Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / Transforms / Scalar / PredicateSimplifier.cpp
bloba7e4d6eec443b5a7d051c1bd81caad52e907e7bc
1 //===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Path-sensitive optimizer. In a branch where x == y, replace uses of
11 // x with y. Permits further optimization, such as the elimination of
12 // the unreachable call:
14 // void test(int *p, int *q)
15 // {
16 // if (p != q)
17 // return;
18 //
19 // if (*p != *q)
20 // foo(); // unreachable
21 // }
23 //===----------------------------------------------------------------------===//
25 // The InequalityGraph focusses on four properties; equals, not equals,
26 // less-than and less-than-or-equals-to. The greater-than forms are also held
27 // just to allow walking from a lesser node to a greater one. These properties
28 // are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
30 // These relationships define a graph between values of the same type. Each
31 // Value is stored in a map table that retrieves the associated Node. This
32 // is how EQ relationships are stored; the map contains pointers from equal
33 // Value to the same node. The node contains a most canonical Value* form
34 // and the list of known relationships with other nodes.
36 // If two nodes are known to be inequal, then they will contain pointers to
37 // each other with an "NE" relationship. If node getNode(%x) is less than
38 // getNode(%y), then the %x node will contain <%y, GT> and %y will contain
39 // <%x, LT>. This allows us to tie nodes together into a graph like this:
41 // %a < %b < %c < %d
43 // with four nodes representing the properties. The InequalityGraph provides
44 // querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
45 // To find a relationship, we start with one of the nodes any binary search
46 // through its list to find where the relationships with the second node start.
47 // Then we iterate through those to find the first relationship that dominates
48 // our context node.
50 // To create these properties, we wait until a branch or switch instruction
51 // implies that a particular value is true (or false). The VRPSolver is
52 // responsible for analyzing the variable and seeing what new inferences
53 // can be made from each property. For example:
55 // %P = icmp ne i32* %ptr, null
56 // %a = and i1 %P, %Q
57 // br i1 %a label %cond_true, label %cond_false
59 // For the true branch, the VRPSolver will start with %a EQ true and look at
60 // the definition of %a and find that it can infer that %P and %Q are both
61 // true. From %P being true, it can infer that %ptr NE null. For the false
62 // branch it can't infer anything from the "and" instruction.
64 // Besides branches, we can also infer properties from instruction that may
65 // have undefined behaviour in certain cases. For example, the dividend of
66 // a division may never be zero. After the division instruction, we may assume
67 // that the dividend is not equal to zero.
69 //===----------------------------------------------------------------------===//
71 // The ValueRanges class stores the known integer bounds of a Value. When we
72 // encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and
73 // %b = [0, 254].
75 // It never stores an empty range, because that means that the code is
76 // unreachable. It never stores a single-element range since that's an equality
77 // relationship and better stored in the InequalityGraph, nor an empty range
78 // since that is better stored in UnreachableBlocks.
80 //===----------------------------------------------------------------------===//
82 #define DEBUG_TYPE "predsimplify"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Constants.h"
85 #include "llvm/DerivedTypes.h"
86 #include "llvm/Instructions.h"
87 #include "llvm/Pass.h"
88 #include "llvm/ADT/DepthFirstIterator.h"
89 #include "llvm/ADT/SetOperations.h"
90 #include "llvm/ADT/SetVector.h"
91 #include "llvm/ADT/Statistic.h"
92 #include "llvm/ADT/STLExtras.h"
93 #include "llvm/Analysis/Dominators.h"
94 #include "llvm/Assembly/Writer.h"
95 #include "llvm/Support/CFG.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/ConstantRange.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/InstVisitor.h"
100 #include "llvm/Target/TargetData.h"
101 #include "llvm/Transforms/Utils/Local.h"
102 #include <algorithm>
103 #include <deque>
104 #include <stack>
105 using namespace llvm;
107 STATISTIC(NumVarsReplaced, "Number of argument substitutions");
108 STATISTIC(NumInstruction , "Number of instructions removed");
109 STATISTIC(NumSimple , "Number of simple replacements");
110 STATISTIC(NumBlocks , "Number of blocks marked unreachable");
111 STATISTIC(NumSnuggle , "Number of comparisons snuggled");
113 namespace {
114 class DomTreeDFS {
115 public:
116 class Node {
117 friend class DomTreeDFS;
118 public:
119 typedef std::vector<Node *>::iterator iterator;
120 typedef std::vector<Node *>::const_iterator const_iterator;
122 unsigned getDFSNumIn() const { return DFSin; }
123 unsigned getDFSNumOut() const { return DFSout; }
125 BasicBlock *getBlock() const { return BB; }
127 iterator begin() { return Children.begin(); }
128 iterator end() { return Children.end(); }
130 const_iterator begin() const { return Children.begin(); }
131 const_iterator end() const { return Children.end(); }
133 bool dominates(const Node *N) const {
134 return DFSin <= N->DFSin && DFSout >= N->DFSout;
137 bool DominatedBy(const Node *N) const {
138 return N->dominates(this);
141 /// Sorts by the number of descendants. With this, you can iterate
142 /// through a sorted list and the first matching entry is the most
143 /// specific match for your basic block. The order provided is stable;
144 /// DomTreeDFS::Nodes with the same number of descendants are sorted by
145 /// DFS in number.
146 bool operator<(const Node &N) const {
147 unsigned spread = DFSout - DFSin;
148 unsigned N_spread = N.DFSout - N.DFSin;
149 if (spread == N_spread) return DFSin < N.DFSin;
150 return spread < N_spread;
152 bool operator>(const Node &N) const { return N < *this; }
154 private:
155 unsigned DFSin, DFSout;
156 BasicBlock *BB;
158 std::vector<Node *> Children;
161 // XXX: this may be slow. Instead of using "new" for each node, consider
162 // putting them in a vector to keep them contiguous.
163 explicit DomTreeDFS(DominatorTree *DT) {
164 std::stack<std::pair<Node *, DomTreeNode *> > S;
166 Entry = new Node;
167 Entry->BB = DT->getRootNode()->getBlock();
168 S.push(std::make_pair(Entry, DT->getRootNode()));
170 NodeMap[Entry->BB] = Entry;
172 while (!S.empty()) {
173 std::pair<Node *, DomTreeNode *> &Pair = S.top();
174 Node *N = Pair.first;
175 DomTreeNode *DTNode = Pair.second;
176 S.pop();
178 for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end();
179 I != E; ++I) {
180 Node *NewNode = new Node;
181 NewNode->BB = (*I)->getBlock();
182 N->Children.push_back(NewNode);
183 S.push(std::make_pair(NewNode, *I));
185 NodeMap[NewNode->BB] = NewNode;
189 renumber();
191 #ifndef NDEBUG
192 DEBUG(dump());
193 #endif
196 #ifndef NDEBUG
197 virtual
198 #endif
199 ~DomTreeDFS() {
200 std::stack<Node *> S;
202 S.push(Entry);
203 while (!S.empty()) {
204 Node *N = S.top(); S.pop();
206 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
207 S.push(*I);
209 delete N;
213 /// getRootNode - This returns the entry node for the CFG of the function.
214 Node *getRootNode() const { return Entry; }
216 /// getNodeForBlock - return the node for the specified basic block.
217 Node *getNodeForBlock(BasicBlock *BB) const {
218 if (!NodeMap.count(BB)) return 0;
219 return const_cast<DomTreeDFS*>(this)->NodeMap[BB];
222 /// dominates - returns true if the basic block for I1 dominates that of
223 /// the basic block for I2. If the instructions belong to the same basic
224 /// block, the instruction first instruction sequentially in the block is
225 /// considered dominating.
226 bool dominates(Instruction *I1, Instruction *I2) {
227 BasicBlock *BB1 = I1->getParent(),
228 *BB2 = I2->getParent();
229 if (BB1 == BB2) {
230 if (isa<TerminatorInst>(I1)) return false;
231 if (isa<TerminatorInst>(I2)) return true;
232 if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
233 if (!isa<PHINode>(I1) && isa<PHINode>(I2)) return false;
235 for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end();
236 I != E; ++I) {
237 if (&*I == I1) return true;
238 else if (&*I == I2) return false;
240 assert(!"Instructions not found in parent BasicBlock?");
241 } else {
242 Node *Node1 = getNodeForBlock(BB1),
243 *Node2 = getNodeForBlock(BB2);
244 return Node1 && Node2 && Node1->dominates(Node2);
246 return false; // Not reached
249 private:
250 /// renumber - calculates the depth first search numberings and applies
251 /// them onto the nodes.
252 void renumber() {
253 std::stack<std::pair<Node *, Node::iterator> > S;
254 unsigned n = 0;
256 Entry->DFSin = ++n;
257 S.push(std::make_pair(Entry, Entry->begin()));
259 while (!S.empty()) {
260 std::pair<Node *, Node::iterator> &Pair = S.top();
261 Node *N = Pair.first;
262 Node::iterator &I = Pair.second;
264 if (I == N->end()) {
265 N->DFSout = ++n;
266 S.pop();
267 } else {
268 Node *Next = *I++;
269 Next->DFSin = ++n;
270 S.push(std::make_pair(Next, Next->begin()));
275 #ifndef NDEBUG
276 virtual void dump() const {
277 dump(*cerr.stream());
280 void dump(std::ostream &os) const {
281 os << "Predicate simplifier DomTreeDFS: \n";
282 dump(Entry, 0, os);
283 os << "\n\n";
286 void dump(Node *N, int depth, std::ostream &os) const {
287 ++depth;
288 for (int i = 0; i < depth; ++i) { os << " "; }
289 os << "[" << depth << "] ";
291 os << N->getBlock()->getName() << " (" << N->getDFSNumIn()
292 << ", " << N->getDFSNumOut() << ")\n";
294 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
295 dump(*I, depth, os);
297 #endif
299 Node *Entry;
300 std::map<BasicBlock *, Node *> NodeMap;
303 // SLT SGT ULT UGT EQ
304 // 0 1 0 1 0 -- GT 10
305 // 0 1 0 1 1 -- GE 11
306 // 0 1 1 0 0 -- SGTULT 12
307 // 0 1 1 0 1 -- SGEULE 13
308 // 0 1 1 1 0 -- SGT 14
309 // 0 1 1 1 1 -- SGE 15
310 // 1 0 0 1 0 -- SLTUGT 18
311 // 1 0 0 1 1 -- SLEUGE 19
312 // 1 0 1 0 0 -- LT 20
313 // 1 0 1 0 1 -- LE 21
314 // 1 0 1 1 0 -- SLT 22
315 // 1 0 1 1 1 -- SLE 23
316 // 1 1 0 1 0 -- UGT 26
317 // 1 1 0 1 1 -- UGE 27
318 // 1 1 1 0 0 -- ULT 28
319 // 1 1 1 0 1 -- ULE 29
320 // 1 1 1 1 0 -- NE 30
321 enum LatticeBits {
322 EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
324 enum LatticeVal {
325 GT = SGT_BIT | UGT_BIT,
326 GE = GT | EQ_BIT,
327 LT = SLT_BIT | ULT_BIT,
328 LE = LT | EQ_BIT,
329 NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
330 SGTULT = SGT_BIT | ULT_BIT,
331 SGEULE = SGTULT | EQ_BIT,
332 SLTUGT = SLT_BIT | UGT_BIT,
333 SLEUGE = SLTUGT | EQ_BIT,
334 ULT = SLT_BIT | SGT_BIT | ULT_BIT,
335 UGT = SLT_BIT | SGT_BIT | UGT_BIT,
336 SLT = SLT_BIT | ULT_BIT | UGT_BIT,
337 SGT = SGT_BIT | ULT_BIT | UGT_BIT,
338 SLE = SLT | EQ_BIT,
339 SGE = SGT | EQ_BIT,
340 ULE = ULT | EQ_BIT,
341 UGE = UGT | EQ_BIT
344 #ifndef NDEBUG
345 /// validPredicate - determines whether a given value is actually a lattice
346 /// value. Only used in assertions or debugging.
