1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "memcpyopt"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/Dominators.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Target/TargetData.h"
30 STATISTIC(NumMemCpyInstr
, "Number of memcpy instructions deleted");
31 STATISTIC(NumMemSetInfer
, "Number of memsets inferred");
33 /// isBytewiseValue - If the specified value can be set by repeating the same
34 /// byte in memory, return the i8 value that it is represented with. This is
35 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
36 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
37 /// byte store (e.g. i16 0x1234), return null.
38 static Value
*isBytewiseValue(Value
*V
) {
39 // All byte-wide stores are splatable, even of arbitrary variables.
40 if (V
->getType() == Type::Int8Ty
) return V
;
42 // Constant float and double values can be handled as integer values if the
43 // corresponding integer value is "byteable". An important case is 0.0.
44 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
45 if (CFP
->getType() == Type::FloatTy
)
46 V
= ConstantExpr::getBitCast(CFP
, Type::Int32Ty
);
47 if (CFP
->getType() == Type::DoubleTy
)
48 V
= ConstantExpr::getBitCast(CFP
, Type::Int64Ty
);
49 // Don't handle long double formats, which have strange constraints.
52 // We can handle constant integers that are power of two in size and a
53 // multiple of 8 bits.
54 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
55 unsigned Width
= CI
->getBitWidth();
56 if (isPowerOf2_32(Width
) && Width
> 8) {
57 // We can handle this value if the recursive binary decomposition is the
58 // same at all levels.
59 APInt Val
= CI
->getValue();
61 while (Val
.getBitWidth() != 8) {
62 unsigned NextWidth
= Val
.getBitWidth()/2;
63 Val2
= Val
.lshr(NextWidth
);
64 Val2
.trunc(Val
.getBitWidth()/2);
65 Val
.trunc(Val
.getBitWidth()/2);
67 // If the top/bottom halves aren't the same, reject it.
71 return ConstantInt::get(Val
);
75 // Conceptually, we could handle things like:
76 // %a = zext i8 %X to i16
79 // but until there is an example that actually needs this, it doesn't seem
80 // worth worrying about.
84 static int64_t GetOffsetFromIndex(const GetElementPtrInst
*GEP
, unsigned Idx
,
85 bool &VariableIdxFound
, TargetData
&TD
) {
86 // Skip over the first indices.
87 gep_type_iterator GTI
= gep_type_begin(GEP
);
88 for (unsigned i
= 1; i
!= Idx
; ++i
, ++GTI
)
91 // Compute the offset implied by the rest of the indices.
93 for (unsigned i
= Idx
, e
= GEP
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
94 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
96 return VariableIdxFound
= true;
97 if (OpC
->isZero()) continue; // No offset.
99 // Handle struct indices, which add their field offset to the pointer.
100 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
101 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
105 // Otherwise, we have a sequential type like an array or vector. Multiply
106 // the index by the ElementSize.
107 uint64_t Size
= TD
.getTypePaddedSize(GTI
.getIndexedType());
108 Offset
+= Size
*OpC
->getSExtValue();
114 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
115 /// constant offset, and return that constant offset. For example, Ptr1 might
116 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
117 static bool IsPointerOffset(Value
*Ptr1
, Value
*Ptr2
, int64_t &Offset
,
119 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
120 // base. After that base, they may have some number of common (and
121 // potentially variable) indices. After that they handle some constant
122 // offset, which determines their offset from each other. At this point, we
123 // handle no other case.
124 GetElementPtrInst
*GEP1
= dyn_cast
<GetElementPtrInst
>(Ptr1
);
125 GetElementPtrInst
*GEP2
= dyn_cast
<GetElementPtrInst
>(Ptr2
);
126 if (!GEP1
|| !GEP2
|| GEP1
->getOperand(0) != GEP2
->getOperand(0))
129 // Skip any common indices and track the GEP types.
131 for (; Idx
!= GEP1
->getNumOperands() && Idx
!= GEP2
->getNumOperands(); ++Idx
)
132 if (GEP1
->getOperand(Idx
) != GEP2
->getOperand(Idx
))
135 bool VariableIdxFound
= false;
136 int64_t Offset1
= GetOffsetFromIndex(GEP1
, Idx
, VariableIdxFound
, TD
);
137 int64_t Offset2
= GetOffsetFromIndex(GEP2
, Idx
, VariableIdxFound
, TD
);
138 if (VariableIdxFound
) return false;
140 Offset
= Offset2
-Offset1
;
145 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
146 /// This allows us to analyze stores like:
151 /// which sometimes happens with stores to arrays of structs etc. When we see
152 /// the first store, we make a range [1, 2). The second store extends the range
153 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
154 /// two ranges into [0, 3) which is memset'able.
