) {
94 DenseMap
<Instruction
*, unsigned>::iterator It
= WorklistMap
.find(I
);
95 if (It
== WorklistMap
.end()) return; // Not in worklist.
97 // Don't bother moving everything down, just null out the slot.
98 Worklist
[It
->second
] = 0;
100 WorklistMap
.erase(It
);
103 Instruction
*RemoveOneFromWorkList() {
104 Instruction
*I
= Worklist
.back();
106 WorklistMap
.erase(I
);
111 /// AddUsersToWorkList - When an instruction is simplified, add all users of
112 /// the instruction to the work lists because they might get more simplified
115 void AddUsersToWorkList(Value
&I
) {
116 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
118 AddToWorkList(cast
<Instruction
>(*UI
));
121 /// AddUsesToWorkList - When an instruction is simplified, add operands to
122 /// the work lists because they might get more simplified now.
124 void AddUsesToWorkList(Instruction
&I
) {
125 for (User::op_iterator i
= I
.op_begin(), e
= I
.op_end(); i
!= e
; ++i
)
126 if (Instruction
*Op
= dyn_cast
<Instruction
>(*i
))
130 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
131 /// dead. Add all of its operands to the worklist, turning them into
132 /// undef's to reduce the number of uses of those instructions.
134 /// Return the specified operand before it is turned into an undef.
136 Value
*AddSoonDeadInstToWorklist(Instruction
&I
, unsigned op
) {
137 Value
*R
= I
.getOperand(op
);
139 for (User::op_iterator i
= I
.op_begin(), e
= I
.op_end(); i
!= e
; ++i
)
140 if (Instruction
*Op
= dyn_cast
<Instruction
>(*i
)) {
142 // Set the operand to undef to drop the use.
143 *i
= UndefValue::get(Op
->getType());
150 virtual bool runOnFunction(Function
&F
);
152 bool DoOneIteration(Function
&F
, unsigned ItNum
);
154 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
155 AU
.addRequired
<TargetData
>();
156 AU
.addPreservedID(LCSSAID
);
157 AU
.setPreservesCFG();
160 TargetData
&getTargetData() const { return *TD
; }
162 // Visitation implementation - Implement instruction combining for different
163 // instruction types. The semantics are as follows:
165 // null - No change was made
166 // I - Change was made, I is still valid, I may be dead though
167 // otherwise - Change was made, replace I with returned instruction
169 Instruction
*visitAdd(BinaryOperator
&I
);
170 Instruction
*visitSub(BinaryOperator
&I
);
171 Instruction
*visitMul(BinaryOperator
&I
);
172 Instruction
*visitURem(BinaryOperator
&I
);
173 Instruction
*visitSRem(BinaryOperator
&I
);
174 Instruction
*visitFRem(BinaryOperator
&I
);
175 bool SimplifyDivRemOfSelect(BinaryOperator
&I
);
176 Instruction
*commonRemTransforms(BinaryOperator
&I
);
177 Instruction
*commonIRemTransforms(BinaryOperator
&I
);
178 Instruction
*commonDivTransforms(BinaryOperator
&I
);
179 Instruction
*commonIDivTransforms(BinaryOperator
&I
);
180 Instruction
*visitUDiv(BinaryOperator
&I
);
181 Instruction
*visitSDiv(BinaryOperator
&I
);
182 Instruction
*visitFDiv(BinaryOperator
&I
);
183 Instruction
*FoldAndOfICmps(Instruction
&I
, ICmpInst
*LHS
, ICmpInst
*RHS
);
184 Instruction
*visitAnd(BinaryOperator
&I
);
185 Instruction
*FoldOrOfICmps(Instruction
&I
, ICmpInst
*LHS
, ICmpInst
*RHS
);
186 Instruction
*FoldOrWithConstants(BinaryOperator
&I
, Value
*Op
,
187 Value
*A
, Value
*B
, Value
*C
);
188 Instruction
*visitOr (BinaryOperator
&I
);
189 Instruction
*visitXor(BinaryOperator
&I
);
190 Instruction
*visitShl(BinaryOperator
&I
);
191 Instruction
*visitAShr(BinaryOperator
&I
);
192 Instruction
*visitLShr(BinaryOperator
&I
);
193 Instruction
*commonShiftTransforms(BinaryOperator
&I
);
194 Instruction
*FoldFCmp_IntToFP_Cst(FCmpInst
&I
, Instruction
*LHSI
,
196 Instruction
*visitFCmpInst(FCmpInst
&I
);
197 Instruction
*visitICmpInst(ICmpInst
&I
);
198 Instruction
*visitICmpInstWithCastAndCast(ICmpInst
&ICI
);
199 Instruction
*visitICmpInstWithInstAndIntCst(ICmpInst
&ICI
,
202 Instruction
*FoldICmpDivCst(ICmpInst
&ICI
, BinaryOperator
*DivI
,
203 ConstantInt
*DivRHS
);
205 Instruction
*FoldGEPICmp(User
*GEPLHS
, Value
*RHS
,
206 ICmpInst::Predicate Cond
, Instruction
&I
);
207 Instruction
*FoldShiftByConstant(Value
*Op0
, ConstantInt
*Op1
,
209 Instruction
*commonCastTransforms(CastInst
&CI
);
210 Instruction
*commonIntCastTransforms(CastInst
&CI
);
211 Instruction
*commonPointerCastTransforms(CastInst
&CI
);
212 Instruction
*visitTrunc(TruncInst
&CI
);
213 Instruction
*visitZExt(ZExtInst
&CI
);
214 Instruction
*visitSExt(SExtInst
&CI
);
215 Instruction
*visitFPTrunc(FPTruncInst
&CI
);
216 Instruction
*visitFPExt(CastInst
&CI
);
217 Instruction
*visitFPToUI(FPToUIInst
&FI
);
218 Instruction
*visitFPToSI(FPToSIInst
&FI
);
219 Instruction
*visitUIToFP(CastInst
&CI
);
220 Instruction
*visitSIToFP(CastInst
&CI
);
221 Instruction
*visitPtrToInt(PtrToIntInst
&CI
);
222 Instruction
*visitIntToPtr(IntToPtrInst
&CI
);
223 Instruction
*visitBitCast(BitCastInst
&CI
);
224 Instruction
*FoldSelectOpOp(SelectInst
&SI
, Instruction
*TI
,
226 Instruction
*FoldSelectIntoOp(SelectInst
&SI
, Value
*, Value
*);
227 Instruction
*visitSelectInst(SelectInst
&SI
);
228 Instruction
*visitSelectInstWithICmp(SelectInst
&SI
, ICmpInst
*ICI
);
229 Instruction
*visitCallInst(CallInst
&CI
);
230 Instruction
*visitInvokeInst(InvokeInst
&II
);
231 Instruction
*visitPHINode(PHINode
&PN
);
232 Instruction
*visitGetElementPtrInst(GetElementPtrInst
&GEP
);
233 Instruction
*visitAllocationInst(AllocationInst
&AI
);
234 Instruction
*visitFreeInst(FreeInst
&FI
);
235 Instruction
*visitLoadInst(LoadInst
&LI
);
236 Instruction
*visitStoreInst(StoreInst
&SI
);
237 Instruction
*visitBranchInst(BranchInst
&BI
);
238 Instruction
*visitSwitchInst(SwitchInst
&SI
);
239 Instruction
*visitInsertElementInst(InsertElementInst
&IE
);
240 Instruction
*visitExtractElementInst(ExtractElementInst
&EI
);
241 Instruction
*visitShuffleVectorInst(ShuffleVectorInst
&SVI
);
242 Instruction
*visitExtractValueInst(ExtractValueInst
&EV
);
244 // visitInstruction - Specify what to return for unhandled instructions...
245 Instruction
*visitInstruction(Instruction
&I
) { return 0; }
248 Instruction
*visitCallSite(CallSite CS
);
249 bool transformConstExprCastCall(CallSite CS
);
250 Instruction
*transformCallThroughTrampoline(CallSite CS
);
251 Instruction
*transformZExtICmp(ICmpInst
*ICI
, Instruction
&CI
,
252 bool DoXform
= true);
253 bool WillNotOverflowSignedAdd(Value
*LHS
, Value
*RHS
);
254 DbgDeclareInst
*hasOneUsePlusDeclare(Value
*V
);
258 // InsertNewInstBefore - insert an instruction New before instruction Old
259 // in the program. Add the new instruction to the worklist.
261 Instruction
*InsertNewInstBefore(Instruction
*New
, Instruction
&Old
) {
262 assert(New
&& New
->getParent() == 0 &&
263 "New instruction already inserted into a basic block!");
264 BasicBlock
*BB
= Old
.getParent();
265 BB
->getInstList().insert(&Old
, New
); // Insert inst
270 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
271 /// This also adds the cast to the worklist. Finally, this returns the
273 Value
*InsertCastBefore(Instruction::CastOps opc
, Value
*V
, const Type
*Ty
,
275 if (V
->getType() == Ty
) return V
;
277 if (Constant
*CV
= dyn_cast
<Constant
>(V
))
278 return ConstantExpr::getCast(opc
, CV
, Ty
);
280 Instruction
*C
= CastInst::Create(opc
, V
, Ty
, V
->getName(), &Pos
);
285 Value
*InsertBitCastBefore(Value
*V
, const Type
*Ty
, Instruction
&Pos
) {
286 return InsertCastBefore(Instruction::BitCast
, V
, Ty
, Pos
);
290 // ReplaceInstUsesWith - This method is to be used when an instruction is
291 // found to be dead, replacable with another preexisting expression. Here
292 // we add all uses of I to the worklist, replace all uses of I with the new
293 // value, then return I, so that the inst combiner will know that I was
296 Instruction
*ReplaceInstUsesWith(Instruction
&I
, Value
*V
) {
297 AddUsersToWorkList(I
); // Add all modified instrs to worklist
299 I
.replaceAllUsesWith(V
);
302 // If we are replacing the instruction with itself, this must be in a
303 // segment of unreachable code, so just clobber the instruction.
304 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
309 // EraseInstFromFunction - When dealing with an instruction that has side
310 // effects or produces a void value, we can't rely on DCE to delete the
311 // instruction. Instead, visit methods should return the value returned by
313 Instruction
*EraseInstFromFunction(Instruction
&I
) {
314 assert(I
.use_empty() && "Cannot erase instruction that is used!");
315 AddUsesToWorkList(I
);
316 RemoveFromWorkList(&I
);
318 return 0; // Don't do anything with FI
321 void ComputeMaskedBits(Value
*V
, const APInt
&Mask
, APInt
&KnownZero
,
322 APInt
&KnownOne
, unsigned Depth
= 0) const {
323 return llvm::ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
, Depth
);
326 bool MaskedValueIsZero(Value
*V
, const APInt
&Mask
,
327 unsigned Depth
= 0) const {
328 return llvm::MaskedValueIsZero(V
, Mask
, TD
, Depth
);
330 unsigned ComputeNumSignBits(Value
*Op
, unsigned Depth
= 0) const {
331 return llvm::ComputeNumSignBits(Op
, TD
, Depth
);
336 /// SimplifyCommutative - This performs a few simplifications for
337 /// commutative operators.
338 bool SimplifyCommutative(BinaryOperator
&I
);
340 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
341 /// most-complex to least-complex order.
342 bool SimplifyCompare(CmpInst
&I
);
344 /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
345 /// based on the demanded bits.
346 Value
*SimplifyDemandedUseBits(Value
*V
, APInt DemandedMask
,
347 APInt
& KnownZero
, APInt
& KnownOne
,
349 bool SimplifyDemandedBits(Use
&U
, APInt DemandedMask
,
350 APInt
& KnownZero
, APInt
& KnownOne
,
353 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
354 /// SimplifyDemandedBits knows about. See if the instruction has any
355 /// properties that allow us to simplify its operands.
356 bool SimplifyDemandedInstructionBits(Instruction
&Inst
);
358 Value
*SimplifyDemandedVectorElts(Value
*V
, APInt DemandedElts
,
359 APInt
& UndefElts
, unsigned Depth
= 0);
361 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
362 // PHI node as operand #0, see if we can fold the instruction into the PHI
363 // (which is only possible if all operands to the PHI are constants).
364 Instruction
*FoldOpIntoPhi(Instruction
&I
);
366 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
367 // operator and they all are only used by the PHI, PHI together their
368 // inputs, and do the operation once, to the result of the PHI.
369 Instruction
*FoldPHIArgOpIntoPHI(PHINode
&PN
);
370 Instruction
*FoldPHIArgBinOpIntoPHI(PHINode
&PN
);
371 Instruction
*FoldPHIArgGEPIntoPHI(PHINode
&PN
);
374 Instruction
*OptAndOp(Instruction
*Op
, ConstantInt
*OpRHS
,
375 ConstantInt
*AndRHS
, BinaryOperator
&TheAnd
);
377 Value
*FoldLogicalPlusAnd(Value
*LHS
, Value
*RHS
, ConstantInt
*Mask
,
378 bool isSub
, Instruction
&I
);
379 Instruction
*InsertRangeTest(Value
*V
, Constant
*Lo
, Constant
*Hi
,
380 bool isSigned
, bool Inside
, Instruction
&IB
);
381 Instruction
*PromoteCastOfAllocation(BitCastInst
&CI
, AllocationInst
&AI
);
382 Instruction
*MatchBSwap(BinaryOperator
&I
);
383 bool SimplifyStoreAtEndOfBlock(StoreInst
&SI
);
384 Instruction
*SimplifyMemTransfer(MemIntrinsic
*MI
);
385 Instruction
*SimplifyMemSet(MemSetInst
*MI
);
388 Value
*EvaluateInDifferentType(Value
*V
, const Type
*Ty
, bool isSigned
);
390 bool CanEvaluateInDifferentType(Value
*V
, const IntegerType
*Ty
,
391 unsigned CastOpc
, int &NumCastsRemoved
);
392 unsigned GetOrEnforceKnownAlignment(Value
*V
,
393 unsigned PrefAlign
= 0);
398 char InstCombiner::ID
= 0;
399 static RegisterPass
<InstCombiner
>
400 X("instcombine", "Combine redundant instructions");
402 // getComplexity: Assign a complexity or rank value to LLVM Values...
403 // 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
404 static unsigned getComplexity(Value
*V
) {
405 if (isa
<Instruction
>(V
)) {
406 if (BinaryOperator::isNeg(V
) || BinaryOperator::isNot(V
))
410 if (isa
<Argument
>(V
)) return 3;
411 return isa
<Constant
>(V
) ? (isa
<UndefValue
>(V
) ? 0 : 1) : 2;
414 // isOnlyUse - Return true if this instruction will be deleted if we stop using
416 static bool isOnlyUse(Value
*V
) {
417 return V
->hasOneUse() || isa
<Constant
>(V
);
420 // getPromotedType - Return the specified type promoted as it would be to pass
421 // though a va_arg area...
422 static const Type
*getPromotedType(const Type
*Ty
) {
423 if (const IntegerType
* ITy
= dyn_cast
<IntegerType
>(Ty
)) {
424 if (ITy
->getBitWidth() < 32)
425 return Type::Int32Ty
;
430 /// getBitCastOperand - If the specified operand is a CastInst, a constant
431 /// expression bitcast, or a GetElementPtrInst with all zero indices, return the
432 /// operand value, otherwise return null.
433 static Value
*getBitCastOperand(Value
*V
) {
434 if (BitCastInst
*I
= dyn_cast
<BitCastInst
>(V
))
436 return I
->getOperand(0);
437 else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(V
)) {
438 // GetElementPtrInst?
439 if (GEP
->hasAllZeroIndices())
440 return GEP
->getOperand(0);
441 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
442 if (CE
->getOpcode() == Instruction::BitCast
)
443 // BitCast ConstantExp?
444 return CE
->getOperand(0);
445 else if (CE
->getOpcode() == Instruction::GetElementPtr
) {
446 // GetElementPtr ConstantExp?
447 for (User::op_iterator I
= CE
->op_begin() + 1, E
= CE
->op_end();
449 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
);
450 if (!CI
|| !CI
->isZero())
451 // Any non-zero indices? Not cast-like.
454 // All-zero indices? This is just like casting.
455 return CE
->getOperand(0);
461 /// This function is a wrapper around CastInst::isEliminableCastPair. It
462 /// simply extracts arguments and returns what that function returns.
463 static Instruction::CastOps
464 isEliminableCastPair(
465 const CastInst
*CI
, ///< The first cast instruction
466 unsigned opcode
, ///< The opcode of the second cast instruction
467 const Type
*DstTy
, ///< The target type for the second cast instruction
468 TargetData
*TD
///< The target data for pointer size
471 const Type
*SrcTy
= CI
->getOperand(0)->getType(); // A from above
472 const Type
*MidTy
= CI
->getType(); // B from above
474 // Get the opcodes of the two Cast instructions
475 Instruction::CastOps firstOp
= Instruction::CastOps(CI
->getOpcode());
476 Instruction::CastOps secondOp
= Instruction::CastOps(opcode
);
478 unsigned Res
= CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
,
479 DstTy
, TD
->getIntPtrType());
481 // We don't want to form an inttoptr or ptrtoint that converts to an integer
482 // type that differs from the pointer size.
483 if ((Res
== Instruction::IntToPtr
&& SrcTy
!= TD
->getIntPtrType()) ||
484 (Res
== Instruction::PtrToInt
&& DstTy
!= TD
->getIntPtrType()))
487 return Instruction::CastOps(Res
);
490 /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
491 /// in any code being generated. It does not require codegen if V is simple
492 /// enough or if the cast can be folded into other casts.
493 static bool ValueRequiresCast(Instruction::CastOps opcode
, const Value
*V
,
494 const Type
*Ty
, TargetData
*TD
) {
495 if (V
->getType() == Ty
|| isa
<Constant
>(V
)) return false;
497 // If this is another cast that can be eliminated, it isn't codegen either.
498 if (const CastInst
*CI
= dyn_cast
<CastInst
>(V
))
499 if (isEliminableCastPair(CI
, opcode
, Ty
, TD
))
504 // SimplifyCommutative - This performs a few simplifications for commutative
507 // 1. Order operands such that they are listed from right (least complex) to
508 // left (most complex). This puts constants before unary operators before
511 // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
512 // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
514 bool InstCombiner::SimplifyCommutative(BinaryOperator
&I
) {
515 bool Changed
= false;
516 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1)))
517 Changed
= !I
.swapOperands();
519 if (!I
.isAssociative()) return Changed
;
520 Instruction::BinaryOps Opcode
= I
.getOpcode();
521 if (BinaryOperator
*Op
= dyn_cast
<BinaryOperator
>(I
.getOperand(0)))
522 if (Op
->getOpcode() == Opcode
&& isa
<Constant
>(Op
->getOperand(1))) {
523 if (isa
<Constant
>(I
.getOperand(1))) {
524 Constant
*Folded
= ConstantExpr::get(I
.getOpcode(),
525 cast
<Constant
>(I
.getOperand(1)),
526 cast
<Constant
>(Op
->getOperand(1)));
527 I
.setOperand(0, Op
->getOperand(0));
528 I
.setOperand(1, Folded
);
530 } else if (BinaryOperator
*Op1
=dyn_cast
<BinaryOperator
>(I
.getOperand(1)))
531 if (Op1
->getOpcode() == Opcode
&& isa
<Constant
>(Op1
->getOperand(1)) &&
532 isOnlyUse(Op
) && isOnlyUse(Op1
)) {
533 Constant
*C1
= cast
<Constant
>(Op
->getOperand(1));
534 Constant
*C2
= cast
<Constant
>(Op1
->getOperand(1));
536 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
537 Constant
*Folded
= ConstantExpr::get(I
.getOpcode(), C1
, C2
);
538 Instruction
*New
= BinaryOperator::Create(Opcode
, Op
->getOperand(0),
542 I
.setOperand(0, New
);
543 I
.setOperand(1, Folded
);
550 /// SimplifyCompare - For a CmpInst this function just orders the operands
551 /// so that theyare listed from right (least complex) to left (most complex).
552 /// This puts constants before unary operators before binary operators.
553 bool InstCombiner::SimplifyCompare(CmpInst
&I
) {
554 if (getComplexity(I
.getOperand(0)) >= getComplexity(I
.getOperand(1)))
557 // Compare instructions are not associative so there's nothing else we can do.
561 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
562 // if the LHS is a constant zero (which is the 'negate' form).
564 static inline Value
*dyn_castNegVal(Value
*V
) {
565 if (BinaryOperator::isNeg(V
))
566 return BinaryOperator::getNegArgument(V
);
568 // Constants can be considered to be negated values if they can be folded.
569 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
570 return ConstantExpr::getNeg(C
);
572 if (ConstantVector
*C
= dyn_cast
<ConstantVector
>(V
))
573 if (C
->getType()->getElementType()->isInteger())
574 return ConstantExpr::getNeg(C
);
579 static inline Value
*dyn_castNotVal(Value
*V
) {
580 if (BinaryOperator::isNot(V
))
581 return BinaryOperator::getNotArgument(V
);
583 // Constants can be considered to be not'ed values...
584 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
585 return ConstantInt::get(~C
->getValue());
589 // dyn_castFoldableMul - If this value is a multiply that can be folded into
590 // other computations (because it has a constant operand), return the
591 // non-constant operand of the multiply, and set CST to point to the multiplier.
592 // Otherwise, return null.
594 static inline Value
*dyn_castFoldableMul(Value
*V
, ConstantInt
*&CST
) {
595 if (V
->hasOneUse() && V
->getType()->isInteger())
596 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
597 if (I
->getOpcode() == Instruction::Mul
)
598 if ((CST
= dyn_cast
<ConstantInt
>(I
->getOperand(1))))
599 return I
->getOperand(0);
600 if (I
->getOpcode() == Instruction::Shl
)
601 if ((CST
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))) {
602 // The multiplier is really 1 << CST.
603 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
604 uint32_t CSTVal
= CST
->getLimitedValue(BitWidth
);
605 CST
= ConstantInt::get(APInt(BitWidth
, 1).shl(CSTVal
));
606 return I
->getOperand(0);
612 /// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
613 /// expression, return it.
614 static User
*dyn_castGetElementPtr(Value
*V
) {
615 if (isa
<GetElementPtrInst
>(V
)) return cast
<User
>(V
);
616 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
617 if (CE
->getOpcode() == Instruction::GetElementPtr
)
618 return cast
<User
>(V
);
622 /// getOpcode - If this is an Instruction or a ConstantExpr, return the
623 /// opcode value. Otherwise return UserOp1.
624 static unsigned getOpcode(const Value
*V
) {
625 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
626 return I
->getOpcode();
627 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
628 return CE
->getOpcode();
629 // Use UserOp1 to mean there's no opcode.
630 return Instruction::UserOp1
;
633 /// AddOne - Add one to a ConstantInt
634 static ConstantInt
*AddOne(ConstantInt
*C
) {
635 APInt
Val(C
->getValue());
636 return ConstantInt::get(++Val
);
638 /// SubOne - Subtract one from a ConstantInt
639 static ConstantInt
*SubOne(ConstantInt
*C
) {
640 APInt
Val(C
->getValue());
641 return ConstantInt::get(--Val
);
643 /// Add - Add two ConstantInts together
644 static ConstantInt
*Add(ConstantInt
*C1
, ConstantInt
*C2
) {
645 return ConstantInt::get(C1
->getValue() + C2
->getValue());
647 /// And - Bitwise AND two ConstantInts together
648 static ConstantInt
*And(ConstantInt
*C1
, ConstantInt
*C2
) {
649 return ConstantInt::get(C1
->getValue() & C2
->getValue());
651 /// Subtract - Subtract one ConstantInt from another
652 static ConstantInt
*Subtract(ConstantInt
*C1
, ConstantInt
*C2
) {
653 return ConstantInt::get(C1
->getValue() - C2
->getValue());
655 /// Multiply - Multiply two ConstantInts together
656 static ConstantInt
*Multiply(ConstantInt
*C1
, ConstantInt
*C2
) {
657 return ConstantInt::get(C1
->getValue() * C2
->getValue());
659 /// MultiplyOverflows - True if the multiply can not be expressed in an int
661 static bool MultiplyOverflows(ConstantInt
*C1
, ConstantInt
*C2
, bool sign
) {
662 uint32_t W
= C1
->getBitWidth();
663 APInt LHSExt
= C1
->getValue(), RHSExt
= C2
->getValue();
672 APInt MulExt
= LHSExt
* RHSExt
;
675 APInt Min
= APInt::getSignedMinValue(W
).sext(W
* 2);
676 APInt Max
= APInt::getSignedMaxValue(W
).sext(W
* 2);
677 return MulExt
.slt(Min
) || MulExt
.sgt(Max
);
679 return MulExt
.ugt(APInt::getLowBitsSet(W
* 2, W
));
683 /// ShrinkDemandedConstant - Check to see if the specified operand of the
684 /// specified instruction is a constant integer. If so, check to see if there
685 /// are any bits set in the constant that are not demanded. If so, shrink the
686 /// constant and return true.
687 static bool ShrinkDemandedConstant(Instruction
*I
, unsigned OpNo
,
689 assert(I
&& "No instruction?");
690 assert(OpNo
< I
->getNumOperands() && "Operand index too large");
692 // If the operand is not a constant integer, nothing to do.
693 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(I
->getOperand(OpNo
));
694 if (!OpC
) return false;
696 // If there are no bits set that aren't demanded, nothing to do.
697 Demanded
.zextOrTrunc(OpC
->getValue().getBitWidth());
698 if ((~Demanded
& OpC
->getValue()) == 0)
701 // This instruction is producing bits that are not demanded. Shrink the RHS.
702 Demanded
&= OpC
->getValue();
703 I
->setOperand(OpNo
, ConstantInt::get(Demanded
));
707 // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
708 // set of known zero and one bits, compute the maximum and minimum values that
709 // could have the specified known zero and known one bits, returning them in
711 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt
& KnownZero
,
712 const APInt
& KnownOne
,
713 APInt
& Min
, APInt
& Max
) {
714 assert(KnownZero
.getBitWidth() == KnownOne
.getBitWidth() &&
715 KnownZero
.getBitWidth() == Min
.getBitWidth() &&
716 KnownZero
.getBitWidth() == Max
.getBitWidth() &&
717 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
718 APInt UnknownBits
= ~(KnownZero
|KnownOne
);
720 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
721 // bit if it is unknown.
723 Max
= KnownOne
|UnknownBits
;
725 if (UnknownBits
.isNegative()) { // Sign bit is unknown
726 Min
.set(Min
.getBitWidth()-1);
727 Max
.clear(Max
.getBitWidth()-1);
731 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
732 // a set of known zero and one bits, compute the maximum and minimum values that
733 // could have the specified known zero and known one bits, returning them in
735 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt
&KnownZero
,
736 const APInt
&KnownOne
,
737 APInt
&Min
, APInt
&Max
) {
738 assert(KnownZero
.getBitWidth() == KnownOne
.getBitWidth() &&
739 KnownZero
.getBitWidth() == Min
.getBitWidth() &&
740 KnownZero
.getBitWidth() == Max
.getBitWidth() &&
741 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
742 APInt UnknownBits
= ~(KnownZero
|KnownOne
);
744 // The minimum value is when the unknown bits are all zeros.
746 // The maximum value is when the unknown bits are all ones.
747 Max
= KnownOne
|UnknownBits
;
750 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
751 /// SimplifyDemandedBits knows about. See if the instruction has any
752 /// properties that allow us to simplify its operands.
753 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction
&Inst
) {
754 unsigned BitWidth
= cast
<IntegerType
>(Inst
.getType())->getBitWidth();
755 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
756 APInt
DemandedMask(APInt::getAllOnesValue(BitWidth
));
758 Value
*V
= SimplifyDemandedUseBits(&Inst
, DemandedMask
,
759 KnownZero
, KnownOne
, 0);
760 if (V
== 0) return false;
761 if (V
== &Inst
) return true;
762 ReplaceInstUsesWith(Inst
, V
);
766 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
767 /// specified instruction operand if possible, updating it in place. It returns
768 /// true if it made any change and false otherwise.
769 bool InstCombiner::SimplifyDemandedBits(Use
&U
, APInt DemandedMask
,
770 APInt
&KnownZero
, APInt
&KnownOne
,
772 Value
*NewVal
= SimplifyDemandedUseBits(U
.get(), DemandedMask
,
773 KnownZero
, KnownOne
, Depth
);
774 if (NewVal
== 0) return false;
780 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
781 /// value based on the demanded bits. When this function is called, it is known
782 /// that only the bits set in DemandedMask of the result of V are ever used
783 /// downstream. Consequently, depending on the mask and V, it may be possible
784 /// to replace V with a constant or one of its operands. In such cases, this
785 /// function does the replacement and returns true. In all other cases, it
786 /// returns false after analyzing the expression and setting KnownOne and known
787 /// to be one in the expression. KnownZero contains all the bits that are known
788 /// to be zero in the expression. These are provided to potentially allow the
789 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
790 /// the expression. KnownOne and KnownZero always follow the invariant that
791 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
792 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
793 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
794 /// and KnownOne must all be the same.
796 /// This returns null if it did not change anything and it permits no
797 /// simplification. This returns V itself if it did some simplification of V's
798 /// operands based on the information about what bits are demanded. This returns
799 /// some other non-null value if it found out that V is equal to another value
800 /// in the context where the specified bits are demanded, but not for all users.
801 Value
*InstCombiner::SimplifyDemandedUseBits(Value
*V
, APInt DemandedMask
,
802 APInt
&KnownZero
, APInt
&KnownOne
,
804 assert(V
!= 0 && "Null pointer of Value???");
805 assert(Depth
<= 6 && "Limit Search Depth");
806 uint32_t BitWidth
= DemandedMask
.getBitWidth();
807 const Type
*VTy
= V
->getType();
808 assert((TD
|| !isa
<PointerType
>(VTy
)) &&
809 "SimplifyDemandedBits needs to know bit widths!");
810 assert((!TD
|| TD
->getTypeSizeInBits(VTy
) == BitWidth
) &&
811 (!isa
<IntegerType
>(VTy
) ||
812 VTy
->getPrimitiveSizeInBits() == BitWidth
) &&
813 KnownZero
.getBitWidth() == BitWidth
&&
814 KnownOne
.getBitWidth() == BitWidth
&&
815 "Value *V, DemandedMask, KnownZero and KnownOne \
816 must have same BitWidth");
817 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
818 // We know all of the bits for a constant!
819 KnownOne
= CI
->getValue() & DemandedMask
;
820 KnownZero
= ~KnownOne
& DemandedMask
;
823 if (isa
<ConstantPointerNull
>(V
)) {
824 // We know all of the bits for a constant!
826 KnownZero
= DemandedMask
;
832 if (DemandedMask
== 0) { // Not demanding any bits from V.
833 if (isa
<UndefValue
>(V
))
835 return UndefValue::get(VTy
);
838 if (Depth
== 6) // Limit search depth.
841 APInt
LHSKnownZero(BitWidth
, 0), LHSKnownOne(BitWidth
, 0);
842 APInt
&RHSKnownZero
= KnownZero
, &RHSKnownOne
= KnownOne
;
844 Instruction
*I
= dyn_cast
<Instruction
>(V
);
846 ComputeMaskedBits(V
, DemandedMask
, RHSKnownZero
, RHSKnownOne
, Depth
);
847 return 0; // Only analyze instructions.
850 // If there are multiple uses of this value and we aren't at the root, then
851 // we can't do any simplifications of the operands, because DemandedMask
852 // only reflects the bits demanded by *one* of the users.
853 if (Depth
!= 0 && !I
->hasOneUse()) {
854 // Despite the fact that we can't simplify this instruction in all User's
855 // context, we can at least compute the knownzero/knownone bits, and we can
856 // do simplifications that apply to *just* the one user if we know that
857 // this instruction has a simpler value in that context.
858 if (I
->getOpcode() == Instruction::And
) {
859 // If either the LHS or the RHS are Zero, the result is zero.
860 ComputeMaskedBits(I
->getOperand(1), DemandedMask
,
861 RHSKnownZero
, RHSKnownOne
, Depth
+1);
862 ComputeMaskedBits(I
->getOperand(0), DemandedMask
& ~RHSKnownZero
,
863 LHSKnownZero
, LHSKnownOne
, Depth
+1);
865 // If all of the demanded bits are known 1 on one side, return the other.
866 // These bits cannot contribute to the result of the 'and' in this
868 if ((DemandedMask
& ~LHSKnownZero
& RHSKnownOne
) ==
869 (DemandedMask
& ~LHSKnownZero
))
870 return I
->getOperand(0);
871 if ((DemandedMask
& ~RHSKnownZero
& LHSKnownOne
) ==
872 (DemandedMask
& ~RHSKnownZero
))
873 return I
->getOperand(1);
875 // If all of the demanded bits in the inputs are known zeros, return zero.
876 if ((DemandedMask
& (RHSKnownZero
|LHSKnownZero
)) == DemandedMask
)
877 return Constant::getNullValue(VTy
);
879 } else if (I
->getOpcode() == Instruction::Or
) {
880 // We can simplify (X|Y) -> X or Y in the user's context if we know that
881 // only bits from X or Y are demanded.
883 // If either the LHS or the RHS are One, the result is One.
884 ComputeMaskedBits(I
->getOperand(1), DemandedMask
,
885 RHSKnownZero
, RHSKnownOne
, Depth
+1);
886 ComputeMaskedBits(I
->getOperand(0), DemandedMask
& ~RHSKnownOne
,
887 LHSKnownZero
, LHSKnownOne
, Depth
+1);
889 // If all of the demanded bits are known zero on one side, return the
890 // other. These bits cannot contribute to the result of the 'or' in this
892 if ((DemandedMask
& ~LHSKnownOne
& RHSKnownZero
) ==
893 (DemandedMask
& ~LHSKnownOne
))
894 return I
->getOperand(0);
895 if ((DemandedMask
& ~RHSKnownOne
& LHSKnownZero
) ==
896 (DemandedMask
& ~RHSKnownOne
))
897 return I
->getOperand(1);
899 // If all of the potentially set bits on one side are known to be set on
900 // the other side, just use the 'other' side.
901 if ((DemandedMask
& (~RHSKnownZero
) & LHSKnownOne
) ==
902 (DemandedMask
& (~RHSKnownZero
)))
903 return I
->getOperand(0);
904 if ((DemandedMask
& (~LHSKnownZero
) & RHSKnownOne
) ==
905 (DemandedMask
& (~LHSKnownZero
)))
906 return I
->getOperand(1);
909 // Compute the KnownZero/KnownOne bits to simplify things downstream.
910 ComputeMaskedBits(I
, DemandedMask
, KnownZero
, KnownOne
, Depth
);
914 // If this is the root being simplified, allow it to have multiple uses,
915 // just set the DemandedMask to all bits so that we can try to simplify the
916 // operands. This allows visitTruncInst (for example) to simplify the
917 // operand of a trunc without duplicating all the logic below.
918 if (Depth
== 0 && !V
->hasOneUse())
919 DemandedMask
= APInt::getAllOnesValue(BitWidth
);
921 switch (I
->getOpcode()) {
923 ComputeMaskedBits(I
, DemandedMask
, RHSKnownZero
, RHSKnownOne
, Depth
);
925 case Instruction::And
:
926 // If either the LHS or the RHS are Zero, the result is zero.
927 if (SimplifyDemandedBits(I
->getOperandUse(1), DemandedMask
,
928 RHSKnownZero
, RHSKnownOne
, Depth
+1) ||
929 SimplifyDemandedBits(I
->getOperandUse(0), DemandedMask
& ~RHSKnownZero
,
930 LHSKnownZero
, LHSKnownOne
, Depth
+1))
932 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
933 assert(!(LHSKnownZero
& LHSKnownOne
) && "Bits known to be one AND zero?");
935 // If all of the demanded bits are known 1 on one side, return the other.
936 // These bits cannot contribute to the result of the 'and'.
937 if ((DemandedMask
& ~LHSKnownZero
& RHSKnownOne
) ==
938 (DemandedMask
& ~LHSKnownZero
))
939 return I
->getOperand(0);
940 if ((DemandedMask
& ~RHSKnownZero
& LHSKnownOne
) ==
941 (DemandedMask
& ~RHSKnownZero
))
942 return I
->getOperand(1);
944 // If all of the demanded bits in the inputs are known zeros, return zero.
945 if ((DemandedMask
& (RHSKnownZero
|LHSKnownZero
)) == DemandedMask
)
946 return Constant::getNullValue(VTy
);
948 // If the RHS is a constant, see if we can simplify it.
949 if (ShrinkDemandedConstant(I
, 1, DemandedMask
& ~LHSKnownZero
))
952 // Output known-1 bits are only known if set in both the LHS & RHS.
953 RHSKnownOne
&= LHSKnownOne
;
954 // Output known-0 are known to be clear if zero in either the LHS | RHS.
955 RHSKnownZero
|= LHSKnownZero
;
957 case Instruction::Or
:
958 // If either the LHS or the RHS are One, the result is One.
959 if (SimplifyDemandedBits(I
->getOperandUse(1), DemandedMask
,
960 RHSKnownZero
, RHSKnownOne
, Depth
+1) ||
961 SimplifyDemandedBits(I
->getOperandUse(0), DemandedMask
& ~RHSKnownOne
,
962 LHSKnownZero
, LHSKnownOne
, Depth
+1))
964 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
965 assert(!(LHSKnownZero
& LHSKnownOne
) && "Bits known to be one AND zero?");
967 // If all of the demanded bits are known zero on one side, return the other.
968 // These bits cannot contribute to the result of the 'or'.
969 if ((DemandedMask
& ~LHSKnownOne
& RHSKnownZero
) ==
970 (DemandedMask
& ~LHSKnownOne
))
971 return I
->getOperand(0);
972 if ((DemandedMask
& ~RHSKnownOne
& LHSKnownZero
) ==
973 (DemandedMask
& ~RHSKnownOne
))
974 return I
->getOperand(1);
976 // If all of the potentially set bits on one side are known to be set on
977 // the other side, just use the 'other' side.
978 if ((DemandedMask
& (~RHSKnownZero
) & LHSKnownOne
) ==
979 (DemandedMask
& (~RHSKnownZero
)))
980 return I
->getOperand(0);
981 if ((DemandedMask
& (~LHSKnownZero
) & RHSKnownOne
) ==
982 (DemandedMask
& (~LHSKnownZero
)))
983 return I
->getOperand(1);
985 // If the RHS is a constant, see if we can simplify it.
986 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
989 // Output known-0 bits are only known if clear in both the LHS & RHS.
990 RHSKnownZero
&= LHSKnownZero
;
991 // Output known-1 are known to be set if set in either the LHS | RHS.
992 RHSKnownOne
|= LHSKnownOne
;
994 case Instruction::Xor
: {
995 if (SimplifyDemandedBits(I
->getOperandUse(1), DemandedMask
,
996 RHSKnownZero
, RHSKnownOne
, Depth
+1) ||
997 SimplifyDemandedBits(I
->getOperandUse(0), DemandedMask
,
998 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1000 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1001 assert(!(LHSKnownZero
& LHSKnownOne
) && "Bits known to be one AND zero?");
1003 // If all of the demanded bits are known zero on one side, return the other.
1004 // These bits cannot contribute to the result of the 'xor'.
1005 if ((DemandedMask
& RHSKnownZero
) == DemandedMask
)
1006 return I
->getOperand(0);
1007 if ((DemandedMask
& LHSKnownZero
) == DemandedMask
)
1008 return I
->getOperand(1);
1010 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1011 APInt KnownZeroOut
= (RHSKnownZero
& LHSKnownZero
) |
1012 (RHSKnownOne
& LHSKnownOne
);
1013 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1014 APInt KnownOneOut
= (RHSKnownZero
& LHSKnownOne
) |
1015 (RHSKnownOne
& LHSKnownZero
);
1017 // If all of the demanded bits are known to be zero on one side or the
1018 // other, turn this into an *inclusive* or.
1019 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1020 if ((DemandedMask
& ~RHSKnownZero
& ~LHSKnownZero
) == 0) {
1022 BinaryOperator::CreateOr(I
->getOperand(0), I
->getOperand(1),
1024 return InsertNewInstBefore(Or
, *I
);
1027 // If all of the demanded bits on one side are known, and all of the set
1028 // bits on that side are also known to be set on the other side, turn this
1029 // into an AND, as we know the bits will be cleared.
1030 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1031 if ((DemandedMask
& (RHSKnownZero
|RHSKnownOne
)) == DemandedMask
) {
1033 if ((RHSKnownOne
& LHSKnownOne
) == RHSKnownOne
) {
1034 Constant
*AndC
= ConstantInt::get(~RHSKnownOne
& DemandedMask
);
1036 BinaryOperator::CreateAnd(I
->getOperand(0), AndC
, "tmp");
1037 return InsertNewInstBefore(And
, *I
);
1041 // If the RHS is a constant, see if we can simplify it.
1042 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1043 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
1046 RHSKnownZero
= KnownZeroOut
;
1047 RHSKnownOne
= KnownOneOut
;
1050 case Instruction::Select
:
1051 if (SimplifyDemandedBits(I
->getOperandUse(2), DemandedMask
,
1052 RHSKnownZero
, RHSKnownOne
, Depth
+1) ||
1053 SimplifyDemandedBits(I
->getOperandUse(1), DemandedMask
,
1054 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1056 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1057 assert(!(LHSKnownZero
& LHSKnownOne
) && "Bits known to be one AND zero?");
1059 // If the operands are constants, see if we can simplify them.
1060 if (ShrinkDemandedConstant(I
, 1, DemandedMask
) ||
1061 ShrinkDemandedConstant(I
, 2, DemandedMask
))
1064 // Only known if known in both the LHS and RHS.
1065 RHSKnownOne
&= LHSKnownOne
;
1066 RHSKnownZero
&= LHSKnownZero
;
1068 case Instruction::Trunc
: {
1069 unsigned truncBf
= I
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1070 DemandedMask
.zext(truncBf
);
1071 RHSKnownZero
.zext(truncBf
);
1072 RHSKnownOne
.zext(truncBf
);
1073 if (SimplifyDemandedBits(I
->getOperandUse(0), DemandedMask
,
1074 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1076 DemandedMask
.trunc(BitWidth
);
1077 RHSKnownZero
.trunc(BitWidth
);
1078 RHSKnownOne
.trunc(BitWidth
);
1079 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1082 case Instruction::BitCast
:
1083 if (!I
->getOperand(0)->getType()->isInteger())
1084 return false; // vector->int or fp->int?
1085 if (SimplifyDemandedBits(I
->getOperandUse(0), DemandedMask
,
1086 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1088 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1090 case Instruction::ZExt
: {
1091 // Compute the bits in the result that are not present in the input.
1092 unsigned SrcBitWidth
=I
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1094 DemandedMask
.trunc(SrcBitWidth
);
1095 RHSKnownZero
.trunc(SrcBitWidth
);
1096 RHSKnownOne
.trunc(SrcBitWidth
);
1097 if (SimplifyDemandedBits(I
->getOperandUse(0), DemandedMask
,
1098 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1100 DemandedMask
.zext(BitWidth
);
1101 RHSKnownZero
.zext(BitWidth
);
1102 RHSKnownOne
.zext(BitWidth
);
1103 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1104 // The top bits are known to be zero.
1105 RHSKnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
);
1108 case Instruction::SExt
: {
1109 // Compute the bits in the result that are not present in the input.
1110 unsigned SrcBitWidth
=I
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1112 APInt InputDemandedBits
= DemandedMask
&
1113 APInt::getLowBitsSet(BitWidth
, SrcBitWidth
);
1115 APInt
NewBits(APInt::getHighBitsSet(BitWidth
, BitWidth
- SrcBitWidth
));
1116 // If any of the sign extended bits are demanded, we know that the sign
1118 if ((NewBits
& DemandedMask
) != 0)
1119 InputDemandedBits
.set(SrcBitWidth
-1);
1121 InputDemandedBits
.trunc(SrcBitWidth
);
1122 RHSKnownZero
.trunc(SrcBitWidth
);
1123 RHSKnownOne
.trunc(SrcBitWidth
);
1124 if (SimplifyDemandedBits(I
->getOperandUse(0), InputDemandedBits
,
1125 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1127 InputDemandedBits
.zext(BitWidth
);
1128 RHSKnownZero
.zext(BitWidth
);
1129 RHSKnownOne
.zext(BitWidth
);
1130 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1132 // If the sign bit of the input is known set or clear, then we know the
1133 // top bits of the result.
1135 // If the input sign bit is known zero, or if the NewBits are not demanded
1136 // convert this into a zero extension.
1137 if (RHSKnownZero
[SrcBitWidth
-1] || (NewBits
& ~DemandedMask
) == NewBits
) {
1138 // Convert to ZExt cast
1139 CastInst
*NewCast
= new ZExtInst(I
->getOperand(0), VTy
, I
->getName());
1140 return InsertNewInstBefore(NewCast
, *I
);
1141 } else if (RHSKnownOne
[SrcBitWidth
-1]) { // Input sign bit known set
1142 RHSKnownOne
|= NewBits
;
1146 case Instruction::Add
: {
1147 // Figure out what the input bits are. If the top bits of the and result
1148 // are not demanded, then the add doesn't demand them from its input
1150 unsigned NLZ
= DemandedMask
.countLeadingZeros();
1152 // If there is a constant on the RHS, there are a variety of xformations
1154 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1155 // If null, this should be simplified elsewhere. Some of the xforms here
1156 // won't work if the RHS is zero.
1160 // If the top bit of the output is demanded, demand everything from the
1161 // input. Otherwise, we demand all the input bits except NLZ top bits.
1162 APInt
InDemandedBits(APInt::getLowBitsSet(BitWidth
, BitWidth
- NLZ
));
1164 // Find information about known zero/one bits in the input.
1165 if (SimplifyDemandedBits(I
->getOperandUse(0), InDemandedBits
,
1166 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1169 // If the RHS of the add has bits set that can't affect the input, reduce
1171 if (ShrinkDemandedConstant(I
, 1, InDemandedBits
))
1174 // Avoid excess work.
1175 if (LHSKnownZero
== 0 && LHSKnownOne
== 0)
1178 // Turn it into OR if input bits are zero.
1179 if ((LHSKnownZero
& RHS
->getValue()) == RHS
->getValue()) {
1181 BinaryOperator::CreateOr(I
->getOperand(0), I
->getOperand(1),
1183 return InsertNewInstBefore(Or
, *I
);
1186 // We can say something about the output known-zero and known-one bits,
1187 // depending on potential carries from the input constant and the
1188 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1189 // bits set and the RHS constant is 0x01001, then we know we have a known
1190 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1192 // To compute this, we first compute the potential carry bits. These are
1193 // the bits which may be modified. I'm not aware of a better way to do
1195 const APInt
&RHSVal
= RHS
->getValue();
1196 APInt
CarryBits((~LHSKnownZero
+ RHSVal
) ^ (~LHSKnownZero
^ RHSVal
));
1198 // Now that we know which bits have carries, compute the known-1/0 sets.
1200 // Bits are known one if they are known zero in one operand and one in the
1201 // other, and there is no input carry.
1202 RHSKnownOne
= ((LHSKnownZero
& RHSVal
) |
1203 (LHSKnownOne
& ~RHSVal
)) & ~CarryBits
;
1205 // Bits are known zero if they are known zero in both operands and there
1206 // is no input carry.
1207 RHSKnownZero
= LHSKnownZero
& ~RHSVal
& ~CarryBits
;
1209 // If the high-bits of this ADD are not demanded, then it does not demand
1210 // the high bits of its LHS or RHS.
1211 if (DemandedMask
[BitWidth
-1] == 0) {
1212 // Right fill the mask of bits for this ADD to demand the most
1213 // significant bit and all those below it.
1214 APInt
DemandedFromOps(APInt::getLowBitsSet(BitWidth
, BitWidth
-NLZ
));
1215 if (SimplifyDemandedBits(I
->getOperandUse(0), DemandedFromOps
,
1216 LHSKnownZero
, LHSKnownOne
, Depth
+1) ||
1217 SimplifyDemandedBits(I
->getOperandUse(1), DemandedFromOps
,
1218 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1224 case Instruction::Sub
:
1225 // If the high-bits of this SUB are not demanded, then it does not demand
1226 // the high bits of its LHS or RHS.
1227 if (DemandedMask
[BitWidth
-1] == 0) {
1228 // Right fill the mask of bits for this SUB to demand the most
1229 // significant bit and all those below it.
1230 uint32_t NLZ
= DemandedMask
.countLeadingZeros();
1231 APInt
DemandedFromOps(APInt::getLowBitsSet(BitWidth
, BitWidth
-NLZ
));
1232 if (SimplifyDemandedBits(I
->getOperandUse(0), DemandedFromOps
,
1233 LHSKnownZero
, LHSKnownOne
, Depth
+1) ||
1234 SimplifyDemandedBits(I
->getOperandUse(1), DemandedFromOps
,
1235 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1238 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
1239 // the known zeros and ones.
1240 ComputeMaskedBits(V
, DemandedMask
, RHSKnownZero
, RHSKnownOne
, Depth
);
1242 case Instruction::Shl
:
1243 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1244 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
1245 APInt
DemandedMaskIn(DemandedMask
.lshr(ShiftAmt
));
1246 if (SimplifyDemandedBits(I
->getOperandUse(0), DemandedMaskIn
,
1247 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1249 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1250 RHSKnownZero
<<= ShiftAmt
;
1251 RHSKnownOne
<<= ShiftAmt
;
1252 // low bits known zero.
1254 RHSKnownZero
|= APInt::getLowBitsSet(BitWidth
, ShiftAmt
);
1257 case Instruction::LShr
:
1258 // For a logical shift right
1259 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1260 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
1262 // Unsigned shift right.
1263 APInt
DemandedMaskIn(DemandedMask
.shl(ShiftAmt
));
1264 if (SimplifyDemandedBits(I
->getOperandUse(0), DemandedMaskIn
,
1265 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1267 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1268 RHSKnownZero
= APIntOps::lshr(RHSKnownZero
, ShiftAmt
);
1269 RHSKnownOne
= APIntOps::lshr(RHSKnownOne
, ShiftAmt
);
1271 // Compute the new bits that are at the top now.
1272 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
1273 RHSKnownZero
|= HighBits
; // high bits known zero.
1277 case Instruction::AShr
:
1278 // If this is an arithmetic shift right and only the low-bit is set, we can
1279 // always convert this into a logical shr, even if the shift amount is
1280 // variable. The low bit of the shift cannot be an input sign bit unless
1281 // the shift amount is >= the size of the datatype, which is undefined.
1282 if (DemandedMask
== 1) {
1283 // Perform the logical shift right.
1284 Instruction
*NewVal
= BinaryOperator::CreateLShr(
1285 I
->getOperand(0), I
->getOperand(1), I
->getName());
1286 return InsertNewInstBefore(NewVal
, *I
);
1289 // If the sign bit is the only bit demanded by this ashr, then there is no
1290 // need to do it, the shift doesn't change the high bit.
1291 if (DemandedMask
.isSignBit())
1292 return I
->getOperand(0);
1294 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1295 uint32_t ShiftAmt
= SA
->getLimitedValue(BitWidth
);
1297 // Signed shift right.
1298 APInt
DemandedMaskIn(DemandedMask
.shl(ShiftAmt
));
1299 // If any of the "high bits" are demanded, we should set the sign bit as
1301 if (DemandedMask
.countLeadingZeros() <= ShiftAmt
)
1302 DemandedMaskIn
.set(BitWidth
-1);
1303 if (SimplifyDemandedBits(I
->getOperandUse(0), DemandedMaskIn
,
1304 RHSKnownZero
, RHSKnownOne
, Depth
+1))
1306 assert(!(RHSKnownZero
& RHSKnownOne
) && "Bits known to be one AND zero?");
1307 // Compute the new bits that are at the top now.
1308 APInt
HighBits(APInt::getHighBitsSet(BitWidth
, ShiftAmt
));
1309 RHSKnownZero
= APIntOps::lshr(RHSKnownZero
, ShiftAmt
);
1310 RHSKnownOne
= APIntOps::lshr(RHSKnownOne
, ShiftAmt
);
1312 // Handle the sign bits.
1313 APInt
SignBit(APInt::getSignBit(BitWidth
));
1314 // Adjust to where it is now in the mask.
1315 SignBit
= APIntOps::lshr(SignBit
, ShiftAmt
);
1317 // If the input sign bit is known to be zero, or if none of the top bits
1318 // are demanded, turn this into an unsigned shift right.
1319 if (BitWidth
<= ShiftAmt
|| RHSKnownZero
[BitWidth
-ShiftAmt
-1] ||
1320 (HighBits
& ~DemandedMask
) == HighBits
) {
1321 // Perform the logical shift right.
1322 Instruction
*NewVal
= BinaryOperator::CreateLShr(
1323 I
->getOperand(0), SA
, I
->getName());
1324 return InsertNewInstBefore(NewVal
, *I
);
1325 } else if ((RHSKnownOne
& SignBit
) != 0) { // New bits are known one.
1326 RHSKnownOne
|= HighBits
;
1330 case Instruction::SRem
:
1331 if (ConstantInt
*Rem
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
1332 APInt RA
= Rem
->getValue().abs();
1333 if (RA
.isPowerOf2()) {
1334 if (DemandedMask
.ule(RA
)) // srem won't affect demanded bits
1335 return I
->getOperand(0);
1337 APInt LowBits
= RA
- 1;
1338 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1339 if (SimplifyDemandedBits(I
->getOperandUse(0), Mask2
,
1340 LHSKnownZero
, LHSKnownOne
, Depth
+1))
1343 if (LHSKnownZero
[BitWidth
-1] || ((LHSKnownZero
& LowBits
) == LowBits
))
1344 LHSKnownZero
|= ~LowBits
;
1346 KnownZero
|= LHSKnownZero
& DemandedMask
;
1348 assert(!(KnownZero
& KnownOne
) && "Bits known to be one AND zero?");
1352 case Instruction::URem
: {
1353 APInt
KnownZero2(BitWidth
, 0), KnownOne2(BitWidth
, 0);
1354 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1355 if (SimplifyDemandedBits(I
->getOperandUse(0), AllOnes
,
1356 KnownZero2
, KnownOne2
, Depth
+1) ||
1357 SimplifyDemandedBits(I
->getOperandUse(1), AllOnes
,
1358 KnownZero2
, KnownOne2
, Depth
+1))
1361 unsigned Leaders
= KnownZero2
.countLeadingOnes();
1362 Leaders
= std::max(Leaders
,
1363 KnownZero2
.countLeadingOnes());
1364 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & DemandedMask
;
1367 case Instruction::Call
:
1368 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
1369 switch (II
->getIntrinsicID()) {
1371 case Intrinsic::bswap
: {
1372 // If the only bits demanded come from one byte of the bswap result,
1373 // just shift the input byte into position to eliminate the bswap.
1374 unsigned NLZ
= DemandedMask
.countLeadingZeros();
1375 unsigned NTZ
= DemandedMask
.countTrailingZeros();
1377 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
1378 // we need all the bits down to bit 8. Likewise, round NLZ. If we
1379 // have 14 leading zeros, round to 8.
1382 // If we need exactly one byte, we can do this transformation.
1383 if (BitWidth
-NLZ
-NTZ
== 8) {
1384 unsigned ResultBit
= NTZ
;
1385 unsigned InputBit
= BitWidth
-NTZ
-8;
1387 // Replace this with either a left or right shift to get the byte into
1389 Instruction
*NewVal
;
1390 if (InputBit
> ResultBit
)
1391 NewVal
= BinaryOperator::CreateLShr(I
->getOperand(1),
1392 ConstantInt::get(I
->getType(), InputBit
-ResultBit
));
1394 NewVal
= BinaryOperator::CreateShl(I
->getOperand(1),
1395 ConstantInt::get(I
->getType(), ResultBit
-InputBit
));
1396 NewVal
->takeName(I
);
1397 return InsertNewInstBefore(NewVal
, *I
);
1400 // TODO: Could compute known zero/one bits based on the input.
1405 ComputeMaskedBits(V
, DemandedMask
, RHSKnownZero
, RHSKnownOne
, Depth
);
1409 // If the client is only demanding bits that we know, return the known
1411 if ((DemandedMask
& (RHSKnownZero
|RHSKnownOne
)) == DemandedMask
) {
1412 Constant
*C
= ConstantInt::get(RHSKnownOne
);
1413 if (isa
<PointerType
>(V
->getType()))
1414 C
= ConstantExpr::getIntToPtr(C
, V
->getType());
1421 /// SimplifyDemandedVectorElts - The specified value produces a vector with
1422 /// any number of elements. DemandedElts contains the set of elements that are
1423 /// actually used by the caller. This method analyzes which elements of the
1424 /// operand are undef and returns that information in UndefElts.
1426 /// If the information about demanded elements can be used to simplify the
1427 /// operation, the operation is simplified, then the resultant value is
1428 /// returned. This returns null if no change was made.
1429 Value
*InstCombiner::SimplifyDemandedVectorElts(Value
*V
, APInt DemandedElts
,
1432 unsigned VWidth
= cast
<VectorType
>(V
->getType())->getNumElements();
1433 APInt
EltMask(APInt::getAllOnesValue(VWidth
));
1434 assert((DemandedElts
& ~EltMask
) == 0 && "Invalid DemandedElts!");
1436 if (isa
<UndefValue
>(V
)) {
1437 // If the entire vector is undefined, just return this info.
1438 UndefElts
= EltMask
;
1440 } else if (DemandedElts
== 0) { // If nothing is demanded, provide undef.
1441 UndefElts
= EltMask
;
1442 return UndefValue::get(V
->getType());
1446 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(V
)) {
1447 const Type
*EltTy
= cast
<VectorType
>(V
->getType())->getElementType();
1448 Constant
*Undef
= UndefValue::get(EltTy
);
1450 std::vector
<Constant
*> Elts
;
1451 for (unsigned i
= 0; i
!= VWidth
; ++i
)
1452 if (!DemandedElts
[i
]) { // If not demanded, set to undef.
1453 Elts
.push_back(Undef
);
1455 } else if (isa
<UndefValue
>(CP
->getOperand(i
))) { // Already undef.
1456 Elts
.push_back(Undef
);
1458 } else { // Otherwise, defined.
1459 Elts
.push_back(CP
->getOperand(i
));
1462 // If we changed the constant, return it.
1463 Constant
*NewCP
= ConstantVector::get(Elts
);
1464 return NewCP
!= CP
? NewCP
: 0;
1465 } else if (isa
<ConstantAggregateZero
>(V
)) {
1466 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1469 // Check if this is identity. If so, return 0 since we are not simplifying
1471 if (DemandedElts
== ((1ULL << VWidth
) -1))
1474 const Type
*EltTy
= cast
<VectorType
>(V
->getType())->getElementType();
1475 Constant
*Zero
= Constant::getNullValue(EltTy
);
1476 Constant
*Undef
= UndefValue::get(EltTy
);
1477 std::vector
<Constant
*> Elts
;
1478 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
1479 Constant
*Elt
= DemandedElts
[i
] ? Zero
: Undef
;
1480 Elts
.push_back(Elt
);
1482 UndefElts
= DemandedElts
^ EltMask
;
1483 return ConstantVector::get(Elts
);
1486 // Limit search depth.
1490 // If multiple users are using the root value, procede with
1491 // simplification conservatively assuming that all elements
1493 if (!V
->hasOneUse()) {
1494 // Quit if we find multiple users of a non-root value though.
1495 // They'll be handled when it's their turn to be visited by
1496 // the main instcombine process.
1498 // TODO: Just compute the UndefElts information recursively.
1501 // Conservatively assume that all elements are needed.
1502 DemandedElts
= EltMask
;
1505 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1506 if (!I
) return 0; // Only analyze instructions.
1508 bool MadeChange
= false;
1509 APInt
UndefElts2(VWidth
, 0);
1511 switch (I
->getOpcode()) {
1514 case Instruction::InsertElement
: {
1515 // If this is a variable index, we don't know which element it overwrites.
1516 // demand exactly the same input as we produce.
1517 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1519 // Note that we can't propagate undef elt info, because we don't know
1520 // which elt is getting updated.
1521 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0), DemandedElts
,
1522 UndefElts2
, Depth
+1);
1523 if (TmpV
) { I
->setOperand(0, TmpV
); MadeChange
= true; }
1527 // If this is inserting an element that isn't demanded, remove this
1529 unsigned IdxNo
= Idx
->getZExtValue();
1530 if (IdxNo
>= VWidth
|| !DemandedElts
[IdxNo
])
1531 return AddSoonDeadInstToWorklist(*I
, 0);
1533 // Otherwise, the element inserted overwrites whatever was there, so the
1534 // input demanded set is simpler than the output set.
1535 APInt DemandedElts2
= DemandedElts
;
1536 DemandedElts2
.clear(IdxNo
);
1537 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0), DemandedElts2
,
1538 UndefElts
, Depth
+1);
1539 if (TmpV
) { I
->setOperand(0, TmpV
); MadeChange
= true; }
1541 // The inserted element is defined.
1542 UndefElts
.clear(IdxNo
);
1545 case Instruction::ShuffleVector
: {
1546 ShuffleVectorInst
*Shuffle
= cast
<ShuffleVectorInst
>(I
);
1547 uint64_t LHSVWidth
=
1548 cast
<VectorType
>(Shuffle
->getOperand(0)->getType())->getNumElements();
1549 APInt
LeftDemanded(LHSVWidth
, 0), RightDemanded(LHSVWidth
, 0);
1550 for (unsigned i
= 0; i
< VWidth
; i
++) {
1551 if (DemandedElts
[i
]) {
1552 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
1553 if (MaskVal
!= -1u) {
1554 assert(MaskVal
< LHSVWidth
* 2 &&
1555 "shufflevector mask index out of range!");
1556 if (MaskVal
< LHSVWidth
)
1557 LeftDemanded
.set(MaskVal
);
1559 RightDemanded
.set(MaskVal
- LHSVWidth
);
1564 APInt
UndefElts4(LHSVWidth
, 0);
1565 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0), LeftDemanded
,
1566 UndefElts4
, Depth
+1);
1567 if (TmpV
) { I
->setOperand(0, TmpV
); MadeChange
= true; }
1569 APInt
UndefElts3(LHSVWidth
, 0);
1570 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(1), RightDemanded
,
1571 UndefElts3
, Depth
+1);
1572 if (TmpV
) { I
->setOperand(1, TmpV
); MadeChange
= true; }
1574 bool NewUndefElts
= false;
1575 for (unsigned i
= 0; i
< VWidth
; i
++) {
1576 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
1577 if (MaskVal
== -1u) {
1579 } else if (MaskVal
< LHSVWidth
) {
1580 if (UndefElts4
[MaskVal
]) {
1581 NewUndefElts
= true;
1585 if (UndefElts3
[MaskVal
- LHSVWidth
]) {
1586 NewUndefElts
= true;
1593 // Add additional discovered undefs.
1594 std::vector
<Constant
*> Elts
;
1595 for (unsigned i
= 0; i
< VWidth
; ++i
) {
1597 Elts
.push_back(UndefValue::get(Type::Int32Ty
));
1599 Elts
.push_back(ConstantInt::get(Type::Int32Ty
,
1600 Shuffle
->getMaskValue(i
)));
1602 I
->setOperand(2, ConstantVector::get(Elts
));
1607 case Instruction::BitCast
: {
1608 // Vector->vector casts only.
1609 const VectorType
*VTy
= dyn_cast
<VectorType
>(I
->getOperand(0)->getType());
1611 unsigned InVWidth
= VTy
->getNumElements();
1612 APInt
InputDemandedElts(InVWidth
, 0);
1615 if (VWidth
== InVWidth
) {
1616 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1617 // elements as are demanded of us.
1619 InputDemandedElts
= DemandedElts
;
1620 } else if (VWidth
> InVWidth
) {
1624 // If there are more elements in the result than there are in the source,
1625 // then an input element is live if any of the corresponding output
1626 // elements are live.
1627 Ratio
= VWidth
/InVWidth
;
1628 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
) {
1629 if (DemandedElts
[OutIdx
])
1630 InputDemandedElts
.set(OutIdx
/Ratio
);
1636 // If there are more elements in the source than there are in the result,
1637 // then an input element is live if the corresponding output element is
1639 Ratio
= InVWidth
/VWidth
;
1640 for (unsigned InIdx
= 0; InIdx
!= InVWidth
; ++InIdx
)
1641 if (DemandedElts
[InIdx
/Ratio
])
1642 InputDemandedElts
.set(InIdx
);
1645 // div/rem demand all inputs, because they don't want divide by zero.
1646 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0), InputDemandedElts
,
1647 UndefElts2
, Depth
+1);
1649 I
->setOperand(0, TmpV
);
1653 UndefElts
= UndefElts2
;
1654 if (VWidth
> InVWidth
) {
1655 assert(0 && "Unimp");
1656 // If there are more elements in the result than there are in the source,
1657 // then an output element is undef if the corresponding input element is
1659 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
)
1660 if (UndefElts2
[OutIdx
/Ratio
])
1661 UndefElts
.set(OutIdx
);
1662 } else if (VWidth
< InVWidth
) {
1663 assert(0 && "Unimp");
1664 // If there are more elements in the source than there are in the result,
1665 // then a result element is undef if all of the corresponding input
1666 // elements are undef.
1667 UndefElts
= ~0ULL >> (64-VWidth
); // Start out all undef.
1668 for (unsigned InIdx
= 0; InIdx
!= InVWidth
; ++InIdx
)
1669 if (!UndefElts2
[InIdx
]) // Not undef?
1670 UndefElts
.clear(InIdx
/Ratio
); // Clear undef bit.
1674 case Instruction::And
:
1675 case Instruction::Or
:
1676 case Instruction::Xor
:
1677 case Instruction::Add
:
1678 case Instruction::Sub
:
1679 case Instruction::Mul
:
1680 // div/rem demand all inputs, because they don't want divide by zero.
1681 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(0), DemandedElts
,
1682 UndefElts
, Depth
+1);
1683 if (TmpV
) { I
->setOperand(0, TmpV
); MadeChange
= true; }
1684 TmpV
= SimplifyDemandedVectorElts(I
->getOperand(1), DemandedElts
,
1685 UndefElts2
, Depth
+1);
1686 if (TmpV
) { I
->setOperand(1, TmpV
); MadeChange
= true; }
1688 // Output elements are undefined if both are undefined. Consider things
1689 // like undef&0. The result is known zero, not undef.
1690 UndefElts
&= UndefElts2
;
1693 case Instruction::Call
: {
1694 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
);
1696 switch (II
->getIntrinsicID()) {
1699 // Binary vector operations that work column-wise. A dest element is a
1700 // function of the corresponding input elements from the two inputs.
1701 case Intrinsic::x86_sse_sub_ss
:
1702 case Intrinsic::x86_sse_mul_ss
:
1703 case Intrinsic::x86_sse_min_ss
:
1704 case Intrinsic::x86_sse_max_ss
:
1705 case Intrinsic::x86_sse2_sub_sd
:
1706 case Intrinsic::x86_sse2_mul_sd
:
1707 case Intrinsic::x86_sse2_min_sd
:
1708 case Intrinsic::x86_sse2_max_sd
:
1709 TmpV
= SimplifyDemandedVectorElts(II
->getOperand(1), DemandedElts
,
1710 UndefElts
, Depth
+1);
1711 if (TmpV
) { II
->setOperand(1, TmpV
); MadeChange
= true; }
1712 TmpV
= SimplifyDemandedVectorElts(II
->getOperand(2), DemandedElts
,
1713 UndefElts2
, Depth
+1);
1714 if (TmpV
) { II
->setOperand(2, TmpV
); MadeChange
= true; }
1716 // If only the low elt is demanded and this is a scalarizable intrinsic,
1717 // scalarize it now.
1718 if (DemandedElts
== 1) {
1719 switch (II
->getIntrinsicID()) {
1721 case Intrinsic::x86_sse_sub_ss
:
1722 case Intrinsic::x86_sse_mul_ss
:
1723 case Intrinsic::x86_sse2_sub_sd
:
1724 case Intrinsic::x86_sse2_mul_sd
:
1725 // TODO: Lower MIN/MAX/ABS/etc
1726 Value
*LHS
= II
->getOperand(1);
1727 Value
*RHS
= II
->getOperand(2);
1728 // Extract the element as scalars.