347 static bool validPredicate(LatticeVal LV) {
348 switch (LV) {
349 case GT: case GE: case LT: case LE: case NE:
350 case SGTULT: case SGT: case SGEULE:
351 case SLTUGT: case SLT: case SLEUGE:
352 case ULT: case UGT:
353 case SLE: case SGE: case ULE: case UGE:
354 return true;
355 default:
356 return false;
359 #endif
361 /// reversePredicate - reverse the direction of the inequality
362 static LatticeVal reversePredicate(LatticeVal LV) {
363 unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT
365 if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
366 reverse |= (SLT_BIT|SGT_BIT);
368 if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
369 reverse |= (ULT_BIT|UGT_BIT);
371 LatticeVal Rev = static_cast<LatticeVal>(reverse);
372 assert(validPredicate(Rev) && "Failed reversing predicate.");
373 return Rev;
376 /// ValueNumbering stores the scope-specific value numbers for a given Value.
377 class VISIBILITY_HIDDEN ValueNumbering {
379 /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It
380 /// includes the comparison operators necessary to allow you to store it
381 /// in a sorted vector.
382 class VISIBILITY_HIDDEN VNPair {
383 public:
384 Value *V;
385 unsigned index;
386 DomTreeDFS::Node *Subtree;
388 VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree)
389 : V(V), index(index), Subtree(Subtree) {}
391 bool operator==(const VNPair &RHS) const {
392 return V == RHS.V && Subtree == RHS.Subtree;
395 bool operator<(const VNPair &RHS) const {
396 if (V != RHS.V) return V < RHS.V;
397 return *Subtree < *RHS.Subtree;
400 bool operator<(Value *RHS) const {
401 return V < RHS;
404 bool operator>(Value *RHS) const {
405 return V > RHS;
408 friend bool operator<(Value *RHS, const VNPair &pair) {
409 return pair.operator>(RHS);
413 typedef std::vector<VNPair> VNMapType;
414 VNMapType VNMap;
416 /// The canonical choice for value number at index.
417 std::vector<Value *> Values;
419 DomTreeDFS *DTDFS;
421 public:
422 #ifndef NDEBUG
423 virtual ~ValueNumbering() {}
424 virtual void dump() {
425 dump(*cerr.stream());
428 void dump(std::ostream &os) {
429 for (unsigned i = 1; i <= Values.size(); ++i) {
430 os << i << " = ";
431 WriteAsOperand(os, Values[i-1]);
432 os << " {";
433 for (unsigned j = 0; j < VNMap.size(); ++j) {
434 if (VNMap[j].index == i) {
435 WriteAsOperand(os, VNMap[j].V);
436 os << " (" << VNMap[j].Subtree->getDFSNumIn() << ") ";
439 os << "}\n";
442 #endif
444 /// compare - returns true if V1 is a better canonical value than V2.
445 bool compare(Value *V1, Value *V2) const {
446 if (isa<Constant>(V1))
447 return !isa<Constant>(V2);
448 else if (isa<Constant>(V2))
449 return false;
450 else if (isa<Argument>(V1))
451 return !isa<Argument>(V2);
452 else if (isa<Argument>(V2))
453 return false;
455 Instruction *I1 = dyn_cast<Instruction>(V1);
456 Instruction *I2 = dyn_cast<Instruction>(V2);
458 if (!I1 || !I2)
459 return V1->getNumUses() < V2->getNumUses();
461 return DTDFS->dominates(I1, I2);
464 ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {}
466 /// valueNumber - finds the value number for V under the Subtree. If
467 /// there is no value number, returns zero.
468 unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) {
469 if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V))
470 || V->getType() == Type::VoidTy) return 0;
472 VNMapType::iterator E = VNMap.end();
473 VNPair pair(V, 0, Subtree);
474 VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair);
475 while (I != E && I->V == V) {
476 if (I->Subtree->dominates(Subtree))
477 return I->index;
478 ++I;
480 return 0;
483 /// getOrInsertVN - always returns a value number, creating it if necessary.
484 unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) {
485 if (unsigned n = valueNumber(V, Subtree))
486 return n;
487 else
488 return newVN(V);
491 /// newVN - creates a new value number. Value V must not already have a
492 /// value number assigned.
493 unsigned newVN(Value *V) {
494 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
495 "Bad Value for value numbering.");
496 assert(V->getType() != Type::VoidTy && "Won't value number a void value");
498 Values.push_back(V);
500 VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode());
501 VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair);
502 assert((I == VNMap.end() || value(I->index) != V) &&
503 "Attempt to create a duplicate value number.");
504 VNMap.insert(I, pair);
506 return Values.size();
509 /// value - returns the Value associated with a value number.
510 Value *value(unsigned index) const {
511 assert(index != 0 && "Zero index is reserved for not found.");
512 assert(index <= Values.size() && "Index out of range.");
513 return Values[index-1];
516 /// canonicalize - return a Value that is equal to V under Subtree.
517 Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) {
518 if (isa<Constant>(V)) return V;
520 if (unsigned n = valueNumber(V, Subtree))
521 return value(n);
522 else
523 return V;
526 /// addEquality - adds that value V belongs to the set of equivalent
527 /// values defined by value number n under Subtree.
528 void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) {
529 assert(canonicalize(value(n), Subtree) == value(n) &&
530 "Node's 'canonical' choice isn't best within this subtree.");
532 // Suppose that we are given "%x -> node #1 (%y)". The problem is that
533 // we may already have "%z -> node #2 (%x)" somewhere above us in the
534 // graph. We need to find those edges and add "%z -> node #1 (%y)"
535 // to keep the lookups canonical.
537 std::vector<Value *> ToRepoint(1, V);
539 if (unsigned Conflict = valueNumber(V, Subtree)) {
540 for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end();
541 I != E; ++I) {
542 if (I->index == Conflict && I->Subtree->dominates(Subtree))
543 ToRepoint.push_back(I->V);
547 for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
548 VE = ToRepoint.end(); VI != VE; ++VI) {
549 Value *V = *VI;
551 VNPair pair(V, n, Subtree);
552 VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
553 VNMapType::iterator I = std::lower_bound(B, E, pair);
554 if (I != E && I->V == V && I->Subtree == Subtree)
555 I->index = n; // Update best choice
556 else
557 VNMap.insert(I, pair); // New Value
559 // XXX: we currently don't have to worry about updating values with
560 // more specific Subtrees, but we will need to for PHI node support.
562 #ifndef NDEBUG
563 Value *V_n = value(n);
564 if (isa<Constant>(V) && isa<Constant>(V_n)) {
565 assert(V == V_n && "Constant equals different constant?");
567 #endif
571 /// remove - removes all references to value V.
572 void remove(Value *V) {
573 VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
574 VNPair pair(V, 0, DTDFS->getRootNode());
575 VNMapType::iterator J = std::upper_bound(B, E, pair);
576 VNMapType::iterator I = J;
578 while (I != B && (I == E || I->V == V)) --I;
580 VNMap.erase(I, J);
584 /// The InequalityGraph stores the relationships between values.
585 /// Each Value in the graph is assigned to a Node. Nodes are pointer
586 /// comparable for equality. The caller is expected to maintain the logical
587 /// consistency of the system.
589 /// The InequalityGraph class may invalidate Node*s after any mutator call.
590 /// @brief The InequalityGraph stores the relationships between values.
591 class VISIBILITY_HIDDEN InequalityGraph {
592 ValueNumbering &VN;
593 DomTreeDFS::Node *TreeRoot;
595 InequalityGraph(); // DO NOT IMPLEMENT
596 InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
597 public:
598 InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot)
599 : VN(VN), TreeRoot(TreeRoot) {}
601 class Node;
603 /// An Edge is contained inside a Node making one end of the edge implicit
604 /// and contains a pointer to the other end. The edge contains a lattice
605 /// value specifying the relationship and an DomTreeDFS::Node specifying
606 /// the root in the dominator tree to which this edge applies.
607 class VISIBILITY_HIDDEN Edge {
608 public:
609 Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST)
610 : To(T), LV(V), Subtree(ST) {}
612 unsigned To;
613 LatticeVal LV;
614 DomTreeDFS::Node *Subtree;
616 bool operator<(const Edge &edge) const {
617 if (To != edge.To) return To < edge.To;
618 return *Subtree < *edge.Subtree;
621 bool operator<(unsigned to) const {
622 return To < to;
625 bool operator>(unsigned to) const {
626 return To > to;
629 friend bool operator<(unsigned to, const Edge &edge) {
630 return edge.operator>(to);
634 /// A single node in the InequalityGraph. This stores the canonical Value
635 /// for the node, as well as the relationships with the neighbours.
637 /// @brief A single node in the InequalityGraph.
638 class VISIBILITY_HIDDEN Node {
639 friend class InequalityGraph;
641 typedef SmallVector<Edge, 4> RelationsType;
642 RelationsType Relations;
644 // TODO: can this idea improve performance?
645 //friend class std::vector<Node>;
646 //Node(Node &N) { RelationsType.swap(N.RelationsType); }
648 public:
649 typedef RelationsType::iterator iterator;
650 typedef RelationsType::const_iterator const_iterator;
652 #ifndef NDEBUG
653 virtual ~Node() {}
654 virtual void dump() const {
655 dump(*cerr.stream());
657 private:
658 void dump(std::ostream &os) const {
659 static const std::string names[32] =
660 { "000000", "000001", "000002", "000003", "000004", "000005",
661 "000006", "000007", "000008", "000009", " >", " >=",
662 " s>u<", "s>=u<=", " s>", " s>=", "000016", "000017",
663 " s<u>", "s<=u>=", " <", " <=", " s<", " s<=",
664 "000024", "000025", " u>", " u>=", " u<", " u<=",
665 " !=", "000031" };
666 for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
667 os << names[NI->LV] << " " << NI->To
668 << " (" << NI->Subtree->getDFSNumIn() << "), ";
671 public:
672 #endif
674 iterator begin() { return Relations.begin(); }
675 iterator end() { return Relations.end(); }
676 const_iterator begin() const { return Relations.begin(); }
677 const_iterator end() const { return Relations.end(); }
679 iterator find(unsigned n, DomTreeDFS::Node *Subtree) {
680 iterator E = end();
681 for (iterator I = std::lower_bound(begin(), E, n);
682 I != E && I->To == n; ++I) {
683 if (Subtree->DominatedBy(I->Subtree))
684 return I;
686 return E;
689 const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const {
690 const_iterator E = end();
691 for (const_iterator I = std::lower_bound(begin(), E, n);
692 I != E && I->To == n; ++I) {
693 if (Subtree->DominatedBy(I->Subtree))
694 return I;
696 return E;
699 /// update - updates the lattice value for a given node, creating a new
700 /// entry if one doesn't exist. The new lattice value must not be
701 /// inconsistent with any previously existing value.
