1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/Analysis/ConstantFolding.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
52 STATISTIC(NumBranches
, "Number of branches unswitched");
53 STATISTIC(NumSwitches
, "Number of switches unswitched");
54 STATISTIC(NumSelects
, "Number of selects unswitched");
55 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
56 STATISTIC(NumSimplify
, "Number of simplifications of unswitched code");
58 static cl::opt
<unsigned>
59 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
60 cl::init(10), cl::Hidden
);
63 class VISIBILITY_HIDDEN LoopUnswitch
: public LoopPass
{
64 LoopInfo
*LI
; // Loop information
67 // LoopProcessWorklist - Used to check if second loop needs processing
68 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
69 std::vector
<Loop
*> LoopProcessWorklist
;
70 SmallPtrSet
<Value
*,8> UnswitchedVals
;
76 DominanceFrontier
*DF
;
78 BasicBlock
*loopHeader
;
79 BasicBlock
*loopPreheader
;
81 // LoopBlocks contains all of the basic blocks of the loop, including the
82 // preheader of the loop, the body of the loop, and the exit blocks of the
83 // loop, in that order.
84 std::vector
<BasicBlock
*> LoopBlocks
;
85 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
86 std::vector
<BasicBlock
*> NewBlocks
;
89 static char ID
; // Pass ID, replacement for typeid
90 explicit LoopUnswitch(bool Os
= false) :
91 LoopPass(&ID
), OptimizeForSize(Os
), redoLoop(false),
92 currentLoop(NULL
), DF(NULL
), DT(NULL
), loopHeader(NULL
),
93 loopPreheader(NULL
) {}
95 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
96 bool processCurrentLoop();
98 /// This transformation requires natural loop information & requires that
99 /// loop preheaders be inserted into the CFG...
101 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
102 AU
.addRequiredID(LoopSimplifyID
);
103 AU
.addPreservedID(LoopSimplifyID
);
104 AU
.addRequired
<LoopInfo
>();
105 AU
.addPreserved
<LoopInfo
>();
106 AU
.addRequiredID(LCSSAID
);
107 AU
.addPreservedID(LCSSAID
);
108 AU
.addPreserved
<DominatorTree
>();
109 AU
.addPreserved
<DominanceFrontier
>();
114 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
116 void RemoveLoopFromWorklist(Loop
*L
) {
117 std::vector
<Loop
*>::iterator I
= std::find(LoopProcessWorklist
.begin(),
118 LoopProcessWorklist
.end(), L
);
119 if (I
!= LoopProcessWorklist
.end())
120 LoopProcessWorklist
.erase(I
);
123 void initLoopData() {
124 loopHeader
= currentLoop
->getHeader();
125 loopPreheader
= currentLoop
->getLoopPreheader();
128 /// Split all of the edges from inside the loop to their exit blocks.
129 /// Update the appropriate Phi nodes as we do so.
130 void SplitExitEdges(Loop
*L
, const SmallVector
<BasicBlock
*, 8> &ExitBlocks
);
132 bool UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
);
133 unsigned getLoopUnswitchCost(Value
*LIC
);
134 void UnswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
135 BasicBlock
*ExitBlock
);
136 void UnswitchNontrivialCondition(Value
*LIC
, Constant
*OnVal
, Loop
*L
);
138 void RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
139 Constant
*Val
, bool isEqual
);
141 void EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
142 BasicBlock
*TrueDest
,
143 BasicBlock
*FalseDest
,
144 Instruction
*InsertPt
);
146 void SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
);
147 void RemoveBlockIfDead(BasicBlock
*BB
,
148 std::vector
<Instruction
*> &Worklist
, Loop
*l
);
149 void RemoveLoopFromHierarchy(Loop
*L
);
150 bool IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
= 0,
151 BasicBlock
**LoopExit
= 0);
155 char LoopUnswitch::ID
= 0;
156 static RegisterPass
<LoopUnswitch
> X("loop-unswitch", "Unswitch loops");
158 Pass
*llvm::createLoopUnswitchPass(bool Os
) {
159 return new LoopUnswitch(Os
);
162 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
163 /// invariant in the loop, or has an invariant piece, return the invariant.
164 /// Otherwise, return null.
165 static Value
*FindLIVLoopCondition(Value
*Cond
, Loop
*L
, bool &Changed
) {
166 // Constants should be folded, not unswitched on!
167 if (isa
<Constant
>(Cond
)) return 0;
169 // TODO: Handle: br (VARIANT|INVARIANT).
170 // TODO: Hoist simple expressions out of loops.
171 if (L
->isLoopInvariant(Cond
)) return Cond
;
173 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
))
174 if (BO
->getOpcode() == Instruction::And
||
175 BO
->getOpcode() == Instruction::Or
) {
176 // If either the left or right side is invariant, we can unswitch on this,
177 // which will cause the branch to go away in one loop and the condition to
178 // simplify in the other one.
