Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / Transforms / Scalar / LoopUnswitch.cpp
blob2afb3c8ed7a026b39e4cbf43eef8aa303e16f852
1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
13 // for (...) if (lic)
14 // A for (...)
15 // if (lic) A; B; C
16 // B else
17 // C for (...)
18 // A; C
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/Analysis/ConstantFolding.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include <algorithm>
49 #include <set>
50 using namespace llvm;
52 STATISTIC(NumBranches, "Number of branches unswitched");
53 STATISTIC(NumSwitches, "Number of switches unswitched");
54 STATISTIC(NumSelects , "Number of selects unswitched");
55 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
56 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
58 static cl::opt<unsigned>
59 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
60 cl::init(10), cl::Hidden);
62 namespace {
63 class VISIBILITY_HIDDEN LoopUnswitch : public LoopPass {
64 LoopInfo *LI; // Loop information
65 LPPassManager *LPM;
67 // LoopProcessWorklist - Used to check if second loop needs processing
68 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
69 std::vector<Loop*> LoopProcessWorklist;
70 SmallPtrSet<Value *,8> UnswitchedVals;
72 bool OptimizeForSize;
73 bool redoLoop;
75 Loop *currentLoop;
76 DominanceFrontier *DF;
77 DominatorTree *DT;
78 BasicBlock *loopHeader;
79 BasicBlock *loopPreheader;
81 // LoopBlocks contains all of the basic blocks of the loop, including the
82 // preheader of the loop, the body of the loop, and the exit blocks of the
83 // loop, in that order.
84 std::vector<BasicBlock*> LoopBlocks;
85 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
86 std::vector<BasicBlock*> NewBlocks;
88 public:
89 static char ID; // Pass ID, replacement for typeid
90 explicit LoopUnswitch(bool Os = false) :
91 LoopPass(&ID), OptimizeForSize(Os), redoLoop(false),
92 currentLoop(NULL), DF(NULL), DT(NULL), loopHeader(NULL),
93 loopPreheader(NULL) {}
95 bool runOnLoop(Loop *L, LPPassManager &LPM);
96 bool processCurrentLoop();
98 /// This transformation requires natural loop information & requires that
99 /// loop preheaders be inserted into the CFG...
101 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
102 AU.addRequiredID(LoopSimplifyID);
103 AU.addPreservedID(LoopSimplifyID);
104 AU.addRequired<LoopInfo>();
105 AU.addPreserved<LoopInfo>();
106 AU.addRequiredID(LCSSAID);
107 AU.addPreservedID(LCSSAID);
108 AU.addPreserved<DominatorTree>();
109 AU.addPreserved<DominanceFrontier>();
112 private:
114 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
115 /// remove it.
116 void RemoveLoopFromWorklist(Loop *L) {
117 std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
118 LoopProcessWorklist.end(), L);
119 if (I != LoopProcessWorklist.end())
120 LoopProcessWorklist.erase(I);
123 void initLoopData() {
124 loopHeader = currentLoop->getHeader();
125 loopPreheader = currentLoop->getLoopPreheader();
128 /// Split all of the edges from inside the loop to their exit blocks.
129 /// Update the appropriate Phi nodes as we do so.
130 void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
132 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
133 unsigned getLoopUnswitchCost(Value *LIC);
134 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
135 BasicBlock *ExitBlock);
136 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
138 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
139 Constant *Val, bool isEqual);
141 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
142 BasicBlock *TrueDest,
143 BasicBlock *FalseDest,
144 Instruction *InsertPt);
146 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
147 void RemoveBlockIfDead(BasicBlock *BB,
148 std::vector<Instruction*> &Worklist, Loop *l);
149 void RemoveLoopFromHierarchy(Loop *L);
150 bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
151 BasicBlock **LoopExit = 0);
155 char LoopUnswitch::ID = 0;
156 static RegisterPass<LoopUnswitch> X("loop-unswitch", "Unswitch loops");
158 Pass *llvm::createLoopUnswitchPass(bool Os) {
159 return new LoopUnswitch(Os);
162 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
163 /// invariant in the loop, or has an invariant piece, return the invariant.
164 /// Otherwise, return null.
165 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
166 // Constants should be folded, not unswitched on!
167 if (isa<Constant>(Cond)) return 0;
169 // TODO: Handle: br (VARIANT|INVARIANT).
170 // TODO: Hoist simple expressions out of loops.