702 void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) {
703 assert(validPredicate(R) && "Invalid predicate.");
705 Edge edge(n, R, Subtree);
706 iterator B = begin(), E = end();
707 iterator I = std::lower_bound(B, E, edge);
709 iterator J = I;
710 while (J != E && J->To == n) {
711 if (Subtree->DominatedBy(J->Subtree))
712 break;
713 ++J;
716 if (J != E && J->To == n) {
717 edge.LV = static_cast<LatticeVal>(J->LV & R);
718 assert(validPredicate(edge.LV) && "Invalid union of lattice values.");
720 if (edge.LV == J->LV)
721 return; // This update adds nothing new.
724 if (I != B) {
725 // We also have to tighten any edge beneath our update.
726 for (iterator K = I - 1; K->To == n; --K) {
727 if (K->Subtree->DominatedBy(Subtree)) {
728 LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV);
729 assert(validPredicate(LV) && "Invalid union of lattice values");
730 K->LV = LV;
732 if (K == B) break;
736 // Insert new edge at Subtree if it isn't already there.
737 if (I == E || I->To != n || Subtree != I->Subtree)
738 Relations.insert(I, edge);
742 private:
744 std::vector<Node> Nodes;
746 public:
747 /// node - returns the node object at a given value number. The pointer
748 /// returned may be invalidated on the next call to node().
749 Node *node(unsigned index) {
750 assert(VN.value(index)); // This triggers the necessary checks.
751 if (Nodes.size() < index) Nodes.resize(index);
752 return &Nodes[index-1];
755 /// isRelatedBy - true iff n1 op n2
756 bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
757 LatticeVal LV) {
758 if (n1 == n2) return LV & EQ_BIT;
760 Node *N1 = node(n1);
761 Node::iterator I = N1->find(n2, Subtree), E = N1->end();
762 if (I != E) return (I->LV & LV) == I->LV;
764 return false;
767 // The add* methods assume that your input is logically valid and may
768 // assertion-fail or infinitely loop if you attempt a contradiction.
770 /// addInequality - Sets n1 op n2.
771 /// It is also an error to call this on an inequality that is already true.
772 void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
773 LatticeVal LV1) {
774 assert(n1 != n2 && "A node can't be inequal to itself.");
776 if (LV1 != NE)
777 assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
778 "Contradictory inequality.");
780 // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
781 // add %a < %n2 too. This keeps the graph fully connected.
782 if (LV1 != NE) {
783 // Break up the relationship into signed and unsigned comparison parts.
784 // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
785 // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
786 // should have the EQ_BIT iff it's set for both op1 and op2.
788 unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
789 unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
791 for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) {
792 if (I->LV != NE && I->To != n2) {
794 DomTreeDFS::Node *Local_Subtree = NULL;
795 if (Subtree->DominatedBy(I->Subtree))
796 Local_Subtree = Subtree;
797 else if (I->Subtree->DominatedBy(Subtree))
798 Local_Subtree = I->Subtree;
800 if (Local_Subtree) {
801 unsigned new_relationship = 0;
802 LatticeVal ILV = reversePredicate(I->LV);
803 unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
804 unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);
806 if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
807 new_relationship |= ILV_s;
808 if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
809 new_relationship |= ILV_u;
811 if (new_relationship) {
812 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
813 new_relationship |= (SLT_BIT|SGT_BIT);
814 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
815 new_relationship |= (ULT_BIT|UGT_BIT);
816 if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
817 new_relationship |= EQ_BIT;
819 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
821 node(I->To)->update(n2, NewLV, Local_Subtree);
822 node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree);
828 for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) {
829 if (I->LV != NE && I->To != n1) {
830 DomTreeDFS::Node *Local_Subtree = NULL;
831 if (Subtree->DominatedBy(I->Subtree))
832 Local_Subtree = Subtree;
833 else if (I->Subtree->DominatedBy(Subtree))
834 Local_Subtree = I->Subtree;
836 if (Local_Subtree) {
837 unsigned new_relationship = 0;
838 unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
839 unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
841 if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
842 new_relationship |= ILV_s;
844 if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
845 new_relationship |= ILV_u;
847 if (new_relationship) {
848 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
849 new_relationship |= (SLT_BIT|SGT_BIT);
850 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
851 new_relationship |= (ULT_BIT|UGT_BIT);
852 if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
853 new_relationship |= EQ_BIT;
855 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
857 node(n1)->update(I->To, NewLV, Local_Subtree);
858 node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
865 node(n1)->update(n2, LV1, Subtree);
866 node(n2)->update(n1, reversePredicate(LV1), Subtree);
869 /// remove - removes a node from the graph by removing all references to
870 /// and from it.
871 void remove(unsigned n) {
872 Node *N = node(n);
873 for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
874 Node::iterator Iter = node(NI->To)->find(n, TreeRoot);
875 do {
876 node(NI->To)->Relations.erase(Iter);
877 Iter = node(NI->To)->find(n, TreeRoot);
878 } while (Iter != node(NI->To)->end());
880 N->Relations.clear();
883 #ifndef NDEBUG
884 virtual ~InequalityGraph() {}
885 virtual void dump() {
886 dump(*cerr.stream());
889 void dump(std::ostream &os) {
890 for (unsigned i = 1; i <= Nodes.size(); ++i) {
891 os << i << " = {";
892 node(i)->dump(os);
893 os << "}\n";
896 #endif
899 class VRPSolver;
901 /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
902 /// in the InequalityGraph.
903 class VISIBILITY_HIDDEN ValueRanges {
904 ValueNumbering &VN;
905 TargetData *TD;
907 class VISIBILITY_HIDDEN ScopedRange {
908 typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> >
909 RangeListType;
910 RangeListType RangeList;
912 static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS,
913 const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) {
914 return *LHS.first < *RHS.first;
917 public:
918 #ifndef NDEBUG
919 virtual ~ScopedRange() {}
920 virtual void dump() const {
921 dump(*cerr.stream());
924 void dump(std::ostream &os) const {
925 os << "{";
926 for (const_iterator I = begin(), E = end(); I != E; ++I) {
927 os << &I->second << " (" << I->first->getDFSNumIn() << "), ";
929 os << "}";
931 #endif
933 typedef RangeListType::iterator iterator;
934 typedef RangeListType::const_iterator const_iterator;
936 iterator begin() { return RangeList.begin(); }
937 iterator end() { return RangeList.end(); }
938 const_iterator begin() const { return RangeList.begin(); }
939 const_iterator end() const { return RangeList.end(); }
941 iterator find(DomTreeDFS::Node *Subtree) {
942 static ConstantRange empty(1, false);
943 iterator E = end();
944 iterator I = std::lower_bound(begin(), E,
945 std::make_pair(Subtree, empty), swo);
947 while (I != E && !I->first->dominates(Subtree)) ++I;
948 return I;
951 const_iterator find(DomTreeDFS::Node *Subtree) const {
952 static const ConstantRange empty(1, false);
953 const_iterator E = end();
954 const_iterator I = std::lower_bound(begin(), E,
955 std::make_pair(Subtree, empty), swo);
957 while (I != E && !I->first->dominates(Subtree)) ++I;
958 return I;
961 void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) {
962 assert(!CR.isEmptySet() && "Empty ConstantRange.");
963 assert(!CR.isSingleElement() && "Refusing to store single element.");
965 static ConstantRange empty(1, false);
966 iterator E = end();
967 iterator I =
968 std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);
970 if (I != end() && I->first == Subtree) {
971 ConstantRange CR2 = I->second.maximalIntersectWith(CR);
972 assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
973 "Invalid union of ranges.");
974 I->second = CR2;
975 } else
976 RangeList.insert(I, std::make_pair(Subtree, CR));
980 std::vector<ScopedRange> Ranges;
982 void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){
983 if (CR.isFullSet()) return;
984 if (Ranges.size() < n) Ranges.resize(n);
985 Ranges[n-1].update(CR, Subtree);
988 /// create - Creates a ConstantRange that matches the given LatticeVal
989 /// relation with a given integer.
990 ConstantRange create(LatticeVal LV, const ConstantRange &CR) {
991 assert(!CR.isEmptySet() && "Can't deal with empty set.");
993 if (LV == NE)
994 return makeConstantRange(ICmpInst::ICMP_NE, CR);
996 unsigned LV_s = LV & (SGT_BIT|SLT_BIT);
997 unsigned LV_u = LV & (UGT_BIT|ULT_BIT);
998 bool hasEQ = LV & EQ_BIT;
1000 ConstantRange Range(CR.getBitWidth());
1002 if (LV_s == SGT_BIT) {
1003 Range = Range.maximalIntersectWith(makeConstantRange(
1004 hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
1005 } else if (LV_s == SLT_BIT) {
1006 Range = Range.maximalIntersectWith(makeConstantRange(
1007 hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
1010 if (LV_u == UGT_BIT) {
1011 Range = Range.maximalIntersectWith(makeConstantRange(
1012 hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
1013 } else if (LV_u == ULT_BIT) {
1014 Range = Range.maximalIntersectWith(makeConstantRange(
1015 hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
1018 return Range;
1021 /// makeConstantRange - Creates a ConstantRange representing the set of all
1022 /// value that match the ICmpInst::Predicate with any of the values in CR.
1023 ConstantRange makeConstantRange(ICmpInst::Predicate ICmpOpcode,
1024 const ConstantRange &CR) {
1025 uint32_t W = CR.getBitWidth();
1026 switch (ICmpOpcode) {
1027 default: assert(!"Invalid ICmp opcode to makeConstantRange()");
1028 case ICmpInst::ICMP_EQ:
1029 return ConstantRange(CR.getLower(), CR.getUpper());
1030 case ICmpInst::ICMP_NE:
1031 if (CR.isSingleElement())
1032 return ConstantRange(CR.getUpper(), CR.getLower());
1033 return ConstantRange(W);
1034 case ICmpInst::ICMP_ULT:
1035 return ConstantRange(APInt::getMinValue(W), CR.getUnsignedMax());
1036 case ICmpInst::ICMP_SLT:
1037 return ConstantRange(APInt::getSignedMinValue(W), CR.getSignedMax());
1038 case ICmpInst::ICMP_ULE: {
1039 APInt UMax(CR.getUnsignedMax());
1040 if (UMax.isMaxValue())
1041 return ConstantRange(W);
1042 return ConstantRange(APInt::getMinValue(W), UMax + 1);
1044 case ICmpInst::ICMP_SLE: {
1045 APInt SMax(CR.getSignedMax());
1046 if (SMax.isMaxSignedValue() || (SMax+1).isMaxSignedValue())
1047 return ConstantRange(W);
1048 return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
1050 case ICmpInst::ICMP_UGT:
1051 return ConstantRange(CR.getUnsignedMin() + 1, APInt::getNullValue(W));
1052 case ICmpInst::ICMP_SGT:
1053 return ConstantRange(CR.getSignedMin() + 1,
1054 APInt::getSignedMinValue(W));
1055 case ICmpInst::ICMP_UGE: {
1056 APInt UMin(CR.getUnsignedMin());
1057 if (UMin.isMinValue())
1058 return ConstantRange(W);
1059 return ConstantRange(UMin, APInt::getNullValue(W));
1061 case ICmpInst::ICMP_SGE: {
1062 APInt SMin(CR.getSignedMin());
1063 if (SMin.isMinSignedValue())
1064 return ConstantRange(W);
1065 return ConstantRange(SMin, APInt::getSignedMinValue(W));
1070 #ifndef NDEBUG
1071 bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) {
1072 return V == VN.canonicalize(V, Subtree);
1074 #endif
1076 public:
1078 ValueRanges(ValueNumbering &VN, TargetData *TD) : VN(VN), TD(TD) {}
1080 #ifndef NDEBUG
1081 virtual ~ValueRanges() {}
1083 virtual void dump() const {
1084 dump(*cerr.stream());
1087 void dump(std::ostream &os) const {
1088 for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
1089 os << (i+1) << " = ";
1090 Ranges[i].dump(os);
1091 os << "\n";
1094 #endif
1096 /// range - looks up the ConstantRange associated with a value number.