179 if (Value
*LHS
= FindLIVLoopCondition(BO
->getOperand(0), L
, Changed
))
181 if (Value
*RHS
= FindLIVLoopCondition(BO
->getOperand(1), L
, Changed
))
188 bool LoopUnswitch::runOnLoop(Loop
*L
, LPPassManager
&LPM_Ref
) {
189 LI
= &getAnalysis
<LoopInfo
>();
191 DF
= getAnalysisIfAvailable
<DominanceFrontier
>();
192 DT
= getAnalysisIfAvailable
<DominatorTree
>();
194 Function
*F
= currentLoop
->getHeader()->getParent();
195 bool Changed
= false;
197 assert(currentLoop
->isLCSSAForm());
199 Changed
|= processCurrentLoop();
203 // FIXME: Reconstruct dom info, because it is not preserved properly.
205 DT
->runOnFunction(*F
);
207 DF
->runOnFunction(*F
);
212 /// processCurrentLoop - Do actual work and unswitch loop if possible
214 bool LoopUnswitch::processCurrentLoop() {
215 bool Changed
= false;
217 // Loop over all of the basic blocks in the loop. If we find an interior
218 // block that is branching on a loop-invariant condition, we can unswitch this
220 for (Loop::block_iterator I
= currentLoop
->block_begin(),
221 E
= currentLoop
->block_end();
223 TerminatorInst
*TI
= (*I
)->getTerminator();
224 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
225 // If this isn't branching on an invariant condition, we can't unswitch
227 if (BI
->isConditional()) {
228 // See if this, or some part of it, is loop invariant. If so, we can
229 // unswitch on it if we desire.
230 Value
*LoopCond
= FindLIVLoopCondition(BI
->getCondition(),
231 currentLoop
, Changed
);
232 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
233 ConstantInt::getTrue())) {
238 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
239 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
240 currentLoop
, Changed
);
241 if (LoopCond
&& SI
->getNumCases() > 1) {
242 // Find a value to unswitch on:
243 // FIXME: this should chose the most expensive case!
244 Constant
*UnswitchVal
= SI
->getCaseValue(1);
245 // Do not process same value again and again.
246 if (!UnswitchedVals
.insert(UnswitchVal
))
249 if (UnswitchIfProfitable(LoopCond
, UnswitchVal
)) {
256 // Scan the instructions to check for unswitchable values.
257 for (BasicBlock::iterator BBI
= (*I
)->begin(), E
= (*I
)->end();
259 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(BBI
)) {
260 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
261 currentLoop
, Changed
);
262 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
263 ConstantInt::getTrue())) {
272 /// isTrivialLoopExitBlock - Check to see if all paths from BB either:
273 /// 1. Exit the loop with no side effects.
274 /// 2. Branch to the latch block with no side-effects.
276 /// If these conditions are true, we return true and set ExitBB to the block we
279 static bool isTrivialLoopExitBlockHelper(Loop
*L
, BasicBlock
*BB
,
281 std::set
<BasicBlock
*> &Visited
) {
282 if (!Visited
.insert(BB
).second
) {
283 // Already visited and Ok, end of recursion.
285 } else if (!L
->contains(BB
)) {
286 // Otherwise, this is a loop exit, this is fine so long as this is the
288 if (ExitBB
!= 0) return false;
293 // Otherwise, this is an unvisited intra-loop node. Check all successors.
294 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
) {
295 // Check to see if the successor is a trivial loop exit.
296 if (!isTrivialLoopExitBlockHelper(L
, *SI
, ExitBB
, Visited
))
300 // Okay, everything after this looks good, check to make sure that this block
301 // doesn't include any side effects.
302 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
303 if (I
->mayWriteToMemory())
309 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
310 /// leads to an exit from the specified loop, and has no side-effects in the
311 /// process. If so, return the block that is exited to, otherwise return null.
312 static BasicBlock
*isTrivialLoopExitBlock(Loop
*L
, BasicBlock
*BB
) {
313 std::set
<BasicBlock
*> Visited
;
314 Visited
.insert(L
->getHeader()); // Branches to header are ok.
315 BasicBlock
*ExitBB
= 0;
316 if (isTrivialLoopExitBlockHelper(L
, BB
, ExitBB
, Visited
))
321 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
322 /// trivial: that is, that the condition controls whether or not the loop does
323 /// anything at all. If this is a trivial condition, unswitching produces no
324 /// code duplications (equivalently, it produces a simpler loop and a new empty
325 /// loop, which gets deleted).
327 /// If this is a trivial condition, return true, otherwise return false. When
328 /// returning true, this sets Cond and Val to the condition that controls the
329 /// trivial condition: when Cond dynamically equals Val, the loop is known to
330 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
333 bool LoopUnswitch::IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
,
334 BasicBlock
**LoopExit
) {
335 BasicBlock
*Header
= currentLoop
->getHeader();
336 TerminatorInst
*HeaderTerm
= Header
->getTerminator();
338 BasicBlock
*LoopExitBB
= 0;
339 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(HeaderTerm
)) {
340 // If the header block doesn't end with a conditional branch on Cond, we
342 if (!BI
->isConditional() || BI
->getCondition() != Cond
)
345 // Check to see if a successor of the branch is guaranteed to go to the
346 // latch block or exit through a one exit block without having any
347 // side-effects. If so, determine the value of Cond that causes it to do
349 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
350 BI
->getSuccessor(0)))) {
351 if (Val
) *Val
= ConstantInt::getTrue();
352 } else if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
353 BI
->getSuccessor(1)))) {
354 if (Val
) *Val
= ConstantInt::getFalse();
356 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(HeaderTerm
)) {
357 // If this isn't a switch on Cond, we can't handle it.
