1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements sparse conditional constant propagation and merging:
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
19 // * This pass has a habit of making definitions be dead. It is a good idea
20 // to to run a DCE pass sometime after running this pass.
22 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "sccp"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Constants.h"
28 #include "llvm/DerivedTypes.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Support/CallSite.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/InstVisitor.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/DenseSet.h"
40 #include "llvm/ADT/SmallSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/STLExtras.h"
48 STATISTIC(NumInstRemoved
, "Number of instructions removed");
49 STATISTIC(NumDeadBlocks
, "Number of basic blocks unreachable");
51 STATISTIC(IPNumInstRemoved
, "Number of instructions removed by IPSCCP");
52 STATISTIC(IPNumDeadBlocks
, "Number of basic blocks unreachable by IPSCCP");
53 STATISTIC(IPNumArgsElimed
,"Number of arguments constant propagated by IPSCCP");
54 STATISTIC(IPNumGlobalConst
, "Number of globals found to be constant by IPSCCP");
57 /// LatticeVal class - This class represents the different lattice values that
58 /// an LLVM value may occupy. It is a simple class with value semantics.
60 class VISIBILITY_HIDDEN LatticeVal
{
62 /// undefined - This LLVM Value has no known value yet.
65 /// constant - This LLVM Value has a specific constant value.
68 /// forcedconstant - This LLVM Value was thought to be undef until
69 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
70 /// with another (different) constant, it goes to overdefined, instead of
74 /// overdefined - This instruction is not known to be constant, and we know
77 } LatticeValue
; // The current lattice position
79 Constant
*ConstantVal
; // If Constant value, the current value
81 inline LatticeVal() : LatticeValue(undefined
), ConstantVal(0) {}
83 // markOverdefined - Return true if this is a new status to be in...
84 inline bool markOverdefined() {
85 if (LatticeValue
!= overdefined
) {
86 LatticeValue
= overdefined
;
92 // markConstant - Return true if this is a new status for us.
93 inline bool markConstant(Constant
*V
) {
94 if (LatticeValue
!= constant
) {
95 if (LatticeValue
== undefined
) {
96 LatticeValue
= constant
;
97 assert(V
&& "Marking constant with NULL");
100 assert(LatticeValue
== forcedconstant
&&
101 "Cannot move from overdefined to constant!");
102 // Stay at forcedconstant if the constant is the same.
103 if (V
== ConstantVal
) return false;
105 // Otherwise, we go to overdefined. Assumptions made based on the
106 // forced value are possibly wrong. Assuming this is another constant
107 // could expose a contradiction.
108 LatticeValue
= overdefined
;
112 assert(ConstantVal
== V
&& "Marking constant with different value");
117 inline void markForcedConstant(Constant
*V
) {
118 assert(LatticeValue
== undefined
&& "Can't force a defined value!");
119 LatticeValue
= forcedconstant
;
123 inline bool isUndefined() const { return LatticeValue
== undefined
; }
124 inline bool isConstant() const {
125 return LatticeValue
== constant
|| LatticeValue
== forcedconstant
;
127 inline bool isOverdefined() const { return LatticeValue
== overdefined
; }
129 inline Constant
*getConstant() const {
130 assert(isConstant() && "Cannot get the constant of a non-constant!");
135 //===----------------------------------------------------------------------===//
137 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
138 /// Constant Propagation.
140 class SCCPSolver
: public InstVisitor
<SCCPSolver
> {
141 DenseSet
<BasicBlock
*> BBExecutable
;// The basic blocks that are executable
142 std::map
<Value
*, LatticeVal
> ValueState
; // The state each value is in.
144 /// GlobalValue - If we are tracking any values for the contents of a global
145 /// variable, we keep a mapping from the constant accessor to the element of
146 /// the global, to the currently known value. If the value becomes
147 /// overdefined, it's entry is simply removed from this map.
148 DenseMap
<GlobalVariable
*, LatticeVal
> TrackedGlobals
;
150 /// TrackedRetVals - If we are tracking arguments into and the return
151 /// value out of a function, it will have an entry in this map, indicating
152 /// what the known return value for the function is.
153 DenseMap
<Function
*, LatticeVal
> TrackedRetVals
;
155 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
156 /// that return multiple values.
157 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
> TrackedMultipleRetVals
;
159 // The reason for two worklists is that overdefined is the lowest state
160 // on the lattice, and moving things to overdefined as fast as possible
161 // makes SCCP converge much faster.
162 // By having a separate worklist, we accomplish this because everything
163 // possibly overdefined will become overdefined at the soonest possible
165 SmallVector
<Value
*, 64> OverdefinedInstWorkList
;
166 SmallVector
<Value
*, 64> InstWorkList
;
169 SmallVector
<BasicBlock
*, 64> BBWorkList
; // The BasicBlock work list
171 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
172 /// overdefined, despite the fact that the PHI node is overdefined.
173 std::multimap
<PHINode
*, Instruction
*> UsersOfOverdefinedPHIs
;
175 /// KnownFeasibleEdges - Entries in this set are edges which have already had
176 /// PHI nodes retriggered.
177 typedef std::pair
<BasicBlock
*, BasicBlock
*> Edge
;
178 DenseSet
<Edge
> KnownFeasibleEdges
;
181 /// MarkBlockExecutable - This method can be used by clients to mark all of
182 /// the blocks that are known to be intrinsically live in the processed unit.
183 void MarkBlockExecutable(BasicBlock
*BB
) {
184 DOUT
<< "Marking Block Executable: " << BB
->getNameStart() << "\n";
185 BBExecutable
.insert(BB
); // Basic block is executable!
186 BBWorkList
.push_back(BB
); // Add the block to the work list!
189 /// TrackValueOfGlobalVariable - Clients can use this method to
190 /// inform the SCCPSolver that it should track loads and stores to the
191 /// specified global variable if it can. This is only legal to call if
192 /// performing Interprocedural SCCP.