171 if (L->isLoopInvariant(Cond)) return Cond;
173 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
174 if (BO->getOpcode() == Instruction::And ||
175 BO->getOpcode() == Instruction::Or) {
176 // If either the left or right side is invariant, we can unswitch on this,
177 // which will cause the branch to go away in one loop and the condition to
178 // simplify in the other one.
179 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
180 return LHS;
181 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
182 return RHS;
185 return 0;
188 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
189 LI = &getAnalysis<LoopInfo>();
190 LPM = &LPM_Ref;
191 DF = getAnalysisIfAvailable<DominanceFrontier>();
192 DT = getAnalysisIfAvailable<DominatorTree>();
193 currentLoop = L;
194 Function *F = currentLoop->getHeader()->getParent();
195 bool Changed = false;
196 do {
197 assert(currentLoop->isLCSSAForm());
198 redoLoop = false;
199 Changed |= processCurrentLoop();
200 } while(redoLoop);
202 if (Changed) {
203 // FIXME: Reconstruct dom info, because it is not preserved properly.
204 if (DT)
205 DT->runOnFunction(*F);
206 if (DF)
207 DF->runOnFunction(*F);
209 return Changed;
212 /// processCurrentLoop - Do actual work and unswitch loop if possible
213 /// and profitable.
214 bool LoopUnswitch::processCurrentLoop() {
215 bool Changed = false;
217 // Loop over all of the basic blocks in the loop. If we find an interior
218 // block that is branching on a loop-invariant condition, we can unswitch this
219 // loop.
220 for (Loop::block_iterator I = currentLoop->block_begin(),
221 E = currentLoop->block_end();
222 I != E; ++I) {
223 TerminatorInst *TI = (*I)->getTerminator();
224 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
225 // If this isn't branching on an invariant condition, we can't unswitch
226 // it.
227 if (BI->isConditional()) {
228 // See if this, or some part of it, is loop invariant. If so, we can
229 // unswitch on it if we desire.
230 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
231 currentLoop, Changed);
232 if (LoopCond && UnswitchIfProfitable(LoopCond,
233 ConstantInt::getTrue())) {
234 ++NumBranches;
235 return true;
238 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
239 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
240 currentLoop, Changed);
241 if (LoopCond && SI->getNumCases() > 1) {
242 // Find a value to unswitch on:
243 // FIXME: this should chose the most expensive case!
244 Constant *UnswitchVal = SI->getCaseValue(1);
245 // Do not process same value again and again.
246 if (!UnswitchedVals.insert(UnswitchVal))
247 continue;
249 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
250 ++NumSwitches;
251 return true;
256 // Scan the instructions to check for unswitchable values.
257 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
258 BBI != E; ++BBI)
259 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
260 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
261 currentLoop, Changed);
262 if (LoopCond && UnswitchIfProfitable(LoopCond,
263 ConstantInt::getTrue())) {
264 ++NumSelects;
265 return true;
269 return Changed;
272 /// isTrivialLoopExitBlock - Check to see if all paths from BB either:
273 /// 1. Exit the loop with no side effects.
274 /// 2. Branch to the latch block with no side-effects.
276 /// If these conditions are true, we return true and set ExitBB to the block we
277 /// exit through.
279 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
280 BasicBlock *&ExitBB,
281 std::set<BasicBlock*> &Visited) {
282 if (!Visited.insert(BB).second) {
283 // Already visited and Ok, end of recursion.
284 return true;
285 } else if (!L->contains(BB)) {
286 // Otherwise, this is a loop exit, this is fine so long as this is the
287 // first exit.
288 if (ExitBB != 0) return false;
289 ExitBB = BB;
290 return true;
293 // Otherwise, this is an unvisited intra-loop node. Check all successors.
294 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
295 // Check to see if the successor is a trivial loop exit.
296 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
297 return false;
300 // Okay, everything after this looks good, check to make sure that this block
301 // doesn't include any side effects.
302 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
303 if (I->mayWriteToMemory())
304 return false;
306 return true;
309 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
310 /// leads to an exit from the specified loop, and has no side-effects in the
311 /// process. If so, return the block that is exited to, otherwise return null.
312 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
313 std::set<BasicBlock*> Visited;
314 Visited.insert(L->getHeader()); // Branches to header are ok.
315 BasicBlock *ExitBB = 0;
316 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
317 return ExitBB;
318 return 0;
321 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
322 /// trivial: that is, that the condition controls whether or not the loop does
323 /// anything at all. If this is a trivial condition, unswitching produces no
324 /// code duplications (equivalently, it produces a simpler loop and a new empty
325 /// loop, which gets deleted).