358 if (SI
->getCondition() != Cond
) return false;
360 // Check to see if a successor of the switch is guaranteed to go to the
361 // latch block or exit through a one exit block without having any
362 // side-effects. If so, determine the value of Cond that causes it to do
363 // this. Note that we can't trivially unswitch on the default case.
364 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
)
365 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
366 SI
->getSuccessor(i
)))) {
367 // Okay, we found a trivial case, remember the value that is trivial.
368 if (Val
) *Val
= SI
->getCaseValue(i
);
373 // If we didn't find a single unique LoopExit block, or if the loop exit block
374 // contains phi nodes, this isn't trivial.
375 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
376 return false; // Can't handle this.
378 if (LoopExit
) *LoopExit
= LoopExitBB
;
380 // We already know that nothing uses any scalar values defined inside of this
381 // loop. As such, we just have to check to see if this loop will execute any
382 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
383 // part of the loop that the code *would* execute. We already checked the
384 // tail, check the header now.
385 for (BasicBlock::iterator I
= Header
->begin(), E
= Header
->end(); I
!= E
; ++I
)
386 if (I
->mayWriteToMemory())
391 /// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
392 /// we choose to unswitch current loop on the specified value.
394 unsigned LoopUnswitch::getLoopUnswitchCost(Value
*LIC
) {
395 // If the condition is trivial, always unswitch. There is no code growth for
397 if (IsTrivialUnswitchCondition(LIC
))
400 // FIXME: This is really overly conservative. However, more liberal
401 // estimations have thus far resulted in excessive unswitching, which is bad
402 // both in compile time and in code size. This should be replaced once
403 // someone figures out how a good estimation.
404 return currentLoop
->getBlocks().size();
407 // FIXME: this is brain dead. It should take into consideration code
409 for (Loop::block_iterator I
= currentLoop
->block_begin(),
410 E
= currentLoop
->block_end();
413 // Do not include empty blocks in the cost calculation. This happen due to
414 // loop canonicalization and will be removed.
415 if (BB
->begin() == BasicBlock::iterator(BB
->getTerminator()))
418 // Count basic blocks.
425 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
426 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
427 /// unswitch the loop, reprocess the pieces, then return true.
428 bool LoopUnswitch::UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
){
431 Function
*F
= loopHeader
->getParent();
434 // Check to see if it would be profitable to unswitch current loop.
435 unsigned Cost
= getLoopUnswitchCost(LoopCond
);
437 // Do not do non-trivial unswitch while optimizing for size.
438 if (Cost
&& OptimizeForSize
)
440 if (Cost
&& !F
->isDeclaration() && F
->hasFnAttr(Attribute::OptimizeForSize
))
443 if (Cost
> Threshold
) {
444 // FIXME: this should estimate growth by the amount of code shared by the
445 // resultant unswitched loops.
447 DOUT
<< "NOT unswitching loop %"
448 << currentLoop
->getHeader()->getName() << ", cost too high: "
449 << currentLoop
->getBlocks().size() << "\n";
454 BasicBlock
*ExitBlock
;
455 if (IsTrivialUnswitchCondition(LoopCond
, &CondVal
, &ExitBlock
)) {
456 UnswitchTrivialCondition(currentLoop
, LoopCond
, CondVal
, ExitBlock
);
458 UnswitchNontrivialCondition(LoopCond
, Val
, currentLoop
);
464 // RemapInstruction - Convert the instruction operands from referencing the
465 // current values into those specified by ValueMap.
467 static inline void RemapInstruction(Instruction
*I
,
468 DenseMap
<const Value
*, Value
*> &ValueMap
) {
469 for (unsigned op
= 0, E
= I
->getNumOperands(); op
!= E
; ++op
) {
470 Value
*Op
= I
->getOperand(op
);
471 DenseMap
<const Value
*, Value
*>::iterator It
= ValueMap
.find(Op
);
472 if (It
!= ValueMap
.end()) Op
= It
->second
;
473 I
->setOperand(op
, Op
);
477 /// CloneLoop - Recursively clone the specified loop and all of its children,
478 /// mapping the blocks with the specified map.
479 static Loop
*CloneLoop(Loop
*L
, Loop
*PL
, DenseMap
<const Value
*, Value
*> &VM
,
480 LoopInfo
*LI
, LPPassManager
*LPM
) {
481 Loop
*New
= new Loop();
483 LPM
->insertLoop(New
, PL
);
485 // Add all of the blocks in L to the new loop.