157 // Start/End - A semi range that describes the span that this range covers.
158 // The range is closed at the start and open at the end: [Start, End).
161 /// StartPtr - The getelementptr instruction that points to the start of the
165 /// Alignment - The known alignment of the first store.
168 /// TheStores - The actual stores that make up this range.
169 SmallVector
<StoreInst
*, 16> TheStores
;
171 bool isProfitableToUseMemset(const TargetData
&TD
) const;
174 } // end anon namespace
176 bool MemsetRange::isProfitableToUseMemset(const TargetData
&TD
) const {
177 // If we found more than 8 stores to merge or 64 bytes, use memset.
178 if (TheStores
.size() >= 8 || End
-Start
>= 64) return true;
180 // Assume that the code generator is capable of merging pairs of stores
181 // together if it wants to.
182 if (TheStores
.size() <= 2) return false;
184 // If we have fewer than 8 stores, it can still be worthwhile to do this.
185 // For example, merging 4 i8 stores into an i32 store is useful almost always.
186 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
187 // memset will be split into 2 32-bit stores anyway) and doing so can
188 // pessimize the llvm optimizer.
190 // Since we don't have perfect knowledge here, make some assumptions: assume
191 // the maximum GPR width is the same size as the pointer size and assume that
192 // this width can be stored. If so, check to see whether we will end up
193 // actually reducing the number of stores used.
194 unsigned Bytes
= unsigned(End
-Start
);
195 unsigned NumPointerStores
= Bytes
/TD
.getPointerSize();
197 // Assume the remaining bytes if any are done a byte at a time.
198 unsigned NumByteStores
= Bytes
- NumPointerStores
*TD
.getPointerSize();
200 // If we will reduce the # stores (according to this heuristic), do the
201 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
203 return TheStores
.size() > NumPointerStores
+NumByteStores
;
209 /// Ranges - A sorted list of the memset ranges. We use std::list here
210 /// because each element is relatively large and expensive to copy.
211 std::list
<MemsetRange
> Ranges
;
212 typedef std::list
<MemsetRange
>::iterator range_iterator
;
215 MemsetRanges(TargetData
&td
) : TD(td
) {}
217 typedef std::list
<MemsetRange
>::const_iterator const_iterator
;
218 const_iterator
begin() const { return Ranges
.begin(); }
219 const_iterator
end() const { return Ranges
.end(); }
220 bool empty() const { return Ranges
.empty(); }
222 void addStore(int64_t OffsetFromFirst
, StoreInst
*SI
);
225 } // end anon namespace
228 /// addStore - Add a new store to the MemsetRanges data structure. This adds a
229 /// new range for the specified store at the specified offset, merging into
230 /// existing ranges as appropriate.
231 void MemsetRanges::addStore(int64_t Start
, StoreInst
*SI
) {
232 int64_t End
= Start
+TD
.getTypeStoreSize(SI
->getOperand(0)->getType());
234 // Do a linear search of the ranges to see if this can be joined and/or to
235 // find the insertion point in the list. We keep the ranges sorted for
236 // simplicity here. This is a linear search of a linked list, which is ugly,
237 // however the number of ranges is limited, so this won't get crazy slow.
238 range_iterator I
= Ranges
.begin(), E
= Ranges
.end();
240 while (I
!= E
&& Start
> I
->End
)
243 // We now know that I == E, in which case we didn't find anything to merge
244 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
245 // to insert a new range. Handle this now.
246 if (I
== E
|| End
< I
->Start
) {
247 MemsetRange
&R
= *Ranges
.insert(I
, MemsetRange());
250 R
.StartPtr
= SI
->getPointerOperand();
251 R
.Alignment
= SI
->getAlignment();
252 R
.TheStores
.push_back(SI
);
256 // This store overlaps with I, add it.
257 I
->TheStores
.push_back(SI
);
259 // At this point, we may have an interval that completely contains our store.
260 // If so, just add it to the interval and return.
261 if (I
->Start
<= Start
&& I
->End
>= End
)
264 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
265 // but is not entirely contained within the range.