193 void TrackValueOfGlobalVariable(GlobalVariable
*GV
) {
194 const Type
*ElTy
= GV
->getType()->getElementType();
195 if (ElTy
->isFirstClassType()) {
196 LatticeVal
&IV
= TrackedGlobals
[GV
];
197 if (!isa
<UndefValue
>(GV
->getInitializer()))
198 IV
.markConstant(GV
->getInitializer());
202 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
203 /// and out of the specified function (which cannot have its address taken),
204 /// this method must be called.
205 void AddTrackedFunction(Function
*F
) {
206 assert(F
->hasLocalLinkage() && "Can only track internal functions!");
207 // Add an entry, F -> undef.
208 if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
209 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
210 TrackedMultipleRetVals
.insert(std::make_pair(std::make_pair(F
, i
),
213 TrackedRetVals
.insert(std::make_pair(F
, LatticeVal()));
216 /// Solve - Solve for constants and executable blocks.
220 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
221 /// that branches on undef values cannot reach any of their successors.
222 /// However, this is not a safe assumption. After we solve dataflow, this
223 /// method should be use to handle this. If this returns true, the solver
225 bool ResolvedUndefsIn(Function
&F
);
227 bool isBlockExecutable(BasicBlock
*BB
) const {
228 return BBExecutable
.count(BB
);
231 /// getValueMapping - Once we have solved for constants, return the mapping of
232 /// LLVM values to LatticeVals.
233 std::map
<Value
*, LatticeVal
> &getValueMapping() {
237 /// getTrackedRetVals - Get the inferred return value map.
239 const DenseMap
<Function
*, LatticeVal
> &getTrackedRetVals() {
240 return TrackedRetVals
;
243 /// getTrackedGlobals - Get and return the set of inferred initializers for
244 /// global variables.
245 const DenseMap
<GlobalVariable
*, LatticeVal
> &getTrackedGlobals() {
246 return TrackedGlobals
;
249 inline void markOverdefined(Value
*V
) {
250 markOverdefined(ValueState
[V
], V
);
254 // markConstant - Make a value be marked as "constant". If the value
255 // is not already a constant, add it to the instruction work list so that
256 // the users of the instruction are updated later.
258 inline void markConstant(LatticeVal
&IV
, Value
*V
, Constant
*C
) {
259 if (IV
.markConstant(C
)) {
260 DOUT
<< "markConstant: " << *C
<< ": " << *V
;
261 InstWorkList
.push_back(V
);
265 inline void markForcedConstant(LatticeVal
&IV
, Value
*V
, Constant
*C
) {
266 IV
.markForcedConstant(C
);
267 DOUT
<< "markForcedConstant: " << *C
<< ": " << *V
;
268 InstWorkList
.push_back(V
);
271 inline void markConstant(Value
*V
, Constant
*C
) {
272 markConstant(ValueState
[V
], V
, C
);
275 // markOverdefined - Make a value be marked as "overdefined". If the
276 // value is not already overdefined, add it to the overdefined instruction
277 // work list so that the users of the instruction are updated later.
278 inline void markOverdefined(LatticeVal
&IV
, Value
*V
) {
279 if (IV
.markOverdefined()) {
280 DEBUG(DOUT
<< "markOverdefined: ";
281 if (Function
*F
= dyn_cast
<Function
>(V
))
282 DOUT
<< "Function '" << F
->getName() << "'\n";
285 // Only instructions go on the work list
286 OverdefinedInstWorkList
.push_back(V
);
290 inline void mergeInValue(LatticeVal
&IV
, Value
*V
, LatticeVal
&MergeWithV
) {
291 if (IV
.isOverdefined() || MergeWithV
.isUndefined())
293 if (MergeWithV
.isOverdefined())
294 markOverdefined(IV
, V
);
295 else if (IV
.isUndefined())
296 markConstant(IV
, V
, MergeWithV
.getConstant());
297 else if (IV
.getConstant() != MergeWithV
.getConstant())
298 markOverdefined(IV
, V
);
301 inline void mergeInValue(Value
*V
, LatticeVal
&MergeWithV
) {
302 return mergeInValue(ValueState
[V
], V
, MergeWithV
);
306 // getValueState - Return the LatticeVal object that corresponds to the value.
307 // This function is necessary because not all values should start out in the
308 // underdefined state... Argument's should be overdefined, and
309 // constants should be marked as constants. If a value is not known to be an
310 // Instruction object, then use this accessor to get its value from the map.
312 inline LatticeVal
&getValueState(Value
*V
) {
313 std::map
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(V
);
314 if (I
!= ValueState
.end()) return I
->second
; // Common case, in the map
316 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
317 if (isa
<UndefValue
>(V
)) {
318 // Nothing to do, remain undefined.
320 LatticeVal
&LV
= ValueState
[C
];
321 LV
.markConstant(C
); // Constants are constant
325 // All others are underdefined by default...
326 return ValueState
[V
];
329 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
330 // work list if it is not already executable...
332 void markEdgeExecutable(BasicBlock
*Source
, BasicBlock
*Dest
) {
333 if (!KnownFeasibleEdges
.insert(Edge(Source
, Dest
)).second
)
334 return; // This edge is already known to be executable!
336 if (BBExecutable
.count(Dest
)) {
337 DOUT
<< "Marking Edge Executable: " << Source
->getNameStart()
338 << " -> " << Dest
->getNameStart() << "\n";
340 // The destination is already executable, but we just made an edge
341 // feasible that wasn't before. Revisit the PHI nodes in the block
342 // because they have potentially new operands.
343 for (BasicBlock::iterator I
= Dest
->begin(); isa
<PHINode
>(I
); ++I
)
344 visitPHINode(*cast
<PHINode
>(I
));
347 MarkBlockExecutable(Dest
);
351 // getFeasibleSuccessors - Return a vector of booleans to indicate which
352 // successors are reachable from a given terminator instruction.
354 void getFeasibleSuccessors(TerminatorInst
&TI
, SmallVector
<bool, 16> &Succs
);
356 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
357 // block to the 'To' basic block is currently feasible...
359 bool isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
);
361 // OperandChangedState - This method is invoked on all of the users of an
362 // instruction that was just changed state somehow.... Based on this
363 // information, we need to update the specified user of this instruction.