486 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
488 if (LI
->getLoopFor(*I
) == L
)
489 New
->addBasicBlockToLoop(cast
<BasicBlock
>(VM
[*I
]), LI
->getBase());
491 // Add all of the subloops to the new loop.
492 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
493 CloneLoop(*I
, New
, VM
, LI
, LPM
);
498 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
499 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
500 /// code immediately before InsertPt.
501 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
502 BasicBlock
*TrueDest
,
503 BasicBlock
*FalseDest
,
504 Instruction
*InsertPt
) {
505 // Insert a conditional branch on LIC to the two preheaders. The original
506 // code is the true version and the new code is the false version.
507 Value
*BranchVal
= LIC
;
508 if (!isa
<ConstantInt
>(Val
) || Val
->getType() != Type::Int1Ty
)
509 BranchVal
= new ICmpInst(ICmpInst::ICMP_EQ
, LIC
, Val
, "tmp", InsertPt
);
510 else if (Val
!= ConstantInt::getTrue())
511 // We want to enter the new loop when the condition is true.
512 std::swap(TrueDest
, FalseDest
);
514 // Insert the new branch.
515 BranchInst::Create(TrueDest
, FalseDest
, BranchVal
, InsertPt
);
518 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
519 /// condition in it (a cond branch from its header block to its latch block,
520 /// where the path through the loop that doesn't execute its body has no
521 /// side-effects), unswitch it. This doesn't involve any code duplication, just
522 /// moving the conditional branch outside of the loop and updating loop info.
523 void LoopUnswitch::UnswitchTrivialCondition(Loop
*L
, Value
*Cond
,
525 BasicBlock
*ExitBlock
) {
526 DOUT
<< "loop-unswitch: Trivial-Unswitch loop %"
527 << loopHeader
->getName() << " [" << L
->getBlocks().size()
528 << " blocks] in Function " << L
->getHeader()->getParent()->getName()
529 << " on cond: " << *Val
<< " == " << *Cond
<< "\n";
531 // First step, split the preheader, so that we know that there is a safe place
532 // to insert the conditional branch. We will change loopPreheader to have a
533 // conditional branch on Cond.
534 BasicBlock
*NewPH
= SplitEdge(loopPreheader
, loopHeader
, this);
536 // Now that we have a place to insert the conditional branch, create a place
537 // to branch to: this is the exit block out of the loop that we should
540 // Split this block now, so that the loop maintains its exit block, and so
541 // that the jump from the preheader can execute the contents of the exit block
542 // without actually branching to it (the exit block should be dominated by the
543 // loop header, not the preheader).
544 assert(!L
->contains(ExitBlock
) && "Exit block is in the loop?");
545 BasicBlock
*NewExit
= SplitBlock(ExitBlock
, ExitBlock
->begin(), this);
547 // Okay, now we have a position to branch from and a position to branch to,
548 // insert the new conditional branch.
549 EmitPreheaderBranchOnCondition(Cond
, Val
, NewExit
, NewPH
,
550 loopPreheader
->getTerminator());
551 LPM
->deleteSimpleAnalysisValue(loopPreheader
->getTerminator(), L
);
552 loopPreheader
->getTerminator()->eraseFromParent();
554 // We need to reprocess this loop, it could be unswitched again.
557 // Now that we know that the loop is never entered when this condition is a
558 // particular value, rewrite the loop with this info. We know that this will
559 // at least eliminate the old branch.
560 RewriteLoopBodyWithConditionConstant(L
, Cond
, Val
, false);
564 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
565 /// blocks. Update the appropriate Phi nodes as we do so.
566 void LoopUnswitch::SplitExitEdges(Loop
*L
,
567 const SmallVector
<BasicBlock
*, 8> &ExitBlocks
)
570 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
571 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
572 std::vector
<BasicBlock
*> Preds(pred_begin(ExitBlock
), pred_end(ExitBlock
));
574 for (unsigned j
= 0, e
= Preds
.size(); j
!= e
; ++j
) {
575 BasicBlock
* NewExitBlock
= SplitEdge(Preds
[j
], ExitBlock
, this);
576 BasicBlock
* StartBlock
= Preds
[j
];
577 BasicBlock
* EndBlock
;
578 if (NewExitBlock
->getSinglePredecessor() == ExitBlock
) {
579 EndBlock
= NewExitBlock
;
580 NewExitBlock
= EndBlock
->getSinglePredecessor();
582 EndBlock
= ExitBlock
;
585 std::set
<PHINode
*> InsertedPHIs
;
586 PHINode
* OldLCSSA
= 0;
587 for (BasicBlock::iterator I
= EndBlock
->begin();
588 (OldLCSSA
= dyn_cast
<PHINode
>(I
)); ++I
) {
589 Value
* OldValue
= OldLCSSA
->getIncomingValueForBlock(NewExitBlock
);
590 PHINode
* NewLCSSA
= PHINode::Create(OldLCSSA
->getType(),
591 OldLCSSA
->getName() + ".us-lcssa",
592 NewExitBlock
->getTerminator());
593 NewLCSSA
->addIncoming(OldValue
, StartBlock
);
594 OldLCSSA
->setIncomingValue(OldLCSSA
->getBasicBlockIndex(NewExitBlock
),
596 InsertedPHIs
.insert(NewLCSSA
);
599 BasicBlock::iterator InsertPt
= EndBlock
->getFirstNonPHI();
600 for (BasicBlock::iterator I
= NewExitBlock
->begin();
601 (OldLCSSA
= dyn_cast
<PHINode
>(I
)) && InsertedPHIs
.count(OldLCSSA
) == 0;
603 PHINode
*NewLCSSA
= PHINode::Create(OldLCSSA
->getType(),
604 OldLCSSA
->getName() + ".us-lcssa",
606 OldLCSSA
->replaceAllUsesWith(NewLCSSA
);
607 NewLCSSA
->addIncoming(OldLCSSA
, NewExitBlock
);
615 /// UnswitchNontrivialCondition - We determined that the loop is profitable
616 /// to unswitch when LIC equal Val. Split it into loop versions and test the
617 /// condition outside of either loop. Return the loops created as Out1/Out2.