1729 LHS
= InsertNewInstBefore(new ExtractElementInst(LHS
, 0U,"tmp"), *II
);
1730 RHS
= InsertNewInstBefore(new ExtractElementInst(RHS
, 0U,"tmp"), *II
);
1732 switch (II
->getIntrinsicID()) {
1733 default: assert(0 && "Case stmts out of sync!");
1734 case Intrinsic::x86_sse_sub_ss
:
1735 case Intrinsic::x86_sse2_sub_sd
:
1736 TmpV
= InsertNewInstBefore(BinaryOperator::CreateSub(LHS
, RHS
,
1737 II
->getName()), *II
);
1739 case Intrinsic::x86_sse_mul_ss
:
1740 case Intrinsic::x86_sse2_mul_sd
:
1741 TmpV
= InsertNewInstBefore(BinaryOperator::CreateMul(LHS
, RHS
,
1742 II
->getName()), *II
);
1747 InsertElementInst::Create(UndefValue::get(II
->getType()), TmpV
, 0U,
1749 InsertNewInstBefore(New
, *II
);
1750 AddSoonDeadInstToWorklist(*II
, 0);
1755 // Output elements are undefined if both are undefined. Consider things
1756 // like undef&0. The result is known zero, not undef.
1757 UndefElts
&= UndefElts2
;
1763 return MadeChange
? I
: 0;
1767 /// AssociativeOpt - Perform an optimization on an associative operator. This
1768 /// function is designed to check a chain of associative operators for a
1769 /// potential to apply a certain optimization. Since the optimization may be
1770 /// applicable if the expression was reassociated, this checks the chain, then
1771 /// reassociates the expression as necessary to expose the optimization
1772 /// opportunity. This makes use of a special Functor, which must define
1773 /// 'shouldApply' and 'apply' methods.
1775 template<typename Functor
>
1776 static Instruction
*AssociativeOpt(BinaryOperator
&Root
, const Functor
&F
) {
1777 unsigned Opcode
= Root
.getOpcode();
1778 Value
*LHS
= Root
.getOperand(0);
1780 // Quick check, see if the immediate LHS matches...
1781 if (F
.shouldApply(LHS
))
1782 return F
.apply(Root
);
1784 // Otherwise, if the LHS is not of the same opcode as the root, return.
1785 Instruction
*LHSI
= dyn_cast
<Instruction
>(LHS
);
1786 while (LHSI
&& LHSI
->getOpcode() == Opcode
&& LHSI
->hasOneUse()) {
1787 // Should we apply this transform to the RHS?
1788 bool ShouldApply
= F
.shouldApply(LHSI
->getOperand(1));
1790 // If not to the RHS, check to see if we should apply to the LHS...
1791 if (!ShouldApply
&& F
.shouldApply(LHSI
->getOperand(0))) {
1792 cast
<BinaryOperator
>(LHSI
)->swapOperands(); // Make the LHS the RHS
1796 // If the functor wants to apply the optimization to the RHS of LHSI,
1797 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1799 // Now all of the instructions are in the current basic block, go ahead
1800 // and perform the reassociation.
1801 Instruction
*TmpLHSI
= cast
<Instruction
>(Root
.getOperand(0));
1803 // First move the selected RHS to the LHS of the root...
1804 Root
.setOperand(0, LHSI
->getOperand(1));
1806 // Make what used to be the LHS of the root be the user of the root...
1807 Value
*ExtraOperand
= TmpLHSI
->getOperand(1);
1808 if (&Root
== TmpLHSI
) {
1809 Root
.replaceAllUsesWith(Constant::getNullValue(TmpLHSI
->getType()));
1812 Root
.replaceAllUsesWith(TmpLHSI
); // Users now use TmpLHSI
1813 TmpLHSI
->setOperand(1, &Root
); // TmpLHSI now uses the root
1814 BasicBlock::iterator ARI
= &Root
; ++ARI
;
1815 TmpLHSI
->moveBefore(ARI
); // Move TmpLHSI to after Root
1818 // Now propagate the ExtraOperand down the chain of instructions until we
1820 while (TmpLHSI
!= LHSI
) {
1821 Instruction
*NextLHSI
= cast
<Instruction
>(TmpLHSI
->getOperand(0));
1822 // Move the instruction to immediately before the chain we are
1823 // constructing to avoid breaking dominance properties.
1824 NextLHSI
->moveBefore(ARI
);
1827 Value
*NextOp
= NextLHSI
->getOperand(1);
1828 NextLHSI
->setOperand(1, ExtraOperand
);
1830 ExtraOperand
= NextOp
;
1833 // Now that the instructions are reassociated, have the functor perform
1834 // the transformation...
1835 return F
.apply(Root
);
1838 LHSI
= dyn_cast
<Instruction
>(LHSI
->getOperand(0));
1845 // AddRHS - Implements: X + X --> X << 1
1848 AddRHS(Value
*rhs
) : RHS(rhs
) {}
1849 bool shouldApply(Value
*LHS
) const { return LHS
== RHS
; }
1850 Instruction
*apply(BinaryOperator
&Add
) const {
1851 return BinaryOperator::CreateShl(Add
.getOperand(0),
1852 ConstantInt::get(Add
.getType(), 1));
1856 // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1858 struct AddMaskingAnd
{
1860 AddMaskingAnd(Constant
*c
) : C2(c
) {}
1861 bool shouldApply(Value
*LHS
) const {
1863 return match(LHS
, m_And(m_Value(), m_ConstantInt(C1
))) &&
1864 ConstantExpr::getAnd(C1
, C2
)->isNullValue();
1866 Instruction
*apply(BinaryOperator
&Add
) const {
1867 return BinaryOperator::CreateOr(Add
.getOperand(0), Add
.getOperand(1));
1873 static Value
*FoldOperationIntoSelectOperand(Instruction
&I
, Value
*SO
,
1875 if (CastInst
*CI
= dyn_cast
<CastInst
>(&I
)) {
1876 return IC
->InsertCastBefore(CI
->getOpcode(), SO
, I
.getType(), I
);
1879 // Figure out if the constant is the left or the right argument.
1880 bool ConstIsRHS
= isa
<Constant
>(I
.getOperand(1));
1881 Constant
*ConstOperand
= cast
<Constant
>(I
.getOperand(ConstIsRHS
));
1883 if (Constant
*SOC
= dyn_cast
<Constant
>(SO
)) {
1885 return ConstantExpr::get(I
.getOpcode(), SOC
, ConstOperand
);
1886 return ConstantExpr::get(I
.getOpcode(), ConstOperand
, SOC
);
1889 Value
*Op0
= SO
, *Op1
= ConstOperand
;
1891 std::swap(Op0
, Op1
);
1893 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(&I
))
1894 New
= BinaryOperator::Create(BO
->getOpcode(), Op0
, Op1
,SO
->getName()+".op");
1895 else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1896 New
= CmpInst::Create(CI
->getOpcode(), CI
->getPredicate(), Op0
, Op1
,
1897 SO
->getName()+".cmp");
1899 assert(0 && "Unknown binary instruction type!");
1902 return IC
->InsertNewInstBefore(New
, I
);
1905 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
1906 // constant as the other operand, try to fold the binary operator into the
1907 // select arguments. This also works for Cast instructions, which obviously do
1908 // not have a second operand.
1909 static Instruction
*FoldOpIntoSelect(Instruction
&Op
, SelectInst
*SI
,
1911 // Don't modify shared select instructions
1912 if (!SI
->hasOneUse()) return 0;
1913 Value
*TV
= SI
->getOperand(1);
1914 Value
*FV
= SI
->getOperand(2);
1916 if (isa
<Constant
>(TV
) || isa
<Constant
>(FV
)) {
1917 // Bool selects with constant operands can be folded to logical ops.
1918 if (SI
->getType() == Type::Int1Ty
) return 0;
1920 Value
*SelectTrueVal
= FoldOperationIntoSelectOperand(Op
, TV
, IC
);
1921 Value
*SelectFalseVal
= FoldOperationIntoSelectOperand(Op
, FV
, IC
);
1923 return SelectInst::Create(SI
->getCondition(), SelectTrueVal
,
1930 /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1931 /// node as operand #0, see if we can fold the instruction into the PHI (which
1932 /// is only possible if all operands to the PHI are constants).
1933 Instruction
*InstCombiner::FoldOpIntoPhi(Instruction
&I
) {
1934 PHINode
*PN
= cast
<PHINode
>(I
.getOperand(0));
1935 unsigned NumPHIValues
= PN
->getNumIncomingValues();
1936 if (!PN
->hasOneUse() || NumPHIValues
== 0) return 0;
1938 // Check to see if all of the operands of the PHI are constants. If there is
1939 // one non-constant value, remember the BB it is. If there is more than one
1940 // or if *it* is a PHI, bail out.
1941 BasicBlock
*NonConstBB
= 0;
1942 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
)
1943 if (!isa
<Constant
>(PN
->getIncomingValue(i
))) {
1944 if (NonConstBB
) return 0; // More than one non-const value.
1945 if (isa
<PHINode
>(PN
->getIncomingValue(i
))) return 0; // Itself a phi.
1946 NonConstBB
= PN
->getIncomingBlock(i
);
1948 // If the incoming non-constant value is in I's block, we have an infinite
1950 if (NonConstBB
== I
.getParent())
1954 // If there is exactly one non-constant value, we can insert a copy of the
1955 // operation in that block. However, if this is a critical edge, we would be
1956 // inserting the computation one some other paths (e.g. inside a loop). Only
1957 // do this if the pred block is unconditionally branching into the phi block.
1959 BranchInst
*BI
= dyn_cast
<BranchInst
>(NonConstBB
->getTerminator());
1960 if (!BI
|| !BI
->isUnconditional()) return 0;
1963 // Okay, we can do the transformation: create the new PHI node.
1964 PHINode
*NewPN
= PHINode::Create(I
.getType(), "");
1965 NewPN
->reserveOperandSpace(PN
->getNumOperands()/2);
1966 InsertNewInstBefore(NewPN
, *PN
);
1967 NewPN
->takeName(PN
);
1969 // Next, add all of the operands to the PHI.
1970 if (I
.getNumOperands() == 2) {
1971 Constant
*C
= cast
<Constant
>(I
.getOperand(1));
1972 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1974 if (Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
))) {
1975 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1976 InV
= ConstantExpr::getCompare(CI
->getPredicate(), InC
, C
);
1978 InV
= ConstantExpr::get(I
.getOpcode(), InC
, C
);
1980 assert(PN
->getIncomingBlock(i
) == NonConstBB
);
1981 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(&I
))
1982 InV
= BinaryOperator::Create(BO
->getOpcode(),
1983 PN
->getIncomingValue(i
), C
, "phitmp",
1984 NonConstBB
->getTerminator());
1985 else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1986 InV
= CmpInst::Create(CI
->getOpcode(),
1988 PN
->getIncomingValue(i
), C
, "phitmp",
1989 NonConstBB
->getTerminator());
1991 assert(0 && "Unknown binop!");
1993 AddToWorkList(cast
<Instruction
>(InV
));
1995 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
1998 CastInst
*CI
= cast
<CastInst
>(&I
);
1999 const Type
*RetTy
= CI
->getType();
2000 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
2002 if (Constant
*InC
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
))) {
2003 InV
= ConstantExpr::getCast(CI
->getOpcode(), InC
, RetTy
);
2005 assert(PN
->getIncomingBlock(i
) == NonConstBB
);
2006 InV
= CastInst::Create(CI
->getOpcode(), PN
->getIncomingValue(i
),
2007 I
.getType(), "phitmp",
2008 NonConstBB
->getTerminator());
2009 AddToWorkList(cast
<Instruction
>(InV
));
2011 NewPN
->addIncoming(InV
, PN
->getIncomingBlock(i
));
2014 return ReplaceInstUsesWith(I
, NewPN
);
2018 /// WillNotOverflowSignedAdd - Return true if we can prove that:
2019 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
2020 /// This basically requires proving that the add in the original type would not
2021 /// overflow to change the sign bit or have a carry out.
2022 bool InstCombiner::WillNotOverflowSignedAdd(Value
*LHS
, Value
*RHS
) {
2023 // There are different heuristics we can use for this. Here are some simple
2026 // Add has the property that adding any two 2's complement numbers can only
2027 // have one carry bit which can change a sign. As such, if LHS and RHS each
2028 // have at least two sign bits, we know that the addition of the two values will
2029 // sign extend fine.
2030 if (ComputeNumSignBits(LHS
) > 1 && ComputeNumSignBits(RHS
) > 1)
2034 // If one of the operands only has one non-zero bit, and if the other operand
2035 // has a known-zero bit in a more significant place than it (not including the
2036 // sign bit) the ripple may go up to and fill the zero, but won't change the
2037 // sign. For example, (X & ~4) + 1.
2045 Instruction
*InstCombiner::visitAdd(BinaryOperator
&I
) {
2046 bool Changed
= SimplifyCommutative(I
);
2047 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
2049 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
2050 // X + undef -> undef
2051 if (isa
<UndefValue
>(RHS
))
2052 return ReplaceInstUsesWith(I
, RHS
);
2055 if (!I
.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
2056 if (RHSC
->isNullValue())
2057 return ReplaceInstUsesWith(I
, LHS
);
2058 } else if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHSC
)) {
2059 if (CFP
->isExactlyValue(ConstantFP::getNegativeZero
2060 (I
.getType())->getValueAPF()))
2061 return ReplaceInstUsesWith(I
, LHS
);
2064 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHSC
)) {
2065 // X + (signbit) --> X ^ signbit
2066 const APInt
& Val
= CI
->getValue();
2067 uint32_t BitWidth
= Val
.getBitWidth();
2068 if (Val
== APInt::getSignBit(BitWidth
))
2069 return BinaryOperator::CreateXor(LHS
, RHS
);
2071 // See if SimplifyDemandedBits can simplify this. This handles stuff like
2072 // (X & 254)+1 -> (X&254)|1
2073 if (!isa
<VectorType
>(I
.getType()) && SimplifyDemandedInstructionBits(I
))
2076 // zext(i1) - 1 -> select i1, 0, -1
2077 if (ZExtInst
*ZI
= dyn_cast
<ZExtInst
>(LHS
))
2078 if (CI
->isAllOnesValue() &&
2079 ZI
->getOperand(0)->getType() == Type::Int1Ty
)
2080 return SelectInst::Create(ZI
->getOperand(0),
2081 Constant::getNullValue(I
.getType()),
2082 ConstantInt::getAllOnesValue(I
.getType()));
2085 if (isa
<PHINode
>(LHS
))
2086 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2089 ConstantInt
*XorRHS
= 0;
2091 if (isa
<ConstantInt
>(RHSC
) &&
2092 match(LHS
, m_Xor(m_Value(XorLHS
), m_ConstantInt(XorRHS
)))) {
2093 uint32_t TySizeBits
= I
.getType()->getPrimitiveSizeInBits();
2094 const APInt
& RHSVal
= cast
<ConstantInt
>(RHSC
)->getValue();
2096 uint32_t Size
= TySizeBits
/ 2;
2097 APInt
C0080Val(APInt(TySizeBits
, 1ULL).shl(Size
- 1));
2098 APInt
CFF80Val(-C0080Val
);
2100 if (TySizeBits
> Size
) {
2101 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
2102 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
2103 if ((RHSVal
== CFF80Val
&& XorRHS
->getValue() == C0080Val
) ||
2104 (RHSVal
== C0080Val
&& XorRHS
->getValue() == CFF80Val
)) {
2105 // This is a sign extend if the top bits are known zero.
2106 if (!MaskedValueIsZero(XorLHS
,
2107 APInt::getHighBitsSet(TySizeBits
, TySizeBits
- Size
)))
2108 Size
= 0; // Not a sign ext, but can't be any others either.
2113 C0080Val
= APIntOps::lshr(C0080Val
, Size
);
2114 CFF80Val
= APIntOps::ashr(CFF80Val
, Size
);
2115 } while (Size
>= 1);
2117 // FIXME: This shouldn't be necessary. When the backends can handle types
2118 // with funny bit widths then this switch statement should be removed. It
2119 // is just here to get the size of the "middle" type back up to something
2120 // that the back ends can handle.
2121 const Type
*MiddleType
= 0;
2124 case 32: MiddleType
= Type::Int32Ty
; break;
2125 case 16: MiddleType
= Type::Int16Ty
; break;
2126 case 8: MiddleType
= Type::Int8Ty
; break;
2129 Instruction
*NewTrunc
= new TruncInst(XorLHS
, MiddleType
, "sext");
2130 InsertNewInstBefore(NewTrunc
, I
);
2131 return new SExtInst(NewTrunc
, I
.getType(), I
.getName());
2136 if (I
.getType() == Type::Int1Ty
)
2137 return BinaryOperator::CreateXor(LHS
, RHS
);
2140 if (I
.getType()->isInteger()) {
2141 if (Instruction
*Result
= AssociativeOpt(I
, AddRHS(RHS
))) return Result
;
2143 if (Instruction
*RHSI
= dyn_cast
<Instruction
>(RHS
)) {
2144 if (RHSI
->getOpcode() == Instruction::Sub
)
2145 if (LHS
== RHSI
->getOperand(1)) // A + (B - A) --> B
2146 return ReplaceInstUsesWith(I
, RHSI
->getOperand(0));
2148 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(LHS
)) {
2149 if (LHSI
->getOpcode() == Instruction::Sub
)
2150 if (RHS
== LHSI
->getOperand(1)) // (B - A) + A --> B
2151 return ReplaceInstUsesWith(I
, LHSI
->getOperand(0));
2156 // -A + -B --> -(A + B)
2157 if (Value
*LHSV
= dyn_castNegVal(LHS
)) {
2158 if (LHS
->getType()->isIntOrIntVector()) {
2159 if (Value
*RHSV
= dyn_castNegVal(RHS
)) {
2160 Instruction
*NewAdd
= BinaryOperator::CreateAdd(LHSV
, RHSV
, "sum");
2161 InsertNewInstBefore(NewAdd
, I
);
2162 return BinaryOperator::CreateNeg(NewAdd
);
2166 return BinaryOperator::CreateSub(RHS
, LHSV
);
2170 if (!isa
<Constant
>(RHS
))
2171 if (Value
*V
= dyn_castNegVal(RHS
))
2172 return BinaryOperator::CreateSub(LHS
, V
);
2176 if (Value
*X
= dyn_castFoldableMul(LHS
, C2
)) {
2177 if (X
== RHS
) // X*C + X --> X * (C+1)
2178 return BinaryOperator::CreateMul(RHS
, AddOne(C2
));
2180 // X*C1 + X*C2 --> X * (C1+C2)
2182 if (X
== dyn_castFoldableMul(RHS
, C1
))
2183 return BinaryOperator::CreateMul(X
, Add(C1
, C2
));
2186 // X + X*C --> X * (C+1)
2187 if (dyn_castFoldableMul(RHS
, C2
) == LHS
)
2188 return BinaryOperator::CreateMul(LHS
, AddOne(C2
));
2190 // X + ~X --> -1 since ~X = -X-1
2191 if (dyn_castNotVal(LHS
) == RHS
|| dyn_castNotVal(RHS
) == LHS
)
2192 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
2195 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2196 if (match(RHS
, m_And(m_Value(), m_ConstantInt(C2
))))
2197 if (Instruction
*R
= AssociativeOpt(I
, AddMaskingAnd(C2
)))
2200 // A+B --> A|B iff A and B have no bits set in common.
2201 if (const IntegerType
*IT
= dyn_cast
<IntegerType
>(I
.getType())) {
2202 APInt Mask
= APInt::getAllOnesValue(IT
->getBitWidth());
2203 APInt
LHSKnownOne(IT
->getBitWidth(), 0);
2204 APInt
LHSKnownZero(IT
->getBitWidth(), 0);
2205 ComputeMaskedBits(LHS
, Mask
, LHSKnownZero
, LHSKnownOne
);
2206 if (LHSKnownZero
!= 0) {
2207 APInt
RHSKnownOne(IT
->getBitWidth(), 0);
2208 APInt
RHSKnownZero(IT
->getBitWidth(), 0);
2209 ComputeMaskedBits(RHS
, Mask
, RHSKnownZero
, RHSKnownOne
);
2211 // No bits in common -> bitwise or.
2212 if ((LHSKnownZero
|RHSKnownZero
).isAllOnesValue())
2213 return BinaryOperator::CreateOr(LHS
, RHS
);
2217 // W*X + Y*Z --> W * (X+Z) iff W == Y
2218 if (I
.getType()->isIntOrIntVector()) {
2219 Value
*W
, *X
, *Y
, *Z
;
2220 if (match(LHS
, m_Mul(m_Value(W
), m_Value(X
))) &&
2221 match(RHS
, m_Mul(m_Value(Y
), m_Value(Z
)))) {
2225 } else if (Y
== X
) {
2227 } else if (X
== Z
) {
2234 Value
*NewAdd
= InsertNewInstBefore(BinaryOperator::CreateAdd(X
, Z
,
2235 LHS
->getName()), I
);
2236 return BinaryOperator::CreateMul(W
, NewAdd
);
2241 if (ConstantInt
*CRHS
= dyn_cast
<ConstantInt
>(RHS
)) {
2243 if (match(LHS
, m_Not(m_Value(X
)))) // ~X + C --> (C-1) - X
2244 return BinaryOperator::CreateSub(SubOne(CRHS
), X
);
2246 // (X & FF00) + xx00 -> (X+xx00) & FF00
2247 if (LHS
->hasOneUse() && match(LHS
, m_And(m_Value(X
), m_ConstantInt(C2
)))) {
2248 Constant
*Anded
= And(CRHS
, C2
);
2249 if (Anded
== CRHS
) {
2250 // See if all bits from the first bit set in the Add RHS up are included
2251 // in the mask. First, get the rightmost bit.
2252 const APInt
& AddRHSV
= CRHS
->getValue();
2254 // Form a mask of all bits from the lowest bit added through the top.
2255 APInt
AddRHSHighBits(~((AddRHSV
& -AddRHSV
)-1));
2257 // See if the and mask includes all of these bits.
2258 APInt
AddRHSHighBitsAnd(AddRHSHighBits
& C2
->getValue());
2260 if (AddRHSHighBits
== AddRHSHighBitsAnd
) {
2261 // Okay, the xform is safe. Insert the new add pronto.
2262 Value
*NewAdd
= InsertNewInstBefore(BinaryOperator::CreateAdd(X
, CRHS
,
2263 LHS
->getName()), I
);
2264 return BinaryOperator::CreateAnd(NewAdd
, C2
);
2269 // Try to fold constant add into select arguments.
2270 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(LHS
))
2271 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2275 // add (cast *A to intptrtype) B ->
2276 // cast (GEP (cast *A to sbyte*) B) --> intptrtype
2278 CastInst
*CI
= dyn_cast
<CastInst
>(LHS
);
2281 CI
= dyn_cast
<CastInst
>(RHS
);
2284 if (CI
&& CI
->getType()->isSized() &&
2285 (CI
->getType()->getPrimitiveSizeInBits() ==
2286 TD
->getIntPtrType()->getPrimitiveSizeInBits())
2287 && isa
<PointerType
>(CI
->getOperand(0)->getType())) {
2289 cast
<PointerType
>(CI
->getOperand(0)->getType())->getAddressSpace();
2290 Value
*I2
= InsertBitCastBefore(CI
->getOperand(0),
2291 PointerType::get(Type::Int8Ty
, AS
), I
);
2292 I2
= InsertNewInstBefore(GetElementPtrInst::Create(I2
, Other
, "ctg2"), I
);
2293 return new PtrToIntInst(I2
, CI
->getType());
2297 // add (select X 0 (sub n A)) A --> select X A n
2299 SelectInst
*SI
= dyn_cast
<SelectInst
>(LHS
);
2302 SI
= dyn_cast
<SelectInst
>(RHS
);
2305 if (SI
&& SI
->hasOneUse()) {
2306 Value
*TV
= SI
->getTrueValue();
2307 Value
*FV
= SI
->getFalseValue();
2310 // Can we fold the add into the argument of the select?
2311 // We check both true and false select arguments for a matching subtract.
2312 if (match(FV
, m_Zero()) && match(TV
, m_Sub(m_Value(N
), m_Specific(A
))))
2313 // Fold the add into the true select value.
2314 return SelectInst::Create(SI
->getCondition(), N
, A
);
2315 if (match(TV
, m_Zero()) && match(FV
, m_Sub(m_Value(N
), m_Specific(A
))))
2316 // Fold the add into the false select value.
2317 return SelectInst::Create(SI
->getCondition(), A
, N
);
2321 // Check for X+0.0. Simplify it to X if we know X is not -0.0.
2322 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHS
))
2323 if (CFP
->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS
))
2324 return ReplaceInstUsesWith(I
, LHS
);
2326 // Check for (add (sext x), y), see if we can merge this into an
2327 // integer add followed by a sext.
2328 if (SExtInst
*LHSConv
= dyn_cast
<SExtInst
>(LHS
)) {
2329 // (add (sext x), cst) --> (sext (add x, cst'))
2330 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
)) {
2332 ConstantExpr::getTrunc(RHSC
, LHSConv
->getOperand(0)->getType());
2333 if (LHSConv
->hasOneUse() &&
2334 ConstantExpr::getSExt(CI
, I
.getType()) == RHSC
&&
2335 WillNotOverflowSignedAdd(LHSConv
->getOperand(0), CI
)) {
2336 // Insert the new, smaller add.
2337 Instruction
*NewAdd
= BinaryOperator::CreateAdd(LHSConv
->getOperand(0),
2339 InsertNewInstBefore(NewAdd
, I
);
2340 return new SExtInst(NewAdd
, I
.getType());
2344 // (add (sext x), (sext y)) --> (sext (add int x, y))
2345 if (SExtInst
*RHSConv
= dyn_cast
<SExtInst
>(RHS
)) {
2346 // Only do this if x/y have the same type, if at last one of them has a
2347 // single use (so we don't increase the number of sexts), and if the
2348 // integer add will not overflow.
2349 if (LHSConv
->getOperand(0)->getType()==RHSConv
->getOperand(0)->getType()&&
2350 (LHSConv
->hasOneUse() || RHSConv
->hasOneUse()) &&
2351 WillNotOverflowSignedAdd(LHSConv
->getOperand(0),
2352 RHSConv
->getOperand(0))) {
2353 // Insert the new integer add.
2354 Instruction
*NewAdd
= BinaryOperator::CreateAdd(LHSConv
->getOperand(0),
2355 RHSConv
->getOperand(0),
2357 InsertNewInstBefore(NewAdd
, I
);
2358 return new SExtInst(NewAdd
, I
.getType());
2363 // Check for (add double (sitofp x), y), see if we can merge this into an
2364 // integer add followed by a promotion.
2365 if (SIToFPInst
*LHSConv
= dyn_cast
<SIToFPInst
>(LHS
)) {
2366 // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
2367 // ... if the constant fits in the integer value. This is useful for things
2368 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
2369 // requires a constant pool load, and generally allows the add to be better
2371 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHS
)) {
2373 ConstantExpr::getFPToSI(CFP
, LHSConv
->getOperand(0)->getType());
2374 if (LHSConv
->hasOneUse() &&
2375 ConstantExpr::getSIToFP(CI
, I
.getType()) == CFP
&&
2376 WillNotOverflowSignedAdd(LHSConv
->getOperand(0), CI
)) {
2377 // Insert the new integer add.
2378 Instruction
*NewAdd
= BinaryOperator::CreateAdd(LHSConv
->getOperand(0),
2380 InsertNewInstBefore(NewAdd
, I
);
2381 return new SIToFPInst(NewAdd
, I
.getType());
2385 // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
2386 if (SIToFPInst
*RHSConv
= dyn_cast
<SIToFPInst
>(RHS
)) {
2387 // Only do this if x/y have the same type, if at last one of them has a
2388 // single use (so we don't increase the number of int->fp conversions),
2389 // and if the integer add will not overflow.
2390 if (LHSConv
->getOperand(0)->getType()==RHSConv
->getOperand(0)->getType()&&
2391 (LHSConv
->hasOneUse() || RHSConv
->hasOneUse()) &&
2392 WillNotOverflowSignedAdd(LHSConv
->getOperand(0),
2393 RHSConv
->getOperand(0))) {
2394 // Insert the new integer add.
2395 Instruction
*NewAdd
= BinaryOperator::CreateAdd(LHSConv
->getOperand(0),
2396 RHSConv
->getOperand(0),
2398 InsertNewInstBefore(NewAdd
, I
);
2399 return new SIToFPInst(NewAdd
, I
.getType());
2404 return Changed
? &I
: 0;
2407 Instruction
*InstCombiner::visitSub(BinaryOperator
&I
) {
2408 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2410 if (Op0
== Op1
&& // sub X, X -> 0
2411 !I
.getType()->isFPOrFPVector())
2412 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2414 // If this is a 'B = x-(-A)', change to B = x+A...
2415 if (Value
*V
= dyn_castNegVal(Op1
))
2416 return BinaryOperator::CreateAdd(Op0
, V
);
2418 if (isa
<UndefValue
>(Op0
))
2419 return ReplaceInstUsesWith(I
, Op0
); // undef - X -> undef
2420 if (isa
<UndefValue
>(Op1
))
2421 return ReplaceInstUsesWith(I
, Op1
); // X - undef -> undef
2423 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Op0
)) {
2424 // Replace (-1 - A) with (~A)...
2425 if (C
->isAllOnesValue())
2426 return BinaryOperator::CreateNot(Op1
);
2428 // C - ~X == X + (1+C)
2430 if (match(Op1
, m_Not(m_Value(X
))))
2431 return BinaryOperator::CreateAdd(X
, AddOne(C
));
2433 // -(X >>u 31) -> (X >>s 31)
2434 // -(X >>s 31) -> (X >>u 31)
2436 if (BinaryOperator
*SI
= dyn_cast
<BinaryOperator
>(Op1
)) {
2437 if (SI
->getOpcode() == Instruction::LShr
) {
2438 if (ConstantInt
*CU
= dyn_cast
<ConstantInt
>(SI
->getOperand(1))) {
2439 // Check to see if we are shifting out everything but the sign bit.
2440 if (CU
->getLimitedValue(SI
->getType()->getPrimitiveSizeInBits()) ==
2441 SI
->getType()->getPrimitiveSizeInBits()-1) {
2442 // Ok, the transformation is safe. Insert AShr.
2443 return BinaryOperator::Create(Instruction::AShr
,
2444 SI
->getOperand(0), CU
, SI
->getName());
2448 else if (SI
->getOpcode() == Instruction::AShr
) {
2449 if (ConstantInt
*CU
= dyn_cast
<ConstantInt
>(SI
->getOperand(1))) {
2450 // Check to see if we are shifting out everything but the sign bit.
2451 if (CU
->getLimitedValue(SI
->getType()->getPrimitiveSizeInBits()) ==
2452 SI
->getType()->getPrimitiveSizeInBits()-1) {
2453 // Ok, the transformation is safe. Insert LShr.
2454 return BinaryOperator::CreateLShr(
2455 SI
->getOperand(0), CU
, SI
->getName());
2462 // Try to fold constant sub into select arguments.
2463 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
2464 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2468 if (I
.getType() == Type::Int1Ty
)
2469 return BinaryOperator::CreateXor(Op0
, Op1
);
2471 if (BinaryOperator
*Op1I
= dyn_cast
<BinaryOperator
>(Op1
)) {
2472 if (Op1I
->getOpcode() == Instruction::Add
&&
2473 !Op0
->getType()->isFPOrFPVector()) {
2474 if (Op1I
->getOperand(0) == Op0
) // X-(X+Y) == -Y
2475 return BinaryOperator::CreateNeg(Op1I
->getOperand(1), I
.getName());
2476 else if (Op1I
->getOperand(1) == Op0
) // X-(Y+X) == -Y
2477 return BinaryOperator::CreateNeg(Op1I
->getOperand(0), I
.getName());
2478 else if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(I
.getOperand(0))) {
2479 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(Op1I
->getOperand(1)))
2480 // C1-(X+C2) --> (C1-C2)-X
2481 return BinaryOperator::CreateSub(Subtract(CI1
, CI2
),
2482 Op1I
->getOperand(0));
2486 if (Op1I
->hasOneUse()) {
2487 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2488 // is not used by anyone else...
2490 if (Op1I
->getOpcode() == Instruction::Sub
&&
2491 !Op1I
->getType()->isFPOrFPVector()) {
2492 // Swap the two operands of the subexpr...
2493 Value
*IIOp0
= Op1I
->getOperand(0), *IIOp1
= Op1I
->getOperand(1);
2494 Op1I
->setOperand(0, IIOp1
);
2495 Op1I
->setOperand(1, IIOp0
);
2497 // Create the new top level add instruction...
2498 return BinaryOperator::CreateAdd(Op0
, Op1
);
2501 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2503 if (Op1I
->getOpcode() == Instruction::And
&&
2504 (Op1I
->getOperand(0) == Op0
|| Op1I
->getOperand(1) == Op0
)) {
2505 Value
*OtherOp
= Op1I
->getOperand(Op1I
->getOperand(0) == Op0
);
2508 InsertNewInstBefore(BinaryOperator::CreateNot(OtherOp
, "B.not"), I
);
2509 return BinaryOperator::CreateAnd(Op0
, NewNot
);
2512 // 0 - (X sdiv C) -> (X sdiv -C)
2513 if (Op1I
->getOpcode() == Instruction::SDiv
)
2514 if (ConstantInt
*CSI
= dyn_cast
<ConstantInt
>(Op0
))
2516 if (Constant
*DivRHS
= dyn_cast
<Constant
>(Op1I
->getOperand(1)))
2517 return BinaryOperator::CreateSDiv(Op1I
->getOperand(0),
2518 ConstantExpr::getNeg(DivRHS
));
2520 // X - X*C --> X * (1-C)
2521 ConstantInt
*C2
= 0;
2522 if (dyn_castFoldableMul(Op1I
, C2
) == Op0
) {
2523 Constant
*CP1
= Subtract(ConstantInt::get(I
.getType(), 1), C2
);
2524 return BinaryOperator::CreateMul(Op0
, CP1
);
2529 if (!Op0
->getType()->isFPOrFPVector())
2530 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
2531 if (Op0I
->getOpcode() == Instruction::Add
) {
2532 if (Op0I
->getOperand(0) == Op1
) // (Y+X)-Y == X
2533 return ReplaceInstUsesWith(I
, Op0I
->getOperand(1));
2534 else if (Op0I
->getOperand(1) == Op1
) // (X+Y)-Y == X
2535 return ReplaceInstUsesWith(I
, Op0I
->getOperand(0));
2536 } else if (Op0I
->getOpcode() == Instruction::Sub
) {
2537 if (Op0I
->getOperand(0) == Op1
) // (X-Y)-X == -Y
2538 return BinaryOperator::CreateNeg(Op0I
->getOperand(1), I
.getName());
2543 if (Value
*X
= dyn_castFoldableMul(Op0
, C1
)) {
2544 if (X
== Op1
) // X*C - X --> X * (C-1)
2545 return BinaryOperator::CreateMul(Op1
, SubOne(C1
));
2547 ConstantInt
*C2
; // X*C1 - X*C2 -> X * (C1-C2)
2548 if (X
== dyn_castFoldableMul(Op1
, C2
))
2549 return BinaryOperator::CreateMul(X
, Subtract(C1
, C2
));
2554 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
2555 /// comparison only checks the sign bit. If it only checks the sign bit, set
2556 /// TrueIfSigned if the result of the comparison is true when the input value is
2558 static bool isSignBitCheck(ICmpInst::Predicate pred
, ConstantInt
*RHS
,
2559 bool &TrueIfSigned
) {
2561 case ICmpInst::ICMP_SLT
: // True if LHS s< 0
2562 TrueIfSigned
= true;
2563 return RHS
->isZero();
2564 case ICmpInst::ICMP_SLE
: // True if LHS s<= RHS and RHS == -1
2565 TrueIfSigned
= true;
2566 return RHS
->isAllOnesValue();
2567 case ICmpInst::ICMP_SGT
: // True if LHS s> -1
2568 TrueIfSigned
= false;
2569 return RHS
->isAllOnesValue();
2570 case ICmpInst::ICMP_UGT
:
2571 // True if LHS u> RHS and RHS == high-bit-mask - 1
2572 TrueIfSigned
= true;
2573 return RHS
->getValue() ==
2574 APInt::getSignedMaxValue(RHS
->getType()->getPrimitiveSizeInBits());
2575 case ICmpInst::ICMP_UGE
:
2576 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2577 TrueIfSigned
= true;
2578 return RHS
->getValue().isSignBit();
2584 Instruction
*InstCombiner::visitMul(BinaryOperator
&I
) {
2585 bool Changed
= SimplifyCommutative(I
);
2586 Value
*Op0
= I
.getOperand(0);
2588 if (isa
<UndefValue
>(I
.getOperand(1))) // undef * X -> 0
2589 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2591 // Simplify mul instructions with a constant RHS...
2592 if (Constant
*Op1
= dyn_cast
<Constant
>(I
.getOperand(1))) {
2593 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
2595 // ((X << C1)*C2) == (X * (C2 << C1))
2596 if (BinaryOperator
*SI
= dyn_cast
<BinaryOperator
>(Op0
))
2597 if (SI
->getOpcode() == Instruction::Shl
)
2598 if (Constant
*ShOp
= dyn_cast
<Constant
>(SI
->getOperand(1)))
2599 return BinaryOperator::CreateMul(SI
->getOperand(0),
2600 ConstantExpr::getShl(CI
, ShOp
));
2603 return ReplaceInstUsesWith(I
, Op1
); // X * 0 == 0
2604 if (CI
->equalsInt(1)) // X * 1 == X
2605 return ReplaceInstUsesWith(I
, Op0
);
2606 if (CI
->isAllOnesValue()) // X * -1 == 0 - X
2607 return BinaryOperator::CreateNeg(Op0
, I
.getName());
2609 const APInt
& Val
= cast
<ConstantInt
>(CI
)->getValue();
2610 if (Val
.isPowerOf2()) { // Replace X*(2^C) with X << C
2611 return BinaryOperator::CreateShl(Op0
,
2612 ConstantInt::get(Op0
->getType(), Val
.logBase2()));
2614 } else if (ConstantFP
*Op1F
= dyn_cast
<ConstantFP
>(Op1
)) {
2615 if (Op1F
->isNullValue())
2616 return ReplaceInstUsesWith(I
, Op1
);
2618 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2619 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
2620 if (Op1F
->isExactlyValue(1.0))
2621 return ReplaceInstUsesWith(I
, Op0
); // Eliminate 'mul double %X, 1.0'
2622 } else if (isa
<VectorType
>(Op1
->getType())) {
2623 if (isa
<ConstantAggregateZero
>(Op1
))
2624 return ReplaceInstUsesWith(I
, Op1
);
2626 if (ConstantVector
*Op1V
= dyn_cast
<ConstantVector
>(Op1
)) {
2627 if (Op1V
->isAllOnesValue()) // X * -1 == 0 - X
2628 return BinaryOperator::CreateNeg(Op0
, I
.getName());
2630 // As above, vector X*splat(1.0) -> X in all defined cases.
2631 if (Constant
*Splat
= Op1V
->getSplatValue()) {
2632 if (ConstantFP
*F
= dyn_cast
<ConstantFP
>(Splat
))
2633 if (F
->isExactlyValue(1.0))
2634 return ReplaceInstUsesWith(I
, Op0
);
2635 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Splat
))
2636 if (CI
->equalsInt(1))
2637 return ReplaceInstUsesWith(I
, Op0
);
2642 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
))
2643 if (Op0I
->getOpcode() == Instruction::Add
&& Op0I
->hasOneUse() &&
2644 isa
<ConstantInt
>(Op0I
->getOperand(1)) && isa
<ConstantInt
>(Op1
)) {
2645 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2646 Instruction
*Add
= BinaryOperator::CreateMul(Op0I
->getOperand(0),
2648 InsertNewInstBefore(Add
, I
);
2649 Value
*C1C2
= ConstantExpr::getMul(Op1
,
2650 cast
<Constant
>(Op0I
->getOperand(1)));
2651 return BinaryOperator::CreateAdd(Add
, C1C2
);
2655 // Try to fold constant mul into select arguments.
2656 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
2657 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2660 if (isa
<PHINode
>(Op0
))
2661 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2665 if (Value
*Op0v
= dyn_castNegVal(Op0
)) // -X * -Y = X*Y
2666 if (Value
*Op1v
= dyn_castNegVal(I
.getOperand(1)))
2667 return BinaryOperator::CreateMul(Op0v
, Op1v
);
2669 // (X / Y) * Y = X - (X % Y)
2670 // (X / Y) * -Y = (X % Y) - X
2672 Value
*Op1
= I
.getOperand(1);
2673 BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Op0
);
2675 (BO
->getOpcode() != Instruction::UDiv
&&
2676 BO
->getOpcode() != Instruction::SDiv
)) {
2678 BO
= dyn_cast
<BinaryOperator
>(I
.getOperand(1));
2680 Value
*Neg
= dyn_castNegVal(Op1
);
2681 if (BO
&& BO
->hasOneUse() &&
2682 (BO
->getOperand(1) == Op1
|| BO
->getOperand(1) == Neg
) &&
2683 (BO
->getOpcode() == Instruction::UDiv
||
2684 BO
->getOpcode() == Instruction::SDiv
)) {
2685 Value
*Op0BO
= BO
->getOperand(0), *Op1BO
= BO
->getOperand(1);
2688 if (BO
->getOpcode() == Instruction::UDiv
)
2689 Rem
= BinaryOperator::CreateURem(Op0BO
, Op1BO
);
2691 Rem
= BinaryOperator::CreateSRem(Op0BO
, Op1BO
);
2693 InsertNewInstBefore(Rem
, I
);
2697 return BinaryOperator::CreateSub(Op0BO
, Rem
);
2699 return BinaryOperator::CreateSub(Rem
, Op0BO
);
2703 if (I
.getType() == Type::Int1Ty
)
2704 return BinaryOperator::CreateAnd(Op0
, I
.getOperand(1));
2706 // If one of the operands of the multiply is a cast from a boolean value, then
2707 // we know the bool is either zero or one, so this is a 'masking' multiply.
2708 // See if we can simplify things based on how the boolean was originally
2710 CastInst
*BoolCast
= 0;
2711 if (ZExtInst
*CI
= dyn_cast
<ZExtInst
>(Op0
))
2712 if (CI
->getOperand(0)->getType() == Type::Int1Ty
)
2715 if (ZExtInst
*CI
= dyn_cast
<ZExtInst
>(I
.getOperand(1)))
2716 if (CI
->getOperand(0)->getType() == Type::Int1Ty
)
2719 if (ICmpInst
*SCI
= dyn_cast
<ICmpInst
>(BoolCast
->getOperand(0))) {
2720 Value
*SCIOp0
= SCI
->getOperand(0), *SCIOp1
= SCI
->getOperand(1);
2721 const Type
*SCOpTy
= SCIOp0
->getType();
2724 // If the icmp is true iff the sign bit of X is set, then convert this
2725 // multiply into a shift/and combination.
2726 if (isa
<ConstantInt
>(SCIOp1
) &&
2727 isSignBitCheck(SCI
->getPredicate(), cast
<ConstantInt
>(SCIOp1
), TIS
) &&
2729 // Shift the X value right to turn it into "all signbits".
2730 Constant
*Amt
= ConstantInt::get(SCIOp0
->getType(),
2731 SCOpTy
->getPrimitiveSizeInBits()-1);
2733 InsertNewInstBefore(
2734 BinaryOperator::Create(Instruction::AShr
, SCIOp0
, Amt
,
2735 BoolCast
->getOperand(0)->getName()+
2738 // If the multiply type is not the same as the source type, sign extend
2739 // or truncate to the multiply type.
2740 if (I
.getType() != V
->getType()) {
2741 uint32_t SrcBits
= V
->getType()->getPrimitiveSizeInBits();
2742 uint32_t DstBits
= I
.getType()->getPrimitiveSizeInBits();
2743 Instruction::CastOps opcode
=
2744 (SrcBits
== DstBits
? Instruction::BitCast
:
2745 (SrcBits
< DstBits
? Instruction::SExt
: Instruction::Trunc
));
2746 V
= InsertCastBefore(opcode
, V
, I
.getType(), I
);
2749 Value
*OtherOp
= Op0
== BoolCast
? I
.getOperand(1) : Op0
;
2750 return BinaryOperator::CreateAnd(V
, OtherOp
);
2755 return Changed
? &I
: 0;
2758 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
2760 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator
&I
) {
2761 SelectInst
*SI
= cast
<SelectInst
>(I
.getOperand(1));
2763 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
2764 int NonNullOperand
= -1;
2765 if (Constant
*ST
= dyn_cast
<Constant
>(SI
->getOperand(1)))
2766 if (ST
->isNullValue())
2768 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
2769 if (Constant
*ST
= dyn_cast
<Constant
>(SI
->getOperand(2)))
2770 if (ST
->isNullValue())
2773 if (NonNullOperand
== -1)
2776 Value
*SelectCond
= SI
->getOperand(0);
2778 // Change the div/rem to use 'Y' instead of the select.
2779 I
.setOperand(1, SI
->getOperand(NonNullOperand
));
2781 // Okay, we know we replace the operand of the div/rem with 'Y' with no
2782 // problem. However, the select, or the condition of the select may have
2783 // multiple uses. Based on our knowledge that the operand must be non-zero,
2784 // propagate the known value for the select into other uses of it, and
2785 // propagate a known value of the condition into its other users.
2787 // If the select and condition only have a single use, don't bother with this,
2789 if (SI
->use_empty() && SelectCond
->hasOneUse())
2792 // Scan the current block backward, looking for other uses of SI.
2793 BasicBlock::iterator BBI
= &I
, BBFront
= I
.getParent()->begin();
2795 while (BBI
!= BBFront
) {
2797 // If we found a call to a function, we can't assume it will return, so
2798 // information from below it cannot be propagated above it.
2799 if (isa
<CallInst
>(BBI
) && !isa
<IntrinsicInst
>(BBI
))
2802 // Replace uses of the select or its condition with the known values.
2803 for (Instruction::op_iterator I
= BBI
->op_begin(), E
= BBI
->op_end();
2806 *I
= SI
->getOperand(NonNullOperand
);
2808 } else if (*I
== SelectCond
) {
2809 *I
= NonNullOperand
== 1 ? ConstantInt::getTrue() :
2810 ConstantInt::getFalse();
2815 // If we past the instruction, quit looking for it.
2818 if (&*BBI
== SelectCond
)
2821 // If we ran out of things to eliminate, break out of the loop.
2822 if (SelectCond
== 0 && SI
== 0)
2830 /// This function implements the transforms on div instructions that work
2831 /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2832 /// used by the visitors to those instructions.
2833 /// @brief Transforms common to all three div instructions
2834 Instruction
*InstCombiner::commonDivTransforms(BinaryOperator
&I
) {
2835 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2837 // undef / X -> 0 for integer.
2838 // undef / X -> undef for FP (the undef could be a snan).
2839 if (isa
<UndefValue
>(Op0
)) {
2840 if (Op0
->getType()->isFPOrFPVector())
2841 return ReplaceInstUsesWith(I
, Op0
);
2842 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2845 // X / undef -> undef
2846 if (isa
<UndefValue
>(Op1
))
2847 return ReplaceInstUsesWith(I
, Op1
);
2852 /// This function implements the transforms common to both integer division
2853 /// instructions (udiv and sdiv). It is called by the visitors to those integer
2854 /// division instructions.
2855 /// @brief Common integer divide transforms
2856 Instruction
*InstCombiner::commonIDivTransforms(BinaryOperator
&I
) {
2857 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2859 // (sdiv X, X) --> 1 (udiv X, X) --> 1
2861 if (const VectorType
*Ty
= dyn_cast
<VectorType
>(I
.getType())) {
2862 ConstantInt
*CI
= ConstantInt::get(Ty
->getElementType(), 1);
2863 std::vector
<Constant
*> Elts(Ty
->getNumElements(), CI
);
2864 return ReplaceInstUsesWith(I
, ConstantVector::get(Elts
));
2867 ConstantInt
*CI
= ConstantInt::get(I
.getType(), 1);
2868 return ReplaceInstUsesWith(I
, CI
);
2871 if (Instruction
*Common
= commonDivTransforms(I
))
2874 // Handle cases involving: [su]div X, (select Cond, Y, Z)
2875 // This does not apply for fdiv.
2876 if (isa
<SelectInst
>(Op1
) && SimplifyDivRemOfSelect(I
))
2879 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
2881 if (RHS
->equalsInt(1))
2882 return ReplaceInstUsesWith(I
, Op0
);
2884 // (X / C1) / C2 -> X / (C1*C2)
2885 if (Instruction
*LHS
= dyn_cast
<Instruction
>(Op0
))
2886 if (Instruction::BinaryOps(LHS
->getOpcode()) == I
.getOpcode())
2887 if (ConstantInt
*LHSRHS
= dyn_cast
<ConstantInt
>(LHS
->getOperand(1))) {
2888 if (MultiplyOverflows(RHS
, LHSRHS
, I
.getOpcode()==Instruction::SDiv
))
2889 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2891 return BinaryOperator::Create(I
.getOpcode(), LHS
->getOperand(0),
2892 Multiply(RHS
, LHSRHS
));
2895 if (!RHS
->isZero()) { // avoid X udiv 0
2896 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
2897 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
2899 if (isa
<PHINode
>(Op0
))
2900 if (Instruction
*NV
= FoldOpIntoPhi(I
))
2905 // 0 / X == 0, we don't need to preserve faults!
2906 if (ConstantInt
*LHS
= dyn_cast
<ConstantInt
>(Op0
))
2907 if (LHS
->equalsInt(0))
2908 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
2910 // It can't be division by zero, hence it must be division by one.
2911 if (I
.getType() == Type::Int1Ty
)
2912 return ReplaceInstUsesWith(I
, Op0
);
2914 if (ConstantVector
*Op1V
= dyn_cast
<ConstantVector
>(Op1
)) {
2915 if (ConstantInt
*X
= cast_or_null
<ConstantInt
>(Op1V
->getSplatValue()))
2918 return ReplaceInstUsesWith(I
, Op0
);
2924 Instruction
*InstCombiner::visitUDiv(BinaryOperator
&I
) {
2925 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2927 // Handle the integer div common cases
2928 if (Instruction
*Common
= commonIDivTransforms(I
))
2931 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Op1
)) {
2932 // X udiv C^2 -> X >> C
2933 // Check to see if this is an unsigned division with an exact power of 2,
2934 // if so, convert to a right shift.
2935 if (C
->getValue().isPowerOf2()) // 0 not included in isPowerOf2
2936 return BinaryOperator::CreateLShr(Op0
,
2937 ConstantInt::get(Op0
->getType(), C
->getValue().logBase2()));
2939 // X udiv C, where C >= signbit
2940 if (C
->getValue().isNegative()) {
2941 Value
*IC
= InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_ULT
, Op0
, C
),
2943 return SelectInst::Create(IC
, Constant::getNullValue(I
.getType()),
2944 ConstantInt::get(I
.getType(), 1));
2948 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2949 if (BinaryOperator
*RHSI
= dyn_cast
<BinaryOperator
>(I
.getOperand(1))) {
2950 if (RHSI
->getOpcode() == Instruction::Shl
&&
2951 isa
<ConstantInt
>(RHSI
->getOperand(0))) {
2952 const APInt
& C1
= cast
<ConstantInt
>(RHSI
->getOperand(0))->getValue();
2953 if (C1
.isPowerOf2()) {
2954 Value
*N
= RHSI
->getOperand(1);
2955 const Type
*NTy
= N
->getType();
2956 if (uint32_t C2
= C1
.logBase2()) {
2957 Constant
*C2V
= ConstantInt::get(NTy
, C2
);
2958 N
= InsertNewInstBefore(BinaryOperator::CreateAdd(N
, C2V
, "tmp"), I
);
2960 return BinaryOperator::CreateLShr(Op0
, N
);
2965 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2966 // where C1&C2 are powers of two.
2967 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
2968 if (ConstantInt
*STO
= dyn_cast
<ConstantInt
>(SI
->getOperand(1)))
2969 if (ConstantInt
*SFO
= dyn_cast
<ConstantInt
>(SI
->getOperand(2))) {
2970 const APInt
&TVA
= STO
->getValue(), &FVA
= SFO
->getValue();
2971 if (TVA
.isPowerOf2() && FVA
.isPowerOf2()) {
2972 // Compute the shift amounts
2973 uint32_t TSA
= TVA
.logBase2(), FSA
= FVA
.logBase2();
2974 // Construct the "on true" case of the select
2975 Constant
*TC
= ConstantInt::get(Op0
->getType(), TSA
);
2976 Instruction
*TSI
= BinaryOperator::CreateLShr(
2977 Op0
, TC
, SI
->getName()+".t");
2978 TSI
= InsertNewInstBefore(TSI
, I
);
2980 // Construct the "on false" case of the select
2981 Constant
*FC
= ConstantInt::get(Op0
->getType(), FSA
);
2982 Instruction
*FSI
= BinaryOperator::CreateLShr(
2983 Op0
, FC
, SI
->getName()+".f");
2984 FSI
= InsertNewInstBefore(FSI
, I
);
2986 // construct the select instruction and return it.
2987 return SelectInst::Create(SI
->getOperand(0), TSI
, FSI
, SI
->getName());
2993 Instruction
*InstCombiner::visitSDiv(BinaryOperator
&I
) {
2994 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
2996 // Handle the integer div common cases
2997 if (Instruction
*Common
= commonIDivTransforms(I
))
3000 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
3002 if (RHS
->isAllOnesValue())
3003 return BinaryOperator::CreateNeg(Op0
);
3006 // If the sign bits of both operands are zero (i.e. we can prove they are
3007 // unsigned inputs), turn this into a udiv.
3008 if (I
.getType()->isInteger()) {
3009 APInt
Mask(APInt::getSignBit(I
.getType()->getPrimitiveSizeInBits()));
3010 if (MaskedValueIsZero(Op1
, Mask
) && MaskedValueIsZero(Op0
, Mask
)) {
3011 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
3012 return BinaryOperator::CreateUDiv(Op0
, Op1
, I
.getName());
3019 Instruction
*InstCombiner::visitFDiv(BinaryOperator
&I
) {
3020 return commonDivTransforms(I
);
3023 /// This function implements the transforms on rem instructions that work
3024 /// regardless of the kind of rem instruction it is (urem, srem, or frem). It
3025 /// is used by the visitors to those instructions.
3026 /// @brief Transforms common to all three rem instructions
3027 Instruction
*InstCombiner::commonRemTransforms(BinaryOperator
&I
) {
3028 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3030 if (isa
<UndefValue
>(Op0
)) { // undef % X -> 0
3031 if (I
.getType()->isFPOrFPVector())
3032 return ReplaceInstUsesWith(I
, Op0
); // X % undef -> undef (could be SNaN)
3033 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
3035 if (isa
<UndefValue
>(Op1
))
3036 return ReplaceInstUsesWith(I
, Op1
); // X % undef -> undef
3038 // Handle cases involving: rem X, (select Cond, Y, Z)
3039 if (isa
<SelectInst
>(Op1
) && SimplifyDivRemOfSelect(I
))
3045 /// This function implements the transforms common to both integer remainder
3046 /// instructions (urem and srem). It is called by the visitors to those integer
3047 /// remainder instructions.
3048 /// @brief Common integer remainder transforms
3049 Instruction
*InstCombiner::commonIRemTransforms(BinaryOperator
&I
) {
3050 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3052 if (Instruction
*common
= commonRemTransforms(I
))
3055 // 0 % X == 0 for integer, we don't need to preserve faults!
3056 if (Constant
*LHS
= dyn_cast
<Constant
>(Op0
))
3057 if (LHS
->isNullValue())
3058 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
3060 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
3061 // X % 0 == undef, we don't need to preserve faults!
3062 if (RHS
->equalsInt(0))
3063 return ReplaceInstUsesWith(I
, UndefValue::get(I
.getType()));
3065 if (RHS
->equalsInt(1)) // X % 1 == 0
3066 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
3068 if (Instruction
*Op0I
= dyn_cast
<Instruction
>(Op0
)) {
3069 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0I
)) {
3070 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
3072 } else if (isa
<PHINode
>(Op0I
)) {
3073 if (Instruction
*NV
= FoldOpIntoPhi(I
))
3077 // See if we can fold away this rem instruction.
3078 if (SimplifyDemandedInstructionBits(I
))
3086 Instruction
*InstCombiner::visitURem(BinaryOperator
&I
) {
3087 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3089 if (Instruction
*common
= commonIRemTransforms(I
))
3092 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
3093 // X urem C^2 -> X and C
3094 // Check to see if this is an unsigned remainder with an exact power of 2,
3095 // if so, convert to a bitwise and.
3096 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(RHS
))
3097 if (C
->getValue().isPowerOf2())
3098 return BinaryOperator::CreateAnd(Op0
, SubOne(C
));
3101 if (Instruction
*RHSI
= dyn_cast
<Instruction
>(I
.getOperand(1))) {
3102 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
3103 if (RHSI
->getOpcode() == Instruction::Shl
&&
3104 isa
<ConstantInt
>(RHSI
->getOperand(0))) {
3105 if (cast
<ConstantInt
>(RHSI
->getOperand(0))->getValue().isPowerOf2()) {
3106 Constant
*N1
= ConstantInt::getAllOnesValue(I
.getType());
3107 Value
*Add
= InsertNewInstBefore(BinaryOperator::CreateAdd(RHSI
, N1
,
3109 return BinaryOperator::CreateAnd(Op0
, Add
);
3114 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
3115 // where C1&C2 are powers of two.
3116 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
)) {
3117 if (ConstantInt
*STO
= dyn_cast
<ConstantInt
>(SI
->getOperand(1)))
3118 if (ConstantInt
*SFO
= dyn_cast
<ConstantInt
>(SI
->getOperand(2))) {
3119 // STO == 0 and SFO == 0 handled above.
3120 if ((STO
->getValue().isPowerOf2()) &&
3121 (SFO
->getValue().isPowerOf2())) {
3122 Value
*TrueAnd
= InsertNewInstBefore(
3123 BinaryOperator::CreateAnd(Op0
, SubOne(STO
), SI
->getName()+".t"), I
);
3124 Value
*FalseAnd
= InsertNewInstBefore(
3125 BinaryOperator::CreateAnd(Op0
, SubOne(SFO
), SI
->getName()+".f"), I
);
3126 return SelectInst::Create(SI
->getOperand(0), TrueAnd
, FalseAnd
);
3134 Instruction
*InstCombiner::visitSRem(BinaryOperator
&I
) {
3135 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3137 // Handle the integer rem common cases
3138 if (Instruction
*common
= commonIRemTransforms(I
))
3141 if (Value
*RHSNeg
= dyn_castNegVal(Op1
))
3142 if (!isa
<Constant
>(RHSNeg
) ||
3143 (isa
<ConstantInt
>(RHSNeg
) &&
3144 cast
<ConstantInt
>(RHSNeg
)->getValue().isStrictlyPositive())) {
3146 AddUsesToWorkList(I
);
3147 I
.setOperand(1, RHSNeg
);
3151 // If the sign bits of both operands are zero (i.e. we can prove they are
3152 // unsigned inputs), turn this into a urem.
3153 if (I
.getType()->isInteger()) {
3154 APInt
Mask(APInt::getSignBit(I
.getType()->getPrimitiveSizeInBits()));
3155 if (MaskedValueIsZero(Op1
, Mask
) && MaskedValueIsZero(Op0
, Mask
)) {
3156 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
3157 return BinaryOperator::CreateURem(Op0
, Op1
, I
.getName());
3161 // If it's a constant vector, flip any negative values positive.
3162 if (ConstantVector
*RHSV
= dyn_cast
<ConstantVector
>(Op1
)) {
3163 unsigned VWidth
= RHSV
->getNumOperands();
3165 bool hasNegative
= false;
3166 for (unsigned i
= 0; !hasNegative
&& i
!= VWidth
; ++i
)
3167 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(RHSV
->getOperand(i
)))
3168 if (RHS
->getValue().isNegative())
3172 std::vector
<Constant
*> Elts(VWidth
);
3173 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
3174 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(RHSV
->getOperand(i
))) {
3175 if (RHS
->getValue().isNegative())
3176 Elts
[i
] = cast
<ConstantInt
>(ConstantExpr::getNeg(RHS
));
3182 Constant
*NewRHSV
= ConstantVector::get(Elts
);
3183 if (NewRHSV
!= RHSV
) {
3184 AddUsesToWorkList(I
);
3185 I
.setOperand(1, NewRHSV
);
3194 Instruction
*InstCombiner::visitFRem(BinaryOperator
&I
) {
3195 return commonRemTransforms(I
);
3198 // isOneBitSet - Return true if there is exactly one bit set in the specified
3200 static bool isOneBitSet(const ConstantInt
*CI
) {
3201 return CI
->getValue().isPowerOf2();
3204 // isHighOnes - Return true if the constant is of the form 1+0+.
3205 // This is the same as lowones(~X).
3206 static bool isHighOnes(const ConstantInt
*CI
) {
3207 return (~CI
->getValue() + 1).isPowerOf2();
3210 /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
3211 /// are carefully arranged to allow folding of expressions such as:
3213 /// (A < B) | (A > B) --> (A != B)
3215 /// Note that this is only valid if the first and second predicates have the
3216 /// same sign. Is illegal to do: (A u< B) | (A s> B)
3218 /// Three bits are used to represent the condition, as follows:
3223 /// <=> Value Definition
3224 /// 000 0 Always false
3231 /// 111 7 Always true
3233 static unsigned getICmpCode(const ICmpInst
*ICI
) {
3234 switch (ICI
->getPredicate()) {
3236 case ICmpInst::ICMP_UGT
: return 1; // 001
3237 case ICmpInst::ICMP_SGT
: return 1; // 001
3238 case ICmpInst::ICMP_EQ
: return 2; // 010
3239 case ICmpInst::ICMP_UGE
: return 3; // 011
3240 case ICmpInst::ICMP_SGE
: return 3; // 011
3241 case ICmpInst::ICMP_ULT
: return 4; // 100
3242 case ICmpInst::ICMP_SLT
: return 4; // 100
3243 case ICmpInst::ICMP_NE
: return 5; // 101
3244 case ICmpInst::ICMP_ULE
: return 6; // 110
3245 case ICmpInst::ICMP_SLE
: return 6; // 110
3248 assert(0 && "Invalid ICmp predicate!");
3253 /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
3254 /// predicate into a three bit mask. It also returns whether it is an ordered
3255 /// predicate by reference.
3256 static unsigned getFCmpCode(FCmpInst::Predicate CC
, bool &isOrdered
) {
3259 case FCmpInst::FCMP_ORD
: isOrdered
= true; return 0; // 000
3260 case FCmpInst::FCMP_UNO
: return 0; // 000
3261 case FCmpInst::FCMP_OGT
: isOrdered
= true; return 1; // 001
3262 case FCmpInst::FCMP_UGT
: return 1; // 001
3263 case FCmpInst::FCMP_OEQ
: isOrdered
= true; return 2; // 010
3264 case FCmpInst::FCMP_UEQ
: return 2; // 010
3265 case FCmpInst::FCMP_OGE
: isOrdered
= true; return 3; // 011
3266 case FCmpInst::FCMP_UGE
: return 3; // 011
3267 case FCmpInst::FCMP_OLT
: isOrdered
= true; return 4; // 100
3268 case FCmpInst::FCMP_ULT
: return 4; // 100
3269 case FCmpInst::FCMP_ONE
: isOrdered
= true; return 5; // 101
3270 case FCmpInst::FCMP_UNE
: return 5; // 101
3271 case FCmpInst::FCMP_OLE
: isOrdered
= true; return 6; // 110
3272 case FCmpInst::FCMP_ULE
: return 6; // 110
3275 // Not expecting FCMP_FALSE and FCMP_TRUE;
3276 assert(0 && "Unexpected FCmp predicate!");
3281 /// getICmpValue - This is the complement of getICmpCode, which turns an
3282 /// opcode and two operands into either a constant true or false, or a brand
3283 /// new ICmp instruction. The sign is passed in to determine which kind
3284 /// of predicate to use in the new icmp instruction.
3285 static Value
*getICmpValue(bool sign
, unsigned code
, Value
*LHS
, Value
*RHS
) {
3287 default: assert(0 && "Illegal ICmp code!");
3288 case 0: return ConstantInt::getFalse();
3291 return new ICmpInst(ICmpInst::ICMP_SGT
, LHS
, RHS
);
3293 return new ICmpInst(ICmpInst::ICMP_UGT
, LHS
, RHS
);
3294 case 2: return new ICmpInst(ICmpInst::ICMP_EQ
, LHS
, RHS
);
3297 return new ICmpInst(ICmpInst::ICMP_SGE
, LHS
, RHS
);
3299 return new ICmpInst(ICmpInst::ICMP_UGE
, LHS
, RHS
);
3302 return new ICmpInst(ICmpInst::ICMP_SLT
, LHS
, RHS
);
3304 return new ICmpInst(ICmpInst::ICMP_ULT
, LHS
, RHS
);
3305 case 5: return new ICmpInst(ICmpInst::ICMP_NE
, LHS
, RHS
);
3308 return new ICmpInst(ICmpInst::ICMP_SLE
, LHS
, RHS
);
3310 return new ICmpInst(ICmpInst::ICMP_ULE
, LHS
, RHS
);
3311 case 7: return ConstantInt::getTrue();
3315 /// getFCmpValue - This is the complement of getFCmpCode, which turns an
3316 /// opcode and two operands into either a FCmp instruction. isordered is passed
3317 /// in to determine which kind of predicate to use in the new fcmp instruction.
3318 static Value
*getFCmpValue(bool isordered
, unsigned code
,
3319 Value
*LHS
, Value
*RHS
) {
3321 default: assert(0 && "Illegal FCmp code!");
3324 return new FCmpInst(FCmpInst::FCMP_ORD
, LHS
, RHS
);
3326 return new FCmpInst(FCmpInst::FCMP_UNO
, LHS
, RHS
);
3329 return new FCmpInst(FCmpInst::FCMP_OGT
, LHS
, RHS
);
3331 return new FCmpInst(FCmpInst::FCMP_UGT
, LHS
, RHS
);
3334 return new FCmpInst(FCmpInst::FCMP_OEQ
, LHS
, RHS
);
3336 return new FCmpInst(FCmpInst::FCMP_UEQ
, LHS
, RHS
);
3339 return new FCmpInst(FCmpInst::FCMP_OGE
, LHS
, RHS
);
3341 return new FCmpInst(FCmpInst::FCMP_UGE
, LHS
, RHS
);
3344 return new FCmpInst(FCmpInst::FCMP_OLT
, LHS
, RHS
);
3346 return new FCmpInst(FCmpInst::FCMP_ULT
, LHS
, RHS
);
3349 return new FCmpInst(FCmpInst::FCMP_ONE
, LHS
, RHS
);
3351 return new FCmpInst(FCmpInst::FCMP_UNE
, LHS
, RHS
);
3354 return new FCmpInst(FCmpInst::FCMP_OLE
, LHS
, RHS
);
3356 return new FCmpInst(FCmpInst::FCMP_ULE
, LHS
, RHS
);
3357 case 7: return ConstantInt::getTrue();
3361 /// PredicatesFoldable - Return true if both predicates match sign or if at
3362 /// least one of them is an equality comparison (which is signless).