327 /// If this is a trivial condition, return true, otherwise return false. When
328 /// returning true, this sets Cond and Val to the condition that controls the
329 /// trivial condition: when Cond dynamically equals Val, the loop is known to
330 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
331 /// Cond == Val.
333 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
334 BasicBlock **LoopExit) {
335 BasicBlock *Header = currentLoop->getHeader();
336 TerminatorInst *HeaderTerm = Header->getTerminator();
338 BasicBlock *LoopExitBB = 0;
339 if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
340 // If the header block doesn't end with a conditional branch on Cond, we
341 // can't handle it.
342 if (!BI->isConditional() || BI->getCondition() != Cond)
343 return false;
345 // Check to see if a successor of the branch is guaranteed to go to the
346 // latch block or exit through a one exit block without having any
347 // side-effects. If so, determine the value of Cond that causes it to do
348 // this.
349 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
350 BI->getSuccessor(0)))) {
351 if (Val) *Val = ConstantInt::getTrue();
352 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
353 BI->getSuccessor(1)))) {
354 if (Val) *Val = ConstantInt::getFalse();
356 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
357 // If this isn't a switch on Cond, we can't handle it.
358 if (SI->getCondition() != Cond) return false;
360 // Check to see if a successor of the switch is guaranteed to go to the
361 // latch block or exit through a one exit block without having any
362 // side-effects. If so, determine the value of Cond that causes it to do
363 // this. Note that we can't trivially unswitch on the default case.
364 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
365 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
366 SI->getSuccessor(i)))) {
367 // Okay, we found a trivial case, remember the value that is trivial.
368 if (Val) *Val = SI->getCaseValue(i);
369 break;
373 // If we didn't find a single unique LoopExit block, or if the loop exit block
374 // contains phi nodes, this isn't trivial.
375 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
376 return false; // Can't handle this.
378 if (LoopExit) *LoopExit = LoopExitBB;
380 // We already know that nothing uses any scalar values defined inside of this
381 // loop. As such, we just have to check to see if this loop will execute any
382 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
383 // part of the loop that the code *would* execute. We already checked the
384 // tail, check the header now.
385 for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
386 if (I->mayWriteToMemory())
387 return false;
388 return true;
391 /// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
392 /// we choose to unswitch current loop on the specified value.
394 unsigned LoopUnswitch::getLoopUnswitchCost(Value *LIC) {
395 // If the condition is trivial, always unswitch. There is no code growth for
396 // this case.
397 if (IsTrivialUnswitchCondition(LIC))
398 return 0;
400 // FIXME: This is really overly conservative. However, more liberal
401 // estimations have thus far resulted in excessive unswitching, which is bad
402 // both in compile time and in code size. This should be replaced once
403 // someone figures out how a good estimation.
404 return currentLoop->getBlocks().size();
406 unsigned Cost = 0;
407 // FIXME: this is brain dead. It should take into consideration code
408 // shrinkage.
409 for (Loop::block_iterator I = currentLoop->block_begin(),
410 E = currentLoop->block_end();
411 I != E; ++I) {
412 BasicBlock *BB = *I;
413 // Do not include empty blocks in the cost calculation. This happen due to
414 // loop canonicalization and will be removed.
415 if (BB->begin() == BasicBlock::iterator(BB->getTerminator()))
416 continue;
418 // Count basic blocks.
419 ++Cost;
422 return Cost;
425 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
426 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
427 /// unswitch the loop, reprocess the pieces, then return true.
428 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val){
430 initLoopData();
431 Function *F = loopHeader->getParent();
434 // Check to see if it would be profitable to unswitch current loop.
435 unsigned Cost = getLoopUnswitchCost(LoopCond);
437 // Do not do non-trivial unswitch while optimizing for size.
438 if (Cost && OptimizeForSize)
439 return false;
440 if (Cost && !F->isDeclaration() && F->hasFnAttr(Attribute::OptimizeForSize))
441 return false;
443 if (Cost > Threshold) {
444 // FIXME: this should estimate growth by the amount of code shared by the
445 // resultant unswitched loops.
447 DOUT << "NOT unswitching loop %"
448 << currentLoop->getHeader()->getName() << ", cost too high: "
449 << currentLoop->getBlocks().size() << "\n";
450 return false;
453 Constant *CondVal;
454 BasicBlock *ExitBlock;
455 if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
456 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
457 } else {
458 UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
461 return true;
464 // RemapInstruction - Convert the instruction operands from referencing the
465 // current values into those specified by ValueMap.