365 void OperandChangedState(User
*U
) {
366 // Only instructions use other variable values!
367 Instruction
&I
= cast
<Instruction
>(*U
);
368 if (BBExecutable
.count(I
.getParent())) // Inst is executable?
373 friend class InstVisitor
<SCCPSolver
>;
375 // visit implementations - Something changed in this instruction... Either an
376 // operand made a transition, or the instruction is newly executable. Change
377 // the value type of I to reflect these changes if appropriate.
379 void visitPHINode(PHINode
&I
);
382 void visitReturnInst(ReturnInst
&I
);
383 void visitTerminatorInst(TerminatorInst
&TI
);
385 void visitCastInst(CastInst
&I
);
386 void visitSelectInst(SelectInst
&I
);
387 void visitBinaryOperator(Instruction
&I
);
388 void visitCmpInst(CmpInst
&I
);
389 void visitExtractElementInst(ExtractElementInst
&I
);
390 void visitInsertElementInst(InsertElementInst
&I
);
391 void visitShuffleVectorInst(ShuffleVectorInst
&I
);
392 void visitExtractValueInst(ExtractValueInst
&EVI
);
393 void visitInsertValueInst(InsertValueInst
&IVI
);
395 // Instructions that cannot be folded away...
396 void visitStoreInst (Instruction
&I
);
397 void visitLoadInst (LoadInst
&I
);
398 void visitGetElementPtrInst(GetElementPtrInst
&I
);
399 void visitCallInst (CallInst
&I
) { visitCallSite(CallSite::get(&I
)); }
400 void visitInvokeInst (InvokeInst
&II
) {
401 visitCallSite(CallSite::get(&II
));
402 visitTerminatorInst(II
);
404 void visitCallSite (CallSite CS
);
405 void visitUnwindInst (TerminatorInst
&I
) { /*returns void*/ }
406 void visitUnreachableInst(TerminatorInst
&I
) { /*returns void*/ }
407 void visitAllocationInst(Instruction
&I
) { markOverdefined(&I
); }
408 void visitVANextInst (Instruction
&I
) { markOverdefined(&I
); }
409 void visitVAArgInst (Instruction
&I
) { markOverdefined(&I
); }
410 void visitFreeInst (Instruction
&I
) { /*returns void*/ }
412 void visitInstruction(Instruction
&I
) {
413 // If a new instruction is added to LLVM that we don't handle...
414 cerr
<< "SCCP: Don't know how to handle: " << I
;
415 markOverdefined(&I
); // Just in case
419 } // end anonymous namespace
422 // getFeasibleSuccessors - Return a vector of booleans to indicate which
423 // successors are reachable from a given terminator instruction.
425 void SCCPSolver::getFeasibleSuccessors(TerminatorInst
&TI
,
426 SmallVector
<bool, 16> &Succs
) {
427 Succs
.resize(TI
.getNumSuccessors());
428 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
)) {
429 if (BI
->isUnconditional()) {
432 LatticeVal
&BCValue
= getValueState(BI
->getCondition());
433 if (BCValue
.isOverdefined() ||
434 (BCValue
.isConstant() && !isa
<ConstantInt
>(BCValue
.getConstant()))) {
435 // Overdefined condition variables, and branches on unfoldable constant
436 // conditions, mean the branch could go either way.
437 Succs
[0] = Succs
[1] = true;
438 } else if (BCValue
.isConstant()) {
439 // Constant condition variables mean the branch can only go a single way
440 Succs
[BCValue
.getConstant() == ConstantInt::getFalse()] = true;
443 } else if (isa
<InvokeInst
>(&TI
)) {
444 // Invoke instructions successors are always executable.
445 Succs
[0] = Succs
[1] = true;
446 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(&TI
)) {
447 LatticeVal
&SCValue
= getValueState(SI
->getCondition());
448 if (SCValue
.isOverdefined() || // Overdefined condition?
449 (SCValue
.isConstant() && !isa
<ConstantInt
>(SCValue
.getConstant()))) {
450 // All destinations are executable!
451 Succs
.assign(TI
.getNumSuccessors(), true);
452 } else if (SCValue
.isConstant())
453 Succs
[SI
->findCaseValue(cast
<ConstantInt
>(SCValue
.getConstant()))] = true;
455 assert(0 && "SCCP: Don't know how to handle this terminator!");
460 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
461 // block to the 'To' basic block is currently feasible...
463 bool SCCPSolver::isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
) {
464 assert(BBExecutable
.count(To
) && "Dest should always be alive!");
466 // Make sure the source basic block is executable!!
467 if (!BBExecutable
.count(From
)) return false;
469 // Check to make sure this edge itself is actually feasible now...
470 TerminatorInst
*TI
= From
->getTerminator();
471 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
472 if (BI
->isUnconditional())
475 LatticeVal
&BCValue
= getValueState(BI
->getCondition());
476 if (BCValue
.isOverdefined()) {
477 // Overdefined condition variables mean the branch could go either way.
479 } else if (BCValue
.isConstant()) {
480 // Not branching on an evaluatable constant?
481 if (!isa
<ConstantInt
>(BCValue
.getConstant())) return true;
483 // Constant condition variables mean the branch can only go a single way
484 return BI
->getSuccessor(BCValue
.getConstant() ==
485 ConstantInt::getFalse()) == To
;
489 } else if (isa
<InvokeInst
>(TI
)) {
490 // Invoke instructions successors are always executable.
492 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
493 LatticeVal
&SCValue
= getValueState(SI
->getCondition());
494 if (SCValue
.isOverdefined()) { // Overdefined condition?
495 // All destinations are executable!
497 } else if (SCValue
.isConstant()) {
498 Constant
*CPV
= SCValue
.getConstant();
499 if (!isa
<ConstantInt
>(CPV
))
500 return true; // not a foldable constant?
502 // Make sure to skip the "default value" which isn't a value
503 for (unsigned i
= 1, E
= SI
->getNumSuccessors(); i
!= E
; ++i
)
504 if (SI
->getSuccessorValue(i
) == CPV
) // Found the taken branch...