618 void LoopUnswitch::UnswitchNontrivialCondition(Value
*LIC
, Constant
*Val
,
620 Function
*F
= loopHeader
->getParent();
621 DOUT
<< "loop-unswitch: Unswitching loop %"
622 << loopHeader
->getName() << " [" << L
->getBlocks().size()
623 << " blocks] in Function " << F
->getName()
624 << " when '" << *Val
<< "' == " << *LIC
<< "\n";
629 // First step, split the preheader and exit blocks, and add these blocks to
630 // the LoopBlocks list.
631 BasicBlock
*NewPreheader
= SplitEdge(loopPreheader
, loopHeader
, this);
632 LoopBlocks
.push_back(NewPreheader
);
634 // We want the loop to come after the preheader, but before the exit blocks.
635 LoopBlocks
.insert(LoopBlocks
.end(), L
->block_begin(), L
->block_end());
637 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
638 L
->getUniqueExitBlocks(ExitBlocks
);
640 // Split all of the edges from inside the loop to their exit blocks. Update
641 // the appropriate Phi nodes as we do so.
642 SplitExitEdges(L
, ExitBlocks
);
644 // The exit blocks may have been changed due to edge splitting, recompute.
646 L
->getUniqueExitBlocks(ExitBlocks
);
648 // Add exit blocks to the loop blocks.
649 LoopBlocks
.insert(LoopBlocks
.end(), ExitBlocks
.begin(), ExitBlocks
.end());
651 // Next step, clone all of the basic blocks that make up the loop (including
652 // the loop preheader and exit blocks), keeping track of the mapping between
653 // the instructions and blocks.
654 NewBlocks
.reserve(LoopBlocks
.size());
655 DenseMap
<const Value
*, Value
*> ValueMap
;
656 for (unsigned i
= 0, e
= LoopBlocks
.size(); i
!= e
; ++i
) {
657 BasicBlock
*New
= CloneBasicBlock(LoopBlocks
[i
], ValueMap
, ".us", F
);
658 NewBlocks
.push_back(New
);
659 ValueMap
[LoopBlocks
[i
]] = New
; // Keep the BB mapping.
660 LPM
->cloneBasicBlockSimpleAnalysis(LoopBlocks
[i
], New
, L
);
663 // Splice the newly inserted blocks into the function right before the
664 // original preheader.
665 F
->getBasicBlockList().splice(LoopBlocks
[0], F
->getBasicBlockList(),
666 NewBlocks
[0], F
->end());
668 // Now we create the new Loop object for the versioned loop.
669 Loop
*NewLoop
= CloneLoop(L
, L
->getParentLoop(), ValueMap
, LI
, LPM
);
670 Loop
*ParentLoop
= L
->getParentLoop();
672 // Make sure to add the cloned preheader and exit blocks to the parent loop
674 ParentLoop
->addBasicBlockToLoop(NewBlocks
[0], LI
->getBase());
677 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
678 BasicBlock
*NewExit
= cast
<BasicBlock
>(ValueMap
[ExitBlocks
[i
]]);
679 // The new exit block should be in the same loop as the old one.
680 if (Loop
*ExitBBLoop
= LI
->getLoopFor(ExitBlocks
[i
]))
681 ExitBBLoop
->addBasicBlockToLoop(NewExit
, LI
->getBase());
683 assert(NewExit
->getTerminator()->getNumSuccessors() == 1 &&
684 "Exit block should have been split to have one successor!");
685 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
687 // If the successor of the exit block had PHI nodes, add an entry for
690 for (BasicBlock::iterator I
= ExitSucc
->begin();
691 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
692 Value
*V
= PN
->getIncomingValueForBlock(ExitBlocks
[i
]);
693 DenseMap
<const Value
*, Value
*>::iterator It
= ValueMap
.find(V
);
694 if (It
!= ValueMap
.end()) V
= It
->second
;
695 PN
->addIncoming(V
, NewExit
);
699 // Rewrite the code to refer to itself.
