Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / Transforms / Scalar / LICM.cpp
blob102146945a0bb7bc56dadaf700cf8b7d1feeab91
1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion, attempting to remove as much
11 // code from the body of a loop as possible. It does this by either hoisting
12 // code into the preheader block, or by sinking code to the exit blocks if it is
13 // safe. This pass also promotes must-aliased memory locations in the loop to
14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
16 // This pass uses alias analysis for two purposes:
18 // 1. Moving loop invariant loads and calls out of loops. If we can determine
19 // that a load or call inside of a loop never aliases anything stored to,
20 // we can hoist it or sink it like any other instruction.
21 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
22 // the loop, we try to move the store to happen AFTER the loop instead of
23 // inside of the loop. This can only happen if a few conditions are true:
24 // A. The pointer stored through is loop invariant
25 // B. There are no stores or loads in the loop which _may_ alias the
26 // pointer. There are no calls in the loop which mod/ref the pointer.
27 // If these conditions are true, we can promote the loads and stores in the
28 // loop of the pointer to use a temporary alloca'd variable. We then use
29 // the mem2reg functionality to construct the appropriate SSA form for the
30 // variable.
32 //===----------------------------------------------------------------------===//
34 #define DEBUG_TYPE "licm"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Constants.h"
37 #include "llvm/DerivedTypes.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/Target/TargetData.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/LoopPass.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AliasSetTracker.h"
44 #include "llvm/Analysis/Dominators.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
47 #include "llvm/Support/CFG.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/ADT/Statistic.h"
52 #include <algorithm>
53 using namespace llvm;
55 STATISTIC(NumSunk , "Number of instructions sunk out of loop");
56 STATISTIC(NumHoisted , "Number of instructions hoisted out of loop");
57 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59 STATISTIC(NumPromoted , "Number of memory locations promoted to registers");
61 static cl::opt<bool>
62 DisablePromotion("disable-licm-promotion", cl::Hidden,
63 cl::desc("Disable memory promotion in LICM pass"));
65 // This feature is currently disabled by default because CodeGen is not yet
66 // capable of rematerializing these constants in PIC mode, so it can lead to
67 // degraded performance. Compile test/CodeGen/X86/remat-constant.ll with
68 // -relocation-model=pic to see an example of this.
69 static cl::opt<bool>
70 EnableLICMConstantMotion("enable-licm-constant-variables", cl::Hidden,
71 cl::desc("Enable hoisting/sinking of constant "
72 "global variables"));
74 namespace {
75 struct VISIBILITY_HIDDEN LICM : public LoopPass {
76 static char ID; // Pass identification, replacement for typeid
77 LICM() : LoopPass(&ID) {}
79 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81 /// This transformation requires natural loop information & requires that
82 /// loop preheaders be inserted into the CFG...
83 ///
84 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85 AU.setPreservesCFG();
86 AU.addRequiredID(LoopSimplifyID);
87 AU.addRequired<LoopInfo>();
88 AU.addRequired<DominatorTree>();
89 AU.addRequired<DominanceFrontier>(); // For scalar promotion (mem2reg)
90 AU.addRequired<AliasAnalysis>();
91 AU.addPreserved<ScalarEvolution>();
92 AU.addPreserved<DominanceFrontier>();
95 bool doFinalization() {
96 // Free the values stored in the map
97 for (std::map<Loop *, AliasSetTracker *>::iterator
98 I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
99 delete I->second;
101 LoopToAliasMap.clear();
102 return false;
105 private:
106 // Various analyses that we use...
107 AliasAnalysis *AA; // Current AliasAnalysis information
108 LoopInfo *LI; // Current LoopInfo
109 DominatorTree *DT; // Dominator Tree for the current Loop...
110 DominanceFrontier *DF; // Current Dominance Frontier
112 // State that is updated as we process loops
113 bool Changed; // Set to true when we change anything.
114 BasicBlock *Preheader; // The preheader block of the current loop...
115 Loop *CurLoop; // The current loop we are working on...
116 AliasSetTracker *CurAST; // AliasSet information for the current loop...
117 std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
119 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
120 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
122 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
123 /// set.