3363 static bool PredicatesFoldable(ICmpInst::Predicate p1
, ICmpInst::Predicate p2
) {
3364 return (ICmpInst::isSignedPredicate(p1
) == ICmpInst::isSignedPredicate(p2
)) ||
3365 (ICmpInst::isSignedPredicate(p1
) && ICmpInst::isEquality(p2
)) ||
3366 (ICmpInst::isSignedPredicate(p2
) && ICmpInst::isEquality(p1
));
3370 // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3371 struct FoldICmpLogical
{
3374 ICmpInst::Predicate pred
;
3375 FoldICmpLogical(InstCombiner
&ic
, ICmpInst
*ICI
)
3376 : IC(ic
), LHS(ICI
->getOperand(0)), RHS(ICI
->getOperand(1)),
3377 pred(ICI
->getPredicate()) {}
3378 bool shouldApply(Value
*V
) const {
3379 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(V
))
3380 if (PredicatesFoldable(pred
, ICI
->getPredicate()))
3381 return ((ICI
->getOperand(0) == LHS
&& ICI
->getOperand(1) == RHS
) ||
3382 (ICI
->getOperand(0) == RHS
&& ICI
->getOperand(1) == LHS
));
3385 Instruction
*apply(Instruction
&Log
) const {
3386 ICmpInst
*ICI
= cast
<ICmpInst
>(Log
.getOperand(0));
3387 if (ICI
->getOperand(0) != LHS
) {
3388 assert(ICI
->getOperand(1) == LHS
);
3389 ICI
->swapOperands(); // Swap the LHS and RHS of the ICmp
3392 ICmpInst
*RHSICI
= cast
<ICmpInst
>(Log
.getOperand(1));
3393 unsigned LHSCode
= getICmpCode(ICI
);
3394 unsigned RHSCode
= getICmpCode(RHSICI
);
3396 switch (Log
.getOpcode()) {
3397 case Instruction::And
: Code
= LHSCode
& RHSCode
; break;
3398 case Instruction::Or
: Code
= LHSCode
| RHSCode
; break;
3399 case Instruction::Xor
: Code
= LHSCode
^ RHSCode
; break;
3400 default: assert(0 && "Illegal logical opcode!"); return 0;
3403 bool isSigned
= ICmpInst::isSignedPredicate(RHSICI
->getPredicate()) ||
3404 ICmpInst::isSignedPredicate(ICI
->getPredicate());
3406 Value
*RV
= getICmpValue(isSigned
, Code
, LHS
, RHS
);
3407 if (Instruction
*I
= dyn_cast
<Instruction
>(RV
))
3409 // Otherwise, it's a constant boolean value...
3410 return IC
.ReplaceInstUsesWith(Log
, RV
);
3413 } // end anonymous namespace
3415 // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3416 // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3417 // guaranteed to be a binary operator.
3418 Instruction
*InstCombiner::OptAndOp(Instruction
*Op
,
3420 ConstantInt
*AndRHS
,
3421 BinaryOperator
&TheAnd
) {
3422 Value
*X
= Op
->getOperand(0);
3423 Constant
*Together
= 0;
3425 Together
= And(AndRHS
, OpRHS
);
3427 switch (Op
->getOpcode()) {
3428 case Instruction::Xor
:
3429 if (Op
->hasOneUse()) {
3430 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
3431 Instruction
*And
= BinaryOperator::CreateAnd(X
, AndRHS
);
3432 InsertNewInstBefore(And
, TheAnd
);
3434 return BinaryOperator::CreateXor(And
, Together
);
3437 case Instruction::Or
:
3438 if (Together
== AndRHS
) // (X | C) & C --> C
3439 return ReplaceInstUsesWith(TheAnd
, AndRHS
);
3441 if (Op
->hasOneUse() && Together
!= OpRHS
) {
3442 // (X | C1) & C2 --> (X | (C1&C2)) & C2
3443 Instruction
*Or
= BinaryOperator::CreateOr(X
, Together
);
3444 InsertNewInstBefore(Or
, TheAnd
);
3446 return BinaryOperator::CreateAnd(Or
, AndRHS
);
3449 case Instruction::Add
:
3450 if (Op
->hasOneUse()) {
3451 // Adding a one to a single bit bit-field should be turned into an XOR
3452 // of the bit. First thing to check is to see if this AND is with a
3453 // single bit constant.
3454 const APInt
& AndRHSV
= cast
<ConstantInt
>(AndRHS
)->getValue();
3456 // If there is only one bit set...
3457 if (isOneBitSet(cast
<ConstantInt
>(AndRHS
))) {
3458 // Ok, at this point, we know that we are masking the result of the
3459 // ADD down to exactly one bit. If the constant we are adding has
3460 // no bits set below this bit, then we can eliminate the ADD.
3461 const APInt
& AddRHS
= cast
<ConstantInt
>(OpRHS
)->getValue();
3463 // Check to see if any bits below the one bit set in AndRHSV are set.
3464 if ((AddRHS
& (AndRHSV
-1)) == 0) {
3465 // If not, the only thing that can effect the output of the AND is
3466 // the bit specified by AndRHSV. If that bit is set, the effect of
3467 // the XOR is to toggle the bit. If it is clear, then the ADD has
3469 if ((AddRHS
& AndRHSV
) == 0) { // Bit is not set, noop
3470 TheAnd
.setOperand(0, X
);
3473 // Pull the XOR out of the AND.
3474 Instruction
*NewAnd
= BinaryOperator::CreateAnd(X
, AndRHS
);
3475 InsertNewInstBefore(NewAnd
, TheAnd
);
3476 NewAnd
->takeName(Op
);
3477 return BinaryOperator::CreateXor(NewAnd
, AndRHS
);
3484 case Instruction::Shl
: {
3485 // We know that the AND will not produce any of the bits shifted in, so if
3486 // the anded constant includes them, clear them now!
3488 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
3489 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
3490 APInt
ShlMask(APInt::getHighBitsSet(BitWidth
, BitWidth
-OpRHSVal
));
3491 ConstantInt
*CI
= ConstantInt::get(AndRHS
->getValue() & ShlMask
);
3493 if (CI
->getValue() == ShlMask
) {
3494 // Masking out bits that the shift already masks
3495 return ReplaceInstUsesWith(TheAnd
, Op
); // No need for the and.
3496 } else if (CI
!= AndRHS
) { // Reducing bits set in and.
3497 TheAnd
.setOperand(1, CI
);
3502 case Instruction::LShr
:
3504 // We know that the AND will not produce any of the bits shifted in, so if
3505 // the anded constant includes them, clear them now! This only applies to
3506 // unsigned shifts, because a signed shr may bring in set bits!
3508 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
3509 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
3510 APInt
ShrMask(APInt::getLowBitsSet(BitWidth
, BitWidth
- OpRHSVal
));
3511 ConstantInt
*CI
= ConstantInt::get(AndRHS
->getValue() & ShrMask
);
3513 if (CI
->getValue() == ShrMask
) {
3514 // Masking out bits that the shift already masks.
3515 return ReplaceInstUsesWith(TheAnd
, Op
);
3516 } else if (CI
!= AndRHS
) {
3517 TheAnd
.setOperand(1, CI
); // Reduce bits set in and cst.
3522 case Instruction::AShr
:
3524 // See if this is shifting in some sign extension, then masking it out
3526 if (Op
->hasOneUse()) {
3527 uint32_t BitWidth
= AndRHS
->getType()->getBitWidth();
3528 uint32_t OpRHSVal
= OpRHS
->getLimitedValue(BitWidth
);
3529 APInt
ShrMask(APInt::getLowBitsSet(BitWidth
, BitWidth
- OpRHSVal
));
3530 Constant
*C
= ConstantInt::get(AndRHS
->getValue() & ShrMask
);
3531 if (C
== AndRHS
) { // Masking out bits shifted in.
3532 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3533 // Make the argument unsigned.
3534 Value
*ShVal
= Op
->getOperand(0);
3535 ShVal
= InsertNewInstBefore(
3536 BinaryOperator::CreateLShr(ShVal
, OpRHS
,
3537 Op
->getName()), TheAnd
);
3538 return BinaryOperator::CreateAnd(ShVal
, AndRHS
, TheAnd
.getName());
3547 /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3548 /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3549 /// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3550 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
3551 /// insert new instructions.
3552 Instruction
*InstCombiner::InsertRangeTest(Value
*V
, Constant
*Lo
, Constant
*Hi
,
3553 bool isSigned
, bool Inside
,
3555 assert(cast
<ConstantInt
>(ConstantExpr::getICmp((isSigned
?
3556 ICmpInst::ICMP_SLE
:ICmpInst::ICMP_ULE
), Lo
, Hi
))->getZExtValue() &&
3557 "Lo is not <= Hi in range emission code!");
3560 if (Lo
== Hi
) // Trivially false.
3561 return new ICmpInst(ICmpInst::ICMP_NE
, V
, V
);
3563 // V >= Min && V < Hi --> V < Hi
3564 if (cast
<ConstantInt
>(Lo
)->isMinValue(isSigned
)) {
3565 ICmpInst::Predicate pred
= (isSigned
?
3566 ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
);
3567 return new ICmpInst(pred
, V
, Hi
);
3570 // Emit V-Lo <u Hi-Lo
3571 Constant
*NegLo
= ConstantExpr::getNeg(Lo
);
3572 Instruction
*Add
= BinaryOperator::CreateAdd(V
, NegLo
, V
->getName()+".off");
3573 InsertNewInstBefore(Add
, IB
);
3574 Constant
*UpperBound
= ConstantExpr::getAdd(NegLo
, Hi
);
3575 return new ICmpInst(ICmpInst::ICMP_ULT
, Add
, UpperBound
);
3578 if (Lo
== Hi
) // Trivially true.
3579 return new ICmpInst(ICmpInst::ICMP_EQ
, V
, V
);
3581 // V < Min || V >= Hi -> V > Hi-1
3582 Hi
= SubOne(cast
<ConstantInt
>(Hi
));
3583 if (cast
<ConstantInt
>(Lo
)->isMinValue(isSigned
)) {
3584 ICmpInst::Predicate pred
= (isSigned
?
3585 ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
);
3586 return new ICmpInst(pred
, V
, Hi
);
3589 // Emit V-Lo >u Hi-1-Lo
3590 // Note that Hi has already had one subtracted from it, above.
3591 ConstantInt
*NegLo
= cast
<ConstantInt
>(ConstantExpr::getNeg(Lo
));
3592 Instruction
*Add
= BinaryOperator::CreateAdd(V
, NegLo
, V
->getName()+".off");
3593 InsertNewInstBefore(Add
, IB
);
3594 Constant
*LowerBound
= ConstantExpr::getAdd(NegLo
, Hi
);
3595 return new ICmpInst(ICmpInst::ICMP_UGT
, Add
, LowerBound
);
3598 // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3599 // any number of 0s on either side. The 1s are allowed to wrap from LSB to
3600 // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3601 // not, since all 1s are not contiguous.
3602 static bool isRunOfOnes(ConstantInt
*Val
, uint32_t &MB
, uint32_t &ME
) {
3603 const APInt
& V
= Val
->getValue();
3604 uint32_t BitWidth
= Val
->getType()->getBitWidth();
3605 if (!APIntOps::isShiftedMask(BitWidth
, V
)) return false;
3607 // look for the first zero bit after the run of ones
3608 MB
= BitWidth
- ((V
- 1) ^ V
).countLeadingZeros();
3609 // look for the first non-zero bit
3610 ME
= V
.getActiveBits();
3614 /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3615 /// where isSub determines whether the operator is a sub. If we can fold one of
3616 /// the following xforms:
3618 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3619 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3620 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3622 /// return (A +/- B).
3624 Value
*InstCombiner::FoldLogicalPlusAnd(Value
*LHS
, Value
*RHS
,
3625 ConstantInt
*Mask
, bool isSub
,
3627 Instruction
*LHSI
= dyn_cast
<Instruction
>(LHS
);
3628 if (!LHSI
|| LHSI
->getNumOperands() != 2 ||
3629 !isa
<ConstantInt
>(LHSI
->getOperand(1))) return 0;
3631 ConstantInt
*N
= cast
<ConstantInt
>(LHSI
->getOperand(1));
3633 switch (LHSI
->getOpcode()) {
3635 case Instruction::And
:
3636 if (And(N
, Mask
) == Mask
) {
3637 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3638 if ((Mask
->getValue().countLeadingZeros() +
3639 Mask
->getValue().countPopulation()) ==
3640 Mask
->getValue().getBitWidth())
3643 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3644 // part, we don't need any explicit masks to take them out of A. If that
3645 // is all N is, ignore it.
3646 uint32_t MB
= 0, ME
= 0;
3647 if (isRunOfOnes(Mask
, MB
, ME
)) { // begin/end bit of run, inclusive
3648 uint32_t BitWidth
= cast
<IntegerType
>(RHS
->getType())->getBitWidth();
3649 APInt
Mask(APInt::getLowBitsSet(BitWidth
, MB
-1));
3650 if (MaskedValueIsZero(RHS
, Mask
))
3655 case Instruction::Or
:
3656 case Instruction::Xor
:
3657 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3658 if ((Mask
->getValue().countLeadingZeros() +
3659 Mask
->getValue().countPopulation()) == Mask
->getValue().getBitWidth()
3660 && And(N
, Mask
)->isZero())
3667 New
= BinaryOperator::CreateSub(LHSI
->getOperand(0), RHS
, "fold");
3669 New
= BinaryOperator::CreateAdd(LHSI
->getOperand(0), RHS
, "fold");
3670 return InsertNewInstBefore(New
, I
);
3673 /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
3674 Instruction
*InstCombiner::FoldAndOfICmps(Instruction
&I
,
3675 ICmpInst
*LHS
, ICmpInst
*RHS
) {
3677 ConstantInt
*LHSCst
, *RHSCst
;
3678 ICmpInst::Predicate LHSCC
, RHSCC
;
3680 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
3681 if (!match(LHS
, m_ICmp(LHSCC
, m_Value(Val
), m_ConstantInt(LHSCst
))) ||
3682 !match(RHS
, m_ICmp(RHSCC
, m_Value(Val2
), m_ConstantInt(RHSCst
))))
3685 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
3686 // where C is a power of 2
3687 if (LHSCst
== RHSCst
&& LHSCC
== RHSCC
&& LHSCC
== ICmpInst::ICMP_ULT
&&
3688 LHSCst
->getValue().isPowerOf2()) {
3689 Instruction
*NewOr
= BinaryOperator::CreateOr(Val
, Val2
);
3690 InsertNewInstBefore(NewOr
, I
);
3691 return new ICmpInst(LHSCC
, NewOr
, LHSCst
);
3694 // From here on, we only handle:
3695 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
3696 if (Val
!= Val2
) return 0;
3698 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
3699 if (LHSCC
== ICmpInst::ICMP_UGE
|| LHSCC
== ICmpInst::ICMP_ULE
||
3700 RHSCC
== ICmpInst::ICMP_UGE
|| RHSCC
== ICmpInst::ICMP_ULE
||
3701 LHSCC
== ICmpInst::ICMP_SGE
|| LHSCC
== ICmpInst::ICMP_SLE
||
3702 RHSCC
== ICmpInst::ICMP_SGE
|| RHSCC
== ICmpInst::ICMP_SLE
)
3705 // We can't fold (ugt x, C) & (sgt x, C2).
3706 if (!PredicatesFoldable(LHSCC
, RHSCC
))
3709 // Ensure that the larger constant is on the RHS.
3711 if (ICmpInst::isSignedPredicate(LHSCC
) ||
3712 (ICmpInst::isEquality(LHSCC
) &&
3713 ICmpInst::isSignedPredicate(RHSCC
)))
3714 ShouldSwap
= LHSCst
->getValue().sgt(RHSCst
->getValue());
3716 ShouldSwap
= LHSCst
->getValue().ugt(RHSCst
->getValue());
3719 std::swap(LHS
, RHS
);
3720 std::swap(LHSCst
, RHSCst
);
3721 std::swap(LHSCC
, RHSCC
);
3724 // At this point, we know we have have two icmp instructions
3725 // comparing a value against two constants and and'ing the result
3726 // together. Because of the above check, we know that we only have
3727 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3728 // (from the FoldICmpLogical check above), that the two constants
3729 // are not equal and that the larger constant is on the RHS
3730 assert(LHSCst
!= RHSCst
&& "Compares not folded above?");
3733 default: assert(0 && "Unknown integer condition code!");
3734 case ICmpInst::ICMP_EQ
:
3736 default: assert(0 && "Unknown integer condition code!");
3737 case ICmpInst::ICMP_EQ
: // (X == 13 & X == 15) -> false
3738 case ICmpInst::ICMP_UGT
: // (X == 13 & X > 15) -> false
3739 case ICmpInst::ICMP_SGT
: // (X == 13 & X > 15) -> false
3740 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
3741 case ICmpInst::ICMP_NE
: // (X == 13 & X != 15) -> X == 13
3742 case ICmpInst::ICMP_ULT
: // (X == 13 & X < 15) -> X == 13
3743 case ICmpInst::ICMP_SLT
: // (X == 13 & X < 15) -> X == 13
3744 return ReplaceInstUsesWith(I
, LHS
);
3746 case ICmpInst::ICMP_NE
:
3748 default: assert(0 && "Unknown integer condition code!");
3749 case ICmpInst::ICMP_ULT
:
3750 if (LHSCst
== SubOne(RHSCst
)) // (X != 13 & X u< 14) -> X < 13
3751 return new ICmpInst(ICmpInst::ICMP_ULT
, Val
, LHSCst
);
3752 break; // (X != 13 & X u< 15) -> no change
3753 case ICmpInst::ICMP_SLT
:
3754 if (LHSCst
== SubOne(RHSCst
)) // (X != 13 & X s< 14) -> X < 13
3755 return new ICmpInst(ICmpInst::ICMP_SLT
, Val
, LHSCst
);
3756 break; // (X != 13 & X s< 15) -> no change
3757 case ICmpInst::ICMP_EQ
: // (X != 13 & X == 15) -> X == 15
3758 case ICmpInst::ICMP_UGT
: // (X != 13 & X u> 15) -> X u> 15
3759 case ICmpInst::ICMP_SGT
: // (X != 13 & X s> 15) -> X s> 15
3760 return ReplaceInstUsesWith(I
, RHS
);
3761 case ICmpInst::ICMP_NE
:
3762 if (LHSCst
== SubOne(RHSCst
)){// (X != 13 & X != 14) -> X-13 >u 1
3763 Constant
*AddCST
= ConstantExpr::getNeg(LHSCst
);
3764 Instruction
*Add
= BinaryOperator::CreateAdd(Val
, AddCST
,
3765 Val
->getName()+".off");
3766 InsertNewInstBefore(Add
, I
);
3767 return new ICmpInst(ICmpInst::ICMP_UGT
, Add
,
3768 ConstantInt::get(Add
->getType(), 1));
3770 break; // (X != 13 & X != 15) -> no change
3773 case ICmpInst::ICMP_ULT
:
3775 default: assert(0 && "Unknown integer condition code!");
3776 case ICmpInst::ICMP_EQ
: // (X u< 13 & X == 15) -> false
3777 case ICmpInst::ICMP_UGT
: // (X u< 13 & X u> 15) -> false
3778 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
3779 case ICmpInst::ICMP_SGT
: // (X u< 13 & X s> 15) -> no change
3781 case ICmpInst::ICMP_NE
: // (X u< 13 & X != 15) -> X u< 13
3782 case ICmpInst::ICMP_ULT
: // (X u< 13 & X u< 15) -> X u< 13
3783 return ReplaceInstUsesWith(I
, LHS
);
3784 case ICmpInst::ICMP_SLT
: // (X u< 13 & X s< 15) -> no change
3788 case ICmpInst::ICMP_SLT
:
3790 default: assert(0 && "Unknown integer condition code!");
3791 case ICmpInst::ICMP_EQ
: // (X s< 13 & X == 15) -> false
3792 case ICmpInst::ICMP_SGT
: // (X s< 13 & X s> 15) -> false
3793 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
3794 case ICmpInst::ICMP_UGT
: // (X s< 13 & X u> 15) -> no change
3796 case ICmpInst::ICMP_NE
: // (X s< 13 & X != 15) -> X < 13
3797 case ICmpInst::ICMP_SLT
: // (X s< 13 & X s< 15) -> X < 13
3798 return ReplaceInstUsesWith(I
, LHS
);
3799 case ICmpInst::ICMP_ULT
: // (X s< 13 & X u< 15) -> no change
3803 case ICmpInst::ICMP_UGT
:
3805 default: assert(0 && "Unknown integer condition code!");
3806 case ICmpInst::ICMP_EQ
: // (X u> 13 & X == 15) -> X == 15
3807 case ICmpInst::ICMP_UGT
: // (X u> 13 & X u> 15) -> X u> 15
3808 return ReplaceInstUsesWith(I
, RHS
);
3809 case ICmpInst::ICMP_SGT
: // (X u> 13 & X s> 15) -> no change
3811 case ICmpInst::ICMP_NE
:
3812 if (RHSCst
== AddOne(LHSCst
)) // (X u> 13 & X != 14) -> X u> 14
3813 return new ICmpInst(LHSCC
, Val
, RHSCst
);
3814 break; // (X u> 13 & X != 15) -> no change
3815 case ICmpInst::ICMP_ULT
: // (X u> 13 & X u< 15) -> (X-14) <u 1
3816 return InsertRangeTest(Val
, AddOne(LHSCst
), RHSCst
, false, true, I
);
3817 case ICmpInst::ICMP_SLT
: // (X u> 13 & X s< 15) -> no change
3821 case ICmpInst::ICMP_SGT
:
3823 default: assert(0 && "Unknown integer condition code!");
3824 case ICmpInst::ICMP_EQ
: // (X s> 13 & X == 15) -> X == 15
3825 case ICmpInst::ICMP_SGT
: // (X s> 13 & X s> 15) -> X s> 15
3826 return ReplaceInstUsesWith(I
, RHS
);
3827 case ICmpInst::ICMP_UGT
: // (X s> 13 & X u> 15) -> no change
3829 case ICmpInst::ICMP_NE
:
3830 if (RHSCst
== AddOne(LHSCst
)) // (X s> 13 & X != 14) -> X s> 14
3831 return new ICmpInst(LHSCC
, Val
, RHSCst
);
3832 break; // (X s> 13 & X != 15) -> no change
3833 case ICmpInst::ICMP_SLT
: // (X s> 13 & X s< 15) -> (X-14) s< 1
3834 return InsertRangeTest(Val
, AddOne(LHSCst
), RHSCst
, true, true, I
);
3835 case ICmpInst::ICMP_ULT
: // (X s> 13 & X u< 15) -> no change
3845 Instruction
*InstCombiner::visitAnd(BinaryOperator
&I
) {
3846 bool Changed
= SimplifyCommutative(I
);
3847 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3849 if (isa
<UndefValue
>(Op1
)) // X & undef -> 0
3850 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
3854 return ReplaceInstUsesWith(I
, Op1
);
3856 // See if we can simplify any instructions used by the instruction whose sole
3857 // purpose is to compute bits we don't care about.
3858 if (!isa
<VectorType
>(I
.getType())) {
3859 if (SimplifyDemandedInstructionBits(I
))
3862 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Op1
)) {
3863 if (CP
->isAllOnesValue()) // X & <-1,-1> -> X
3864 return ReplaceInstUsesWith(I
, I
.getOperand(0));
3865 } else if (isa
<ConstantAggregateZero
>(Op1
)) {
3866 return ReplaceInstUsesWith(I
, Op1
); // X & <0,0> -> <0,0>
3870 if (ConstantInt
*AndRHS
= dyn_cast
<ConstantInt
>(Op1
)) {
3871 const APInt
& AndRHSMask
= AndRHS
->getValue();
3872 APInt
NotAndRHS(~AndRHSMask
);
3874 // Optimize a variety of ((val OP C1) & C2) combinations...
3875 if (isa
<BinaryOperator
>(Op0
)) {
3876 Instruction
*Op0I
= cast
<Instruction
>(Op0
);
3877 Value
*Op0LHS
= Op0I
->getOperand(0);
3878 Value
*Op0RHS
= Op0I
->getOperand(1);
3879 switch (Op0I
->getOpcode()) {
3880 case Instruction::Xor
:
3881 case Instruction::Or
:
3882 // If the mask is only needed on one incoming arm, push it up.
3883 if (Op0I
->hasOneUse()) {
3884 if (MaskedValueIsZero(Op0LHS
, NotAndRHS
)) {
3885 // Not masking anything out for the LHS, move to RHS.
3886 Instruction
*NewRHS
= BinaryOperator::CreateAnd(Op0RHS
, AndRHS
,
3887 Op0RHS
->getName()+".masked");
3888 InsertNewInstBefore(NewRHS
, I
);
3889 return BinaryOperator::Create(
3890 cast
<BinaryOperator
>(Op0I
)->getOpcode(), Op0LHS
, NewRHS
);
3892 if (!isa
<Constant
>(Op0RHS
) &&
3893 MaskedValueIsZero(Op0RHS
, NotAndRHS
)) {
3894 // Not masking anything out for the RHS, move to LHS.
3895 Instruction
*NewLHS
= BinaryOperator::CreateAnd(Op0LHS
, AndRHS
,
3896 Op0LHS
->getName()+".masked");
3897 InsertNewInstBefore(NewLHS
, I
);
3898 return BinaryOperator::Create(
3899 cast
<BinaryOperator
>(Op0I
)->getOpcode(), NewLHS
, Op0RHS
);
3904 case Instruction::Add
:
3905 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3906 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3907 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3908 if (Value
*V
= FoldLogicalPlusAnd(Op0LHS
, Op0RHS
, AndRHS
, false, I
))
3909 return BinaryOperator::CreateAnd(V
, AndRHS
);
3910 if (Value
*V
= FoldLogicalPlusAnd(Op0RHS
, Op0LHS
, AndRHS
, false, I
))
3911 return BinaryOperator::CreateAnd(V
, AndRHS
); // Add commutes
3914 case Instruction::Sub
:
3915 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3916 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3917 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3918 if (Value
*V
= FoldLogicalPlusAnd(Op0LHS
, Op0RHS
, AndRHS
, true, I
))
3919 return BinaryOperator::CreateAnd(V
, AndRHS
);
3921 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
3922 // has 1's for all bits that the subtraction with A might affect.
3923 if (Op0I
->hasOneUse()) {
3924 uint32_t BitWidth
= AndRHSMask
.getBitWidth();
3925 uint32_t Zeros
= AndRHSMask
.countLeadingZeros();
3926 APInt Mask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- Zeros
);
3928 ConstantInt
*A
= dyn_cast
<ConstantInt
>(Op0LHS
);
3929 if (!(A
&& A
->isZero()) && // avoid infinite recursion.
3930 MaskedValueIsZero(Op0LHS
, Mask
)) {
3931 Instruction
*NewNeg
= BinaryOperator::CreateNeg(Op0RHS
);
3932 InsertNewInstBefore(NewNeg
, I
);
3933 return BinaryOperator::CreateAnd(NewNeg
, AndRHS
);
3938 case Instruction::Shl
:
3939 case Instruction::LShr
:
3940 // (1 << x) & 1 --> zext(x == 0)
3941 // (1 >> x) & 1 --> zext(x == 0)
3942 if (AndRHSMask
== 1 && Op0LHS
== AndRHS
) {
3943 Instruction
*NewICmp
= new ICmpInst(ICmpInst::ICMP_EQ
, Op0RHS
,
3944 Constant::getNullValue(I
.getType()));
3945 InsertNewInstBefore(NewICmp
, I
);
3946 return new ZExtInst(NewICmp
, I
.getType());
3951 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1)))
3952 if (Instruction
*Res
= OptAndOp(Op0I
, Op0CI
, AndRHS
, I
))
3954 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(Op0
)) {
3955 // If this is an integer truncation or change from signed-to-unsigned, and
3956 // if the source is an and/or with immediate, transform it. This
3957 // frequently occurs for bitfield accesses.
3958 if (Instruction
*CastOp
= dyn_cast
<Instruction
>(CI
->getOperand(0))) {
3959 if ((isa
<TruncInst
>(CI
) || isa
<BitCastInst
>(CI
)) &&
3960 CastOp
->getNumOperands() == 2)
3961 if (ConstantInt
*AndCI
= dyn_cast
<ConstantInt
>(CastOp
->getOperand(1))) {
3962 if (CastOp
->getOpcode() == Instruction::And
) {
3963 // Change: and (cast (and X, C1) to T), C2
3964 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3965 // This will fold the two constants together, which may allow
3966 // other simplifications.
3967 Instruction
*NewCast
= CastInst::CreateTruncOrBitCast(
3968 CastOp
->getOperand(0), I
.getType(),
3969 CastOp
->getName()+".shrunk");
3970 NewCast
= InsertNewInstBefore(NewCast
, I
);
3971 // trunc_or_bitcast(C1)&C2
3972 Constant
*C3
= ConstantExpr::getTruncOrBitCast(AndCI
,I
.getType());
3973 C3
= ConstantExpr::getAnd(C3
, AndRHS
);
3974 return BinaryOperator::CreateAnd(NewCast
, C3
);
3975 } else if (CastOp
->getOpcode() == Instruction::Or
) {
3976 // Change: and (cast (or X, C1) to T), C2
3977 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3978 Constant
*C3
= ConstantExpr::getTruncOrBitCast(AndCI
,I
.getType());
3979 if (ConstantExpr::getAnd(C3
, AndRHS
) == AndRHS
) // trunc(C1)&C2
3980 return ReplaceInstUsesWith(I
, AndRHS
);
3986 // Try to fold constant and into select arguments.
3987 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
3988 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
3990 if (isa
<PHINode
>(Op0
))
3991 if (Instruction
*NV
= FoldOpIntoPhi(I
))
3995 Value
*Op0NotVal
= dyn_castNotVal(Op0
);
3996 Value
*Op1NotVal
= dyn_castNotVal(Op1
);
3998 if (Op0NotVal
== Op1
|| Op1NotVal
== Op0
) // A & ~A == ~A & A == 0
3999 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
4001 // (~A & ~B) == (~(A | B)) - De Morgan's Law
4002 if (Op0NotVal
&& Op1NotVal
&& isOnlyUse(Op0
) && isOnlyUse(Op1
)) {
4003 Instruction
*Or
= BinaryOperator::CreateOr(Op0NotVal
, Op1NotVal
,
4004 I
.getName()+".demorgan");
4005 InsertNewInstBefore(Or
, I
);
4006 return BinaryOperator::CreateNot(Or
);
4010 Value
*A
= 0, *B
= 0, *C
= 0, *D
= 0;
4011 if (match(Op0
, m_Or(m_Value(A
), m_Value(B
)))) {
4012 if (A
== Op1
|| B
== Op1
) // (A | ?) & A --> A
4013 return ReplaceInstUsesWith(I
, Op1
);
4015 // (A|B) & ~(A&B) -> A^B
4016 if (match(Op1
, m_Not(m_And(m_Value(C
), m_Value(D
))))) {
4017 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
4018 return BinaryOperator::CreateXor(A
, B
);
4022 if (match(Op1
, m_Or(m_Value(A
), m_Value(B
)))) {
4023 if (A
== Op0
|| B
== Op0
) // A & (A | ?) --> A
4024 return ReplaceInstUsesWith(I
, Op0
);
4026 // ~(A&B) & (A|B) -> A^B
4027 if (match(Op0
, m_Not(m_And(m_Value(C
), m_Value(D
))))) {
4028 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
4029 return BinaryOperator::CreateXor(A
, B
);
4033 if (Op0
->hasOneUse() &&
4034 match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
4035 if (A
== Op1
) { // (A^B)&A -> A&(A^B)
4036 I
.swapOperands(); // Simplify below
4037 std::swap(Op0
, Op1
);
4038 } else if (B
== Op1
) { // (A^B)&B -> B&(B^A)
4039 cast
<BinaryOperator
>(Op0
)->swapOperands();
4040 I
.swapOperands(); // Simplify below
4041 std::swap(Op0
, Op1
);
4045 if (Op1
->hasOneUse() &&
4046 match(Op1
, m_Xor(m_Value(A
), m_Value(B
)))) {
4047 if (B
== Op0
) { // B&(A^B) -> B&(B^A)
4048 cast
<BinaryOperator
>(Op1
)->swapOperands();
4051 if (A
== Op0
) { // A&(A^B) -> A & ~B
4052 Instruction
*NotB
= BinaryOperator::CreateNot(B
, "tmp");
4053 InsertNewInstBefore(NotB
, I
);
4054 return BinaryOperator::CreateAnd(A
, NotB
);
4058 // (A&((~A)|B)) -> A&B
4059 if (match(Op0
, m_Or(m_Not(m_Specific(Op1
)), m_Value(A
))) ||
4060 match(Op0
, m_Or(m_Value(A
), m_Not(m_Specific(Op1
)))))
4061 return BinaryOperator::CreateAnd(A
, Op1
);
4062 if (match(Op1
, m_Or(m_Not(m_Specific(Op0
)), m_Value(A
))) ||
4063 match(Op1
, m_Or(m_Value(A
), m_Not(m_Specific(Op0
)))))
4064 return BinaryOperator::CreateAnd(A
, Op0
);
4067 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(Op1
)) {
4068 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
4069 if (Instruction
*R
= AssociativeOpt(I
, FoldICmpLogical(*this, RHS
)))
4072 if (ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(Op0
))
4073 if (Instruction
*Res
= FoldAndOfICmps(I
, LHS
, RHS
))
4077 // fold (and (cast A), (cast B)) -> (cast (and A, B))
4078 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
))
4079 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
))
4080 if (Op0C
->getOpcode() == Op1C
->getOpcode()) { // same cast kind ?
4081 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
4082 if (SrcTy
== Op1C
->getOperand(0)->getType() && SrcTy
->isInteger() &&
4083 // Only do this if the casts both really cause code to be generated.
4084 ValueRequiresCast(Op0C
->getOpcode(), Op0C
->getOperand(0),
4086 ValueRequiresCast(Op1C
->getOpcode(), Op1C
->getOperand(0),
4088 Instruction
*NewOp
= BinaryOperator::CreateAnd(Op0C
->getOperand(0),
4089 Op1C
->getOperand(0),
4091 InsertNewInstBefore(NewOp
, I
);
4092 return CastInst::Create(Op0C
->getOpcode(), NewOp
, I
.getType());
4096 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
4097 if (BinaryOperator
*SI1
= dyn_cast
<BinaryOperator
>(Op1
)) {
4098 if (BinaryOperator
*SI0
= dyn_cast
<BinaryOperator
>(Op0
))
4099 if (SI0
->isShift() && SI0
->getOpcode() == SI1
->getOpcode() &&
4100 SI0
->getOperand(1) == SI1
->getOperand(1) &&
4101 (SI0
->hasOneUse() || SI1
->hasOneUse())) {
4102 Instruction
*NewOp
=
4103 InsertNewInstBefore(BinaryOperator::CreateAnd(SI0
->getOperand(0),
4105 SI0
->getName()), I
);
4106 return BinaryOperator::Create(SI1
->getOpcode(), NewOp
,
4107 SI1
->getOperand(1));
4111 // If and'ing two fcmp, try combine them into one.
4112 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0))) {
4113 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1))) {
4114 if (LHS
->getPredicate() == FCmpInst::FCMP_ORD
&&
4115 RHS
->getPredicate() == FCmpInst::FCMP_ORD
) {
4116 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
4117 if (ConstantFP
*LHSC
= dyn_cast
<ConstantFP
>(LHS
->getOperand(1)))
4118 if (ConstantFP
*RHSC
= dyn_cast
<ConstantFP
>(RHS
->getOperand(1))) {
4119 // If either of the constants are nans, then the whole thing returns
4121 if (LHSC
->getValueAPF().isNaN() || RHSC
->getValueAPF().isNaN())
4122 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4123 return new FCmpInst(FCmpInst::FCMP_ORD
, LHS
->getOperand(0),
4124 RHS
->getOperand(0));
4127 Value
*Op0LHS
, *Op0RHS
, *Op1LHS
, *Op1RHS
;
4128 FCmpInst::Predicate Op0CC
, Op1CC
;
4129 if (match(Op0
, m_FCmp(Op0CC
, m_Value(Op0LHS
), m_Value(Op0RHS
))) &&
4130 match(Op1
, m_FCmp(Op1CC
, m_Value(Op1LHS
), m_Value(Op1RHS
)))) {
4131 if (Op0LHS
== Op1RHS
&& Op0RHS
== Op1LHS
) {
4132 // Swap RHS operands to match LHS.
4133 Op1CC
= FCmpInst::getSwappedPredicate(Op1CC
);
4134 std::swap(Op1LHS
, Op1RHS
);
4136 if (Op0LHS
== Op1LHS
&& Op0RHS
== Op1RHS
) {
4137 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
4139 return new FCmpInst((FCmpInst::Predicate
)Op0CC
, Op0LHS
, Op0RHS
);
4140 else if (Op0CC
== FCmpInst::FCMP_FALSE
||
4141 Op1CC
== FCmpInst::FCMP_FALSE
)
4142 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4143 else if (Op0CC
== FCmpInst::FCMP_TRUE
)
4144 return ReplaceInstUsesWith(I
, Op1
);
4145 else if (Op1CC
== FCmpInst::FCMP_TRUE
)
4146 return ReplaceInstUsesWith(I
, Op0
);
4149 unsigned Op0Pred
= getFCmpCode(Op0CC
, Op0Ordered
);
4150 unsigned Op1Pred
= getFCmpCode(Op1CC
, Op1Ordered
);
4152 std::swap(Op0
, Op1
);
4153 std::swap(Op0Pred
, Op1Pred
);
4154 std::swap(Op0Ordered
, Op1Ordered
);
4157 // uno && ueq -> uno && (uno || eq) -> ueq
4158 // ord && olt -> ord && (ord && lt) -> olt
4159 if (Op0Ordered
== Op1Ordered
)
4160 return ReplaceInstUsesWith(I
, Op1
);
4161 // uno && oeq -> uno && (ord && eq) -> false
4162 // uno && ord -> false
4164 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
4165 // ord && ueq -> ord && (uno || eq) -> oeq
4166 return cast
<Instruction
>(getFCmpValue(true, Op1Pred
,
4175 return Changed
? &I
: 0;
4178 /// CollectBSwapParts - Analyze the specified subexpression and see if it is
4179 /// capable of providing pieces of a bswap. The subexpression provides pieces
4180 /// of a bswap if it is proven that each of the non-zero bytes in the output of
4181 /// the expression came from the corresponding "byte swapped" byte in some other
4182 /// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
4183 /// we know that the expression deposits the low byte of %X into the high byte
4184 /// of the bswap result and that all other bytes are zero. This expression is
4185 /// accepted, the high byte of ByteValues is set to X to indicate a correct
4188 /// This function returns true if the match was unsuccessful and false if so.
4189 /// On entry to the function the "OverallLeftShift" is a signed integer value
4190 /// indicating the number of bytes that the subexpression is later shifted. For
4191 /// example, if the expression is later right shifted by 16 bits, the
4192 /// OverallLeftShift value would be -2 on entry. This is used to specify which
4193 /// byte of ByteValues is actually being set.
4195 /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
4196 /// byte is masked to zero by a user. For example, in (X & 255), X will be
4197 /// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
4198 /// this function to working on up to 32-byte (256 bit) values. ByteMask is
4199 /// always in the local (OverallLeftShift) coordinate space.
4201 static bool CollectBSwapParts(Value
*V
, int OverallLeftShift
, uint32_t ByteMask
,
4202 SmallVector
<Value
*, 8> &ByteValues
) {
4203 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
4204 // If this is an or instruction, it may be an inner node of the bswap.
4205 if (I
->getOpcode() == Instruction::Or
) {
4206 return CollectBSwapParts(I
->getOperand(0), OverallLeftShift
, ByteMask
,
4208 CollectBSwapParts(I
->getOperand(1), OverallLeftShift
, ByteMask
,
4212 // If this is a logical shift by a constant multiple of 8, recurse with
4213 // OverallLeftShift and ByteMask adjusted.
4214 if (I
->isLogicalShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
4216 cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(~0U);
4217 // Ensure the shift amount is defined and of a byte value.
4218 if ((ShAmt
& 7) || (ShAmt
> 8*ByteValues
.size()))
4221 unsigned ByteShift
= ShAmt
>> 3;
4222 if (I
->getOpcode() == Instruction::Shl
) {
4223 // X << 2 -> collect(X, +2)
4224 OverallLeftShift
+= ByteShift
;
4225 ByteMask
>>= ByteShift
;
4227 // X >>u 2 -> collect(X, -2)
4228 OverallLeftShift
-= ByteShift
;
4229 ByteMask
<<= ByteShift
;
4230 ByteMask
&= (~0U >> (32-ByteValues
.size()));
4233 if (OverallLeftShift
>= (int)ByteValues
.size()) return true;
4234 if (OverallLeftShift
<= -(int)ByteValues
.size()) return true;
4236 return CollectBSwapParts(I
->getOperand(0), OverallLeftShift
, ByteMask
,
4240 // If this is a logical 'and' with a mask that clears bytes, clear the
4241 // corresponding bytes in ByteMask.
4242 if (I
->getOpcode() == Instruction::And
&&
4243 isa
<ConstantInt
>(I
->getOperand(1))) {
4244 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
4245 unsigned NumBytes
= ByteValues
.size();
4246 APInt
Byte(I
->getType()->getPrimitiveSizeInBits(), 255);
4247 const APInt
&AndMask
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
4249 for (unsigned i
= 0; i
!= NumBytes
; ++i
, Byte
<<= 8) {
4250 // If this byte is masked out by a later operation, we don't care what
4252 if ((ByteMask
& (1 << i
)) == 0)
4255 // If the AndMask is all zeros for this byte, clear the bit.
4256 APInt MaskB
= AndMask
& Byte
;
4258 ByteMask
&= ~(1U << i
);
4262 // If the AndMask is not all ones for this byte, it's not a bytezap.
4266 // Otherwise, this byte is kept.
4269 return CollectBSwapParts(I
->getOperand(0), OverallLeftShift
, ByteMask
,
4274 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
4275 // the input value to the bswap. Some observations: 1) if more than one byte
4276 // is demanded from this input, then it could not be successfully assembled
4277 // into a byteswap. At least one of the two bytes would not be aligned with
4278 // their ultimate destination.
4279 if (!isPowerOf2_32(ByteMask
)) return true;
4280 unsigned InputByteNo
= CountTrailingZeros_32(ByteMask
);
4282 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
4283 // is demanded, it needs to go into byte 0 of the result. This means that the
4284 // byte needs to be shifted until it lands in the right byte bucket. The
4285 // shift amount depends on the position: if the byte is coming from the high
4286 // part of the value (e.g. byte 3) then it must be shifted right. If from the
4287 // low part, it must be shifted left.
4288 unsigned DestByteNo
= InputByteNo
+ OverallLeftShift
;
4289 if (InputByteNo
< ByteValues
.size()/2) {
4290 if (ByteValues
.size()-1-DestByteNo
!= InputByteNo
)
4293 if (ByteValues
.size()-1-DestByteNo
!= InputByteNo
)
4297 // If the destination byte value is already defined, the values are or'd
4298 // together, which isn't a bswap (unless it's an or of the same bits).
4299 if (ByteValues
[DestByteNo
] && ByteValues
[DestByteNo
] != V
)
4301 ByteValues
[DestByteNo
] = V
;
4305 /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
4306 /// If so, insert the new bswap intrinsic and return it.
4307 Instruction
*InstCombiner::MatchBSwap(BinaryOperator
&I
) {
4308 const IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
.getType());
4309 if (!ITy
|| ITy
->getBitWidth() % 16 ||
4310 // ByteMask only allows up to 32-byte values.
4311 ITy
->getBitWidth() > 32*8)
4312 return 0; // Can only bswap pairs of bytes. Can't do vectors.
4314 /// ByteValues - For each byte of the result, we keep track of which value
4315 /// defines each byte.
4316 SmallVector
<Value
*, 8> ByteValues
;
4317 ByteValues
.resize(ITy
->getBitWidth()/8);
4319 // Try to find all the pieces corresponding to the bswap.
4320 uint32_t ByteMask
= ~0U >> (32-ByteValues
.size());
4321 if (CollectBSwapParts(&I
, 0, ByteMask
, ByteValues
))
4324 // Check to see if all of the bytes come from the same value.
4325 Value
*V
= ByteValues
[0];
4326 if (V
== 0) return 0; // Didn't find a byte? Must be zero.
4328 // Check to make sure that all of the bytes come from the same value.
4329 for (unsigned i
= 1, e
= ByteValues
.size(); i
!= e
; ++i
)
4330 if (ByteValues
[i
] != V
)
4332 const Type
*Tys
[] = { ITy
};
4333 Module
*M
= I
.getParent()->getParent()->getParent();
4334 Function
*F
= Intrinsic::getDeclaration(M
, Intrinsic::bswap
, Tys
, 1);
4335 return CallInst::Create(F
, V
);
4338 /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
4339 /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
4340 /// we can simplify this expression to "cond ? C : D or B".
4341 static Instruction
*MatchSelectFromAndOr(Value
*A
, Value
*B
,
4342 Value
*C
, Value
*D
) {
4343 // If A is not a select of -1/0, this cannot match.
4345 if (!match(A
, m_SelectCst
<-1, 0>(m_Value(Cond
))))
4348 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
4349 if (match(D
, m_SelectCst
<0, -1>(m_Specific(Cond
))))
4350 return SelectInst::Create(Cond
, C
, B
);
4351 if (match(D
, m_Not(m_SelectCst
<-1, 0>(m_Specific(Cond
)))))
4352 return SelectInst::Create(Cond
, C
, B
);
4353 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
4354 if (match(B
, m_SelectCst
<0, -1>(m_Specific(Cond
))))
4355 return SelectInst::Create(Cond
, C
, D
);
4356 if (match(B
, m_Not(m_SelectCst
<-1, 0>(m_Specific(Cond
)))))
4357 return SelectInst::Create(Cond
, C
, D
);
4361 /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
4362 Instruction
*InstCombiner::FoldOrOfICmps(Instruction
&I
,
4363 ICmpInst
*LHS
, ICmpInst
*RHS
) {
4365 ConstantInt
*LHSCst
, *RHSCst
;
4366 ICmpInst::Predicate LHSCC
, RHSCC
;
4368 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
4369 if (!match(LHS
, m_ICmp(LHSCC
, m_Value(Val
), m_ConstantInt(LHSCst
))) ||
4370 !match(RHS
, m_ICmp(RHSCC
, m_Value(Val2
), m_ConstantInt(RHSCst
))))
4373 // From here on, we only handle:
4374 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
4375 if (Val
!= Val2
) return 0;
4377 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
4378 if (LHSCC
== ICmpInst::ICMP_UGE
|| LHSCC
== ICmpInst::ICMP_ULE
||
4379 RHSCC
== ICmpInst::ICMP_UGE
|| RHSCC
== ICmpInst::ICMP_ULE
||
4380 LHSCC
== ICmpInst::ICMP_SGE
|| LHSCC
== ICmpInst::ICMP_SLE
||
4381 RHSCC
== ICmpInst::ICMP_SGE
|| RHSCC
== ICmpInst::ICMP_SLE
)
4384 // We can't fold (ugt x, C) | (sgt x, C2).
4385 if (!PredicatesFoldable(LHSCC
, RHSCC
))
4388 // Ensure that the larger constant is on the RHS.
4390 if (ICmpInst::isSignedPredicate(LHSCC
) ||
4391 (ICmpInst::isEquality(LHSCC
) &&
4392 ICmpInst::isSignedPredicate(RHSCC
)))
4393 ShouldSwap
= LHSCst
->getValue().sgt(RHSCst
->getValue());
4395 ShouldSwap
= LHSCst
->getValue().ugt(RHSCst
->getValue());
4398 std::swap(LHS
, RHS
);
4399 std::swap(LHSCst
, RHSCst
);
4400 std::swap(LHSCC
, RHSCC
);
4403 // At this point, we know we have have two icmp instructions
4404 // comparing a value against two constants and or'ing the result
4405 // together. Because of the above check, we know that we only have
4406 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4407 // FoldICmpLogical check above), that the two constants are not
4409 assert(LHSCst
!= RHSCst
&& "Compares not folded above?");
4412 default: assert(0 && "Unknown integer condition code!");
4413 case ICmpInst::ICMP_EQ
:
4415 default: assert(0 && "Unknown integer condition code!");
4416 case ICmpInst::ICMP_EQ
:
4417 if (LHSCst
== SubOne(RHSCst
)) { // (X == 13 | X == 14) -> X-13 <u 2
4418 Constant
*AddCST
= ConstantExpr::getNeg(LHSCst
);
4419 Instruction
*Add
= BinaryOperator::CreateAdd(Val
, AddCST
,
4420 Val
->getName()+".off");
4421 InsertNewInstBefore(Add
, I
);
4422 AddCST
= Subtract(AddOne(RHSCst
), LHSCst
);
4423 return new ICmpInst(ICmpInst::ICMP_ULT
, Add
, AddCST
);
4425 break; // (X == 13 | X == 15) -> no change
4426 case ICmpInst::ICMP_UGT
: // (X == 13 | X u> 14) -> no change
4427 case ICmpInst::ICMP_SGT
: // (X == 13 | X s> 14) -> no change
4429 case ICmpInst::ICMP_NE
: // (X == 13 | X != 15) -> X != 15
4430 case ICmpInst::ICMP_ULT
: // (X == 13 | X u< 15) -> X u< 15
4431 case ICmpInst::ICMP_SLT
: // (X == 13 | X s< 15) -> X s< 15
4432 return ReplaceInstUsesWith(I
, RHS
);
4435 case ICmpInst::ICMP_NE
:
4437 default: assert(0 && "Unknown integer condition code!");
4438 case ICmpInst::ICMP_EQ
: // (X != 13 | X == 15) -> X != 13
4439 case ICmpInst::ICMP_UGT
: // (X != 13 | X u> 15) -> X != 13
4440 case ICmpInst::ICMP_SGT
: // (X != 13 | X s> 15) -> X != 13
4441 return ReplaceInstUsesWith(I
, LHS
);
4442 case ICmpInst::ICMP_NE
: // (X != 13 | X != 15) -> true
4443 case ICmpInst::ICMP_ULT
: // (X != 13 | X u< 15) -> true
4444 case ICmpInst::ICMP_SLT
: // (X != 13 | X s< 15) -> true
4445 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4448 case ICmpInst::ICMP_ULT
:
4450 default: assert(0 && "Unknown integer condition code!");
4451 case ICmpInst::ICMP_EQ
: // (X u< 13 | X == 14) -> no change
4453 case ICmpInst::ICMP_UGT
: // (X u< 13 | X u> 15) -> (X-13) u> 2
4454 // If RHSCst is [us]MAXINT, it is always false. Not handling
4455 // this can cause overflow.
4456 if (RHSCst
->isMaxValue(false))
4457 return ReplaceInstUsesWith(I
, LHS
);
4458 return InsertRangeTest(Val
, LHSCst
, AddOne(RHSCst
), false, false, I
);
4459 case ICmpInst::ICMP_SGT
: // (X u< 13 | X s> 15) -> no change
4461 case ICmpInst::ICMP_NE
: // (X u< 13 | X != 15) -> X != 15
4462 case ICmpInst::ICMP_ULT
: // (X u< 13 | X u< 15) -> X u< 15
4463 return ReplaceInstUsesWith(I
, RHS
);
4464 case ICmpInst::ICMP_SLT
: // (X u< 13 | X s< 15) -> no change
4468 case ICmpInst::ICMP_SLT
:
4470 default: assert(0 && "Unknown integer condition code!");
4471 case ICmpInst::ICMP_EQ
: // (X s< 13 | X == 14) -> no change
4473 case ICmpInst::ICMP_SGT
: // (X s< 13 | X s> 15) -> (X-13) s> 2
4474 // If RHSCst is [us]MAXINT, it is always false. Not handling
4475 // this can cause overflow.
4476 if (RHSCst
->isMaxValue(true))
4477 return ReplaceInstUsesWith(I
, LHS
);
4478 return InsertRangeTest(Val
, LHSCst
, AddOne(RHSCst
), true, false, I
);
4479 case ICmpInst::ICMP_UGT
: // (X s< 13 | X u> 15) -> no change
4481 case ICmpInst::ICMP_NE
: // (X s< 13 | X != 15) -> X != 15
4482 case ICmpInst::ICMP_SLT
: // (X s< 13 | X s< 15) -> X s< 15
4483 return ReplaceInstUsesWith(I
, RHS
);
4484 case ICmpInst::ICMP_ULT
: // (X s< 13 | X u< 15) -> no change
4488 case ICmpInst::ICMP_UGT
:
4490 default: assert(0 && "Unknown integer condition code!");
4491 case ICmpInst::ICMP_EQ
: // (X u> 13 | X == 15) -> X u> 13
4492 case ICmpInst::ICMP_UGT
: // (X u> 13 | X u> 15) -> X u> 13
4493 return ReplaceInstUsesWith(I
, LHS
);
4494 case ICmpInst::ICMP_SGT
: // (X u> 13 | X s> 15) -> no change
4496 case ICmpInst::ICMP_NE
: // (X u> 13 | X != 15) -> true
4497 case ICmpInst::ICMP_ULT
: // (X u> 13 | X u< 15) -> true
4498 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4499 case ICmpInst::ICMP_SLT
: // (X u> 13 | X s< 15) -> no change
4503 case ICmpInst::ICMP_SGT
:
4505 default: assert(0 && "Unknown integer condition code!");
4506 case ICmpInst::ICMP_EQ
: // (X s> 13 | X == 15) -> X > 13
4507 case ICmpInst::ICMP_SGT
: // (X s> 13 | X s> 15) -> X > 13
4508 return ReplaceInstUsesWith(I
, LHS
);
4509 case ICmpInst::ICMP_UGT
: // (X s> 13 | X u> 15) -> no change
4511 case ICmpInst::ICMP_NE
: // (X s> 13 | X != 15) -> true
4512 case ICmpInst::ICMP_SLT
: // (X s> 13 | X s< 15) -> true
4513 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4514 case ICmpInst::ICMP_ULT
: // (X s> 13 | X u< 15) -> no change
4522 /// FoldOrWithConstants - This helper function folds:
4524 /// ((A | B) & C1) | (B & C2)
4530 /// when the XOR of the two constants is "all ones" (-1).
4531 Instruction
*InstCombiner::FoldOrWithConstants(BinaryOperator
&I
, Value
*Op
,
4532 Value
*A
, Value
*B
, Value
*C
) {
4533 ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C
);
4537 ConstantInt
*CI2
= 0;
4538 if (!match(Op
, m_And(m_Value(V1
), m_ConstantInt(CI2
)))) return 0;
4540 APInt Xor
= CI1
->getValue() ^ CI2
->getValue();
4541 if (!Xor
.isAllOnesValue()) return 0;
4543 if (V1
== A
|| V1
== B
) {
4544 Instruction
*NewOp
=
4545 InsertNewInstBefore(BinaryOperator::CreateAnd((V1
== A
) ? B
: A
, CI1
), I
);
4546 return BinaryOperator::CreateOr(NewOp
, V1
);
4552 Instruction
*InstCombiner::visitOr(BinaryOperator
&I
) {
4553 bool Changed
= SimplifyCommutative(I
);
4554 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4556 if (isa
<UndefValue
>(Op1
)) // X | undef -> -1
4557 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
4561 return ReplaceInstUsesWith(I
, Op0
);
4563 // See if we can simplify any instructions used by the instruction whose sole
4564 // purpose is to compute bits we don't care about.
4565 if (!isa
<VectorType
>(I
.getType())) {
4566 if (SimplifyDemandedInstructionBits(I
))
4568 } else if (isa
<ConstantAggregateZero
>(Op1
)) {
4569 return ReplaceInstUsesWith(I
, Op0
); // X | <0,0> -> X
4570 } else if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(Op1
)) {
4571 if (CP
->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
4572 return ReplaceInstUsesWith(I
, I
.getOperand(1));
4578 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
4579 ConstantInt
*C1
= 0; Value
*X
= 0;
4580 // (X & C1) | C2 --> (X | C2) & (C1|C2)
4581 if (match(Op0
, m_And(m_Value(X
), m_ConstantInt(C1
))) && isOnlyUse(Op0
)) {
4582 Instruction
*Or
= BinaryOperator::CreateOr(X
, RHS
);
4583 InsertNewInstBefore(Or
, I
);
4585 return BinaryOperator::CreateAnd(Or
,
4586 ConstantInt::get(RHS
->getValue() | C1
->getValue()));
4589 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
4590 if (match(Op0
, m_Xor(m_Value(X
), m_ConstantInt(C1
))) && isOnlyUse(Op0
)) {
4591 Instruction
*Or
= BinaryOperator::CreateOr(X
, RHS
);
4592 InsertNewInstBefore(Or
, I
);
4594 return BinaryOperator::CreateXor(Or
,
4595 ConstantInt::get(C1
->getValue() & ~RHS
->getValue()));
4598 // Try to fold constant and into select arguments.
4599 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
4600 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
4602 if (isa
<PHINode
>(Op0
))
4603 if (Instruction
*NV
= FoldOpIntoPhi(I
))
4607 Value
*A
= 0, *B
= 0;
4608 ConstantInt
*C1
= 0, *C2
= 0;
4610 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))))
4611 if (A
== Op1
|| B
== Op1
) // (A & ?) | A --> A
4612 return ReplaceInstUsesWith(I
, Op1
);
4613 if (match(Op1
, m_And(m_Value(A
), m_Value(B
))))
4614 if (A
== Op0
|| B
== Op0
) // A | (A & ?) --> A
4615 return ReplaceInstUsesWith(I
, Op0
);
4617 // (A | B) | C and A | (B | C) -> bswap if possible.
4618 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
4619 if (match(Op0
, m_Or(m_Value(), m_Value())) ||
4620 match(Op1
, m_Or(m_Value(), m_Value())) ||
4621 (match(Op0
, m_Shift(m_Value(), m_Value())) &&
4622 match(Op1
, m_Shift(m_Value(), m_Value())))) {
4623 if (Instruction
*BSwap
= MatchBSwap(I
))
4627 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
4628 if (Op0
->hasOneUse() && match(Op0
, m_Xor(m_Value(A
), m_ConstantInt(C1
))) &&
4629 MaskedValueIsZero(Op1
, C1
->getValue())) {
4630 Instruction
*NOr
= BinaryOperator::CreateOr(A
, Op1
);
4631 InsertNewInstBefore(NOr
, I
);
4633 return BinaryOperator::CreateXor(NOr
, C1
);
4636 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
4637 if (Op1
->hasOneUse() && match(Op1
, m_Xor(m_Value(A
), m_ConstantInt(C1
))) &&
4638 MaskedValueIsZero(Op0
, C1
->getValue())) {
4639 Instruction
*NOr
= BinaryOperator::CreateOr(A
, Op0
);
4640 InsertNewInstBefore(NOr
, I
);
4642 return BinaryOperator::CreateXor(NOr
, C1
);
4646 Value
*C
= 0, *D
= 0;
4647 if (match(Op0
, m_And(m_Value(A
), m_Value(C
))) &&
4648 match(Op1
, m_And(m_Value(B
), m_Value(D
)))) {
4649 Value
*V1
= 0, *V2
= 0, *V3
= 0;
4650 C1
= dyn_cast
<ConstantInt
>(C
);
4651 C2
= dyn_cast
<ConstantInt
>(D
);
4652 if (C1
&& C2
) { // (A & C1)|(B & C2)
4653 // If we have: ((V + N) & C1) | (V & C2)
4654 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
4655 // replace with V+N.
4656 if (C1
->getValue() == ~C2
->getValue()) {
4657 if ((C2
->getValue() & (C2
->getValue()+1)) == 0 && // C2 == 0+1+
4658 match(A
, m_Add(m_Value(V1
), m_Value(V2
)))) {
4659 // Add commutes, try both ways.
4660 if (V1
== B
&& MaskedValueIsZero(V2
, C2
->getValue()))
4661 return ReplaceInstUsesWith(I
, A
);
4662 if (V2
== B
&& MaskedValueIsZero(V1
, C2
->getValue()))
4663 return ReplaceInstUsesWith(I
, A
);
4665 // Or commutes, try both ways.
4666 if ((C1
->getValue() & (C1
->getValue()+1)) == 0 &&
4667 match(B
, m_Add(m_Value(V1
), m_Value(V2
)))) {
4668 // Add commutes, try both ways.
4669 if (V1
== A
&& MaskedValueIsZero(V2
, C1
->getValue()))
4670 return ReplaceInstUsesWith(I
, B
);
4671 if (V2
== A
&& MaskedValueIsZero(V1
, C1
->getValue()))
4672 return ReplaceInstUsesWith(I
, B
);
4675 V1
= 0; V2
= 0; V3
= 0;
4678 // Check to see if we have any common things being and'ed. If so, find the
4679 // terms for V1 & (V2|V3).
4680 if (isOnlyUse(Op0
) || isOnlyUse(Op1
)) {
4681 if (A
== B
) // (A & C)|(A & D) == A & (C|D)
4682 V1
= A
, V2
= C
, V3
= D
;
4683 else if (A
== D
) // (A & C)|(B & A) == A & (B|C)
4684 V1
= A
, V2
= B
, V3
= C
;
4685 else if (C
== B
) // (A & C)|(C & D) == C & (A|D)
4686 V1
= C
, V2
= A
, V3
= D
;
4687 else if (C
== D
) // (A & C)|(B & C) == C & (A|B)
4688 V1
= C
, V2
= A
, V3
= B
;
4692 InsertNewInstBefore(BinaryOperator::CreateOr(V2
, V3
, "tmp"), I
);
4693 return BinaryOperator::CreateAnd(V1
, Or
);
4697 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants
4698 if (Instruction
*Match
= MatchSelectFromAndOr(A
, B
, C
, D
))
4700 if (Instruction
*Match
= MatchSelectFromAndOr(B
, A
, D
, C
))
4702 if (Instruction
*Match
= MatchSelectFromAndOr(C
, B
, A
, D
))
4704 if (Instruction
*Match
= MatchSelectFromAndOr(D
, A
, B
, C
))
4707 // ((A&~B)|(~A&B)) -> A^B
4708 if ((match(C
, m_Not(m_Specific(D
))) &&
4709 match(B
, m_Not(m_Specific(A
)))))
4710 return BinaryOperator::CreateXor(A
, D
);
4711 // ((~B&A)|(~A&B)) -> A^B
4712 if ((match(A
, m_Not(m_Specific(D
))) &&
4713 match(B
, m_Not(m_Specific(C
)))))
4714 return BinaryOperator::CreateXor(C
, D
);
4715 // ((A&~B)|(B&~A)) -> A^B
4716 if ((match(C
, m_Not(m_Specific(B
))) &&
4717 match(D
, m_Not(m_Specific(A
)))))
4718 return BinaryOperator::CreateXor(A
, B
);
4719 // ((~B&A)|(B&~A)) -> A^B
4720 if ((match(A
, m_Not(m_Specific(B
))) &&
4721 match(D
, m_Not(m_Specific(C
)))))
4722 return BinaryOperator::CreateXor(C
, B
);
4725 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
4726 if (BinaryOperator
*SI1
= dyn_cast
<BinaryOperator
>(Op1
)) {
4727 if (BinaryOperator
*SI0
= dyn_cast
<BinaryOperator
>(Op0
))
4728 if (SI0
->isShift() && SI0
->getOpcode() == SI1
->getOpcode() &&
4729 SI0
->getOperand(1) == SI1
->getOperand(1) &&
4730 (SI0
->hasOneUse() || SI1
->hasOneUse())) {
4731 Instruction
*NewOp
=
4732 InsertNewInstBefore(BinaryOperator::CreateOr(SI0
->getOperand(0),
4734 SI0
->getName()), I
);
4735 return BinaryOperator::Create(SI1
->getOpcode(), NewOp
,
4736 SI1
->getOperand(1));
4740 // ((A|B)&1)|(B&-2) -> (A&1) | B
4741 if (match(Op0
, m_And(m_Or(m_Value(A
), m_Value(B
)), m_Value(C
))) ||
4742 match(Op0
, m_And(m_Value(C
), m_Or(m_Value(A
), m_Value(B
))))) {
4743 Instruction
*Ret
= FoldOrWithConstants(I
, Op1
, A
, B
, C
);
4744 if (Ret
) return Ret
;
4746 // (B&-2)|((A|B)&1) -> (A&1) | B
4747 if (match(Op1
, m_And(m_Or(m_Value(A
), m_Value(B
)), m_Value(C
))) ||
4748 match(Op1
, m_And(m_Value(C
), m_Or(m_Value(A
), m_Value(B
))))) {
4749 Instruction
*Ret
= FoldOrWithConstants(I
, Op0
, A
, B
, C
);
4750 if (Ret
) return Ret
;
4753 if (match(Op0
, m_Not(m_Value(A
)))) { // ~A | Op1
4754 if (A
== Op1
) // ~A | A == -1
4755 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
4759 // Note, A is still live here!
4760 if (match(Op1
, m_Not(m_Value(B
)))) { // Op0 | ~B
4762 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
4764 // (~A | ~B) == (~(A & B)) - De Morgan's Law
4765 if (A
&& isOnlyUse(Op0
) && isOnlyUse(Op1
)) {
4766 Value
*And
= InsertNewInstBefore(BinaryOperator::CreateAnd(A
, B
,
4767 I
.getName()+".demorgan"), I
);
4768 return BinaryOperator::CreateNot(And
);
4772 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
4773 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(I
.getOperand(1))) {
4774 if (Instruction
*R
= AssociativeOpt(I
, FoldICmpLogical(*this, RHS
)))
4777 if (ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(I
.getOperand(0)))
4778 if (Instruction
*Res
= FoldOrOfICmps(I
, LHS
, RHS
))
4782 // fold (or (cast A), (cast B)) -> (cast (or A, B))
4783 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
)) {
4784 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
))
4785 if (Op0C
->getOpcode() == Op1C
->getOpcode()) {// same cast kind ?
4786 if (!isa
<ICmpInst
>(Op0C
->getOperand(0)) ||
4787 !isa
<ICmpInst
>(Op1C
->getOperand(0))) {
4788 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
4789 if (SrcTy
== Op1C
->getOperand(0)->getType() && SrcTy
->isInteger() &&
4790 // Only do this if the casts both really cause code to be
4792 ValueRequiresCast(Op0C
->getOpcode(), Op0C
->getOperand(0),
4794 ValueRequiresCast(Op1C
->getOpcode(), Op1C
->getOperand(0),
4796 Instruction
*NewOp
= BinaryOperator::CreateOr(Op0C
->getOperand(0),
4797 Op1C
->getOperand(0),
4799 InsertNewInstBefore(NewOp
, I
);
4800 return CastInst::Create(Op0C
->getOpcode(), NewOp
, I
.getType());
4807 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4808 if (FCmpInst
*LHS
= dyn_cast
<FCmpInst
>(I
.getOperand(0))) {
4809 if (FCmpInst
*RHS
= dyn_cast
<FCmpInst
>(I
.getOperand(1))) {
4810 if (LHS
->getPredicate() == FCmpInst::FCMP_UNO
&&
4811 RHS
->getPredicate() == FCmpInst::FCMP_UNO
&&
4812 LHS
->getOperand(0)->getType() == RHS
->getOperand(0)->getType()) {
4813 if (ConstantFP
*LHSC
= dyn_cast
<ConstantFP
>(LHS
->getOperand(1)))
4814 if (ConstantFP
*RHSC
= dyn_cast
<ConstantFP
>(RHS
->getOperand(1))) {
4815 // If either of the constants are nans, then the whole thing returns
4817 if (LHSC
->getValueAPF().isNaN() || RHSC
->getValueAPF().isNaN())
4818 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4820 // Otherwise, no need to compare the two constants, compare the
4822 return new FCmpInst(FCmpInst::FCMP_UNO
, LHS
->getOperand(0),
4823 RHS
->getOperand(0));
4826 Value
*Op0LHS
, *Op0RHS
, *Op1LHS
, *Op1RHS
;
4827 FCmpInst::Predicate Op0CC
, Op1CC
;
4828 if (match(Op0
, m_FCmp(Op0CC
, m_Value(Op0LHS
), m_Value(Op0RHS
))) &&
4829 match(Op1
, m_FCmp(Op1CC
, m_Value(Op1LHS
), m_Value(Op1RHS
)))) {
4830 if (Op0LHS
== Op1RHS
&& Op0RHS
== Op1LHS
) {
4831 // Swap RHS operands to match LHS.