700 for (unsigned i
= 0, e
= NewBlocks
.size(); i
!= e
; ++i
)
701 for (BasicBlock::iterator I
= NewBlocks
[i
]->begin(),
702 E
= NewBlocks
[i
]->end(); I
!= E
; ++I
)
703 RemapInstruction(I
, ValueMap
);
705 // Rewrite the original preheader to select between versions of the loop.
706 BranchInst
*OldBR
= cast
<BranchInst
>(loopPreheader
->getTerminator());
707 assert(OldBR
->isUnconditional() && OldBR
->getSuccessor(0) == LoopBlocks
[0] &&
708 "Preheader splitting did not work correctly!");
710 // Emit the new branch that selects between the two versions of this loop.
711 EmitPreheaderBranchOnCondition(LIC
, Val
, NewBlocks
[0], LoopBlocks
[0], OldBR
);
712 LPM
->deleteSimpleAnalysisValue(OldBR
, L
);
713 OldBR
->eraseFromParent();
715 LoopProcessWorklist
.push_back(NewLoop
);
718 // Now we rewrite the original code to know that the condition is true and the
719 // new code to know that the condition is false.
720 RewriteLoopBodyWithConditionConstant(L
, LIC
, Val
, false);
722 // It's possible that simplifying one loop could cause the other to be
723 // deleted. If so, don't simplify it.
724 if (!LoopProcessWorklist
.empty() && LoopProcessWorklist
.back() == NewLoop
)
725 RewriteLoopBodyWithConditionConstant(NewLoop
, LIC
, Val
, true);
729 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
731 static void RemoveFromWorklist(Instruction
*I
,
732 std::vector
<Instruction
*> &Worklist
) {
733 std::vector
<Instruction
*>::iterator WI
= std::find(Worklist
.begin(),
735 while (WI
!= Worklist
.end()) {
736 unsigned Offset
= WI
-Worklist
.begin();
738 WI
= std::find(Worklist
.begin()+Offset
, Worklist
.end(), I
);
742 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
743 /// program, replacing all uses with V and update the worklist.
744 static void ReplaceUsesOfWith(Instruction
*I
, Value
*V
,
745 std::vector
<Instruction
*> &Worklist
,
746 Loop
*L
, LPPassManager
*LPM
) {
747 DOUT
<< "Replace with '" << *V
<< "': " << *I
;
749 // Add uses to the worklist, which may be dead now.
750 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
751 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
752 Worklist
.push_back(Use
);
754 // Add users to the worklist which may be simplified now.
755 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
757 Worklist
.push_back(cast
<Instruction
>(*UI
));
758 LPM
->deleteSimpleAnalysisValue(I
, L
);
759 RemoveFromWorklist(I
, Worklist
);
760 I
->replaceAllUsesWith(V
);
761 I
->eraseFromParent();
765 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
766 /// information, and remove any dead successors it has.
768 void LoopUnswitch::RemoveBlockIfDead(BasicBlock
*BB
,
769 std::vector
<Instruction
*> &Worklist
,
771 if (pred_begin(BB
) != pred_end(BB
)) {
772 // This block isn't dead, since an edge to BB was just removed, see if there
773 // are any easy simplifications we can do now.
774 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
775 // If it has one pred, fold phi nodes in BB.
776 while (isa
<PHINode
>(BB
->begin()))
777 ReplaceUsesOfWith(BB
->begin(),
778 cast
<PHINode
>(BB
->begin())->getIncomingValue(0),
781 // If this is the header of a loop and the only pred is the latch, we now
782 // have an unreachable loop.
783 if (Loop
*L
= LI
->getLoopFor(BB
))
784 if (loopHeader
== BB
&& L
->contains(Pred
)) {
785 // Remove the branch from the latch to the header block, this makes
786 // the header dead, which will make the latch dead (because the header
787 // dominates the latch).
788 LPM
->deleteSimpleAnalysisValue(Pred
->getTerminator(), L
);
789 Pred
->getTerminator()->eraseFromParent();
790 new UnreachableInst(Pred
);
792 // The loop is now broken, remove it from LI.
793 RemoveLoopFromHierarchy(L
);
795 // Reprocess the header, which now IS dead.
796 RemoveBlockIfDead(BB
, Worklist
, L
);
800 // If pred ends in a uncond branch, add uncond branch to worklist so that
801 // the two blocks will get merged.
802 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
803 if (BI
->isUnconditional())
804 Worklist
.push_back(BI
);
809 DOUT
<< "Nuking dead block: " << *BB
;
811 // Remove the instructions in the basic block from the worklist.
812 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
813 RemoveFromWorklist(I
, Worklist
);
815 // Anything that uses the instructions in this basic block should have their
816 // uses replaced with undefs.
818 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
821 // If this is the edge to the header block for a loop, remove the loop and
822 // promote all subloops.
823 if (Loop
*BBLoop
= LI
->getLoopFor(BB
)) {
824 if (BBLoop
->getLoopLatch() == BB
)
825 RemoveLoopFromHierarchy(BBLoop
);
828 // Remove the block from the loop info, which removes it from any loops it
833 // Remove phi node entries in successors for this block.