505 return SI
->getSuccessor(i
) == To
;
507 // Constant value not equal to any of the branches... must execute
508 // default branch then...
509 return SI
->getDefaultDest() == To
;
513 cerr
<< "Unknown terminator instruction: " << *TI
;
518 // visit Implementations - Something changed in this instruction... Either an
519 // operand made a transition, or the instruction is newly executable. Change
520 // the value type of I to reflect these changes if appropriate. This method
521 // makes sure to do the following actions:
523 // 1. If a phi node merges two constants in, and has conflicting value coming
524 // from different branches, or if the PHI node merges in an overdefined
525 // value, then the PHI node becomes overdefined.
526 // 2. If a phi node merges only constants in, and they all agree on value, the
527 // PHI node becomes a constant value equal to that.
528 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
529 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
530 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
531 // 6. If a conditional branch has a value that is constant, make the selected
532 // destination executable
533 // 7. If a conditional branch has a value that is overdefined, make all
534 // successors executable.
536 void SCCPSolver::visitPHINode(PHINode
&PN
) {
537 LatticeVal
&PNIV
= getValueState(&PN
);
538 if (PNIV
.isOverdefined()) {
539 // There may be instructions using this PHI node that are not overdefined
540 // themselves. If so, make sure that they know that the PHI node operand
542 std::multimap
<PHINode
*, Instruction
*>::iterator I
, E
;
543 tie(I
, E
) = UsersOfOverdefinedPHIs
.equal_range(&PN
);
545 SmallVector
<Instruction
*, 16> Users
;
546 for (; I
!= E
; ++I
) Users
.push_back(I
->second
);
547 while (!Users
.empty()) {
552 return; // Quick exit
555 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
556 // and slow us down a lot. Just mark them overdefined.
557 if (PN
.getNumIncomingValues() > 64) {
558 markOverdefined(PNIV
, &PN
);
562 // Look at all of the executable operands of the PHI node. If any of them
563 // are overdefined, the PHI becomes overdefined as well. If they are all
564 // constant, and they agree with each other, the PHI becomes the identical
565 // constant. If they are constant and don't agree, the PHI is overdefined.
566 // If there are no executable operands, the PHI remains undefined.
568 Constant
*OperandVal
= 0;
569 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
570 LatticeVal
&IV
= getValueState(PN
.getIncomingValue(i
));
571 if (IV
.isUndefined()) continue; // Doesn't influence PHI node.
573 if (isEdgeFeasible(PN
.getIncomingBlock(i
), PN
.getParent())) {
574 if (IV
.isOverdefined()) { // PHI node becomes overdefined!
575 markOverdefined(&PN
);
579 if (OperandVal
== 0) { // Grab the first value...
580 OperandVal
= IV
.getConstant();
581 } else { // Another value is being merged in!
582 // There is already a reachable operand. If we conflict with it,
583 // then the PHI node becomes overdefined. If we agree with it, we
586 // Check to see if there are two different constants merging...
587 if (IV
.getConstant() != OperandVal
) {
588 // Yes there is. This means the PHI node is not constant.
589 // You must be overdefined poor PHI.
591 markOverdefined(&PN
); // The PHI node now becomes overdefined
592 return; // I'm done analyzing you
598 // If we exited the loop, this means that the PHI node only has constant
599 // arguments that agree with each other(and OperandVal is the constant) or
600 // OperandVal is null because there are no defined incoming arguments. If
601 // this is the case, the PHI remains undefined.
604 markConstant(&PN
, OperandVal
); // Acquire operand value
607 void SCCPSolver::visitReturnInst(ReturnInst
&I
) {
608 if (I
.getNumOperands() == 0) return; // Ret void
610 Function
*F
= I
.getParent()->getParent();
611 // If we are tracking the return value of this function, merge it in.
612 if (!F
->hasLocalLinkage())
615 if (!TrackedRetVals
.empty() && I
.getNumOperands() == 1) {
616 DenseMap
<Function
*, LatticeVal
>::iterator TFRVI
=
617 TrackedRetVals
.find(F
);
618 if (TFRVI
!= TrackedRetVals
.end() &&
619 !TFRVI
->second
.isOverdefined()) {
620 LatticeVal
&IV
= getValueState(I
.getOperand(0));
621 mergeInValue(TFRVI
->second
, F
, IV
);
626 // Handle functions that return multiple values.
627 if (!TrackedMultipleRetVals
.empty() && I
.getNumOperands() > 1) {
628 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
629 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
>::iterator
630 It
= TrackedMultipleRetVals
.find(std::make_pair(F
, i
));
631 if (It
== TrackedMultipleRetVals
.end()) break;
632 mergeInValue(It
->second
, F
, getValueState(I
.getOperand(i
)));
634 } else if (!TrackedMultipleRetVals
.empty() &&
635 I
.getNumOperands() == 1 &&
636 isa
<StructType
>(I
.getOperand(0)->getType())) {
637 for (unsigned i
= 0, e
= I
.getOperand(0)->getType()->getNumContainedTypes();
639 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
>::iterator
640 It
= TrackedMultipleRetVals
.find(std::make_pair(F
, i
));
641 if (It
== TrackedMultipleRetVals
.end()) break;
642 Value
*Val
= FindInsertedValue(I
.getOperand(0), i
);
643 mergeInValue(It
->second
, F
, getValueState(Val
));
648 void SCCPSolver::visitTerminatorInst(TerminatorInst
&TI
) {
649 SmallVector
<bool, 16> SuccFeasible
;
650 getFeasibleSuccessors(TI
, SuccFeasible
);
652 BasicBlock
*BB
= TI
.getParent();
654 // Mark all feasible successors executable...