467 static inline void RemapInstruction(Instruction *I,
468 DenseMap<const Value *, Value*> &ValueMap) {
469 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
470 Value *Op = I->getOperand(op);
471 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
472 if (It != ValueMap.end()) Op = It->second;
473 I->setOperand(op, Op);
477 /// CloneLoop - Recursively clone the specified loop and all of its children,
478 /// mapping the blocks with the specified map.
479 static Loop *CloneLoop(Loop *L, Loop *PL, DenseMap<const Value*, Value*> &VM,
480 LoopInfo *LI, LPPassManager *LPM) {
481 Loop *New = new Loop();
483 LPM->insertLoop(New, PL);
485 // Add all of the blocks in L to the new loop.
486 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
487 I != E; ++I)
488 if (LI->getLoopFor(*I) == L)
489 New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
491 // Add all of the subloops to the new loop.
492 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
493 CloneLoop(*I, New, VM, LI, LPM);
495 return New;
498 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
499 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
500 /// code immediately before InsertPt.
501 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
502 BasicBlock *TrueDest,
503 BasicBlock *FalseDest,
504 Instruction *InsertPt) {
505 // Insert a conditional branch on LIC to the two preheaders. The original
506 // code is the true version and the new code is the false version.
507 Value *BranchVal = LIC;
508 if (!isa<ConstantInt>(Val) || Val->getType() != Type::Int1Ty)
509 BranchVal = new ICmpInst(ICmpInst::ICMP_EQ, LIC, Val, "tmp", InsertPt);
510 else if (Val != ConstantInt::getTrue())
511 // We want to enter the new loop when the condition is true.
512 std::swap(TrueDest, FalseDest);
514 // Insert the new branch.
515 BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
518 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
519 /// condition in it (a cond branch from its header block to its latch block,
520 /// where the path through the loop that doesn't execute its body has no
521 /// side-effects), unswitch it. This doesn't involve any code duplication, just
522 /// moving the conditional branch outside of the loop and updating loop info.
523 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
524 Constant *Val,
525 BasicBlock *ExitBlock) {
526 DOUT << "loop-unswitch: Trivial-Unswitch loop %"
527 << loopHeader->getName() << " [" << L->getBlocks().size()
528 << " blocks] in Function " << L->getHeader()->getParent()->getName()
529 << " on cond: " << *Val << " == " << *Cond << "\n";
531 // First step, split the preheader, so that we know that there is a safe place
532 // to insert the conditional branch. We will change loopPreheader to have a
533 // conditional branch on Cond.
534 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
536 // Now that we have a place to insert the conditional branch, create a place
537 // to branch to: this is the exit block out of the loop that we should
538 // short-circuit to.
540 // Split this block now, so that the loop maintains its exit block, and so
541 // that the jump from the preheader can execute the contents of the exit block
542 // without actually branching to it (the exit block should be dominated by the
543 // loop header, not the preheader).
544 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
545 BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
547 // Okay, now we have a position to branch from and a position to branch to,
548 // insert the new conditional branch.
549 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
550 loopPreheader->getTerminator());
551 LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
552 loopPreheader->getTerminator()->eraseFromParent();
554 // We need to reprocess this loop, it could be unswitched again.
555 redoLoop = true;
557 // Now that we know that the loop is never entered when this condition is a
558 // particular value, rewrite the loop with this info. We know that this will
559 // at least eliminate the old branch.
560 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
561 ++NumTrivial;
564 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
565 /// blocks. Update the appropriate Phi nodes as we do so.