834 TerminatorInst
*TI
= BB
->getTerminator();
835 SmallVector
<BasicBlock
*, 4> Succs
;
836 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
837 Succs
.push_back(TI
->getSuccessor(i
));
838 TI
->getSuccessor(i
)->removePredecessor(BB
);
841 // Unique the successors, remove anything with multiple uses.
842 array_pod_sort(Succs
.begin(), Succs
.end());
843 Succs
.erase(std::unique(Succs
.begin(), Succs
.end()), Succs
.end());
845 // Remove the basic block, including all of the instructions contained in it.
846 LPM
->deleteSimpleAnalysisValue(BB
, L
);
847 BB
->eraseFromParent();
848 // Remove successor blocks here that are not dead, so that we know we only
849 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
850 // then getting removed before we revisit them, which is badness.
852 for (unsigned i
= 0; i
!= Succs
.size(); ++i
)
853 if (pred_begin(Succs
[i
]) != pred_end(Succs
[i
])) {
854 // One exception is loop headers. If this block was the preheader for a
855 // loop, then we DO want to visit the loop so the loop gets deleted.
856 // We know that if the successor is a loop header, that this loop had to
857 // be the preheader: the case where this was the latch block was handled
858 // above and headers can only have two predecessors.
859 if (!LI
->isLoopHeader(Succs
[i
])) {
860 Succs
.erase(Succs
.begin()+i
);
865 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
866 RemoveBlockIfDead(Succs
[i
], Worklist
, L
);
869 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
870 /// become unwrapped, either because the backedge was deleted, or because the
871 /// edge into the header was removed. If the edge into the header from the
872 /// latch block was removed, the loop is unwrapped but subloops are still alive,
873 /// so they just reparent loops. If the loops are actually dead, they will be
875 void LoopUnswitch::RemoveLoopFromHierarchy(Loop
*L
) {
876 LPM
->deleteLoopFromQueue(L
);
877 RemoveLoopFromWorklist(L
);
880 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
881 // the value specified by Val in the specified loop, or we know it does NOT have
882 // that value. Rewrite any uses of LIC or of properties correlated to it.
883 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
886 assert(!isa
<Constant
>(LIC
) && "Why are we unswitching on a constant?");
888 // FIXME: Support correlated properties, like:
895 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
896 // selects, switches.
897 std::vector
<User
*> Users(LIC
->use_begin(), LIC
->use_end());
898 std::vector
<Instruction
*> Worklist
;
900 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
901 // in the loop with the appropriate one directly.
902 if (IsEqual
|| (isa
<ConstantInt
>(Val
) && Val
->getType() == Type::Int1Ty
)) {
907 Replacement
= ConstantInt::get(Type::Int1Ty
,
908 !cast
<ConstantInt
>(Val
)->getZExtValue());
910 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
911 if (Instruction
*U
= cast
<Instruction
>(Users
[i
])) {
912 if (!L
->contains(U
->getParent()))
914 U
->replaceUsesOfWith(LIC
, Replacement
);
915 Worklist
.push_back(U
);
918 // Otherwise, we don't know the precise value of LIC, but we do know that it
919 // is certainly NOT "Val". As such, simplify any uses in the loop that we
920 // can. This case occurs when we unswitch switch statements.
921 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
922 if (Instruction
*U
= cast
<Instruction
>(Users
[i
])) {
923 if (!L
->contains(U
->getParent()))
926 Worklist
.push_back(U
);
928 // If we know that LIC is not Val, use this info to simplify code.
929 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(U
)) {
930 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
) {
931 if (SI
->getCaseValue(i
) == Val
) {
932 // Found a dead case value. Don't remove PHI nodes in the
933 // successor if they become single-entry, those PHI nodes may
934 // be in the Users list.
936 // FIXME: This is a hack. We need to keep the successor around
937 // and hooked up so as to preserve the loop structure, because
938 // trying to update it is complicated. So instead we preserve the
939 // loop structure and put the block on an dead code path.
941 BasicBlock
*SISucc
= SI
->getSuccessor(i
);
942 BasicBlock
* Old
= SI
->getParent();
943 BasicBlock
* Split
= SplitBlock(Old
, SI
, this);
945 Instruction
* OldTerm
= Old
->getTerminator();
946 BranchInst::Create(Split
, SISucc
,
947 ConstantInt::getTrue(), OldTerm
);
949 LPM
->deleteSimpleAnalysisValue(Old
->getTerminator(), L
);
950 Old
->getTerminator()->eraseFromParent();
953 for (BasicBlock::iterator II
= SISucc
->begin();
954 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
955 Value
*InVal
= PN
->removeIncomingValue(Split
, false);
956 PN
->addIncoming(InVal
, Old
);
965 // TODO: We could do other simplifications, for example, turning
966 // LIC == Val -> false.
970 SimplifyCode(Worklist
, L
);
973 /// SimplifyCode - Okay, now that we have simplified some instructions in the
974 /// loop, walk over it and constant prop, dce, and fold control flow where
975 /// possible. Note that this is effectively a very simple loop-structure-aware
976 /// optimizer. During processing of this loop, L could very well be deleted, so
977 /// it must not be used.