655 for (unsigned i
= 0, e
= SuccFeasible
.size(); i
!= e
; ++i
)
657 markEdgeExecutable(BB
, TI
.getSuccessor(i
));
660 void SCCPSolver::visitCastInst(CastInst
&I
) {
661 Value
*V
= I
.getOperand(0);
662 LatticeVal
&VState
= getValueState(V
);
663 if (VState
.isOverdefined()) // Inherit overdefinedness of operand
665 else if (VState
.isConstant()) // Propagate constant value
666 markConstant(&I
, ConstantExpr::getCast(I
.getOpcode(),
667 VState
.getConstant(), I
.getType()));
670 void SCCPSolver::visitExtractValueInst(ExtractValueInst
&EVI
) {
671 Value
*Aggr
= EVI
.getAggregateOperand();
673 // If the operand to the extractvalue is an undef, the result is undef.
674 if (isa
<UndefValue
>(Aggr
))
677 // Currently only handle single-index extractvalues.
678 if (EVI
.getNumIndices() != 1) {
679 markOverdefined(&EVI
);
684 if (CallInst
*CI
= dyn_cast
<CallInst
>(Aggr
))
685 F
= CI
->getCalledFunction();
686 else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Aggr
))
687 F
= II
->getCalledFunction();
689 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
691 if (F
== 0 || TrackedMultipleRetVals
.empty()) {
692 markOverdefined(&EVI
);
696 // See if we are tracking the result of the callee. If not tracking this
697 // function (for example, it is a declaration) just move to overdefined.
698 if (!TrackedMultipleRetVals
.count(std::make_pair(F
, *EVI
.idx_begin()))) {
699 markOverdefined(&EVI
);
703 // Otherwise, the value will be merged in here as a result of CallSite
707 void SCCPSolver::visitInsertValueInst(InsertValueInst
&IVI
) {
708 Value
*Aggr
= IVI
.getAggregateOperand();
709 Value
*Val
= IVI
.getInsertedValueOperand();
711 // If the operands to the insertvalue are undef, the result is undef.
712 if (isa
<UndefValue
>(Aggr
) && isa
<UndefValue
>(Val
))
715 // Currently only handle single-index insertvalues.
716 if (IVI
.getNumIndices() != 1) {
717 markOverdefined(&IVI
);
721 // Currently only handle insertvalue instructions that are in a single-use
722 // chain that builds up a return value.
723 for (const InsertValueInst
*TmpIVI
= &IVI
; ; ) {
724 if (!TmpIVI
->hasOneUse()) {
725 markOverdefined(&IVI
);
728 const Value
*V
= *TmpIVI
->use_begin();
729 if (isa
<ReturnInst
>(V
))
731 TmpIVI
= dyn_cast
<InsertValueInst
>(V
);
733 markOverdefined(&IVI
);
738 // See if we are tracking the result of the callee.
739 Function
*F
= IVI
.getParent()->getParent();
740 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
>::iterator
741 It
= TrackedMultipleRetVals
.find(std::make_pair(F
, *IVI
.idx_begin()));
743 // Merge in the inserted member value.
744 if (It
!= TrackedMultipleRetVals
.end())
745 mergeInValue(It
->second
, F
, getValueState(Val
));
747 // Mark the aggregate result of the IVI overdefined; any tracking that we do
748 // will be done on the individual member values.
749 markOverdefined(&IVI
);
752 void SCCPSolver::visitSelectInst(SelectInst
&I
) {
753 LatticeVal
&CondValue
= getValueState(I
.getCondition());
754 if (CondValue
.isUndefined())
756 if (CondValue
.isConstant()) {
757 if (ConstantInt
*CondCB
= dyn_cast
<ConstantInt
>(CondValue
.getConstant())){
758 mergeInValue(&I
, getValueState(CondCB
->getZExtValue() ? I
.getTrueValue()
759 : I
.getFalseValue()));
764 // Otherwise, the condition is overdefined or a constant we can't evaluate.
765 // See if we can produce something better than overdefined based on the T/F
767 LatticeVal
&TVal
= getValueState(I
.getTrueValue());
768 LatticeVal
&FVal
= getValueState(I
.getFalseValue());
770 // select ?, C, C -> C.
771 if (TVal
.isConstant() && FVal
.isConstant() &&
772 TVal
.getConstant() == FVal
.getConstant()) {
773 markConstant(&I
, FVal
.getConstant());
777 if (TVal
.isUndefined()) { // select ?, undef, X -> X.
778 mergeInValue(&I
, FVal
);
779 } else if (FVal
.isUndefined()) { // select ?, X, undef -> X.
780 mergeInValue(&I
, TVal
);
786 // Handle BinaryOperators and Shift Instructions...
787 void SCCPSolver::visitBinaryOperator(Instruction
&I
) {
788 LatticeVal
&IV
= ValueState
[&I
];
789 if (IV
.isOverdefined()) return;
791 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
792 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
794 if (V1State
.isOverdefined() || V2State
.isOverdefined()) {
795 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
796 // operand is overdefined.
797 if (I
.getOpcode() == Instruction::And
|| I
.getOpcode() == Instruction::Or
) {
798 LatticeVal
*NonOverdefVal
= 0;
799 if (!V1State
.isOverdefined()) {
800 NonOverdefVal
= &V1State
;
801 } else if (!V2State
.isOverdefined()) {
802 NonOverdefVal
= &V2State
;
806 if (NonOverdefVal
->isUndefined()) {
807 // Could annihilate value.
808 if (I
.getOpcode() == Instruction::And
)
809 markConstant(IV
, &I
, Constant::getNullValue(I
.getType()));
810 else if (const VectorType
*PT
= dyn_cast
<VectorType
>(I
.getType()))
811 markConstant(IV
, &I
, ConstantVector::getAllOnesValue(PT
));
813 markConstant(IV
, &I
, ConstantInt::getAllOnesValue(I
.getType()));
816 if (I
.getOpcode() == Instruction::And
) {
817 if (NonOverdefVal
->getConstant()->isNullValue()) {
818 markConstant(IV
, &I
, NonOverdefVal
->getConstant());
819 return; // X and 0 = 0
822 if (ConstantInt
*CI
=
823 dyn_cast
<ConstantInt
>(NonOverdefVal
->getConstant()))
824 if (CI
->isAllOnesValue()) {
825 markConstant(IV
, &I
, NonOverdefVal
->getConstant());
826 return; // X or -1 = -1
834 // If both operands are PHI nodes, it is possible that this instruction has
835 // a constant value, despite the fact that the PHI node doesn't. Check for
836 // this condition now.