566 void LoopUnswitch::SplitExitEdges(Loop *L,
567 const SmallVector<BasicBlock *, 8> &ExitBlocks)
570 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
571 BasicBlock *ExitBlock = ExitBlocks[i];
572 std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
574 for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
575 BasicBlock* NewExitBlock = SplitEdge(Preds[j], ExitBlock, this);
576 BasicBlock* StartBlock = Preds[j];
577 BasicBlock* EndBlock;
578 if (NewExitBlock->getSinglePredecessor() == ExitBlock) {
579 EndBlock = NewExitBlock;
580 NewExitBlock = EndBlock->getSinglePredecessor();
581 } else {
582 EndBlock = ExitBlock;
585 std::set<PHINode*> InsertedPHIs;
586 PHINode* OldLCSSA = 0;
587 for (BasicBlock::iterator I = EndBlock->begin();
588 (OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
589 Value* OldValue = OldLCSSA->getIncomingValueForBlock(NewExitBlock);
590 PHINode* NewLCSSA = PHINode::Create(OldLCSSA->getType(),
591 OldLCSSA->getName() + ".us-lcssa",
592 NewExitBlock->getTerminator());
593 NewLCSSA->addIncoming(OldValue, StartBlock);
594 OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(NewExitBlock),
595 NewLCSSA);
596 InsertedPHIs.insert(NewLCSSA);
599 BasicBlock::iterator InsertPt = EndBlock->getFirstNonPHI();
600 for (BasicBlock::iterator I = NewExitBlock->begin();
601 (OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
602 ++I) {
603 PHINode *NewLCSSA = PHINode::Create(OldLCSSA->getType(),
604 OldLCSSA->getName() + ".us-lcssa",
605 InsertPt);
606 OldLCSSA->replaceAllUsesWith(NewLCSSA);
607 NewLCSSA->addIncoming(OldLCSSA, NewExitBlock);
615 /// UnswitchNontrivialCondition - We determined that the loop is profitable
616 /// to unswitch when LIC equal Val. Split it into loop versions and test the
617 /// condition outside of either loop. Return the loops created as Out1/Out2.
618 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
619 Loop *L) {
620 Function *F = loopHeader->getParent();
621 DOUT << "loop-unswitch: Unswitching loop %"
622 << loopHeader->getName() << " [" << L->getBlocks().size()
623 << " blocks] in Function " << F->getName()
624 << " when '" << *Val << "' == " << *LIC << "\n";
626 LoopBlocks.clear();
627 NewBlocks.clear();
629 // First step, split the preheader and exit blocks, and add these blocks to
630 // the LoopBlocks list.
631 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
632 LoopBlocks.push_back(NewPreheader);
634 // We want the loop to come after the preheader, but before the exit blocks.
635 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
637 SmallVector<BasicBlock*, 8> ExitBlocks;
638 L->getUniqueExitBlocks(ExitBlocks);
640 // Split all of the edges from inside the loop to their exit blocks. Update
641 // the appropriate Phi nodes as we do so.
642 SplitExitEdges(L, ExitBlocks);
644 // The exit blocks may have been changed due to edge splitting, recompute.
645 ExitBlocks.clear();
646 L->getUniqueExitBlocks(ExitBlocks);
648 // Add exit blocks to the loop blocks.
649 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
651 // Next step, clone all of the basic blocks that make up the loop (including
652 // the loop preheader and exit blocks), keeping track of the mapping between
653 // the instructions and blocks.
654 NewBlocks.reserve(LoopBlocks.size());
655 DenseMap<const Value*, Value*> ValueMap;
656 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
657 BasicBlock *New = CloneBasicBlock(LoopBlocks[i], ValueMap, ".us", F);
658 NewBlocks.push_back(New);
659 ValueMap[LoopBlocks[i]] = New; // Keep the BB mapping.
660 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], New, L);
663 // Splice the newly inserted blocks into the function right before the
664 // original preheader.
665 F->getBasicBlockList().splice(LoopBlocks[0], F->getBasicBlockList(),
666 NewBlocks[0], F->end());
668 // Now we create the new Loop object for the versioned loop.
669 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), ValueMap, LI, LPM);
670 Loop *ParentLoop = L->getParentLoop();
671 if (ParentLoop) {
672 // Make sure to add the cloned preheader and exit blocks to the parent loop
673 // as well.
674 ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
677 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
678 BasicBlock *NewExit = cast<BasicBlock>(ValueMap[ExitBlocks[i]]);
679 // The new exit block should be in the same loop as the old one.
680 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
681 ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
683 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
684 "Exit block should have been split to have one successor!");
685 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
687 // If the successor of the exit block had PHI nodes, add an entry for
688 // NewExit.
689 PHINode *PN;
690 for (BasicBlock::iterator I = ExitSucc->begin();
691 (PN = dyn_cast<PHINode>(I)); ++I) {
692 Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
693 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(V);
694 if (It != ValueMap.end()) V = It->second;
695 PN->addIncoming(V, NewExit);
699 // Rewrite the code to refer to itself.
700 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
701 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
702 E = NewBlocks[i]->end(); I != E; ++I)
703 RemapInstruction(I, ValueMap);
705 // Rewrite the original preheader to select between versions of the loop.
706 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
707 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
708 "Preheader splitting did not work correctly!");
710 // Emit the new branch that selects between the two versions of this loop.