267 // See if the range extends the start of the range. In this case, it couldn't
268 // possibly cause it to join the prior range, because otherwise we would have
270 if (Start
< I
->Start
) {
272 I
->StartPtr
= SI
->getPointerOperand();
275 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
276 // is in or right at the end of I), and that End >= I->Start. Extend I out to
280 range_iterator NextI
= I
;
281 while (++NextI
!= E
&& End
>= NextI
->Start
) {
282 // Merge the range in.
283 I
->TheStores
.append(NextI
->TheStores
.begin(), NextI
->TheStores
.end());
284 if (NextI
->End
> I
->End
)
292 //===----------------------------------------------------------------------===//
294 //===----------------------------------------------------------------------===//
298 class VISIBILITY_HIDDEN MemCpyOpt
: public FunctionPass
{
299 bool runOnFunction(Function
&F
);
301 static char ID
; // Pass identification, replacement for typeid
302 MemCpyOpt() : FunctionPass(&ID
) {}
305 // This transformation requires dominator postdominator info
306 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
307 AU
.setPreservesCFG();
308 AU
.addRequired
<DominatorTree
>();
309 AU
.addRequired
<MemoryDependenceAnalysis
>();
310 AU
.addRequired
<AliasAnalysis
>();
311 AU
.addRequired
<TargetData
>();
312 AU
.addPreserved
<AliasAnalysis
>();
313 AU
.addPreserved
<MemoryDependenceAnalysis
>();
314 AU
.addPreserved
<TargetData
>();
318 bool processStore(StoreInst
*SI
, BasicBlock::iterator
& BBI
);
319 bool processMemCpy(MemCpyInst
* M
);
320 bool performCallSlotOptzn(MemCpyInst
* cpy
, CallInst
* C
);
321 bool iterateOnFunction(Function
&F
);
324 char MemCpyOpt::ID
= 0;
327 // createMemCpyOptPass - The public interface to this file...
328 FunctionPass
*llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
330 static RegisterPass
<MemCpyOpt
> X("memcpyopt",
331 "MemCpy Optimization");
335 /// processStore - When GVN is scanning forward over instructions, we look for
336 /// some other patterns to fold away. In particular, this looks for stores to
337 /// neighboring locations of memory. If it sees enough consequtive ones
338 /// (currently 4) it attempts to merge them together into a memcpy/memset.
339 bool MemCpyOpt::processStore(StoreInst
*SI
, BasicBlock::iterator
& BBI
) {
340 if (SI
->isVolatile()) return false;
342 // There are two cases that are interesting for this code to handle: memcpy
343 // and memset. Right now we only handle memset.
345 // Ensure that the value being stored is something that can be memset'able a
346 // byte at a time like "0" or "-1" or any width, as well as things like
347 // 0xA0A0A0A0 and 0.0.
348 Value
*ByteVal
= isBytewiseValue(SI
->getOperand(0));
352 TargetData
&TD
= getAnalysis
<TargetData
>();
353 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
355 // Okay, so we now have a single store that can be splatable. Scan to find
356 // all subsequent stores of the same value to offset from the same pointer.
357 // Join these together into ranges, so we can decide whether contiguous blocks
359 MemsetRanges
Ranges(TD
);
361 Value
*StartPtr
= SI
->getPointerOperand();
363 BasicBlock::iterator BI
= SI
;
364 for (++BI
; !isa
<TerminatorInst
>(BI
); ++BI
) {
365 if (isa
<CallInst
>(BI
) || isa
<InvokeInst
>(BI
)) {
366 // If the call is readnone, ignore it, otherwise bail out. We don't even
367 // allow readonly here because we don't want something like:
368 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
369 if (AA
.getModRefBehavior(CallSite::get(BI
)) ==
370 AliasAnalysis::DoesNotAccessMemory
)
373 // TODO: If this is a memset, try to join it in.
376 } else if (isa
<VAArgInst
>(BI
) || isa
<LoadInst
>(BI
))
379 // If this is a non-store instruction it is fine, ignore it.
380 StoreInst
*NextStore
= dyn_cast
<StoreInst
>(BI
);
381 if (NextStore
== 0) continue;
383 // If this is a store, see if we can merge it in.
384 if (NextStore
->isVolatile()) break;
386 // Check to see if this stored value is of the same byte-splattable value.
387 if (ByteVal
!= isBytewiseValue(NextStore
->getOperand(0)))
390 // Check to see if this store is to a constant offset from the start ptr.