1097 ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) {
1098 assert(VN.value(n)); // performs range checks
1100 if (n <= Ranges.size()) {
1101 ScopedRange::iterator I = Ranges[n-1].find(Subtree);
1102 if (I != Ranges[n-1].end()) return I->second;
1105 Value *V = VN.value(n);
1106 ConstantRange CR = range(V);
1107 return CR;
1110 /// range - determine a range from a Value without performing any lookups.
1111 ConstantRange range(Value *V) const {
1112 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1113 return ConstantRange(C->getValue());
1114 else if (isa<ConstantPointerNull>(V))
1115 return ConstantRange(APInt::getNullValue(typeToWidth(V->getType())));
1116 else
1117 return ConstantRange(typeToWidth(V->getType()));
1120 // typeToWidth - returns the number of bits necessary to store a value of
1121 // this type, or zero if unknown.
1122 uint32_t typeToWidth(const Type *Ty) const {
1123 if (TD)
1124 return TD->getTypeSizeInBits(Ty);
1125 else
1126 return Ty->getPrimitiveSizeInBits();
1129 static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2,
1130 LatticeVal LV) {
1131 switch (LV) {
1132 default: assert(!"Impossible lattice value!");
1133 case NE:
1134 return CR1.maximalIntersectWith(CR2).isEmptySet();
1135 case ULT:
1136 return CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
1137 case ULE:
1138 return CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
1139 case UGT:
1140 return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
1141 case UGE:
1142 return CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
1143 case SLT:
1144 return CR1.getSignedMax().slt(CR2.getSignedMin());
1145 case SLE:
1146 return CR1.getSignedMax().sle(CR2.getSignedMin());
1147 case SGT:
1148 return CR1.getSignedMin().sgt(CR2.getSignedMax());
1149 case SGE:
1150 return CR1.getSignedMin().sge(CR2.getSignedMax());
1151 case LT:
1152 return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()) &&
1153 CR1.getSignedMax().slt(CR2.getUnsignedMin());
1154 case LE:
1155 return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()) &&
1156 CR1.getSignedMax().sle(CR2.getUnsignedMin());
1157 case GT:
1158 return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()) &&
1159 CR1.getSignedMin().sgt(CR2.getSignedMax());
1160 case GE:
1161 return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()) &&
1162 CR1.getSignedMin().sge(CR2.getSignedMax());
1163 case SLTUGT:
1164 return CR1.getSignedMax().slt(CR2.getSignedMin()) &&
1165 CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
1166 case SLEUGE:
1167 return CR1.getSignedMax().sle(CR2.getSignedMin()) &&
1168 CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
1169 case SGTULT:
1170 return CR1.getSignedMin().sgt(CR2.getSignedMax()) &&
1171 CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
1172 case SGEULE:
1173 return CR1.getSignedMin().sge(CR2.getSignedMax()) &&
1174 CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
1178 bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1179 LatticeVal LV) {
1180 ConstantRange CR1 = range(n1, Subtree);
1181 ConstantRange CR2 = range(n2, Subtree);
1183 // True iff all values in CR1 are LV to all values in CR2.
1184 return isRelatedBy(CR1, CR2, LV);
1187 void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred,
1188 VRPSolver *VRP);
1189 void markBlock(VRPSolver *VRP);
1191 void mergeInto(Value **I, unsigned n, unsigned New,
1192 DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
1193 ConstantRange CR_New = range(New, Subtree);
1194 ConstantRange Merged = CR_New;
1196 for (; n != 0; ++I, --n) {
1197 unsigned i = VN.valueNumber(*I, Subtree);
1198 ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I);
1199 if (CR_Kill.isFullSet()) continue;
1200 Merged = Merged.maximalIntersectWith(CR_Kill);
1203 if (Merged.isFullSet() || Merged == CR_New) return;
1205 applyRange(New, Merged, Subtree, VRP);
1208 void applyRange(unsigned n, const ConstantRange &CR,
1209 DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
1210 ConstantRange Merged = CR.maximalIntersectWith(range(n, Subtree));
1211 if (Merged.isEmptySet()) {
1212 markBlock(VRP);
1213 return;
1216 if (const APInt *I = Merged.getSingleElement()) {
1217 Value *V = VN.value(n); // XXX: redesign worklist.
1218 const Type *Ty = V->getType();
1219 if (Ty->isInteger()) {
1220 addToWorklist(V, ConstantInt::get(*I), ICmpInst::ICMP_EQ, VRP);
1221 return;
1222 } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1223 assert(*I == 0 && "Pointer is null but not zero?");
1224 addToWorklist(V, ConstantPointerNull::get(PTy),
1225 ICmpInst::ICMP_EQ, VRP);
1226 return;
1230 update(n, Merged, Subtree);
1233 void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1234 VRPSolver *VRP) {
1235 ConstantRange CR1 = range(n1, Subtree);
1236 ConstantRange CR2 = range(n2, Subtree);
1238 uint32_t W = CR1.getBitWidth();
1240 if (const APInt *I = CR1.getSingleElement()) {
1241 if (CR2.isFullSet()) {
1242 ConstantRange NewCR2(CR1.getUpper(), CR1.getLower());
1243 applyRange(n2, NewCR2, Subtree, VRP);
1244 } else if (*I == CR2.getLower()) {
1245 APInt NewLower(CR2.getLower() + 1),
1246 NewUpper(CR2.getUpper());
1247 if (NewLower == NewUpper)
1248 NewLower = NewUpper = APInt::getMinValue(W);
1250 ConstantRange NewCR2(NewLower, NewUpper);
1251 applyRange(n2, NewCR2, Subtree, VRP);
1252 } else if (*I == CR2.getUpper() - 1) {
1253 APInt NewLower(CR2.getLower()),
1254 NewUpper(CR2.getUpper() - 1);
1255 if (NewLower == NewUpper)
1256 NewLower = NewUpper = APInt::getMinValue(W);
1258 ConstantRange NewCR2(NewLower, NewUpper);
1259 applyRange(n2, NewCR2, Subtree, VRP);
1263 if (const APInt *I = CR2.getSingleElement()) {
1264 if (CR1.isFullSet()) {
1265 ConstantRange NewCR1(CR2.getUpper(), CR2.getLower());
1266 applyRange(n1, NewCR1, Subtree, VRP);
1267 } else if (*I == CR1.getLower()) {
1268 APInt NewLower(CR1.getLower() + 1),
1269 NewUpper(CR1.getUpper());
1270 if (NewLower == NewUpper)
1271 NewLower = NewUpper = APInt::getMinValue(W);
1273 ConstantRange NewCR1(NewLower, NewUpper);
1274 applyRange(n1, NewCR1, Subtree, VRP);
1275 } else if (*I == CR1.getUpper() - 1) {
1276 APInt NewLower(CR1.getLower()),
1277 NewUpper(CR1.getUpper() - 1);
1278 if (NewLower == NewUpper)
1279 NewLower = NewUpper = APInt::getMinValue(W);
1281 ConstantRange NewCR1(NewLower, NewUpper);
1282 applyRange(n1, NewCR1, Subtree, VRP);
1287 void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1288 LatticeVal LV, VRPSolver *VRP) {
1289 assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work.");
1291 if (LV == NE) {
1292 addNotEquals(n1, n2, Subtree, VRP);
1293 return;
1296 ConstantRange CR1 = range(n1, Subtree);
1297 ConstantRange CR2 = range(n2, Subtree);
1299 if (!CR1.isSingleElement()) {
1300 ConstantRange NewCR1 = CR1.maximalIntersectWith(create(LV, CR2));
1301 if (NewCR1 != CR1)
1302 applyRange(n1, NewCR1, Subtree, VRP);
1305 if (!CR2.isSingleElement()) {
1306 ConstantRange NewCR2 = CR2.maximalIntersectWith(
1307 create(reversePredicate(LV), CR1));
1308 if (NewCR2 != CR2)
1309 applyRange(n2, NewCR2, Subtree, VRP);
1314 /// UnreachableBlocks keeps tracks of blocks that are for one reason or
1315 /// another discovered to be unreachable. This is used to cull the graph when
1316 /// analyzing instructions, and to mark blocks with the "unreachable"
1317 /// terminator instruction after the function has executed.
1318 class VISIBILITY_HIDDEN UnreachableBlocks {
1319 private:
1320 std::vector<BasicBlock *> DeadBlocks;
1322 public:
1323 /// mark - mark a block as dead
1324 void mark(BasicBlock *BB) {
1325 std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
1326 std::vector<BasicBlock *>::iterator I =
1327 std::lower_bound(DeadBlocks.begin(), E, BB);
1329 if (I == E || *I != BB) DeadBlocks.insert(I, BB);
1332 /// isDead - returns whether a block is known to be dead already
1333 bool isDead(BasicBlock *BB) {
1334 std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
1335 std::vector<BasicBlock *>::iterator I =
1336 std::lower_bound(DeadBlocks.begin(), E, BB);
1338 return I != E && *I == BB;
1341 /// kill - replace the dead blocks' terminator with an UnreachableInst.
1342 bool kill() {
1343 bool modified = false;
1344 for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(),
1345 E = DeadBlocks.end(); I != E; ++I) {
1346 BasicBlock *BB = *I;
1348 DOUT << "unreachable block: " << BB->getName() << "\n";
1350 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
1351 SI != SE; ++SI) {
1352 BasicBlock *Succ = *SI;
1353 Succ->removePredecessor(BB);
1356 TerminatorInst *TI = BB->getTerminator();
1357 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1358 TI->eraseFromParent();
1359 new UnreachableInst(BB);
1360 ++NumBlocks;
1361 modified = true;
1363 DeadBlocks.clear();
1364 return modified;
1368 /// VRPSolver keeps track of how changes to one variable affect other
1369 /// variables, and forwards changes along to the InequalityGraph. It
1370 /// also maintains the correct choice for "canonical" in the IG.