4832 Op1CC
= FCmpInst::getSwappedPredicate(Op1CC
);
4833 std::swap(Op1LHS
, Op1RHS
);
4835 if (Op0LHS
== Op1LHS
&& Op0RHS
== Op1RHS
) {
4836 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
4838 return new FCmpInst((FCmpInst::Predicate
)Op0CC
, Op0LHS
, Op0RHS
);
4839 else if (Op0CC
== FCmpInst::FCMP_TRUE
||
4840 Op1CC
== FCmpInst::FCMP_TRUE
)
4841 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
4842 else if (Op0CC
== FCmpInst::FCMP_FALSE
)
4843 return ReplaceInstUsesWith(I
, Op1
);
4844 else if (Op1CC
== FCmpInst::FCMP_FALSE
)
4845 return ReplaceInstUsesWith(I
, Op0
);
4848 unsigned Op0Pred
= getFCmpCode(Op0CC
, Op0Ordered
);
4849 unsigned Op1Pred
= getFCmpCode(Op1CC
, Op1Ordered
);
4850 if (Op0Ordered
== Op1Ordered
) {
4851 // If both are ordered or unordered, return a new fcmp with
4852 // or'ed predicates.
4853 Value
*RV
= getFCmpValue(Op0Ordered
, Op0Pred
|Op1Pred
,
4855 if (Instruction
*I
= dyn_cast
<Instruction
>(RV
))
4857 // Otherwise, it's a constant boolean value...
4858 return ReplaceInstUsesWith(I
, RV
);
4866 return Changed
? &I
: 0;
4871 // XorSelf - Implements: X ^ X --> 0
4874 XorSelf(Value
*rhs
) : RHS(rhs
) {}
4875 bool shouldApply(Value
*LHS
) const { return LHS
== RHS
; }
4876 Instruction
*apply(BinaryOperator
&Xor
) const {
4883 Instruction
*InstCombiner::visitXor(BinaryOperator
&I
) {
4884 bool Changed
= SimplifyCommutative(I
);
4885 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4887 if (isa
<UndefValue
>(Op1
)) {
4888 if (isa
<UndefValue
>(Op0
))
4889 // Handle undef ^ undef -> 0 special case. This is a common
4891 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
4892 return ReplaceInstUsesWith(I
, Op1
); // X ^ undef -> undef
4895 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4896 if (Instruction
*Result
= AssociativeOpt(I
, XorSelf(Op1
))) {
4897 assert(Result
== &I
&& "AssociativeOpt didn't work?"); Result
=Result
;
4898 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
4901 // See if we can simplify any instructions used by the instruction whose sole
4902 // purpose is to compute bits we don't care about.
4903 if (!isa
<VectorType
>(I
.getType())) {
4904 if (SimplifyDemandedInstructionBits(I
))
4906 } else if (isa
<ConstantAggregateZero
>(Op1
)) {
4907 return ReplaceInstUsesWith(I
, Op0
); // X ^ <0,0> -> X
4910 // Is this a ~ operation?
4911 if (Value
*NotOp
= dyn_castNotVal(&I
)) {
4912 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4913 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4914 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(NotOp
)) {
4915 if (Op0I
->getOpcode() == Instruction::And
||
4916 Op0I
->getOpcode() == Instruction::Or
) {
4917 if (dyn_castNotVal(Op0I
->getOperand(1))) Op0I
->swapOperands();
4918 if (Value
*Op0NotVal
= dyn_castNotVal(Op0I
->getOperand(0))) {
4920 BinaryOperator::CreateNot(Op0I
->getOperand(1),
4921 Op0I
->getOperand(1)->getName()+".not");
4922 InsertNewInstBefore(NotY
, I
);
4923 if (Op0I
->getOpcode() == Instruction::And
)
4924 return BinaryOperator::CreateOr(Op0NotVal
, NotY
);
4926 return BinaryOperator::CreateAnd(Op0NotVal
, NotY
);
4933 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Op1
)) {
4934 if (RHS
== ConstantInt::getTrue() && Op0
->hasOneUse()) {
4935 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4936 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Op0
))
4937 return new ICmpInst(ICI
->getInversePredicate(),
4938 ICI
->getOperand(0), ICI
->getOperand(1));
4940 if (FCmpInst
*FCI
= dyn_cast
<FCmpInst
>(Op0
))
4941 return new FCmpInst(FCI
->getInversePredicate(),
4942 FCI
->getOperand(0), FCI
->getOperand(1));
4945 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
4946 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
)) {
4947 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(Op0C
->getOperand(0))) {
4948 if (CI
->hasOneUse() && Op0C
->hasOneUse()) {
4949 Instruction::CastOps Opcode
= Op0C
->getOpcode();
4950 if (Opcode
== Instruction::ZExt
|| Opcode
== Instruction::SExt
) {
4951 if (RHS
== ConstantExpr::getCast(Opcode
, ConstantInt::getTrue(),
4952 Op0C
->getDestTy())) {
4953 Instruction
*NewCI
= InsertNewInstBefore(CmpInst::Create(
4954 CI
->getOpcode(), CI
->getInversePredicate(),
4955 CI
->getOperand(0), CI
->getOperand(1)), I
);
4956 NewCI
->takeName(CI
);
4957 return CastInst::Create(Opcode
, NewCI
, Op0C
->getType());
4964 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
4965 // ~(c-X) == X-c-1 == X+(-c-1)
4966 if (Op0I
->getOpcode() == Instruction::Sub
&& RHS
->isAllOnesValue())
4967 if (Constant
*Op0I0C
= dyn_cast
<Constant
>(Op0I
->getOperand(0))) {
4968 Constant
*NegOp0I0C
= ConstantExpr::getNeg(Op0I0C
);
4969 Constant
*ConstantRHS
= ConstantExpr::getSub(NegOp0I0C
,
4970 ConstantInt::get(I
.getType(), 1));
4971 return BinaryOperator::CreateAdd(Op0I
->getOperand(1), ConstantRHS
);
4974 if (ConstantInt
*Op0CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1))) {
4975 if (Op0I
->getOpcode() == Instruction::Add
) {
4976 // ~(X-c) --> (-c-1)-X
4977 if (RHS
->isAllOnesValue()) {
4978 Constant
*NegOp0CI
= ConstantExpr::getNeg(Op0CI
);
4979 return BinaryOperator::CreateSub(
4980 ConstantExpr::getSub(NegOp0CI
,
4981 ConstantInt::get(I
.getType(), 1)),
4982 Op0I
->getOperand(0));
4983 } else if (RHS
->getValue().isSignBit()) {
4984 // (X + C) ^ signbit -> (X + C + signbit)
4985 Constant
*C
= ConstantInt::get(RHS
->getValue() + Op0CI
->getValue());
4986 return BinaryOperator::CreateAdd(Op0I
->getOperand(0), C
);
4989 } else if (Op0I
->getOpcode() == Instruction::Or
) {
4990 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4991 if (MaskedValueIsZero(Op0I
->getOperand(0), Op0CI
->getValue())) {
4992 Constant
*NewRHS
= ConstantExpr::getOr(Op0CI
, RHS
);
4993 // Anything in both C1 and C2 is known to be zero, remove it from
4995 Constant
*CommonBits
= And(Op0CI
, RHS
);
4996 NewRHS
= ConstantExpr::getAnd(NewRHS
,
4997 ConstantExpr::getNot(CommonBits
));
4998 AddToWorkList(Op0I
);
4999 I
.setOperand(0, Op0I
->getOperand(0));
5000 I
.setOperand(1, NewRHS
);
5007 // Try to fold constant and into select arguments.
5008 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
5009 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
5011 if (isa
<PHINode
>(Op0
))
5012 if (Instruction
*NV
= FoldOpIntoPhi(I
))
5016 if (Value
*X
= dyn_castNotVal(Op0
)) // ~A ^ A == -1
5018 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
5020 if (Value
*X
= dyn_castNotVal(Op1
)) // A ^ ~A == -1
5022 return ReplaceInstUsesWith(I
, Constant::getAllOnesValue(I
.getType()));
5025 BinaryOperator
*Op1I
= dyn_cast
<BinaryOperator
>(Op1
);
5028 if (match(Op1I
, m_Or(m_Value(A
), m_Value(B
)))) {
5029 if (A
== Op0
) { // B^(B|A) == (A|B)^B
5030 Op1I
->swapOperands();
5032 std::swap(Op0
, Op1
);
5033 } else if (B
== Op0
) { // B^(A|B) == (A|B)^B
5034 I
.swapOperands(); // Simplified below.
5035 std::swap(Op0
, Op1
);
5037 } else if (match(Op1I
, m_Xor(m_Specific(Op0
), m_Value(B
)))) {
5038 return ReplaceInstUsesWith(I
, B
); // A^(A^B) == B
5039 } else if (match(Op1I
, m_Xor(m_Value(A
), m_Specific(Op0
)))) {
5040 return ReplaceInstUsesWith(I
, A
); // A^(B^A) == B
5041 } else if (match(Op1I
, m_And(m_Value(A
), m_Value(B
))) && Op1I
->hasOneUse()){
5042 if (A
== Op0
) { // A^(A&B) -> A^(B&A)
5043 Op1I
->swapOperands();
5046 if (B
== Op0
) { // A^(B&A) -> (B&A)^A
5047 I
.swapOperands(); // Simplified below.
5048 std::swap(Op0
, Op1
);
5053 BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
);
5056 if (match(Op0I
, m_Or(m_Value(A
), m_Value(B
))) && Op0I
->hasOneUse()) {
5057 if (A
== Op1
) // (B|A)^B == (A|B)^B
5059 if (B
== Op1
) { // (A|B)^B == A & ~B
5061 InsertNewInstBefore(BinaryOperator::CreateNot(Op1
, "tmp"), I
);
5062 return BinaryOperator::CreateAnd(A
, NotB
);
5064 } else if (match(Op0I
, m_Xor(m_Specific(Op1
), m_Value(B
)))) {
5065 return ReplaceInstUsesWith(I
, B
); // (A^B)^A == B
5066 } else if (match(Op0I
, m_Xor(m_Value(A
), m_Specific(Op1
)))) {
5067 return ReplaceInstUsesWith(I
, A
); // (B^A)^A == B
5068 } else if (match(Op0I
, m_And(m_Value(A
), m_Value(B
))) && Op0I
->hasOneUse()){
5069 if (A
== Op1
) // (A&B)^A -> (B&A)^A
5071 if (B
== Op1
&& // (B&A)^A == ~B & A
5072 !isa
<ConstantInt
>(Op1
)) { // Canonical form is (B&C)^C
5074 InsertNewInstBefore(BinaryOperator::CreateNot(A
, "tmp"), I
);
5075 return BinaryOperator::CreateAnd(N
, Op1
);
5080 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
5081 if (Op0I
&& Op1I
&& Op0I
->isShift() &&
5082 Op0I
->getOpcode() == Op1I
->getOpcode() &&
5083 Op0I
->getOperand(1) == Op1I
->getOperand(1) &&
5084 (Op1I
->hasOneUse() || Op1I
->hasOneUse())) {
5085 Instruction
*NewOp
=
5086 InsertNewInstBefore(BinaryOperator::CreateXor(Op0I
->getOperand(0),
5087 Op1I
->getOperand(0),
5088 Op0I
->getName()), I
);
5089 return BinaryOperator::Create(Op1I
->getOpcode(), NewOp
,
5090 Op1I
->getOperand(1));
5094 Value
*A
, *B
, *C
, *D
;
5095 // (A & B)^(A | B) -> A ^ B
5096 if (match(Op0I
, m_And(m_Value(A
), m_Value(B
))) &&
5097 match(Op1I
, m_Or(m_Value(C
), m_Value(D
)))) {
5098 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
5099 return BinaryOperator::CreateXor(A
, B
);
5101 // (A | B)^(A & B) -> A ^ B
5102 if (match(Op0I
, m_Or(m_Value(A
), m_Value(B
))) &&
5103 match(Op1I
, m_And(m_Value(C
), m_Value(D
)))) {
5104 if ((A
== C
&& B
== D
) || (A
== D
&& B
== C
))
5105 return BinaryOperator::CreateXor(A
, B
);
5109 if ((Op0I
->hasOneUse() || Op1I
->hasOneUse()) &&
5110 match(Op0I
, m_And(m_Value(A
), m_Value(B
))) &&
5111 match(Op1I
, m_And(m_Value(C
), m_Value(D
)))) {
5112 // (X & Y)^(X & Y) -> (Y^Z) & X
5113 Value
*X
= 0, *Y
= 0, *Z
= 0;
5115 X
= A
, Y
= B
, Z
= D
;
5117 X
= A
, Y
= B
, Z
= C
;
5119 X
= B
, Y
= A
, Z
= D
;
5121 X
= B
, Y
= A
, Z
= C
;
5124 Instruction
*NewOp
=
5125 InsertNewInstBefore(BinaryOperator::CreateXor(Y
, Z
, Op0
->getName()), I
);
5126 return BinaryOperator::CreateAnd(NewOp
, X
);
5131 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
5132 if (ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(I
.getOperand(1)))
5133 if (Instruction
*R
= AssociativeOpt(I
, FoldICmpLogical(*this, RHS
)))
5136 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
5137 if (CastInst
*Op0C
= dyn_cast
<CastInst
>(Op0
)) {
5138 if (CastInst
*Op1C
= dyn_cast
<CastInst
>(Op1
))
5139 if (Op0C
->getOpcode() == Op1C
->getOpcode()) { // same cast kind?
5140 const Type
*SrcTy
= Op0C
->getOperand(0)->getType();
5141 if (SrcTy
== Op1C
->getOperand(0)->getType() && SrcTy
->isInteger() &&
5142 // Only do this if the casts both really cause code to be generated.
5143 ValueRequiresCast(Op0C
->getOpcode(), Op0C
->getOperand(0),
5145 ValueRequiresCast(Op1C
->getOpcode(), Op1C
->getOperand(0),
5147 Instruction
*NewOp
= BinaryOperator::CreateXor(Op0C
->getOperand(0),
5148 Op1C
->getOperand(0),
5150 InsertNewInstBefore(NewOp
, I
);
5151 return CastInst::Create(Op0C
->getOpcode(), NewOp
, I
.getType());
5156 return Changed
? &I
: 0;
5159 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
5160 /// overflowed for this type.
5161 static bool AddWithOverflow(ConstantInt
*&Result
, ConstantInt
*In1
,
5162 ConstantInt
*In2
, bool IsSigned
= false) {
5163 Result
= cast
<ConstantInt
>(Add(In1
, In2
));
5166 if (In2
->getValue().isNegative())
5167 return Result
->getValue().sgt(In1
->getValue());
5169 return Result
->getValue().slt(In1
->getValue());
5171 return Result
->getValue().ult(In1
->getValue());
5174 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
5175 /// overflowed for this type.
5176 static bool SubWithOverflow(ConstantInt
*&Result
, ConstantInt
*In1
,
5177 ConstantInt
*In2
, bool IsSigned
= false) {
5178 Result
= cast
<ConstantInt
>(Subtract(In1
, In2
));
5181 if (In2
->getValue().isNegative())
5182 return Result
->getValue().slt(In1
->getValue());
5184 return Result
->getValue().sgt(In1
->getValue());
5186 return Result
->getValue().ugt(In1
->getValue());
5189 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
5190 /// code necessary to compute the offset from the base pointer (without adding
5191 /// in the base pointer). Return the result as a signed integer of intptr size.
5192 static Value
*EmitGEPOffset(User
*GEP
, Instruction
&I
, InstCombiner
&IC
) {
5193 TargetData
&TD
= IC
.getTargetData();
5194 gep_type_iterator GTI
= gep_type_begin(GEP
);
5195 const Type
*IntPtrTy
= TD
.getIntPtrType();
5196 Value
*Result
= Constant::getNullValue(IntPtrTy
);
5198 // Build a mask for high order bits.
5199 unsigned IntPtrWidth
= TD
.getPointerSizeInBits();
5200 uint64_t PtrSizeMask
= ~0ULL >> (64-IntPtrWidth
);
5202 for (User::op_iterator i
= GEP
->op_begin() + 1, e
= GEP
->op_end(); i
!= e
;
5205 uint64_t Size
= TD
.getTypePaddedSize(GTI
.getIndexedType()) & PtrSizeMask
;
5206 if (ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(Op
)) {
5207 if (OpC
->isZero()) continue;
5209 // Handle a struct index, which adds its field offset to the pointer.
5210 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
5211 Size
= TD
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
5213 if (ConstantInt
*RC
= dyn_cast
<ConstantInt
>(Result
))
5214 Result
= ConstantInt::get(RC
->getValue() + APInt(IntPtrWidth
, Size
));
5216 Result
= IC
.InsertNewInstBefore(
5217 BinaryOperator::CreateAdd(Result
,
5218 ConstantInt::get(IntPtrTy
, Size
),
5219 GEP
->getName()+".offs"), I
);
5223 Constant
*Scale
= ConstantInt::get(IntPtrTy
, Size
);
5224 Constant
*OC
= ConstantExpr::getIntegerCast(OpC
, IntPtrTy
, true /*SExt*/);
5225 Scale
= ConstantExpr::getMul(OC
, Scale
);
5226 if (Constant
*RC
= dyn_cast
<Constant
>(Result
))
5227 Result
= ConstantExpr::getAdd(RC
, Scale
);
5229 // Emit an add instruction.
5230 Result
= IC
.InsertNewInstBefore(
5231 BinaryOperator::CreateAdd(Result
, Scale
,
5232 GEP
->getName()+".offs"), I
);
5236 // Convert to correct type.
5237 if (Op
->getType() != IntPtrTy
) {
5238 if (Constant
*OpC
= dyn_cast
<Constant
>(Op
))
5239 Op
= ConstantExpr::getIntegerCast(OpC
, IntPtrTy
, true);
5241 Op
= IC
.InsertNewInstBefore(CastInst::CreateIntegerCast(Op
, IntPtrTy
,
5243 Op
->getName()+".c"), I
);
5246 Constant
*Scale
= ConstantInt::get(IntPtrTy
, Size
);
5247 if (Constant
*OpC
= dyn_cast
<Constant
>(Op
))
5248 Op
= ConstantExpr::getMul(OpC
, Scale
);
5249 else // We'll let instcombine(mul) convert this to a shl if possible.
5250 Op
= IC
.InsertNewInstBefore(BinaryOperator::CreateMul(Op
, Scale
,
5251 GEP
->getName()+".idx"), I
);
5254 // Emit an add instruction.
5255 if (isa
<Constant
>(Op
) && isa
<Constant
>(Result
))
5256 Result
= ConstantExpr::getAdd(cast
<Constant
>(Op
),
5257 cast
<Constant
>(Result
));
5259 Result
= IC
.InsertNewInstBefore(BinaryOperator::CreateAdd(Op
, Result
,
5260 GEP
->getName()+".offs"), I
);
5266 /// EvaluateGEPOffsetExpression - Return an value that can be used to compare of
5267 /// the *offset* implied by GEP to zero. For example, if we have &A[i], we want
5268 /// to return 'i' for "icmp ne i, 0". Note that, in general, indices can be
5269 /// complex, and scales are involved. The above expression would also be legal
5270 /// to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32). This
5271 /// later form is less amenable to optimization though, and we are allowed to
5272 /// generate the first by knowing that pointer arithmetic doesn't overflow.
5274 /// If we can't emit an optimized form for this expression, this returns null.
5276 static Value
*EvaluateGEPOffsetExpression(User
*GEP
, Instruction
&I
,
5278 TargetData
&TD
= IC
.getTargetData();
5279 gep_type_iterator GTI
= gep_type_begin(GEP
);
5281 // Check to see if this gep only has a single variable index. If so, and if
5282 // any constant indices are a multiple of its scale, then we can compute this
5283 // in terms of the scale of the variable index. For example, if the GEP
5284 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
5285 // because the expression will cross zero at the same point.
5286 unsigned i
, e
= GEP
->getNumOperands();
5288 for (i
= 1; i
!= e
; ++i
, ++GTI
) {
5289 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
5290 // Compute the aggregate offset of constant indices.
5291 if (CI
->isZero()) continue;
5293 // Handle a struct index, which adds its field offset to the pointer.
5294 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
5295 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
5297 uint64_t Size
= TD
.getTypePaddedSize(GTI
.getIndexedType());
5298 Offset
+= Size
*CI
->getSExtValue();
5301 // Found our variable index.
5306 // If there are no variable indices, we must have a constant offset, just
5307 // evaluate it the general way.
5308 if (i
== e
) return 0;
5310 Value
*VariableIdx
= GEP
->getOperand(i
);
5311 // Determine the scale factor of the variable element. For example, this is
5312 // 4 if the variable index is into an array of i32.
5313 uint64_t VariableScale
= TD
.getTypePaddedSize(GTI
.getIndexedType());
5315 // Verify that there are no other variable indices. If so, emit the hard way.
5316 for (++i
, ++GTI
; i
!= e
; ++i
, ++GTI
) {
5317 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
5320 // Compute the aggregate offset of constant indices.
5321 if (CI
->isZero()) continue;
5323 // Handle a struct index, which adds its field offset to the pointer.
5324 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
5325 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
5327 uint64_t Size
= TD
.getTypePaddedSize(GTI
.getIndexedType());
5328 Offset
+= Size
*CI
->getSExtValue();
5332 // Okay, we know we have a single variable index, which must be a
5333 // pointer/array/vector index. If there is no offset, life is simple, return
5335 unsigned IntPtrWidth
= TD
.getPointerSizeInBits();
5337 // Cast to intptrty in case a truncation occurs. If an extension is needed,
5338 // we don't need to bother extending: the extension won't affect where the
5339 // computation crosses zero.
5340 if (VariableIdx
->getType()->getPrimitiveSizeInBits() > IntPtrWidth
)
5341 VariableIdx
= new TruncInst(VariableIdx
, TD
.getIntPtrType(),
5342 VariableIdx
->getNameStart(), &I
);
5346 // Otherwise, there is an index. The computation we will do will be modulo
5347 // the pointer size, so get it.
5348 uint64_t PtrSizeMask
= ~0ULL >> (64-IntPtrWidth
);
5350 Offset
&= PtrSizeMask
;
5351 VariableScale
&= PtrSizeMask
;
5353 // To do this transformation, any constant index must be a multiple of the
5354 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
5355 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
5356 // multiple of the variable scale.
5357 int64_t NewOffs
= Offset
/ (int64_t)VariableScale
;
5358 if (Offset
!= NewOffs
*(int64_t)VariableScale
)
5361 // Okay, we can do this evaluation. Start by converting the index to intptr.
5362 const Type
*IntPtrTy
= TD
.getIntPtrType();
5363 if (VariableIdx
->getType() != IntPtrTy
)
5364 VariableIdx
= CastInst::CreateIntegerCast(VariableIdx
, IntPtrTy
,
5366 VariableIdx
->getNameStart(), &I
);
5367 Constant
*OffsetVal
= ConstantInt::get(IntPtrTy
, NewOffs
);
5368 return BinaryOperator::CreateAdd(VariableIdx
, OffsetVal
, "offset", &I
);
5372 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
5373 /// else. At this point we know that the GEP is on the LHS of the comparison.
5374 Instruction
*InstCombiner::FoldGEPICmp(User
*GEPLHS
, Value
*RHS
,
5375 ICmpInst::Predicate Cond
,
5377 assert(dyn_castGetElementPtr(GEPLHS
) && "LHS is not a getelementptr!");
5379 // Look through bitcasts.
5380 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(RHS
))
5381 RHS
= BCI
->getOperand(0);
5383 Value
*PtrBase
= GEPLHS
->getOperand(0);
5384 if (PtrBase
== RHS
) {
5385 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
5386 // This transformation (ignoring the base and scales) is valid because we
5387 // know pointers can't overflow. See if we can output an optimized form.
5388 Value
*Offset
= EvaluateGEPOffsetExpression(GEPLHS
, I
, *this);
5390 // If not, synthesize the offset the hard way.
5392 Offset
= EmitGEPOffset(GEPLHS
, I
, *this);
5393 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
5394 Constant::getNullValue(Offset
->getType()));
5395 } else if (User
*GEPRHS
= dyn_castGetElementPtr(RHS
)) {
5396 // If the base pointers are different, but the indices are the same, just
5397 // compare the base pointer.
5398 if (PtrBase
!= GEPRHS
->getOperand(0)) {
5399 bool IndicesTheSame
= GEPLHS
->getNumOperands()==GEPRHS
->getNumOperands();
5400 IndicesTheSame
&= GEPLHS
->getOperand(0)->getType() ==
5401 GEPRHS
->getOperand(0)->getType();
5403 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
5404 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
5405 IndicesTheSame
= false;
5409 // If all indices are the same, just compare the base pointers.
5411 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
),
5412 GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
5414 // Otherwise, the base pointers are different and the indices are
5415 // different, bail out.
5419 // If one of the GEPs has all zero indices, recurse.
5420 bool AllZeros
= true;
5421 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
5422 if (!isa
<Constant
>(GEPLHS
->getOperand(i
)) ||
5423 !cast
<Constant
>(GEPLHS
->getOperand(i
))->isNullValue()) {
5428 return FoldGEPICmp(GEPRHS
, GEPLHS
->getOperand(0),
5429 ICmpInst::getSwappedPredicate(Cond
), I
);
5431 // If the other GEP has all zero indices, recurse.
5433 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
5434 if (!isa
<Constant
>(GEPRHS
->getOperand(i
)) ||
5435 !cast
<Constant
>(GEPRHS
->getOperand(i
))->isNullValue()) {
5440 return FoldGEPICmp(GEPLHS
, GEPRHS
->getOperand(0), Cond
, I
);
5442 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands()) {
5443 // If the GEPs only differ by one index, compare it.
5444 unsigned NumDifferences
= 0; // Keep track of # differences.
5445 unsigned DiffOperand
= 0; // The operand that differs.
5446 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
5447 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
5448 if (GEPLHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits() !=
5449 GEPRHS
->getOperand(i
)->getType()->getPrimitiveSizeInBits()) {
5450 // Irreconcilable differences.
5454 if (NumDifferences
++) break;
5459 if (NumDifferences
== 0) // SAME GEP?
5460 return ReplaceInstUsesWith(I
, // No comparison is needed here.
5461 ConstantInt::get(Type::Int1Ty
,
5462 ICmpInst::isTrueWhenEqual(Cond
)));
5464 else if (NumDifferences
== 1) {
5465 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
5466 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
5467 // Make sure we do a signed comparison here.
5468 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
5472 // Only lower this if the icmp is the only user of the GEP or if we expect
5473 // the result to fold to a constant!
5474 if ((isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) &&
5475 (isa
<ConstantExpr
>(GEPRHS
) || GEPRHS
->hasOneUse())) {
5476 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
5477 Value
*L
= EmitGEPOffset(GEPLHS
, I
, *this);
5478 Value
*R
= EmitGEPOffset(GEPRHS
, I
, *this);
5479 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
5485 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
5487 Instruction
*InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst
&I
,
5490 if (!isa
<ConstantFP
>(RHSC
)) return 0;
5491 const APFloat
&RHS
= cast
<ConstantFP
>(RHSC
)->getValueAPF();
5493 // Get the width of the mantissa. We don't want to hack on conversions that
5494 // might lose information from the integer, e.g. "i64 -> float"
5495 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
5496 if (MantissaWidth
== -1) return 0; // Unknown.
5498 // Check to see that the input is converted from an integer type that is small
5499 // enough that preserves all bits. TODO: check here for "known" sign bits.
5500 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5501 unsigned InputSize
= LHSI
->getOperand(0)->getType()->getPrimitiveSizeInBits();
5503 // If this is a uitofp instruction, we need an extra bit to hold the sign.
5504 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
5508 // If the conversion would lose info, don't hack on this.
5509 if ((int)InputSize
> MantissaWidth
)
5512 // Otherwise, we can potentially simplify the comparison. We know that it
5513 // will always come through as an integer value and we know the constant is
5514 // not a NAN (it would have been previously simplified).
5515 assert(!RHS
.isNaN() && "NaN comparison not already folded!");
5517 ICmpInst::Predicate Pred
;
5518 switch (I
.getPredicate()) {
5519 default: assert(0 && "Unexpected predicate!");
5520 case FCmpInst::FCMP_UEQ
:
5521 case FCmpInst::FCMP_OEQ
:
5522 Pred
= ICmpInst::ICMP_EQ
;
5524 case FCmpInst::FCMP_UGT
:
5525 case FCmpInst::FCMP_OGT
:
5526 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
5528 case FCmpInst::FCMP_UGE
:
5529 case FCmpInst::FCMP_OGE
:
5530 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
5532 case FCmpInst::FCMP_ULT
:
5533 case FCmpInst::FCMP_OLT
:
5534 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
5536 case FCmpInst::FCMP_ULE
:
5537 case FCmpInst::FCMP_OLE
:
5538 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
5540 case FCmpInst::FCMP_UNE
:
5541 case FCmpInst::FCMP_ONE
:
5542 Pred
= ICmpInst::ICMP_NE
;
5544 case FCmpInst::FCMP_ORD
:
5545 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5546 case FCmpInst::FCMP_UNO
:
5547 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5550 const IntegerType
*IntTy
= cast
<IntegerType
>(LHSI
->getOperand(0)->getType());
5552 // Now we know that the APFloat is a normal number, zero or inf.
5554 // See if the FP constant is too large for the integer. For example,
5555 // comparing an i8 to 300.0.
5556 unsigned IntWidth
= IntTy
->getPrimitiveSizeInBits();
5559 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5560 // and large values.
5561 APFloat
SMax(RHS
.getSemantics(), APFloat::fcZero
, false);
5562 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
5563 APFloat::rmNearestTiesToEven
);
5564 if (SMax
.compare(RHS
) == APFloat::cmpLessThan
) { // smax < 13123.0
5565 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
5566 Pred
== ICmpInst::ICMP_SLE
)
5567 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5568 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5571 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5572 // +INF and large values.
5573 APFloat
UMax(RHS
.getSemantics(), APFloat::fcZero
, false);
5574 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
5575 APFloat::rmNearestTiesToEven
);
5576 if (UMax
.compare(RHS
) == APFloat::cmpLessThan
) { // umax < 13123.0
5577 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
5578 Pred
== ICmpInst::ICMP_ULE
)
5579 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5580 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5585 // See if the RHS value is < SignedMin.
5586 APFloat
SMin(RHS
.getSemantics(), APFloat::fcZero
, false);
5587 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
5588 APFloat::rmNearestTiesToEven
);
5589 if (SMin
.compare(RHS
) == APFloat::cmpGreaterThan
) { // smin > 12312.0
5590 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
5591 Pred
== ICmpInst::ICMP_SGE
)
5592 return ReplaceInstUsesWith(I
,ConstantInt::getTrue());
5593 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5597 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5598 // [0, UMAX], but it may still be fractional. See if it is fractional by
5599 // casting the FP value to the integer value and back, checking for equality.
5600 // Don't do this for zero, because -0.0 is not fractional.
5601 Constant
*RHSInt
= ConstantExpr::getFPToSI(RHSC
, IntTy
);
5602 if (!RHS
.isZero() &&
5603 ConstantExpr::getSIToFP(RHSInt
, RHSC
->getType()) != RHSC
) {
5604 // If we had a comparison against a fractional value, we have to adjust the
5605 // compare predicate and sometimes the value. RHSC is rounded towards zero
5608 default: assert(0 && "Unexpected integer comparison!");
5609 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
5610 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5611 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
5612 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5613 case ICmpInst::ICMP_ULE
:
5614 // (float)int <= 4.4 --> int <= 4
5615 // (float)int <= -4.4 --> false
5616 if (RHS
.isNegative())
5617 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5619 case ICmpInst::ICMP_SLE
:
5620 // (float)int <= 4.4 --> int <= 4
5621 // (float)int <= -4.4 --> int < -4
5622 if (RHS
.isNegative())
5623 Pred
= ICmpInst::ICMP_SLT
;
5625 case ICmpInst::ICMP_ULT
:
5626 // (float)int < -4.4 --> false
5627 // (float)int < 4.4 --> int <= 4
5628 if (RHS
.isNegative())
5629 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5630 Pred
= ICmpInst::ICMP_ULE
;
5632 case ICmpInst::ICMP_SLT
:
5633 // (float)int < -4.4 --> int < -4
5634 // (float)int < 4.4 --> int <= 4
5635 if (!RHS
.isNegative())
5636 Pred
= ICmpInst::ICMP_SLE
;
5638 case ICmpInst::ICMP_UGT
:
5639 // (float)int > 4.4 --> int > 4
5640 // (float)int > -4.4 --> true
5641 if (RHS
.isNegative())
5642 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5644 case ICmpInst::ICMP_SGT
:
5645 // (float)int > 4.4 --> int > 4
5646 // (float)int > -4.4 --> int >= -4
5647 if (RHS
.isNegative())
5648 Pred
= ICmpInst::ICMP_SGE
;
5650 case ICmpInst::ICMP_UGE
:
5651 // (float)int >= -4.4 --> true
5652 // (float)int >= 4.4 --> int > 4
5653 if (!RHS
.isNegative())
5654 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5655 Pred
= ICmpInst::ICMP_UGT
;
5657 case ICmpInst::ICMP_SGE
:
5658 // (float)int >= -4.4 --> int >= -4
5659 // (float)int >= 4.4 --> int > 4
5660 if (!RHS
.isNegative())
5661 Pred
= ICmpInst::ICMP_SGT
;
5666 // Lower this FP comparison into an appropriate integer version of the
5668 return new ICmpInst(Pred
, LHSI
->getOperand(0), RHSInt
);
5671 Instruction
*InstCombiner::visitFCmpInst(FCmpInst
&I
) {
5672 bool Changed
= SimplifyCompare(I
);
5673 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5675 // Fold trivial predicates.
5676 if (I
.getPredicate() == FCmpInst::FCMP_FALSE
)
5677 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5678 if (I
.getPredicate() == FCmpInst::FCMP_TRUE
)
5679 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5681 // Simplify 'fcmp pred X, X'
5683 switch (I
.getPredicate()) {
5684 default: assert(0 && "Unknown predicate!");
5685 case FCmpInst::FCMP_UEQ
: // True if unordered or equal
5686 case FCmpInst::FCMP_UGE
: // True if unordered, greater than, or equal
5687 case FCmpInst::FCMP_ULE
: // True if unordered, less than, or equal
5688 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5689 case FCmpInst::FCMP_OGT
: // True if ordered and greater than
5690 case FCmpInst::FCMP_OLT
: // True if ordered and less than
5691 case FCmpInst::FCMP_ONE
: // True if ordered and operands are unequal
5692 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5694 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
5695 case FCmpInst::FCMP_ULT
: // True if unordered or less than
5696 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
5697 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
5698 // Canonicalize these to be 'fcmp uno %X, 0.0'.
5699 I
.setPredicate(FCmpInst::FCMP_UNO
);
5700 I
.setOperand(1, Constant::getNullValue(Op0
->getType()));
5703 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
5704 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
5705 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
5706 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
5707 // Canonicalize these to be 'fcmp ord %X, 0.0'.
5708 I
.setPredicate(FCmpInst::FCMP_ORD
);
5709 I
.setOperand(1, Constant::getNullValue(Op0
->getType()));
5714 if (isa
<UndefValue
>(Op1
)) // fcmp pred X, undef -> undef
5715 return ReplaceInstUsesWith(I
, UndefValue::get(Type::Int1Ty
));
5717 // Handle fcmp with constant RHS
5718 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
)) {
5719 // If the constant is a nan, see if we can fold the comparison based on it.
5720 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHSC
)) {
5721 if (CFP
->getValueAPF().isNaN()) {
5722 if (FCmpInst::isOrdered(I
.getPredicate())) // True if ordered and...
5723 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5724 assert(FCmpInst::isUnordered(I
.getPredicate()) &&
5725 "Comparison must be either ordered or unordered!");
5726 // True if unordered.
5727 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5731 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
5732 switch (LHSI
->getOpcode()) {
5733 case Instruction::PHI
:
5734 // Only fold fcmp into the PHI if the phi and fcmp are in the same
5735 // block. If in the same block, we're encouraging jump threading. If
5736 // not, we are just pessimizing the code by making an i1 phi.
5737 if (LHSI
->getParent() == I
.getParent())
5738 if (Instruction
*NV
= FoldOpIntoPhi(I
))
5741 case Instruction::SIToFP
:
5742 case Instruction::UIToFP
:
5743 if (Instruction
*NV
= FoldFCmp_IntToFP_Cst(I
, LHSI
, RHSC
))
5746 case Instruction::Select
:
5747 // If either operand of the select is a constant, we can fold the
5748 // comparison into the select arms, which will cause one to be
5749 // constant folded and the select turned into a bitwise or.
5750 Value
*Op1
= 0, *Op2
= 0;
5751 if (LHSI
->hasOneUse()) {
5752 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
5753 // Fold the known value into the constant operand.
5754 Op1
= ConstantExpr::getCompare(I
.getPredicate(), C
, RHSC
);
5755 // Insert a new FCmp of the other select operand.
5756 Op2
= InsertNewInstBefore(new FCmpInst(I
.getPredicate(),
5757 LHSI
->getOperand(2), RHSC
,
5759 } else if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
5760 // Fold the known value into the constant operand.
5761 Op2
= ConstantExpr::getCompare(I
.getPredicate(), C
, RHSC
);
5762 // Insert a new FCmp of the other select operand.
5763 Op1
= InsertNewInstBefore(new FCmpInst(I
.getPredicate(),
5764 LHSI
->getOperand(1), RHSC
,
5770 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
5775 return Changed
? &I
: 0;
5778 Instruction
*InstCombiner::visitICmpInst(ICmpInst
&I
) {
5779 bool Changed
= SimplifyCompare(I
);
5780 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5781 const Type
*Ty
= Op0
->getType();
5785 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
,
5786 I
.isTrueWhenEqual()));
5788 if (isa
<UndefValue
>(Op1
)) // X icmp undef -> undef
5789 return ReplaceInstUsesWith(I
, UndefValue::get(Type::Int1Ty
));
5791 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
5792 // addresses never equal each other! We already know that Op0 != Op1.
5793 if ((isa
<GlobalValue
>(Op0
) || isa
<AllocaInst
>(Op0
) ||
5794 isa
<ConstantPointerNull
>(Op0
)) &&
5795 (isa
<GlobalValue
>(Op1
) || isa
<AllocaInst
>(Op1
) ||
5796 isa
<ConstantPointerNull
>(Op1
)))
5797 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
,
5798 !I
.isTrueWhenEqual()));
5800 // icmp's with boolean values can always be turned into bitwise operations
5801 if (Ty
== Type::Int1Ty
) {
5802 switch (I
.getPredicate()) {
5803 default: assert(0 && "Invalid icmp instruction!");
5804 case ICmpInst::ICMP_EQ
: { // icmp eq i1 A, B -> ~(A^B)
5805 Instruction
*Xor
= BinaryOperator::CreateXor(Op0
, Op1
, I
.getName()+"tmp");
5806 InsertNewInstBefore(Xor
, I
);
5807 return BinaryOperator::CreateNot(Xor
);
5809 case ICmpInst::ICMP_NE
: // icmp eq i1 A, B -> A^B
5810 return BinaryOperator::CreateXor(Op0
, Op1
);
5812 case ICmpInst::ICMP_UGT
:
5813 std::swap(Op0
, Op1
); // Change icmp ugt -> icmp ult
5815 case ICmpInst::ICMP_ULT
:{ // icmp ult i1 A, B -> ~A & B
5816 Instruction
*Not
= BinaryOperator::CreateNot(Op0
, I
.getName()+"tmp");
5817 InsertNewInstBefore(Not
, I
);
5818 return BinaryOperator::CreateAnd(Not
, Op1
);
5820 case ICmpInst::ICMP_SGT
:
5821 std::swap(Op0
, Op1
); // Change icmp sgt -> icmp slt
5823 case ICmpInst::ICMP_SLT
: { // icmp slt i1 A, B -> A & ~B
5824 Instruction
*Not
= BinaryOperator::CreateNot(Op1
, I
.getName()+"tmp");
5825 InsertNewInstBefore(Not
, I
);
5826 return BinaryOperator::CreateAnd(Not
, Op0
);
5828 case ICmpInst::ICMP_UGE
:
5829 std::swap(Op0
, Op1
); // Change icmp uge -> icmp ule
5831 case ICmpInst::ICMP_ULE
: { // icmp ule i1 A, B -> ~A | B
5832 Instruction
*Not
= BinaryOperator::CreateNot(Op0
, I
.getName()+"tmp");
5833 InsertNewInstBefore(Not
, I
);
5834 return BinaryOperator::CreateOr(Not
, Op1
);
5836 case ICmpInst::ICMP_SGE
:
5837 std::swap(Op0
, Op1
); // Change icmp sge -> icmp sle
5839 case ICmpInst::ICMP_SLE
: { // icmp sle i1 A, B -> A | ~B
5840 Instruction
*Not
= BinaryOperator::CreateNot(Op1
, I
.getName()+"tmp");
5841 InsertNewInstBefore(Not
, I
);
5842 return BinaryOperator::CreateOr(Not
, Op0
);
5847 unsigned BitWidth
= 0;
5849 BitWidth
= TD
->getTypeSizeInBits(Ty
);
5850 else if (isa
<IntegerType
>(Ty
))
5851 BitWidth
= Ty
->getPrimitiveSizeInBits();
5853 bool isSignBit
= false;
5855 // See if we are doing a comparison with a constant.
5856 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
5857 Value
*A
= 0, *B
= 0;
5859 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
5860 if (I
.isEquality() && CI
->isNullValue() &&
5861 match(Op0
, m_Sub(m_Value(A
), m_Value(B
)))) {
5862 // (icmp cond A B) if cond is equality
5863 return new ICmpInst(I
.getPredicate(), A
, B
);
5866 // If we have an icmp le or icmp ge instruction, turn it into the
5867 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
5868 // them being folded in the code below.
5869 switch (I
.getPredicate()) {
5871 case ICmpInst::ICMP_ULE
:
5872 if (CI
->isMaxValue(false)) // A <=u MAX -> TRUE
5873 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5874 return new ICmpInst(ICmpInst::ICMP_ULT
, Op0
, AddOne(CI
));
5875 case ICmpInst::ICMP_SLE
:
5876 if (CI
->isMaxValue(true)) // A <=s MAX -> TRUE
5877 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5878 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
, AddOne(CI
));
5879 case ICmpInst::ICMP_UGE
:
5880 if (CI
->isMinValue(false)) // A >=u MIN -> TRUE
5881 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5882 return new ICmpInst( ICmpInst::ICMP_UGT
, Op0
, SubOne(CI
));
5883 case ICmpInst::ICMP_SGE
:
5884 if (CI
->isMinValue(true)) // A >=s MIN -> TRUE
5885 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5886 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
, SubOne(CI
));
5889 // If this comparison is a normal comparison, it demands all
5890 // bits, if it is a sign bit comparison, it only demands the sign bit.
5892 isSignBit
= isSignBitCheck(I
.getPredicate(), CI
, UnusedBit
);
5895 // See if we can fold the comparison based on range information we can get
5896 // by checking whether bits are known to be zero or one in the input.
5897 if (BitWidth
!= 0) {
5898 APInt
Op0KnownZero(BitWidth
, 0), Op0KnownOne(BitWidth
, 0);
5899 APInt
Op1KnownZero(BitWidth
, 0), Op1KnownOne(BitWidth
, 0);
5901 if (SimplifyDemandedBits(I
.getOperandUse(0),
5902 isSignBit
? APInt::getSignBit(BitWidth
)
5903 : APInt::getAllOnesValue(BitWidth
),
5904 Op0KnownZero
, Op0KnownOne
, 0))
5906 if (SimplifyDemandedBits(I
.getOperandUse(1),
5907 APInt::getAllOnesValue(BitWidth
),
5908 Op1KnownZero
, Op1KnownOne
, 0))
5911 // Given the known and unknown bits, compute a range that the LHS could be
5912 // in. Compute the Min, Max and RHS values based on the known bits. For the
5913 // EQ and NE we use unsigned values.
5914 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
5915 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
5916 if (ICmpInst::isSignedPredicate(I
.getPredicate())) {
5917 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero
, Op0KnownOne
,
5919 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero
, Op1KnownOne
,
5922 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero
, Op0KnownOne
,
5924 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero
, Op1KnownOne
,
5928 // If Min and Max are known to be the same, then SimplifyDemandedBits
5929 // figured out that the LHS is a constant. Just constant fold this now so
5930 // that code below can assume that Min != Max.
5931 if (!isa
<Constant
>(Op0
) && Op0Min
== Op0Max
)
5932 return new ICmpInst(I
.getPredicate(), ConstantInt::get(Op0Min
), Op1
);
5933 if (!isa
<Constant
>(Op1
) && Op1Min
== Op1Max
)
5934 return new ICmpInst(I
.getPredicate(), Op0
, ConstantInt::get(Op1Min
));
5936 // Based on the range information we know about the LHS, see if we can
5937 // simplify this comparison. For example, (x&4) < 8 is always true.
5938 switch (I
.getPredicate()) {
5939 default: assert(0 && "Unknown icmp opcode!");
5940 case ICmpInst::ICMP_EQ
:
5941 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
))
5942 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5944 case ICmpInst::ICMP_NE
:
5945 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
))
5946 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5948 case ICmpInst::ICMP_ULT
:
5949 if (Op0Max
.ult(Op1Min
)) // A <u B -> true if max(A) < min(B)
5950 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5951 if (Op0Min
.uge(Op1Max
)) // A <u B -> false if min(A) >= max(B)
5952 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5953 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
5954 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5955 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
5956 if (Op1Max
== Op0Min
+1) // A <u C -> A == C-1 if min(A)+1 == C
5957 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, SubOne(CI
));
5959 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
5960 if (CI
->isMinValue(true))
5961 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
,
5962 ConstantInt::getAllOnesValue(Op0
->getType()));
5965 case ICmpInst::ICMP_UGT
:
5966 if (Op0Min
.ugt(Op1Max
)) // A >u B -> true if min(A) > max(B)
5967 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5968 if (Op0Max
.ule(Op1Min
)) // A >u B -> false if max(A) <= max(B)
5969 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5971 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
5972 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5973 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
5974 if (Op1Min
== Op0Max
-1) // A >u C -> A == C+1 if max(a)-1 == C
5975 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, AddOne(CI
));
5977 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
5978 if (CI
->isMaxValue(true))
5979 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
,
5980 ConstantInt::getNullValue(Op0
->getType()));
5983 case ICmpInst::ICMP_SLT
:
5984 if (Op0Max
.slt(Op1Min
)) // A <s B -> true if max(A) < min(C)
5985 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5986 if (Op0Min
.sge(Op1Max
)) // A <s B -> false if min(A) >= max(C)
5987 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
5988 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
5989 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5990 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
5991 if (Op1Max
== Op0Min
+1) // A <s C -> A == C-1 if min(A)+1 == C
5992 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, SubOne(CI
));
5995 case ICmpInst::ICMP_SGT
:
5996 if (Op0Min
.sgt(Op1Max
)) // A >s B -> true if min(A) > max(B)
5997 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
5998 if (Op0Max
.sle(Op1Min
)) // A >s B -> false if max(A) <= min(B)
5999 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
6001 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
6002 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
6003 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
6004 if (Op1Min
== Op0Max
-1) // A >s C -> A == C+1 if max(A)-1 == C
6005 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, AddOne(CI
));
6008 case ICmpInst::ICMP_SGE
:
6009 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SGE with ConstantInt not folded!");
6010 if (Op0Min
.sge(Op1Max
)) // A >=s B -> true if min(A) >= max(B)
6011 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
6012 if (Op0Max
.slt(Op1Min
)) // A >=s B -> false if max(A) < min(B)
6013 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
6015 case ICmpInst::ICMP_SLE
:
6016 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SLE with ConstantInt not folded!");
6017 if (Op0Max
.sle(Op1Min
)) // A <=s B -> true if max(A) <= min(B)
6018 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
6019 if (Op0Min
.sgt(Op1Max
)) // A <=s B -> false if min(A) > max(B)
6020 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
6022 case ICmpInst::ICMP_UGE
:
6023 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_UGE with ConstantInt not folded!");
6024 if (Op0Min
.uge(Op1Max
)) // A >=u B -> true if min(A) >= max(B)
6025 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
6026 if (Op0Max
.ult(Op1Min
)) // A >=u B -> false if max(A) < min(B)
6027 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
6029 case ICmpInst::ICMP_ULE
:
6030 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_ULE with ConstantInt not folded!");
6031 if (Op0Max
.ule(Op1Min
)) // A <=u B -> true if max(A) <= min(B)
6032 return ReplaceInstUsesWith(I
, ConstantInt::getTrue());
6033 if (Op0Min
.ugt(Op1Max
)) // A <=u B -> false if min(A) > max(B)
6034 return ReplaceInstUsesWith(I
, ConstantInt::getFalse());
6038 // Turn a signed comparison into an unsigned one if both operands
6039 // are known to have the same sign.
6040 if (I
.isSignedPredicate() &&
6041 ((Op0KnownZero
.isNegative() && Op1KnownZero
.isNegative()) ||
6042 (Op0KnownOne
.isNegative() && Op1KnownOne
.isNegative())))
6043 return new ICmpInst(I
.getUnsignedPredicate(), Op0
, Op1
);
6046 // Test if the ICmpInst instruction is used exclusively by a select as
6047 // part of a minimum or maximum operation. If so, refrain from doing
6048 // any other folding. This helps out other analyses which understand
6049 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6050 // and CodeGen. And in this case, at least one of the comparison
6051 // operands has at least one user besides the compare (the select),
6052 // which would often largely negate the benefit of folding anyway.
6054 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(*I
.use_begin()))
6055 if ((SI
->getOperand(1) == Op0
&& SI
->getOperand(2) == Op1
) ||
6056 (SI
->getOperand(2) == Op0
&& SI
->getOperand(1) == Op1
))
6059 // See if we are doing a comparison between a constant and an instruction that
6060 // can be folded into the comparison.
6061 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
)) {
6062 // Since the RHS is a ConstantInt (CI), if the left hand side is an
6063 // instruction, see if that instruction also has constants so that the
6064 // instruction can be folded into the icmp
6065 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
6066 if (Instruction
*Res
= visitICmpInstWithInstAndIntCst(I
, LHSI
, CI
))
6070 // Handle icmp with constant (but not simple integer constant) RHS
6071 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
)) {
6072 if (Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
))
6073 switch (LHSI
->getOpcode()) {
6074 case Instruction::GetElementPtr
:
6075 if (RHSC
->isNullValue()) {
6076 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
6077 bool isAllZeros
= true;
6078 for (unsigned i
= 1, e
= LHSI
->getNumOperands(); i
!= e
; ++i
)
6079 if (!isa
<Constant
>(LHSI
->getOperand(i
)) ||
6080 !cast
<Constant
>(LHSI
->getOperand(i
))->isNullValue()) {
6085 return new ICmpInst(I
.getPredicate(), LHSI
->getOperand(0),
6086 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
6090 case Instruction::PHI
:
6091 // Only fold icmp into the PHI if the phi and fcmp are in the same
6092 // block. If in the same block, we're encouraging jump threading. If
6093 // not, we are just pessimizing the code by making an i1 phi.
6094 if (LHSI
->getParent() == I
.getParent())
6095 if (Instruction
*NV
= FoldOpIntoPhi(I
))
6098 case Instruction::Select
: {
6099 // If either operand of the select is a constant, we can fold the
6100 // comparison into the select arms, which will cause one to be
6101 // constant folded and the select turned into a bitwise or.
6102 Value
*Op1
= 0, *Op2
= 0;
6103 if (LHSI
->hasOneUse()) {
6104 if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(1))) {
6105 // Fold the known value into the constant operand.
6106 Op1
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
6107 // Insert a new ICmp of the other select operand.
6108 Op2
= InsertNewInstBefore(new ICmpInst(I
.getPredicate(),
6109 LHSI
->getOperand(2), RHSC
,
6111 } else if (Constant
*C
= dyn_cast
<Constant
>(LHSI
->getOperand(2))) {
6112 // Fold the known value into the constant operand.
6113 Op2
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
6114 // Insert a new ICmp of the other select operand.
6115 Op1
= InsertNewInstBefore(new ICmpInst(I
.getPredicate(),
6116 LHSI
->getOperand(1), RHSC
,
6122 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
6125 case Instruction::Malloc
:
6126 // If we have (malloc != null), and if the malloc has a single use, we
6127 // can assume it is successful and remove the malloc.
6128 if (LHSI
->hasOneUse() && isa
<ConstantPointerNull
>(RHSC
)) {
6129 AddToWorkList(LHSI
);
6130 return ReplaceInstUsesWith(I
, ConstantInt::get(Type::Int1Ty
,
6131 !I
.isTrueWhenEqual()));
6137 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
6138 if (User
*GEP
= dyn_castGetElementPtr(Op0
))
6139 if (Instruction
*NI
= FoldGEPICmp(GEP
, Op1
, I
.getPredicate(), I
))
6141 if (User
*GEP
= dyn_castGetElementPtr(Op1
))
6142 if (Instruction
*NI
= FoldGEPICmp(GEP
, Op0
,
6143 ICmpInst::getSwappedPredicate(I
.getPredicate()), I
))
6146 // Test to see if the operands of the icmp are casted versions of other
6147 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
6149 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(Op0
)) {
6150 if (isa
<PointerType
>(Op0
->getType()) &&
6151 (isa
<Constant
>(Op1
) || isa
<BitCastInst
>(Op1
))) {
6152 // We keep moving the cast from the left operand over to the right
6153 // operand, where it can often be eliminated completely.
6154 Op0
= CI
->getOperand(0);
6156 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
6157 // so eliminate it as well.
6158 if (BitCastInst
*CI2
= dyn_cast
<BitCastInst
>(Op1
))
6159 Op1
= CI2
->getOperand(0);
6161 // If Op1 is a constant, we can fold the cast into the constant.
6162 if (Op0
->getType() != Op1
->getType()) {
6163 if (Constant
*Op1C
= dyn_cast
<Constant
>(Op1
)) {
6164 Op1
= ConstantExpr::getBitCast(Op1C
, Op0
->getType());
6166 // Otherwise, cast the RHS right before the icmp
6167 Op1
= InsertBitCastBefore(Op1
, Op0
->getType(), I
);
6170 return new ICmpInst(I
.getPredicate(), Op0
, Op1
);
6174 if (isa
<CastInst
>(Op0
)) {
6175 // Handle the special case of: icmp (cast bool to X), <cst>
6176 // This comes up when you have code like
6179 // For generality, we handle any zero-extension of any operand comparison
6180 // with a constant or another cast from the same type.
6181 if (isa
<ConstantInt
>(Op1
) || isa
<CastInst
>(Op1
))
6182 if (Instruction
*R
= visitICmpInstWithCastAndCast(I
))
6186 // See if it's the same type of instruction on the left and right.
6187 if (BinaryOperator
*Op0I
= dyn_cast
<BinaryOperator
>(Op0
)) {
6188 if (BinaryOperator
*Op1I
= dyn_cast
<BinaryOperator
>(Op1
)) {
6189 if (Op0I
->getOpcode() == Op1I
->getOpcode() && Op0I
->hasOneUse() &&
6190 Op1I
->hasOneUse() && Op0I
->getOperand(1) == Op1I
->getOperand(1)) {
6191 switch (Op0I
->getOpcode()) {
6193 case Instruction::Add
:
6194 case Instruction::Sub
:
6195 case Instruction::Xor
:
6196 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
6197 return new ICmpInst(I
.getPredicate(), Op0I
->getOperand(0),
6198 Op1I
->getOperand(0));
6199 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
6200 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1))) {
6201 if (CI
->getValue().isSignBit()) {
6202 ICmpInst::Predicate Pred
= I
.isSignedPredicate()
6203 ? I
.getUnsignedPredicate()
6204 : I
.getSignedPredicate();
6205 return new ICmpInst(Pred
, Op0I
->getOperand(0),
6206 Op1I
->getOperand(0));
6209 if (CI
->getValue().isMaxSignedValue()) {
6210 ICmpInst::Predicate Pred
= I
.isSignedPredicate()
6211 ? I
.getUnsignedPredicate()
6212 : I
.getSignedPredicate();
6213 Pred
= I
.getSwappedPredicate(Pred
);
6214 return new ICmpInst(Pred
, Op0I
->getOperand(0),
6215 Op1I
->getOperand(0));
6219 case Instruction::Mul
:
6220 if (!I
.isEquality())
6223 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op0I
->getOperand(1))) {
6224 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
6225 // Mask = -1 >> count-trailing-zeros(Cst).
6226 if (!CI
->isZero() && !CI
->isOne()) {
6227 const APInt
&AP
= CI
->getValue();
6228 ConstantInt
*Mask
= ConstantInt::get(
6229 APInt::getLowBitsSet(AP
.getBitWidth(),
6231 AP
.countTrailingZeros()));
6232 Instruction
*And1
= BinaryOperator::CreateAnd(Op0I
->getOperand(0),
6234 Instruction
*And2
= BinaryOperator::CreateAnd(Op1I
->getOperand(0),
6236 InsertNewInstBefore(And1
, I
);
6237 InsertNewInstBefore(And2
, I
);
6238 return new ICmpInst(I
.getPredicate(), And1
, And2
);
6247 // ~x < ~y --> y < x
6249 if (match(Op0
, m_Not(m_Value(A
))) &&
6250 match(Op1
, m_Not(m_Value(B
))))
6251 return new ICmpInst(I
.getPredicate(), B
, A
);
6254 if (I
.isEquality()) {
6255 Value
*A
, *B
, *C
, *D
;
6257 // -x == -y --> x == y
6258 if (match(Op0
, m_Neg(m_Value(A
))) &&
6259 match(Op1
, m_Neg(m_Value(B
))))
6260 return new ICmpInst(I
.getPredicate(), A
, B
);
6262 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
6263 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
6264 Value
*OtherVal
= A
== Op1
? B
: A
;
6265 return new ICmpInst(I
.getPredicate(), OtherVal
,
6266 Constant::getNullValue(A
->getType()));
6269 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
6270 // A^c1 == C^c2 --> A == C^(c1^c2)
6271 ConstantInt
*C1
, *C2
;
6272 if (match(B
, m_ConstantInt(C1
)) &&
6273 match(D
, m_ConstantInt(C2
)) && Op1
->hasOneUse()) {
6274 Constant
*NC
= ConstantInt::get(C1
->getValue() ^ C2
->getValue());
6275 Instruction
*Xor
= BinaryOperator::CreateXor(C
, NC
, "tmp");
6276 return new ICmpInst(I
.getPredicate(), A
,
6277 InsertNewInstBefore(Xor
, I
));
6280 // A^B == A^D -> B == D
6281 if (A
== C
) return new ICmpInst(I
.getPredicate(), B
, D
);
6282 if (A
== D
) return new ICmpInst(I
.getPredicate(), B
, C
);
6283 if (B
== C
) return new ICmpInst(I
.getPredicate(), A
, D
);
6284 if (B
== D
) return new ICmpInst(I
.getPredicate(), A
, C
);
6288 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) &&
6289 (A
== Op0
|| B
== Op0
)) {
6290 // A == (A^B) -> B == 0
6291 Value
*OtherVal
= A
== Op0
? B
: A
;
6292 return new ICmpInst(I
.getPredicate(), OtherVal
,
6293 Constant::getNullValue(A
->getType()));
6296 // (A-B) == A -> B == 0
6297 if (match(Op0
, m_Sub(m_Specific(Op1
), m_Value(B
))))
6298 return new ICmpInst(I
.getPredicate(), B
,
6299 Constant::getNullValue(B
->getType()));
6301 // A == (A-B) -> B == 0
6302 if (match(Op1
, m_Sub(m_Specific(Op0
), m_Value(B
))))
6303 return new ICmpInst(I
.getPredicate(), B
,
6304 Constant::getNullValue(B
->getType()));
6306 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
6307 if (Op0
->hasOneUse() && Op1
->hasOneUse() &&
6308 match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
6309 match(Op1
, m_And(m_Value(C
), m_Value(D
)))) {
6310 Value
*X
= 0, *Y
= 0, *Z
= 0;
6313 X
= B
; Y
= D
; Z
= A
;
6314 } else if (A
== D
) {
6315 X
= B
; Y
= C
; Z
= A
;
6316 } else if (B
== C
) {
6317 X
= A
; Y
= D
; Z
= B
;
6318 } else if (B
== D
) {
6319 X
= A
; Y
= C
; Z
= B
;
6322 if (X
) { // Build (X^Y) & Z
6323 Op1
= InsertNewInstBefore(BinaryOperator::CreateXor(X
, Y
, "tmp"), I
);
6324 Op1
= InsertNewInstBefore(BinaryOperator::CreateAnd(Op1
, Z
, "tmp"), I
);
6325 I
.setOperand(0, Op1
);
6326 I
.setOperand(1, Constant::getNullValue(Op1
->getType()));
6331 return Changed
? &I
: 0;
6335 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
6336 /// and CmpRHS are both known to be integer constants.
6337 Instruction
*InstCombiner::FoldICmpDivCst(ICmpInst
&ICI
, BinaryOperator
*DivI
,
6338 ConstantInt
*DivRHS
) {
6339 ConstantInt
*CmpRHS
= cast
<ConstantInt
>(ICI
.getOperand(1));
6340 const APInt
&CmpRHSV
= CmpRHS
->getValue();
6342 // FIXME: If the operand types don't match the type of the divide
6343 // then don't attempt this transform. The code below doesn't have the
6344 // logic to deal with a signed divide and an unsigned compare (and
6345 // vice versa). This is because (x /s C1) <s C2 produces different
6346 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
6347 // (x /u C1) <u C2. Simply casting the operands and result won't
6348 // work. :( The if statement below tests that condition and bails
6350 bool DivIsSigned
= DivI
->getOpcode() == Instruction::SDiv
;
6351 if (!ICI
.isEquality() && DivIsSigned
!= ICI
.isSignedPredicate())
6353 if (DivRHS
->isZero())
6354 return 0; // The ProdOV computation fails on divide by zero.
6355 if (DivIsSigned
&& DivRHS
->isAllOnesValue())
6356 return 0; // The overflow computation also screws up here
6357 if (DivRHS
->isOne())
6358 return 0; // Not worth bothering, and eliminates some funny cases
6361 // Compute Prod = CI * DivRHS. We are essentially solving an equation
6362 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
6363 // C2 (CI). By solving for X we can turn this into a range check
6364 // instead of computing a divide.
6365 ConstantInt
*Prod
= Multiply(CmpRHS
, DivRHS
);
6367 // Determine if the product overflows by seeing if the product is
6368 // not equal to the divide. Make sure we do the same kind of divide
6369 // as in the LHS instruction that we're folding.
6370 bool ProdOV
= (DivIsSigned
? ConstantExpr::getSDiv(Prod
, DivRHS
) :
6371 ConstantExpr::getUDiv(Prod
, DivRHS
)) != CmpRHS
;
6373 // Get the ICmp opcode
6374 ICmpInst::Predicate Pred
= ICI
.getPredicate();
6376 // Figure out the interval that is being checked. For example, a comparison
6377 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
6378 // Compute this interval based on the constants involved and the signedness of
6379 // the compare/divide. This computes a half-open interval, keeping track of
6380 // whether either value in the interval overflows. After analysis each
6381 // overflow variable is set to 0 if it's corresponding bound variable is valid
6382 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
6383 int LoOverflow
= 0, HiOverflow
= 0;
6384 ConstantInt
*LoBound
= 0, *HiBound
= 0;
6386 if (!DivIsSigned
) { // udiv
6387 // e.g. X/5 op 3 --> [15, 20)
6389 HiOverflow
= LoOverflow
= ProdOV
;
6391 HiOverflow
= AddWithOverflow(HiBound
, LoBound
, DivRHS
, false);
6392 } else if (DivRHS
->getValue().isStrictlyPositive()) { // Divisor is > 0.
6393 if (CmpRHSV
== 0) { // (X / pos) op 0
6394 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
6395 LoBound
= cast
<ConstantInt
>(ConstantExpr::getNeg(SubOne(DivRHS
)));
6397 } else if (CmpRHSV
.isStrictlyPositive()) { // (X / pos) op pos
6398 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
6399 HiOverflow
= LoOverflow
= ProdOV
;
6401 HiOverflow
= AddWithOverflow(HiBound
, Prod
, DivRHS
, true);
6402 } else { // (X / pos) op neg
6403 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
6404 HiBound
= AddOne(Prod
);
6405 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
6407 ConstantInt
* DivNeg
= cast
<ConstantInt
>(ConstantExpr::getNeg(DivRHS
));
6408 LoOverflow
= AddWithOverflow(LoBound
, HiBound
, DivNeg
,
6412 } else if (DivRHS
->getValue().isNegative()) { // Divisor is < 0.
6413 if (CmpRHSV
== 0) { // (X / neg) op 0
6414 // e.g. X/-5 op 0 --> [-4, 5)
6415 LoBound
= AddOne(DivRHS
);
6416 HiBound
= cast
<ConstantInt
>(ConstantExpr::getNeg(DivRHS
));
6417 if (HiBound
== DivRHS
) { // -INTMIN = INTMIN
6418 HiOverflow
= 1; // [INTMIN+1, overflow)
6419 HiBound
= 0; // e.g. X/INTMIN = 0 --> X > INTMIN
6421 } else if (CmpRHSV
.isStrictlyPositive()) { // (X / neg) op pos
6422 // e.g. X/-5 op 3 --> [-19, -14)
6423 HiBound
= AddOne(Prod
);
6424 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
6426 LoOverflow
= AddWithOverflow(LoBound
, HiBound
, DivRHS
, true) ? -1 : 0;
6427 } else { // (X / neg) op neg
6428 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
6429 LoOverflow
= HiOverflow
= ProdOV
;
6431 HiOverflow
= SubWithOverflow(HiBound
, Prod
, DivRHS
, true);
6434 // Dividing by a negative swaps the condition. LT <-> GT
6435 Pred
= ICmpInst::getSwappedPredicate(Pred
);
6438 Value
*X
= DivI
->getOperand(0);
6440 default: assert(0 && "Unhandled icmp opcode!");
6441 case ICmpInst::ICMP_EQ
:
6442 if (LoOverflow
&& HiOverflow
)
6443 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
6444 else if (HiOverflow
)
6445 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
6446 ICmpInst::ICMP_UGE
, X
, LoBound
);
6447 else if (LoOverflow
)
6448 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
6449 ICmpInst::ICMP_ULT
, X
, HiBound
);
6451 return InsertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, true, ICI
);
6452 case ICmpInst::ICMP_NE
:
6453 if (LoOverflow
&& HiOverflow
)
6454 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
6455 else if (HiOverflow
)
6456 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
6457 ICmpInst::ICMP_ULT
, X
, LoBound
);
6458 else if (LoOverflow
)
6459 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
6460 ICmpInst::ICMP_UGE
, X
, HiBound
);
6462 return InsertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, false, ICI
);
6463 case ICmpInst::ICMP_ULT
:
6464 case ICmpInst::ICMP_SLT
:
6465 if (LoOverflow
== +1) // Low bound is greater than input range.
6466 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
6467 if (LoOverflow
== -1) // Low bound is less than input range.
6468 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
6469 return new ICmpInst(Pred
, X
, LoBound
);
6470 case ICmpInst::ICMP_UGT
:
6471 case ICmpInst::ICMP_SGT
:
6472 if (HiOverflow
== +1) // High bound greater than input range.
6473 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
6474 else if (HiOverflow
== -1) // High bound less than input range.
6475 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
6476 if (Pred
== ICmpInst::ICMP_UGT
)
6477 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, HiBound
);
6479 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, HiBound
);
6484 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
6486 Instruction
*InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst
&ICI
,
6489 const APInt
&RHSV
= RHS
->getValue();
6491 switch (LHSI
->getOpcode()) {
6492 case Instruction::Trunc
:
6493 if (ICI
.isEquality() && LHSI
->hasOneUse()) {
6494 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
6495 // of the high bits truncated out of x are known.
6496 unsigned DstBits
= LHSI
->getType()->getPrimitiveSizeInBits(),
6497 SrcBits
= LHSI
->getOperand(0)->getType()->getPrimitiveSizeInBits();
6498 APInt
Mask(APInt::getHighBitsSet(SrcBits
, SrcBits
-DstBits
));
6499 APInt
KnownZero(SrcBits
, 0), KnownOne(SrcBits
, 0);
6500 ComputeMaskedBits(LHSI
->getOperand(0), Mask
, KnownZero
, KnownOne
);
6502 // If all the high bits are known, we can do this xform.
6503 if ((KnownZero
|KnownOne
).countLeadingOnes() >= SrcBits
-DstBits
) {
6504 // Pull in the high bits from known-ones set.