124 void deleteAnalysisValue(Value *V, Loop *L);
126 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
127 /// dominated by the specified block, and that are in the current loop) in
128 /// reverse depth first order w.r.t the DominatorTree. This allows us to
129 /// visit uses before definitions, allowing us to sink a loop body in one
130 /// pass without iteration.
132 void SinkRegion(DomTreeNode *N);
134 /// HoistRegion - Walk the specified region of the CFG (defined by all
135 /// blocks dominated by the specified block, and that are in the current
136 /// loop) in depth first order w.r.t the DominatorTree. This allows us to
137 /// visit definitions before uses, allowing us to hoist a loop body in one
138 /// pass without iteration.
140 void HoistRegion(DomTreeNode *N);
142 /// inSubLoop - Little predicate that returns true if the specified basic
143 /// block is in a subloop of the current one, not the current one itself.
145 bool inSubLoop(BasicBlock *BB) {
146 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
147 for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
148 if ((*I)->contains(BB))
149 return true; // A subloop actually contains this block!
150 return false;
153 /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
154 /// specified exit block of the loop is dominated by the specified block
155 /// that is in the body of the loop. We use these constraints to
156 /// dramatically limit the amount of the dominator tree that needs to be
157 /// searched.
158 bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
159 BasicBlock *BlockInLoop) const {
160 // If the block in the loop is the loop header, it must be dominated!
161 BasicBlock *LoopHeader = CurLoop->getHeader();
162 if (BlockInLoop == LoopHeader)
163 return true;
165 DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
166 DomTreeNode *IDom = DT->getNode(ExitBlock);
168 // Because the exit block is not in the loop, we know we have to get _at
169 // least_ its immediate dominator.
170 do {
171 // Get next Immediate Dominator.
172 IDom = IDom->getIDom();
174 // If we have got to the header of the loop, then the instructions block
175 // did not dominate the exit node, so we can't hoist it.
176 if (IDom->getBlock() == LoopHeader)
177 return false;
179 } while (IDom != BlockInLoopNode);
181 return true;
184 /// sink - When an instruction is found to only be used outside of the loop,
185 /// this function moves it to the exit blocks and patches up SSA form as
186 /// needed.
188 void sink(Instruction &I);
190 /// hoist - When an instruction is found to only use loop invariant operands
191 /// that is safe to hoist, this instruction is called to do the dirty work.
193 void hoist(Instruction &I);
195 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
196 /// is not a trapping instruction or if it is a trapping instruction and is
197 /// guaranteed to execute.
199 bool isSafeToExecuteUnconditionally(Instruction &I);
201 /// pointerInvalidatedByLoop - Return true if the body of this loop may
202 /// store into the memory location pointed to by V.
204 bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
205 // Check to see if any of the basic blocks in CurLoop invalidate *V.
206 return CurAST->getAliasSetForPointer(V, Size).isMod();
209 bool canSinkOrHoistInst(Instruction &I);
210 bool isLoopInvariantInst(Instruction &I);
211 bool isNotUsedInLoop(Instruction &I);
213 /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
214 /// to scalars as we can.
216 void PromoteValuesInLoop();
218 /// FindPromotableValuesInLoop - Check the current loop for stores to
219 /// definite pointers, which are not loaded and stored through may aliases.
220 /// If these are found, create an alloca for the value, add it to the
221 /// PromotedValues list, and keep track of the mapping from value to
222 /// alloca...
224 void FindPromotableValuesInLoop(
225 std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
226 std::map<Value*, AllocaInst*> &Val2AlMap);
230 char LICM::ID = 0;
231 static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
233 Pass *llvm::createLICMPass() { return new LICM(); }
235 /// Hoist expressions out of the specified loop. Note, alias info for inner
236 /// loop is not preserved so it is not a good idea to run LICM multiple
237 /// times on one loop.
239 bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
240 Changed = false;
242 // Get our Loop and Alias Analysis information...
243 LI = &getAnalysis<LoopInfo>();
244 AA = &getAnalysis<AliasAnalysis>();
245 DF = &getAnalysis<DominanceFrontier>();
246 DT = &getAnalysis<DominatorTree>();
248 CurAST = new AliasSetTracker(*AA);
249 // Collect Alias info from subloops
250 for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
251 LoopItr != LoopItrE; ++LoopItr) {
252 Loop *InnerL = *LoopItr;
253 AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
254 assert (InnerAST && "Where is my AST?");
256 // What if InnerLoop was modified by other passes ?