1371 /// @brief VRPSolver calculates inferences from a new relationship.
1372 class VISIBILITY_HIDDEN VRPSolver {
1373 private:
1374 friend class ValueRanges;
1376 struct Operation {
1377 Value *LHS, *RHS;
1378 ICmpInst::Predicate Op;
1380 BasicBlock *ContextBB; // XXX use a DomTreeDFS::Node instead
1381 Instruction *ContextInst;
1383 std::deque<Operation> WorkList;
1385 ValueNumbering &VN;
1386 InequalityGraph &IG;
1387 UnreachableBlocks &UB;
1388 ValueRanges &VR;
1389 DomTreeDFS *DTDFS;
1390 DomTreeDFS::Node *Top;
1391 BasicBlock *TopBB;
1392 Instruction *TopInst;
1393 bool &modified;
1395 typedef InequalityGraph::Node Node;
1397 // below - true if the Instruction is dominated by the current context
1398 // block or instruction
1399 bool below(Instruction *I) {
1400 BasicBlock *BB = I->getParent();
1401 if (TopInst && TopInst->getParent() == BB) {
1402 if (isa<TerminatorInst>(TopInst)) return false;
1403 if (isa<TerminatorInst>(I)) return true;
1404 if ( isa<PHINode>(TopInst) && !isa<PHINode>(I)) return true;
1405 if (!isa<PHINode>(TopInst) && isa<PHINode>(I)) return false;
1407 for (BasicBlock::const_iterator Iter = BB->begin(), E = BB->end();
1408 Iter != E; ++Iter) {
1409 if (&*Iter == TopInst) return true;
1410 else if (&*Iter == I) return false;
1412 assert(!"Instructions not found in parent BasicBlock?");
1413 } else {
1414 DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
1415 if (!Node) return false;
1416 return Top->dominates(Node);
1418 return false; // Not reached
1421 // aboveOrBelow - true if the Instruction either dominates or is dominated
1422 // by the current context block or instruction
1423 bool aboveOrBelow(Instruction *I) {
1424 BasicBlock *BB = I->getParent();
1425 DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
1426 if (!Node) return false;
1428 return Top == Node || Top->dominates(Node) || Node->dominates(Top);
1431 bool makeEqual(Value *V1, Value *V2) {
1432 DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n";
1433 DOUT << "context is ";
1434 if (TopInst) DOUT << "I: " << *TopInst << "\n";
1435 else DOUT << "BB: " << TopBB->getName()
1436 << "(" << Top->getDFSNumIn() << ")\n";
1438 assert(V1->getType() == V2->getType() &&
1439 "Can't make two values with different types equal.");
1441 if (V1 == V2) return true;
1443 if (isa<Constant>(V1) && isa<Constant>(V2))
1444 return false;
1446 unsigned n1 = VN.valueNumber(V1, Top), n2 = VN.valueNumber(V2, Top);
1448 if (n1 && n2) {
1449 if (n1 == n2) return true;
1450 if (IG.isRelatedBy(n1, n2, Top, NE)) return false;
1453 if (n1) assert(V1 == VN.value(n1) && "Value isn't canonical.");
1454 if (n2) assert(V2 == VN.value(n2) && "Value isn't canonical.");
1456 assert(!VN.compare(V2, V1) && "Please order parameters to makeEqual.");
1458 assert(!isa<Constant>(V2) && "Tried to remove a constant.");
1460 SetVector<unsigned> Remove;
1461 if (n2) Remove.insert(n2);
1463 if (n1 && n2) {
1464 // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
1465 // We can't just merge %x and %y because the relationship with %z would
1466 // be EQ and that's invalid. What we're doing is looking for any nodes
1467 // %z such that %x <= %z and %y >= %z, and vice versa.
1469 Node::iterator end = IG.node(n2)->end();
1471 // Find the intersection between N1 and N2 which is dominated by
1472 // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to
1473 // Remove.
1474 for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end();
1475 I != E; ++I) {
1476 if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue;
1478 unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
1479 unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
1480 Node::iterator NI = IG.node(n2)->find(I->To, Top);
1481 if (NI != end) {
1482 LatticeVal NILV = reversePredicate(NI->LV);
1483 unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT);
1484 unsigned NILV_u = NILV & (ULT_BIT|UGT_BIT);
1486 if ((ILV_s != (SLT_BIT|SGT_BIT) && ILV_s == NILV_s) ||
1487 (ILV_u != (ULT_BIT|UGT_BIT) && ILV_u == NILV_u))
1488 Remove.insert(I->To);
1492 // See if one of the nodes about to be removed is actually a better
1493 // canonical choice than n1.
1494 unsigned orig_n1 = n1;
1495 SetVector<unsigned>::iterator DontRemove = Remove.end();
1496 for (SetVector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */,
1497 E = Remove.end(); I != E; ++I) {
1498 unsigned n = *I;
1499 Value *V = VN.value(n);
1500 if (VN.compare(V, V1)) {
1501 V1 = V;
1502 n1 = n;
1503 DontRemove = I;
1506 if (DontRemove != Remove.end()) {
1507 unsigned n = *DontRemove;
1508 Remove.remove(n);
1509 Remove.insert(orig_n1);
1513 // We'd like to allow makeEqual on two values to perform a simple
1514 // substitution without creating nodes in the IG whenever possible.
1516 // The first iteration through this loop operates on V2 before going
1517 // through the Remove list and operating on those too. If all of the
1518 // iterations performed simple replacements then we exit early.
1519 bool mergeIGNode = false;
1520 unsigned i = 0;
1521 for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
1522 if (i) R = VN.value(Remove[i]); // skip n2.
1524 // Try to replace the whole instruction. If we can, we're done.
1525 Instruction *I2 = dyn_cast<Instruction>(R);
1526 if (I2 && below(I2)) {
1527 std::vector<Instruction *> ToNotify;
1528 for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
1529 UI != UE;) {
1530 Use &TheUse = UI.getUse();
1531 ++UI;
1532 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser()))
1533 ToNotify.push_back(I);
1536 DOUT << "Simply removing " << *I2
1537 << ", replacing with " << *V1 << "\n";
1538 I2->replaceAllUsesWith(V1);
1539 // leave it dead; it'll get erased later.
1540 ++NumInstruction;
1541 modified = true;
1543 for (std::vector<Instruction *>::iterator II = ToNotify.begin(),
1544 IE = ToNotify.end(); II != IE; ++II) {
1545 opsToDef(*II);
1548 continue;
1551 // Otherwise, replace all dominated uses.
1552 for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
1553 UI != UE;) {
1554 Use &TheUse = UI.getUse();
1555 ++UI;
1556 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
1557 if (below(I)) {
1558 TheUse.set(V1);
1559 modified = true;
1560 ++NumVarsReplaced;
1561 opsToDef(I);
1566 // If that killed the instruction, stop here.
1567 if (I2 && isInstructionTriviallyDead(I2)) {
1568 DOUT << "Killed all uses of " << *I2
1569 << ", replacing with " << *V1 << "\n";
1570 continue;
1573 // If we make it to here, then we will need to create a node for N1.
1574 // Otherwise, we can skip out early!
1575 mergeIGNode = true;
1578 if (!isa<Constant>(V1)) {
1579 if (Remove.empty()) {
1580 VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this);
1581 } else {
1582 std::vector<Value*> RemoveVals;
1583 RemoveVals.reserve(Remove.size());
1585 for (SetVector<unsigned>::iterator I = Remove.begin(),
1586 E = Remove.end(); I != E; ++I) {
1587 Value *V = VN.value(*I);
1588 if (!V->use_empty())
1589 RemoveVals.push_back(V);
1591 VR.mergeInto(&RemoveVals[0], RemoveVals.size(),
1592 VN.getOrInsertVN(V1, Top), Top, this);
1596 if (mergeIGNode) {
1597 // Create N1.
1598 if (!n1) n1 = VN.getOrInsertVN(V1, Top);
1599 IG.node(n1); // Ensure that IG.Nodes won't get resized
1601 // Migrate relationships from removed nodes to N1.
1602 for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
1603 I != E; ++I) {
1604 unsigned n = *I;
1605 for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end();
1606 NI != NE; ++NI) {
1607 if (NI->Subtree->DominatedBy(Top)) {
1608 if (NI->To == n1) {
1609 assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
1610 continue;
1612 if (Remove.count(NI->To))
1613 continue;
1615 IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
1616 IG.node(n1)->update(NI->To, NI->LV, Top);
1621 // Point V2 (and all items in Remove) to N1.
1622 if (!n2)
1623 VN.addEquality(n1, V2, Top);
1624 else {
1625 for (SetVector<unsigned>::iterator I = Remove.begin(),
1626 E = Remove.end(); I != E; ++I) {
1627 VN.addEquality(n1, VN.value(*I), Top);
1631 // If !Remove.empty() then V2 = Remove[0]->getValue().
1632 // Even when Remove is empty, we still want to process V2.
1633 i = 0;
1634 for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
1635 if (i) R = VN.value(Remove[i]); // skip n2.
1637 if (Instruction *I2 = dyn_cast<Instruction>(R)) {
1638 if (aboveOrBelow(I2))
1639 defToOps(I2);
1641 for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end();
1642 UI != UE;) {
1643 Use &TheUse = UI.getUse();
1644 ++UI;
1645 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
1646 if (aboveOrBelow(I))
1647 opsToDef(I);
1653 // re-opsToDef all dominated users of V1.
1654 if (Instruction *I = dyn_cast<Instruction>(V1)) {
1655 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1656 UI != UE;) {
1657 Use &TheUse = UI.getUse();
1658 ++UI;
1659 Value *V = TheUse.getUser();
1660 if (!V->use_empty()) {
1661 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
1662 if (aboveOrBelow(Inst))
1663 opsToDef(Inst);
1669 return true;
1672 /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
1673 /// Requires that the lattice value be valid; does not accept ICMP_EQ.