837 if (PHINode
*PN1
= dyn_cast
<PHINode
>(I
.getOperand(0)))
838 if (PHINode
*PN2
= dyn_cast
<PHINode
>(I
.getOperand(1)))
839 if (PN1
->getParent() == PN2
->getParent()) {
840 // Since the two PHI nodes are in the same basic block, they must have
841 // entries for the same predecessors. Walk the predecessor list, and
842 // if all of the incoming values are constants, and the result of
843 // evaluating this expression with all incoming value pairs is the
844 // same, then this expression is a constant even though the PHI node
845 // is not a constant!
847 for (unsigned i
= 0, e
= PN1
->getNumIncomingValues(); i
!= e
; ++i
) {
848 LatticeVal
&In1
= getValueState(PN1
->getIncomingValue(i
));
849 BasicBlock
*InBlock
= PN1
->getIncomingBlock(i
);
851 getValueState(PN2
->getIncomingValueForBlock(InBlock
));
853 if (In1
.isOverdefined() || In2
.isOverdefined()) {
854 Result
.markOverdefined();
855 break; // Cannot fold this operation over the PHI nodes!
856 } else if (In1
.isConstant() && In2
.isConstant()) {
857 Constant
*V
= ConstantExpr::get(I
.getOpcode(), In1
.getConstant(),
859 if (Result
.isUndefined())
860 Result
.markConstant(V
);
861 else if (Result
.isConstant() && Result
.getConstant() != V
) {
862 Result
.markOverdefined();
868 // If we found a constant value here, then we know the instruction is
869 // constant despite the fact that the PHI nodes are overdefined.
870 if (Result
.isConstant()) {
871 markConstant(IV
, &I
, Result
.getConstant());
872 // Remember that this instruction is virtually using the PHI node
874 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN1
, &I
));
875 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN2
, &I
));
877 } else if (Result
.isUndefined()) {
881 // Okay, this really is overdefined now. Since we might have
882 // speculatively thought that this was not overdefined before, and
883 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
884 // make sure to clean out any entries that we put there, for
886 std::multimap
<PHINode
*, Instruction
*>::iterator It
, E
;
887 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN1
);
889 if (It
->second
== &I
) {
890 UsersOfOverdefinedPHIs
.erase(It
++);
894 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN2
);
896 if (It
->second
== &I
) {
897 UsersOfOverdefinedPHIs
.erase(It
++);
903 markOverdefined(IV
, &I
);
904 } else if (V1State
.isConstant() && V2State
.isConstant()) {
905 markConstant(IV
, &I
, ConstantExpr::get(I
.getOpcode(), V1State
.getConstant(),
906 V2State
.getConstant()));
910 // Handle ICmpInst instruction...
911 void SCCPSolver::visitCmpInst(CmpInst
&I
) {
912 LatticeVal
&IV
= ValueState
[&I
];
913 if (IV
.isOverdefined()) return;
915 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
916 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
918 if (V1State
.isOverdefined() || V2State
.isOverdefined()) {
919 // If both operands are PHI nodes, it is possible that this instruction has
920 // a constant value, despite the fact that the PHI node doesn't. Check for
921 // this condition now.
922 if (PHINode
*PN1
= dyn_cast
<PHINode
>(I
.getOperand(0)))
923 if (PHINode
*PN2
= dyn_cast
<PHINode
>(I
.getOperand(1)))
924 if (PN1
->getParent() == PN2
->getParent()) {
925 // Since the two PHI nodes are in the same basic block, they must have
926 // entries for the same predecessors. Walk the predecessor list, and
927 // if all of the incoming values are constants, and the result of
928 // evaluating this expression with all incoming value pairs is the
929 // same, then this expression is a constant even though the PHI node
930 // is not a constant!
932 for (unsigned i
= 0, e
= PN1
->getNumIncomingValues(); i
!= e
; ++i
) {
933 LatticeVal
&In1
= getValueState(PN1
->getIncomingValue(i
));
934 BasicBlock
*InBlock
= PN1
->getIncomingBlock(i
);
936 getValueState(PN2
->getIncomingValueForBlock(InBlock
));
938 if (In1
.isOverdefined() || In2
.isOverdefined()) {
939 Result
.markOverdefined();
940 break; // Cannot fold this operation over the PHI nodes!
941 } else if (In1
.isConstant() && In2
.isConstant()) {
942 Constant
*V
= ConstantExpr::getCompare(I
.getPredicate(),
945 if (Result
.isUndefined())
946 Result
.markConstant(V
);
947 else if (Result
.isConstant() && Result
.getConstant() != V
) {
948 Result
.markOverdefined();
954 // If we found a constant value here, then we know the instruction is
955 // constant despite the fact that the PHI nodes are overdefined.
956 if (Result
.isConstant()) {
957 markConstant(IV
, &I
, Result
.getConstant());
958 // Remember that this instruction is virtually using the PHI node
960 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN1
, &I
));
961 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN2
, &I
));
963 } else if (Result
.isUndefined()) {
967 // Okay, this really is overdefined now. Since we might have
968 // speculatively thought that this was not overdefined before, and
969 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
970 // make sure to clean out any entries that we put there, for
972 std::multimap
<PHINode
*, Instruction
*>::iterator It
, E
;
973 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN1
);
975 if (It
->second
== &I
) {
976 UsersOfOverdefinedPHIs
.erase(It
++);
980 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN2
);
982 if (It
->second
== &I
) {
983 UsersOfOverdefinedPHIs
.erase(It
++);
989 markOverdefined(IV
, &I
);
990 } else if (V1State
.isConstant() && V2State
.isConstant()) {
991 markConstant(IV
, &I
, ConstantExpr::getCompare(I
.getPredicate(),
992 V1State
.getConstant(),
993 V2State
.getConstant()));
997 void SCCPSolver::visitExtractElementInst(ExtractElementInst
&I
) {
998 // FIXME : SCCP does not handle vectors properly.