392 if (!IsPointerOffset(StartPtr
, NextStore
->getPointerOperand(), Offset
, TD
))
395 Ranges
.addStore(Offset
, NextStore
);
398 // If we have no ranges, then we just had a single store with nothing that
399 // could be merged in. This is a very common case of course.
403 // If we had at least one store that could be merged in, add the starting
404 // store as well. We try to avoid this unless there is at least something
405 // interesting as a small compile-time optimization.
406 Ranges
.addStore(0, SI
);
409 Function
*MemSetF
= 0;
411 // Now that we have full information about ranges, loop over the ranges and
412 // emit memset's for anything big enough to be worthwhile.
413 bool MadeChange
= false;
414 for (MemsetRanges::const_iterator I
= Ranges
.begin(), E
= Ranges
.end();
416 const MemsetRange
&Range
= *I
;
418 if (Range
.TheStores
.size() == 1) continue;
420 // If it is profitable to lower this range to memset, do so now.
421 if (!Range
.isProfitableToUseMemset(TD
))
424 // Otherwise, we do want to transform this! Create a new memset. We put
425 // the memset right before the first instruction that isn't part of this
426 // memset block. This ensure that the memset is dominated by any addressing
427 // instruction needed by the start of the block.
428 BasicBlock::iterator InsertPt
= BI
;
431 const Type
*Tys
[] = {Type::Int64Ty
};
432 MemSetF
= Intrinsic::getDeclaration(SI
->getParent()->getParent()
433 ->getParent(), Intrinsic::memset
,
437 // Get the starting pointer of the block.
438 StartPtr
= Range
.StartPtr
;
440 // Cast the start ptr to be i8* as memset requires.
441 const Type
*i8Ptr
= PointerType::getUnqual(Type::Int8Ty
);
442 if (StartPtr
->getType() != i8Ptr
)
443 StartPtr
= new BitCastInst(StartPtr
, i8Ptr
, StartPtr
->getNameStart(),
447 StartPtr
, ByteVal
, // Start, value
448 ConstantInt::get(Type::Int64Ty
, Range
.End
-Range
.Start
), // size
449 ConstantInt::get(Type::Int32Ty
, Range
.Alignment
) // align
451 Value
*C
= CallInst::Create(MemSetF
, Ops
, Ops
+4, "", InsertPt
);
452 DEBUG(cerr
<< "Replace stores:\n";
453 for (unsigned i
= 0, e
= Range
.TheStores
.size(); i
!= e
; ++i
)
454 cerr
<< *Range
.TheStores
[i
];
455 cerr
<< "With: " << *C
); C
=C
;
457 // Don't invalidate the iterator
460 // Zap all the stores.
461 for (SmallVector
<StoreInst
*, 16>::const_iterator SI
= Range
.TheStores
.begin(),
462 SE
= Range
.TheStores
.end(); SI
!= SE
; ++SI
)
463 (*SI
)->eraseFromParent();
472 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
473 /// and checks for the possibility of a call slot optimization by having
474 /// the call write its result directly into the destination of the memcpy.
475 bool MemCpyOpt::performCallSlotOptzn(MemCpyInst
*cpy
, CallInst
*C
) {
476 // The general transformation to keep in mind is
478 // call @func(..., src, ...)
479 // memcpy(dest, src, ...)
483 // memcpy(dest, src, ...)
484 // call @func(..., dest, ...)
486 // Since moving the memcpy is technically awkward, we additionally check that
487 // src only holds uninitialized values at the moment of the call, meaning that
488 // the memcpy can be discarded rather than moved.
490 // Deliberately get the source and destination with bitcasts stripped away,
491 // because we'll need to do type comparisons based on the underlying type.
492 Value
* cpyDest
= cpy
->getDest();
493 Value
* cpySrc
= cpy
->getSource();
494 CallSite CS
= CallSite::get(C
);
496 // We need to be able to reason about the size of the memcpy, so we require
497 // that it be a constant.
498 ConstantInt
* cpyLength
= dyn_cast
<ConstantInt
>(cpy
->getLength());
502 // Require that src be an alloca. This simplifies the reasoning considerably.
503 AllocaInst
* srcAlloca
= dyn_cast
<AllocaInst
>(cpySrc
);
507 // Check that all of src is copied to dest.