1674 static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) {
1675 switch (Pred) {
1676 case ICmpInst::ICMP_EQ:
1677 assert(!"No matching lattice value.");
1678 return static_cast<LatticeVal>(EQ_BIT);
1679 default:
1680 assert(!"Invalid 'icmp' predicate.");
1681 case ICmpInst::ICMP_NE:
1682 return NE;
1683 case ICmpInst::ICMP_UGT:
1684 return UGT;
1685 case ICmpInst::ICMP_UGE:
1686 return UGE;
1687 case ICmpInst::ICMP_ULT:
1688 return ULT;
1689 case ICmpInst::ICMP_ULE:
1690 return ULE;
1691 case ICmpInst::ICMP_SGT:
1692 return SGT;
1693 case ICmpInst::ICMP_SGE:
1694 return SGE;
1695 case ICmpInst::ICMP_SLT:
1696 return SLT;
1697 case ICmpInst::ICMP_SLE:
1698 return SLE;
1702 public:
1703 VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
1704 ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
1705 BasicBlock *TopBB)
1706 : VN(VN),
1707 IG(IG),
1708 UB(UB),
1709 VR(VR),
1710 DTDFS(DTDFS),
1711 Top(DTDFS->getNodeForBlock(TopBB)),
1712 TopBB(TopBB),
1713 TopInst(NULL),
1714 modified(modified)
1716 assert(Top && "VRPSolver created for unreachable basic block.");
1719 VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
1720 ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
1721 Instruction *TopInst)
1722 : VN(VN),
1723 IG(IG),
1724 UB(UB),
1725 VR(VR),
1726 DTDFS(DTDFS),
1727 Top(DTDFS->getNodeForBlock(TopInst->getParent())),
1728 TopBB(TopInst->getParent()),
1729 TopInst(TopInst),
1730 modified(modified)
1732 assert(Top && "VRPSolver created for unreachable basic block.");
1733 assert(Top->getBlock() == TopInst->getParent() && "Context mismatch.");
1736 bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const {
1737 if (Constant *C1 = dyn_cast<Constant>(V1))
1738 if (Constant *C2 = dyn_cast<Constant>(V2))
1739 return ConstantExpr::getCompare(Pred, C1, C2) ==
1740 ConstantInt::getTrue();
1742 unsigned n1 = VN.valueNumber(V1, Top);
1743 unsigned n2 = VN.valueNumber(V2, Top);
1745 if (n1 && n2) {
1746 if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
1747 Pred == ICmpInst::ICMP_ULE ||
1748 Pred == ICmpInst::ICMP_UGE ||
1749 Pred == ICmpInst::ICMP_SLE ||
1750 Pred == ICmpInst::ICMP_SGE;
1751 if (Pred == ICmpInst::ICMP_EQ) return false;
1752 if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
1753 if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
1756 if ((n1 && !n2 && isa<Constant>(V2)) ||
1757 (n2 && !n1 && isa<Constant>(V1))) {
1758 ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1);
1759 ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2);
1761 if (Pred == ICmpInst::ICMP_EQ)
1762 return CR1.isSingleElement() &&
1763 CR1.getSingleElement() == CR2.getSingleElement();
1765 return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred));
1767 if (Pred == ICmpInst::ICMP_EQ) return V1 == V2;
1768 return false;
1771 /// add - adds a new property to the work queue
1772 void add(Value *V1, Value *V2, ICmpInst::Predicate Pred,
1773 Instruction *I = NULL) {
1774 DOUT << "adding " << *V1 << " " << Pred << " " << *V2;
1775 if (I) DOUT << " context: " << *I;
1776 else DOUT << " default context (" << Top->getDFSNumIn() << ")";
1777 DOUT << "\n";
1779 assert(V1->getType() == V2->getType() &&
1780 "Can't relate two values with different types.");
1782 WorkList.push_back(Operation());
1783 Operation &O = WorkList.back();
1784 O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I;
1785 O.ContextBB = I ? I->getParent() : TopBB;
1788 /// defToOps - Given an instruction definition that we've learned something
1789 /// new about, find any new relationships between its operands.
1790 void defToOps(Instruction *I) {
1791 Instruction *NewContext = below(I) ? I : TopInst;
1792 Value *Canonical = VN.canonicalize(I, Top);
1794 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1795 const Type *Ty = BO->getType();
1796 assert(!Ty->isFPOrFPVector() && "Float in work queue!");
1798 Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
1799 Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
1801 // TODO: "and i32 -1, %x" EQ %y then %x EQ %y.
1803 switch (BO->getOpcode()) {
1804 case Instruction::And: {
1805 // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1
1806 ConstantInt *CI = ConstantInt::getAllOnesValue(Ty);
1807 if (Canonical == CI) {
1808 add(CI, Op0, ICmpInst::ICMP_EQ, NewContext);
1809 add(CI, Op1, ICmpInst::ICMP_EQ, NewContext);
1811 } break;
1812 case Instruction::Or: {
1813 // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0
1814 Constant *Zero = Constant::getNullValue(Ty);
1815 if (Canonical == Zero) {
1816 add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext);
1817 add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext);
1819 } break;
1820 case Instruction::Xor: {
1821 // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b
1822 // "xor i32 %c, %a" EQ %c then %a EQ 0
1823 // "xor i32 %c, %a" NE %c then %a NE 0
1824 // Repeat the above, with order of operands reversed.
1825 Value *LHS = Op0;
1826 Value *RHS = Op1;
1827 if (!isa<Constant>(LHS)) std::swap(LHS, RHS);
1829 if (ConstantInt *CI = dyn_cast<ConstantInt>(Canonical)) {
1830 if (ConstantInt *Arg = dyn_cast<ConstantInt>(LHS)) {
1831 add(RHS, ConstantInt::get(CI->getValue() ^ Arg->getValue()),
1832 ICmpInst::ICMP_EQ, NewContext);
1835 if (Canonical == LHS) {
1836 if (isa<ConstantInt>(Canonical))
1837 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ,
1838 NewContext);
1839 } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) {
1840 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE,
1841 NewContext);
1843 } break;
1844 default:
1845 break;
1847 } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
1848 // "icmp ult i32 %a, %y" EQ true then %a u< y
1849 // etc.
1851 if (Canonical == ConstantInt::getTrue()) {
1852 add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(),
1853 NewContext);
1854 } else if (Canonical == ConstantInt::getFalse()) {
1855 add(IC->getOperand(0), IC->getOperand(1),
1856 ICmpInst::getInversePredicate(IC->getPredicate()), NewContext);
1858 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1859 if (I->getType()->isFPOrFPVector()) return;
1861 // Given: "%a = select i1 %x, i32 %b, i32 %c"
1862 // %a EQ %b and %b NE %c then %x EQ true
1863 // %a EQ %c and %b NE %c then %x EQ false
1865 Value *True = SI->getTrueValue();
1866 Value *False = SI->getFalseValue();
1867 if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) {
1868 if (Canonical == VN.canonicalize(True, Top) ||
1869 isRelatedBy(Canonical, False, ICmpInst::ICMP_NE))
1870 add(SI->getCondition(), ConstantInt::getTrue(),
1871 ICmpInst::ICMP_EQ, NewContext);
1872 else if (Canonical == VN.canonicalize(False, Top) ||
1873 isRelatedBy(Canonical, True, ICmpInst::ICMP_NE))
1874 add(SI->getCondition(), ConstantInt::getFalse(),
1875 ICmpInst::ICMP_EQ, NewContext);
1877 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1878 for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
1879 OE = GEPI->idx_end(); OI != OE; ++OI) {
1880 ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
1881 if (!Op || !Op->isZero()) return;
1883 // TODO: The GEPI indices are all zero. Copy from definition to operand,
1884 // jumping the type plane as needed.
1885 if (isRelatedBy(GEPI, Constant::getNullValue(GEPI->getType()),
1886 ICmpInst::ICMP_NE)) {
1887 Value *Ptr = GEPI->getPointerOperand();
1888 add(Ptr, Constant::getNullValue(Ptr->getType()), ICmpInst::ICMP_NE,
1889 NewContext);
1891 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
1892 const Type *SrcTy = CI->getSrcTy();
1894 unsigned ci = VN.getOrInsertVN(CI, Top);
1895 uint32_t W = VR.typeToWidth(SrcTy);
1896 if (!W) return;
1897 ConstantRange CR = VR.range(ci, Top);
1899 if (CR.isFullSet()) return;
1901 switch (CI->getOpcode()) {
1902 default: break;
1903 case Instruction::ZExt:
1904 case Instruction::SExt:
1905 VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
1906 CR.truncate(W), Top, this);
1907 break;
1908 case Instruction::BitCast:
1909 VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
1910 CR, Top, this);
1911 break;
1916 /// opsToDef - A new relationship was discovered involving one of this
1917 /// instruction's operands. Find any new relationship involving the
1918 /// definition, or another operand.
1919 void opsToDef(Instruction *I) {
1920 Instruction *NewContext = below(I) ? I : TopInst;
1922 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1923 Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
1924 Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
1926 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0))
1927 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1928 add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1),
1929 ICmpInst::ICMP_EQ, NewContext);
1930 return;
1933 // "%y = and i1 true, %x" then %x EQ %y
1934 // "%y = or i1 false, %x" then %x EQ %y
1935 // "%x = add i32 %y, 0" then %x EQ %y
1936 // "%x = mul i32 %y, 0" then %x EQ 0
1938 Instruction::BinaryOps Opcode = BO->getOpcode();
1939 const Type *Ty = BO->getType();
1940 assert(!Ty->isFPOrFPVector() && "Float in work queue!");
1942 Constant *Zero = Constant::getNullValue(Ty);
1943 Constant *One = ConstantInt::get(Ty, 1);
1944 ConstantInt *AllOnes = ConstantInt::getAllOnesValue(Ty);
1946 switch (Opcode) {
1947 default: break;
1948 case Instruction::LShr:
1949 case Instruction::AShr:
1950 case Instruction::Shl:
1951 if (Op1 == Zero) {
1952 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1953 return;
1955 break;
1956 case Instruction::Sub:
1957 if (Op1 == Zero) {
1958 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1959 return;
1961 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
1962 unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
1963 ConstantRange CR = VR.range(n_ci0, Top);
1964 if (!CR.isFullSet()) {
1965 CR.subtract(CI0->getValue());
1966 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1967 VR.applyRange(n_bo, CR, Top, this);
1968 return;
1971 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1972 unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
1973 ConstantRange CR = VR.range(n_ci1, Top);
1974 if (!CR.isFullSet()) {
1975 CR.subtract(CI1->getValue());
1976 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1977 VR.applyRange(n_bo, CR, Top, this);
1978 return;
1981 break;
1982 case Instruction::Or:
1983 if (Op0 == AllOnes || Op1 == AllOnes) {
1984 add(BO, AllOnes, ICmpInst::ICMP_EQ, NewContext);
1985 return;
1987 if (Op0 == Zero) {
1988 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1989 return;
1990 } else if (Op1 == Zero) {
1991 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1992 return;
1994 break;
1995 case Instruction::Add:
1996 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
1997 unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
1998 ConstantRange CR = VR.range(n_ci0, Top);
1999 if (!CR.isFullSet()) {
2000 CR.subtract(-CI0->getValue());
2001 unsigned n_bo = VN.getOrInsertVN(BO, Top);
2002 VR.applyRange(n_bo, CR, Top, this);
2003 return;
2006 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
2007 unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
2008 ConstantRange CR = VR.range(n_ci1, Top);
2009 if (!CR.isFullSet()) {
2010 CR.subtract(-CI1->getValue());
2011 unsigned n_bo = VN.getOrInsertVN(BO, Top);
2012 VR.applyRange(n_bo, CR, Top, this);
2013 return;
2016 // fall-through
2017 case Instruction::Xor:
2018 if (Op0 == Zero) {
2019 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
2020 return;
2021 } else if (Op1 == Zero) {
2022 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
2023 return;
2025 break;
2026 case Instruction::And:
2027 if (Op0 == AllOnes) {
2028 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
2029 return;
2030 } else if (Op1 == AllOnes) {
2031 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
2032 return;
2034 if (Op0 == Zero || Op1 == Zero) {
2035 add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
2036 return;
2038 break;
2039 case Instruction::Mul:
2040 if (Op0 == Zero || Op1 == Zero) {
2041 add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
2042 return;
2044 if (Op0 == One) {
2045 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
2046 return;
2047 } else if (Op1 == One) {
2048 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
2049 return;
2051 break;
2054 // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0
2055 // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0
2056 // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0
2057 // "%x = udiv i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 1
2059 Value *Known = Op0, *Unknown = Op1,
2060 *TheBO = VN.canonicalize(BO, Top);
2061 if (Known != TheBO) std::swap(Known, Unknown);
2062 if (Known == TheBO) {
2063 switch (Opcode) {
2064 default: break;
2065 case Instruction::LShr:
2066 case Instruction::AShr:
2067 case Instruction::Shl:
2068 if (!isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) break;
2069 // otherwise, fall-through.