1003 LatticeVal
&ValState
= getValueState(I
.getOperand(0));
1004 LatticeVal
&IdxState
= getValueState(I
.getOperand(1));
1006 if (ValState
.isOverdefined() || IdxState
.isOverdefined())
1007 markOverdefined(&I
);
1008 else if(ValState
.isConstant() && IdxState
.isConstant())
1009 markConstant(&I
, ConstantExpr::getExtractElement(ValState
.getConstant(),
1010 IdxState
.getConstant()));
1014 void SCCPSolver::visitInsertElementInst(InsertElementInst
&I
) {
1015 // FIXME : SCCP does not handle vectors properly.
1016 markOverdefined(&I
);
1019 LatticeVal
&ValState
= getValueState(I
.getOperand(0));
1020 LatticeVal
&EltState
= getValueState(I
.getOperand(1));
1021 LatticeVal
&IdxState
= getValueState(I
.getOperand(2));
1023 if (ValState
.isOverdefined() || EltState
.isOverdefined() ||
1024 IdxState
.isOverdefined())
1025 markOverdefined(&I
);
1026 else if(ValState
.isConstant() && EltState
.isConstant() &&
1027 IdxState
.isConstant())
1028 markConstant(&I
, ConstantExpr::getInsertElement(ValState
.getConstant(),
1029 EltState
.getConstant(),
1030 IdxState
.getConstant()));
1031 else if (ValState
.isUndefined() && EltState
.isConstant() &&
1032 IdxState
.isConstant())
1033 markConstant(&I
,ConstantExpr::getInsertElement(UndefValue::get(I
.getType()),
1034 EltState
.getConstant(),
1035 IdxState
.getConstant()));
1039 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst
&I
) {
1040 // FIXME : SCCP does not handle vectors properly.
1041 markOverdefined(&I
);
1044 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
1045 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
1046 LatticeVal
&MaskState
= getValueState(I
.getOperand(2));
1048 if (MaskState
.isUndefined() ||
1049 (V1State
.isUndefined() && V2State
.isUndefined()))
1050 return; // Undefined output if mask or both inputs undefined.
1052 if (V1State
.isOverdefined() || V2State
.isOverdefined() ||
1053 MaskState
.isOverdefined()) {
1054 markOverdefined(&I
);
1056 // A mix of constant/undef inputs.
1057 Constant
*V1
= V1State
.isConstant() ?
1058 V1State
.getConstant() : UndefValue::get(I
.getType());
1059 Constant
*V2
= V2State
.isConstant() ?
1060 V2State
.getConstant() : UndefValue::get(I
.getType());
1061 Constant
*Mask
= MaskState
.isConstant() ?
1062 MaskState
.getConstant() : UndefValue::get(I
.getOperand(2)->getType());
1063 markConstant(&I
, ConstantExpr::getShuffleVector(V1
, V2
, Mask
));
1068 // Handle getelementptr instructions... if all operands are constants then we
1069 // can turn this into a getelementptr ConstantExpr.
1071 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst
&I
) {
1072 LatticeVal
&IV
= ValueState
[&I
];
1073 if (IV
.isOverdefined()) return;
1075 SmallVector
<Constant
*, 8> Operands
;
1076 Operands
.reserve(I
.getNumOperands());
1078 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1079 LatticeVal
&State
= getValueState(I
.getOperand(i
));
1080 if (State
.isUndefined())
1081 return; // Operands are not resolved yet...
1082 else if (State
.isOverdefined()) {
1083 markOverdefined(IV
, &I
);
1086 assert(State
.isConstant() && "Unknown state!");
1087 Operands
.push_back(State
.getConstant());
1090 Constant
*Ptr
= Operands
[0];
1091 Operands
.erase(Operands
.begin()); // Erase the pointer from idx list...
1093 markConstant(IV
, &I
, ConstantExpr::getGetElementPtr(Ptr
, &Operands
[0],
1097 void SCCPSolver::visitStoreInst(Instruction
&SI
) {
1098 if (TrackedGlobals
.empty() || !isa
<GlobalVariable
>(SI
.getOperand(1)))
1100 GlobalVariable
*GV
= cast
<GlobalVariable
>(SI
.getOperand(1));
1101 DenseMap
<GlobalVariable
*, LatticeVal
>::iterator I
= TrackedGlobals
.find(GV
);
1102 if (I
== TrackedGlobals
.end() || I
->second
.isOverdefined()) return;
1104 // Get the value we are storing into the global.
1105 LatticeVal
&PtrVal
= getValueState(SI
.getOperand(0));
1107 mergeInValue(I
->second
, GV
, PtrVal
);
1108 if (I
->second
.isOverdefined())
1109 TrackedGlobals
.erase(I
); // No need to keep tracking this!
1113 // Handle load instructions. If the operand is a constant pointer to a constant
1114 // global, we can replace the load with the loaded constant value!
1115 void SCCPSolver::visitLoadInst(LoadInst
&I
) {
1116 LatticeVal
&IV
= ValueState
[&I
];
1117 if (IV
.isOverdefined()) return;
1119 LatticeVal
&PtrVal
= getValueState(I
.getOperand(0));
1120 if (PtrVal
.isUndefined()) return; // The pointer is not resolved yet!
1121 if (PtrVal
.isConstant() && !I
.isVolatile()) {
1122 Value
*Ptr
= PtrVal
.getConstant();
1123 // TODO: Consider a target hook for valid address spaces for this xform.
1124 if (isa
<ConstantPointerNull
>(Ptr
) &&
1125 cast
<PointerType
>(Ptr
->getType())->getAddressSpace() == 0) {
1126 // load null -> null
1127 markConstant(IV
, &I
, Constant::getNullValue(I
.getType()));
1131 // Transform load (constant global) into the value loaded.
1132 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Ptr
)) {
1133 if (GV
->isConstant()) {
1134 if (GV
->hasDefinitiveInitializer()) {
1135 markConstant(IV
, &I
, GV
->getInitializer());
1138 } else if (!TrackedGlobals
.empty()) {
1139 // If we are tracking this global, merge in the known value for it.