508 TargetData
& TD
= getAnalysis
<TargetData
>();
510 ConstantInt
* srcArraySize
= dyn_cast
<ConstantInt
>(srcAlloca
->getArraySize());
514 uint64_t srcSize
= TD
.getTypePaddedSize(srcAlloca
->getAllocatedType()) *
515 srcArraySize
->getZExtValue();
517 if (cpyLength
->getZExtValue() < srcSize
)
520 // Check that accessing the first srcSize bytes of dest will not cause a
521 // trap. Otherwise the transform is invalid since it might cause a trap
522 // to occur earlier than it otherwise would.
523 if (AllocaInst
* A
= dyn_cast
<AllocaInst
>(cpyDest
)) {
524 // The destination is an alloca. Check it is larger than srcSize.
525 ConstantInt
* destArraySize
= dyn_cast
<ConstantInt
>(A
->getArraySize());
529 uint64_t destSize
= TD
.getTypePaddedSize(A
->getAllocatedType()) *
530 destArraySize
->getZExtValue();
532 if (destSize
< srcSize
)
534 } else if (Argument
* A
= dyn_cast
<Argument
>(cpyDest
)) {
535 // If the destination is an sret parameter then only accesses that are
536 // outside of the returned struct type can trap.
537 if (!A
->hasStructRetAttr())
540 const Type
* StructTy
= cast
<PointerType
>(A
->getType())->getElementType();
541 uint64_t destSize
= TD
.getTypePaddedSize(StructTy
);
543 if (destSize
< srcSize
)
549 // Check that src is not accessed except via the call and the memcpy. This
550 // guarantees that it holds only undefined values when passed in (so the final
551 // memcpy can be dropped), that it is not read or written between the call and
552 // the memcpy, and that writing beyond the end of it is undefined.
553 SmallVector
<User
*, 8> srcUseList(srcAlloca
->use_begin(),
554 srcAlloca
->use_end());
555 while (!srcUseList
.empty()) {
556 User
* UI
= srcUseList
.back();
557 srcUseList
.pop_back();
559 if (isa
<BitCastInst
>(UI
)) {
560 for (User::use_iterator I
= UI
->use_begin(), E
= UI
->use_end();
562 srcUseList
.push_back(*I
);
563 } else if (GetElementPtrInst
* G
= dyn_cast
<GetElementPtrInst
>(UI
)) {
564 if (G
->hasAllZeroIndices())
565 for (User::use_iterator I
= UI
->use_begin(), E
= UI
->use_end();
567 srcUseList
.push_back(*I
);
570 } else if (UI
!= C
&& UI
!= cpy
) {
575 // Since we're changing the parameter to the callsite, we need to make sure
576 // that what would be the new parameter dominates the callsite.
577 DominatorTree
& DT
= getAnalysis
<DominatorTree
>();
578 if (Instruction
* cpyDestInst
= dyn_cast
<Instruction
>(cpyDest
))
579 if (!DT
.dominates(cpyDestInst
, C
))
582 // In addition to knowing that the call does not access src in some
583 // unexpected manner, for example via a global, which we deduce from
584 // the use analysis, we also need to know that it does not sneakily
585 // access dest. We rely on AA to figure this out for us.
586 AliasAnalysis
& AA
= getAnalysis
<AliasAnalysis
>();
587 if (AA
.getModRefInfo(C
, cpy
->getRawDest(), srcSize
) !=
588 AliasAnalysis::NoModRef
)
591 // All the checks have passed, so do the transformation.
592 bool changedArgument
= false;
593 for (unsigned i
= 0; i
< CS
.arg_size(); ++i
)
594 if (CS
.getArgument(i
)->stripPointerCasts() == cpySrc
) {
595 if (cpySrc
->getType() != cpyDest
->getType())
596 cpyDest
= CastInst::CreatePointerCast(cpyDest
, cpySrc
->getType(),
597 cpyDest
->getName(), C
);
598 changedArgument
= true;
599 if (CS
.getArgument(i
)->getType() != cpyDest
->getType())
600 CS
.setArgument(i
, CastInst::CreatePointerCast(cpyDest
,
601 CS
.getArgument(i
)->getType(), cpyDest
->getName(), C
));
603 CS
.setArgument(i
, cpyDest
);
606 if (!changedArgument
)
609 // Drop any cached information about the call, because we may have changed
610 // its dependence information by changing its parameter.