257 CurAST->add(*InnerAST);
260 CurLoop = L;
262 // Get the preheader block to move instructions into...
263 Preheader = L->getLoopPreheader();
264 assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
266 // Loop over the body of this loop, looking for calls, invokes, and stores.
267 // Because subloops have already been incorporated into AST, we skip blocks in
268 // subloops.
270 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
271 I != E; ++I) {
272 BasicBlock *BB = *I;
273 if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops...
274 CurAST->add(*BB); // Incorporate the specified basic block
277 // We want to visit all of the instructions in this loop... that are not parts
278 // of our subloops (they have already had their invariants hoisted out of
279 // their loop, into this loop, so there is no need to process the BODIES of
280 // the subloops).
282 // Traverse the body of the loop in depth first order on the dominator tree so
283 // that we are guaranteed to see definitions before we see uses. This allows
284 // us to sink instructions in one pass, without iteration. After sinking
285 // instructions, we perform another pass to hoist them out of the loop.
287 SinkRegion(DT->getNode(L->getHeader()));
288 HoistRegion(DT->getNode(L->getHeader()));
290 // Now that all loop invariants have been removed from the loop, promote any
291 // memory references to scalars that we can...
292 if (!DisablePromotion)
293 PromoteValuesInLoop();
295 // Clear out loops state information for the next iteration
296 CurLoop = 0;
297 Preheader = 0;
299 LoopToAliasMap[L] = CurAST;
300 return Changed;
303 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
304 /// dominated by the specified block, and that are in the current loop) in
305 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
306 /// uses before definitions, allowing us to sink a loop body in one pass without
307 /// iteration.
309 void LICM::SinkRegion(DomTreeNode *N) {
310 assert(N != 0 && "Null dominator tree node?");
311 BasicBlock *BB = N->getBlock();
313 // If this subregion is not in the top level loop at all, exit.
314 if (!CurLoop->contains(BB)) return;
316 // We are processing blocks in reverse dfo, so process children first...
317 const std::vector<DomTreeNode*> &Children = N->getChildren();
318 for (unsigned i = 0, e = Children.size(); i != e; ++i)
319 SinkRegion(Children[i]);
321 // Only need to process the contents of this block if it is not part of a
322 // subloop (which would already have been processed).
323 if (inSubLoop(BB)) return;
325 for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
326 Instruction &I = *--II;
328 // Check to see if we can sink this instruction to the exit blocks
329 // of the loop. We can do this if the all users of the instruction are
330 // outside of the loop. In this case, it doesn't even matter if the
331 // operands of the instruction are loop invariant.
333 if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
334 ++II;
335 sink(I);
341 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
342 /// dominated by the specified block, and that are in the current loop) in depth
343 /// first order w.r.t the DominatorTree. This allows us to visit definitions
344 /// before uses, allowing us to hoist a loop body in one pass without iteration.
346 void LICM::HoistRegion(DomTreeNode *N) {
347 assert(N != 0 && "Null dominator tree node?");
348 BasicBlock *BB = N->getBlock();
350 // If this subregion is not in the top level loop at all, exit.
351 if (!CurLoop->contains(BB)) return;
353 // Only need to process the contents of this block if it is not part of a
354 // subloop (which would already have been processed).
355 if (!inSubLoop(BB))
356 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
357 Instruction &I = *II++;
359 // Try hoisting the instruction out to the preheader. We can only do this
360 // if all of the operands of the instruction are loop invariant and if it
361 // is safe to hoist the instruction.
363 if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
364 isSafeToExecuteUnconditionally(I))
365 hoist(I);
368 const std::vector<DomTreeNode*> &Children = N->getChildren();
369 for (unsigned i = 0, e = Children.size(); i != e; ++i)
370 HoistRegion(Children[i]);
373 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
374 /// instruction.
376 bool LICM::canSinkOrHoistInst(Instruction &I) {
377 // Loads have extra constraints we have to verify before we can hoist them.