711 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
712 LPM->deleteSimpleAnalysisValue(OldBR, L);
713 OldBR->eraseFromParent();
715 LoopProcessWorklist.push_back(NewLoop);
716 redoLoop = true;
718 // Now we rewrite the original code to know that the condition is true and the
719 // new code to know that the condition is false.
720 RewriteLoopBodyWithConditionConstant(L , LIC, Val, false);
722 // It's possible that simplifying one loop could cause the other to be
723 // deleted. If so, don't simplify it.
724 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop)
725 RewriteLoopBodyWithConditionConstant(NewLoop, LIC, Val, true);
729 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
730 /// specified.
731 static void RemoveFromWorklist(Instruction *I,
732 std::vector<Instruction*> &Worklist) {
733 std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
734 Worklist.end(), I);
735 while (WI != Worklist.end()) {
736 unsigned Offset = WI-Worklist.begin();
737 Worklist.erase(WI);
738 WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
742 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
743 /// program, replacing all uses with V and update the worklist.
744 static void ReplaceUsesOfWith(Instruction *I, Value *V,
745 std::vector<Instruction*> &Worklist,
746 Loop *L, LPPassManager *LPM) {
747 DOUT << "Replace with '" << *V << "': " << *I;
749 // Add uses to the worklist, which may be dead now.
750 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
751 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
752 Worklist.push_back(Use);
754 // Add users to the worklist which may be simplified now.
755 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
756 UI != E; ++UI)
757 Worklist.push_back(cast<Instruction>(*UI));
758 LPM->deleteSimpleAnalysisValue(I, L);
759 RemoveFromWorklist(I, Worklist);
760 I->replaceAllUsesWith(V);
761 I->eraseFromParent();
762 ++NumSimplify;
765 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
766 /// information, and remove any dead successors it has.
768 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
769 std::vector<Instruction*> &Worklist,
770 Loop *L) {
771 if (pred_begin(BB) != pred_end(BB)) {
772 // This block isn't dead, since an edge to BB was just removed, see if there
773 // are any easy simplifications we can do now.
774 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
775 // If it has one pred, fold phi nodes in BB.
776 while (isa<PHINode>(BB->begin()))
777 ReplaceUsesOfWith(BB->begin(),
778 cast<PHINode>(BB->begin())->getIncomingValue(0),
779 Worklist, L, LPM);
781 // If this is the header of a loop and the only pred is the latch, we now
782 // have an unreachable loop.
783 if (Loop *L = LI->getLoopFor(BB))
784 if (loopHeader == BB && L->contains(Pred)) {
785 // Remove the branch from the latch to the header block, this makes
786 // the header dead, which will make the latch dead (because the header
787 // dominates the latch).
788 LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
789 Pred->getTerminator()->eraseFromParent();
790 new UnreachableInst(Pred);
792 // The loop is now broken, remove it from LI.
793 RemoveLoopFromHierarchy(L);
795 // Reprocess the header, which now IS dead.
796 RemoveBlockIfDead(BB, Worklist, L);
797 return;
800 // If pred ends in a uncond branch, add uncond branch to worklist so that
801 // the two blocks will get merged.
802 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
803 if (BI->isUnconditional())
804 Worklist.push_back(BI);
806 return;
809 DOUT << "Nuking dead block: " << *BB;
811 // Remove the instructions in the basic block from the worklist.
812 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
813 RemoveFromWorklist(I, Worklist);
815 // Anything that uses the instructions in this basic block should have their
816 // uses replaced with undefs.
817 if (!I->use_empty())
818 I->replaceAllUsesWith(UndefValue::get(I->getType()));
821 // If this is the edge to the header block for a loop, remove the loop and
822 // promote all subloops.
823 if (Loop *BBLoop = LI->getLoopFor(BB)) {
824 if (BBLoop->getLoopLatch() == BB)
825 RemoveLoopFromHierarchy(BBLoop);
828 // Remove the block from the loop info, which removes it from any loops it
829 // was in.
830 LI->removeBlock(BB);
833 // Remove phi node entries in successors for this block.
834 TerminatorInst *TI = BB->getTerminator();
835 SmallVector<BasicBlock*, 4> Succs;
836 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
837 Succs.push_back(TI->getSuccessor(i));
838 TI->getSuccessor(i)->removePredecessor(BB);
841 // Unique the successors, remove anything with multiple uses.
842 array_pod_sort(Succs.begin(), Succs.end());
843 Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
845 // Remove the basic block, including all of the instructions contained in it.