6505 APInt
NewRHS(RHS
->getValue());
6506 NewRHS
.zext(SrcBits
);
6508 return new ICmpInst(ICI
.getPredicate(), LHSI
->getOperand(0),
6509 ConstantInt::get(NewRHS
));
6514 case Instruction::Xor
: // (icmp pred (xor X, XorCST), CI)
6515 if (ConstantInt
*XorCST
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1))) {
6516 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
6518 if ((ICI
.getPredicate() == ICmpInst::ICMP_SLT
&& RHSV
== 0) ||
6519 (ICI
.getPredicate() == ICmpInst::ICMP_SGT
&& RHSV
.isAllOnesValue())) {
6520 Value
*CompareVal
= LHSI
->getOperand(0);
6522 // If the sign bit of the XorCST is not set, there is no change to
6523 // the operation, just stop using the Xor.
6524 if (!XorCST
->getValue().isNegative()) {
6525 ICI
.setOperand(0, CompareVal
);
6526 AddToWorkList(LHSI
);
6530 // Was the old condition true if the operand is positive?
6531 bool isTrueIfPositive
= ICI
.getPredicate() == ICmpInst::ICMP_SGT
;
6533 // If so, the new one isn't.
6534 isTrueIfPositive
^= true;
6536 if (isTrueIfPositive
)
6537 return new ICmpInst(ICmpInst::ICMP_SGT
, CompareVal
, SubOne(RHS
));
6539 return new ICmpInst(ICmpInst::ICMP_SLT
, CompareVal
, AddOne(RHS
));
6542 if (LHSI
->hasOneUse()) {
6543 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
6544 if (!ICI
.isEquality() && XorCST
->getValue().isSignBit()) {
6545 const APInt
&SignBit
= XorCST
->getValue();
6546 ICmpInst::Predicate Pred
= ICI
.isSignedPredicate()
6547 ? ICI
.getUnsignedPredicate()
6548 : ICI
.getSignedPredicate();
6549 return new ICmpInst(Pred
, LHSI
->getOperand(0),
6550 ConstantInt::get(RHSV
^ SignBit
));
6553 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
6554 if (!ICI
.isEquality() && XorCST
->getValue().isMaxSignedValue()) {
6555 const APInt
&NotSignBit
= XorCST
->getValue();
6556 ICmpInst::Predicate Pred
= ICI
.isSignedPredicate()
6557 ? ICI
.getUnsignedPredicate()
6558 : ICI
.getSignedPredicate();
6559 Pred
= ICI
.getSwappedPredicate(Pred
);
6560 return new ICmpInst(Pred
, LHSI
->getOperand(0),
6561 ConstantInt::get(RHSV
^ NotSignBit
));
6566 case Instruction::And
: // (icmp pred (and X, AndCST), RHS)
6567 if (LHSI
->hasOneUse() && isa
<ConstantInt
>(LHSI
->getOperand(1)) &&
6568 LHSI
->getOperand(0)->hasOneUse()) {
6569 ConstantInt
*AndCST
= cast
<ConstantInt
>(LHSI
->getOperand(1));
6571 // If the LHS is an AND of a truncating cast, we can widen the
6572 // and/compare to be the input width without changing the value
6573 // produced, eliminating a cast.
6574 if (TruncInst
*Cast
= dyn_cast
<TruncInst
>(LHSI
->getOperand(0))) {
6575 // We can do this transformation if either the AND constant does not
6576 // have its sign bit set or if it is an equality comparison.
6577 // Extending a relational comparison when we're checking the sign
6578 // bit would not work.
6579 if (Cast
->hasOneUse() &&
6580 (ICI
.isEquality() ||
6581 (AndCST
->getValue().isNonNegative() && RHSV
.isNonNegative()))) {
6583 cast
<IntegerType
>(Cast
->getOperand(0)->getType())->getBitWidth();
6584 APInt NewCST
= AndCST
->getValue();
6585 NewCST
.zext(BitWidth
);
6587 NewCI
.zext(BitWidth
);
6588 Instruction
*NewAnd
=
6589 BinaryOperator::CreateAnd(Cast
->getOperand(0),
6590 ConstantInt::get(NewCST
),LHSI
->getName());
6591 InsertNewInstBefore(NewAnd
, ICI
);
6592 return new ICmpInst(ICI
.getPredicate(), NewAnd
,
6593 ConstantInt::get(NewCI
));
6597 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
6598 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
6599 // happens a LOT in code produced by the C front-end, for bitfield
6601 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(LHSI
->getOperand(0));
6602 if (Shift
&& !Shift
->isShift())
6606 ShAmt
= Shift
? dyn_cast
<ConstantInt
>(Shift
->getOperand(1)) : 0;
6607 const Type
*Ty
= Shift
? Shift
->getType() : 0; // Type of the shift.
6608 const Type
*AndTy
= AndCST
->getType(); // Type of the and.
6610 // We can fold this as long as we can't shift unknown bits
6611 // into the mask. This can only happen with signed shift
6612 // rights, as they sign-extend.
6614 bool CanFold
= Shift
->isLogicalShift();
6616 // To test for the bad case of the signed shr, see if any
6617 // of the bits shifted in could be tested after the mask.
6618 uint32_t TyBits
= Ty
->getPrimitiveSizeInBits();
6619 int ShAmtVal
= TyBits
- ShAmt
->getLimitedValue(TyBits
);
6621 uint32_t BitWidth
= AndTy
->getPrimitiveSizeInBits();
6622 if ((APInt::getHighBitsSet(BitWidth
, BitWidth
-ShAmtVal
) &
6623 AndCST
->getValue()) == 0)
6629 if (Shift
->getOpcode() == Instruction::Shl
)
6630 NewCst
= ConstantExpr::getLShr(RHS
, ShAmt
);
6632 NewCst
= ConstantExpr::getShl(RHS
, ShAmt
);
6634 // Check to see if we are shifting out any of the bits being
6636 if (ConstantExpr::get(Shift
->getOpcode(), NewCst
, ShAmt
) != RHS
) {
6637 // If we shifted bits out, the fold is not going to work out.
6638 // As a special case, check to see if this means that the
6639 // result is always true or false now.
6640 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
6641 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
6642 if (ICI
.getPredicate() == ICmpInst::ICMP_NE
)
6643 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
6645 ICI
.setOperand(1, NewCst
);
6646 Constant
*NewAndCST
;
6647 if (Shift
->getOpcode() == Instruction::Shl
)
6648 NewAndCST
= ConstantExpr::getLShr(AndCST
, ShAmt
);
6650 NewAndCST
= ConstantExpr::getShl(AndCST
, ShAmt
);
6651 LHSI
->setOperand(1, NewAndCST
);
6652 LHSI
->setOperand(0, Shift
->getOperand(0));
6653 AddToWorkList(Shift
); // Shift is dead.
6654 AddUsesToWorkList(ICI
);
6660 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
6661 // preferable because it allows the C<<Y expression to be hoisted out
6662 // of a loop if Y is invariant and X is not.
6663 if (Shift
&& Shift
->hasOneUse() && RHSV
== 0 &&
6664 ICI
.isEquality() && !Shift
->isArithmeticShift() &&
6665 !isa
<Constant
>(Shift
->getOperand(0))) {
6668 if (Shift
->getOpcode() == Instruction::LShr
) {
6669 NS
= BinaryOperator::CreateShl(AndCST
,
6670 Shift
->getOperand(1), "tmp");
6672 // Insert a logical shift.
6673 NS
= BinaryOperator::CreateLShr(AndCST
,
6674 Shift
->getOperand(1), "tmp");
6676 InsertNewInstBefore(cast
<Instruction
>(NS
), ICI
);
6678 // Compute X & (C << Y).
6679 Instruction
*NewAnd
=
6680 BinaryOperator::CreateAnd(Shift
->getOperand(0), NS
, LHSI
->getName());
6681 InsertNewInstBefore(NewAnd
, ICI
);
6683 ICI
.setOperand(0, NewAnd
);
6689 case Instruction::Shl
: { // (icmp pred (shl X, ShAmt), CI)
6690 ConstantInt
*ShAmt
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
6693 uint32_t TypeBits
= RHSV
.getBitWidth();
6695 // Check that the shift amount is in range. If not, don't perform
6696 // undefined shifts. When the shift is visited it will be
6698 if (ShAmt
->uge(TypeBits
))
6701 if (ICI
.isEquality()) {
6702 // If we are comparing against bits always shifted out, the
6703 // comparison cannot succeed.
6705 ConstantExpr::getShl(ConstantExpr::getLShr(RHS
, ShAmt
), ShAmt
);
6706 if (Comp
!= RHS
) {// Comparing against a bit that we know is zero.
6707 bool IsICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
6708 Constant
*Cst
= ConstantInt::get(Type::Int1Ty
, IsICMP_NE
);
6709 return ReplaceInstUsesWith(ICI
, Cst
);
6712 if (LHSI
->hasOneUse()) {
6713 // Otherwise strength reduce the shift into an and.
6714 uint32_t ShAmtVal
= (uint32_t)ShAmt
->getLimitedValue(TypeBits
);
6716 ConstantInt::get(APInt::getLowBitsSet(TypeBits
, TypeBits
-ShAmtVal
));
6719 BinaryOperator::CreateAnd(LHSI
->getOperand(0),
6720 Mask
, LHSI
->getName()+".mask");
6721 Value
*And
= InsertNewInstBefore(AndI
, ICI
);
6722 return new ICmpInst(ICI
.getPredicate(), And
,
6723 ConstantInt::get(RHSV
.lshr(ShAmtVal
)));
6727 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
6728 bool TrueIfSigned
= false;
6729 if (LHSI
->hasOneUse() &&
6730 isSignBitCheck(ICI
.getPredicate(), RHS
, TrueIfSigned
)) {
6731 // (X << 31) <s 0 --> (X&1) != 0
6732 Constant
*Mask
= ConstantInt::get(APInt(TypeBits
, 1) <<
6733 (TypeBits
-ShAmt
->getZExtValue()-1));
6735 BinaryOperator::CreateAnd(LHSI
->getOperand(0),
6736 Mask
, LHSI
->getName()+".mask");
6737 Value
*And
= InsertNewInstBefore(AndI
, ICI
);
6739 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
6740 And
, Constant::getNullValue(And
->getType()));
6745 case Instruction::LShr
: // (icmp pred (shr X, ShAmt), CI)
6746 case Instruction::AShr
: {
6747 // Only handle equality comparisons of shift-by-constant.
6748 ConstantInt
*ShAmt
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
6749 if (!ShAmt
|| !ICI
.isEquality()) break;
6751 // Check that the shift amount is in range. If not, don't perform
6752 // undefined shifts. When the shift is visited it will be
6754 uint32_t TypeBits
= RHSV
.getBitWidth();
6755 if (ShAmt
->uge(TypeBits
))
6758 uint32_t ShAmtVal
= (uint32_t)ShAmt
->getLimitedValue(TypeBits
);
6760 // If we are comparing against bits always shifted out, the
6761 // comparison cannot succeed.
6762 APInt Comp
= RHSV
<< ShAmtVal
;
6763 if (LHSI
->getOpcode() == Instruction::LShr
)
6764 Comp
= Comp
.lshr(ShAmtVal
);
6766 Comp
= Comp
.ashr(ShAmtVal
);
6768 if (Comp
!= RHSV
) { // Comparing against a bit that we know is zero.
6769 bool IsICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
6770 Constant
*Cst
= ConstantInt::get(Type::Int1Ty
, IsICMP_NE
);
6771 return ReplaceInstUsesWith(ICI
, Cst
);
6774 // Otherwise, check to see if the bits shifted out are known to be zero.
6775 // If so, we can compare against the unshifted value:
6776 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
6777 if (LHSI
->hasOneUse() &&
6778 MaskedValueIsZero(LHSI
->getOperand(0),
6779 APInt::getLowBitsSet(Comp
.getBitWidth(), ShAmtVal
))) {
6780 return new ICmpInst(ICI
.getPredicate(), LHSI
->getOperand(0),
6781 ConstantExpr::getShl(RHS
, ShAmt
));
6784 if (LHSI
->hasOneUse()) {
6785 // Otherwise strength reduce the shift into an and.
6786 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
6787 Constant
*Mask
= ConstantInt::get(Val
);
6790 BinaryOperator::CreateAnd(LHSI
->getOperand(0),
6791 Mask
, LHSI
->getName()+".mask");
6792 Value
*And
= InsertNewInstBefore(AndI
, ICI
);
6793 return new ICmpInst(ICI
.getPredicate(), And
,
6794 ConstantExpr::getShl(RHS
, ShAmt
));
6799 case Instruction::SDiv
:
6800 case Instruction::UDiv
:
6801 // Fold: icmp pred ([us]div X, C1), C2 -> range test
6802 // Fold this div into the comparison, producing a range check.
6803 // Determine, based on the divide type, what the range is being
6804 // checked. If there is an overflow on the low or high side, remember
6805 // it, otherwise compute the range [low, hi) bounding the new value.
6806 // See: InsertRangeTest above for the kinds of replacements possible.
6807 if (ConstantInt
*DivRHS
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1)))
6808 if (Instruction
*R
= FoldICmpDivCst(ICI
, cast
<BinaryOperator
>(LHSI
),
6813 case Instruction::Add
:
6814 // Fold: icmp pred (add, X, C1), C2
6816 if (!ICI
.isEquality()) {
6817 ConstantInt
*LHSC
= dyn_cast
<ConstantInt
>(LHSI
->getOperand(1));
6819 const APInt
&LHSV
= LHSC
->getValue();
6821 ConstantRange CR
= ICI
.makeConstantRange(ICI
.getPredicate(), RHSV
)
6824 if (ICI
.isSignedPredicate()) {
6825 if (CR
.getLower().isSignBit()) {
6826 return new ICmpInst(ICmpInst::ICMP_SLT
, LHSI
->getOperand(0),
6827 ConstantInt::get(CR
.getUpper()));
6828 } else if (CR
.getUpper().isSignBit()) {
6829 return new ICmpInst(ICmpInst::ICMP_SGE
, LHSI
->getOperand(0),
6830 ConstantInt::get(CR
.getLower()));
6833 if (CR
.getLower().isMinValue()) {
6834 return new ICmpInst(ICmpInst::ICMP_ULT
, LHSI
->getOperand(0),
6835 ConstantInt::get(CR
.getUpper()));
6836 } else if (CR
.getUpper().isMinValue()) {
6837 return new ICmpInst(ICmpInst::ICMP_UGE
, LHSI
->getOperand(0),
6838 ConstantInt::get(CR
.getLower()));
6845 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
6846 if (ICI
.isEquality()) {
6847 bool isICMP_NE
= ICI
.getPredicate() == ICmpInst::ICMP_NE
;
6849 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
6850 // the second operand is a constant, simplify a bit.
6851 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(LHSI
)) {
6852 switch (BO
->getOpcode()) {
6853 case Instruction::SRem
:
6854 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
6855 if (RHSV
== 0 && isa
<ConstantInt
>(BO
->getOperand(1)) &&BO
->hasOneUse()){
6856 const APInt
&V
= cast
<ConstantInt
>(BO
->getOperand(1))->getValue();
6857 if (V
.sgt(APInt(V
.getBitWidth(), 1)) && V
.isPowerOf2()) {
6858 Instruction
*NewRem
=
6859 BinaryOperator::CreateURem(BO
->getOperand(0), BO
->getOperand(1),
6861 InsertNewInstBefore(NewRem
, ICI
);
6862 return new ICmpInst(ICI
.getPredicate(), NewRem
,
6863 Constant::getNullValue(BO
->getType()));
6867 case Instruction::Add
:
6868 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
6869 if (ConstantInt
*BOp1C
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
6870 if (BO
->hasOneUse())
6871 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
6872 Subtract(RHS
, BOp1C
));
6873 } else if (RHSV
== 0) {
6874 // Replace ((add A, B) != 0) with (A != -B) if A or B is
6875 // efficiently invertible, or if the add has just this one use.
6876 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
6878 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
6879 return new ICmpInst(ICI
.getPredicate(), BOp0
, NegVal
);
6880 else if (Value
*NegVal
= dyn_castNegVal(BOp0
))
6881 return new ICmpInst(ICI
.getPredicate(), NegVal
, BOp1
);
6882 else if (BO
->hasOneUse()) {
6883 Instruction
*Neg
= BinaryOperator::CreateNeg(BOp1
);
6884 InsertNewInstBefore(Neg
, ICI
);
6886 return new ICmpInst(ICI
.getPredicate(), BOp0
, Neg
);
6890 case Instruction::Xor
:
6891 // For the xor case, we can xor two constants together, eliminating
6892 // the explicit xor.
6893 if (Constant
*BOC
= dyn_cast
<Constant
>(BO
->getOperand(1)))
6894 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
6895 ConstantExpr::getXor(RHS
, BOC
));
6898 case Instruction::Sub
:
6899 // Replace (([sub|xor] A, B) != 0) with (A != B)
6901 return new ICmpInst(ICI
.getPredicate(), BO
->getOperand(0),
6905 case Instruction::Or
:
6906 // If bits are being or'd in that are not present in the constant we
6907 // are comparing against, then the comparison could never succeed!
6908 if (Constant
*BOC
= dyn_cast
<Constant
>(BO
->getOperand(1))) {
6909 Constant
*NotCI
= ConstantExpr::getNot(RHS
);
6910 if (!ConstantExpr::getAnd(BOC
, NotCI
)->isNullValue())
6911 return ReplaceInstUsesWith(ICI
, ConstantInt::get(Type::Int1Ty
,
6916 case Instruction::And
:
6917 if (ConstantInt
*BOC
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
6918 // If bits are being compared against that are and'd out, then the
6919 // comparison can never succeed!
6920 if ((RHSV
& ~BOC
->getValue()) != 0)
6921 return ReplaceInstUsesWith(ICI
, ConstantInt::get(Type::Int1Ty
,
6924 // If we have ((X & C) == C), turn it into ((X & C) != 0).
6925 if (RHS
== BOC
&& RHSV
.isPowerOf2())
6926 return new ICmpInst(isICMP_NE
? ICmpInst::ICMP_EQ
:
6927 ICmpInst::ICMP_NE
, LHSI
,
6928 Constant::getNullValue(RHS
->getType()));
6930 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
6931 if (BOC
->getValue().isSignBit()) {
6932 Value
*X
= BO
->getOperand(0);
6933 Constant
*Zero
= Constant::getNullValue(X
->getType());
6934 ICmpInst::Predicate pred
= isICMP_NE
?
6935 ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
6936 return new ICmpInst(pred
, X
, Zero
);
6939 // ((X & ~7) == 0) --> X < 8
6940 if (RHSV
== 0 && isHighOnes(BOC
)) {
6941 Value
*X
= BO
->getOperand(0);
6942 Constant
*NegX
= ConstantExpr::getNeg(BOC
);
6943 ICmpInst::Predicate pred
= isICMP_NE
?
6944 ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
6945 return new ICmpInst(pred
, X
, NegX
);
6950 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(LHSI
)) {
6951 // Handle icmp {eq|ne} <intrinsic>, intcst.
6952 if (II
->getIntrinsicID() == Intrinsic::bswap
) {
6954 ICI
.setOperand(0, II
->getOperand(1));
6955 ICI
.setOperand(1, ConstantInt::get(RHSV
.byteSwap()));
6963 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
6964 /// We only handle extending casts so far.
6966 Instruction
*InstCombiner::visitICmpInstWithCastAndCast(ICmpInst
&ICI
) {
6967 const CastInst
*LHSCI
= cast
<CastInst
>(ICI
.getOperand(0));
6968 Value
*LHSCIOp
= LHSCI
->getOperand(0);
6969 const Type
*SrcTy
= LHSCIOp
->getType();
6970 const Type
*DestTy
= LHSCI
->getType();
6973 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6974 // integer type is the same size as the pointer type.
6975 if (LHSCI
->getOpcode() == Instruction::PtrToInt
&&
6976 getTargetData().getPointerSizeInBits() ==
6977 cast
<IntegerType
>(DestTy
)->getBitWidth()) {
6979 if (Constant
*RHSC
= dyn_cast
<Constant
>(ICI
.getOperand(1))) {
6980 RHSOp
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
6981 } else if (PtrToIntInst
*RHSC
= dyn_cast
<PtrToIntInst
>(ICI
.getOperand(1))) {
6982 RHSOp
= RHSC
->getOperand(0);
6983 // If the pointer types don't match, insert a bitcast.
6984 if (LHSCIOp
->getType() != RHSOp
->getType())
6985 RHSOp
= InsertBitCastBefore(RHSOp
, LHSCIOp
->getType(), ICI
);
6989 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSOp
);
6992 // The code below only handles extension cast instructions, so far.
6994 if (LHSCI
->getOpcode() != Instruction::ZExt
&&
6995 LHSCI
->getOpcode() != Instruction::SExt
)
6998 bool isSignedExt
= LHSCI
->getOpcode() == Instruction::SExt
;
6999 bool isSignedCmp
= ICI
.isSignedPredicate();
7001 if (CastInst
*CI
= dyn_cast
<CastInst
>(ICI
.getOperand(1))) {
7002 // Not an extension from the same type?
7003 RHSCIOp
= CI
->getOperand(0);
7004 if (RHSCIOp
->getType() != LHSCIOp
->getType())
7007 // If the signedness of the two casts doesn't agree (i.e. one is a sext
7008 // and the other is a zext), then we can't handle this.
7009 if (CI
->getOpcode() != LHSCI
->getOpcode())
7012 // Deal with equality cases early.
7013 if (ICI
.isEquality())
7014 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSCIOp
);
7016 // A signed comparison of sign extended values simplifies into a
7017 // signed comparison.
7018 if (isSignedCmp
&& isSignedExt
)
7019 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, RHSCIOp
);
7021 // The other three cases all fold into an unsigned comparison.
7022 return new ICmpInst(ICI
.getUnsignedPredicate(), LHSCIOp
, RHSCIOp
);
7025 // If we aren't dealing with a constant on the RHS, exit early
7026 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ICI
.getOperand(1));
7030 // Compute the constant that would happen if we truncated to SrcTy then
7031 // reextended to DestTy.
7032 Constant
*Res1
= ConstantExpr::getTrunc(CI
, SrcTy
);
7033 Constant
*Res2
= ConstantExpr::getCast(LHSCI
->getOpcode(), Res1
, DestTy
);
7035 // If the re-extended constant didn't change...
7037 // Make sure that sign of the Cmp and the sign of the Cast are the same.
7038 // For example, we might have:
7039 // %A = sext short %X to uint
7040 // %B = icmp ugt uint %A, 1330
7041 // It is incorrect to transform this into
7042 // %B = icmp ugt short %X, 1330
7043 // because %A may have negative value.
7045 // However, we allow this when the compare is EQ/NE, because they are
7047 if (isSignedExt
== isSignedCmp
|| ICI
.isEquality())
7048 return new ICmpInst(ICI
.getPredicate(), LHSCIOp
, Res1
);
7052 // The re-extended constant changed so the constant cannot be represented
7053 // in the shorter type. Consequently, we cannot emit a simple comparison.
7055 // First, handle some easy cases. We know the result cannot be equal at this
7056 // point so handle the ICI.isEquality() cases
7057 if (ICI
.getPredicate() == ICmpInst::ICMP_EQ
)
7058 return ReplaceInstUsesWith(ICI
, ConstantInt::getFalse());
7059 if (ICI
.getPredicate() == ICmpInst::ICMP_NE
)
7060 return ReplaceInstUsesWith(ICI
, ConstantInt::getTrue());
7062 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
7063 // should have been folded away previously and not enter in here.
7066 // We're performing a signed comparison.
7067 if (cast
<ConstantInt
>(CI
)->getValue().isNegative())
7068 Result
= ConstantInt::getFalse(); // X < (small) --> false
7070 Result
= ConstantInt::getTrue(); // X < (large) --> true
7072 // We're performing an unsigned comparison.
7074 // We're performing an unsigned comp with a sign extended value.
7075 // This is true if the input is >= 0. [aka >s -1]
7076 Constant
*NegOne
= ConstantInt::getAllOnesValue(SrcTy
);
7077 Result
= InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT
, LHSCIOp
,
7078 NegOne
, ICI
.getName()), ICI
);
7080 // Unsigned extend & unsigned compare -> always true.
7081 Result
= ConstantInt::getTrue();
7085 // Finally, return the value computed.
7086 if (ICI
.getPredicate() == ICmpInst::ICMP_ULT
||
7087 ICI
.getPredicate() == ICmpInst::ICMP_SLT
)
7088 return ReplaceInstUsesWith(ICI
, Result
);
7090 assert((ICI
.getPredicate()==ICmpInst::ICMP_UGT
||
7091 ICI
.getPredicate()==ICmpInst::ICMP_SGT
) &&
7092 "ICmp should be folded!");
7093 if (Constant
*CI
= dyn_cast
<Constant
>(Result
))
7094 return ReplaceInstUsesWith(ICI
, ConstantExpr::getNot(CI
));
7095 return BinaryOperator::CreateNot(Result
);
7098 Instruction
*InstCombiner::visitShl(BinaryOperator
&I
) {
7099 return commonShiftTransforms(I
);
7102 Instruction
*InstCombiner::visitLShr(BinaryOperator
&I
) {
7103 return commonShiftTransforms(I
);
7106 Instruction
*InstCombiner::visitAShr(BinaryOperator
&I
) {
7107 if (Instruction
*R
= commonShiftTransforms(I
))
7110 Value
*Op0
= I
.getOperand(0);
7112 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
7113 if (ConstantInt
*CSI
= dyn_cast
<ConstantInt
>(Op0
))
7114 if (CSI
->isAllOnesValue())
7115 return ReplaceInstUsesWith(I
, CSI
);
7117 // See if we can turn a signed shr into an unsigned shr.
7118 if (!isa
<VectorType
>(I
.getType())) {
7119 if (MaskedValueIsZero(Op0
,
7120 APInt::getSignBit(I
.getType()->getPrimitiveSizeInBits())))
7121 return BinaryOperator::CreateLShr(Op0
, I
.getOperand(1));
7123 // Arithmetic shifting an all-sign-bit value is a no-op.
7124 unsigned NumSignBits
= ComputeNumSignBits(Op0
);
7125 if (NumSignBits
== Op0
->getType()->getPrimitiveSizeInBits())
7126 return ReplaceInstUsesWith(I
, Op0
);
7132 Instruction
*InstCombiner::commonShiftTransforms(BinaryOperator
&I
) {
7133 assert(I
.getOperand(1)->getType() == I
.getOperand(0)->getType());
7134 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
7136 // shl X, 0 == X and shr X, 0 == X
7137 // shl 0, X == 0 and shr 0, X == 0
7138 if (Op1
== Constant::getNullValue(Op1
->getType()) ||
7139 Op0
== Constant::getNullValue(Op0
->getType()))
7140 return ReplaceInstUsesWith(I
, Op0
);
7142 if (isa
<UndefValue
>(Op0
)) {
7143 if (I
.getOpcode() == Instruction::AShr
) // undef >>s X -> undef
7144 return ReplaceInstUsesWith(I
, Op0
);
7145 else // undef << X -> 0, undef >>u X -> 0
7146 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
7148 if (isa
<UndefValue
>(Op1
)) {
7149 if (I
.getOpcode() == Instruction::AShr
) // X >>s undef -> X
7150 return ReplaceInstUsesWith(I
, Op0
);
7151 else // X << undef, X >>u undef -> 0
7152 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
7155 // Try to fold constant and into select arguments.
7156 if (isa
<Constant
>(Op0
))
7157 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
7158 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
7161 if (ConstantInt
*CUI
= dyn_cast
<ConstantInt
>(Op1
))
7162 if (Instruction
*Res
= FoldShiftByConstant(Op0
, CUI
, I
))
7167 Instruction
*InstCombiner::FoldShiftByConstant(Value
*Op0
, ConstantInt
*Op1
,
7168 BinaryOperator
&I
) {
7169 bool isLeftShift
= I
.getOpcode() == Instruction::Shl
;
7171 // See if we can simplify any instructions used by the instruction whose sole
7172 // purpose is to compute bits we don't care about.
7173 uint32_t TypeBits
= Op0
->getType()->getPrimitiveSizeInBits();
7174 if (SimplifyDemandedInstructionBits(I
))
7177 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
7178 // of a signed value.
7180 if (Op1
->uge(TypeBits
)) {
7181 if (I
.getOpcode() != Instruction::AShr
)
7182 return ReplaceInstUsesWith(I
, Constant::getNullValue(Op0
->getType()));
7184 I
.setOperand(1, ConstantInt::get(I
.getType(), TypeBits
-1));
7189 // ((X*C1) << C2) == (X * (C1 << C2))
7190 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Op0
))
7191 if (BO
->getOpcode() == Instruction::Mul
&& isLeftShift
)
7192 if (Constant
*BOOp
= dyn_cast
<Constant
>(BO
->getOperand(1)))
7193 return BinaryOperator::CreateMul(BO
->getOperand(0),
7194 ConstantExpr::getShl(BOOp
, Op1
));
7196 // Try to fold constant and into select arguments.
7197 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
7198 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
, this))
7200 if (isa
<PHINode
>(Op0
))
7201 if (Instruction
*NV
= FoldOpIntoPhi(I
))
7204 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
7205 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(Op0
)) {
7206 Instruction
*TrOp
= dyn_cast
<Instruction
>(TI
->getOperand(0));
7207 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
7208 // place. Don't try to do this transformation in this case. Also, we
7209 // require that the input operand is a shift-by-constant so that we have
7210 // confidence that the shifts will get folded together. We could do this
7211 // xform in more cases, but it is unlikely to be profitable.
7212 if (TrOp
&& I
.isLogicalShift() && TrOp
->isShift() &&
7213 isa
<ConstantInt
>(TrOp
->getOperand(1))) {
7214 // Okay, we'll do this xform. Make the shift of shift.
7215 Constant
*ShAmt
= ConstantExpr::getZExt(Op1
, TrOp
->getType());
7216 Instruction
*NSh
= BinaryOperator::Create(I
.getOpcode(), TrOp
, ShAmt
,
7218 InsertNewInstBefore(NSh
, I
); // (shift2 (shift1 & 0x00FF), c2)
7220 // For logical shifts, the truncation has the effect of making the high
7221 // part of the register be zeros. Emulate this by inserting an AND to
7222 // clear the top bits as needed. This 'and' will usually be zapped by
7223 // other xforms later if dead.
7224 unsigned SrcSize
= TrOp
->getType()->getPrimitiveSizeInBits();
7225 unsigned DstSize
= TI
->getType()->getPrimitiveSizeInBits();
7226 APInt
MaskV(APInt::getLowBitsSet(SrcSize
, DstSize
));
7228 // The mask we constructed says what the trunc would do if occurring
7229 // between the shifts. We want to know the effect *after* the second
7230 // shift. We know that it is a logical shift by a constant, so adjust the
7231 // mask as appropriate.
7232 if (I
.getOpcode() == Instruction::Shl
)
7233 MaskV
<<= Op1
->getZExtValue();
7235 assert(I
.getOpcode() == Instruction::LShr
&& "Unknown logical shift");
7236 MaskV
= MaskV
.lshr(Op1
->getZExtValue());
7239 Instruction
*And
= BinaryOperator::CreateAnd(NSh
, ConstantInt::get(MaskV
),
7241 InsertNewInstBefore(And
, I
); // shift1 & 0x00FF
7243 // Return the value truncated to the interesting size.
7244 return new TruncInst(And
, I
.getType());
7248 if (Op0
->hasOneUse()) {
7249 if (BinaryOperator
*Op0BO
= dyn_cast
<BinaryOperator
>(Op0
)) {
7250 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7253 switch (Op0BO
->getOpcode()) {
7255 case Instruction::Add
:
7256 case Instruction::And
:
7257 case Instruction::Or
:
7258 case Instruction::Xor
: {
7259 // These operators commute.
7260 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
7261 if (isLeftShift
&& Op0BO
->getOperand(1)->hasOneUse() &&
7262 match(Op0BO
->getOperand(1), m_Shr(m_Value(V1
), m_Specific(Op1
)))){
7263 Instruction
*YS
= BinaryOperator::CreateShl(
7264 Op0BO
->getOperand(0), Op1
,
7266 InsertNewInstBefore(YS
, I
); // (Y << C)
7268 BinaryOperator::Create(Op0BO
->getOpcode(), YS
, V1
,
7269 Op0BO
->getOperand(1)->getName());
7270 InsertNewInstBefore(X
, I
); // (X + (Y << C))
7271 uint32_t Op1Val
= Op1
->getLimitedValue(TypeBits
);
7272 return BinaryOperator::CreateAnd(X
, ConstantInt::get(
7273 APInt::getHighBitsSet(TypeBits
, TypeBits
-Op1Val
)));
7276 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
7277 Value
*Op0BOOp1
= Op0BO
->getOperand(1);
7278 if (isLeftShift
&& Op0BOOp1
->hasOneUse() &&
7280 m_And(m_Shr(m_Value(V1
), m_Specific(Op1
)),
7281 m_ConstantInt(CC
))) &&
7282 cast
<BinaryOperator
>(Op0BOOp1
)->getOperand(0)->hasOneUse()) {
7283 Instruction
*YS
= BinaryOperator::CreateShl(
7284 Op0BO
->getOperand(0), Op1
,
7286 InsertNewInstBefore(YS
, I
); // (Y << C)
7288 BinaryOperator::CreateAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
7289 V1
->getName()+".mask");
7290 InsertNewInstBefore(XM
, I
); // X & (CC << C)
7292 return BinaryOperator::Create(Op0BO
->getOpcode(), YS
, XM
);
7297 case Instruction::Sub
: {
7298 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
7299 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
7300 match(Op0BO
->getOperand(0), m_Shr(m_Value(V1
), m_Specific(Op1
)))){
7301 Instruction
*YS
= BinaryOperator::CreateShl(
7302 Op0BO
->getOperand(1), Op1
,
7304 InsertNewInstBefore(YS
, I
); // (Y << C)
7306 BinaryOperator::Create(Op0BO
->getOpcode(), V1
, YS
,
7307 Op0BO
->getOperand(0)->getName());
7308 InsertNewInstBefore(X
, I
); // (X + (Y << C))
7309 uint32_t Op1Val
= Op1
->getLimitedValue(TypeBits
);
7310 return BinaryOperator::CreateAnd(X
, ConstantInt::get(
7311 APInt::getHighBitsSet(TypeBits
, TypeBits
-Op1Val
)));
7314 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
7315 if (isLeftShift
&& Op0BO
->getOperand(0)->hasOneUse() &&
7316 match(Op0BO
->getOperand(0),
7317 m_And(m_Shr(m_Value(V1
), m_Value(V2
)),
7318 m_ConstantInt(CC
))) && V2
== Op1
&&
7319 cast
<BinaryOperator
>(Op0BO
->getOperand(0))
7320 ->getOperand(0)->hasOneUse()) {
7321 Instruction
*YS
= BinaryOperator::CreateShl(
7322 Op0BO
->getOperand(1), Op1
,
7324 InsertNewInstBefore(YS
, I
); // (Y << C)
7326 BinaryOperator::CreateAnd(V1
, ConstantExpr::getShl(CC
, Op1
),
7327 V1
->getName()+".mask");
7328 InsertNewInstBefore(XM
, I
); // X & (CC << C)
7330 return BinaryOperator::Create(Op0BO
->getOpcode(), XM
, YS
);
7338 // If the operand is an bitwise operator with a constant RHS, and the
7339 // shift is the only use, we can pull it out of the shift.
7340 if (ConstantInt
*Op0C
= dyn_cast
<ConstantInt
>(Op0BO
->getOperand(1))) {
7341 bool isValid
= true; // Valid only for And, Or, Xor
7342 bool highBitSet
= false; // Transform if high bit of constant set?
7344 switch (Op0BO
->getOpcode()) {
7345 default: isValid
= false; break; // Do not perform transform!
7346 case Instruction::Add
:
7347 isValid
= isLeftShift
;
7349 case Instruction::Or
:
7350 case Instruction::Xor
:
7353 case Instruction::And
:
7358 // If this is a signed shift right, and the high bit is modified
7359 // by the logical operation, do not perform the transformation.
7360 // The highBitSet boolean indicates the value of the high bit of
7361 // the constant which would cause it to be modified for this
7364 if (isValid
&& I
.getOpcode() == Instruction::AShr
)
7365 isValid
= Op0C
->getValue()[TypeBits
-1] == highBitSet
;
7368 Constant
*NewRHS
= ConstantExpr::get(I
.getOpcode(), Op0C
, Op1
);
7370 Instruction
*NewShift
=
7371 BinaryOperator::Create(I
.getOpcode(), Op0BO
->getOperand(0), Op1
);
7372 InsertNewInstBefore(NewShift
, I
);
7373 NewShift
->takeName(Op0BO
);
7375 return BinaryOperator::Create(Op0BO
->getOpcode(), NewShift
,
7382 // Find out if this is a shift of a shift by a constant.
7383 BinaryOperator
*ShiftOp
= dyn_cast
<BinaryOperator
>(Op0
);
7384 if (ShiftOp
&& !ShiftOp
->isShift())
7387 if (ShiftOp
&& isa
<ConstantInt
>(ShiftOp
->getOperand(1))) {
7388 ConstantInt
*ShiftAmt1C
= cast
<ConstantInt
>(ShiftOp
->getOperand(1));
7389 uint32_t ShiftAmt1
= ShiftAmt1C
->getLimitedValue(TypeBits
);
7390 uint32_t ShiftAmt2
= Op1
->getLimitedValue(TypeBits
);
7391 assert(ShiftAmt2
!= 0 && "Should have been simplified earlier");
7392 if (ShiftAmt1
== 0) return 0; // Will be simplified in the future.
7393 Value
*X
= ShiftOp
->getOperand(0);
7395 uint32_t AmtSum
= ShiftAmt1
+ShiftAmt2
; // Fold into one big shift.
7397 const IntegerType
*Ty
= cast
<IntegerType
>(I
.getType());
7399 // Check for (X << c1) << c2 and (X >> c1) >> c2
7400 if (I
.getOpcode() == ShiftOp
->getOpcode()) {
7401 // If this is oversized composite shift, then unsigned shifts get 0, ashr
7403 if (AmtSum
>= TypeBits
) {
7404 if (I
.getOpcode() != Instruction::AShr
)
7405 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
7406 AmtSum
= TypeBits
-1; // Saturate to 31 for i32 ashr.
7409 return BinaryOperator::Create(I
.getOpcode(), X
,
7410 ConstantInt::get(Ty
, AmtSum
));
7411 } else if (ShiftOp
->getOpcode() == Instruction::LShr
&&
7412 I
.getOpcode() == Instruction::AShr
) {
7413 if (AmtSum
>= TypeBits
)
7414 return ReplaceInstUsesWith(I
, Constant::getNullValue(I
.getType()));
7416 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
7417 return BinaryOperator::CreateLShr(X
, ConstantInt::get(Ty
, AmtSum
));
7418 } else if (ShiftOp
->getOpcode() == Instruction::AShr
&&
7419 I
.getOpcode() == Instruction::LShr
) {
7420 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
7421 if (AmtSum
>= TypeBits
)
7422 AmtSum
= TypeBits
-1;
7424 Instruction
*Shift
=
7425 BinaryOperator::CreateAShr(X
, ConstantInt::get(Ty
, AmtSum
));
7426 InsertNewInstBefore(Shift
, I
);
7428 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
7429 return BinaryOperator::CreateAnd(Shift
, ConstantInt::get(Mask
));
7432 // Okay, if we get here, one shift must be left, and the other shift must be
7433 // right. See if the amounts are equal.
7434 if (ShiftAmt1
== ShiftAmt2
) {
7435 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
7436 if (I
.getOpcode() == Instruction::Shl
) {
7437 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt1
));
7438 return BinaryOperator::CreateAnd(X
, ConstantInt::get(Mask
));
7440 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
7441 if (I
.getOpcode() == Instruction::LShr
) {
7442 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt1
));
7443 return BinaryOperator::CreateAnd(X
, ConstantInt::get(Mask
));
7445 // We can simplify ((X << C) >>s C) into a trunc + sext.
7446 // NOTE: we could do this for any C, but that would make 'unusual' integer
7447 // types. For now, just stick to ones well-supported by the code
7449 const Type
*SExtType
= 0;
7450 switch (Ty
->getBitWidth() - ShiftAmt1
) {
7457 SExtType
= IntegerType::get(Ty
->getBitWidth() - ShiftAmt1
);
7462 Instruction
*NewTrunc
= new TruncInst(X
, SExtType
, "sext");
7463 InsertNewInstBefore(NewTrunc
, I
);
7464 return new SExtInst(NewTrunc
, Ty
);
7466 // Otherwise, we can't handle it yet.
7467 } else if (ShiftAmt1
< ShiftAmt2
) {
7468 uint32_t ShiftDiff
= ShiftAmt2
-ShiftAmt1
;
7470 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
7471 if (I
.getOpcode() == Instruction::Shl
) {
7472 assert(ShiftOp
->getOpcode() == Instruction::LShr
||
7473 ShiftOp
->getOpcode() == Instruction::AShr
);
7474 Instruction
*Shift
=
7475 BinaryOperator::CreateShl(X
, ConstantInt::get(Ty
, ShiftDiff
));
7476 InsertNewInstBefore(Shift
, I
);
7478 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
7479 return BinaryOperator::CreateAnd(Shift
, ConstantInt::get(Mask
));
7482 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
7483 if (I
.getOpcode() == Instruction::LShr
) {
7484 assert(ShiftOp
->getOpcode() == Instruction::Shl
);
7485 Instruction
*Shift
=
7486 BinaryOperator::CreateLShr(X
, ConstantInt::get(Ty
, ShiftDiff
));
7487 InsertNewInstBefore(Shift
, I
);
7489 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
7490 return BinaryOperator::CreateAnd(Shift
, ConstantInt::get(Mask
));
7493 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
7495 assert(ShiftAmt2
< ShiftAmt1
);
7496 uint32_t ShiftDiff
= ShiftAmt1
-ShiftAmt2
;
7498 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
7499 if (I
.getOpcode() == Instruction::Shl
) {
7500 assert(ShiftOp
->getOpcode() == Instruction::LShr
||
7501 ShiftOp
->getOpcode() == Instruction::AShr
);
7502 Instruction
*Shift
=
7503 BinaryOperator::Create(ShiftOp
->getOpcode(), X
,
7504 ConstantInt::get(Ty
, ShiftDiff
));
7505 InsertNewInstBefore(Shift
, I
);
7507 APInt
Mask(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
7508 return BinaryOperator::CreateAnd(Shift
, ConstantInt::get(Mask
));
7511 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
7512 if (I
.getOpcode() == Instruction::LShr
) {
7513 assert(ShiftOp
->getOpcode() == Instruction::Shl
);
7514 Instruction
*Shift
=
7515 BinaryOperator::CreateShl(X
, ConstantInt::get(Ty
, ShiftDiff
));
7516 InsertNewInstBefore(Shift
, I
);
7518 APInt
Mask(APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt2
));
7519 return BinaryOperator::CreateAnd(Shift
, ConstantInt::get(Mask
));
7522 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
7529 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
7530 /// expression. If so, decompose it, returning some value X, such that Val is
7533 static Value
*DecomposeSimpleLinearExpr(Value
*Val
, unsigned &Scale
,
7535 assert(Val
->getType() == Type::Int32Ty
&& "Unexpected allocation size type!");
7536 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Val
)) {
7537 Offset
= CI
->getZExtValue();
7539 return ConstantInt::get(Type::Int32Ty
, 0);
7540 } else if (BinaryOperator
*I
= dyn_cast
<BinaryOperator
>(Val
)) {
7541 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
7542 if (I
->getOpcode() == Instruction::Shl
) {
7543 // This is a value scaled by '1 << the shift amt'.
7544 Scale
= 1U << RHS
->getZExtValue();
7546 return I
->getOperand(0);
7547 } else if (I
->getOpcode() == Instruction::Mul
) {
7548 // This value is scaled by 'RHS'.
7549 Scale
= RHS
->getZExtValue();
7551 return I
->getOperand(0);
7552 } else if (I
->getOpcode() == Instruction::Add
) {
7553 // We have X+C. Check to see if we really have (X*C2)+C1,
7554 // where C1 is divisible by C2.
7557 DecomposeSimpleLinearExpr(I
->getOperand(0), SubScale
, Offset
);
7558 Offset
+= RHS
->getZExtValue();
7565 // Otherwise, we can't look past this.
7572 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
7573 /// try to eliminate the cast by moving the type information into the alloc.
7574 Instruction
*InstCombiner::PromoteCastOfAllocation(BitCastInst
&CI
,
7575 AllocationInst
&AI
) {
7576 const PointerType
*PTy
= cast
<PointerType
>(CI
.getType());
7578 // Remove any uses of AI that are dead.
7579 assert(!CI
.use_empty() && "Dead instructions should be removed earlier!");
7581 for (Value::use_iterator UI
= AI
.use_begin(), E
= AI
.use_end(); UI
!= E
; ) {
7582 Instruction
*User
= cast
<Instruction
>(*UI
++);
7583 if (isInstructionTriviallyDead(User
)) {
7584 while (UI
!= E
&& *UI
== User
)
7585 ++UI
; // If this instruction uses AI more than once, don't break UI.
7588 DOUT
<< "IC: DCE: " << *User
;
7589 EraseInstFromFunction(*User
);
7593 // Get the type really allocated and the type casted to.
7594 const Type
*AllocElTy
= AI
.getAllocatedType();
7595 const Type
*CastElTy
= PTy
->getElementType();
7596 if (!AllocElTy
->isSized() || !CastElTy
->isSized()) return 0;
7598 unsigned AllocElTyAlign
= TD
->getABITypeAlignment(AllocElTy
);
7599 unsigned CastElTyAlign
= TD
->getABITypeAlignment(CastElTy
);
7600 if (CastElTyAlign
< AllocElTyAlign
) return 0;
7602 // If the allocation has multiple uses, only promote it if we are strictly
7603 // increasing the alignment of the resultant allocation. If we keep it the
7604 // same, we open the door to infinite loops of various kinds. (A reference
7605 // from a dbg.declare doesn't count as a use for this purpose.)
7606 if (!AI
.hasOneUse() && !hasOneUsePlusDeclare(&AI
) &&
7607 CastElTyAlign
== AllocElTyAlign
) return 0;
7609 uint64_t AllocElTySize
= TD
->getTypePaddedSize(AllocElTy
);
7610 uint64_t CastElTySize
= TD
->getTypePaddedSize(CastElTy
);
7611 if (CastElTySize
== 0 || AllocElTySize
== 0) return 0;
7613 // See if we can satisfy the modulus by pulling a scale out of the array
7615 unsigned ArraySizeScale
;
7617 Value
*NumElements
= // See if the array size is a decomposable linear expr.
7618 DecomposeSimpleLinearExpr(AI
.getOperand(0), ArraySizeScale
, ArrayOffset
);
7620 // If we can now satisfy the modulus, by using a non-1 scale, we really can
7622 if ((AllocElTySize
*ArraySizeScale
) % CastElTySize
!= 0 ||
7623 (AllocElTySize
*ArrayOffset
) % CastElTySize
!= 0) return 0;
7625 unsigned Scale
= (AllocElTySize
*ArraySizeScale
)/CastElTySize
;
7630 // If the allocation size is constant, form a constant mul expression
7631 Amt
= ConstantInt::get(Type::Int32Ty
, Scale
);
7632 if (isa
<ConstantInt
>(NumElements
))
7633 Amt
= Multiply(cast
<ConstantInt
>(NumElements
), cast
<ConstantInt
>(Amt
));
7634 // otherwise multiply the amount and the number of elements
7636 Instruction
*Tmp
= BinaryOperator::CreateMul(Amt
, NumElements
, "tmp");
7637 Amt
= InsertNewInstBefore(Tmp
, AI
);
7641 if (int Offset
= (AllocElTySize
*ArrayOffset
)/CastElTySize
) {
7642 Value
*Off
= ConstantInt::get(Type::Int32Ty
, Offset
, true);
7643 Instruction
*Tmp
= BinaryOperator::CreateAdd(Amt
, Off
, "tmp");
7644 Amt
= InsertNewInstBefore(Tmp
, AI
);
7647 AllocationInst
*New
;
7648 if (isa
<MallocInst
>(AI
))
7649 New
= new MallocInst(CastElTy
, Amt
, AI
.getAlignment());
7651 New
= new AllocaInst(CastElTy
, Amt
, AI
.getAlignment());
7652 InsertNewInstBefore(New
, AI
);
7655 // If the allocation has one real use plus a dbg.declare, just remove the
7657 if (DbgDeclareInst
*DI
= hasOneUsePlusDeclare(&AI
)) {
7658 EraseInstFromFunction(*DI
);
7660 // If the allocation has multiple real uses, insert a cast and change all
7661 // things that used it to use the new cast. This will also hack on CI, but it
7663 else if (!AI
.hasOneUse()) {
7664 AddUsesToWorkList(AI
);
7665 // New is the allocation instruction, pointer typed. AI is the original
7666 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
7667 CastInst
*NewCast
= new BitCastInst(New
, AI
.getType(), "tmpcast");
7668 InsertNewInstBefore(NewCast
, AI
);
7669 AI
.replaceAllUsesWith(NewCast
);
7671 return ReplaceInstUsesWith(CI
, New
);
7674 /// CanEvaluateInDifferentType - Return true if we can take the specified value
7675 /// and return it as type Ty without inserting any new casts and without
7676 /// changing the computed value. This is used by code that tries to decide
7677 /// whether promoting or shrinking integer operations to wider or smaller types
7678 /// will allow us to eliminate a truncate or extend.
7680 /// This is a truncation operation if Ty is smaller than V->getType(), or an
7681 /// extension operation if Ty is larger.
7683 /// If CastOpc is a truncation, then Ty will be a type smaller than V. We
7684 /// should return true if trunc(V) can be computed by computing V in the smaller
7685 /// type. If V is an instruction, then trunc(inst(x,y)) can be computed as
7686 /// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
7687 /// efficiently truncated.
7689 /// If CastOpc is a sext or zext, we are asking if the low bits of the value can
7690 /// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
7691 /// the final result.
7692 bool InstCombiner::CanEvaluateInDifferentType(Value
*V
, const IntegerType
*Ty
,
7694 int &NumCastsRemoved
){
7695 // We can always evaluate constants in another type.
7696 if (isa
<ConstantInt
>(V
))
7699 Instruction
*I
= dyn_cast
<Instruction
>(V
);
7700 if (!I
) return false;
7702 const IntegerType
*OrigTy
= cast
<IntegerType
>(V
->getType());
7704 // If this is an extension or truncate, we can often eliminate it.
7705 if (isa
<TruncInst
>(I
) || isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
7706 // If this is a cast from the destination type, we can trivially eliminate
7707 // it, and this will remove a cast overall.
7708 if (I
->getOperand(0)->getType() == Ty
) {
7709 // If the first operand is itself a cast, and is eliminable, do not count
7710 // this as an eliminable cast. We would prefer to eliminate those two
7712 if (!isa
<CastInst
>(I
->getOperand(0)) && I
->hasOneUse())
7718 // We can't extend or shrink something that has multiple uses: doing so would
7719 // require duplicating the instruction in general, which isn't profitable.
7720 if (!I
->hasOneUse()) return false;
7722 unsigned Opc
= I
->getOpcode();
7724 case Instruction::Add
:
7725 case Instruction::Sub
:
7726 case Instruction::Mul
:
7727 case Instruction::And
:
7728 case Instruction::Or
:
7729 case Instruction::Xor
:
7730 // These operators can all arbitrarily be extended or truncated.
7731 return CanEvaluateInDifferentType(I
->getOperand(0), Ty
, CastOpc
,
7733 CanEvaluateInDifferentType(I
->getOperand(1), Ty
, CastOpc
,
7736 case Instruction::Shl
:
7737 // If we are truncating the result of this SHL, and if it's a shift of a
7738 // constant amount, we can always perform a SHL in a smaller type.
7739 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
7740 uint32_t BitWidth
= Ty
->getBitWidth();
7741 if (BitWidth
< OrigTy
->getBitWidth() &&
7742 CI
->getLimitedValue(BitWidth
) < BitWidth
)
7743 return CanEvaluateInDifferentType(I
->getOperand(0), Ty
, CastOpc
,
7747 case Instruction::LShr
:
7748 // If this is a truncate of a logical shr, we can truncate it to a smaller
7749 // lshr iff we know that the bits we would otherwise be shifting in are
7751 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
7752 uint32_t OrigBitWidth
= OrigTy
->getBitWidth();
7753 uint32_t BitWidth
= Ty
->getBitWidth();
7754 if (BitWidth
< OrigBitWidth
&&
7755 MaskedValueIsZero(I
->getOperand(0),
7756 APInt::getHighBitsSet(OrigBitWidth
, OrigBitWidth
-BitWidth
)) &&
7757 CI
->getLimitedValue(BitWidth
) < BitWidth
) {
7758 return CanEvaluateInDifferentType(I
->getOperand(0), Ty
, CastOpc
,
7763 case Instruction::ZExt
:
7764 case Instruction::SExt
:
7765 case Instruction::Trunc
:
7766 // If this is the same kind of case as our original (e.g. zext+zext), we
7767 // can safely replace it. Note that replacing it does not reduce the number
7768 // of casts in the input.
7772 // sext (zext ty1), ty2 -> zext ty2
7773 if (CastOpc
== Instruction::SExt
&& Opc
== Instruction::ZExt
)
7776 case Instruction::Select
: {
7777 SelectInst
*SI
= cast
<SelectInst
>(I
);
7778 return CanEvaluateInDifferentType(SI
->getTrueValue(), Ty
, CastOpc
,
7780 CanEvaluateInDifferentType(SI
->getFalseValue(), Ty
, CastOpc
,
7783 case Instruction::PHI
: {
7784 // We can change a phi if we can change all operands.
7785 PHINode
*PN
= cast
<PHINode
>(I
);
7786 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
7787 if (!CanEvaluateInDifferentType(PN
->getIncomingValue(i
), Ty
, CastOpc
,
7793 // TODO: Can handle more cases here.
7800 /// EvaluateInDifferentType - Given an expression that
7801 /// CanEvaluateInDifferentType returns true for, actually insert the code to
7802 /// evaluate the expression.
7803 Value
*InstCombiner::EvaluateInDifferentType(Value
*V
, const Type
*Ty
,
7805 if (Constant
*C
= dyn_cast
<Constant
>(V
))
7806 return ConstantExpr::getIntegerCast(C
, Ty
, isSigned
/*Sext or ZExt*/);
7808 // Otherwise, it must be an instruction.
7809 Instruction
*I
= cast
<Instruction
>(V
);
7810 Instruction
*Res
= 0;
7811 unsigned Opc
= I
->getOpcode();
7813 case Instruction::Add
:
7814 case Instruction::Sub
:
7815 case Instruction::Mul
:
7816 case Instruction::And
:
7817 case Instruction::Or
:
7818 case Instruction::Xor
:
7819 case Instruction::AShr
:
7820 case Instruction::LShr
:
7821 case Instruction::Shl
: {
7822 Value
*LHS
= EvaluateInDifferentType(I
->getOperand(0), Ty
, isSigned
);
7823 Value
*RHS
= EvaluateInDifferentType(I
->getOperand(1), Ty
, isSigned
);
7824 Res
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
7827 case Instruction::Trunc
:
7828 case Instruction::ZExt
:
7829 case Instruction::SExt
:
7830 // If the source type of the cast is the type we're trying for then we can
7831 // just return the source. There's no need to insert it because it is not
7833 if (I
->getOperand(0)->getType() == Ty
)
7834 return I
->getOperand(0);
7836 // Otherwise, must be the same type of cast, so just reinsert a new one.
7837 Res
= CastInst::Create(cast
<CastInst
>(I
)->getOpcode(), I
->getOperand(0),
7840 case Instruction::Select
: {
7841 Value
*True
= EvaluateInDifferentType(I
->getOperand(1), Ty
, isSigned
);
7842 Value
*False
= EvaluateInDifferentType(I
->getOperand(2), Ty
, isSigned
);
7843 Res
= SelectInst::Create(I
->getOperand(0), True
, False
);
7846 case Instruction::PHI
: {
7847 PHINode
*OPN
= cast
<PHINode
>(I
);
7848 PHINode
*NPN
= PHINode::Create(Ty
);
7849 for (unsigned i
= 0, e
= OPN
->getNumIncomingValues(); i
!= e
; ++i
) {
7850 Value
*V
=EvaluateInDifferentType(OPN
->getIncomingValue(i
), Ty
, isSigned
);
7851 NPN
->addIncoming(V
, OPN
->getIncomingBlock(i
));
7857 // TODO: Can handle more cases here.
7858 assert(0 && "Unreachable!");
7863 return InsertNewInstBefore(Res
, *I
);
7866 /// @brief Implement the transforms common to all CastInst visitors.
7867 Instruction
*InstCombiner::commonCastTransforms(CastInst
&CI
) {
7868 Value
*Src
= CI
.getOperand(0);
7870 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
7871 // eliminate it now.
7872 if (CastInst
*CSrc
= dyn_cast
<CastInst
>(Src
)) { // A->B->C cast
7873 if (Instruction::CastOps opc
=
7874 isEliminableCastPair(CSrc
, CI
.getOpcode(), CI
.getType(), TD
)) {
7875 // The first cast (CSrc) is eliminable so we need to fix up or replace
7876 // the second cast (CI). CSrc will then have a good chance of being dead.
7877 return CastInst::Create(opc
, CSrc
->getOperand(0), CI
.getType());
7881 // If we are casting a select then fold the cast into the select
7882 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Src
))
7883 if (Instruction
*NV
= FoldOpIntoSelect(CI
, SI
, this))
7886 // If we are casting a PHI then fold the cast into the PHI
7887 if (isa
<PHINode
>(Src
))
7888 if (Instruction
*NV
= FoldOpIntoPhi(CI
))
7894 /// FindElementAtOffset - Given a type and a constant offset, determine whether
7895 /// or not there is a sequence of GEP indices into the type that will land us at
7896 /// the specified offset. If so, fill them into NewIndices and return the
7897 /// resultant element type, otherwise return null.
7898 static const Type
*FindElementAtOffset(const Type
*Ty
, int64_t Offset
,
7899 SmallVectorImpl
<Value
*> &NewIndices
,
7900 const TargetData
*TD
) {
7901 if (!Ty
->isSized()) return 0;
7903 // Start with the index over the outer type. Note that the type size
7904 // might be zero (even if the offset isn't zero) if the indexed type
7905 // is something like [0 x {int, int}]
7906 const Type
*IntPtrTy
= TD
->getIntPtrType();
7907 int64_t FirstIdx
= 0;
7908 if (int64_t TySize
= TD
->getTypePaddedSize(Ty
)) {
7909 FirstIdx
= Offset
/TySize
;
7910 Offset
-= FirstIdx
*TySize
;
7912 // Handle hosts where % returns negative instead of values [0..TySize).
7916 assert(Offset
>= 0);
7918 assert((uint64_t)Offset
< (uint64_t)TySize
&& "Out of range offset");
7921 NewIndices
.push_back(ConstantInt::get(IntPtrTy
, FirstIdx
));
7923 // Index into the types. If we fail, set OrigBase to null.
7925 // Indexing into tail padding between struct/array elements.
7926 if (uint64_t(Offset
*8) >= TD
->getTypeSizeInBits(Ty
))
7929 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
7930 const StructLayout
*SL
= TD
->getStructLayout(STy
);
7931 assert(Offset
< (int64_t)SL
->getSizeInBytes() &&
7932 "Offset must stay within the indexed type");
7934 unsigned Elt
= SL
->getElementContainingOffset(Offset
);
7935 NewIndices
.push_back(ConstantInt::get(Type::Int32Ty
, Elt
));
7937 Offset
-= SL
->getElementOffset(Elt
);
7938 Ty
= STy
->getElementType(Elt
);
7939 } else if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(Ty
)) {
7940 uint64_t EltSize
= TD
->getTypePaddedSize(AT
->getElementType());
7941 assert(EltSize
&& "Cannot index into a zero-sized array");
7942 NewIndices
.push_back(ConstantInt::get(IntPtrTy
,Offset
/EltSize
));
7944 Ty
= AT
->getElementType();
7946 // Otherwise, we can't index into the middle of this atomic type, bail.
7954 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
7955 Instruction
*InstCombiner::commonPointerCastTransforms(CastInst
&CI
) {
7956 Value
*Src
= CI
.getOperand(0);
7958 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Src
)) {
7959 // If casting the result of a getelementptr instruction with no offset, turn
7960 // this into a cast of the original pointer!
7961 if (GEP
->hasAllZeroIndices()) {
7962 // Changing the cast operand is usually not a good idea but it is safe
7963 // here because the pointer operand is being replaced with another
7964 // pointer operand so the opcode doesn't need to change.
7966 CI
.setOperand(0, GEP
->getOperand(0));
7970 // If the GEP has a single use, and the base pointer is a bitcast, and the
7971 // GEP computes a constant offset, see if we can convert these three
7972 // instructions into fewer. This typically happens with unions and other
7973 // non-type-safe code.
7974 if (GEP
->hasOneUse() && isa
<BitCastInst
>(GEP
->getOperand(0))) {
7975 if (GEP
->hasAllConstantIndices()) {
7976 // We are guaranteed to get a constant from EmitGEPOffset.
7977 ConstantInt
*OffsetV
= cast
<ConstantInt
>(EmitGEPOffset(GEP
, CI
, *this));
7978 int64_t Offset
= OffsetV
->getSExtValue();
7980 // Get the base pointer input of the bitcast, and the type it points to.
7981 Value
*OrigBase
= cast
<BitCastInst
>(GEP
->getOperand(0))->getOperand(0);
7982 const Type
*GEPIdxTy
=
7983 cast
<PointerType
>(OrigBase
->getType())->getElementType();
7984 SmallVector
<Value
*, 8> NewIndices
;
7985 if (FindElementAtOffset(GEPIdxTy
, Offset
, NewIndices
, TD
)) {
7986 // If we were able to index down into an element, create the GEP
7987 // and bitcast the result. This eliminates one bitcast, potentially
7989 Instruction
*NGEP
= GetElementPtrInst::Create(OrigBase
,
7991 NewIndices
.end(), "");
7992 InsertNewInstBefore(NGEP
, CI
);
7993 NGEP
->takeName(GEP
);
7995 if (isa
<BitCastInst
>(CI
))
7996 return new BitCastInst(NGEP
, CI
.getType());
7997 assert(isa
<PtrToIntInst
>(CI
));
7998 return new PtrToIntInst(NGEP
, CI
.getType());
8004 return commonCastTransforms(CI
);
8007 /// isSafeIntegerType - Return true if this is a basic integer type, not a crazy
8008 /// type like i42. We don't want to introduce operations on random non-legal
8009 /// integer types where they don't already exist in the code. In the future,
8010 /// we should consider making this based off target-data, so that 32-bit targets
8011 /// won't get i64 operations etc.
8012 static bool isSafeIntegerType(const Type
*Ty
) {
8013 switch (Ty
->getPrimitiveSizeInBits()) {
8024 /// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
8025 /// integer types. This function implements the common transforms for all those
8027 /// @brief Implement the transforms common to CastInst with integer operands
8028 Instruction
*InstCombiner::commonIntCastTransforms(CastInst
&CI
) {
8029 if (Instruction
*Result
= commonCastTransforms(CI
))
8032 Value
*Src
= CI
.getOperand(0);
8033 const Type
*SrcTy
= Src
->getType();
8034 const Type
*DestTy
= CI
.getType();
8035 uint32_t SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
8036 uint32_t DestBitSize
= DestTy
->getPrimitiveSizeInBits();
8038 // See if we can simplify any instructions used by the LHS whose sole
8039 // purpose is to compute bits we don't care about.
8040 if (SimplifyDemandedInstructionBits(CI
))
8043 // If the source isn't an instruction or has more than one use then we
8044 // can't do anything more.
8045 Instruction
*SrcI
= dyn_cast
<Instruction
>(Src
);
8046 if (!SrcI
|| !Src
->hasOneUse())
8049 // Attempt to propagate the cast into the instruction for int->int casts.
8050 int NumCastsRemoved
= 0;
8051 if (!isa
<BitCastInst
>(CI
) &&
8052 // Only do this if the dest type is a simple type, don't convert the
8053 // expression tree to something weird like i93 unless the source is also
8055 (isSafeIntegerType(DestTy
) || !isSafeIntegerType(SrcI
->getType())) &&
8056 CanEvaluateInDifferentType(SrcI
, cast
<IntegerType
>(DestTy
),
8057 CI
.getOpcode(), NumCastsRemoved
)) {
8058 // If this cast is a truncate, evaluting in a different type always
8059 // eliminates the cast, so it is always a win. If this is a zero-extension,
8060 // we need to do an AND to maintain the clear top-part of the computation,
8061 // so we require that the input have eliminated at least one cast. If this
8062 // is a sign extension, we insert two new casts (to do the extension) so we
8063 // require that two casts have been eliminated.
8064 bool DoXForm
= false;
8065 bool JustReplace
= false;
8066 switch (CI
.getOpcode()) {
8068 // All the others use floating point so we shouldn't actually
8069 // get here because of the check above.
8070 assert(0 && "Unknown cast type");
8071 case Instruction::Trunc
:
8074 case Instruction::ZExt
: {
8075 DoXForm
= NumCastsRemoved
>= 1;
8076 if (!DoXForm
&& 0) {
8077 // If it's unnecessary to issue an AND to clear the high bits, it's
8078 // always profitable to do this xform.
8079 Value
*TryRes
= EvaluateInDifferentType(SrcI
, DestTy
, false);
8080 APInt
Mask(APInt::getBitsSet(DestBitSize
, SrcBitSize
, DestBitSize
));
8081 if (MaskedValueIsZero(TryRes
, Mask
))
8082 return ReplaceInstUsesWith(CI
, TryRes
);
8084 if (Instruction
*TryI
= dyn_cast
<Instruction
>(TryRes
))
8085 if (TryI
->use_empty())
8086 EraseInstFromFunction(*TryI
);
8090 case Instruction::SExt
: {
8091 DoXForm
= NumCastsRemoved
>= 2;
8092 if (!DoXForm
&& !isa
<TruncInst
>(SrcI
) && 0) {
8093 // If we do not have to emit the truncate + sext pair, then it's always
8094 // profitable to do this xform.
8096 // It's not safe to eliminate the trunc + sext pair if one of the
8097 // eliminated cast is a truncate. e.g.
8098 // t2 = trunc i32 t1 to i16
8099 // t3 = sext i16 t2 to i32
8102 Value
*TryRes
= EvaluateInDifferentType(SrcI
, DestTy
, true);
8103 unsigned NumSignBits
= ComputeNumSignBits(TryRes
);
8104 if (NumSignBits
> (DestBitSize
- SrcBitSize
))
8105 return ReplaceInstUsesWith(CI
, TryRes
);
8107 if (Instruction
*TryI
= dyn_cast
<Instruction
>(TryRes
))
8108 if (TryI
->use_empty())
8109 EraseInstFromFunction(*TryI
);
8116 DOUT
<< "ICE: EvaluateInDifferentType converting expression type to avoid"
8118 Value
*Res
= EvaluateInDifferentType(SrcI
, DestTy
,
8119 CI
.getOpcode() == Instruction::SExt
);
8121 // Just replace this cast with the result.
8122 return ReplaceInstUsesWith(CI
, Res
);
8124 assert(Res
->getType() == DestTy
);
8125 switch (CI
.getOpcode()) {
8126 default: assert(0 && "Unknown cast type!");
8127 case Instruction::Trunc
:
8128 case Instruction::BitCast
:
8129 // Just replace this cast with the result.
8130 return ReplaceInstUsesWith(CI
, Res
);
8131 case Instruction::ZExt
: {
8132 assert(SrcBitSize
< DestBitSize
&& "Not a zext?");
8134 // If the high bits are already zero, just replace this cast with the
8136 APInt
Mask(APInt::getBitsSet(DestBitSize
, SrcBitSize
, DestBitSize
));
8137 if (MaskedValueIsZero(Res
, Mask
))
8138 return ReplaceInstUsesWith(CI
, Res
);
8140 // We need to emit an AND to clear the high bits.