378 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
379 if (LI->isVolatile())
380 return false; // Don't hoist volatile loads!
382 // Loads from constant memory are always safe to move, even if they end up
383 // in the same alias set as something that ends up being modified.
384 if (EnableLICMConstantMotion &&
385 AA->pointsToConstantMemory(LI->getOperand(0)))
386 return true;
388 // Don't hoist loads which have may-aliased stores in loop.
389 unsigned Size = 0;
390 if (LI->getType()->isSized())
391 Size = AA->getTargetData().getTypeStoreSize(LI->getType());
392 return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
393 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
394 // Handle obvious cases efficiently.
395 AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
396 if (Behavior == AliasAnalysis::DoesNotAccessMemory)
397 return true;
398 else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
399 // If this call only reads from memory and there are no writes to memory
400 // in the loop, we can hoist or sink the call as appropriate.
401 bool FoundMod = false;
402 for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
403 I != E; ++I) {
404 AliasSet &AS = *I;
405 if (!AS.isForwardingAliasSet() && AS.isMod()) {
406 FoundMod = true;
407 break;
410 if (!FoundMod) return true;
413 // FIXME: This should use mod/ref information to see if we can hoist or sink
414 // the call.
416 return false;
419 // Otherwise these instructions are hoistable/sinkable
420 return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
421 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
422 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
423 isa<ShuffleVectorInst>(I);
426 /// isNotUsedInLoop - Return true if the only users of this instruction are
427 /// outside of the loop. If this is true, we can sink the instruction to the
428 /// exit blocks of the loop.
430 bool LICM::isNotUsedInLoop(Instruction &I) {
431 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
432 Instruction *User = cast<Instruction>(*UI);
433 if (PHINode *PN = dyn_cast<PHINode>(User)) {
434 // PHI node uses occur in predecessor blocks!
435 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
436 if (PN->getIncomingValue(i) == &I)
437 if (CurLoop->contains(PN->getIncomingBlock(i)))
438 return false;
439 } else if (CurLoop->contains(User->getParent())) {
440 return false;
443 return true;
447 /// isLoopInvariantInst - Return true if all operands of this instruction are
448 /// loop invariant. We also filter out non-hoistable instructions here just for
449 /// efficiency.
451 bool LICM::isLoopInvariantInst(Instruction &I) {
452 // The instruction is loop invariant if all of its operands are loop-invariant
453 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
454 if (!CurLoop->isLoopInvariant(I.getOperand(i)))
455 return false;
457 // If we got this far, the instruction is loop invariant!
458 return true;
461 /// sink - When an instruction is found to only be used outside of the loop,
462 /// this function moves it to the exit blocks and patches up SSA form as needed.
463 /// This method is guaranteed to remove the original instruction from its
464 /// position, and may either delete it or move it to outside of the loop.
466 void LICM::sink(Instruction &I) {
467 DOUT << "LICM sinking instruction: " << I;
469 SmallVector<BasicBlock*, 8> ExitBlocks;
470 CurLoop->getExitBlocks(ExitBlocks);
472 if (isa<LoadInst>(I)) ++NumMovedLoads;
473 else if (isa<CallInst>(I)) ++NumMovedCalls;
474 ++NumSunk;
475 Changed = true;
477 // The case where there is only a single exit node of this loop is common
478 // enough that we handle it as a special (more efficient) case. It is more
479 // efficient to handle because there are no PHI nodes that need to be placed.
480 if (ExitBlocks.size() == 1) {
481 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
482 // Instruction is not used, just delete it.
483 CurAST->deleteValue(&I);
484 if (!I.use_empty()) // If I has users in unreachable blocks, eliminate.
485 I.replaceAllUsesWith(UndefValue::get(I.getType()));
486 I.eraseFromParent();
487 } else {
488 // Move the instruction to the start of the exit block, after any PHI
489 // nodes in it.
490 I.removeFromParent();
492 BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
493 ExitBlocks[0]->getInstList().insert(InsertPt, &I);
495 } else if (ExitBlocks.empty()) {
496 // The instruction is actually dead if there ARE NO exit blocks.
497 CurAST->deleteValue(&I);
498 if (!I.use_empty()) // If I has users in unreachable blocks, eliminate.