846 LPM->deleteSimpleAnalysisValue(BB, L);
847 BB->eraseFromParent();
848 // Remove successor blocks here that are not dead, so that we know we only
849 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
850 // then getting removed before we revisit them, which is badness.
852 for (unsigned i = 0; i != Succs.size(); ++i)
853 if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
854 // One exception is loop headers. If this block was the preheader for a
855 // loop, then we DO want to visit the loop so the loop gets deleted.
856 // We know that if the successor is a loop header, that this loop had to
857 // be the preheader: the case where this was the latch block was handled
858 // above and headers can only have two predecessors.
859 if (!LI->isLoopHeader(Succs[i])) {
860 Succs.erase(Succs.begin()+i);
861 --i;
865 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
866 RemoveBlockIfDead(Succs[i], Worklist, L);
869 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
870 /// become unwrapped, either because the backedge was deleted, or because the
871 /// edge into the header was removed. If the edge into the header from the
872 /// latch block was removed, the loop is unwrapped but subloops are still alive,
873 /// so they just reparent loops. If the loops are actually dead, they will be
874 /// removed later.
875 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
876 LPM->deleteLoopFromQueue(L);
877 RemoveLoopFromWorklist(L);
880 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
881 // the value specified by Val in the specified loop, or we know it does NOT have
882 // that value. Rewrite any uses of LIC or of properties correlated to it.
883 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
884 Constant *Val,
885 bool IsEqual) {
886 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
888 // FIXME: Support correlated properties, like:
889 // for (...)
890 // if (li1 < li2)
891 // ...
892 // if (li1 > li2)
893 // ...
895 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
896 // selects, switches.
897 std::vector<User*> Users(LIC->use_begin(), LIC->use_end());
898 std::vector<Instruction*> Worklist;
900 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
901 // in the loop with the appropriate one directly.
902 if (IsEqual || (isa<ConstantInt>(Val) && Val->getType() == Type::Int1Ty)) {
903 Value *Replacement;
904 if (IsEqual)
905 Replacement = Val;
906 else
907 Replacement = ConstantInt::get(Type::Int1Ty,
908 !cast<ConstantInt>(Val)->getZExtValue());
910 for (unsigned i = 0, e = Users.size(); i != e; ++i)
911 if (Instruction *U = cast<Instruction>(Users[i])) {
912 if (!L->contains(U->getParent()))
913 continue;
914 U->replaceUsesOfWith(LIC, Replacement);
915 Worklist.push_back(U);
917 } else {
918 // Otherwise, we don't know the precise value of LIC, but we do know that it
919 // is certainly NOT "Val". As such, simplify any uses in the loop that we
920 // can. This case occurs when we unswitch switch statements.
921 for (unsigned i = 0, e = Users.size(); i != e; ++i)
922 if (Instruction *U = cast<Instruction>(Users[i])) {
923 if (!L->contains(U->getParent()))
924 continue;
926 Worklist.push_back(U);
928 // If we know that LIC is not Val, use this info to simplify code.
929 if (SwitchInst *SI = dyn_cast<SwitchInst>(U)) {
930 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
931 if (SI->getCaseValue(i) == Val) {
932 // Found a dead case value. Don't remove PHI nodes in the
933 // successor if they become single-entry, those PHI nodes may
934 // be in the Users list.
936 // FIXME: This is a hack. We need to keep the successor around
937 // and hooked up so as to preserve the loop structure, because
938 // trying to update it is complicated. So instead we preserve the
939 // loop structure and put the block on an dead code path.
941 BasicBlock *SISucc = SI->getSuccessor(i);
942 BasicBlock* Old = SI->getParent();
943 BasicBlock* Split = SplitBlock(Old, SI, this);
945 Instruction* OldTerm = Old->getTerminator();
946 BranchInst::Create(Split, SISucc,
947 ConstantInt::getTrue(), OldTerm);
949 LPM->deleteSimpleAnalysisValue(Old->getTerminator(), L);
950 Old->getTerminator()->eraseFromParent();
952 PHINode *PN;
953 for (BasicBlock::iterator II = SISucc->begin();
954 (PN = dyn_cast<PHINode>(II)); ++II) {
955 Value *InVal = PN->removeIncomingValue(Split, false);
956 PN->addIncoming(InVal, Old);
959 SI->removeCase(i);
960 break;
965 // TODO: We could do other simplifications, for example, turning
966 // LIC == Val -> false.