8141 Constant
*C
= ConstantInt::get(APInt::getLowBitsSet(DestBitSize
,
8143 return BinaryOperator::CreateAnd(Res
, C
);
8145 case Instruction::SExt
: {
8146 // If the high bits are already filled with sign bit, just replace this
8147 // cast with the result.
8148 unsigned NumSignBits
= ComputeNumSignBits(Res
);
8149 if (NumSignBits
> (DestBitSize
- SrcBitSize
))
8150 return ReplaceInstUsesWith(CI
, Res
);
8152 // We need to emit a cast to truncate, then a cast to sext.
8153 return CastInst::Create(Instruction::SExt
,
8154 InsertCastBefore(Instruction::Trunc
, Res
, Src
->getType(),
8161 Value
*Op0
= SrcI
->getNumOperands() > 0 ? SrcI
->getOperand(0) : 0;
8162 Value
*Op1
= SrcI
->getNumOperands() > 1 ? SrcI
->getOperand(1) : 0;
8164 switch (SrcI
->getOpcode()) {
8165 case Instruction::Add
:
8166 case Instruction::Mul
:
8167 case Instruction::And
:
8168 case Instruction::Or
:
8169 case Instruction::Xor
:
8170 // If we are discarding information, rewrite.
8171 if (DestBitSize
<= SrcBitSize
&& DestBitSize
!= 1) {
8172 // Don't insert two casts if they cannot be eliminated. We allow
8173 // two casts to be inserted if the sizes are the same. This could
8174 // only be converting signedness, which is a noop.
8175 if (DestBitSize
== SrcBitSize
||
8176 !ValueRequiresCast(CI
.getOpcode(), Op1
, DestTy
,TD
) ||
8177 !ValueRequiresCast(CI
.getOpcode(), Op0
, DestTy
, TD
)) {
8178 Instruction::CastOps opcode
= CI
.getOpcode();
8179 Value
*Op0c
= InsertCastBefore(opcode
, Op0
, DestTy
, *SrcI
);
8180 Value
*Op1c
= InsertCastBefore(opcode
, Op1
, DestTy
, *SrcI
);
8181 return BinaryOperator::Create(
8182 cast
<BinaryOperator
>(SrcI
)->getOpcode(), Op0c
, Op1c
);
8186 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
8187 if (isa
<ZExtInst
>(CI
) && SrcBitSize
== 1 &&
8188 SrcI
->getOpcode() == Instruction::Xor
&&
8189 Op1
== ConstantInt::getTrue() &&
8190 (!Op0
->hasOneUse() || !isa
<CmpInst
>(Op0
))) {
8191 Value
*New
= InsertCastBefore(Instruction::ZExt
, Op0
, DestTy
, CI
);
8192 return BinaryOperator::CreateXor(New
, ConstantInt::get(CI
.getType(), 1));
8195 case Instruction::SDiv
:
8196 case Instruction::UDiv
:
8197 case Instruction::SRem
:
8198 case Instruction::URem
:
8199 // If we are just changing the sign, rewrite.
8200 if (DestBitSize
== SrcBitSize
) {
8201 // Don't insert two casts if they cannot be eliminated. We allow
8202 // two casts to be inserted if the sizes are the same. This could
8203 // only be converting signedness, which is a noop.
8204 if (!ValueRequiresCast(CI
.getOpcode(), Op1
, DestTy
, TD
) ||
8205 !ValueRequiresCast(CI
.getOpcode(), Op0
, DestTy
, TD
)) {
8206 Value
*Op0c
= InsertCastBefore(Instruction::BitCast
,
8207 Op0
, DestTy
, *SrcI
);
8208 Value
*Op1c
= InsertCastBefore(Instruction::BitCast
,
8209 Op1
, DestTy
, *SrcI
);
8210 return BinaryOperator::Create(
8211 cast
<BinaryOperator
>(SrcI
)->getOpcode(), Op0c
, Op1c
);
8216 case Instruction::Shl
:
8217 // Allow changing the sign of the source operand. Do not allow
8218 // changing the size of the shift, UNLESS the shift amount is a
8219 // constant. We must not change variable sized shifts to a smaller
8220 // size, because it is undefined to shift more bits out than exist
8222 if (DestBitSize
== SrcBitSize
||
8223 (DestBitSize
< SrcBitSize
&& isa
<Constant
>(Op1
))) {
8224 Instruction::CastOps opcode
= (DestBitSize
== SrcBitSize
?
8225 Instruction::BitCast
: Instruction::Trunc
);
8226 Value
*Op0c
= InsertCastBefore(opcode
, Op0
, DestTy
, *SrcI
);
8227 Value
*Op1c
= InsertCastBefore(opcode
, Op1
, DestTy
, *SrcI
);
8228 return BinaryOperator::CreateShl(Op0c
, Op1c
);
8231 case Instruction::AShr
:
8232 // If this is a signed shr, and if all bits shifted in are about to be
8233 // truncated off, turn it into an unsigned shr to allow greater
8235 if (DestBitSize
< SrcBitSize
&&
8236 isa
<ConstantInt
>(Op1
)) {
8237 uint32_t ShiftAmt
= cast
<ConstantInt
>(Op1
)->getLimitedValue(SrcBitSize
);
8238 if (SrcBitSize
> ShiftAmt
&& SrcBitSize
-ShiftAmt
>= DestBitSize
) {
8239 // Insert the new logical shift right.
8240 return BinaryOperator::CreateLShr(Op0
, Op1
);
8248 Instruction
*InstCombiner::visitTrunc(TruncInst
&CI
) {
8249 if (Instruction
*Result
= commonIntCastTransforms(CI
))
8252 Value
*Src
= CI
.getOperand(0);
8253 const Type
*Ty
= CI
.getType();
8254 uint32_t DestBitWidth
= Ty
->getPrimitiveSizeInBits();
8255 uint32_t SrcBitWidth
= cast
<IntegerType
>(Src
->getType())->getBitWidth();
8257 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
8258 if (DestBitWidth
== 1) {
8259 Constant
*One
= ConstantInt::get(Src
->getType(), 1);
8260 Src
= InsertNewInstBefore(BinaryOperator::CreateAnd(Src
, One
, "tmp"), CI
);
8261 Value
*Zero
= Constant::getNullValue(Src
->getType());
8262 return new ICmpInst(ICmpInst::ICMP_NE
, Src
, Zero
);
8265 // Optimize trunc(lshr(), c) to pull the shift through the truncate.
8266 ConstantInt
*ShAmtV
= 0;
8268 if (Src
->hasOneUse() &&
8269 match(Src
, m_LShr(m_Value(ShiftOp
), m_ConstantInt(ShAmtV
)))) {
8270 uint32_t ShAmt
= ShAmtV
->getLimitedValue(SrcBitWidth
);
8272 // Get a mask for the bits shifting in.
8273 APInt
Mask(APInt::getLowBitsSet(SrcBitWidth
, ShAmt
).shl(DestBitWidth
));
8274 if (MaskedValueIsZero(ShiftOp
, Mask
)) {
8275 if (ShAmt
>= DestBitWidth
) // All zeros.
8276 return ReplaceInstUsesWith(CI
, Constant::getNullValue(Ty
));
8278 // Okay, we can shrink this. Truncate the input, then return a new
8280 Value
*V1
= InsertCastBefore(Instruction::Trunc
, ShiftOp
, Ty
, CI
);
8281 Value
*V2
= ConstantExpr::getTrunc(ShAmtV
, Ty
);
8282 return BinaryOperator::CreateLShr(V1
, V2
);
8289 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
8290 /// in order to eliminate the icmp.
8291 Instruction
*InstCombiner::transformZExtICmp(ICmpInst
*ICI
, Instruction
&CI
,
8293 // If we are just checking for a icmp eq of a single bit and zext'ing it
8294 // to an integer, then shift the bit to the appropriate place and then
8295 // cast to integer to avoid the comparison.
8296 if (ConstantInt
*Op1C
= dyn_cast
<ConstantInt
>(ICI
->getOperand(1))) {
8297 const APInt
&Op1CV
= Op1C
->getValue();
8299 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
8300 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
8301 if ((ICI
->getPredicate() == ICmpInst::ICMP_SLT
&& Op1CV
== 0) ||
8302 (ICI
->getPredicate() == ICmpInst::ICMP_SGT
&&Op1CV
.isAllOnesValue())) {
8303 if (!DoXform
) return ICI
;
8305 Value
*In
= ICI
->getOperand(0);
8306 Value
*Sh
= ConstantInt::get(In
->getType(),
8307 In
->getType()->getPrimitiveSizeInBits()-1);
8308 In
= InsertNewInstBefore(BinaryOperator::CreateLShr(In
, Sh
,
8309 In
->getName()+".lobit"),
8311 if (In
->getType() != CI
.getType())
8312 In
= CastInst::CreateIntegerCast(In
, CI
.getType(),
8313 false/*ZExt*/, "tmp", &CI
);
8315 if (ICI
->getPredicate() == ICmpInst::ICMP_SGT
) {
8316 Constant
*One
= ConstantInt::get(In
->getType(), 1);
8317 In
= InsertNewInstBefore(BinaryOperator::CreateXor(In
, One
,
8318 In
->getName()+".not"),
8322 return ReplaceInstUsesWith(CI
, In
);
8327 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
8328 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8329 // zext (X == 1) to i32 --> X iff X has only the low bit set.
8330 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
8331 // zext (X != 0) to i32 --> X iff X has only the low bit set.
8332 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
8333 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
8334 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
8335 if ((Op1CV
== 0 || Op1CV
.isPowerOf2()) &&
8336 // This only works for EQ and NE
8337 ICI
->isEquality()) {
8338 // If Op1C some other power of two, convert:
8339 uint32_t BitWidth
= Op1C
->getType()->getBitWidth();
8340 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
8341 APInt
TypeMask(APInt::getAllOnesValue(BitWidth
));
8342 ComputeMaskedBits(ICI
->getOperand(0), TypeMask
, KnownZero
, KnownOne
);
8344 APInt
KnownZeroMask(~KnownZero
);
8345 if (KnownZeroMask
.isPowerOf2()) { // Exactly 1 possible 1?
8346 if (!DoXform
) return ICI
;
8348 bool isNE
= ICI
->getPredicate() == ICmpInst::ICMP_NE
;
8349 if (Op1CV
!= 0 && (Op1CV
!= KnownZeroMask
)) {
8350 // (X&4) == 2 --> false
8351 // (X&4) != 2 --> true
8352 Constant
*Res
= ConstantInt::get(Type::Int1Ty
, isNE
);
8353 Res
= ConstantExpr::getZExt(Res
, CI
.getType());
8354 return ReplaceInstUsesWith(CI
, Res
);
8357 uint32_t ShiftAmt
= KnownZeroMask
.logBase2();
8358 Value
*In
= ICI
->getOperand(0);
8360 // Perform a logical shr by shiftamt.
8361 // Insert the shift to put the result in the low bit.
8362 In
= InsertNewInstBefore(BinaryOperator::CreateLShr(In
,
8363 ConstantInt::get(In
->getType(), ShiftAmt
),
8364 In
->getName()+".lobit"), CI
);
8367 if ((Op1CV
!= 0) == isNE
) { // Toggle the low bit.
8368 Constant
*One
= ConstantInt::get(In
->getType(), 1);
8369 In
= BinaryOperator::CreateXor(In
, One
, "tmp");
8370 InsertNewInstBefore(cast
<Instruction
>(In
), CI
);
8373 if (CI
.getType() == In
->getType())
8374 return ReplaceInstUsesWith(CI
, In
);
8376 return CastInst::CreateIntegerCast(In
, CI
.getType(), false/*ZExt*/);
8384 Instruction
*InstCombiner::visitZExt(ZExtInst
&CI
) {
8385 // If one of the common conversion will work ..
8386 if (Instruction
*Result
= commonIntCastTransforms(CI
))
8389 Value
*Src
= CI
.getOperand(0);
8391 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
8392 // types and if the sizes are just right we can convert this into a logical
8393 // 'and' which will be much cheaper than the pair of casts.
8394 if (TruncInst
*CSrc
= dyn_cast
<TruncInst
>(Src
)) { // A->B->C cast
8395 // Get the sizes of the types involved. We know that the intermediate type
8396 // will be smaller than A or C, but don't know the relation between A and C.
8397 Value
*A
= CSrc
->getOperand(0);
8398 unsigned SrcSize
= A
->getType()->getPrimitiveSizeInBits();
8399 unsigned MidSize
= CSrc
->getType()->getPrimitiveSizeInBits();
8400 unsigned DstSize
= CI
.getType()->getPrimitiveSizeInBits();
8401 // If we're actually extending zero bits, then if
8402 // SrcSize < DstSize: zext(a & mask)
8403 // SrcSize == DstSize: a & mask
8404 // SrcSize > DstSize: trunc(a) & mask
8405 if (SrcSize
< DstSize
) {
8406 APInt
AndValue(APInt::getLowBitsSet(SrcSize
, MidSize
));
8407 Constant
*AndConst
= ConstantInt::get(AndValue
);
8409 BinaryOperator::CreateAnd(A
, AndConst
, CSrc
->getName()+".mask");
8410 InsertNewInstBefore(And
, CI
);
8411 return new ZExtInst(And
, CI
.getType());
8412 } else if (SrcSize
== DstSize
) {
8413 APInt
AndValue(APInt::getLowBitsSet(SrcSize
, MidSize
));
8414 return BinaryOperator::CreateAnd(A
, ConstantInt::get(AndValue
));
8415 } else if (SrcSize
> DstSize
) {
8416 Instruction
*Trunc
= new TruncInst(A
, CI
.getType(), "tmp");
8417 InsertNewInstBefore(Trunc
, CI
);
8418 APInt
AndValue(APInt::getLowBitsSet(DstSize
, MidSize
));
8419 return BinaryOperator::CreateAnd(Trunc
, ConstantInt::get(AndValue
));
8423 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(Src
))
8424 return transformZExtICmp(ICI
, CI
);
8426 BinaryOperator
*SrcI
= dyn_cast
<BinaryOperator
>(Src
);
8427 if (SrcI
&& SrcI
->getOpcode() == Instruction::Or
) {
8428 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
8429 // of the (zext icmp) will be transformed.
8430 ICmpInst
*LHS
= dyn_cast
<ICmpInst
>(SrcI
->getOperand(0));
8431 ICmpInst
*RHS
= dyn_cast
<ICmpInst
>(SrcI
->getOperand(1));
8432 if (LHS
&& RHS
&& LHS
->hasOneUse() && RHS
->hasOneUse() &&
8433 (transformZExtICmp(LHS
, CI
, false) ||
8434 transformZExtICmp(RHS
, CI
, false))) {
8435 Value
*LCast
= InsertCastBefore(Instruction::ZExt
, LHS
, CI
.getType(), CI
);
8436 Value
*RCast
= InsertCastBefore(Instruction::ZExt
, RHS
, CI
.getType(), CI
);
8437 return BinaryOperator::Create(Instruction::Or
, LCast
, RCast
);
8444 Instruction
*InstCombiner::visitSExt(SExtInst
&CI
) {
8445 if (Instruction
*I
= commonIntCastTransforms(CI
))
8448 Value
*Src
= CI
.getOperand(0);
8450 // Canonicalize sign-extend from i1 to a select.
8451 if (Src
->getType() == Type::Int1Ty
)
8452 return SelectInst::Create(Src
,
8453 ConstantInt::getAllOnesValue(CI
.getType()),
8454 Constant::getNullValue(CI
.getType()));
8456 // See if the value being truncated is already sign extended. If so, just
8457 // eliminate the trunc/sext pair.
8458 if (getOpcode(Src
) == Instruction::Trunc
) {
8459 Value
*Op
= cast
<User
>(Src
)->getOperand(0);
8460 unsigned OpBits
= cast
<IntegerType
>(Op
->getType())->getBitWidth();
8461 unsigned MidBits
= cast
<IntegerType
>(Src
->getType())->getBitWidth();
8462 unsigned DestBits
= cast
<IntegerType
>(CI
.getType())->getBitWidth();
8463 unsigned NumSignBits
= ComputeNumSignBits(Op
);
8465 if (OpBits
== DestBits
) {
8466 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8467 // bits, it is already ready.
8468 if (NumSignBits
> DestBits
-MidBits
)
8469 return ReplaceInstUsesWith(CI
, Op
);
8470 } else if (OpBits
< DestBits
) {
8471 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8472 // bits, just sext from i32.
8473 if (NumSignBits
> OpBits
-MidBits
)
8474 return new SExtInst(Op
, CI
.getType(), "tmp");
8476 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8477 // bits, just truncate to i32.
8478 if (NumSignBits
> OpBits
-MidBits
)
8479 return new TruncInst(Op
, CI
.getType(), "tmp");
8483 // If the input is a shl/ashr pair of a same constant, then this is a sign
8484 // extension from a smaller value. If we could trust arbitrary bitwidth
8485 // integers, we could turn this into a truncate to the smaller bit and then
8486 // use a sext for the whole extension. Since we don't, look deeper and check
8487 // for a truncate. If the source and dest are the same type, eliminate the
8488 // trunc and extend and just do shifts. For example, turn:
8489 // %a = trunc i32 %i to i8
8490 // %b = shl i8 %a, 6
8491 // %c = ashr i8 %b, 6
8492 // %d = sext i8 %c to i32
8494 // %a = shl i32 %i, 30
8495 // %d = ashr i32 %a, 30
8497 ConstantInt
*BA
= 0, *CA
= 0;
8498 if (match(Src
, m_AShr(m_Shl(m_Value(A
), m_ConstantInt(BA
)),
8499 m_ConstantInt(CA
))) &&
8500 BA
== CA
&& isa
<TruncInst
>(A
)) {
8501 Value
*I
= cast
<TruncInst
>(A
)->getOperand(0);
8502 if (I
->getType() == CI
.getType()) {
8503 unsigned MidSize
= Src
->getType()->getPrimitiveSizeInBits();
8504 unsigned SrcDstSize
= CI
.getType()->getPrimitiveSizeInBits();
8505 unsigned ShAmt
= CA
->getZExtValue()+SrcDstSize
-MidSize
;
8506 Constant
*ShAmtV
= ConstantInt::get(CI
.getType(), ShAmt
);
8507 I
= InsertNewInstBefore(BinaryOperator::CreateShl(I
, ShAmtV
,
8509 return BinaryOperator::CreateAShr(I
, ShAmtV
);
8516 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
8517 /// in the specified FP type without changing its value.
8518 static Constant
*FitsInFPType(ConstantFP
*CFP
, const fltSemantics
&Sem
) {
8520 APFloat F
= CFP
->getValueAPF();
8521 (void)F
.convert(Sem
, APFloat::rmNearestTiesToEven
, &losesInfo
);
8523 return ConstantFP::get(F
);
8527 /// LookThroughFPExtensions - If this is an fp extension instruction, look
8528 /// through it until we get the source value.
8529 static Value
*LookThroughFPExtensions(Value
*V
) {
8530 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
8531 if (I
->getOpcode() == Instruction::FPExt
)
8532 return LookThroughFPExtensions(I
->getOperand(0));
8534 // If this value is a constant, return the constant in the smallest FP type
8535 // that can accurately represent it. This allows us to turn
8536 // (float)((double)X+2.0) into x+2.0f.
8537 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
8538 if (CFP
->getType() == Type::PPC_FP128Ty
)
8539 return V
; // No constant folding of this.
8540 // See if the value can be truncated to float and then reextended.
8541 if (Value
*V
= FitsInFPType(CFP
, APFloat::IEEEsingle
))
8543 if (CFP
->getType() == Type::DoubleTy
)
8544 return V
; // Won't shrink.
8545 if (Value
*V
= FitsInFPType(CFP
, APFloat::IEEEdouble
))
8547 // Don't try to shrink to various long double types.
8553 Instruction
*InstCombiner::visitFPTrunc(FPTruncInst
&CI
) {
8554 if (Instruction
*I
= commonCastTransforms(CI
))
8557 // If we have fptrunc(add (fpextend x), (fpextend y)), where x and y are
8558 // smaller than the destination type, we can eliminate the truncate by doing
8559 // the add as the smaller type. This applies to add/sub/mul/div as well as
8560 // many builtins (sqrt, etc).
8561 BinaryOperator
*OpI
= dyn_cast
<BinaryOperator
>(CI
.getOperand(0));
8562 if (OpI
&& OpI
->hasOneUse()) {
8563 switch (OpI
->getOpcode()) {
8565 case Instruction::Add
:
8566 case Instruction::Sub
:
8567 case Instruction::Mul
:
8568 case Instruction::FDiv
:
8569 case Instruction::FRem
:
8570 const Type
*SrcTy
= OpI
->getType();
8571 Value
*LHSTrunc
= LookThroughFPExtensions(OpI
->getOperand(0));
8572 Value
*RHSTrunc
= LookThroughFPExtensions(OpI
->getOperand(1));
8573 if (LHSTrunc
->getType() != SrcTy
&&
8574 RHSTrunc
->getType() != SrcTy
) {
8575 unsigned DstSize
= CI
.getType()->getPrimitiveSizeInBits();
8576 // If the source types were both smaller than the destination type of
8577 // the cast, do this xform.
8578 if (LHSTrunc
->getType()->getPrimitiveSizeInBits() <= DstSize
&&
8579 RHSTrunc
->getType()->getPrimitiveSizeInBits() <= DstSize
) {
8580 LHSTrunc
= InsertCastBefore(Instruction::FPExt
, LHSTrunc
,
8582 RHSTrunc
= InsertCastBefore(Instruction::FPExt
, RHSTrunc
,
8584 return BinaryOperator::Create(OpI
->getOpcode(), LHSTrunc
, RHSTrunc
);
8593 Instruction
*InstCombiner::visitFPExt(CastInst
&CI
) {
8594 return commonCastTransforms(CI
);
8597 Instruction
*InstCombiner::visitFPToUI(FPToUIInst
&FI
) {
8598 Instruction
*OpI
= dyn_cast
<Instruction
>(FI
.getOperand(0));
8600 return commonCastTransforms(FI
);
8602 // fptoui(uitofp(X)) --> X
8603 // fptoui(sitofp(X)) --> X
8604 // This is safe if the intermediate type has enough bits in its mantissa to
8605 // accurately represent all values of X. For example, do not do this with
8606 // i64->float->i64. This is also safe for sitofp case, because any negative
8607 // 'X' value would cause an undefined result for the fptoui.
8608 if ((isa
<UIToFPInst
>(OpI
) || isa
<SIToFPInst
>(OpI
)) &&
8609 OpI
->getOperand(0)->getType() == FI
.getType() &&
8610 (int)FI
.getType()->getPrimitiveSizeInBits() < /*extra bit for sign */
8611 OpI
->getType()->getFPMantissaWidth())
8612 return ReplaceInstUsesWith(FI
, OpI
->getOperand(0));
8614 return commonCastTransforms(FI
);
8617 Instruction
*InstCombiner::visitFPToSI(FPToSIInst
&FI
) {
8618 Instruction
*OpI
= dyn_cast
<Instruction
>(FI
.getOperand(0));
8620 return commonCastTransforms(FI
);
8622 // fptosi(sitofp(X)) --> X
8623 // fptosi(uitofp(X)) --> X
8624 // This is safe if the intermediate type has enough bits in its mantissa to
8625 // accurately represent all values of X. For example, do not do this with
8626 // i64->float->i64. This is also safe for sitofp case, because any negative
8627 // 'X' value would cause an undefined result for the fptoui.
8628 if ((isa
<UIToFPInst
>(OpI
) || isa
<SIToFPInst
>(OpI
)) &&
8629 OpI
->getOperand(0)->getType() == FI
.getType() &&
8630 (int)FI
.getType()->getPrimitiveSizeInBits() <=
8631 OpI
->getType()->getFPMantissaWidth())
8632 return ReplaceInstUsesWith(FI
, OpI
->getOperand(0));
8634 return commonCastTransforms(FI
);
8637 Instruction
*InstCombiner::visitUIToFP(CastInst
&CI
) {
8638 return commonCastTransforms(CI
);
8641 Instruction
*InstCombiner::visitSIToFP(CastInst
&CI
) {
8642 return commonCastTransforms(CI
);
8645 Instruction
*InstCombiner::visitPtrToInt(PtrToIntInst
&CI
) {
8646 // If the destination integer type is smaller than the intptr_t type for
8647 // this target, do a ptrtoint to intptr_t then do a trunc. This allows the
8648 // trunc to be exposed to other transforms. Don't do this for extending
8649 // ptrtoint's, because we don't know if the target sign or zero extends its
8651 if (CI
.getType()->getPrimitiveSizeInBits() < TD
->getPointerSizeInBits()) {
8652 Value
*P
= InsertNewInstBefore(new PtrToIntInst(CI
.getOperand(0),
8653 TD
->getIntPtrType(),
8655 return new TruncInst(P
, CI
.getType());
8658 return commonPointerCastTransforms(CI
);
8661 Instruction
*InstCombiner::visitIntToPtr(IntToPtrInst
&CI
) {
8662 // If the source integer type is larger than the intptr_t type for
8663 // this target, do a trunc to the intptr_t type, then inttoptr of it. This
8664 // allows the trunc to be exposed to other transforms. Don't do this for
8665 // extending inttoptr's, because we don't know if the target sign or zero
8666 // extends to pointers.
8667 if (CI
.getOperand(0)->getType()->getPrimitiveSizeInBits() >
8668 TD
->getPointerSizeInBits()) {
8669 Value
*P
= InsertNewInstBefore(new TruncInst(CI
.getOperand(0),
8670 TD
->getIntPtrType(),
8672 return new IntToPtrInst(P
, CI
.getType());
8675 if (Instruction
*I
= commonCastTransforms(CI
))
8678 const Type
*DestPointee
= cast
<PointerType
>(CI
.getType())->getElementType();
8679 if (!DestPointee
->isSized()) return 0;
8681 // If this is inttoptr(add (ptrtoint x), cst), try to turn this into a GEP.
8684 if (match(CI
.getOperand(0), m_Add(m_Cast
<PtrToIntInst
>(m_Value(X
)),
8685 m_ConstantInt(Cst
)))) {
8686 // If the source and destination operands have the same type, see if this
8687 // is a single-index GEP.
8688 if (X
->getType() == CI
.getType()) {
8689 // Get the size of the pointee type.
8690 uint64_t Size
= TD
->getTypePaddedSize(DestPointee
);
8692 // Convert the constant to intptr type.
8693 APInt Offset
= Cst
->getValue();
8694 Offset
.sextOrTrunc(TD
->getPointerSizeInBits());
8696 // If Offset is evenly divisible by Size, we can do this xform.
8697 if (Size
&& !APIntOps::srem(Offset
, APInt(Offset
.getBitWidth(), Size
))){
8698 Offset
= APIntOps::sdiv(Offset
, APInt(Offset
.getBitWidth(), Size
));
8699 return GetElementPtrInst::Create(X
, ConstantInt::get(Offset
));
8702 // TODO: Could handle other cases, e.g. where add is indexing into field of
8704 } else if (CI
.getOperand(0)->hasOneUse() &&
8705 match(CI
.getOperand(0), m_Add(m_Value(X
), m_ConstantInt(Cst
)))) {
8706 // Otherwise, if this is inttoptr(add x, cst), try to turn this into an
8707 // "inttoptr+GEP" instead of "add+intptr".
8709 // Get the size of the pointee type.
8710 uint64_t Size
= TD
->getTypePaddedSize(DestPointee
);
8712 // Convert the constant to intptr type.
8713 APInt Offset
= Cst
->getValue();
8714 Offset
.sextOrTrunc(TD
->getPointerSizeInBits());
8716 // If Offset is evenly divisible by Size, we can do this xform.
8717 if (Size
&& !APIntOps::srem(Offset
, APInt(Offset
.getBitWidth(), Size
))){
8718 Offset
= APIntOps::sdiv(Offset
, APInt(Offset
.getBitWidth(), Size
));
8720 Instruction
*P
= InsertNewInstBefore(new IntToPtrInst(X
, CI
.getType(),
8722 return GetElementPtrInst::Create(P
, ConstantInt::get(Offset
), "tmp");
8728 Instruction
*InstCombiner::visitBitCast(BitCastInst
&CI
) {
8729 // If the operands are integer typed then apply the integer transforms,
8730 // otherwise just apply the common ones.
8731 Value
*Src
= CI
.getOperand(0);
8732 const Type
*SrcTy
= Src
->getType();
8733 const Type
*DestTy
= CI
.getType();
8735 if (SrcTy
->isInteger() && DestTy
->isInteger()) {
8736 if (Instruction
*Result
= commonIntCastTransforms(CI
))
8738 } else if (isa
<PointerType
>(SrcTy
)) {
8739 if (Instruction
*I
= commonPointerCastTransforms(CI
))
8742 if (Instruction
*Result
= commonCastTransforms(CI
))
8747 // Get rid of casts from one type to the same type. These are useless and can
8748 // be replaced by the operand.
8749 if (DestTy
== Src
->getType())
8750 return ReplaceInstUsesWith(CI
, Src
);
8752 if (const PointerType
*DstPTy
= dyn_cast
<PointerType
>(DestTy
)) {
8753 const PointerType
*SrcPTy
= cast
<PointerType
>(SrcTy
);
8754 const Type
*DstElTy
= DstPTy
->getElementType();
8755 const Type
*SrcElTy
= SrcPTy
->getElementType();
8757 // If the address spaces don't match, don't eliminate the bitcast, which is
8758 // required for changing types.
8759 if (SrcPTy
->getAddressSpace() != DstPTy
->getAddressSpace())
8762 // If we are casting a malloc or alloca to a pointer to a type of the same
8763 // size, rewrite the allocation instruction to allocate the "right" type.
8764 if (AllocationInst
*AI
= dyn_cast
<AllocationInst
>(Src
))
8765 if (Instruction
*V
= PromoteCastOfAllocation(CI
, *AI
))
8768 // If the source and destination are pointers, and this cast is equivalent
8769 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
8770 // This can enhance SROA and other transforms that want type-safe pointers.
8771 Constant
*ZeroUInt
= Constant::getNullValue(Type::Int32Ty
);
8772 unsigned NumZeros
= 0;
8773 while (SrcElTy
!= DstElTy
&&
8774 isa
<CompositeType
>(SrcElTy
) && !isa
<PointerType
>(SrcElTy
) &&
8775 SrcElTy
->getNumContainedTypes() /* not "{}" */) {
8776 SrcElTy
= cast
<CompositeType
>(SrcElTy
)->getTypeAtIndex(ZeroUInt
);
8780 // If we found a path from the src to dest, create the getelementptr now.
8781 if (SrcElTy
== DstElTy
) {
8782 SmallVector
<Value
*, 8> Idxs(NumZeros
+1, ZeroUInt
);
8783 return GetElementPtrInst::Create(Src
, Idxs
.begin(), Idxs
.end(), "",
8784 ((Instruction
*) NULL
));
8788 if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(Src
)) {
8789 if (SVI
->hasOneUse()) {
8790 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
8791 // a bitconvert to a vector with the same # elts.
8792 if (isa
<VectorType
>(DestTy
) &&
8793 cast
<VectorType
>(DestTy
)->getNumElements() ==
8794 SVI
->getType()->getNumElements() &&
8795 SVI
->getType()->getNumElements() ==
8796 cast
<VectorType
>(SVI
->getOperand(0)->getType())->getNumElements()) {
8798 // If either of the operands is a cast from CI.getType(), then
8799 // evaluating the shuffle in the casted destination's type will allow
8800 // us to eliminate at least one cast.
8801 if (((Tmp
= dyn_cast
<CastInst
>(SVI
->getOperand(0))) &&
8802 Tmp
->getOperand(0)->getType() == DestTy
) ||
8803 ((Tmp
= dyn_cast
<CastInst
>(SVI
->getOperand(1))) &&
8804 Tmp
->getOperand(0)->getType() == DestTy
)) {
8805 Value
*LHS
= InsertCastBefore(Instruction::BitCast
,
8806 SVI
->getOperand(0), DestTy
, CI
);
8807 Value
*RHS
= InsertCastBefore(Instruction::BitCast
,
8808 SVI
->getOperand(1), DestTy
, CI
);
8809 // Return a new shuffle vector. Use the same element ID's, as we
8810 // know the vector types match #elts.
8811 return new ShuffleVectorInst(LHS
, RHS
, SVI
->getOperand(2));
8819 /// GetSelectFoldableOperands - We want to turn code that looks like this:
8821 /// %D = select %cond, %C, %A
8823 /// %C = select %cond, %B, 0
8826 /// Assuming that the specified instruction is an operand to the select, return
8827 /// a bitmask indicating which operands of this instruction are foldable if they
8828 /// equal the other incoming value of the select.
8830 static unsigned GetSelectFoldableOperands(Instruction
*I
) {
8831 switch (I
->getOpcode()) {
8832 case Instruction::Add
:
8833 case Instruction::Mul
:
8834 case Instruction::And
:
8835 case Instruction::Or
:
8836 case Instruction::Xor
:
8837 return 3; // Can fold through either operand.
8838 case Instruction::Sub
: // Can only fold on the amount subtracted.
8839 case Instruction::Shl
: // Can only fold on the shift amount.
8840 case Instruction::LShr
:
8841 case Instruction::AShr
:
8844 return 0; // Cannot fold
8848 /// GetSelectFoldableConstant - For the same transformation as the previous
8849 /// function, return the identity constant that goes into the select.
8850 static Constant
*GetSelectFoldableConstant(Instruction
*I
) {
8851 switch (I
->getOpcode()) {
8852 default: assert(0 && "This cannot happen!"); abort();
8853 case Instruction::Add
:
8854 case Instruction::Sub
:
8855 case Instruction::Or
:
8856 case Instruction::Xor
:
8857 case Instruction::Shl
:
8858 case Instruction::LShr
:
8859 case Instruction::AShr
:
8860 return Constant::getNullValue(I
->getType());
8861 case Instruction::And
:
8862 return Constant::getAllOnesValue(I
->getType());
8863 case Instruction::Mul
:
8864 return ConstantInt::get(I
->getType(), 1);
8868 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
8869 /// have the same opcode and only one use each. Try to simplify this.
8870 Instruction
*InstCombiner::FoldSelectOpOp(SelectInst
&SI
, Instruction
*TI
,
8872 if (TI
->getNumOperands() == 1) {
8873 // If this is a non-volatile load or a cast from the same type,
8876 if (TI
->getOperand(0)->getType() != FI
->getOperand(0)->getType())
8879 return 0; // unknown unary op.
8882 // Fold this by inserting a select from the input values.
8883 SelectInst
*NewSI
= SelectInst::Create(SI
.getCondition(), TI
->getOperand(0),
8884 FI
->getOperand(0), SI
.getName()+".v");
8885 InsertNewInstBefore(NewSI
, SI
);
8886 return CastInst::Create(Instruction::CastOps(TI
->getOpcode()), NewSI
,
8890 // Only handle binary operators here.
8891 if (!isa
<BinaryOperator
>(TI
))
8894 // Figure out if the operations have any operands in common.
8895 Value
*MatchOp
, *OtherOpT
, *OtherOpF
;
8897 if (TI
->getOperand(0) == FI
->getOperand(0)) {
8898 MatchOp
= TI
->getOperand(0);
8899 OtherOpT
= TI
->getOperand(1);
8900 OtherOpF
= FI
->getOperand(1);
8901 MatchIsOpZero
= true;
8902 } else if (TI
->getOperand(1) == FI
->getOperand(1)) {
8903 MatchOp
= TI
->getOperand(1);
8904 OtherOpT
= TI
->getOperand(0);
8905 OtherOpF
= FI
->getOperand(0);
8906 MatchIsOpZero
= false;
8907 } else if (!TI
->isCommutative()) {
8909 } else if (TI
->getOperand(0) == FI
->getOperand(1)) {
8910 MatchOp
= TI
->getOperand(0);
8911 OtherOpT
= TI
->getOperand(1);
8912 OtherOpF
= FI
->getOperand(0);
8913 MatchIsOpZero
= true;
8914 } else if (TI
->getOperand(1) == FI
->getOperand(0)) {
8915 MatchOp
= TI
->getOperand(1);
8916 OtherOpT
= TI
->getOperand(0);
8917 OtherOpF
= FI
->getOperand(1);
8918 MatchIsOpZero
= true;
8923 // If we reach here, they do have operations in common.
8924 SelectInst
*NewSI
= SelectInst::Create(SI
.getCondition(), OtherOpT
,
8925 OtherOpF
, SI
.getName()+".v");
8926 InsertNewInstBefore(NewSI
, SI
);
8928 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TI
)) {
8930 return BinaryOperator::Create(BO
->getOpcode(), MatchOp
, NewSI
);
8932 return BinaryOperator::Create(BO
->getOpcode(), NewSI
, MatchOp
);
8934 assert(0 && "Shouldn't get here");
8938 static bool isSelect01(Constant
*C1
, Constant
*C2
) {
8939 ConstantInt
*C1I
= dyn_cast
<ConstantInt
>(C1
);
8942 ConstantInt
*C2I
= dyn_cast
<ConstantInt
>(C2
);
8945 return (C1I
->isZero() || C1I
->isOne()) && (C2I
->isZero() || C2I
->isOne());
8948 /// FoldSelectIntoOp - Try fold the select into one of the operands to
8949 /// facilitate further optimization.
8950 Instruction
*InstCombiner::FoldSelectIntoOp(SelectInst
&SI
, Value
*TrueVal
,
8952 // See the comment above GetSelectFoldableOperands for a description of the
8953 // transformation we are doing here.
8954 if (Instruction
*TVI
= dyn_cast
<Instruction
>(TrueVal
)) {
8955 if (TVI
->hasOneUse() && TVI
->getNumOperands() == 2 &&
8956 !isa
<Constant
>(FalseVal
)) {
8957 if (unsigned SFO
= GetSelectFoldableOperands(TVI
)) {
8958 unsigned OpToFold
= 0;
8959 if ((SFO
& 1) && FalseVal
== TVI
->getOperand(0)) {
8961 } else if ((SFO
& 2) && FalseVal
== TVI
->getOperand(1)) {
8966 Constant
*C
= GetSelectFoldableConstant(TVI
);
8967 Value
*OOp
= TVI
->getOperand(2-OpToFold
);
8968 // Avoid creating select between 2 constants unless it's selecting
8970 if (!isa
<Constant
>(OOp
) || isSelect01(C
, cast
<Constant
>(OOp
))) {
8971 Instruction
*NewSel
= SelectInst::Create(SI
.getCondition(), OOp
, C
);
8972 InsertNewInstBefore(NewSel
, SI
);
8973 NewSel
->takeName(TVI
);
8974 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TVI
))
8975 return BinaryOperator::Create(BO
->getOpcode(), FalseVal
, NewSel
);
8976 assert(0 && "Unknown instruction!!");
8983 if (Instruction
*FVI
= dyn_cast
<Instruction
>(FalseVal
)) {
8984 if (FVI
->hasOneUse() && FVI
->getNumOperands() == 2 &&
8985 !isa
<Constant
>(TrueVal
)) {
8986 if (unsigned SFO
= GetSelectFoldableOperands(FVI
)) {
8987 unsigned OpToFold
= 0;
8988 if ((SFO
& 1) && TrueVal
== FVI
->getOperand(0)) {
8990 } else if ((SFO
& 2) && TrueVal
== FVI
->getOperand(1)) {
8995 Constant
*C
= GetSelectFoldableConstant(FVI
);
8996 Value
*OOp
= FVI
->getOperand(2-OpToFold
);
8997 // Avoid creating select between 2 constants unless it's selecting
8999 if (!isa
<Constant
>(OOp
) || isSelect01(C
, cast
<Constant
>(OOp
))) {
9000 Instruction
*NewSel
= SelectInst::Create(SI
.getCondition(), C
, OOp
);
9001 InsertNewInstBefore(NewSel
, SI
);
9002 NewSel
->takeName(FVI
);
9003 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(FVI
))
9004 return BinaryOperator::Create(BO
->getOpcode(), TrueVal
, NewSel
);
9005 assert(0 && "Unknown instruction!!");
9015 /// visitSelectInstWithICmp - Visit a SelectInst that has an
9016 /// ICmpInst as its first operand.
9018 Instruction
*InstCombiner::visitSelectInstWithICmp(SelectInst
&SI
,
9020 bool Changed
= false;
9021 ICmpInst::Predicate Pred
= ICI
->getPredicate();
9022 Value
*CmpLHS
= ICI
->getOperand(0);
9023 Value
*CmpRHS
= ICI
->getOperand(1);
9024 Value
*TrueVal
= SI
.getTrueValue();
9025 Value
*FalseVal
= SI
.getFalseValue();
9027 // Check cases where the comparison is with a constant that
9028 // can be adjusted to fit the min/max idiom. We may edit ICI in
9029 // place here, so make sure the select is the only user.
9030 if (ICI
->hasOneUse())
9031 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
)) {
9034 case ICmpInst::ICMP_ULT
:
9035 case ICmpInst::ICMP_SLT
: {
9036 // X < MIN ? T : F --> F
9037 if (CI
->isMinValue(Pred
== ICmpInst::ICMP_SLT
))
9038 return ReplaceInstUsesWith(SI
, FalseVal
);
9039 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
9040 Constant
*AdjustedRHS
= SubOne(CI
);
9041 if ((CmpLHS
== TrueVal
&& AdjustedRHS
== FalseVal
) ||
9042 (CmpLHS
== FalseVal
&& AdjustedRHS
== TrueVal
)) {
9043 Pred
= ICmpInst::getSwappedPredicate(Pred
);
9044 CmpRHS
= AdjustedRHS
;
9045 std::swap(FalseVal
, TrueVal
);
9046 ICI
->setPredicate(Pred
);
9047 ICI
->setOperand(1, CmpRHS
);
9048 SI
.setOperand(1, TrueVal
);
9049 SI
.setOperand(2, FalseVal
);
9054 case ICmpInst::ICMP_UGT
:
9055 case ICmpInst::ICMP_SGT
: {
9056 // X > MAX ? T : F --> F
9057 if (CI
->isMaxValue(Pred
== ICmpInst::ICMP_SGT
))
9058 return ReplaceInstUsesWith(SI
, FalseVal
);
9059 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
9060 Constant
*AdjustedRHS
= AddOne(CI
);
9061 if ((CmpLHS
== TrueVal
&& AdjustedRHS
== FalseVal
) ||
9062 (CmpLHS
== FalseVal
&& AdjustedRHS
== TrueVal
)) {
9063 Pred
= ICmpInst::getSwappedPredicate(Pred
);
9064 CmpRHS
= AdjustedRHS
;
9065 std::swap(FalseVal
, TrueVal
);
9066 ICI
->setPredicate(Pred
);
9067 ICI
->setOperand(1, CmpRHS
);
9068 SI
.setOperand(1, TrueVal
);
9069 SI
.setOperand(2, FalseVal
);
9076 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
9077 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
9078 CmpInst::Predicate Pred
= CmpInst::BAD_ICMP_PREDICATE
;
9079 if (match(TrueVal
, m_ConstantInt
<-1>()) &&
9080 match(FalseVal
, m_ConstantInt
<0>()))
9081 Pred
= ICI
->getPredicate();
9082 else if (match(TrueVal
, m_ConstantInt
<0>()) &&
9083 match(FalseVal
, m_ConstantInt
<-1>()))
9084 Pred
= CmpInst::getInversePredicate(ICI
->getPredicate());
9086 if (Pred
!= CmpInst::BAD_ICMP_PREDICATE
) {
9087 // If we are just checking for a icmp eq of a single bit and zext'ing it
9088 // to an integer, then shift the bit to the appropriate place and then
9089 // cast to integer to avoid the comparison.
9090 const APInt
&Op1CV
= CI
->getValue();
9092 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
9093 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
9094 if ((Pred
== ICmpInst::ICMP_SLT
&& Op1CV
== 0) ||
9095 (Pred
== ICmpInst::ICMP_SGT
&& Op1CV
.isAllOnesValue())) {
9096 Value
*In
= ICI
->getOperand(0);
9097 Value
*Sh
= ConstantInt::get(In
->getType(),
9098 In
->getType()->getPrimitiveSizeInBits()-1);
9099 In
= InsertNewInstBefore(BinaryOperator::CreateAShr(In
, Sh
,
9100 In
->getName()+".lobit"),
9102 if (In
->getType() != SI
.getType())
9103 In
= CastInst::CreateIntegerCast(In
, SI
.getType(),
9104 true/*SExt*/, "tmp", ICI
);
9106 if (Pred
== ICmpInst::ICMP_SGT
)
9107 In
= InsertNewInstBefore(BinaryOperator::CreateNot(In
,
9108 In
->getName()+".not"), *ICI
);
9110 return ReplaceInstUsesWith(SI
, In
);
9115 if (CmpLHS
== TrueVal
&& CmpRHS
== FalseVal
) {
9116 // Transform (X == Y) ? X : Y -> Y
9117 if (Pred
== ICmpInst::ICMP_EQ
)
9118 return ReplaceInstUsesWith(SI
, FalseVal
);
9119 // Transform (X != Y) ? X : Y -> X
9120 if (Pred
== ICmpInst::ICMP_NE
)
9121 return ReplaceInstUsesWith(SI
, TrueVal
);
9122 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
9124 } else if (CmpLHS
== FalseVal
&& CmpRHS
== TrueVal
) {
9125 // Transform (X == Y) ? Y : X -> X
9126 if (Pred
== ICmpInst::ICMP_EQ
)
9127 return ReplaceInstUsesWith(SI
, FalseVal
);
9128 // Transform (X != Y) ? Y : X -> Y
9129 if (Pred
== ICmpInst::ICMP_NE
)
9130 return ReplaceInstUsesWith(SI
, TrueVal
);
9131 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
9134 /// NOTE: if we wanted to, this is where to detect integer ABS
9136 return Changed
? &SI
: 0;
9139 Instruction
*InstCombiner::visitSelectInst(SelectInst
&SI
) {
9140 Value
*CondVal
= SI
.getCondition();
9141 Value
*TrueVal
= SI
.getTrueValue();
9142 Value
*FalseVal
= SI
.getFalseValue();
9144 // select true, X, Y -> X
9145 // select false, X, Y -> Y
9146 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(CondVal
))
9147 return ReplaceInstUsesWith(SI
, C
->getZExtValue() ? TrueVal
: FalseVal
);
9149 // select C, X, X -> X
9150 if (TrueVal
== FalseVal
)
9151 return ReplaceInstUsesWith(SI
, TrueVal
);
9153 if (isa
<UndefValue
>(TrueVal
)) // select C, undef, X -> X
9154 return ReplaceInstUsesWith(SI
, FalseVal
);
9155 if (isa
<UndefValue
>(FalseVal
)) // select C, X, undef -> X
9156 return ReplaceInstUsesWith(SI
, TrueVal
);
9157 if (isa
<UndefValue
>(CondVal
)) { // select undef, X, Y -> X or Y
9158 if (isa
<Constant
>(TrueVal
))
9159 return ReplaceInstUsesWith(SI
, TrueVal
);
9161 return ReplaceInstUsesWith(SI
, FalseVal
);
9164 if (SI
.getType() == Type::Int1Ty
) {
9165 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(TrueVal
)) {
9166 if (C
->getZExtValue()) {
9167 // Change: A = select B, true, C --> A = or B, C
9168 return BinaryOperator::CreateOr(CondVal
, FalseVal
);
9170 // Change: A = select B, false, C --> A = and !B, C
9172 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal
,
9173 "not."+CondVal
->getName()), SI
);
9174 return BinaryOperator::CreateAnd(NotCond
, FalseVal
);
9176 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(FalseVal
)) {
9177 if (C
->getZExtValue() == false) {
9178 // Change: A = select B, C, false --> A = and B, C
9179 return BinaryOperator::CreateAnd(CondVal
, TrueVal
);
9181 // Change: A = select B, C, true --> A = or !B, C
9183 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal
,
9184 "not."+CondVal
->getName()), SI
);
9185 return BinaryOperator::CreateOr(NotCond
, TrueVal
);
9189 // select a, b, a -> a&b
9190 // select a, a, b -> a|b
9191 if (CondVal
== TrueVal
)
9192 return BinaryOperator::CreateOr(CondVal
, FalseVal
);
9193 else if (CondVal
== FalseVal
)
9194 return BinaryOperator::CreateAnd(CondVal
, TrueVal
);
9197 // Selecting between two integer constants?
9198 if (ConstantInt
*TrueValC
= dyn_cast
<ConstantInt
>(TrueVal
))
9199 if (ConstantInt
*FalseValC
= dyn_cast
<ConstantInt
>(FalseVal
)) {
9200 // select C, 1, 0 -> zext C to int
9201 if (FalseValC
->isZero() && TrueValC
->getValue() == 1) {
9202 return CastInst::Create(Instruction::ZExt
, CondVal
, SI
.getType());
9203 } else if (TrueValC
->isZero() && FalseValC
->getValue() == 1) {
9204 // select C, 0, 1 -> zext !C to int
9206 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal
,
9207 "not."+CondVal
->getName()), SI
);
9208 return CastInst::Create(Instruction::ZExt
, NotCond
, SI
.getType());
9211 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(SI
.getCondition())) {
9213 // (x <s 0) ? -1 : 0 -> ashr x, 31
9214 if (TrueValC
->isAllOnesValue() && FalseValC
->isZero())
9215 if (ConstantInt
*CmpCst
= dyn_cast
<ConstantInt
>(IC
->getOperand(1))) {
9216 if (IC
->getPredicate() == ICmpInst::ICMP_SLT
&& CmpCst
->isZero()) {
9217 // The comparison constant and the result are not neccessarily the
9218 // same width. Make an all-ones value by inserting a AShr.
9219 Value
*X
= IC
->getOperand(0);
9220 uint32_t Bits
= X
->getType()->getPrimitiveSizeInBits();
9221 Constant
*ShAmt
= ConstantInt::get(X
->getType(), Bits
-1);
9222 Instruction
*SRA
= BinaryOperator::Create(Instruction::AShr
, X
,
9224 InsertNewInstBefore(SRA
, SI
);
9226 // Then cast to the appropriate width.
9227 return CastInst::CreateIntegerCast(SRA
, SI
.getType(), true);
9232 // If one of the constants is zero (we know they can't both be) and we
9233 // have an icmp instruction with zero, and we have an 'and' with the
9234 // non-constant value, eliminate this whole mess. This corresponds to
9235 // cases like this: ((X & 27) ? 27 : 0)
9236 if (TrueValC
->isZero() || FalseValC
->isZero())
9237 if (IC
->isEquality() && isa
<ConstantInt
>(IC
->getOperand(1)) &&
9238 cast
<Constant
>(IC
->getOperand(1))->isNullValue())
9239 if (Instruction
*ICA
= dyn_cast
<Instruction
>(IC
->getOperand(0)))
9240 if (ICA
->getOpcode() == Instruction::And
&&
9241 isa
<ConstantInt
>(ICA
->getOperand(1)) &&
9242 (ICA
->getOperand(1) == TrueValC
||
9243 ICA
->getOperand(1) == FalseValC
) &&
9244 isOneBitSet(cast
<ConstantInt
>(ICA
->getOperand(1)))) {
9245 // Okay, now we know that everything is set up, we just don't
9246 // know whether we have a icmp_ne or icmp_eq and whether the
9247 // true or false val is the zero.
9248 bool ShouldNotVal
= !TrueValC
->isZero();
9249 ShouldNotVal
^= IC
->getPredicate() == ICmpInst::ICMP_NE
;
9252 V
= InsertNewInstBefore(BinaryOperator::Create(
9253 Instruction::Xor
, V
, ICA
->getOperand(1)), SI
);
9254 return ReplaceInstUsesWith(SI
, V
);
9259 // See if we are selecting two values based on a comparison of the two values.
9260 if (FCmpInst
*FCI
= dyn_cast
<FCmpInst
>(CondVal
)) {
9261 if (FCI
->getOperand(0) == TrueVal
&& FCI
->getOperand(1) == FalseVal
) {
9262 // Transform (X == Y) ? X : Y -> Y
9263 if (FCI
->getPredicate() == FCmpInst::FCMP_OEQ
) {
9264 // This is not safe in general for floating point:
9265 // consider X== -0, Y== +0.
9266 // It becomes safe if either operand is a nonzero constant.
9267 ConstantFP
*CFPt
, *CFPf
;
9268 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
9269 !CFPt
->getValueAPF().isZero()) ||
9270 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
9271 !CFPf
->getValueAPF().isZero()))
9272 return ReplaceInstUsesWith(SI
, FalseVal
);
9274 // Transform (X != Y) ? X : Y -> X
9275 if (FCI
->getPredicate() == FCmpInst::FCMP_ONE
)
9276 return ReplaceInstUsesWith(SI
, TrueVal
);
9277 // NOTE: if we wanted to, this is where to detect MIN/MAX
9279 } else if (FCI
->getOperand(0) == FalseVal
&& FCI
->getOperand(1) == TrueVal
){
9280 // Transform (X == Y) ? Y : X -> X
9281 if (FCI
->getPredicate() == FCmpInst::FCMP_OEQ
) {
9282 // This is not safe in general for floating point:
9283 // consider X== -0, Y== +0.
9284 // It becomes safe if either operand is a nonzero constant.
9285 ConstantFP
*CFPt
, *CFPf
;
9286 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
9287 !CFPt
->getValueAPF().isZero()) ||
9288 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
9289 !CFPf
->getValueAPF().isZero()))
9290 return ReplaceInstUsesWith(SI
, FalseVal
);
9292 // Transform (X != Y) ? Y : X -> Y
9293 if (FCI
->getPredicate() == FCmpInst::FCMP_ONE
)
9294 return ReplaceInstUsesWith(SI
, TrueVal
);
9295 // NOTE: if we wanted to, this is where to detect MIN/MAX
9297 // NOTE: if we wanted to, this is where to detect ABS
9300 // See if we are selecting two values based on a comparison of the two values.
9301 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(CondVal
))
9302 if (Instruction
*Result
= visitSelectInstWithICmp(SI
, ICI
))
9305 if (Instruction
*TI
= dyn_cast
<Instruction
>(TrueVal
))
9306 if (Instruction
*FI
= dyn_cast
<Instruction
>(FalseVal
))
9307 if (TI
->hasOneUse() && FI
->hasOneUse()) {
9308 Instruction
*AddOp
= 0, *SubOp
= 0;
9310 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
9311 if (TI
->getOpcode() == FI
->getOpcode())
9312 if (Instruction
*IV
= FoldSelectOpOp(SI
, TI
, FI
))
9315 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
9316 // even legal for FP.
9317 if (TI
->getOpcode() == Instruction::Sub
&&
9318 FI
->getOpcode() == Instruction::Add
) {
9319 AddOp
= FI
; SubOp
= TI
;
9320 } else if (FI
->getOpcode() == Instruction::Sub
&&
9321 TI
->getOpcode() == Instruction::Add
) {
9322 AddOp
= TI
; SubOp
= FI
;
9326 Value
*OtherAddOp
= 0;
9327 if (SubOp
->getOperand(0) == AddOp
->getOperand(0)) {
9328 OtherAddOp
= AddOp
->getOperand(1);
9329 } else if (SubOp
->getOperand(0) == AddOp
->getOperand(1)) {
9330 OtherAddOp
= AddOp
->getOperand(0);
9334 // So at this point we know we have (Y -> OtherAddOp):
9335 // select C, (add X, Y), (sub X, Z)
9336 Value
*NegVal
; // Compute -Z
9337 if (Constant
*C
= dyn_cast
<Constant
>(SubOp
->getOperand(1))) {
9338 NegVal
= ConstantExpr::getNeg(C
);
9340 NegVal
= InsertNewInstBefore(
9341 BinaryOperator::CreateNeg(SubOp
->getOperand(1), "tmp"), SI
);
9344 Value
*NewTrueOp
= OtherAddOp
;
9345 Value
*NewFalseOp
= NegVal
;
9347 std::swap(NewTrueOp
, NewFalseOp
);
9348 Instruction
*NewSel
=
9349 SelectInst::Create(CondVal
, NewTrueOp
,
9350 NewFalseOp
, SI
.getName() + ".p");
9352 NewSel
= InsertNewInstBefore(NewSel
, SI
);
9353 return BinaryOperator::CreateAdd(SubOp
->getOperand(0), NewSel
);
9358 // See if we can fold the select into one of our operands.
9359 if (SI
.getType()->isInteger()) {
9360 Instruction
*FoldI
= FoldSelectIntoOp(SI
, TrueVal
, FalseVal
);
9365 if (BinaryOperator::isNot(CondVal
)) {
9366 SI
.setOperand(0, BinaryOperator::getNotArgument(CondVal
));
9367 SI
.setOperand(1, FalseVal
);
9368 SI
.setOperand(2, TrueVal
);
9375 /// EnforceKnownAlignment - If the specified pointer points to an object that
9376 /// we control, modify the object's alignment to PrefAlign. This isn't
9377 /// often possible though. If alignment is important, a more reliable approach
9378 /// is to simply align all global variables and allocation instructions to
9379 /// their preferred alignment from the beginning.
9381 static unsigned EnforceKnownAlignment(Value
*V
,
9382 unsigned Align
, unsigned PrefAlign
) {
9384 User
*U
= dyn_cast
<User
>(V
);
9385 if (!U
) return Align
;
9387 switch (getOpcode(U
)) {
9389 case Instruction::BitCast
:
9390 return EnforceKnownAlignment(U
->getOperand(0), Align
, PrefAlign
);
9391 case Instruction::GetElementPtr
: {
9392 // If all indexes are zero, it is just the alignment of the base pointer.
9393 bool AllZeroOperands
= true;
9394 for (User::op_iterator i
= U
->op_begin() + 1, e
= U
->op_end(); i
!= e
; ++i
)
9395 if (!isa
<Constant
>(*i
) ||
9396 !cast
<Constant
>(*i
)->isNullValue()) {
9397 AllZeroOperands
= false;
9401 if (AllZeroOperands
) {
9402 // Treat this like a bitcast.
9403 return EnforceKnownAlignment(U
->getOperand(0), Align
, PrefAlign
);
9409 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
9410 // If there is a large requested alignment and we can, bump up the alignment
9412 if (!GV
->isDeclaration()) {
9413 if (GV
->getAlignment() >= PrefAlign
)
9414 Align
= GV
->getAlignment();
9416 GV
->setAlignment(PrefAlign
);
9420 } else if (AllocationInst
*AI
= dyn_cast
<AllocationInst
>(V
)) {
9421 // If there is a requested alignment and if this is an alloca, round up. We
9422 // don't do this for malloc, because some systems can't respect the request.
9423 if (isa
<AllocaInst
>(AI
)) {
9424 if (AI
->getAlignment() >= PrefAlign
)
9425 Align
= AI
->getAlignment();
9427 AI
->setAlignment(PrefAlign
);
9436 /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
9437 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
9438 /// and it is more than the alignment of the ultimate object, see if we can
9439 /// increase the alignment of the ultimate object, making this check succeed.
9440 unsigned InstCombiner::GetOrEnforceKnownAlignment(Value
*V
,
9441 unsigned PrefAlign
) {
9442 unsigned BitWidth
= TD
? TD
->getTypeSizeInBits(V
->getType()) :
9443 sizeof(PrefAlign
) * CHAR_BIT
;
9444 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
9445 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
9446 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
);
9447 unsigned TrailZ
= KnownZero
.countTrailingOnes();
9448 unsigned Align
= 1u << std::min(BitWidth
- 1, TrailZ
);
9450 if (PrefAlign
> Align
)
9451 Align
= EnforceKnownAlignment(V
, Align
, PrefAlign
);
9453 // We don't need to make any adjustment.
9457 Instruction
*InstCombiner::SimplifyMemTransfer(MemIntrinsic
*MI
) {
9458 unsigned DstAlign
= GetOrEnforceKnownAlignment(MI
->getOperand(1));
9459 unsigned SrcAlign
= GetOrEnforceKnownAlignment(MI
->getOperand(2));
9460 unsigned MinAlign
= std::min(DstAlign
, SrcAlign
);
9461 unsigned CopyAlign
= MI
->getAlignment();
9463 if (CopyAlign
< MinAlign
) {
9464 MI
->setAlignment(MinAlign
);
9468 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
9470 ConstantInt
*MemOpLength
= dyn_cast
<ConstantInt
>(MI
->getOperand(3));
9471 if (MemOpLength
== 0) return 0;
9473 // Source and destination pointer types are always "i8*" for intrinsic. See
9474 // if the size is something we can handle with a single primitive load/store.
9475 // A single load+store correctly handles overlapping memory in the memmove
9477 unsigned Size
= MemOpLength
->getZExtValue();
9478 if (Size
== 0) return MI
; // Delete this mem transfer.
9480 if (Size
> 8 || (Size
&(Size
-1)))
9481 return 0; // If not 1/2/4/8 bytes, exit.
9483 // Use an integer load+store unless we can find something better.
9484 Type
*NewPtrTy
= PointerType::getUnqual(IntegerType::get(Size
<<3));
9486 // Memcpy forces the use of i8* for the source and destination. That means
9487 // that if you're using memcpy to move one double around, you'll get a cast
9488 // from double* to i8*. We'd much rather use a double load+store rather than
9489 // an i64 load+store, here because this improves the odds that the source or
9490 // dest address will be promotable. See if we can find a better type than the
9491 // integer datatype.
9492 if (Value
*Op
= getBitCastOperand(MI
->getOperand(1))) {
9493 const Type
*SrcETy
= cast
<PointerType
>(Op
->getType())->getElementType();
9494 if (SrcETy
->isSized() && TD
->getTypeStoreSize(SrcETy
) == Size
) {
9495 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
9496 // down through these levels if so.
9497 while (!SrcETy
->isSingleValueType()) {
9498 if (const StructType
*STy
= dyn_cast
<StructType
>(SrcETy
)) {
9499 if (STy
->getNumElements() == 1)
9500 SrcETy
= STy
->getElementType(0);
9503 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(SrcETy
)) {
9504 if (ATy
->getNumElements() == 1)
9505 SrcETy
= ATy
->getElementType();
9512 if (SrcETy
->isSingleValueType())
9513 NewPtrTy
= PointerType::getUnqual(SrcETy
);
9518 // If the memcpy/memmove provides better alignment info than we can
9520 SrcAlign
= std::max(SrcAlign
, CopyAlign
);
9521 DstAlign
= std::max(DstAlign
, CopyAlign
);
9523 Value
*Src
= InsertBitCastBefore(MI
->getOperand(2), NewPtrTy
, *MI
);
9524 Value
*Dest
= InsertBitCastBefore(MI
->getOperand(1), NewPtrTy
, *MI
);
9525 Instruction
*L
= new LoadInst(Src
, "tmp", false, SrcAlign
);
9526 InsertNewInstBefore(L
, *MI
);
9527 InsertNewInstBefore(new StoreInst(L
, Dest
, false, DstAlign
), *MI
);
9529 // Set the size of the copy to 0, it will be deleted on the next iteration.
9530 MI
->setOperand(3, Constant::getNullValue(MemOpLength
->getType()));
9534 Instruction
*InstCombiner::SimplifyMemSet(MemSetInst
*MI
) {
9535 unsigned Alignment
= GetOrEnforceKnownAlignment(MI
->getDest());
9536 if (MI
->getAlignment() < Alignment
) {
9537 MI
->setAlignment(Alignment
);
9541 // Extract the length and alignment and fill if they are constant.
9542 ConstantInt
*LenC
= dyn_cast
<ConstantInt
>(MI
->getLength());
9543 ConstantInt
*FillC
= dyn_cast
<ConstantInt
>(MI
->getValue());
9544 if (!LenC
|| !FillC
|| FillC
->getType() != Type::Int8Ty
)
9546 uint64_t Len
= LenC
->getZExtValue();
9547 Alignment
= MI
->getAlignment();
9549 // If the length is zero, this is a no-op
9550 if (Len
== 0) return MI
; // memset(d,c,0,a) -> noop
9552 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
9553 if (Len
<= 8 && isPowerOf2_32((uint32_t)Len
)) {
9554 const Type
*ITy
= IntegerType::get(Len
*8); // n=1 -> i8.
9556 Value
*Dest
= MI
->getDest();
9557 Dest
= InsertBitCastBefore(Dest
, PointerType::getUnqual(ITy
), *MI
);
9559 // Alignment 0 is identity for alignment 1 for memset, but not store.
9560 if (Alignment
== 0) Alignment
= 1;
9562 // Extract the fill value and store.
9563 uint64_t Fill
= FillC
->getZExtValue()*0x0101010101010101ULL
;
9564 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy
, Fill
), Dest
, false,
9567 // Set the size of the copy to 0, it will be deleted on the next iteration.
9568 MI
->setLength(Constant::getNullValue(LenC
->getType()));
9576 /// visitCallInst - CallInst simplification. This mostly only handles folding
9577 /// of intrinsic instructions. For normal calls, it allows visitCallSite to do
9578 /// the heavy lifting.
9580 Instruction
*InstCombiner::visitCallInst(CallInst
&CI
) {
9581 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&CI
);
9582 if (!II
) return visitCallSite(&CI
);
9584 // Intrinsics cannot occur in an invoke, so handle them here instead of in
9586 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(II
)) {
9587 bool Changed
= false;
9589 // memmove/cpy/set of zero bytes is a noop.
9590 if (Constant
*NumBytes
= dyn_cast
<Constant
>(MI
->getLength())) {
9591 if (NumBytes
->isNullValue()) return EraseInstFromFunction(CI
);
9593 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(NumBytes
))
9594 if (CI
->getZExtValue() == 1) {
9595 // Replace the instruction with just byte operations. We would
9596 // transform other cases to loads/stores, but we don't know if
9597 // alignment is sufficient.
9601 // If we have a memmove and the source operation is a constant global,
9602 // then the source and dest pointers can't alias, so we can change this
9603 // into a call to memcpy.
9604 if (MemMoveInst
*MMI
= dyn_cast
<MemMoveInst
>(MI
)) {
9605 if (GlobalVariable
*GVSrc
= dyn_cast
<GlobalVariable
>(MMI
->getSource()))
9606 if (GVSrc
->isConstant()) {
9607 Module
*M
= CI
.getParent()->getParent()->getParent();
9608 Intrinsic::ID MemCpyID
= Intrinsic::memcpy
;
9610 Tys
[0] = CI
.getOperand(3)->getType();
9612 Intrinsic::getDeclaration(M
, MemCpyID
, Tys
, 1));
9616 // memmove(x,x,size) -> noop.
9617 if (MMI
->getSource() == MMI
->getDest())
9618 return EraseInstFromFunction(CI
);
9621 // If we can determine a pointer alignment that is bigger than currently
9622 // set, update the alignment.
9623 if (isa
<MemTransferInst
>(MI
)) {
9624 if (Instruction
*I
= SimplifyMemTransfer(MI
))
9626 } else if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(MI
)) {
9627 if (Instruction
*I
= SimplifyMemSet(MSI
))
9631 if (Changed
) return II
;
9634 switch (II
->getIntrinsicID()) {
9636 case Intrinsic::bswap
:
9637 // bswap(bswap(x)) -> x
9638 if (IntrinsicInst
*Operand
= dyn_cast
<IntrinsicInst
>(II
->getOperand(1)))
9639 if (Operand
->getIntrinsicID() == Intrinsic::bswap
)
9640 return ReplaceInstUsesWith(CI
, Operand
->getOperand(1));
9642 case Intrinsic::ppc_altivec_lvx
:
9643 case Intrinsic::ppc_altivec_lvxl
:
9644 case Intrinsic::x86_sse_loadu_ps
:
9645 case Intrinsic::x86_sse2_loadu_pd
:
9646 case Intrinsic::x86_sse2_loadu_dq
:
9647 // Turn PPC lvx -> load if the pointer is known aligned.
9648 // Turn X86 loadups -> load if the pointer is known aligned.
9649 if (GetOrEnforceKnownAlignment(II
->getOperand(1), 16) >= 16) {
9650 Value
*Ptr
= InsertBitCastBefore(II
->getOperand(1),
9651 PointerType::getUnqual(II
->getType()),
9653 return new LoadInst(Ptr
);
9656 case Intrinsic::ppc_altivec_stvx
:
9657 case Intrinsic::ppc_altivec_stvxl
:
9658 // Turn stvx -> store if the pointer is known aligned.