499 I.replaceAllUsesWith(UndefValue::get(I.getType()));
500 I.eraseFromParent();
501 } else {
502 // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
503 // do all of the hard work of inserting PHI nodes as necessary. We convert
504 // the value into a stack object to get it to do this.
506 // Firstly, we create a stack object to hold the value...
507 AllocaInst *AI = 0;
509 if (I.getType() != Type::VoidTy) {
510 AI = new AllocaInst(I.getType(), 0, I.getName(),
511 I.getParent()->getParent()->getEntryBlock().begin());
512 CurAST->add(AI);
515 // Secondly, insert load instructions for each use of the instruction
516 // outside of the loop.
517 while (!I.use_empty()) {
518 Instruction *U = cast<Instruction>(I.use_back());
520 // If the user is a PHI Node, we actually have to insert load instructions
521 // in all predecessor blocks, not in the PHI block itself!
522 if (PHINode *UPN = dyn_cast<PHINode>(U)) {
523 // Only insert into each predecessor once, so that we don't have
524 // different incoming values from the same block!
525 std::map<BasicBlock*, Value*> InsertedBlocks;
526 for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
527 if (UPN->getIncomingValue(i) == &I) {
528 BasicBlock *Pred = UPN->getIncomingBlock(i);
529 Value *&PredVal = InsertedBlocks[Pred];
530 if (!PredVal) {
531 // Insert a new load instruction right before the terminator in
532 // the predecessor block.
533 PredVal = new LoadInst(AI, "", Pred->getTerminator());
534 CurAST->add(cast<LoadInst>(PredVal));
537 UPN->setIncomingValue(i, PredVal);
540 } else {
541 LoadInst *L = new LoadInst(AI, "", U);
542 U->replaceUsesOfWith(&I, L);
543 CurAST->add(L);
547 // Thirdly, insert a copy of the instruction in each exit block of the loop
548 // that is dominated by the instruction, storing the result into the memory
549 // location. Be careful not to insert the instruction into any particular
550 // basic block more than once.
551 std::set<BasicBlock*> InsertedBlocks;
552 BasicBlock *InstOrigBB = I.getParent();
554 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
555 BasicBlock *ExitBlock = ExitBlocks[i];
557 if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
558 // If we haven't already processed this exit block, do so now.
559 if (InsertedBlocks.insert(ExitBlock).second) {
560 // Insert the code after the last PHI node...
561 BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
563 // If this is the first exit block processed, just move the original
564 // instruction, otherwise clone the original instruction and insert
565 // the copy.
566 Instruction *New;
567 if (InsertedBlocks.size() == 1) {
568 I.removeFromParent();
569 ExitBlock->getInstList().insert(InsertPt, &I);
570 New = &I;
571 } else {
572 New = I.clone();
573 CurAST->copyValue(&I, New);
574 if (!I.getName().empty())
575 New->setName(I.getName()+".le");
576 ExitBlock->getInstList().insert(InsertPt, New);
579 // Now that we have inserted the instruction, store it into the alloca
580 if (AI) new StoreInst(New, AI, InsertPt);
585 // If the instruction doesn't dominate any exit blocks, it must be dead.
586 if (InsertedBlocks.empty()) {
587 CurAST->deleteValue(&I);
588 I.eraseFromParent();
591 // Finally, promote the fine value to SSA form.
592 if (AI) {
593 std::vector<AllocaInst*> Allocas;
594 Allocas.push_back(AI);
595 PromoteMemToReg(Allocas, *DT, *DF, CurAST);
600 /// hoist - When an instruction is found to only use loop invariant operands
601 /// that is safe to hoist, this instruction is called to do the dirty work.
603 void LICM::hoist(Instruction &I) {
604 DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
606 // Remove the instruction from its current basic block... but don't delete the
607 // instruction.
608 I.removeFromParent();
610 // Insert the new node in Preheader, before the terminator.
611 Preheader->getInstList().insert(Preheader->getTerminator(), &I);
613 if (isa<LoadInst>(I)) ++NumMovedLoads;
614 else if (isa<CallInst>(I)) ++NumMovedCalls;
615 ++NumHoisted;
616 Changed = true;
619 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
620 /// not a trapping instruction or if it is a trapping instruction and is
621 /// guaranteed to execute.