2070 case Instruction::Sub:
2071 if (Unknown == Op0) break;
2072 // otherwise, fall-through.
2073 case Instruction::Xor:
2074 case Instruction::Add:
2075 add(Unknown, Zero, ICmpInst::ICMP_EQ, NewContext);
2076 break;
2077 case Instruction::UDiv:
2078 case Instruction::SDiv:
2079 if (Unknown == Op1) break;
2080 if (isRelatedBy(Known, Zero, ICmpInst::ICMP_NE))
2081 add(Unknown, One, ICmpInst::ICMP_EQ, NewContext);
2082 break;
2086 // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z.
2088 } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
2089 // "%a = icmp ult i32 %b, %c" and %b u< %c then %a EQ true
2090 // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false
2091 // etc.
2093 Value *Op0 = VN.canonicalize(IC->getOperand(0), Top);
2094 Value *Op1 = VN.canonicalize(IC->getOperand(1), Top);
2096 ICmpInst::Predicate Pred = IC->getPredicate();
2097 if (isRelatedBy(Op0, Op1, Pred))
2098 add(IC, ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext);
2099 else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred)))
2100 add(IC, ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext);
2102 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
2103 if (I->getType()->isFPOrFPVector()) return;
2105 // Given: "%a = select i1 %x, i32 %b, i32 %c"
2106 // %x EQ true then %a EQ %b
2107 // %x EQ false then %a EQ %c
2108 // %b EQ %c then %a EQ %b
2110 Value *Canonical = VN.canonicalize(SI->getCondition(), Top);
2111 if (Canonical == ConstantInt::getTrue()) {
2112 add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
2113 } else if (Canonical == ConstantInt::getFalse()) {
2114 add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext);
2115 } else if (VN.canonicalize(SI->getTrueValue(), Top) ==
2116 VN.canonicalize(SI->getFalseValue(), Top)) {
2117 add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
2119 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
2120 const Type *DestTy = CI->getDestTy();
2121 if (DestTy->isFPOrFPVector()) return;
2123 Value *Op = VN.canonicalize(CI->getOperand(0), Top);
2124 Instruction::CastOps Opcode = CI->getOpcode();
2126 if (Constant *C = dyn_cast<Constant>(Op)) {
2127 add(CI, ConstantExpr::getCast(Opcode, C, DestTy),
2128 ICmpInst::ICMP_EQ, NewContext);
2131 uint32_t W = VR.typeToWidth(DestTy);
2132 unsigned ci = VN.getOrInsertVN(CI, Top);
2133 ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top);
2135 if (!CR.isFullSet()) {
2136 switch (Opcode) {
2137 default: break;
2138 case Instruction::ZExt:
2139 VR.applyRange(ci, CR.zeroExtend(W), Top, this);
2140 break;
2141 case Instruction::SExt:
2142 VR.applyRange(ci, CR.signExtend(W), Top, this);
2143 break;
2144 case Instruction::Trunc: {
2145 ConstantRange Result = CR.truncate(W);
2146 if (!Result.isFullSet())
2147 VR.applyRange(ci, Result, Top, this);
2148 } break;
2149 case Instruction::BitCast:
2150 VR.applyRange(ci, CR, Top, this);
2151 break;
2152 // TODO: other casts?
2155 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
2156 for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
2157 OE = GEPI->idx_end(); OI != OE; ++OI) {
2158 ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
2159 if (!Op || !Op->isZero()) return;
2161 // TODO: The GEPI indices are all zero. Copy from operand to definition,
2162 // jumping the type plane as needed.
2163 Value *Ptr = GEPI->getPointerOperand();
2164 if (isRelatedBy(Ptr, Constant::getNullValue(Ptr->getType()),
2165 ICmpInst::ICMP_NE)) {
2166 add(GEPI, Constant::getNullValue(GEPI->getType()), ICmpInst::ICMP_NE,
2167 NewContext);
2172 /// solve - process the work queue
2173 void solve() {
2174 //DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
2175 while (!WorkList.empty()) {
2176 //DOUT << "WorkList size: " << WorkList.size() << "\n";
2178 Operation &O = WorkList.front();
2179 TopInst = O.ContextInst;
2180 TopBB = O.ContextBB;
2181 Top = DTDFS->getNodeForBlock(TopBB); // XXX move this into Context
2183 O.LHS = VN.canonicalize(O.LHS, Top);
2184 O.RHS = VN.canonicalize(O.RHS, Top);
2186 assert(O.LHS == VN.canonicalize(O.LHS, Top) && "Canonicalize isn't.");
2187 assert(O.RHS == VN.canonicalize(O.RHS, Top) && "Canonicalize isn't.");
2189 DOUT << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS;
2190 if (O.ContextInst) DOUT << " context inst: " << *O.ContextInst;
2191 else DOUT << " context block: " << O.ContextBB->getName();
2192 DOUT << "\n";
2194 DEBUG(VN.dump());
2195 DEBUG(IG.dump());
2196 DEBUG(VR.dump());
2198 // If they're both Constant, skip it. Check for contradiction and mark
2199 // the BB as unreachable if so.
2200 if (Constant *CI_L = dyn_cast<Constant>(O.LHS)) {
2201 if (Constant *CI_R = dyn_cast<Constant>(O.RHS)) {
2202 if (ConstantExpr::getCompare(O.Op, CI_L, CI_R) ==
2203 ConstantInt::getFalse())
2204 UB.mark(TopBB);
2206 WorkList.pop_front();
2207 continue;
2211 if (VN.compare(O.LHS, O.RHS)) {
2212 std::swap(O.LHS, O.RHS);
2213 O.Op = ICmpInst::getSwappedPredicate(O.Op);
2216 if (O.Op == ICmpInst::ICMP_EQ) {
2217 if (!makeEqual(O.RHS, O.LHS))
2218 UB.mark(TopBB);
2219 } else {
2220 LatticeVal LV = cmpInstToLattice(O.Op);
2222 if ((LV & EQ_BIT) &&
2223 isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) {
2224 if (!makeEqual(O.RHS, O.LHS))
2225 UB.mark(TopBB);
2226 } else {
2227 if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){
2228 UB.mark(TopBB);
2229 WorkList.pop_front();
2230 continue;
2233 unsigned n1 = VN.getOrInsertVN(O.LHS, Top);
2234 unsigned n2 = VN.getOrInsertVN(O.RHS, Top);
2236 if (n1 == n2) {
2237 if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
2238 O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
2239 UB.mark(TopBB);
2241 WorkList.pop_front();
2242 continue;
2245 if (VR.isRelatedBy(n1, n2, Top, LV) ||
2246 IG.isRelatedBy(n1, n2, Top, LV)) {
2247 WorkList.pop_front();
2248 continue;
2251 VR.addInequality(n1, n2, Top, LV, this);
2252 if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) ||
2253 LV == NE)
2254 IG.addInequality(n1, n2, Top, LV);
2256 if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) {
2257 if (aboveOrBelow(I1))
2258 defToOps(I1);
2260 if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) {
2261 for (Value::use_iterator UI = O.LHS->use_begin(),
2262 UE = O.LHS->use_end(); UI != UE;) {
2263 Use &TheUse = UI.getUse();
2264 ++UI;
2265 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
2266 if (aboveOrBelow(I))
2267 opsToDef(I);
2271 if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) {
2272 if (aboveOrBelow(I2))
2273 defToOps(I2);
2275 if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) {
2276 for (Value::use_iterator UI = O.RHS->use_begin(),
2277 UE = O.RHS->use_end(); UI != UE;) {
2278 Use &TheUse = UI.getUse();
2279 ++UI;
2280 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
2281 if (aboveOrBelow(I))
2282 opsToDef(I);
2288 WorkList.pop_front();
2293 void ValueRanges::addToWorklist(Value *V, Constant *C,
2294 ICmpInst::Predicate Pred, VRPSolver *VRP) {
2295 VRP->add(V, C, Pred, VRP->TopInst);
2298 void ValueRanges::markBlock(VRPSolver *VRP) {
2299 VRP->UB.mark(VRP->TopBB);
2302 /// PredicateSimplifier - This class is a simplifier that replaces
2303 /// one equivalent variable with another. It also tracks what
2304 /// can't be equal and will solve setcc instructions when possible.
2305 /// @brief Root of the predicate simplifier optimization.
2306 class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass {
2307 DomTreeDFS *DTDFS;
2308 bool modified;
2309 ValueNumbering *VN;
2310 InequalityGraph *IG;
2311 UnreachableBlocks UB;
2312 ValueRanges *VR;
2314 std::vector<DomTreeDFS::Node *> WorkList;
2316 public:
2317 static char ID; // Pass identification, replacement for typeid
2318 PredicateSimplifier() : FunctionPass(&ID) {}
2320 bool runOnFunction(Function &F);
2322 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
2323 AU.addRequiredID(BreakCriticalEdgesID);
2324 AU.addRequired<DominatorTree>();
2325 AU.addRequired<TargetData>();
2326 AU.addPreserved<TargetData>();
2329 private:
2330 /// Forwards - Adds new properties to VRPSolver and uses them to
2331 /// simplify instructions. Because new properties sometimes apply to
2332 /// a transition from one BasicBlock to another, this will use the
2333 /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
2334 /// basic block.
2335 /// @brief Performs abstract execution of the program.
2336 class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> {
2337 friend class InstVisitor<Forwards>;
2338 PredicateSimplifier *PS;
2339 DomTreeDFS::Node *DTNode;
2341 public:
2342 ValueNumbering &VN;
2343 InequalityGraph &IG;
2344 UnreachableBlocks &UB;
2345 ValueRanges &VR;
2347 Forwards(PredicateSimplifier *PS, DomTreeDFS::Node *DTNode)
2348 : PS(PS), DTNode(DTNode), VN(*PS->VN), IG(*PS->IG), UB(PS->UB),
2349 VR(*PS->VR) {}
2351 void visitTerminatorInst(TerminatorInst &TI);
2352 void visitBranchInst(BranchInst &BI);
2353 void visitSwitchInst(SwitchInst &SI);
2355 void visitAllocaInst(AllocaInst &AI);
2356 void visitLoadInst(LoadInst &LI);
2357 void visitStoreInst(StoreInst &SI);
2359 void visitSExtInst(SExtInst &SI);
2360 void visitZExtInst(ZExtInst &ZI);
2362 void visitBinaryOperator(BinaryOperator &BO);
2363 void visitICmpInst(ICmpInst &IC);
2366 // Used by terminator instructions to proceed from the current basic
2367 // block to the next. Verifies that "current" dominates "next",
2368 // then calls visitBasicBlock.