9659 if (GetOrEnforceKnownAlignment(II
->getOperand(2), 16) >= 16) {
9660 const Type
*OpPtrTy
=
9661 PointerType::getUnqual(II
->getOperand(1)->getType());
9662 Value
*Ptr
= InsertBitCastBefore(II
->getOperand(2), OpPtrTy
, CI
);
9663 return new StoreInst(II
->getOperand(1), Ptr
);
9666 case Intrinsic::x86_sse_storeu_ps
:
9667 case Intrinsic::x86_sse2_storeu_pd
:
9668 case Intrinsic::x86_sse2_storeu_dq
:
9669 // Turn X86 storeu -> store if the pointer is known aligned.
9670 if (GetOrEnforceKnownAlignment(II
->getOperand(1), 16) >= 16) {
9671 const Type
*OpPtrTy
=
9672 PointerType::getUnqual(II
->getOperand(2)->getType());
9673 Value
*Ptr
= InsertBitCastBefore(II
->getOperand(1), OpPtrTy
, CI
);
9674 return new StoreInst(II
->getOperand(2), Ptr
);
9678 case Intrinsic::x86_sse_cvttss2si
: {
9679 // These intrinsics only demands the 0th element of its input vector. If
9680 // we can simplify the input based on that, do so now.
9682 cast
<VectorType
>(II
->getOperand(1)->getType())->getNumElements();
9683 APInt
DemandedElts(VWidth
, 1);
9684 APInt
UndefElts(VWidth
, 0);
9685 if (Value
*V
= SimplifyDemandedVectorElts(II
->getOperand(1), DemandedElts
,
9687 II
->setOperand(1, V
);
9693 case Intrinsic::ppc_altivec_vperm
:
9694 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
9695 if (ConstantVector
*Mask
= dyn_cast
<ConstantVector
>(II
->getOperand(3))) {
9696 assert(Mask
->getNumOperands() == 16 && "Bad type for intrinsic!");
9698 // Check that all of the elements are integer constants or undefs.
9699 bool AllEltsOk
= true;
9700 for (unsigned i
= 0; i
!= 16; ++i
) {
9701 if (!isa
<ConstantInt
>(Mask
->getOperand(i
)) &&
9702 !isa
<UndefValue
>(Mask
->getOperand(i
))) {
9709 // Cast the input vectors to byte vectors.
9710 Value
*Op0
=InsertBitCastBefore(II
->getOperand(1),Mask
->getType(),CI
);
9711 Value
*Op1
=InsertBitCastBefore(II
->getOperand(2),Mask
->getType(),CI
);
9712 Value
*Result
= UndefValue::get(Op0
->getType());
9714 // Only extract each element once.
9715 Value
*ExtractedElts
[32];
9716 memset(ExtractedElts
, 0, sizeof(ExtractedElts
));
9718 for (unsigned i
= 0; i
!= 16; ++i
) {
9719 if (isa
<UndefValue
>(Mask
->getOperand(i
)))
9721 unsigned Idx
=cast
<ConstantInt
>(Mask
->getOperand(i
))->getZExtValue();
9722 Idx
&= 31; // Match the hardware behavior.
9724 if (ExtractedElts
[Idx
] == 0) {
9726 new ExtractElementInst(Idx
< 16 ? Op0
: Op1
, Idx
&15, "tmp");
9727 InsertNewInstBefore(Elt
, CI
);
9728 ExtractedElts
[Idx
] = Elt
;
9731 // Insert this value into the result vector.
9732 Result
= InsertElementInst::Create(Result
, ExtractedElts
[Idx
],
9734 InsertNewInstBefore(cast
<Instruction
>(Result
), CI
);
9736 return CastInst::Create(Instruction::BitCast
, Result
, CI
.getType());
9741 case Intrinsic::stackrestore
: {
9742 // If the save is right next to the restore, remove the restore. This can
9743 // happen when variable allocas are DCE'd.
9744 if (IntrinsicInst
*SS
= dyn_cast
<IntrinsicInst
>(II
->getOperand(1))) {
9745 if (SS
->getIntrinsicID() == Intrinsic::stacksave
) {
9746 BasicBlock::iterator BI
= SS
;
9748 return EraseInstFromFunction(CI
);
9752 // Scan down this block to see if there is another stack restore in the
9753 // same block without an intervening call/alloca.
9754 BasicBlock::iterator BI
= II
;
9755 TerminatorInst
*TI
= II
->getParent()->getTerminator();
9756 bool CannotRemove
= false;
9757 for (++BI
; &*BI
!= TI
; ++BI
) {
9758 if (isa
<AllocaInst
>(BI
)) {
9759 CannotRemove
= true;
9762 if (CallInst
*BCI
= dyn_cast
<CallInst
>(BI
)) {
9763 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(BCI
)) {
9764 // If there is a stackrestore below this one, remove this one.
9765 if (II
->getIntrinsicID() == Intrinsic::stackrestore
)
9766 return EraseInstFromFunction(CI
);
9767 // Otherwise, ignore the intrinsic.
9769 // If we found a non-intrinsic call, we can't remove the stack
9771 CannotRemove
= true;
9777 // If the stack restore is in a return/unwind block and if there are no
9778 // allocas or calls between the restore and the return, nuke the restore.
9779 if (!CannotRemove
&& (isa
<ReturnInst
>(TI
) || isa
<UnwindInst
>(TI
)))
9780 return EraseInstFromFunction(CI
);
9785 return visitCallSite(II
);
9788 // InvokeInst simplification
9790 Instruction
*InstCombiner::visitInvokeInst(InvokeInst
&II
) {
9791 return visitCallSite(&II
);
9794 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
9795 /// passed through the varargs area, we can eliminate the use of the cast.
9796 static bool isSafeToEliminateVarargsCast(const CallSite CS
,
9797 const CastInst
* const CI
,
9798 const TargetData
* const TD
,
9800 if (!CI
->isLosslessCast())
9803 // The size of ByVal arguments is derived from the type, so we
9804 // can't change to a type with a different size. If the size were
9805 // passed explicitly we could avoid this check.
9806 if (!CS
.paramHasAttr(ix
, Attribute::ByVal
))
9810 cast
<PointerType
>(CI
->getOperand(0)->getType())->getElementType();
9811 const Type
* DstTy
= cast
<PointerType
>(CI
->getType())->getElementType();
9812 if (!SrcTy
->isSized() || !DstTy
->isSized())
9814 if (TD
->getTypePaddedSize(SrcTy
) != TD
->getTypePaddedSize(DstTy
))
9819 // visitCallSite - Improvements for call and invoke instructions.
9821 Instruction
*InstCombiner::visitCallSite(CallSite CS
) {
9822 bool Changed
= false;
9824 // If the callee is a constexpr cast of a function, attempt to move the cast
9825 // to the arguments of the call/invoke.
9826 if (transformConstExprCastCall(CS
)) return 0;
9828 Value
*Callee
= CS
.getCalledValue();
9830 if (Function
*CalleeF
= dyn_cast
<Function
>(Callee
))
9831 if (CalleeF
->getCallingConv() != CS
.getCallingConv()) {
9832 Instruction
*OldCall
= CS
.getInstruction();
9833 // If the call and callee calling conventions don't match, this call must
9834 // be unreachable, as the call is undefined.
9835 new StoreInst(ConstantInt::getTrue(),
9836 UndefValue::get(PointerType::getUnqual(Type::Int1Ty
)),
9838 if (!OldCall
->use_empty())
9839 OldCall
->replaceAllUsesWith(UndefValue::get(OldCall
->getType()));
9840 if (isa
<CallInst
>(OldCall
)) // Not worth removing an invoke here.
9841 return EraseInstFromFunction(*OldCall
);
9845 if (isa
<ConstantPointerNull
>(Callee
) || isa
<UndefValue
>(Callee
)) {
9846 // This instruction is not reachable, just remove it. We insert a store to
9847 // undef so that we know that this code is not reachable, despite the fact
9848 // that we can't modify the CFG here.
9849 new StoreInst(ConstantInt::getTrue(),
9850 UndefValue::get(PointerType::getUnqual(Type::Int1Ty
)),
9851 CS
.getInstruction());
9853 if (!CS
.getInstruction()->use_empty())
9854 CS
.getInstruction()->
9855 replaceAllUsesWith(UndefValue::get(CS
.getInstruction()->getType()));
9857 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(CS
.getInstruction())) {
9858 // Don't break the CFG, insert a dummy cond branch.
9859 BranchInst::Create(II
->getNormalDest(), II
->getUnwindDest(),
9860 ConstantInt::getTrue(), II
);
9862 return EraseInstFromFunction(*CS
.getInstruction());
9865 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Callee
))
9866 if (IntrinsicInst
*In
= dyn_cast
<IntrinsicInst
>(BC
->getOperand(0)))
9867 if (In
->getIntrinsicID() == Intrinsic::init_trampoline
)
9868 return transformCallThroughTrampoline(CS
);
9870 const PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
9871 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
9872 if (FTy
->isVarArg()) {
9873 int ix
= FTy
->getNumParams() + (isa
<InvokeInst
>(Callee
) ? 3 : 1);
9874 // See if we can optimize any arguments passed through the varargs area of
9876 for (CallSite::arg_iterator I
= CS
.arg_begin()+FTy
->getNumParams(),
9877 E
= CS
.arg_end(); I
!= E
; ++I
, ++ix
) {
9878 CastInst
*CI
= dyn_cast
<CastInst
>(*I
);
9879 if (CI
&& isSafeToEliminateVarargsCast(CS
, CI
, TD
, ix
)) {
9880 *I
= CI
->getOperand(0);
9886 if (isa
<InlineAsm
>(Callee
) && !CS
.doesNotThrow()) {
9887 // Inline asm calls cannot throw - mark them 'nounwind'.
9888 CS
.setDoesNotThrow();
9892 return Changed
? CS
.getInstruction() : 0;
9895 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
9896 // attempt to move the cast to the arguments of the call/invoke.
9898 bool InstCombiner::transformConstExprCastCall(CallSite CS
) {
9899 if (!isa
<ConstantExpr
>(CS
.getCalledValue())) return false;
9900 ConstantExpr
*CE
= cast
<ConstantExpr
>(CS
.getCalledValue());
9901 if (CE
->getOpcode() != Instruction::BitCast
||
9902 !isa
<Function
>(CE
->getOperand(0)))
9904 Function
*Callee
= cast
<Function
>(CE
->getOperand(0));
9905 Instruction
*Caller
= CS
.getInstruction();
9906 const AttrListPtr
&CallerPAL
= CS
.getAttributes();
9908 // Okay, this is a cast from a function to a different type. Unless doing so
9909 // would cause a type conversion of one of our arguments, change this call to
9910 // be a direct call with arguments casted to the appropriate types.
9912 const FunctionType
*FT
= Callee
->getFunctionType();
9913 const Type
*OldRetTy
= Caller
->getType();
9914 const Type
*NewRetTy
= FT
->getReturnType();
9916 if (isa
<StructType
>(NewRetTy
))
9917 return false; // TODO: Handle multiple return values.
9919 // Check to see if we are changing the return type...
9920 if (OldRetTy
!= NewRetTy
) {
9921 if (Callee
->isDeclaration() &&
9922 // Conversion is ok if changing from one pointer type to another or from
9923 // a pointer to an integer of the same size.
9924 !((isa
<PointerType
>(OldRetTy
) || OldRetTy
== TD
->getIntPtrType()) &&
9925 (isa
<PointerType
>(NewRetTy
) || NewRetTy
== TD
->getIntPtrType())))
9926 return false; // Cannot transform this return value.
9928 if (!Caller
->use_empty() &&
9929 // void -> non-void is handled specially
9930 NewRetTy
!= Type::VoidTy
&& !CastInst::isCastable(NewRetTy
, OldRetTy
))
9931 return false; // Cannot transform this return value.
9933 if (!CallerPAL
.isEmpty() && !Caller
->use_empty()) {
9934 Attributes RAttrs
= CallerPAL
.getRetAttributes();
9935 if (RAttrs
& Attribute::typeIncompatible(NewRetTy
))
9936 return false; // Attribute not compatible with transformed value.
9939 // If the callsite is an invoke instruction, and the return value is used by
9940 // a PHI node in a successor, we cannot change the return type of the call
9941 // because there is no place to put the cast instruction (without breaking
9942 // the critical edge). Bail out in this case.
9943 if (!Caller
->use_empty())
9944 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
))
9945 for (Value::use_iterator UI
= II
->use_begin(), E
= II
->use_end();
9947 if (PHINode
*PN
= dyn_cast
<PHINode
>(*UI
))
9948 if (PN
->getParent() == II
->getNormalDest() ||
9949 PN
->getParent() == II
->getUnwindDest())
9953 unsigned NumActualArgs
= unsigned(CS
.arg_end()-CS
.arg_begin());
9954 unsigned NumCommonArgs
= std::min(FT
->getNumParams(), NumActualArgs
);
9956 CallSite::arg_iterator AI
= CS
.arg_begin();
9957 for (unsigned i
= 0, e
= NumCommonArgs
; i
!= e
; ++i
, ++AI
) {
9958 const Type
*ParamTy
= FT
->getParamType(i
);
9959 const Type
*ActTy
= (*AI
)->getType();
9961 if (!CastInst::isCastable(ActTy
, ParamTy
))
9962 return false; // Cannot transform this parameter value.
9964 if (CallerPAL
.getParamAttributes(i
+ 1)
9965 & Attribute::typeIncompatible(ParamTy
))
9966 return false; // Attribute not compatible with transformed value.
9968 // Converting from one pointer type to another or between a pointer and an
9969 // integer of the same size is safe even if we do not have a body.
9970 bool isConvertible
= ActTy
== ParamTy
||
9971 ((isa
<PointerType
>(ParamTy
) || ParamTy
== TD
->getIntPtrType()) &&
9972 (isa
<PointerType
>(ActTy
) || ActTy
== TD
->getIntPtrType()));
9973 if (Callee
->isDeclaration() && !isConvertible
) return false;
9976 if (FT
->getNumParams() < NumActualArgs
&& !FT
->isVarArg() &&
9977 Callee
->isDeclaration())
9978 return false; // Do not delete arguments unless we have a function body.
9980 if (FT
->getNumParams() < NumActualArgs
&& FT
->isVarArg() &&
9981 !CallerPAL
.isEmpty())
9982 // In this case we have more arguments than the new function type, but we
9983 // won't be dropping them. Check that these extra arguments have attributes
9984 // that are compatible with being a vararg call argument.
9985 for (unsigned i
= CallerPAL
.getNumSlots(); i
; --i
) {
9986 if (CallerPAL
.getSlot(i
- 1).Index
<= FT
->getNumParams())
9988 Attributes PAttrs
= CallerPAL
.getSlot(i
- 1).Attrs
;
9989 if (PAttrs
& Attribute::VarArgsIncompatible
)
9993 // Okay, we decided that this is a safe thing to do: go ahead and start
9994 // inserting cast instructions as necessary...
9995 std::vector
<Value
*> Args
;
9996 Args
.reserve(NumActualArgs
);
9997 SmallVector
<AttributeWithIndex
, 8> attrVec
;
9998 attrVec
.reserve(NumCommonArgs
);
10000 // Get any return attributes.
10001 Attributes RAttrs
= CallerPAL
.getRetAttributes();
10003 // If the return value is not being used, the type may not be compatible
10004 // with the existing attributes. Wipe out any problematic attributes.
10005 RAttrs
&= ~Attribute::typeIncompatible(NewRetTy
);
10007 // Add the new return attributes.
10009 attrVec
.push_back(AttributeWithIndex::get(0, RAttrs
));
10011 AI
= CS
.arg_begin();
10012 for (unsigned i
= 0; i
!= NumCommonArgs
; ++i
, ++AI
) {
10013 const Type
*ParamTy
= FT
->getParamType(i
);
10014 if ((*AI
)->getType() == ParamTy
) {
10015 Args
.push_back(*AI
);
10017 Instruction::CastOps opcode
= CastInst::getCastOpcode(*AI
,
10018 false, ParamTy
, false);
10019 CastInst
*NewCast
= CastInst::Create(opcode
, *AI
, ParamTy
, "tmp");
10020 Args
.push_back(InsertNewInstBefore(NewCast
, *Caller
));
10023 // Add any parameter attributes.
10024 if (Attributes PAttrs
= CallerPAL
.getParamAttributes(i
+ 1))
10025 attrVec
.push_back(AttributeWithIndex::get(i
+ 1, PAttrs
));
10028 // If the function takes more arguments than the call was taking, add them
10030 for (unsigned i
= NumCommonArgs
; i
!= FT
->getNumParams(); ++i
)
10031 Args
.push_back(Constant::getNullValue(FT
->getParamType(i
)));
10033 // If we are removing arguments to the function, emit an obnoxious warning...
10034 if (FT
->getNumParams() < NumActualArgs
) {
10035 if (!FT
->isVarArg()) {
10036 cerr
<< "WARNING: While resolving call to function '"
10037 << Callee
->getName() << "' arguments were dropped!\n";
10039 // Add all of the arguments in their promoted form to the arg list...
10040 for (unsigned i
= FT
->getNumParams(); i
!= NumActualArgs
; ++i
, ++AI
) {
10041 const Type
*PTy
= getPromotedType((*AI
)->getType());
10042 if (PTy
!= (*AI
)->getType()) {
10043 // Must promote to pass through va_arg area!
10044 Instruction::CastOps opcode
= CastInst::getCastOpcode(*AI
, false,
10046 Instruction
*Cast
= CastInst::Create(opcode
, *AI
, PTy
, "tmp");
10047 InsertNewInstBefore(Cast
, *Caller
);
10048 Args
.push_back(Cast
);
10050 Args
.push_back(*AI
);
10053 // Add any parameter attributes.
10054 if (Attributes PAttrs
= CallerPAL
.getParamAttributes(i
+ 1))
10055 attrVec
.push_back(AttributeWithIndex::get(i
+ 1, PAttrs
));
10060 if (Attributes FnAttrs
= CallerPAL
.getFnAttributes())
10061 attrVec
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
10063 if (NewRetTy
== Type::VoidTy
)
10064 Caller
->setName(""); // Void type should not have a name.
10066 const AttrListPtr
&NewCallerPAL
= AttrListPtr::get(attrVec
.begin(),attrVec
.end());
10069 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
10070 NC
= InvokeInst::Create(Callee
, II
->getNormalDest(), II
->getUnwindDest(),
10071 Args
.begin(), Args
.end(),
10072 Caller
->getName(), Caller
);
10073 cast
<InvokeInst
>(NC
)->setCallingConv(II
->getCallingConv());
10074 cast
<InvokeInst
>(NC
)->setAttributes(NewCallerPAL
);
10076 NC
= CallInst::Create(Callee
, Args
.begin(), Args
.end(),
10077 Caller
->getName(), Caller
);
10078 CallInst
*CI
= cast
<CallInst
>(Caller
);
10079 if (CI
->isTailCall())
10080 cast
<CallInst
>(NC
)->setTailCall();
10081 cast
<CallInst
>(NC
)->setCallingConv(CI
->getCallingConv());
10082 cast
<CallInst
>(NC
)->setAttributes(NewCallerPAL
);
10085 // Insert a cast of the return type as necessary.
10087 if (OldRetTy
!= NV
->getType() && !Caller
->use_empty()) {
10088 if (NV
->getType() != Type::VoidTy
) {
10089 Instruction::CastOps opcode
= CastInst::getCastOpcode(NC
, false,
10091 NV
= NC
= CastInst::Create(opcode
, NC
, OldRetTy
, "tmp");
10093 // If this is an invoke instruction, we should insert it after the first
10094 // non-phi, instruction in the normal successor block.
10095 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
10096 BasicBlock::iterator I
= II
->getNormalDest()->getFirstNonPHI();
10097 InsertNewInstBefore(NC
, *I
);
10099 // Otherwise, it's a call, just insert cast right after the call instr
10100 InsertNewInstBefore(NC
, *Caller
);
10102 AddUsersToWorkList(*Caller
);
10104 NV
= UndefValue::get(Caller
->getType());
10108 if (Caller
->getType() != Type::VoidTy
&& !Caller
->use_empty())
10109 Caller
->replaceAllUsesWith(NV
);
10110 Caller
->eraseFromParent();
10111 RemoveFromWorkList(Caller
);
10115 // transformCallThroughTrampoline - Turn a call to a function created by the
10116 // init_trampoline intrinsic into a direct call to the underlying function.
10118 Instruction
*InstCombiner::transformCallThroughTrampoline(CallSite CS
) {
10119 Value
*Callee
= CS
.getCalledValue();
10120 const PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
10121 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
10122 const AttrListPtr
&Attrs
= CS
.getAttributes();
10124 // If the call already has the 'nest' attribute somewhere then give up -
10125 // otherwise 'nest' would occur twice after splicing in the chain.
10126 if (Attrs
.hasAttrSomewhere(Attribute::Nest
))
10129 IntrinsicInst
*Tramp
=
10130 cast
<IntrinsicInst
>(cast
<BitCastInst
>(Callee
)->getOperand(0));
10132 Function
*NestF
= cast
<Function
>(Tramp
->getOperand(2)->stripPointerCasts());
10133 const PointerType
*NestFPTy
= cast
<PointerType
>(NestF
->getType());
10134 const FunctionType
*NestFTy
= cast
<FunctionType
>(NestFPTy
->getElementType());
10136 const AttrListPtr
&NestAttrs
= NestF
->getAttributes();
10137 if (!NestAttrs
.isEmpty()) {
10138 unsigned NestIdx
= 1;
10139 const Type
*NestTy
= 0;
10140 Attributes NestAttr
= Attribute::None
;
10142 // Look for a parameter marked with the 'nest' attribute.
10143 for (FunctionType::param_iterator I
= NestFTy
->param_begin(),
10144 E
= NestFTy
->param_end(); I
!= E
; ++NestIdx
, ++I
)
10145 if (NestAttrs
.paramHasAttr(NestIdx
, Attribute::Nest
)) {
10146 // Record the parameter type and any other attributes.
10148 NestAttr
= NestAttrs
.getParamAttributes(NestIdx
);
10153 Instruction
*Caller
= CS
.getInstruction();
10154 std::vector
<Value
*> NewArgs
;
10155 NewArgs
.reserve(unsigned(CS
.arg_end()-CS
.arg_begin())+1);
10157 SmallVector
<AttributeWithIndex
, 8> NewAttrs
;
10158 NewAttrs
.reserve(Attrs
.getNumSlots() + 1);
10160 // Insert the nest argument into the call argument list, which may
10161 // mean appending it. Likewise for attributes.
10163 // Add any result attributes.
10164 if (Attributes Attr
= Attrs
.getRetAttributes())
10165 NewAttrs
.push_back(AttributeWithIndex::get(0, Attr
));
10169 CallSite::arg_iterator I
= CS
.arg_begin(), E
= CS
.arg_end();
10171 if (Idx
== NestIdx
) {
10172 // Add the chain argument and attributes.
10173 Value
*NestVal
= Tramp
->getOperand(3);
10174 if (NestVal
->getType() != NestTy
)
10175 NestVal
= new BitCastInst(NestVal
, NestTy
, "nest", Caller
);
10176 NewArgs
.push_back(NestVal
);
10177 NewAttrs
.push_back(AttributeWithIndex::get(NestIdx
, NestAttr
));
10183 // Add the original argument and attributes.
10184 NewArgs
.push_back(*I
);
10185 if (Attributes Attr
= Attrs
.getParamAttributes(Idx
))
10187 (AttributeWithIndex::get(Idx
+ (Idx
>= NestIdx
), Attr
));
10193 // Add any function attributes.
10194 if (Attributes Attr
= Attrs
.getFnAttributes())
10195 NewAttrs
.push_back(AttributeWithIndex::get(~0, Attr
));
10197 // The trampoline may have been bitcast to a bogus type (FTy).
10198 // Handle this by synthesizing a new function type, equal to FTy
10199 // with the chain parameter inserted.
10201 std::vector
<const Type
*> NewTypes
;
10202 NewTypes
.reserve(FTy
->getNumParams()+1);
10204 // Insert the chain's type into the list of parameter types, which may
10205 // mean appending it.
10208 FunctionType::param_iterator I
= FTy
->param_begin(),
10209 E
= FTy
->param_end();
10212 if (Idx
== NestIdx
)
10213 // Add the chain's type.
10214 NewTypes
.push_back(NestTy
);
10219 // Add the original type.
10220 NewTypes
.push_back(*I
);
10226 // Replace the trampoline call with a direct call. Let the generic
10227 // code sort out any function type mismatches.
10228 FunctionType
*NewFTy
=
10229 FunctionType::get(FTy
->getReturnType(), NewTypes
, FTy
->isVarArg());
10230 Constant
*NewCallee
= NestF
->getType() == PointerType::getUnqual(NewFTy
) ?
10231 NestF
: ConstantExpr::getBitCast(NestF
, PointerType::getUnqual(NewFTy
));
10232 const AttrListPtr
&NewPAL
= AttrListPtr::get(NewAttrs
.begin(),NewAttrs
.end());
10234 Instruction
*NewCaller
;
10235 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Caller
)) {
10236 NewCaller
= InvokeInst::Create(NewCallee
,
10237 II
->getNormalDest(), II
->getUnwindDest(),
10238 NewArgs
.begin(), NewArgs
.end(),
10239 Caller
->getName(), Caller
);
10240 cast
<InvokeInst
>(NewCaller
)->setCallingConv(II
->getCallingConv());
10241 cast
<InvokeInst
>(NewCaller
)->setAttributes(NewPAL
);
10243 NewCaller
= CallInst::Create(NewCallee
, NewArgs
.begin(), NewArgs
.end(),
10244 Caller
->getName(), Caller
);
10245 if (cast
<CallInst
>(Caller
)->isTailCall())
10246 cast
<CallInst
>(NewCaller
)->setTailCall();
10247 cast
<CallInst
>(NewCaller
)->
10248 setCallingConv(cast
<CallInst
>(Caller
)->getCallingConv());
10249 cast
<CallInst
>(NewCaller
)->setAttributes(NewPAL
);
10251 if (Caller
->getType() != Type::VoidTy
&& !Caller
->use_empty())
10252 Caller
->replaceAllUsesWith(NewCaller
);
10253 Caller
->eraseFromParent();
10254 RemoveFromWorkList(Caller
);
10259 // Replace the trampoline call with a direct call. Since there is no 'nest'
10260 // parameter, there is no need to adjust the argument list. Let the generic
10261 // code sort out any function type mismatches.
10262 Constant
*NewCallee
=
10263 NestF
->getType() == PTy
? NestF
: ConstantExpr::getBitCast(NestF
, PTy
);
10264 CS
.setCalledFunction(NewCallee
);
10265 return CS
.getInstruction();
10268 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
10269 /// and if a/b/c/d and the add's all have a single use, turn this into two phi's
10270 /// and a single binop.
10271 Instruction
*InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode
&PN
) {
10272 Instruction
*FirstInst
= cast
<Instruction
>(PN
.getIncomingValue(0));
10273 assert(isa
<BinaryOperator
>(FirstInst
) || isa
<CmpInst
>(FirstInst
));
10274 unsigned Opc
= FirstInst
->getOpcode();
10275 Value
*LHSVal
= FirstInst
->getOperand(0);
10276 Value
*RHSVal
= FirstInst
->getOperand(1);
10278 const Type
*LHSType
= LHSVal
->getType();
10279 const Type
*RHSType
= RHSVal
->getType();
10281 // Scan to see if all operands are the same opcode, all have one use, and all
10282 // kill their operands (i.e. the operands have one use).
10283 for (unsigned i
= 1; i
!= PN
.getNumIncomingValues(); ++i
) {
10284 Instruction
*I
= dyn_cast
<Instruction
>(PN
.getIncomingValue(i
));
10285 if (!I
|| I
->getOpcode() != Opc
|| !I
->hasOneUse() ||
10286 // Verify type of the LHS matches so we don't fold cmp's of different
10287 // types or GEP's with different index types.
10288 I
->getOperand(0)->getType() != LHSType
||
10289 I
->getOperand(1)->getType() != RHSType
)
10292 // If they are CmpInst instructions, check their predicates
10293 if (Opc
== Instruction::ICmp
|| Opc
== Instruction::FCmp
)
10294 if (cast
<CmpInst
>(I
)->getPredicate() !=
10295 cast
<CmpInst
>(FirstInst
)->getPredicate())
10298 // Keep track of which operand needs a phi node.
10299 if (I
->getOperand(0) != LHSVal
) LHSVal
= 0;
10300 if (I
->getOperand(1) != RHSVal
) RHSVal
= 0;
10303 // Otherwise, this is safe to transform!
10305 Value
*InLHS
= FirstInst
->getOperand(0);
10306 Value
*InRHS
= FirstInst
->getOperand(1);
10307 PHINode
*NewLHS
= 0, *NewRHS
= 0;
10309 NewLHS
= PHINode::Create(LHSType
,
10310 FirstInst
->getOperand(0)->getName() + ".pn");
10311 NewLHS
->reserveOperandSpace(PN
.getNumOperands()/2);
10312 NewLHS
->addIncoming(InLHS
, PN
.getIncomingBlock(0));
10313 InsertNewInstBefore(NewLHS
, PN
);
10318 NewRHS
= PHINode::Create(RHSType
,
10319 FirstInst
->getOperand(1)->getName() + ".pn");
10320 NewRHS
->reserveOperandSpace(PN
.getNumOperands()/2);
10321 NewRHS
->addIncoming(InRHS
, PN
.getIncomingBlock(0));
10322 InsertNewInstBefore(NewRHS
, PN
);
10326 // Add all operands to the new PHIs.
10327 if (NewLHS
|| NewRHS
) {
10328 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
10329 Instruction
*InInst
= cast
<Instruction
>(PN
.getIncomingValue(i
));
10331 Value
*NewInLHS
= InInst
->getOperand(0);
10332 NewLHS
->addIncoming(NewInLHS
, PN
.getIncomingBlock(i
));
10335 Value
*NewInRHS
= InInst
->getOperand(1);
10336 NewRHS
->addIncoming(NewInRHS
, PN
.getIncomingBlock(i
));
10341 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(FirstInst
))
10342 return BinaryOperator::Create(BinOp
->getOpcode(), LHSVal
, RHSVal
);
10343 CmpInst
*CIOp
= cast
<CmpInst
>(FirstInst
);
10344 return CmpInst::Create(CIOp
->getOpcode(), CIOp
->getPredicate(), LHSVal
,
10348 Instruction
*InstCombiner::FoldPHIArgGEPIntoPHI(PHINode
&PN
) {
10349 GetElementPtrInst
*FirstInst
=cast
<GetElementPtrInst
>(PN
.getIncomingValue(0));
10351 SmallVector
<Value
*, 16> FixedOperands(FirstInst
->op_begin(),
10352 FirstInst
->op_end());
10353 // This is true if all GEP bases are allocas and if all indices into them are
10355 bool AllBasePointersAreAllocas
= true;
10357 // Scan to see if all operands are the same opcode, all have one use, and all
10358 // kill their operands (i.e. the operands have one use).
10359 for (unsigned i
= 1; i
!= PN
.getNumIncomingValues(); ++i
) {
10360 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(PN
.getIncomingValue(i
));
10361 if (!GEP
|| !GEP
->hasOneUse() || GEP
->getType() != FirstInst
->getType() ||
10362 GEP
->getNumOperands() != FirstInst
->getNumOperands())
10365 // Keep track of whether or not all GEPs are of alloca pointers.
10366 if (AllBasePointersAreAllocas
&&
10367 (!isa
<AllocaInst
>(GEP
->getOperand(0)) ||
10368 !GEP
->hasAllConstantIndices()))
10369 AllBasePointersAreAllocas
= false;
10371 // Compare the operand lists.
10372 for (unsigned op
= 0, e
= FirstInst
->getNumOperands(); op
!= e
; ++op
) {
10373 if (FirstInst
->getOperand(op
) == GEP
->getOperand(op
))
10376 // Don't merge two GEPs when two operands differ (introducing phi nodes)
10377 // if one of the PHIs has a constant for the index. The index may be
10378 // substantially cheaper to compute for the constants, so making it a
10379 // variable index could pessimize the path. This also handles the case
10380 // for struct indices, which must always be constant.
10381 if (isa
<ConstantInt
>(FirstInst
->getOperand(op
)) ||
10382 isa
<ConstantInt
>(GEP
->getOperand(op
)))
10385 if (FirstInst
->getOperand(op
)->getType() !=GEP
->getOperand(op
)->getType())
10387 FixedOperands
[op
] = 0; // Needs a PHI.
10391 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
10392 // bother doing this transformation. At best, this will just save a bit of
10393 // offset calculation, but all the predecessors will have to materialize the
10394 // stack address into a register anyway. We'd actually rather *clone* the
10395 // load up into the predecessors so that we have a load of a gep of an alloca,
10396 // which can usually all be folded into the load.
10397 if (AllBasePointersAreAllocas
)
10400 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
10401 // that is variable.
10402 SmallVector
<PHINode
*, 16> OperandPhis(FixedOperands
.size());
10404 bool HasAnyPHIs
= false;
10405 for (unsigned i
= 0, e
= FixedOperands
.size(); i
!= e
; ++i
) {
10406 if (FixedOperands
[i
]) continue; // operand doesn't need a phi.
10407 Value
*FirstOp
= FirstInst
->getOperand(i
);
10408 PHINode
*NewPN
= PHINode::Create(FirstOp
->getType(),
10409 FirstOp
->getName()+".pn");
10410 InsertNewInstBefore(NewPN
, PN
);
10412 NewPN
->reserveOperandSpace(e
);
10413 NewPN
->addIncoming(FirstOp
, PN
.getIncomingBlock(0));
10414 OperandPhis
[i
] = NewPN
;
10415 FixedOperands
[i
] = NewPN
;
10420 // Add all operands to the new PHIs.
10422 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
10423 GetElementPtrInst
*InGEP
=cast
<GetElementPtrInst
>(PN
.getIncomingValue(i
));
10424 BasicBlock
*InBB
= PN
.getIncomingBlock(i
);
10426 for (unsigned op
= 0, e
= OperandPhis
.size(); op
!= e
; ++op
)
10427 if (PHINode
*OpPhi
= OperandPhis
[op
])
10428 OpPhi
->addIncoming(InGEP
->getOperand(op
), InBB
);
10432 Value
*Base
= FixedOperands
[0];
10433 return GetElementPtrInst::Create(Base
, FixedOperands
.begin()+1,
10434 FixedOperands
.end());
10438 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
10439 /// sink the load out of the block that defines it. This means that it must be
10440 /// obvious the value of the load is not changed from the point of the load to
10441 /// the end of the block it is in.
10443 /// Finally, it is safe, but not profitable, to sink a load targetting a
10444 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
10446 static bool isSafeAndProfitableToSinkLoad(LoadInst
*L
) {
10447 BasicBlock::iterator BBI
= L
, E
= L
->getParent()->end();
10449 for (++BBI
; BBI
!= E
; ++BBI
)
10450 if (BBI
->mayWriteToMemory())
10453 // Check for non-address taken alloca. If not address-taken already, it isn't
10454 // profitable to do this xform.
10455 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(L
->getOperand(0))) {
10456 bool isAddressTaken
= false;
10457 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
10459 if (isa
<LoadInst
>(UI
)) continue;
10460 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
10461 // If storing TO the alloca, then the address isn't taken.
10462 if (SI
->getOperand(1) == AI
) continue;
10464 isAddressTaken
= true;
10468 if (!isAddressTaken
&& AI
->isStaticAlloca())
10472 // If this load is a load from a GEP with a constant offset from an alloca,
10473 // then we don't want to sink it. In its present form, it will be
10474 // load [constant stack offset]. Sinking it will cause us to have to
10475 // materialize the stack addresses in each predecessor in a register only to
10476 // do a shared load from register in the successor.
10477 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(L
->getOperand(0)))
10478 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(GEP
->getOperand(0)))
10479 if (AI
->isStaticAlloca() && GEP
->hasAllConstantIndices())
10486 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
10487 // operator and they all are only used by the PHI, PHI together their
10488 // inputs, and do the operation once, to the result of the PHI.
10489 Instruction
*InstCombiner::FoldPHIArgOpIntoPHI(PHINode
&PN
) {
10490 Instruction
*FirstInst
= cast
<Instruction
>(PN
.getIncomingValue(0));
10492 // Scan the instruction, looking for input operations that can be folded away.
10493 // If all input operands to the phi are the same instruction (e.g. a cast from
10494 // the same type or "+42") we can pull the operation through the PHI, reducing
10495 // code size and simplifying code.
10496 Constant
*ConstantOp
= 0;
10497 const Type
*CastSrcTy
= 0;
10498 bool isVolatile
= false;
10499 if (isa
<CastInst
>(FirstInst
)) {
10500 CastSrcTy
= FirstInst
->getOperand(0)->getType();
10501 } else if (isa
<BinaryOperator
>(FirstInst
) || isa
<CmpInst
>(FirstInst
)) {
10502 // Can fold binop, compare or shift here if the RHS is a constant,
10503 // otherwise call FoldPHIArgBinOpIntoPHI.
10504 ConstantOp
= dyn_cast
<Constant
>(FirstInst
->getOperand(1));
10505 if (ConstantOp
== 0)
10506 return FoldPHIArgBinOpIntoPHI(PN
);
10507 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(FirstInst
)) {
10508 isVolatile
= LI
->isVolatile();
10509 // We can't sink the load if the loaded value could be modified between the
10510 // load and the PHI.
10511 if (LI
->getParent() != PN
.getIncomingBlock(0) ||
10512 !isSafeAndProfitableToSinkLoad(LI
))
10515 // If the PHI is of volatile loads and the load block has multiple
10516 // successors, sinking it would remove a load of the volatile value from
10517 // the path through the other successor.
10519 LI
->getParent()->getTerminator()->getNumSuccessors() != 1)
10522 } else if (isa
<GetElementPtrInst
>(FirstInst
)) {
10523 return FoldPHIArgGEPIntoPHI(PN
);
10525 return 0; // Cannot fold this operation.
10528 // Check to see if all arguments are the same operation.
10529 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
10530 if (!isa
<Instruction
>(PN
.getIncomingValue(i
))) return 0;
10531 Instruction
*I
= cast
<Instruction
>(PN
.getIncomingValue(i
));
10532 if (!I
->hasOneUse() || !I
->isSameOperationAs(FirstInst
))
10535 if (I
->getOperand(0)->getType() != CastSrcTy
)
10536 return 0; // Cast operation must match.
10537 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
10538 // We can't sink the load if the loaded value could be modified between
10539 // the load and the PHI.
10540 if (LI
->isVolatile() != isVolatile
||
10541 LI
->getParent() != PN
.getIncomingBlock(i
) ||
10542 !isSafeAndProfitableToSinkLoad(LI
))
10545 // If the PHI is of volatile loads and the load block has multiple
10546 // successors, sinking it would remove a load of the volatile value from
10547 // the path through the other successor.
10549 LI
->getParent()->getTerminator()->getNumSuccessors() != 1)
10552 } else if (I
->getOperand(1) != ConstantOp
) {
10557 // Okay, they are all the same operation. Create a new PHI node of the
10558 // correct type, and PHI together all of the LHS's of the instructions.
10559 PHINode
*NewPN
= PHINode::Create(FirstInst
->getOperand(0)->getType(),
10560 PN
.getName()+".in");
10561 NewPN
->reserveOperandSpace(PN
.getNumOperands()/2);
10563 Value
*InVal
= FirstInst
->getOperand(0);
10564 NewPN
->addIncoming(InVal
, PN
.getIncomingBlock(0));
10566 // Add all operands to the new PHI.
10567 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
10568 Value
*NewInVal
= cast
<Instruction
>(PN
.getIncomingValue(i
))->getOperand(0);
10569 if (NewInVal
!= InVal
)
10571 NewPN
->addIncoming(NewInVal
, PN
.getIncomingBlock(i
));
10576 // The new PHI unions all of the same values together. This is really
10577 // common, so we handle it intelligently here for compile-time speed.
10581 InsertNewInstBefore(NewPN
, PN
);
10585 // Insert and return the new operation.
10586 if (CastInst
* FirstCI
= dyn_cast
<CastInst
>(FirstInst
))
10587 return CastInst::Create(FirstCI
->getOpcode(), PhiVal
, PN
.getType());
10588 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(FirstInst
))
10589 return BinaryOperator::Create(BinOp
->getOpcode(), PhiVal
, ConstantOp
);
10590 if (CmpInst
*CIOp
= dyn_cast
<CmpInst
>(FirstInst
))
10591 return CmpInst::Create(CIOp
->getOpcode(), CIOp
->getPredicate(),
10592 PhiVal
, ConstantOp
);
10593 assert(isa
<LoadInst
>(FirstInst
) && "Unknown operation");
10595 // If this was a volatile load that we are merging, make sure to loop through
10596 // and mark all the input loads as non-volatile. If we don't do this, we will
10597 // insert a new volatile load and the old ones will not be deletable.
10599 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
10600 cast
<LoadInst
>(PN
.getIncomingValue(i
))->setVolatile(false);
10602 return new LoadInst(PhiVal
, "", isVolatile
);
10605 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
10607 static bool DeadPHICycle(PHINode
*PN
,
10608 SmallPtrSet
<PHINode
*, 16> &PotentiallyDeadPHIs
) {
10609 if (PN
->use_empty()) return true;
10610 if (!PN
->hasOneUse()) return false;
10612 // Remember this node, and if we find the cycle, return.
10613 if (!PotentiallyDeadPHIs
.insert(PN
))
10616 // Don't scan crazily complex things.
10617 if (PotentiallyDeadPHIs
.size() == 16)
10620 if (PHINode
*PU
= dyn_cast
<PHINode
>(PN
->use_back()))
10621 return DeadPHICycle(PU
, PotentiallyDeadPHIs
);
10626 /// PHIsEqualValue - Return true if this phi node is always equal to
10627 /// NonPhiInVal. This happens with mutually cyclic phi nodes like:
10628 /// z = some value; x = phi (y, z); y = phi (x, z)
10629 static bool PHIsEqualValue(PHINode
*PN
, Value
*NonPhiInVal
,
10630 SmallPtrSet
<PHINode
*, 16> &ValueEqualPHIs
) {
10631 // See if we already saw this PHI node.
10632 if (!ValueEqualPHIs
.insert(PN
))
10635 // Don't scan crazily complex things.
10636 if (ValueEqualPHIs
.size() == 16)
10639 // Scan the operands to see if they are either phi nodes or are equal to
10641 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
10642 Value
*Op
= PN
->getIncomingValue(i
);
10643 if (PHINode
*OpPN
= dyn_cast
<PHINode
>(Op
)) {
10644 if (!PHIsEqualValue(OpPN
, NonPhiInVal
, ValueEqualPHIs
))
10646 } else if (Op
!= NonPhiInVal
)
10654 // PHINode simplification
10656 Instruction
*InstCombiner::visitPHINode(PHINode
&PN
) {
10657 // If LCSSA is around, don't mess with Phi nodes
10658 if (MustPreserveLCSSA
) return 0;
10660 if (Value
*V
= PN
.hasConstantValue())
10661 return ReplaceInstUsesWith(PN
, V
);
10663 // If all PHI operands are the same operation, pull them through the PHI,
10664 // reducing code size.
10665 if (isa
<Instruction
>(PN
.getIncomingValue(0)) &&
10666 isa
<Instruction
>(PN
.getIncomingValue(1)) &&
10667 cast
<Instruction
>(PN
.getIncomingValue(0))->getOpcode() ==
10668 cast
<Instruction
>(PN
.getIncomingValue(1))->getOpcode() &&
10669 // FIXME: The hasOneUse check will fail for PHIs that use the value more
10670 // than themselves more than once.
10671 PN
.getIncomingValue(0)->hasOneUse())
10672 if (Instruction
*Result
= FoldPHIArgOpIntoPHI(PN
))
10675 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
10676 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
10677 // PHI)... break the cycle.
10678 if (PN
.hasOneUse()) {
10679 Instruction
*PHIUser
= cast
<Instruction
>(PN
.use_back());
10680 if (PHINode
*PU
= dyn_cast
<PHINode
>(PHIUser
)) {
10681 SmallPtrSet
<PHINode
*, 16> PotentiallyDeadPHIs
;
10682 PotentiallyDeadPHIs
.insert(&PN
);
10683 if (DeadPHICycle(PU
, PotentiallyDeadPHIs
))
10684 return ReplaceInstUsesWith(PN
, UndefValue::get(PN
.getType()));
10687 // If this phi has a single use, and if that use just computes a value for
10688 // the next iteration of a loop, delete the phi. This occurs with unused
10689 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
10690 // common case here is good because the only other things that catch this
10691 // are induction variable analysis (sometimes) and ADCE, which is only run
10693 if (PHIUser
->hasOneUse() &&
10694 (isa
<BinaryOperator
>(PHIUser
) || isa
<GetElementPtrInst
>(PHIUser
)) &&
10695 PHIUser
->use_back() == &PN
) {
10696 return ReplaceInstUsesWith(PN
, UndefValue::get(PN
.getType()));
10700 // We sometimes end up with phi cycles that non-obviously end up being the
10701 // same value, for example:
10702 // z = some value; x = phi (y, z); y = phi (x, z)
10703 // where the phi nodes don't necessarily need to be in the same block. Do a
10704 // quick check to see if the PHI node only contains a single non-phi value, if
10705 // so, scan to see if the phi cycle is actually equal to that value.
10707 unsigned InValNo
= 0, NumOperandVals
= PN
.getNumIncomingValues();
10708 // Scan for the first non-phi operand.
10709 while (InValNo
!= NumOperandVals
&&
10710 isa
<PHINode
>(PN
.getIncomingValue(InValNo
)))
10713 if (InValNo
!= NumOperandVals
) {
10714 Value
*NonPhiInVal
= PN
.getOperand(InValNo
);
10716 // Scan the rest of the operands to see if there are any conflicts, if so
10717 // there is no need to recursively scan other phis.
10718 for (++InValNo
; InValNo
!= NumOperandVals
; ++InValNo
) {
10719 Value
*OpVal
= PN
.getIncomingValue(InValNo
);
10720 if (OpVal
!= NonPhiInVal
&& !isa
<PHINode
>(OpVal
))
10724 // If we scanned over all operands, then we have one unique value plus
10725 // phi values. Scan PHI nodes to see if they all merge in each other or
10727 if (InValNo
== NumOperandVals
) {
10728 SmallPtrSet
<PHINode
*, 16> ValueEqualPHIs
;
10729 if (PHIsEqualValue(&PN
, NonPhiInVal
, ValueEqualPHIs
))
10730 return ReplaceInstUsesWith(PN
, NonPhiInVal
);
10737 static Value
*InsertCastToIntPtrTy(Value
*V
, const Type
*DTy
,
10738 Instruction
*InsertPoint
,
10739 InstCombiner
*IC
) {
10740 unsigned PtrSize
= DTy
->getPrimitiveSizeInBits();
10741 unsigned VTySize
= V
->getType()->getPrimitiveSizeInBits();
10742 // We must cast correctly to the pointer type. Ensure that we
10743 // sign extend the integer value if it is smaller as this is
10744 // used for address computation.
10745 Instruction::CastOps opcode
=
10746 (VTySize
< PtrSize
? Instruction::SExt
:
10747 (VTySize
== PtrSize
? Instruction::BitCast
: Instruction::Trunc
));
10748 return IC
->InsertCastBefore(opcode
, V
, DTy
, *InsertPoint
);
10752 Instruction
*InstCombiner::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
10753 Value
*PtrOp
= GEP
.getOperand(0);
10754 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
10755 // If so, eliminate the noop.
10756 if (GEP
.getNumOperands() == 1)
10757 return ReplaceInstUsesWith(GEP
, PtrOp
);
10759 if (isa
<UndefValue
>(GEP
.getOperand(0)))
10760 return ReplaceInstUsesWith(GEP
, UndefValue::get(GEP
.getType()));
10762 bool HasZeroPointerIndex
= false;
10763 if (Constant
*C
= dyn_cast
<Constant
>(GEP
.getOperand(1)))
10764 HasZeroPointerIndex
= C
->isNullValue();
10766 if (GEP
.getNumOperands() == 2 && HasZeroPointerIndex
)
10767 return ReplaceInstUsesWith(GEP
, PtrOp
);
10769 // Eliminate unneeded casts for indices.
10770 bool MadeChange
= false;
10772 gep_type_iterator GTI
= gep_type_begin(GEP
);
10773 for (User::op_iterator i
= GEP
.op_begin() + 1, e
= GEP
.op_end();
10774 i
!= e
; ++i
, ++GTI
) {
10775 if (isa
<SequentialType
>(*GTI
)) {
10776 if (CastInst
*CI
= dyn_cast
<CastInst
>(*i
)) {
10777 if (CI
->getOpcode() == Instruction::ZExt
||
10778 CI
->getOpcode() == Instruction::SExt
) {
10779 const Type
*SrcTy
= CI
->getOperand(0)->getType();
10780 // We can eliminate a cast from i32 to i64 iff the target
10781 // is a 32-bit pointer target.
10782 if (SrcTy
->getPrimitiveSizeInBits() >= TD
->getPointerSizeInBits()) {
10784 *i
= CI
->getOperand(0);
10788 // If we are using a wider index than needed for this platform, shrink it
10789 // to what we need. If narrower, sign-extend it to what we need.
10790 // If the incoming value needs a cast instruction,
10791 // insert it. This explicit cast can make subsequent optimizations more
10794 if (TD
->getTypeSizeInBits(Op
->getType()) > TD
->getPointerSizeInBits()) {
10795 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
10796 *i
= ConstantExpr::getTrunc(C
, TD
->getIntPtrType());
10799 Op
= InsertCastBefore(Instruction::Trunc
, Op
, TD
->getIntPtrType(),
10804 } else if (TD
->getTypeSizeInBits(Op
->getType()) < TD
->getPointerSizeInBits()) {
10805 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
10806 *i
= ConstantExpr::getSExt(C
, TD
->getIntPtrType());
10809 Op
= InsertCastBefore(Instruction::SExt
, Op
, TD
->getIntPtrType(),
10817 if (MadeChange
) return &GEP
;
10819 // Combine Indices - If the source pointer to this getelementptr instruction
10820 // is a getelementptr instruction, combine the indices of the two
10821 // getelementptr instructions into a single instruction.
10823 SmallVector
<Value
*, 8> SrcGEPOperands
;
10824 if (User
*Src
= dyn_castGetElementPtr(PtrOp
))
10825 SrcGEPOperands
.append(Src
->op_begin(), Src
->op_end());
10827 if (!SrcGEPOperands
.empty()) {
10828 // Note that if our source is a gep chain itself that we wait for that
10829 // chain to be resolved before we perform this transformation. This
10830 // avoids us creating a TON of code in some cases.
10832 if (isa
<GetElementPtrInst
>(SrcGEPOperands
[0]) &&
10833 cast
<Instruction
>(SrcGEPOperands
[0])->getNumOperands() == 2)
10834 return 0; // Wait until our source is folded to completion.
10836 SmallVector
<Value
*, 8> Indices
;
10838 // Find out whether the last index in the source GEP is a sequential idx.
10839 bool EndsWithSequential
= false;
10840 for (gep_type_iterator I
= gep_type_begin(*cast
<User
>(PtrOp
)),
10841 E
= gep_type_end(*cast
<User
>(PtrOp
)); I
!= E
; ++I
)
10842 EndsWithSequential
= !isa
<StructType
>(*I
);
10844 // Can we combine the two pointer arithmetics offsets?
10845 if (EndsWithSequential
) {
10846 // Replace: gep (gep %P, long B), long A, ...
10847 // With: T = long A+B; gep %P, T, ...
10849 Value
*Sum
, *SO1
= SrcGEPOperands
.back(), *GO1
= GEP
.getOperand(1);
10850 if (SO1
== Constant::getNullValue(SO1
->getType())) {
10852 } else if (GO1
== Constant::getNullValue(GO1
->getType())) {
10855 // If they aren't the same type, convert both to an integer of the
10856 // target's pointer size.
10857 if (SO1
->getType() != GO1
->getType()) {
10858 if (Constant
*SO1C
= dyn_cast
<Constant
>(SO1
)) {
10859 SO1
= ConstantExpr::getIntegerCast(SO1C
, GO1
->getType(), true);
10860 } else if (Constant
*GO1C
= dyn_cast
<Constant
>(GO1
)) {
10861 GO1
= ConstantExpr::getIntegerCast(GO1C
, SO1
->getType(), true);
10863 unsigned PS
= TD
->getPointerSizeInBits();
10864 if (TD
->getTypeSizeInBits(SO1
->getType()) == PS
) {
10865 // Convert GO1 to SO1's type.
10866 GO1
= InsertCastToIntPtrTy(GO1
, SO1
->getType(), &GEP
, this);
10868 } else if (TD
->getTypeSizeInBits(GO1
->getType()) == PS
) {
10869 // Convert SO1 to GO1's type.
10870 SO1
= InsertCastToIntPtrTy(SO1
, GO1
->getType(), &GEP
, this);
10872 const Type
*PT
= TD
->getIntPtrType();
10873 SO1
= InsertCastToIntPtrTy(SO1
, PT
, &GEP
, this);
10874 GO1
= InsertCastToIntPtrTy(GO1
, PT
, &GEP
, this);
10878 if (isa
<Constant
>(SO1
) && isa
<Constant
>(GO1
))
10879 Sum
= ConstantExpr::getAdd(cast
<Constant
>(SO1
), cast
<Constant
>(GO1
));
10881 Sum
= BinaryOperator::CreateAdd(SO1
, GO1
, PtrOp
->getName()+".sum");
10882 InsertNewInstBefore(cast
<Instruction
>(Sum
), GEP
);
10886 // Recycle the GEP we already have if possible.
10887 if (SrcGEPOperands
.size() == 2) {
10888 GEP
.setOperand(0, SrcGEPOperands
[0]);
10889 GEP
.setOperand(1, Sum
);
10892 Indices
.insert(Indices
.end(), SrcGEPOperands
.begin()+1,
10893 SrcGEPOperands
.end()-1);
10894 Indices
.push_back(Sum
);
10895 Indices
.insert(Indices
.end(), GEP
.op_begin()+2, GEP
.op_end());
10897 } else if (isa
<Constant
>(*GEP
.idx_begin()) &&
10898 cast
<Constant
>(*GEP
.idx_begin())->isNullValue() &&
10899 SrcGEPOperands
.size() != 1) {
10900 // Otherwise we can do the fold if the first index of the GEP is a zero
10901 Indices
.insert(Indices
.end(), SrcGEPOperands
.begin()+1,
10902 SrcGEPOperands
.end());
10903 Indices
.insert(Indices
.end(), GEP
.idx_begin()+1, GEP
.idx_end());
10906 if (!Indices
.empty())
10907 return GetElementPtrInst::Create(SrcGEPOperands
[0], Indices
.begin(),
10908 Indices
.end(), GEP
.getName());
10910 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(PtrOp
)) {
10911 // GEP of global variable. If all of the indices for this GEP are
10912 // constants, we can promote this to a constexpr instead of an instruction.
10914 // Scan for nonconstants...
10915 SmallVector
<Constant
*, 8> Indices
;
10916 User::op_iterator I
= GEP
.idx_begin(), E
= GEP
.idx_end();
10917 for (; I
!= E
&& isa
<Constant
>(*I
); ++I
)
10918 Indices
.push_back(cast
<Constant
>(*I
));
10920 if (I
== E
) { // If they are all constants...
10921 Constant
*CE
= ConstantExpr::getGetElementPtr(GV
,
10922 &Indices
[0],Indices
.size());
10924 // Replace all uses of the GEP with the new constexpr...
10925 return ReplaceInstUsesWith(GEP
, CE
);
10927 } else if (Value
*X
= getBitCastOperand(PtrOp
)) { // Is the operand a cast?
10928 if (!isa
<PointerType
>(X
->getType())) {
10929 // Not interesting. Source pointer must be a cast from pointer.
10930 } else if (HasZeroPointerIndex
) {
10931 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
10932 // into : GEP [10 x i8]* X, i32 0, ...
10934 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
10935 // into : GEP i8* X, ...
10937 // This occurs when the program declares an array extern like "int X[];"
10938 const PointerType
*CPTy
= cast
<PointerType
>(PtrOp
->getType());
10939 const PointerType
*XTy
= cast
<PointerType
>(X
->getType());
10940 if (const ArrayType
*CATy
=
10941 dyn_cast
<ArrayType
>(CPTy
->getElementType())) {
10942 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
10943 if (CATy
->getElementType() == XTy
->getElementType()) {
10944 // -> GEP i8* X, ...
10945 SmallVector
<Value
*, 8> Indices(GEP
.idx_begin()+1, GEP
.idx_end());
10946 return GetElementPtrInst::Create(X
, Indices
.begin(), Indices
.end(),
10948 } else if (const ArrayType
*XATy
=
10949 dyn_cast
<ArrayType
>(XTy
->getElementType())) {
10950 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
10951 if (CATy
->getElementType() == XATy
->getElementType()) {
10952 // -> GEP [10 x i8]* X, i32 0, ...
10953 // At this point, we know that the cast source type is a pointer
10954 // to an array of the same type as the destination pointer
10955 // array. Because the array type is never stepped over (there
10956 // is a leading zero) we can fold the cast into this GEP.
10957 GEP
.setOperand(0, X
);
10962 } else if (GEP
.getNumOperands() == 2) {
10963 // Transform things like:
10964 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
10965 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
10966 const Type
*SrcElTy
= cast
<PointerType
>(X
->getType())->getElementType();
10967 const Type
*ResElTy
=cast
<PointerType
>(PtrOp
->getType())->getElementType();
10968 if (isa
<ArrayType
>(SrcElTy
) &&
10969 TD
->getTypePaddedSize(cast
<ArrayType
>(SrcElTy
)->getElementType()) ==
10970 TD
->getTypePaddedSize(ResElTy
)) {
10972 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
10973 Idx
[1] = GEP
.getOperand(1);
10974 Value
*V
= InsertNewInstBefore(
10975 GetElementPtrInst::Create(X
, Idx
, Idx
+ 2, GEP
.getName()), GEP
);
10976 // V and GEP are both pointer types --> BitCast
10977 return new BitCastInst(V
, GEP
.getType());
10980 // Transform things like:
10981 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
10982 // (where tmp = 8*tmp2) into:
10983 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
10985 if (isa
<ArrayType
>(SrcElTy
) && ResElTy
== Type::Int8Ty
) {
10986 uint64_t ArrayEltSize
=
10987 TD
->getTypePaddedSize(cast
<ArrayType
>(SrcElTy
)->getElementType());
10989 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
10990 // allow either a mul, shift, or constant here.
10992 ConstantInt
*Scale
= 0;
10993 if (ArrayEltSize
== 1) {
10994 NewIdx
= GEP
.getOperand(1);
10995 Scale
= ConstantInt::get(NewIdx
->getType(), 1);
10996 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
.getOperand(1))) {
10997 NewIdx
= ConstantInt::get(CI
->getType(), 1);
10999 } else if (Instruction
*Inst
=dyn_cast
<Instruction
>(GEP
.getOperand(1))){
11000 if (Inst
->getOpcode() == Instruction::Shl
&&
11001 isa
<ConstantInt
>(Inst
->getOperand(1))) {
11002 ConstantInt
*ShAmt
= cast
<ConstantInt
>(Inst
->getOperand(1));
11003 uint32_t ShAmtVal
= ShAmt
->getLimitedValue(64);
11004 Scale
= ConstantInt::get(Inst
->getType(), 1ULL << ShAmtVal
);
11005 NewIdx
= Inst
->getOperand(0);
11006 } else if (Inst
->getOpcode() == Instruction::Mul
&&
11007 isa
<ConstantInt
>(Inst
->getOperand(1))) {
11008 Scale
= cast
<ConstantInt
>(Inst
->getOperand(1));
11009 NewIdx
= Inst
->getOperand(0);
11013 // If the index will be to exactly the right offset with the scale taken
11014 // out, perform the transformation. Note, we don't know whether Scale is
11015 // signed or not. We'll use unsigned version of division/modulo
11016 // operation after making sure Scale doesn't have the sign bit set.
11017 if (ArrayEltSize
&& Scale
&& Scale
->getSExtValue() >= 0LL &&
11018 Scale
->getZExtValue() % ArrayEltSize
== 0) {
11019 Scale
= ConstantInt::get(Scale
->getType(),
11020 Scale
->getZExtValue() / ArrayEltSize
);
11021 if (Scale
->getZExtValue() != 1) {
11022 Constant
*C
= ConstantExpr::getIntegerCast(Scale
, NewIdx
->getType(),
11024 Instruction
*Sc
= BinaryOperator::CreateMul(NewIdx
, C
, "idxscale");
11025 NewIdx
= InsertNewInstBefore(Sc
, GEP
);
11028 // Insert the new GEP instruction.
11030 Idx
[0] = Constant::getNullValue(Type::Int32Ty
);
11032 Instruction
*NewGEP
=
11033 GetElementPtrInst::Create(X
, Idx
, Idx
+ 2, GEP
.getName());
11034 NewGEP
= InsertNewInstBefore(NewGEP
, GEP
);
11035 // The NewGEP must be pointer typed, so must the old one -> BitCast
11036 return new BitCastInst(NewGEP
, GEP
.getType());
11042 /// See if we can simplify:
11043 /// X = bitcast A to B*
11044 /// Y = gep X, <...constant indices...>
11045 /// into a gep of the original struct. This is important for SROA and alias
11046 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
11047 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(PtrOp
)) {
11048 if (!isa
<BitCastInst
>(BCI
->getOperand(0)) && GEP
.hasAllConstantIndices()) {
11049 // Determine how much the GEP moves the pointer. We are guaranteed to get
11050 // a constant back from EmitGEPOffset.
11051 ConstantInt
*OffsetV
= cast
<ConstantInt
>(EmitGEPOffset(&GEP
, GEP
, *this));
11052 int64_t Offset
= OffsetV
->getSExtValue();
11054 // If this GEP instruction doesn't move the pointer, just replace the GEP
11055 // with a bitcast of the real input to the dest type.
11057 // If the bitcast is of an allocation, and the allocation will be
11058 // converted to match the type of the cast, don't touch this.
11059 if (isa
<AllocationInst
>(BCI
->getOperand(0))) {
11060 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
11061 if (Instruction
*I
= visitBitCast(*BCI
)) {
11064 BCI
->getParent()->getInstList().insert(BCI
, I
);
11065 ReplaceInstUsesWith(*BCI
, I
);
11070 return new BitCastInst(BCI
->getOperand(0), GEP
.getType());
11073 // Otherwise, if the offset is non-zero, we need to find out if there is a
11074 // field at Offset in 'A's type. If so, we can pull the cast through the
11076 SmallVector
<Value
*, 8> NewIndices
;
11078 cast
<PointerType
>(BCI
->getOperand(0)->getType())->getElementType();
11079 if (FindElementAtOffset(InTy
, Offset
, NewIndices
, TD
)) {
11080 Instruction
*NGEP
=
11081 GetElementPtrInst::Create(BCI
->getOperand(0), NewIndices
.begin(),
11083 if (NGEP
->getType() == GEP
.getType()) return NGEP
;
11084 InsertNewInstBefore(NGEP
, GEP
);
11085 NGEP
->takeName(&GEP
);
11086 return new BitCastInst(NGEP
, GEP
.getType());
11094 Instruction
*InstCombiner::visitAllocationInst(AllocationInst
&AI
) {
11095 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
11096 if (AI
.isArrayAllocation()) { // Check C != 1
11097 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(AI
.getArraySize())) {
11098 const Type
*NewTy
=
11099 ArrayType::get(AI
.getAllocatedType(), C
->getZExtValue());
11100 AllocationInst
*New
= 0;
11102 // Create and insert the replacement instruction...
11103 if (isa
<MallocInst
>(AI
))
11104 New
= new MallocInst(NewTy
, 0, AI
.getAlignment(), AI
.getName());
11106 assert(isa
<AllocaInst
>(AI
) && "Unknown type of allocation inst!");
11107 New
= new AllocaInst(NewTy
, 0, AI
.getAlignment(), AI
.getName());
11110 InsertNewInstBefore(New
, AI
);
11112 // Scan to the end of the allocation instructions, to skip over a block of
11113 // allocas if possible...also skip interleaved debug info
11115 BasicBlock::iterator It
= New
;
11116 while (isa
<AllocationInst
>(*It
) || isa
<DbgInfoIntrinsic
>(*It
)) ++It
;
11118 // Now that I is pointing to the first non-allocation-inst in the block,
11119 // insert our getelementptr instruction...
11121 Value
*NullIdx
= Constant::getNullValue(Type::Int32Ty
);
11125 Value
*V
= GetElementPtrInst::Create(New
, Idx
, Idx
+ 2,
11126 New
->getName()+".sub", It
);
11128 // Now make everything use the getelementptr instead of the original
11130 return ReplaceInstUsesWith(AI
, V
);
11131 } else if (isa
<UndefValue
>(AI
.getArraySize())) {
11132 return ReplaceInstUsesWith(AI
, Constant::getNullValue(AI
.getType()));
11136 if (isa
<AllocaInst
>(AI
) && AI
.getAllocatedType()->isSized()) {
11137 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
11138 // Note that we only do this for alloca's, because malloc should allocate
11139 // and return a unique pointer, even for a zero byte allocation.
11140 if (TD
->getTypePaddedSize(AI
.getAllocatedType()) == 0)
11141 return ReplaceInstUsesWith(AI
, Constant::getNullValue(AI
.getType()));
11143 // If the alignment is 0 (unspecified), assign it the preferred alignment.
11144 if (AI
.getAlignment() == 0)
11145 AI
.setAlignment(TD
->getPrefTypeAlignment(AI
.getAllocatedType()));
11151 Instruction
*InstCombiner::visitFreeInst(FreeInst
&FI
) {
11152 Value
*Op
= FI
.getOperand(0);
11154 // free undef -> unreachable.
11155 if (isa
<UndefValue
>(Op
)) {
11156 // Insert a new store to null because we cannot modify the CFG here.
11157 new StoreInst(ConstantInt::getTrue(),
11158 UndefValue::get(PointerType::getUnqual(Type::Int1Ty
)), &FI
);
11159 return EraseInstFromFunction(FI
);
11162 // If we have 'free null' delete the instruction. This can happen in stl code
11163 // when lots of inlining happens.
11164 if (isa
<ConstantPointerNull
>(Op
))
11165 return EraseInstFromFunction(FI
);
11167 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
11168 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(Op
)) {
11169 FI
.setOperand(0, CI
->getOperand(0));
11173 // Change free (gep X, 0,0,0,0) into free(X)
11174 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Op
)) {
11175 if (GEPI
->hasAllZeroIndices()) {
11176 AddToWorkList(GEPI
);
11177 FI
.setOperand(0, GEPI
->getOperand(0));
11182 // Change free(malloc) into nothing, if the malloc has a single use.
11183 if (MallocInst
*MI
= dyn_cast
<MallocInst
>(Op
))
11184 if (MI
->hasOneUse()) {
11185 EraseInstFromFunction(FI
);
11186 return EraseInstFromFunction(*MI
);
11193 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
11194 static Instruction
*InstCombineLoadCast(InstCombiner
&IC
, LoadInst
&LI
,
11195 const TargetData
*TD
) {
11196 User
*CI
= cast
<User
>(LI
.getOperand(0));
11197 Value
*CastOp
= CI
->getOperand(0);
11199 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CI
)) {
11200 // Instead of loading constant c string, use corresponding integer value
11201 // directly if string length is small enough.
11203 if (GetConstantStringInfo(CE
->getOperand(0), Str
) && !Str
.empty()) {
11204 unsigned len
= Str
.length();
11205 const Type
*Ty
= cast
<PointerType
>(CE
->getType())->getElementType();
11206 unsigned numBits
= Ty
->getPrimitiveSizeInBits();
11207 // Replace LI with immediate integer store.