623 bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
624 // If it is not a trapping instruction, it is always safe to hoist.
625 if (!Inst.isTrapping()) return true;
627 // Otherwise we have to check to make sure that the instruction dominates all
628 // of the exit blocks. If it doesn't, then there is a path out of the loop
629 // which does not execute this instruction, so we can't hoist it.
631 // If the instruction is in the header block for the loop (which is very
632 // common), it is always guaranteed to dominate the exit blocks. Since this
633 // is a common case, and can save some work, check it now.
634 if (Inst.getParent() == CurLoop->getHeader())
635 return true;
637 // It's always safe to load from a global or alloca.
638 if (isa<LoadInst>(Inst))
639 if (isa<AllocationInst>(Inst.getOperand(0)) ||
640 isa<GlobalVariable>(Inst.getOperand(0)))
641 return true;
643 // Get the exit blocks for the current loop.
644 SmallVector<BasicBlock*, 8> ExitBlocks;
645 CurLoop->getExitBlocks(ExitBlocks);
647 // For each exit block, get the DT node and walk up the DT until the
648 // instruction's basic block is found or we exit the loop.
649 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
650 if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
651 return false;
653 return true;
657 /// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
658 /// stores out of the loop and moving loads to before the loop. We do this by
659 /// looping over the stores in the loop, looking for stores to Must pointers
660 /// which are loop invariant. We promote these memory locations to use allocas
661 /// instead. These allocas can easily be raised to register values by the
662 /// PromoteMem2Reg functionality.
664 void LICM::PromoteValuesInLoop() {
665 // PromotedValues - List of values that are promoted out of the loop. Each
666 // value has an alloca instruction for it, and a canonical version of the
667 // pointer.
668 std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
669 std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
671 FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
672 if (ValueToAllocaMap.empty()) return; // If there are values to promote.
674 Changed = true;
675 NumPromoted += PromotedValues.size();
677 std::vector<Value*> PointerValueNumbers;
679 // Emit a copy from the value into the alloca'd value in the loop preheader
680 TerminatorInst *LoopPredInst = Preheader->getTerminator();
681 for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
682 Value *Ptr = PromotedValues[i].second;
684 // If we are promoting a pointer value, update alias information for the
685 // inserted load.
686 Value *LoadValue = 0;
687 if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
688 // Locate a load or store through the pointer, and assign the same value
689 // to LI as we are loading or storing. Since we know that the value is
690 // stored in this loop, this will always succeed.
691 for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
692 UI != E; ++UI)
693 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
694 LoadValue = LI;
695 break;
696 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
697 if (SI->getOperand(1) == Ptr) {
698 LoadValue = SI->getOperand(0);
699 break;
702 assert(LoadValue && "No store through the pointer found!");
703 PointerValueNumbers.push_back(LoadValue); // Remember this for later.
706 // Load from the memory we are promoting.
707 LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
709 if (LoadValue) CurAST->copyValue(LoadValue, LI);
711 // Store into the temporary alloca.
712 new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
715 // Scan the basic blocks in the loop, replacing uses of our pointers with
716 // uses of the allocas in question.
718 for (Loop::block_iterator I = CurLoop->block_begin(),
719 E = CurLoop->block_end(); I != E; ++I) {
720 BasicBlock *BB = *I;
721 // Rewrite all loads and stores in the block of the pointer...
722 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
723 if (LoadInst *L = dyn_cast<LoadInst>(II)) {
724 std::map<Value*, AllocaInst*>::iterator
725 I = ValueToAllocaMap.find(L->getOperand(0));
726 if (I != ValueToAllocaMap.end())
727 L->setOperand(0, I->second); // Rewrite load instruction...
728 } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
729 std::map<Value*, AllocaInst*>::iterator
730 I = ValueToAllocaMap.find(S->getOperand(1));
731 if (I != ValueToAllocaMap.end())
732 S->setOperand(1, I->second); // Rewrite store instruction...
737 // Now that the body of the loop uses the allocas instead of the original
738 // memory locations, insert code to copy the alloca value back into the
739 // original memory location on all exits from the loop. Note that we only
740 // want to insert one copy of the code in each exit block, though the loop may
741 // exit to the same block more than once.