2369 void proceedToSuccessors(DomTreeDFS::Node *Current) {
2370 for (DomTreeDFS::Node::iterator I = Current->begin(),
2371 E = Current->end(); I != E; ++I) {
2372 WorkList.push_back(*I);
2376 void proceedToSuccessor(DomTreeDFS::Node *Next) {
2377 WorkList.push_back(Next);
2380 // Visits each instruction in the basic block.
2381 void visitBasicBlock(DomTreeDFS::Node *Node) {
2382 BasicBlock *BB = Node->getBlock();
2383 DOUT << "Entering Basic Block: " << BB->getName()
2384 << " (" << Node->getDFSNumIn() << ")\n";
2385 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2386 visitInstruction(I++, Node);
2390 // Tries to simplify each Instruction and add new properties.
2391 void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) {
2392 DOUT << "Considering instruction " << *I << "\n";
2393 DEBUG(VN->dump());
2394 DEBUG(IG->dump());
2395 DEBUG(VR->dump());
2397 // Sometimes instructions are killed in earlier analysis.
2398 if (isInstructionTriviallyDead(I)) {
2399 ++NumSimple;
2400 modified = true;
2401 if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
2402 if (VN->value(n) == I) IG->remove(n);
2403 VN->remove(I);
2404 I->eraseFromParent();
2405 return;
2408 #ifndef NDEBUG
2409 // Try to replace the whole instruction.
2410 Value *V = VN->canonicalize(I, DT);
2411 assert(V == I && "Late instruction canonicalization.");
2412 if (V != I) {
2413 modified = true;
2414 ++NumInstruction;
2415 DOUT << "Removing " << *I << ", replacing with " << *V << "\n";
2416 if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
2417 if (VN->value(n) == I) IG->remove(n);
2418 VN->remove(I);
2419 I->replaceAllUsesWith(V);
2420 I->eraseFromParent();
2421 return;
2424 // Try to substitute operands.
2425 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2426 Value *Oper = I->getOperand(i);
2427 Value *V = VN->canonicalize(Oper, DT);
2428 assert(V == Oper && "Late operand canonicalization.");
2429 if (V != Oper) {
2430 modified = true;
2431 ++NumVarsReplaced;
2432 DOUT << "Resolving " << *I;
2433 I->setOperand(i, V);
2434 DOUT << " into " << *I;
2437 #endif
2439 std::string name = I->getParent()->getName();
2440 DOUT << "push (%" << name << ")\n";
2441 Forwards visit(this, DT);
2442 visit.visit(*I);
2443 DOUT << "pop (%" << name << ")\n";
2447 bool PredicateSimplifier::runOnFunction(Function &F) {
2448 DominatorTree *DT = &getAnalysis<DominatorTree>();
2449 DTDFS = new DomTreeDFS(DT);
2450 TargetData *TD = &getAnalysis<TargetData>();
2452 DOUT << "Entering Function: " << F.getName() << "\n";
2454 modified = false;
2455 DomTreeDFS::Node *Root = DTDFS->getRootNode();
2456 VN = new ValueNumbering(DTDFS);
2457 IG = new InequalityGraph(*VN, Root);
2458 VR = new ValueRanges(*VN, TD);
2459 WorkList.push_back(Root);
2461 do {
2462 DomTreeDFS::Node *DTNode = WorkList.back();
2463 WorkList.pop_back();
2464 if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode);
2465 } while (!WorkList.empty());
2467 delete DTDFS;
2468 delete VR;
2469 delete IG;
2470 delete VN;
2472 modified |= UB.kill();
2474 return modified;
2477 void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
2478 PS->proceedToSuccessors(DTNode);
2481 void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
2482 if (BI.isUnconditional()) {
2483 PS->proceedToSuccessors(DTNode);
2484 return;
2487 Value *Condition = BI.getCondition();
2488 BasicBlock *TrueDest = BI.getSuccessor(0);
2489 BasicBlock *FalseDest = BI.getSuccessor(1);
2491 if (isa<Constant>(Condition) || TrueDest == FalseDest) {
2492 PS->proceedToSuccessors(DTNode);
2493 return;
2496 for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
2497 I != E; ++I) {
2498 BasicBlock *Dest = (*I)->getBlock();
2499 DOUT << "Branch thinking about %" << Dest->getName()
2500 << "(" << PS->DTDFS->getNodeForBlock(Dest)->getDFSNumIn() << ")\n";
2502 if (Dest == TrueDest) {
2503 DOUT << "(" << DTNode->getBlock()->getName() << ") true set:\n";
2504 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
2505 VRP.add(ConstantInt::getTrue(), Condition, ICmpInst::ICMP_EQ);
2506 VRP.solve();
2507 DEBUG(VN.dump());
2508 DEBUG(IG.dump());
2509 DEBUG(VR.dump());
2510 } else if (Dest == FalseDest) {
2511 DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n";
2512 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
2513 VRP.add(ConstantInt::getFalse(), Condition, ICmpInst::ICMP_EQ);
2514 VRP.solve();
2515 DEBUG(VN.dump());
2516 DEBUG(IG.dump());
2517 DEBUG(VR.dump());
2520 PS->proceedToSuccessor(*I);
2524 void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) {
2525 Value *Condition = SI.getCondition();
2527 // Set the EQProperty in each of the cases BBs, and the NEProperties
2528 // in the default BB.
2530 for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
2531 I != E; ++I) {
2532 BasicBlock *BB = (*I)->getBlock();
2533 DOUT << "Switch thinking about BB %" << BB->getName()
2534 << "(" << PS->DTDFS->getNodeForBlock(BB)->getDFSNumIn() << ")\n";
2536 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, BB);
2537 if (BB == SI.getDefaultDest()) {
2538 for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
2539 if (SI.getSuccessor(i) != BB)
2540 VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE);
2541 VRP.solve();
2542 } else if (ConstantInt *CI = SI.findCaseDest(BB)) {
2543 VRP.add(Condition, CI, ICmpInst::ICMP_EQ);
2544 VRP.solve();
2546 PS->proceedToSuccessor(*I);
2550 void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
2551 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI);
2552 VRP.add(Constant::getNullValue(AI.getType()), &AI, ICmpInst::ICMP_NE);
2553 VRP.solve();
2556 void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) {
2557 Value *Ptr = LI.getPointerOperand();
2558 // avoid "load i8* null" -> null NE null.
2559 if (isa<Constant>(Ptr)) return;
2561 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI);
2562 VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
2563 VRP.solve();
2566 void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) {
2567 Value *Ptr = SI.getPointerOperand();
2568 if (isa<Constant>(Ptr)) return;
2570 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
2571 VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
2572 VRP.solve();
2575 void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) {
2576 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
2577 uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth();
2578 uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth();
2579 APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1));
2580 APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth-1));
2581 VRP.add(ConstantInt::get(Min), &SI, ICmpInst::ICMP_SLE);
2582 VRP.add(ConstantInt::get(Max), &SI, ICmpInst::ICMP_SGE);
2583 VRP.solve();
2586 void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) {
2587 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI);
2588 uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth();
2589 uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth();
2590 APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth));
2591 VRP.add(ConstantInt::get(Max), &ZI, ICmpInst::ICMP_UGE);
2592 VRP.solve();
2595 void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) {
2596 Instruction::BinaryOps ops = BO.getOpcode();
2598 switch (ops) {
2599 default: break;
2600 case Instruction::URem:
2601 case Instruction::SRem:
2602 case Instruction::UDiv:
2603 case Instruction::SDiv: {
2604 Value *Divisor = BO.getOperand(1);
2605 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2606 VRP.add(Constant::getNullValue(Divisor->getType()), Divisor,
2607 ICmpInst::ICMP_NE);
2608 VRP.solve();
2609 break;
2613 switch (ops) {
2614 default: break;
2615 case Instruction::Shl: {
2616 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2617 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
2618 VRP.solve();
2619 } break;
2620 case Instruction::AShr: {
2621 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2622 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_SLE);
2623 VRP.solve();
2624 } break;
2625 case Instruction::LShr:
2626 case Instruction::UDiv: {
2627 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2628 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
2629 VRP.solve();
2630 } break;
2631 case Instruction::URem: {
2632 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2633 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
2634 VRP.solve();
2635 } break;
2636 case Instruction::And: {
2637 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2638 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
2639 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
2640 VRP.solve();
2641 } break;
2642 case Instruction::Or: {
2643 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2644 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
2645 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_UGE);
2646 VRP.solve();
2647 } break;
2651 void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst &IC) {
2652 // If possible, squeeze the ICmp predicate into something simpler.
2653 // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change
2654 // the predicate to eq.
2656 // XXX: once we do full PHI handling, modifying the instruction in the
2657 // Forwards visitor will cause missed optimizations.
2659 ICmpInst::Predicate Pred = IC.getPredicate();
2661 switch (Pred) {
2662 default: break;
2663 case ICmpInst::ICMP_ULE: Pred = ICmpInst::ICMP_ULT; break;
2664 case ICmpInst::ICMP_UGE: Pred = ICmpInst::ICMP_UGT; break;
2665 case ICmpInst::ICMP_SLE: Pred = ICmpInst::ICMP_SLT; break;
2666 case ICmpInst::ICMP_SGE: Pred = ICmpInst::ICMP_SGT; break;
2668 if (Pred != IC.getPredicate()) {
2669 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
2670 if (VRP.isRelatedBy(IC.getOperand(1), IC.getOperand(0),
2671 ICmpInst::ICMP_NE)) {
2672 ++NumSnuggle;
2673 PS->modified = true;
2674 IC.setPredicate(Pred);
2678 Pred = IC.getPredicate();
2680 if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) {
2681 ConstantInt *NextVal = 0;
2682 switch (Pred) {
2683 default: break;
2684 case ICmpInst::ICMP_SLT:
2685 case ICmpInst::ICMP_ULT:
2686 if (Op1->getValue() != 0)
2687 NextVal = ConstantInt::get(Op1->getValue()-1);
2688 break;
2689 case ICmpInst::ICMP_SGT:
2690 case ICmpInst::ICMP_UGT:
2691 if (!Op1->getValue().isAllOnesValue())
2692 NextVal = ConstantInt::get(Op1->getValue()+1);
2693 break;
2696 if (NextVal) {
2697 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
2698 if (VRP.isRelatedBy(IC.getOperand(0), NextVal,
2699 ICmpInst::getInversePredicate(Pred))) {
2700 ICmpInst *NewIC = new ICmpInst(ICmpInst::ICMP_EQ, IC.getOperand(0),
2701 NextVal, "", &IC);
2702 NewIC->takeName(&IC);
2703 IC.replaceAllUsesWith(NewIC);
2705 // XXX: prove this isn't necessary
2706 if (unsigned n = VN.valueNumber(&IC, PS->DTDFS->getRootNode()))
2707 if (VN.value(n) == &IC) IG.remove(n);
2708 VN.remove(&IC);
2710 IC.eraseFromParent();
2711 ++NumSnuggle;
2712 PS->modified = true;
2719 char PredicateSimplifier::ID = 0;
2720 static RegisterPass<PredicateSimplifier>
2721 X("predsimplify", "Predicate Simplifier");
2723 FunctionPass *llvm::createPredicateSimplifierPass() {
2724 return new PredicateSimplifier();