979 /// FIXME: When the loop optimizer is more mature, separate this out to a new
982 void LoopUnswitch::SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
) {
983 while (!Worklist
.empty()) {
984 Instruction
*I
= Worklist
.back();
987 // Simple constant folding.
988 if (Constant
*C
= ConstantFoldInstruction(I
)) {
989 ReplaceUsesOfWith(I
, C
, Worklist
, L
, LPM
);
994 if (isInstructionTriviallyDead(I
)) {
995 DOUT
<< "Remove dead instruction '" << *I
;
997 // Add uses to the worklist, which may be dead now.
998 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
999 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
1000 Worklist
.push_back(Use
);
1001 LPM
->deleteSimpleAnalysisValue(I
, L
);
1002 RemoveFromWorklist(I
, Worklist
);
1003 I
->eraseFromParent();
1008 // Special case hacks that appear commonly in unswitched code.
1009 switch (I
->getOpcode()) {
1010 case Instruction::Select
:
1011 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(0))) {
1012 ReplaceUsesOfWith(I
, I
->getOperand(!CB
->getZExtValue()+1), Worklist
, L
,
1017 case Instruction::And
:
1018 if (isa
<ConstantInt
>(I
->getOperand(0)) &&
1019 I
->getOperand(0)->getType() == Type::Int1Ty
) // constant -> RHS
1020 cast
<BinaryOperator
>(I
)->swapOperands();
1021 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))
1022 if (CB
->getType() == Type::Int1Ty
) {
1023 if (CB
->isOne()) // X & 1 -> X
1024 ReplaceUsesOfWith(I
, I
->getOperand(0), Worklist
, L
, LPM
);
1026 ReplaceUsesOfWith(I
, I
->getOperand(1), Worklist
, L
, LPM
);
1030 case Instruction::Or
:
1031 if (isa
<ConstantInt
>(I
->getOperand(0)) &&
1032 I
->getOperand(0)->getType() == Type::Int1Ty
) // constant -> RHS
1033 cast
<BinaryOperator
>(I
)->swapOperands();
1034 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))
1035 if (CB
->getType() == Type::Int1Ty
) {
1036 if (CB
->isOne()) // X | 1 -> 1
1037 ReplaceUsesOfWith(I
, I
->getOperand(1), Worklist
, L
, LPM
);
1039 ReplaceUsesOfWith(I
, I
->getOperand(0), Worklist
, L
, LPM
);
1043 case Instruction::Br
: {
1044 BranchInst
*BI
= cast
<BranchInst
>(I
);
1045 if (BI
->isUnconditional()) {
1046 // If BI's parent is the only pred of the successor, fold the two blocks
1048 BasicBlock
*Pred
= BI
->getParent();
1049 BasicBlock
*Succ
= BI
->getSuccessor(0);
1050 BasicBlock
*SinglePred
= Succ
->getSinglePredecessor();
1051 if (!SinglePred
) continue; // Nothing to do.
1052 assert(SinglePred
== Pred
&& "CFG broken");
1054 DOUT
<< "Merging blocks: " << Pred
->getName() << " <- "
1055 << Succ
->getName() << "\n";
1057 // Resolve any single entry PHI nodes in Succ.
1058 while (PHINode
*PN
= dyn_cast
<PHINode
>(Succ
->begin()))
1059 ReplaceUsesOfWith(PN
, PN
->getIncomingValue(0), Worklist
, L
, LPM
);
1061 // Move all of the successor contents from Succ to Pred.
1062 Pred
->getInstList().splice(BI
, Succ
->getInstList(), Succ
->begin(),
1064 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1065 BI
->eraseFromParent();
1066 RemoveFromWorklist(BI
, Worklist
);
1068 // If Succ has any successors with PHI nodes, update them to have
1069 // entries coming from Pred instead of Succ.
1070 Succ
->replaceAllUsesWith(Pred
);
1072 // Remove Succ from the loop tree.
1073 LI
->removeBlock(Succ
);
1074 LPM
->deleteSimpleAnalysisValue(Succ
, L
);
1075 Succ
->eraseFromParent();
1077 } else if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(BI
->getCondition())){
1078 // Conditional branch. Turn it into an unconditional branch, then
1079 // remove dead blocks.
1080 break; // FIXME: Enable.
1082 DOUT
<< "Folded branch: " << *BI
;
1083 BasicBlock
*DeadSucc
= BI
->getSuccessor(CB
->getZExtValue());
1084 BasicBlock
*LiveSucc
= BI
->getSuccessor(!CB
->getZExtValue());
1085 DeadSucc
->removePredecessor(BI
->getParent(), true);
1086 Worklist
.push_back(BranchInst::Create(LiveSucc
, BI
));
1087 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1088 BI
->eraseFromParent();
1089 RemoveFromWorklist(BI
, Worklist
);
1092 RemoveBlockIfDead(DeadSucc
, Worklist
, L
);