11208 if ((numBits
>> 3) == len
+ 1) {
11209 APInt
StrVal(numBits
, 0);
11210 APInt
SingleChar(numBits
, 0);
11211 if (TD
->isLittleEndian()) {
11212 for (signed i
= len
-1; i
>= 0; i
--) {
11213 SingleChar
= (uint64_t) Str
[i
] & UCHAR_MAX
;
11214 StrVal
= (StrVal
<< 8) | SingleChar
;
11217 for (unsigned i
= 0; i
< len
; i
++) {
11218 SingleChar
= (uint64_t) Str
[i
] & UCHAR_MAX
;
11219 StrVal
= (StrVal
<< 8) | SingleChar
;
11221 // Append NULL at the end.
11223 StrVal
= (StrVal
<< 8) | SingleChar
;
11225 Value
*NL
= ConstantInt::get(StrVal
);
11226 return IC
.ReplaceInstUsesWith(LI
, NL
);
11231 const PointerType
*DestTy
= cast
<PointerType
>(CI
->getType());
11232 const Type
*DestPTy
= DestTy
->getElementType();
11233 if (const PointerType
*SrcTy
= dyn_cast
<PointerType
>(CastOp
->getType())) {
11235 // If the address spaces don't match, don't eliminate the cast.
11236 if (DestTy
->getAddressSpace() != SrcTy
->getAddressSpace())
11239 const Type
*SrcPTy
= SrcTy
->getElementType();
11241 if (DestPTy
->isInteger() || isa
<PointerType
>(DestPTy
) ||
11242 isa
<VectorType
>(DestPTy
)) {
11243 // If the source is an array, the code below will not succeed. Check to
11244 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11246 if (const ArrayType
*ASrcTy
= dyn_cast
<ArrayType
>(SrcPTy
))
11247 if (Constant
*CSrc
= dyn_cast
<Constant
>(CastOp
))
11248 if (ASrcTy
->getNumElements() != 0) {
11250 Idxs
[0] = Idxs
[1] = Constant::getNullValue(Type::Int32Ty
);
11251 CastOp
= ConstantExpr::getGetElementPtr(CSrc
, Idxs
, 2);
11252 SrcTy
= cast
<PointerType
>(CastOp
->getType());
11253 SrcPTy
= SrcTy
->getElementType();
11256 if ((SrcPTy
->isInteger() || isa
<PointerType
>(SrcPTy
) ||
11257 isa
<VectorType
>(SrcPTy
)) &&
11258 // Do not allow turning this into a load of an integer, which is then
11259 // casted to a pointer, this pessimizes pointer analysis a lot.
11260 (isa
<PointerType
>(SrcPTy
) == isa
<PointerType
>(LI
.getType())) &&
11261 IC
.getTargetData().getTypeSizeInBits(SrcPTy
) ==
11262 IC
.getTargetData().getTypeSizeInBits(DestPTy
)) {
11264 // Okay, we are casting from one integer or pointer type to another of
11265 // the same size. Instead of casting the pointer before the load, cast
11266 // the result of the loaded value.
11267 Value
*NewLoad
= IC
.InsertNewInstBefore(new LoadInst(CastOp
,
11269 LI
.isVolatile()),LI
);
11270 // Now cast the result of the load.
11271 return new BitCastInst(NewLoad
, LI
.getType());
11278 /// isSafeToLoadUnconditionally - Return true if we know that executing a load
11279 /// from this value cannot trap. If it is not obviously safe to load from the
11280 /// specified pointer, we do a quick local scan of the basic block containing
11281 /// ScanFrom, to determine if the address is already accessed.
11282 static bool isSafeToLoadUnconditionally(Value
*V
, Instruction
*ScanFrom
) {
11283 // If it is an alloca it is always safe to load from.
11284 if (isa
<AllocaInst
>(V
)) return true;
11286 // If it is a global variable it is mostly safe to load from.
11287 if (const GlobalValue
*GV
= dyn_cast
<GlobalVariable
>(V
))
11288 // Don't try to evaluate aliases. External weak GV can be null.
11289 return !isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage();
11291 // Otherwise, be a little bit agressive by scanning the local block where we
11292 // want to check to see if the pointer is already being loaded or stored
11293 // from/to. If so, the previous load or store would have already trapped,
11294 // so there is no harm doing an extra load (also, CSE will later eliminate
11295 // the load entirely).
11296 BasicBlock::iterator BBI
= ScanFrom
, E
= ScanFrom
->getParent()->begin();
11301 // If we see a free or a call (which might do a free) the pointer could be
11303 if (isa
<FreeInst
>(BBI
) ||
11304 (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
)))
11307 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
11308 if (LI
->getOperand(0) == V
) return true;
11309 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
)) {
11310 if (SI
->getOperand(1) == V
) return true;
11317 Instruction
*InstCombiner::visitLoadInst(LoadInst
&LI
) {
11318 Value
*Op
= LI
.getOperand(0);
11320 // Attempt to improve the alignment.
11321 unsigned KnownAlign
=
11322 GetOrEnforceKnownAlignment(Op
, TD
->getPrefTypeAlignment(LI
.getType()));
11324 (LI
.getAlignment() == 0 ? TD
->getABITypeAlignment(LI
.getType()) :
11325 LI
.getAlignment()))
11326 LI
.setAlignment(KnownAlign
);
11328 // load (cast X) --> cast (load X) iff safe
11329 if (isa
<CastInst
>(Op
))
11330 if (Instruction
*Res
= InstCombineLoadCast(*this, LI
, TD
))
11333 // None of the following transforms are legal for volatile loads.
11334 if (LI
.isVolatile()) return 0;
11336 // Do really simple store-to-load forwarding and load CSE, to catch cases
11337 // where there are several consequtive memory accesses to the same location,
11338 // separated by a few arithmetic operations.
11339 BasicBlock::iterator BBI
= &LI
;
11340 if (Value
*AvailableVal
= FindAvailableLoadedValue(Op
, LI
.getParent(), BBI
,6))
11341 return ReplaceInstUsesWith(LI
, AvailableVal
);
11343 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Op
)) {
11344 const Value
*GEPI0
= GEPI
->getOperand(0);
11345 // TODO: Consider a target hook for valid address spaces for this xform.
11346 if (isa
<ConstantPointerNull
>(GEPI0
) &&
11347 cast
<PointerType
>(GEPI0
->getType())->getAddressSpace() == 0) {
11348 // Insert a new store to null instruction before the load to indicate
11349 // that this code is not reachable. We do this instead of inserting
11350 // an unreachable instruction directly because we cannot modify the
11352 new StoreInst(UndefValue::get(LI
.getType()),
11353 Constant::getNullValue(Op
->getType()), &LI
);
11354 return ReplaceInstUsesWith(LI
, UndefValue::get(LI
.getType()));
11358 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
11359 // load null/undef -> undef
11360 // TODO: Consider a target hook for valid address spaces for this xform.
11361 if (isa
<UndefValue
>(C
) || (C
->isNullValue() &&
11362 cast
<PointerType
>(Op
->getType())->getAddressSpace() == 0)) {
11363 // Insert a new store to null instruction before the load to indicate that
11364 // this code is not reachable. We do this instead of inserting an
11365 // unreachable instruction directly because we cannot modify the CFG.
11366 new StoreInst(UndefValue::get(LI
.getType()),
11367 Constant::getNullValue(Op
->getType()), &LI
);
11368 return ReplaceInstUsesWith(LI
, UndefValue::get(LI
.getType()));
11371 // Instcombine load (constant global) into the value loaded.
11372 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Op
))
11373 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
11374 return ReplaceInstUsesWith(LI
, GV
->getInitializer());
11376 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
11377 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Op
)) {
11378 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
11379 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0)))
11380 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
11382 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
))
11383 return ReplaceInstUsesWith(LI
, V
);
11384 if (CE
->getOperand(0)->isNullValue()) {
11385 // Insert a new store to null instruction before the load to indicate
11386 // that this code is not reachable. We do this instead of inserting
11387 // an unreachable instruction directly because we cannot modify the
11389 new StoreInst(UndefValue::get(LI
.getType()),
11390 Constant::getNullValue(Op
->getType()), &LI
);
11391 return ReplaceInstUsesWith(LI
, UndefValue::get(LI
.getType()));
11394 } else if (CE
->isCast()) {
11395 if (Instruction
*Res
= InstCombineLoadCast(*this, LI
, TD
))
11401 // If this load comes from anywhere in a constant global, and if the global
11402 // is all undef or zero, we know what it loads.
11403 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Op
->getUnderlyingObject())){
11404 if (GV
->isConstant() && GV
->hasDefinitiveInitializer()) {
11405 if (GV
->getInitializer()->isNullValue())
11406 return ReplaceInstUsesWith(LI
, Constant::getNullValue(LI
.getType()));
11407 else if (isa
<UndefValue
>(GV
->getInitializer()))
11408 return ReplaceInstUsesWith(LI
, UndefValue::get(LI
.getType()));
11412 if (Op
->hasOneUse()) {
11413 // Change select and PHI nodes to select values instead of addresses: this
11414 // helps alias analysis out a lot, allows many others simplifications, and
11415 // exposes redundancy in the code.
11417 // Note that we cannot do the transformation unless we know that the
11418 // introduced loads cannot trap! Something like this is valid as long as
11419 // the condition is always false: load (select bool %C, int* null, int* %G),
11420 // but it would not be valid if we transformed it to load from null
11421 // unconditionally.
11423 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op
)) {
11424 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
11425 if (isSafeToLoadUnconditionally(SI
->getOperand(1), SI
) &&
11426 isSafeToLoadUnconditionally(SI
->getOperand(2), SI
)) {
11427 Value
*V1
= InsertNewInstBefore(new LoadInst(SI
->getOperand(1),
11428 SI
->getOperand(1)->getName()+".val"), LI
);
11429 Value
*V2
= InsertNewInstBefore(new LoadInst(SI
->getOperand(2),
11430 SI
->getOperand(2)->getName()+".val"), LI
);
11431 return SelectInst::Create(SI
->getCondition(), V1
, V2
);
11434 // load (select (cond, null, P)) -> load P
11435 if (Constant
*C
= dyn_cast
<Constant
>(SI
->getOperand(1)))
11436 if (C
->isNullValue()) {
11437 LI
.setOperand(0, SI
->getOperand(2));
11441 // load (select (cond, P, null)) -> load P
11442 if (Constant
*C
= dyn_cast
<Constant
>(SI
->getOperand(2)))
11443 if (C
->isNullValue()) {
11444 LI
.setOperand(0, SI
->getOperand(1));
11452 /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
11453 /// when possible. This makes it generally easy to do alias analysis and/or
11454 /// SROA/mem2reg of the memory object.
11455 static Instruction
*InstCombineStoreToCast(InstCombiner
&IC
, StoreInst
&SI
) {
11456 User
*CI
= cast
<User
>(SI
.getOperand(1));
11457 Value
*CastOp
= CI
->getOperand(0);
11459 const Type
*DestPTy
= cast
<PointerType
>(CI
->getType())->getElementType();
11460 const PointerType
*SrcTy
= dyn_cast
<PointerType
>(CastOp
->getType());
11461 if (SrcTy
== 0) return 0;
11463 const Type
*SrcPTy
= SrcTy
->getElementType();
11465 if (!DestPTy
->isInteger() && !isa
<PointerType
>(DestPTy
))
11468 /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
11469 /// to its first element. This allows us to handle things like:
11470 /// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
11471 /// on 32-bit hosts.
11472 SmallVector
<Value
*, 4> NewGEPIndices
;
11474 // If the source is an array, the code below will not succeed. Check to
11475 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
11477 if (isa
<ArrayType
>(SrcPTy
) || isa
<StructType
>(SrcPTy
)) {
11478 // Index through pointer.
11479 Constant
*Zero
= Constant::getNullValue(Type::Int32Ty
);
11480 NewGEPIndices
.push_back(Zero
);
11483 if (const StructType
*STy
= dyn_cast
<StructType
>(SrcPTy
)) {
11484 if (!STy
->getNumElements()) /* Struct can be empty {} */
11486 NewGEPIndices
.push_back(Zero
);
11487 SrcPTy
= STy
->getElementType(0);
11488 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(SrcPTy
)) {
11489 NewGEPIndices
.push_back(Zero
);
11490 SrcPTy
= ATy
->getElementType();
11496 SrcTy
= PointerType::get(SrcPTy
, SrcTy
->getAddressSpace());
11499 if (!SrcPTy
->isInteger() && !isa
<PointerType
>(SrcPTy
))
11502 // If the pointers point into different address spaces or if they point to
11503 // values with different sizes, we can't do the transformation.
11504 if (SrcTy
->getAddressSpace() !=
11505 cast
<PointerType
>(CI
->getType())->getAddressSpace() ||
11506 IC
.getTargetData().getTypeSizeInBits(SrcPTy
) !=
11507 IC
.getTargetData().getTypeSizeInBits(DestPTy
))
11510 // Okay, we are casting from one integer or pointer type to another of
11511 // the same size. Instead of casting the pointer before
11512 // the store, cast the value to be stored.
11514 Value
*SIOp0
= SI
.getOperand(0);
11515 Instruction::CastOps opcode
= Instruction::BitCast
;
11516 const Type
* CastSrcTy
= SIOp0
->getType();
11517 const Type
* CastDstTy
= SrcPTy
;
11518 if (isa
<PointerType
>(CastDstTy
)) {
11519 if (CastSrcTy
->isInteger())
11520 opcode
= Instruction::IntToPtr
;
11521 } else if (isa
<IntegerType
>(CastDstTy
)) {
11522 if (isa
<PointerType
>(SIOp0
->getType()))
11523 opcode
= Instruction::PtrToInt
;
11526 // SIOp0 is a pointer to aggregate and this is a store to the first field,
11527 // emit a GEP to index into its first field.
11528 if (!NewGEPIndices
.empty()) {
11529 if (Constant
*C
= dyn_cast
<Constant
>(CastOp
))
11530 CastOp
= ConstantExpr::getGetElementPtr(C
, &NewGEPIndices
[0],
11531 NewGEPIndices
.size());
11533 CastOp
= IC
.InsertNewInstBefore(
11534 GetElementPtrInst::Create(CastOp
, NewGEPIndices
.begin(),
11535 NewGEPIndices
.end()), SI
);
11538 if (Constant
*C
= dyn_cast
<Constant
>(SIOp0
))
11539 NewCast
= ConstantExpr::getCast(opcode
, C
, CastDstTy
);
11541 NewCast
= IC
.InsertNewInstBefore(
11542 CastInst::Create(opcode
, SIOp0
, CastDstTy
, SIOp0
->getName()+".c"),
11544 return new StoreInst(NewCast
, CastOp
);
11547 /// equivalentAddressValues - Test if A and B will obviously have the same
11548 /// value. This includes recognizing that %t0 and %t1 will have the same
11549 /// value in code like this:
11550 /// %t0 = getelementptr \@a, 0, 3
11551 /// store i32 0, i32* %t0
11552 /// %t1 = getelementptr \@a, 0, 3
11553 /// %t2 = load i32* %t1
11555 static bool equivalentAddressValues(Value
*A
, Value
*B
) {
11556 // Test if the values are trivially equivalent.
11557 if (A
== B
) return true;
11559 // Test if the values come form identical arithmetic instructions.
11560 if (isa
<BinaryOperator
>(A
) ||
11561 isa
<CastInst
>(A
) ||
11563 isa
<GetElementPtrInst
>(A
))
11564 if (Instruction
*BI
= dyn_cast
<Instruction
>(B
))
11565 if (cast
<Instruction
>(A
)->isIdenticalTo(BI
))
11568 // Otherwise they may not be equivalent.
11572 // If this instruction has two uses, one of which is a llvm.dbg.declare,
11573 // return the llvm.dbg.declare.
11574 DbgDeclareInst
*InstCombiner::hasOneUsePlusDeclare(Value
*V
) {
11575 if (!V
->hasNUses(2))
11577 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end();
11579 if (DbgDeclareInst
*DI
= dyn_cast
<DbgDeclareInst
>(UI
))
11581 if (isa
<BitCastInst
>(UI
) && UI
->hasOneUse()) {
11582 if (DbgDeclareInst
*DI
= dyn_cast
<DbgDeclareInst
>(UI
->use_begin()))
11589 Instruction
*InstCombiner::visitStoreInst(StoreInst
&SI
) {
11590 Value
*Val
= SI
.getOperand(0);
11591 Value
*Ptr
= SI
.getOperand(1);
11593 if (isa
<UndefValue
>(Ptr
)) { // store X, undef -> noop (even if volatile)
11594 EraseInstFromFunction(SI
);
11599 // If the RHS is an alloca with a single use, zapify the store, making the
11601 // If the RHS is an alloca with a two uses, the other one being a
11602 // llvm.dbg.declare, zapify the store and the declare, making the
11603 // alloca dead. We must do this to prevent declare's from affecting
11605 if (!SI
.isVolatile()) {
11606 if (Ptr
->hasOneUse()) {
11607 if (isa
<AllocaInst
>(Ptr
)) {
11608 EraseInstFromFunction(SI
);
11612 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
11613 if (isa
<AllocaInst
>(GEP
->getOperand(0))) {
11614 if (GEP
->getOperand(0)->hasOneUse()) {
11615 EraseInstFromFunction(SI
);
11619 if (DbgDeclareInst
*DI
= hasOneUsePlusDeclare(GEP
->getOperand(0))) {
11620 EraseInstFromFunction(*DI
);
11621 EraseInstFromFunction(SI
);
11628 if (DbgDeclareInst
*DI
= hasOneUsePlusDeclare(Ptr
)) {
11629 EraseInstFromFunction(*DI
);
11630 EraseInstFromFunction(SI
);
11636 // Attempt to improve the alignment.
11637 unsigned KnownAlign
=
11638 GetOrEnforceKnownAlignment(Ptr
, TD
->getPrefTypeAlignment(Val
->getType()));
11640 (SI
.getAlignment() == 0 ? TD
->getABITypeAlignment(Val
->getType()) :
11641 SI
.getAlignment()))
11642 SI
.setAlignment(KnownAlign
);
11644 // Do really simple DSE, to catch cases where there are several consecutive
11645 // stores to the same location, separated by a few arithmetic operations. This
11646 // situation often occurs with bitfield accesses.
11647 BasicBlock::iterator BBI
= &SI
;
11648 for (unsigned ScanInsts
= 6; BBI
!= SI
.getParent()->begin() && ScanInsts
;
11651 // Don't count debug info directives, lest they affect codegen,
11652 // and we skip pointer-to-pointer bitcasts, which are NOPs.
11653 // It is necessary for correctness to skip those that feed into a
11654 // llvm.dbg.declare, as these are not present when debugging is off.
11655 if (isa
<DbgInfoIntrinsic
>(BBI
) ||
11656 (isa
<BitCastInst
>(BBI
) && isa
<PointerType
>(BBI
->getType()))) {
11661 if (StoreInst
*PrevSI
= dyn_cast
<StoreInst
>(BBI
)) {
11662 // Prev store isn't volatile, and stores to the same location?
11663 if (!PrevSI
->isVolatile() &&equivalentAddressValues(PrevSI
->getOperand(1),
11664 SI
.getOperand(1))) {
11667 EraseInstFromFunction(*PrevSI
);
11673 // If this is a load, we have to stop. However, if the loaded value is from
11674 // the pointer we're loading and is producing the pointer we're storing,
11675 // then *this* store is dead (X = load P; store X -> P).
11676 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
11677 if (LI
== Val
&& equivalentAddressValues(LI
->getOperand(0), Ptr
) &&
11678 !SI
.isVolatile()) {
11679 EraseInstFromFunction(SI
);
11683 // Otherwise, this is a load from some other location. Stores before it
11684 // may not be dead.
11688 // Don't skip over loads or things that can modify memory.
11689 if (BBI
->mayWriteToMemory() || BBI
->mayReadFromMemory())
11694 if (SI
.isVolatile()) return 0; // Don't hack volatile stores.
11696 // store X, null -> turns into 'unreachable' in SimplifyCFG
11697 if (isa
<ConstantPointerNull
>(Ptr
)) {
11698 if (!isa
<UndefValue
>(Val
)) {
11699 SI
.setOperand(0, UndefValue::get(Val
->getType()));
11700 if (Instruction
*U
= dyn_cast
<Instruction
>(Val
))
11701 AddToWorkList(U
); // Dropped a use.
11704 return 0; // Do not modify these!
11707 // store undef, Ptr -> noop
11708 if (isa
<UndefValue
>(Val
)) {
11709 EraseInstFromFunction(SI
);
11714 // If the pointer destination is a cast, see if we can fold the cast into the
11716 if (isa
<CastInst
>(Ptr
))
11717 if (Instruction
*Res
= InstCombineStoreToCast(*this, SI
))
11719 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
11721 if (Instruction
*Res
= InstCombineStoreToCast(*this, SI
))
11725 // If this store is the last instruction in the basic block (possibly
11726 // excepting debug info instructions and the pointer bitcasts that feed
11727 // into them), and if the block ends with an unconditional branch, try
11728 // to move it to the successor block.
11732 } while (isa
<DbgInfoIntrinsic
>(BBI
) ||
11733 (isa
<BitCastInst
>(BBI
) && isa
<PointerType
>(BBI
->getType())));
11734 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BBI
))
11735 if (BI
->isUnconditional())
11736 if (SimplifyStoreAtEndOfBlock(SI
))
11737 return 0; // xform done!
11742 /// SimplifyStoreAtEndOfBlock - Turn things like:
11743 /// if () { *P = v1; } else { *P = v2 }
11744 /// into a phi node with a store in the successor.
11746 /// Simplify things like:
11747 /// *P = v1; if () { *P = v2; }
11748 /// into a phi node with a store in the successor.
11750 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst
&SI
) {
11751 BasicBlock
*StoreBB
= SI
.getParent();
11753 // Check to see if the successor block has exactly two incoming edges. If
11754 // so, see if the other predecessor contains a store to the same location.
11755 // if so, insert a PHI node (if needed) and move the stores down.
11756 BasicBlock
*DestBB
= StoreBB
->getTerminator()->getSuccessor(0);
11758 // Determine whether Dest has exactly two predecessors and, if so, compute
11759 // the other predecessor.
11760 pred_iterator PI
= pred_begin(DestBB
);
11761 BasicBlock
*OtherBB
= 0;
11762 if (*PI
!= StoreBB
)
11765 if (PI
== pred_end(DestBB
))
11768 if (*PI
!= StoreBB
) {
11773 if (++PI
!= pred_end(DestBB
))
11776 // Bail out if all the relevant blocks aren't distinct (this can happen,
11777 // for example, if SI is in an infinite loop)
11778 if (StoreBB
== DestBB
|| OtherBB
== DestBB
)
11781 // Verify that the other block ends in a branch and is not otherwise empty.
11782 BasicBlock::iterator BBI
= OtherBB
->getTerminator();
11783 BranchInst
*OtherBr
= dyn_cast
<BranchInst
>(BBI
);
11784 if (!OtherBr
|| BBI
== OtherBB
->begin())
11787 // If the other block ends in an unconditional branch, check for the 'if then
11788 // else' case. there is an instruction before the branch.
11789 StoreInst
*OtherStore
= 0;
11790 if (OtherBr
->isUnconditional()) {
11792 // Skip over debugging info.
11793 while (isa
<DbgInfoIntrinsic
>(BBI
) ||
11794 (isa
<BitCastInst
>(BBI
) && isa
<PointerType
>(BBI
->getType()))) {
11795 if (BBI
==OtherBB
->begin())
11799 // If this isn't a store, or isn't a store to the same location, bail out.
11800 OtherStore
= dyn_cast
<StoreInst
>(BBI
);
11801 if (!OtherStore
|| OtherStore
->getOperand(1) != SI
.getOperand(1))
11804 // Otherwise, the other block ended with a conditional branch. If one of the
11805 // destinations is StoreBB, then we have the if/then case.
11806 if (OtherBr
->getSuccessor(0) != StoreBB
&&
11807 OtherBr
->getSuccessor(1) != StoreBB
)
11810 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
11811 // if/then triangle. See if there is a store to the same ptr as SI that
11812 // lives in OtherBB.
11814 // Check to see if we find the matching store.
11815 if ((OtherStore
= dyn_cast
<StoreInst
>(BBI
))) {
11816 if (OtherStore
->getOperand(1) != SI
.getOperand(1))
11820 // If we find something that may be using or overwriting the stored
11821 // value, or if we run out of instructions, we can't do the xform.
11822 if (BBI
->mayReadFromMemory() || BBI
->mayWriteToMemory() ||
11823 BBI
== OtherBB
->begin())
11827 // In order to eliminate the store in OtherBr, we have to
11828 // make sure nothing reads or overwrites the stored value in
11830 for (BasicBlock::iterator I
= StoreBB
->begin(); &*I
!= &SI
; ++I
) {
11831 // FIXME: This should really be AA driven.
11832 if (I
->mayReadFromMemory() || I
->mayWriteToMemory())
11837 // Insert a PHI node now if we need it.
11838 Value
*MergedVal
= OtherStore
->getOperand(0);
11839 if (MergedVal
!= SI
.getOperand(0)) {
11840 PHINode
*PN
= PHINode::Create(MergedVal
->getType(), "storemerge");
11841 PN
->reserveOperandSpace(2);
11842 PN
->addIncoming(SI
.getOperand(0), SI
.getParent());
11843 PN
->addIncoming(OtherStore
->getOperand(0), OtherBB
);
11844 MergedVal
= InsertNewInstBefore(PN
, DestBB
->front());
11847 // Advance to a place where it is safe to insert the new store and
11849 BBI
= DestBB
->getFirstNonPHI();
11850 InsertNewInstBefore(new StoreInst(MergedVal
, SI
.getOperand(1),
11851 OtherStore
->isVolatile()), *BBI
);
11853 // Nuke the old stores.
11854 EraseInstFromFunction(SI
);
11855 EraseInstFromFunction(*OtherStore
);
11861 Instruction
*InstCombiner::visitBranchInst(BranchInst
&BI
) {
11862 // Change br (not X), label True, label False to: br X, label False, True
11864 BasicBlock
*TrueDest
;
11865 BasicBlock
*FalseDest
;
11866 if (match(&BI
, m_Br(m_Not(m_Value(X
)), TrueDest
, FalseDest
)) &&
11867 !isa
<Constant
>(X
)) {
11868 // Swap Destinations and condition...
11869 BI
.setCondition(X
);
11870 BI
.setSuccessor(0, FalseDest
);
11871 BI
.setSuccessor(1, TrueDest
);
11875 // Cannonicalize fcmp_one -> fcmp_oeq
11876 FCmpInst::Predicate FPred
; Value
*Y
;
11877 if (match(&BI
, m_Br(m_FCmp(FPred
, m_Value(X
), m_Value(Y
)),
11878 TrueDest
, FalseDest
)))
11879 if ((FPred
== FCmpInst::FCMP_ONE
|| FPred
== FCmpInst::FCMP_OLE
||
11880 FPred
== FCmpInst::FCMP_OGE
) && BI
.getCondition()->hasOneUse()) {
11881 FCmpInst
*I
= cast
<FCmpInst
>(BI
.getCondition());
11882 FCmpInst::Predicate NewPred
= FCmpInst::getInversePredicate(FPred
);
11883 Instruction
*NewSCC
= new FCmpInst(NewPred
, X
, Y
, "", I
);
11884 NewSCC
->takeName(I
);
11885 // Swap Destinations and condition...
11886 BI
.setCondition(NewSCC
);
11887 BI
.setSuccessor(0, FalseDest
);
11888 BI
.setSuccessor(1, TrueDest
);
11889 RemoveFromWorkList(I
);
11890 I
->eraseFromParent();
11891 AddToWorkList(NewSCC
);
11895 // Cannonicalize icmp_ne -> icmp_eq
11896 ICmpInst::Predicate IPred
;
11897 if (match(&BI
, m_Br(m_ICmp(IPred
, m_Value(X
), m_Value(Y
)),
11898 TrueDest
, FalseDest
)))
11899 if ((IPred
== ICmpInst::ICMP_NE
|| IPred
== ICmpInst::ICMP_ULE
||
11900 IPred
== ICmpInst::ICMP_SLE
|| IPred
== ICmpInst::ICMP_UGE
||
11901 IPred
== ICmpInst::ICMP_SGE
) && BI
.getCondition()->hasOneUse()) {
11902 ICmpInst
*I
= cast
<ICmpInst
>(BI
.getCondition());
11903 ICmpInst::Predicate NewPred
= ICmpInst::getInversePredicate(IPred
);
11904 Instruction
*NewSCC
= new ICmpInst(NewPred
, X
, Y
, "", I
);
11905 NewSCC
->takeName(I
);
11906 // Swap Destinations and condition...
11907 BI
.setCondition(NewSCC
);
11908 BI
.setSuccessor(0, FalseDest
);
11909 BI
.setSuccessor(1, TrueDest
);
11910 RemoveFromWorkList(I
);
11911 I
->eraseFromParent();;
11912 AddToWorkList(NewSCC
);
11919 Instruction
*InstCombiner::visitSwitchInst(SwitchInst
&SI
) {
11920 Value
*Cond
= SI
.getCondition();
11921 if (Instruction
*I
= dyn_cast
<Instruction
>(Cond
)) {
11922 if (I
->getOpcode() == Instruction::Add
)
11923 if (ConstantInt
*AddRHS
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
11924 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
11925 for (unsigned i
= 2, e
= SI
.getNumOperands(); i
!= e
; i
+= 2)
11926 SI
.setOperand(i
,ConstantExpr::getSub(cast
<Constant
>(SI
.getOperand(i
)),
11928 SI
.setOperand(0, I
->getOperand(0));
11936 Instruction
*InstCombiner::visitExtractValueInst(ExtractValueInst
&EV
) {
11937 Value
*Agg
= EV
.getAggregateOperand();
11939 if (!EV
.hasIndices())
11940 return ReplaceInstUsesWith(EV
, Agg
);
11942 if (Constant
*C
= dyn_cast
<Constant
>(Agg
)) {
11943 if (isa
<UndefValue
>(C
))
11944 return ReplaceInstUsesWith(EV
, UndefValue::get(EV
.getType()));
11946 if (isa
<ConstantAggregateZero
>(C
))
11947 return ReplaceInstUsesWith(EV
, Constant::getNullValue(EV
.getType()));
11949 if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
)) {
11950 // Extract the element indexed by the first index out of the constant
11951 Value
*V
= C
->getOperand(*EV
.idx_begin());
11952 if (EV
.getNumIndices() > 1)
11953 // Extract the remaining indices out of the constant indexed by the
11955 return ExtractValueInst::Create(V
, EV
.idx_begin() + 1, EV
.idx_end());
11957 return ReplaceInstUsesWith(EV
, V
);
11959 return 0; // Can't handle other constants
11961 if (InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(Agg
)) {
11962 // We're extracting from an insertvalue instruction, compare the indices
11963 const unsigned *exti
, *exte
, *insi
, *inse
;
11964 for (exti
= EV
.idx_begin(), insi
= IV
->idx_begin(),
11965 exte
= EV
.idx_end(), inse
= IV
->idx_end();
11966 exti
!= exte
&& insi
!= inse
;
11968 if (*insi
!= *exti
)
11969 // The insert and extract both reference distinctly different elements.
11970 // This means the extract is not influenced by the insert, and we can
11971 // replace the aggregate operand of the extract with the aggregate
11972 // operand of the insert. i.e., replace
11973 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
11974 // %E = extractvalue { i32, { i32 } } %I, 0
11976 // %E = extractvalue { i32, { i32 } } %A, 0
11977 return ExtractValueInst::Create(IV
->getAggregateOperand(),
11978 EV
.idx_begin(), EV
.idx_end());
11980 if (exti
== exte
&& insi
== inse
)
11981 // Both iterators are at the end: Index lists are identical. Replace
11982 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11983 // %C = extractvalue { i32, { i32 } } %B, 1, 0
11985 return ReplaceInstUsesWith(EV
, IV
->getInsertedValueOperand());
11986 if (exti
== exte
) {
11987 // The extract list is a prefix of the insert list. i.e. replace
11988 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
11989 // %E = extractvalue { i32, { i32 } } %I, 1
11991 // %X = extractvalue { i32, { i32 } } %A, 1
11992 // %E = insertvalue { i32 } %X, i32 42, 0
11993 // by switching the order of the insert and extract (though the
11994 // insertvalue should be left in, since it may have other uses).
11995 Value
*NewEV
= InsertNewInstBefore(
11996 ExtractValueInst::Create(IV
->getAggregateOperand(),
11997 EV
.idx_begin(), EV
.idx_end()),
11999 return InsertValueInst::Create(NewEV
, IV
->getInsertedValueOperand(),
12003 // The insert list is a prefix of the extract list
12004 // We can simply remove the common indices from the extract and make it
12005 // operate on the inserted value instead of the insertvalue result.
12007 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
12008 // %E = extractvalue { i32, { i32 } } %I, 1, 0
12010 // %E extractvalue { i32 } { i32 42 }, 0
12011 return ExtractValueInst::Create(IV
->getInsertedValueOperand(),
12014 // Can't simplify extracts from other values. Note that nested extracts are
12015 // already simplified implicitely by the above (extract ( extract (insert) )
12016 // will be translated into extract ( insert ( extract ) ) first and then just
12017 // the value inserted, if appropriate).
12021 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
12022 /// is to leave as a vector operation.
12023 static bool CheapToScalarize(Value
*V
, bool isConstant
) {
12024 if (isa
<ConstantAggregateZero
>(V
))
12026 if (ConstantVector
*C
= dyn_cast
<ConstantVector
>(V
)) {
12027 if (isConstant
) return true;
12028 // If all elts are the same, we can extract.
12029 Constant
*Op0
= C
->getOperand(0);
12030 for (unsigned i
= 1; i
< C
->getNumOperands(); ++i
)
12031 if (C
->getOperand(i
) != Op0
)
12035 Instruction
*I
= dyn_cast
<Instruction
>(V
);
12036 if (!I
) return false;
12038 // Insert element gets simplified to the inserted element or is deleted if
12039 // this is constant idx extract element and its a constant idx insertelt.
12040 if (I
->getOpcode() == Instruction::InsertElement
&& isConstant
&&
12041 isa
<ConstantInt
>(I
->getOperand(2)))
12043 if (I
->getOpcode() == Instruction::Load
&& I
->hasOneUse())
12045 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
))
12046 if (BO
->hasOneUse() &&
12047 (CheapToScalarize(BO
->getOperand(0), isConstant
) ||
12048 CheapToScalarize(BO
->getOperand(1), isConstant
)))
12050 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
12051 if (CI
->hasOneUse() &&
12052 (CheapToScalarize(CI
->getOperand(0), isConstant
) ||
12053 CheapToScalarize(CI
->getOperand(1), isConstant
)))
12059 /// Read and decode a shufflevector mask.
12061 /// It turns undef elements into values that are larger than the number of
12062 /// elements in the input.
12063 static std::vector
<unsigned> getShuffleMask(const ShuffleVectorInst
*SVI
) {
12064 unsigned NElts
= SVI
->getType()->getNumElements();
12065 if (isa
<ConstantAggregateZero
>(SVI
->getOperand(2)))
12066 return std::vector
<unsigned>(NElts
, 0);
12067 if (isa
<UndefValue
>(SVI
->getOperand(2)))
12068 return std::vector
<unsigned>(NElts
, 2*NElts
);
12070 std::vector
<unsigned> Result
;
12071 const ConstantVector
*CP
= cast
<ConstantVector
>(SVI
->getOperand(2));
12072 for (User::const_op_iterator i
= CP
->op_begin(), e
= CP
->op_end(); i
!=e
; ++i
)
12073 if (isa
<UndefValue
>(*i
))
12074 Result
.push_back(NElts
*2); // undef -> 8
12076 Result
.push_back(cast
<ConstantInt
>(*i
)->getZExtValue());
12080 /// FindScalarElement - Given a vector and an element number, see if the scalar
12081 /// value is already around as a register, for example if it were inserted then
12082 /// extracted from the vector.
12083 static Value
*FindScalarElement(Value
*V
, unsigned EltNo
) {
12084 assert(isa
<VectorType
>(V
->getType()) && "Not looking at a vector?");
12085 const VectorType
*PTy
= cast
<VectorType
>(V
->getType());
12086 unsigned Width
= PTy
->getNumElements();
12087 if (EltNo
>= Width
) // Out of range access.
12088 return UndefValue::get(PTy
->getElementType());
12090 if (isa
<UndefValue
>(V
))
12091 return UndefValue::get(PTy
->getElementType());
12092 else if (isa
<ConstantAggregateZero
>(V
))
12093 return Constant::getNullValue(PTy
->getElementType());
12094 else if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(V
))
12095 return CP
->getOperand(EltNo
);
12096 else if (InsertElementInst
*III
= dyn_cast
<InsertElementInst
>(V
)) {
12097 // If this is an insert to a variable element, we don't know what it is.
12098 if (!isa
<ConstantInt
>(III
->getOperand(2)))
12100 unsigned IIElt
= cast
<ConstantInt
>(III
->getOperand(2))->getZExtValue();
12102 // If this is an insert to the element we are looking for, return the
12104 if (EltNo
== IIElt
)
12105 return III
->getOperand(1);
12107 // Otherwise, the insertelement doesn't modify the value, recurse on its
12109 return FindScalarElement(III
->getOperand(0), EltNo
);
12110 } else if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(V
)) {
12111 unsigned LHSWidth
=
12112 cast
<VectorType
>(SVI
->getOperand(0)->getType())->getNumElements();
12113 unsigned InEl
= getShuffleMask(SVI
)[EltNo
];
12114 if (InEl
< LHSWidth
)
12115 return FindScalarElement(SVI
->getOperand(0), InEl
);
12116 else if (InEl
< LHSWidth
*2)
12117 return FindScalarElement(SVI
->getOperand(1), InEl
- LHSWidth
);
12119 return UndefValue::get(PTy
->getElementType());
12122 // Otherwise, we don't know.
12126 Instruction
*InstCombiner::visitExtractElementInst(ExtractElementInst
&EI
) {
12127 // If vector val is undef, replace extract with scalar undef.
12128 if (isa
<UndefValue
>(EI
.getOperand(0)))
12129 return ReplaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
12131 // If vector val is constant 0, replace extract with scalar 0.
12132 if (isa
<ConstantAggregateZero
>(EI
.getOperand(0)))
12133 return ReplaceInstUsesWith(EI
, Constant::getNullValue(EI
.getType()));
12135 if (ConstantVector
*C
= dyn_cast
<ConstantVector
>(EI
.getOperand(0))) {
12136 // If vector val is constant with all elements the same, replace EI with
12137 // that element. When the elements are not identical, we cannot replace yet
12138 // (we do that below, but only when the index is constant).
12139 Constant
*op0
= C
->getOperand(0);
12140 for (unsigned i
= 1; i
< C
->getNumOperands(); ++i
)
12141 if (C
->getOperand(i
) != op0
) {
12146 return ReplaceInstUsesWith(EI
, op0
);
12149 // If extracting a specified index from the vector, see if we can recursively
12150 // find a previously computed scalar that was inserted into the vector.
12151 if (ConstantInt
*IdxC
= dyn_cast
<ConstantInt
>(EI
.getOperand(1))) {
12152 unsigned IndexVal
= IdxC
->getZExtValue();
12153 unsigned VectorWidth
=
12154 cast
<VectorType
>(EI
.getOperand(0)->getType())->getNumElements();
12156 // If this is extracting an invalid index, turn this into undef, to avoid
12157 // crashing the code below.
12158 if (IndexVal
>= VectorWidth
)
12159 return ReplaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
12161 // This instruction only demands the single element from the input vector.
12162 // If the input vector has a single use, simplify it based on this use
12164 if (EI
.getOperand(0)->hasOneUse() && VectorWidth
!= 1) {
12165 APInt
UndefElts(VectorWidth
, 0);
12166 APInt
DemandedMask(VectorWidth
, 1 << IndexVal
);
12167 if (Value
*V
= SimplifyDemandedVectorElts(EI
.getOperand(0),
12168 DemandedMask
, UndefElts
)) {
12169 EI
.setOperand(0, V
);
12174 if (Value
*Elt
= FindScalarElement(EI
.getOperand(0), IndexVal
))
12175 return ReplaceInstUsesWith(EI
, Elt
);
12177 // If the this extractelement is directly using a bitcast from a vector of
12178 // the same number of elements, see if we can find the source element from
12179 // it. In this case, we will end up needing to bitcast the scalars.
12180 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(EI
.getOperand(0))) {
12181 if (const VectorType
*VT
=
12182 dyn_cast
<VectorType
>(BCI
->getOperand(0)->getType()))
12183 if (VT
->getNumElements() == VectorWidth
)
12184 if (Value
*Elt
= FindScalarElement(BCI
->getOperand(0), IndexVal
))
12185 return new BitCastInst(Elt
, EI
.getType());
12189 if (Instruction
*I
= dyn_cast
<Instruction
>(EI
.getOperand(0))) {
12190 if (I
->hasOneUse()) {
12191 // Push extractelement into predecessor operation if legal and
12192 // profitable to do so
12193 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
12194 bool isConstantElt
= isa
<ConstantInt
>(EI
.getOperand(1));
12195 if (CheapToScalarize(BO
, isConstantElt
)) {
12196 ExtractElementInst
*newEI0
=
12197 new ExtractElementInst(BO
->getOperand(0), EI
.getOperand(1),
12198 EI
.getName()+".lhs");
12199 ExtractElementInst
*newEI1
=
12200 new ExtractElementInst(BO
->getOperand(1), EI
.getOperand(1),
12201 EI
.getName()+".rhs");
12202 InsertNewInstBefore(newEI0
, EI
);
12203 InsertNewInstBefore(newEI1
, EI
);
12204 return BinaryOperator::Create(BO
->getOpcode(), newEI0
, newEI1
);
12206 } else if (isa
<LoadInst
>(I
)) {
12208 cast
<PointerType
>(I
->getOperand(0)->getType())->getAddressSpace();
12209 Value
*Ptr
= InsertBitCastBefore(I
->getOperand(0),
12210 PointerType::get(EI
.getType(), AS
),EI
);
12211 GetElementPtrInst
*GEP
=
12212 GetElementPtrInst::Create(Ptr
, EI
.getOperand(1), I
->getName()+".gep");
12213 InsertNewInstBefore(GEP
, EI
);
12214 return new LoadInst(GEP
);
12217 if (InsertElementInst
*IE
= dyn_cast
<InsertElementInst
>(I
)) {
12218 // Extracting the inserted element?
12219 if (IE
->getOperand(2) == EI
.getOperand(1))
12220 return ReplaceInstUsesWith(EI
, IE
->getOperand(1));
12221 // If the inserted and extracted elements are constants, they must not
12222 // be the same value, extract from the pre-inserted value instead.
12223 if (isa
<Constant
>(IE
->getOperand(2)) &&
12224 isa
<Constant
>(EI
.getOperand(1))) {
12225 AddUsesToWorkList(EI
);
12226 EI
.setOperand(0, IE
->getOperand(0));
12229 } else if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(I
)) {
12230 // If this is extracting an element from a shufflevector, figure out where
12231 // it came from and extract from the appropriate input element instead.
12232 if (ConstantInt
*Elt
= dyn_cast
<ConstantInt
>(EI
.getOperand(1))) {
12233 unsigned SrcIdx
= getShuffleMask(SVI
)[Elt
->getZExtValue()];
12235 unsigned LHSWidth
=
12236 cast
<VectorType
>(SVI
->getOperand(0)->getType())->getNumElements();
12238 if (SrcIdx
< LHSWidth
)
12239 Src
= SVI
->getOperand(0);
12240 else if (SrcIdx
< LHSWidth
*2) {
12241 SrcIdx
-= LHSWidth
;
12242 Src
= SVI
->getOperand(1);
12244 return ReplaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
12246 return new ExtractElementInst(Src
, SrcIdx
);
12253 /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
12254 /// elements from either LHS or RHS, return the shuffle mask and true.
12255 /// Otherwise, return false.
12256 static bool CollectSingleShuffleElements(Value
*V
, Value
*LHS
, Value
*RHS
,
12257 std::vector
<Constant
*> &Mask
) {
12258 assert(V
->getType() == LHS
->getType() && V
->getType() == RHS
->getType() &&
12259 "Invalid CollectSingleShuffleElements");
12260 unsigned NumElts
= cast
<VectorType
>(V
->getType())->getNumElements();
12262 if (isa
<UndefValue
>(V
)) {
12263 Mask
.assign(NumElts
, UndefValue::get(Type::Int32Ty
));
12265 } else if (V
== LHS
) {
12266 for (unsigned i
= 0; i
!= NumElts
; ++i
)
12267 Mask
.push_back(ConstantInt::get(Type::Int32Ty
, i
));
12269 } else if (V
== RHS
) {
12270 for (unsigned i
= 0; i
!= NumElts
; ++i
)
12271 Mask
.push_back(ConstantInt::get(Type::Int32Ty
, i
+NumElts
));
12273 } else if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
12274 // If this is an insert of an extract from some other vector, include it.
12275 Value
*VecOp
= IEI
->getOperand(0);
12276 Value
*ScalarOp
= IEI
->getOperand(1);
12277 Value
*IdxOp
= IEI
->getOperand(2);
12279 if (!isa
<ConstantInt
>(IdxOp
))
12281 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
12283 if (isa
<UndefValue
>(ScalarOp
)) { // inserting undef into vector.
12284 // Okay, we can handle this if the vector we are insertinting into is
12285 // transitively ok.
12286 if (CollectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
12287 // If so, update the mask to reflect the inserted undef.
12288 Mask
[InsertedIdx
] = UndefValue::get(Type::Int32Ty
);
12291 } else if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)){
12292 if (isa
<ConstantInt
>(EI
->getOperand(1)) &&
12293 EI
->getOperand(0)->getType() == V
->getType()) {
12294 unsigned ExtractedIdx
=
12295 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
12297 // This must be extracting from either LHS or RHS.
12298 if (EI
->getOperand(0) == LHS
|| EI
->getOperand(0) == RHS
) {
12299 // Okay, we can handle this if the vector we are insertinting into is
12300 // transitively ok.
12301 if (CollectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
12302 // If so, update the mask to reflect the inserted value.
12303 if (EI
->getOperand(0) == LHS
) {
12304 Mask
[InsertedIdx
% NumElts
] =
12305 ConstantInt::get(Type::Int32Ty
, ExtractedIdx
);
12307 assert(EI
->getOperand(0) == RHS
);
12308 Mask
[InsertedIdx
% NumElts
] =
12309 ConstantInt::get(Type::Int32Ty
, ExtractedIdx
+NumElts
);
12318 // TODO: Handle shufflevector here!
12323 /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
12324 /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
12325 /// that computes V and the LHS value of the shuffle.
12326 static Value
*CollectShuffleElements(Value
*V
, std::vector
<Constant
*> &Mask
,
12328 assert(isa
<VectorType
>(V
->getType()) &&
12329 (RHS
== 0 || V
->getType() == RHS
->getType()) &&
12330 "Invalid shuffle!");
12331 unsigned NumElts
= cast
<VectorType
>(V
->getType())->getNumElements();
12333 if (isa
<UndefValue
>(V
)) {
12334 Mask
.assign(NumElts
, UndefValue::get(Type::Int32Ty
));
12336 } else if (isa
<ConstantAggregateZero
>(V
)) {
12337 Mask
.assign(NumElts
, ConstantInt::get(Type::Int32Ty
, 0));
12339 } else if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
12340 // If this is an insert of an extract from some other vector, include it.
12341 Value
*VecOp
= IEI
->getOperand(0);
12342 Value
*ScalarOp
= IEI
->getOperand(1);
12343 Value
*IdxOp
= IEI
->getOperand(2);
12345 if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)) {
12346 if (isa
<ConstantInt
>(EI
->getOperand(1)) && isa
<ConstantInt
>(IdxOp
) &&
12347 EI
->getOperand(0)->getType() == V
->getType()) {
12348 unsigned ExtractedIdx
=
12349 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
12350 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
12352 // Either the extracted from or inserted into vector must be RHSVec,
12353 // otherwise we'd end up with a shuffle of three inputs.
12354 if (EI
->getOperand(0) == RHS
|| RHS
== 0) {
12355 RHS
= EI
->getOperand(0);
12356 Value
*V
= CollectShuffleElements(VecOp
, Mask
, RHS
);
12357 Mask
[InsertedIdx
% NumElts
] =
12358 ConstantInt::get(Type::Int32Ty
, NumElts
+ExtractedIdx
);
12362 if (VecOp
== RHS
) {
12363 Value
*V
= CollectShuffleElements(EI
->getOperand(0), Mask
, RHS
);
12364 // Everything but the extracted element is replaced with the RHS.
12365 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
12366 if (i
!= InsertedIdx
)
12367 Mask
[i
] = ConstantInt::get(Type::Int32Ty
, NumElts
+i
);
12372 // If this insertelement is a chain that comes from exactly these two
12373 // vectors, return the vector and the effective shuffle.
12374 if (CollectSingleShuffleElements(IEI
, EI
->getOperand(0), RHS
, Mask
))
12375 return EI
->getOperand(0);
12380 // TODO: Handle shufflevector here!
12382 // Otherwise, can't do anything fancy. Return an identity vector.
12383 for (unsigned i
= 0; i
!= NumElts
; ++i
)
12384 Mask
.push_back(ConstantInt::get(Type::Int32Ty
, i
));
12388 Instruction
*InstCombiner::visitInsertElementInst(InsertElementInst
&IE
) {
12389 Value
*VecOp
= IE
.getOperand(0);
12390 Value
*ScalarOp
= IE
.getOperand(1);
12391 Value
*IdxOp
= IE
.getOperand(2);
12393 // Inserting an undef or into an undefined place, remove this.
12394 if (isa
<UndefValue
>(ScalarOp
) || isa
<UndefValue
>(IdxOp
))
12395 ReplaceInstUsesWith(IE
, VecOp
);
12397 // If the inserted element was extracted from some other vector, and if the
12398 // indexes are constant, try to turn this into a shufflevector operation.
12399 if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)) {
12400 if (isa
<ConstantInt
>(EI
->getOperand(1)) && isa
<ConstantInt
>(IdxOp
) &&
12401 EI
->getOperand(0)->getType() == IE
.getType()) {
12402 unsigned NumVectorElts
= IE
.getType()->getNumElements();
12403 unsigned ExtractedIdx
=
12404 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
12405 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
12407 if (ExtractedIdx
>= NumVectorElts
) // Out of range extract.
12408 return ReplaceInstUsesWith(IE
, VecOp
);
12410 if (InsertedIdx
>= NumVectorElts
) // Out of range insert.
12411 return ReplaceInstUsesWith(IE
, UndefValue::get(IE
.getType()));
12413 // If we are extracting a value from a vector, then inserting it right
12414 // back into the same place, just use the input vector.
12415 if (EI
->getOperand(0) == VecOp
&& ExtractedIdx
== InsertedIdx
)
12416 return ReplaceInstUsesWith(IE
, VecOp
);
12418 // We could theoretically do this for ANY input. However, doing so could
12419 // turn chains of insertelement instructions into a chain of shufflevector
12420 // instructions, and right now we do not merge shufflevectors. As such,
12421 // only do this in a situation where it is clear that there is benefit.
12422 if (isa
<UndefValue
>(VecOp
) || isa
<ConstantAggregateZero
>(VecOp
)) {
12423 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
12424 // the values of VecOp, except then one read from EIOp0.
12425 // Build a new shuffle mask.
12426 std::vector
<Constant
*> Mask
;
12427 if (isa
<UndefValue
>(VecOp
))
12428 Mask
.assign(NumVectorElts
, UndefValue::get(Type::Int32Ty
));
12430 assert(isa
<ConstantAggregateZero
>(VecOp
) && "Unknown thing");
12431 Mask
.assign(NumVectorElts
, ConstantInt::get(Type::Int32Ty
,
12434 Mask
[InsertedIdx
] = ConstantInt::get(Type::Int32Ty
, ExtractedIdx
);
12435 return new ShuffleVectorInst(EI
->getOperand(0), VecOp
,
12436 ConstantVector::get(Mask
));
12439 // If this insertelement isn't used by some other insertelement, turn it
12440 // (and any insertelements it points to), into one big shuffle.
12441 if (!IE
.hasOneUse() || !isa
<InsertElementInst
>(IE
.use_back())) {
12442 std::vector
<Constant
*> Mask
;
12444 Value
*LHS
= CollectShuffleElements(&IE
, Mask
, RHS
);
12445 if (RHS
== 0) RHS
= UndefValue::get(LHS
->getType());
12446 // We now have a shuffle of LHS, RHS, Mask.
12447 return new ShuffleVectorInst(LHS
, RHS
, ConstantVector::get(Mask
));
12456 Instruction
*InstCombiner::visitShuffleVectorInst(ShuffleVectorInst
&SVI
) {
12457 Value
*LHS
= SVI
.getOperand(0);
12458 Value
*RHS
= SVI
.getOperand(1);
12459 std::vector
<unsigned> Mask
= getShuffleMask(&SVI
);
12461 bool MadeChange
= false;
12463 // Undefined shuffle mask -> undefined value.
12464 if (isa
<UndefValue
>(SVI
.getOperand(2)))
12465 return ReplaceInstUsesWith(SVI
, UndefValue::get(SVI
.getType()));
12467 unsigned VWidth
= cast
<VectorType
>(SVI
.getType())->getNumElements();
12469 if (VWidth
!= cast
<VectorType
>(LHS
->getType())->getNumElements())
12472 APInt
UndefElts(VWidth
, 0);
12473 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
12474 if (SimplifyDemandedVectorElts(&SVI
, AllOnesEltMask
, UndefElts
)) {
12475 LHS
= SVI
.getOperand(0);
12476 RHS
= SVI
.getOperand(1);
12480 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
12481 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
12482 if (LHS
== RHS
|| isa
<UndefValue
>(LHS
)) {
12483 if (isa
<UndefValue
>(LHS
) && LHS
== RHS
) {
12484 // shuffle(undef,undef,mask) -> undef.
12485 return ReplaceInstUsesWith(SVI
, LHS
);
12488 // Remap any references to RHS to use LHS.
12489 std::vector
<Constant
*> Elts
;
12490 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
12491 if (Mask
[i
] >= 2*e
)
12492 Elts
.push_back(UndefValue::get(Type::Int32Ty
));
12494 if ((Mask
[i
] >= e
&& isa
<UndefValue
>(RHS
)) ||
12495 (Mask
[i
] < e
&& isa
<UndefValue
>(LHS
))) {
12496 Mask
[i
] = 2*e
; // Turn into undef.
12497 Elts
.push_back(UndefValue::get(Type::Int32Ty
));
12499 Mask
[i
] = Mask
[i
] % e
; // Force to LHS.
12500 Elts
.push_back(ConstantInt::get(Type::Int32Ty
, Mask
[i
]));
12504 SVI
.setOperand(0, SVI
.getOperand(1));
12505 SVI
.setOperand(1, UndefValue::get(RHS
->getType()));
12506 SVI
.setOperand(2, ConstantVector::get(Elts
));
12507 LHS
= SVI
.getOperand(0);
12508 RHS
= SVI
.getOperand(1);
12512 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
12513 bool isLHSID
= true, isRHSID
= true;
12515 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
12516 if (Mask
[i
] >= e
*2) continue; // Ignore undef values.
12517 // Is this an identity shuffle of the LHS value?
12518 isLHSID
&= (Mask
[i
] == i
);
12520 // Is this an identity shuffle of the RHS value?
12521 isRHSID
&= (Mask
[i
]-e
== i
);
12524 // Eliminate identity shuffles.
12525 if (isLHSID
) return ReplaceInstUsesWith(SVI
, LHS
);
12526 if (isRHSID
) return ReplaceInstUsesWith(SVI
, RHS
);
12528 // If the LHS is a shufflevector itself, see if we can combine it with this
12529 // one without producing an unusual shuffle. Here we are really conservative:
12530 // we are absolutely afraid of producing a shuffle mask not in the input
12531 // program, because the code gen may not be smart enough to turn a merged
12532 // shuffle into two specific shuffles: it may produce worse code. As such,
12533 // we only merge two shuffles if the result is one of the two input shuffle
12534 // masks. In this case, merging the shuffles just removes one instruction,
12535 // which we know is safe. This is good for things like turning:
12536 // (splat(splat)) -> splat.
12537 if (ShuffleVectorInst
*LHSSVI
= dyn_cast
<ShuffleVectorInst
>(LHS
)) {
12538 if (isa
<UndefValue
>(RHS
)) {
12539 std::vector
<unsigned> LHSMask
= getShuffleMask(LHSSVI
);
12541 std::vector
<unsigned> NewMask
;
12542 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
)
12543 if (Mask
[i
] >= 2*e
)
12544 NewMask
.push_back(2*e
);
12546 NewMask
.push_back(LHSMask
[Mask
[i
]]);
12548 // If the result mask is equal to the src shuffle or this shuffle mask, do
12549 // the replacement.
12550 if (NewMask
== LHSMask
|| NewMask
== Mask
) {
12551 unsigned LHSInNElts
=
12552 cast
<VectorType
>(LHSSVI
->getOperand(0)->getType())->getNumElements();
12553 std::vector
<Constant
*> Elts
;
12554 for (unsigned i
= 0, e
= NewMask
.size(); i
!= e
; ++i
) {
12555 if (NewMask
[i
] >= LHSInNElts
*2) {
12556 Elts
.push_back(UndefValue::get(Type::Int32Ty
));
12558 Elts
.push_back(ConstantInt::get(Type::Int32Ty
, NewMask
[i
]));
12561 return new ShuffleVectorInst(LHSSVI
->getOperand(0),
12562 LHSSVI
->getOperand(1),
12563 ConstantVector::get(Elts
));
12568 return MadeChange
? &SVI
: 0;
12574 /// TryToSinkInstruction - Try to move the specified instruction from its
12575 /// current block into the beginning of DestBlock, which can only happen if it's
12576 /// safe to move the instruction past all of the instructions between it and the
12577 /// end of its block.
12578 static bool TryToSinkInstruction(Instruction
*I
, BasicBlock
*DestBlock
) {
12579 assert(I
->hasOneUse() && "Invariants didn't hold!");
12581 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
12582 if (isa
<PHINode
>(I
) || I
->mayWriteToMemory() || isa
<TerminatorInst
>(I
))
12585 // Do not sink alloca instructions out of the entry block.
12586 if (isa
<AllocaInst
>(I
) && I
->getParent() ==
12587 &DestBlock
->getParent()->getEntryBlock())
12590 // We can only sink load instructions if there is nothing between the load and
12591 // the end of block that could change the value.
12592 if (I
->mayReadFromMemory()) {
12593 for (BasicBlock::iterator Scan
= I
, E
= I
->getParent()->end();
12595 if (Scan
->mayWriteToMemory())
12599 BasicBlock::iterator InsertPos
= DestBlock
->getFirstNonPHI();
12601 CopyPrecedingStopPoint(I
, InsertPos
);
12602 I
->moveBefore(InsertPos
);
12608 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
12609 /// all reachable code to the worklist.
12611 /// This has a couple of tricks to make the code faster and more powerful. In
12612 /// particular, we constant fold and DCE instructions as we go, to avoid adding
12613 /// them to the worklist (this significantly speeds up instcombine on code where
12614 /// many instructions are dead or constant). Additionally, if we find a branch
12615 /// whose condition is a known constant, we only visit the reachable successors.
12617 static void AddReachableCodeToWorklist(BasicBlock
*BB
,
12618 SmallPtrSet
<BasicBlock
*, 64> &Visited
,
12620 const TargetData
*TD
) {
12621 SmallVector
<BasicBlock
*, 256> Worklist
;
12622 Worklist
.push_back(BB
);
12624 while (!Worklist
.empty()) {
12625 BB
= Worklist
.back();
12626 Worklist
.pop_back();
12628 // We have now visited this block! If we've already been here, ignore it.
12629 if (!Visited
.insert(BB
)) continue;
12631 DbgInfoIntrinsic
*DBI_Prev
= NULL
;
12632 for (BasicBlock::iterator BBI
= BB
->begin(), E
= BB
->end(); BBI
!= E
; ) {
12633 Instruction
*Inst
= BBI
++;
12635 // DCE instruction if trivially dead.
12636 if (isInstructionTriviallyDead(Inst
)) {
12638 DOUT
<< "IC: DCE: " << *Inst
;
12639 Inst
->eraseFromParent();
12643 // ConstantProp instruction if trivially constant.
12644 if (Constant
*C
= ConstantFoldInstruction(Inst
, TD
)) {
12645 DOUT
<< "IC: ConstFold to: " << *C
<< " from: " << *Inst
;
12646 Inst
->replaceAllUsesWith(C
);
12648 Inst
->eraseFromParent();
12652 // If there are two consecutive llvm.dbg.stoppoint calls then
12653 // it is likely that the optimizer deleted code in between these
12655 DbgInfoIntrinsic
*DBI_Next
= dyn_cast
<DbgInfoIntrinsic
>(Inst
);
12658 && DBI_Prev
->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
12659 && DBI_Next
->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
) {
12660 IC
.RemoveFromWorkList(DBI_Prev
);
12661 DBI_Prev
->eraseFromParent();
12663 DBI_Prev
= DBI_Next
;
12668 IC
.AddToWorkList(Inst
);
12671 // Recursively visit successors. If this is a branch or switch on a
12672 // constant, only visit the reachable successor.
12673 TerminatorInst
*TI
= BB
->getTerminator();
12674 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
12675 if (BI
->isConditional() && isa
<ConstantInt
>(BI
->getCondition())) {
12676 bool CondVal
= cast
<ConstantInt
>(BI
->getCondition())->getZExtValue();
12677 BasicBlock
*ReachableBB
= BI
->getSuccessor(!CondVal
);
12678 Worklist
.push_back(ReachableBB
);
12681 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
12682 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(SI
->getCondition())) {
12683 // See if this is an explicit destination.
12684 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
)
12685 if (SI
->getCaseValue(i
) == Cond
) {
12686 BasicBlock
*ReachableBB
= SI
->getSuccessor(i
);
12687 Worklist
.push_back(ReachableBB
);
12691 // Otherwise it is the default destination.
12692 Worklist
.push_back(SI
->getSuccessor(0));
12697 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
12698 Worklist
.push_back(TI
->getSuccessor(i
));
12702 bool InstCombiner::DoOneIteration(Function
&F
, unsigned Iteration
) {
12703 bool Changed
= false;
12704 TD
= &getAnalysis
<TargetData
>();
12706 DEBUG(DOUT
<< "\n\nINSTCOMBINE ITERATION #" << Iteration
<< " on "
12707 << F
.getNameStr() << "\n");
12710 // Do a depth-first traversal of the function, populate the worklist with
12711 // the reachable instructions. Ignore blocks that are not reachable. Keep
12712 // track of which blocks we visit.
12713 SmallPtrSet
<BasicBlock
*, 64> Visited
;
12714 AddReachableCodeToWorklist(F
.begin(), Visited
, *this, TD
);
12716 // Do a quick scan over the function. If we find any blocks that are
12717 // unreachable, remove any instructions inside of them. This prevents
12718 // the instcombine code from having to deal with some bad special cases.
12719 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
12720 if (!Visited
.count(BB
)) {
12721 Instruction
*Term
= BB
->getTerminator();
12722 while (Term
!= BB
->begin()) { // Remove instrs bottom-up
12723 BasicBlock::iterator I
= Term
; --I
;
12725 DOUT
<< "IC: DCE: " << *I
;
12726 // A debug intrinsic shouldn't force another iteration if we weren't
12727 // going to do one without it.
12728 if (!isa
<DbgInfoIntrinsic
>(I
)) {
12732 if (!I
->use_empty())
12733 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
12734 I
->eraseFromParent();
12739 while (!Worklist
.empty()) {
12740 Instruction
*I
= RemoveOneFromWorkList();
12741 if (I
== 0) continue; // skip null values.
12743 // Check to see if we can DCE the instruction.
12744 if (isInstructionTriviallyDead(I
)) {
12745 // Add operands to the worklist.
12746 if (I
->getNumOperands() < 4)
12747 AddUsesToWorkList(*I
);
12750 DOUT
<< "IC: DCE: " << *I
;
12752 I
->eraseFromParent();
12753 RemoveFromWorkList(I
);
12758 // Instruction isn't dead, see if we can constant propagate it.
12759 if (Constant
*C
= ConstantFoldInstruction(I
, TD
)) {
12760 DOUT
<< "IC: ConstFold to: " << *C
<< " from: " << *I
;
12762 // Add operands to the worklist.
12763 AddUsesToWorkList(*I
);
12764 ReplaceInstUsesWith(*I
, C
);
12767 I
->eraseFromParent();
12768 RemoveFromWorkList(I
);
12773 if (TD
&& I
->getType()->getTypeID() == Type::VoidTyID
) {
12774 // See if we can constant fold its operands.
12775 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
12776 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(i
))
12777 if (Constant
*NewC
= ConstantFoldConstantExpression(CE
, TD
))
12784 // See if we can trivially sink this instruction to a successor basic block.
12785 if (I
->hasOneUse()) {
12786 BasicBlock
*BB
= I
->getParent();
12787 BasicBlock
*UserParent
= cast
<Instruction
>(I
->use_back())->getParent();
12788 if (UserParent
!= BB
) {
12789 bool UserIsSuccessor
= false;
12790 // See if the user is one of our successors.
12791 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
)
12792 if (*SI
== UserParent
) {
12793 UserIsSuccessor
= true;
12797 // If the user is one of our immediate successors, and if that successor
12798 // only has us as a predecessors (we'd have to split the critical edge
12799 // otherwise), we can keep going.
12800 if (UserIsSuccessor
&& !isa
<PHINode
>(I
->use_back()) &&
12801 next(pred_begin(UserParent
)) == pred_end(UserParent
))
12802 // Okay, the CFG is simple enough, try to sink this instruction.
12803 Changed
|= TryToSinkInstruction(I
, UserParent
);
12807 // Now that we have an instruction, try combining it to simplify it...
12811 DEBUG(std::ostringstream SS
; I
->print(SS
); OrigI
= SS
.str(););
12812 if (Instruction
*Result
= visit(*I
)) {
12814 // Should we replace the old instruction with a new one?
12816 DOUT
<< "IC: Old = " << *I
12817 << " New = " << *Result
;
12819 // Everything uses the new instruction now.
12820 I
->replaceAllUsesWith(Result
);
12822 // Push the new instruction and any users onto the worklist.
12823 AddToWorkList(Result
);
12824 AddUsersToWorkList(*Result
);
12826 // Move the name to the new instruction first.
12827 Result
->takeName(I
);
12829 // Insert the new instruction into the basic block...
12830 BasicBlock
*InstParent
= I
->getParent();
12831 BasicBlock::iterator InsertPos
= I
;
12833 if (!isa
<PHINode
>(Result
)) // If combining a PHI, don't insert
12834 while (isa
<PHINode
>(InsertPos
)) // middle of a block of PHIs.
12837 InstParent
->getInstList().insert(InsertPos
, Result
);
12839 // Make sure that we reprocess all operands now that we reduced their
12841 AddUsesToWorkList(*I
);
12843 // Instructions can end up on the worklist more than once. Make sure
12844 // we do not process an instruction that has been deleted.
12845 RemoveFromWorkList(I
);
12847 // Erase the old instruction.
12848 InstParent
->getInstList().erase(I
);
12851 DOUT
<< "IC: Mod = " << OrigI
12852 << " New = " << *I
;
12855 // If the instruction was modified, it's possible that it is now dead.
12856 // if so, remove it.
12857 if (isInstructionTriviallyDead(I
)) {
12858 // Make sure we process all operands now that we are reducing their
12860 AddUsesToWorkList(*I
);
12862 // Instructions may end up in the worklist more than once. Erase all
12863 // occurrences of this instruction.
12864 RemoveFromWorkList(I
);
12865 I
->eraseFromParent();
12868 AddUsersToWorkList(*I
);
12875 assert(WorklistMap
.empty() && "Worklist empty, but map not?");
12877 // Do an explicit clear, this shrinks the map if needed.
12878 WorklistMap
.clear();
12883 bool InstCombiner::runOnFunction(Function
&F
) {
12884 MustPreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
12886 bool EverMadeChange
= false;
12888 // Iterate while there is work to do.
12889 unsigned Iteration
= 0;
12890 while (DoOneIteration(F
, Iteration
++))
12891 EverMadeChange
= true;
12892 return EverMadeChange
;
12895 FunctionPass
*llvm::createInstructionCombiningPass() {
12896 return new InstCombiner();