611 MemoryDependenceAnalysis
& MD
= getAnalysis
<MemoryDependenceAnalysis
>();
612 MD
.removeInstruction(C
);
615 MD
.removeInstruction(cpy
);
616 cpy
->eraseFromParent();
622 /// processMemCpy - perform simplication of memcpy's. If we have memcpy A which
623 /// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
624 /// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
625 /// This allows later passes to remove the first memcpy altogether.
626 bool MemCpyOpt::processMemCpy(MemCpyInst
* M
) {
627 MemoryDependenceAnalysis
& MD
= getAnalysis
<MemoryDependenceAnalysis
>();
629 // The are two possible optimizations we can do for memcpy:
630 // a) memcpy-memcpy xform which exposes redundance for DSE
631 // b) call-memcpy xform for return slot optimization
632 MemDepResult dep
= MD
.getDependency(M
);
633 if (!dep
.isClobber())
635 if (!isa
<MemCpyInst
>(dep
.getInst())) {
636 if (CallInst
* C
= dyn_cast
<CallInst
>(dep
.getInst()))
637 return performCallSlotOptzn(M
, C
);
641 MemCpyInst
* MDep
= cast
<MemCpyInst
>(dep
.getInst());
643 // We can only transforms memcpy's where the dest of one is the source of the
645 if (M
->getSource() != MDep
->getDest())
648 // Second, the length of the memcpy's must be the same, or the preceeding one
649 // must be larger than the following one.
650 ConstantInt
* C1
= dyn_cast
<ConstantInt
>(MDep
->getLength());
651 ConstantInt
* C2
= dyn_cast
<ConstantInt
>(M
->getLength());
655 uint64_t DepSize
= C1
->getValue().getZExtValue();
656 uint64_t CpySize
= C2
->getValue().getZExtValue();
658 if (DepSize
< CpySize
)
661 // Finally, we have to make sure that the dest of the second does not
662 // alias the source of the first
663 AliasAnalysis
& AA
= getAnalysis
<AliasAnalysis
>();
664 if (AA
.alias(M
->getRawDest(), CpySize
, MDep
->getRawSource(), DepSize
) !=
665 AliasAnalysis::NoAlias
)
667 else if (AA
.alias(M
->getRawDest(), CpySize
, M
->getRawSource(), CpySize
) !=
668 AliasAnalysis::NoAlias
)
670 else if (AA
.alias(MDep
->getRawDest(), DepSize
, MDep
->getRawSource(), DepSize
)
671 != AliasAnalysis::NoAlias
)
674 // If all checks passed, then we can transform these memcpy's
676 Tys
[0] = M
->getLength()->getType();
677 Function
* MemCpyFun
= Intrinsic::getDeclaration(
678 M
->getParent()->getParent()->getParent(),
679 M
->getIntrinsicID(), Tys
, 1);
682 M
->getRawDest(), MDep
->getRawSource(), M
->getLength(), M
->getAlignmentCst()
685 CallInst
* C
= CallInst::Create(MemCpyFun
, Args
, Args
+4, "", M
);
688 // If C and M don't interfere, then this is a valid transformation. If they
689 // did, this would mean that the two sources overlap, which would be bad.
690 if (MD
.getDependency(C
) == dep
) {
691 MD
.removeInstruction(M
);
692 M
->eraseFromParent();
697 // Otherwise, there was no point in doing this, so we remove the call we
698 // inserted and act like nothing happened.
699 MD
.removeInstruction(C
);
700 C
->eraseFromParent();
704 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
707 bool MemCpyOpt::runOnFunction(Function
& F
) {
709 bool changed
= false;
710 bool shouldContinue
= true;
712 while (shouldContinue
) {
713 shouldContinue
= iterateOnFunction(F
);
714 changed
|= shouldContinue
;
721 // MemCpyOpt::iterateOnFunction - Executes one iteration of GVN
722 bool MemCpyOpt::iterateOnFunction(Function
&F
) {
723 bool changed_function
= false;
725 // Walk all instruction in the function
726 for (Function::iterator BB
= F
.begin(), BBE
= F
.end(); BB
!= BBE
; ++BB
) {
727 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end();
729 // Avoid invalidating the iterator
730 Instruction
* I
= BI
++;
732 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
733 changed_function
|= processStore(SI
, BI
);
734 else if (MemCpyInst
* M
= dyn_cast
<MemCpyInst
>(I
)) {
735 changed_function
|= processMemCpy(M
);
740 return changed_function
;