970 SimplifyCode(Worklist, L);
973 /// SimplifyCode - Okay, now that we have simplified some instructions in the
974 /// loop, walk over it and constant prop, dce, and fold control flow where
975 /// possible. Note that this is effectively a very simple loop-structure-aware
976 /// optimizer. During processing of this loop, L could very well be deleted, so
977 /// it must not be used.
979 /// FIXME: When the loop optimizer is more mature, separate this out to a new
980 /// pass.
982 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
983 while (!Worklist.empty()) {
984 Instruction *I = Worklist.back();
985 Worklist.pop_back();
987 // Simple constant folding.
988 if (Constant *C = ConstantFoldInstruction(I)) {
989 ReplaceUsesOfWith(I, C, Worklist, L, LPM);
990 continue;
993 // Simple DCE.
994 if (isInstructionTriviallyDead(I)) {
995 DOUT << "Remove dead instruction '" << *I;
997 // Add uses to the worklist, which may be dead now.
998 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
999 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1000 Worklist.push_back(Use);
1001 LPM->deleteSimpleAnalysisValue(I, L);
1002 RemoveFromWorklist(I, Worklist);
1003 I->eraseFromParent();
1004 ++NumSimplify;
1005 continue;
1008 // Special case hacks that appear commonly in unswitched code.
1009 switch (I->getOpcode()) {
1010 case Instruction::Select:
1011 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
1012 ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist, L,
1013 LPM);
1014 continue;
1016 break;
1017 case Instruction::And:
1018 if (isa<ConstantInt>(I->getOperand(0)) &&
1019 I->getOperand(0)->getType() == Type::Int1Ty) // constant -> RHS
1020 cast<BinaryOperator>(I)->swapOperands();
1021 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1022 if (CB->getType() == Type::Int1Ty) {
1023 if (CB->isOne()) // X & 1 -> X
1024 ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1025 else // X & 0 -> 0
1026 ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1027 continue;
1029 break;
1030 case Instruction::Or:
1031 if (isa<ConstantInt>(I->getOperand(0)) &&
1032 I->getOperand(0)->getType() == Type::Int1Ty) // constant -> RHS
1033 cast<BinaryOperator>(I)->swapOperands();
1034 if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
1035 if (CB->getType() == Type::Int1Ty) {
1036 if (CB->isOne()) // X | 1 -> 1
1037 ReplaceUsesOfWith(I, I->getOperand(1), Worklist, L, LPM);
1038 else // X | 0 -> X
1039 ReplaceUsesOfWith(I, I->getOperand(0), Worklist, L, LPM);
1040 continue;
1042 break;
1043 case Instruction::Br: {
1044 BranchInst *BI = cast<BranchInst>(I);
1045 if (BI->isUnconditional()) {
1046 // If BI's parent is the only pred of the successor, fold the two blocks
1047 // together.
1048 BasicBlock *Pred = BI->getParent();
1049 BasicBlock *Succ = BI->getSuccessor(0);
1050 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1051 if (!SinglePred) continue; // Nothing to do.
1052 assert(SinglePred == Pred && "CFG broken");
1054 DOUT << "Merging blocks: " << Pred->getName() << " <- "
1055 << Succ->getName() << "\n";
1057 // Resolve any single entry PHI nodes in Succ.
1058 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1059 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1061 // Move all of the successor contents from Succ to Pred.
1062 Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1063 Succ->end());
1064 LPM->deleteSimpleAnalysisValue(BI, L);
1065 BI->eraseFromParent();
1066 RemoveFromWorklist(BI, Worklist);
1068 // If Succ has any successors with PHI nodes, update them to have
1069 // entries coming from Pred instead of Succ.
1070 Succ->replaceAllUsesWith(Pred);
1072 // Remove Succ from the loop tree.
1073 LI->removeBlock(Succ);
1074 LPM->deleteSimpleAnalysisValue(Succ, L);
1075 Succ->eraseFromParent();
1076 ++NumSimplify;
1077 } else if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
1078 // Conditional branch. Turn it into an unconditional branch, then
1079 // remove dead blocks.
1080 break; // FIXME: Enable.
1082 DOUT << "Folded branch: " << *BI;
1083 BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
1084 BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
1085 DeadSucc->removePredecessor(BI->getParent(), true);
1086 Worklist.push_back(BranchInst::Create(LiveSucc, BI));
1087 LPM->deleteSimpleAnalysisValue(BI, L);
1088 BI->eraseFromParent();
1089 RemoveFromWorklist(BI, Worklist);
1090 ++NumSimplify;
1092 RemoveBlockIfDead(DeadSucc, Worklist, L);
1094 break;