743 SmallPtrSet<BasicBlock*, 16> ProcessedBlocks;
745 SmallVector<BasicBlock*, 8> ExitBlocks;
746 CurLoop->getExitBlocks(ExitBlocks);
747 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
748 if (!ProcessedBlocks.insert(ExitBlocks[i]))
749 continue;
751 // Copy all of the allocas into their memory locations.
752 BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI();
753 Instruction *InsertPos = BI;
754 unsigned PVN = 0;
755 for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
756 // Load from the alloca.
757 LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
759 // If this is a pointer type, update alias info appropriately.
760 if (isa<PointerType>(LI->getType()))
761 CurAST->copyValue(PointerValueNumbers[PVN++], LI);
763 // Store into the memory we promoted.
764 new StoreInst(LI, PromotedValues[i].second, InsertPos);
768 // Now that we have done the deed, use the mem2reg functionality to promote
769 // all of the new allocas we just created into real SSA registers.
771 std::vector<AllocaInst*> PromotedAllocas;
772 PromotedAllocas.reserve(PromotedValues.size());
773 for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
774 PromotedAllocas.push_back(PromotedValues[i].first);
775 PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
778 /// FindPromotableValuesInLoop - Check the current loop for stores to definite
779 /// pointers, which are not loaded and stored through may aliases and are safe
780 /// for promotion. If these are found, create an alloca for the value, add it
781 /// to the PromotedValues list, and keep track of the mapping from value to
782 /// alloca.
783 void LICM::FindPromotableValuesInLoop(
784 std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
785 std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
786 Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
788 // Loop over all of the alias sets in the tracker object.
789 for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
790 I != E; ++I) {
791 AliasSet &AS = *I;
792 // We can promote this alias set if it has a store, if it is a "Must" alias
793 // set, if the pointer is loop invariant, and if we are not eliminating any
794 // volatile loads or stores.
795 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
796 AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
797 continue;
799 assert(!AS.empty() &&
800 "Must alias set should have at least one pointer element in it!");
801 Value *V = AS.begin()->getValue();
803 // Check that all of the pointers in the alias set have the same type. We
804 // cannot (yet) promote a memory location that is loaded and stored in
805 // different sizes.
807 bool PointerOk = true;
808 for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
809 if (V->getType() != I->getValue()->getType()) {
810 PointerOk = false;
811 break;
813 if (!PointerOk)
814 continue;
817 // It isn't safe to promote a load/store from the loop if the load/store is
818 // conditional. For example, turning:
820 // for () { if (c) *P += 1; }
822 // into:
824 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
826 // is not safe, because *P may only be valid to access if 'c' is true.
828 // It is safe to promote P if all uses are direct load/stores and if at
829 // least one is guaranteed to be executed.
830 bool GuaranteedToExecute = false;
831 bool InvalidInst = false;
832 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
833 UI != UE; ++UI) {
834 // Ignore instructions not in this loop.
835 Instruction *Use = dyn_cast<Instruction>(*UI);
836 if (!Use || !CurLoop->contains(Use->getParent()))
837 continue;
839 if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
840 InvalidInst = true;
841 break;
844 if (!GuaranteedToExecute)
845 GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
848 // If there is an non-load/store instruction in the loop, we can't promote
849 // it. If there isn't a guaranteed-to-execute instruction, we can't
850 // promote.
851 if (InvalidInst || !GuaranteedToExecute)
852 continue;
854 const Type *Ty = cast<PointerType>(V->getType())->getElementType();
855 AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
856 PromotedValues.push_back(std::make_pair(AI, V));
858 // Update the AST and alias analysis.
859 CurAST->copyValue(V, AI);
861 for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
862 ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
864 DOUT << "LICM: Promoting value: " << *V << "\n";
868 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
869 void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
870 AliasSetTracker *AST = LoopToAliasMap[L];
871 if (!AST)
872 return;
874 AST->copyValue(From, To);
877 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
878 /// set.
879 void LICM::deleteAnalysisValue(Value *V, Loop *L) {
880 AliasSetTracker *AST = LoopToAliasMap[L];
881 if (!AST)
882 return;
884 AST->deleteValue(V);