1140 DenseMap
<GlobalVariable
*, LatticeVal
>::iterator It
=
1141 TrackedGlobals
.find(GV
);
1142 if (It
!= TrackedGlobals
.end()) {
1143 mergeInValue(IV
, &I
, It
->second
);
1149 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1150 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
1151 if (CE
->getOpcode() == Instruction::GetElementPtr
)
1152 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0)))
1153 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
1155 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
)) {
1156 markConstant(IV
, &I
, V
);
1161 // Otherwise we cannot say for certain what value this load will produce.
1163 markOverdefined(IV
, &I
);
1166 void SCCPSolver::visitCallSite(CallSite CS
) {
1167 Function
*F
= CS
.getCalledFunction();
1168 Instruction
*I
= CS
.getInstruction();
1170 // The common case is that we aren't tracking the callee, either because we
1171 // are not doing interprocedural analysis or the callee is indirect, or is
1172 // external. Handle these cases first.
1173 if (F
== 0 || !F
->hasLocalLinkage()) {
1175 // Void return and not tracking callee, just bail.
1176 if (I
->getType() == Type::VoidTy
) return;
1178 // Otherwise, if we have a single return value case, and if the function is
1179 // a declaration, maybe we can constant fold it.
1180 if (!isa
<StructType
>(I
->getType()) && F
&& F
->isDeclaration() &&
1181 canConstantFoldCallTo(F
)) {
1183 SmallVector
<Constant
*, 8> Operands
;
1184 for (CallSite::arg_iterator AI
= CS
.arg_begin(), E
= CS
.arg_end();
1186 LatticeVal
&State
= getValueState(*AI
);
1187 if (State
.isUndefined())
1188 return; // Operands are not resolved yet.
1189 else if (State
.isOverdefined()) {
1193 assert(State
.isConstant() && "Unknown state!");
1194 Operands
.push_back(State
.getConstant());
1197 // If we can constant fold this, mark the result of the call as a
1199 if (Constant
*C
= ConstantFoldCall(F
, &Operands
[0], Operands
.size())) {
1205 // Otherwise, we don't know anything about this call, mark it overdefined.
1210 // If this is a single/zero retval case, see if we're tracking the function.
1211 DenseMap
<Function
*, LatticeVal
>::iterator TFRVI
= TrackedRetVals
.find(F
);
1212 if (TFRVI
!= TrackedRetVals
.end()) {
1213 // If so, propagate the return value of the callee into this call result.
1214 mergeInValue(I
, TFRVI
->second
);
1215 } else if (isa
<StructType
>(I
->getType())) {
1216 // Check to see if we're tracking this callee, if not, handle it in the
1217 // common path above.
1218 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
>::iterator
1219 TMRVI
= TrackedMultipleRetVals
.find(std::make_pair(F
, 0));
1220 if (TMRVI
== TrackedMultipleRetVals
.end())
1221 goto CallOverdefined
;
1223 // If we are tracking this callee, propagate the return values of the call
1224 // into this call site. We do this by walking all the uses. Single-index
1225 // ExtractValueInst uses can be tracked; anything more complicated is
1226 // currently handled conservatively.
1227 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1229 if (ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(*UI
)) {
1230 if (EVI
->getNumIndices() == 1) {
1232 TrackedMultipleRetVals
[std::make_pair(F
, *EVI
->idx_begin())]);
1236 // The aggregate value is used in a way not handled here. Assume nothing.
1237 markOverdefined(*UI
);
1240 // Otherwise we're not tracking this callee, so handle it in the
1241 // common path above.
1242 goto CallOverdefined
;
1245 // Finally, if this is the first call to the function hit, mark its entry
1246 // block executable.
1247 if (!BBExecutable
.count(F
->begin()))
1248 MarkBlockExecutable(F
->begin());
1250 // Propagate information from this call site into the callee.
1251 CallSite::arg_iterator CAI
= CS
.arg_begin();
1252 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1253 AI
!= E
; ++AI
, ++CAI
) {
1254 LatticeVal
&IV
= ValueState
[AI
];
1255 if (!IV
.isOverdefined())
1256 mergeInValue(IV
, AI
, getValueState(*CAI
));
1261 void SCCPSolver::Solve() {
1262 // Process the work lists until they are empty!
1263 while (!BBWorkList
.empty() || !InstWorkList
.empty() ||
1264 !OverdefinedInstWorkList
.empty()) {
1265 // Process the instruction work list...
1266 while (!OverdefinedInstWorkList
.empty()) {
1267 Value
*I
= OverdefinedInstWorkList
.back();
1268 OverdefinedInstWorkList
.pop_back();
1270 DOUT
<< "\nPopped off OI-WL: " << *I
;
1272 // "I" got into the work list because it either made the transition from
1273 // bottom to constant
1275 // Anything on this worklist that is overdefined need not be visited
1276 // since all of its users will have already been marked as overdefined
1277 // Update all of the users of this instruction's value...
1279 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1281 OperandChangedState(*UI
);
1283 // Process the instruction work list...
1284 while (!InstWorkList
.empty()) {
1285 Value
*I
= InstWorkList
.back();
1286 InstWorkList
.pop_back();
1288 DOUT
<< "\nPopped off I-WL: " << *I
;
1290 // "I" got into the work list because it either made the transition from
1291 // bottom to constant
1293 // Anything on this worklist that is overdefined need not be visited
1294 // since all of its users will have already been marked as overdefined.
1295 // Update all of the users of this instruction's value...
1297 if (!getValueState(I
).isOverdefined())
1298 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1300 OperandChangedState(*UI
);
1303 // Process the basic block work list...
1304 while (!BBWorkList
.empty()) {
1305 BasicBlock
*BB
= BBWorkList
.back();
1306 BBWorkList
.pop_back();
1308 DOUT
<< "\nPopped off BBWL: " << *BB
;
1310 // Notify all instructions in this basic block that they are newly
1317 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1318 /// that branches on undef values cannot reach any of their successors.
1319 /// However, this is not a safe assumption. After we solve dataflow, this
1320 /// method should be use to handle this. If this returns true, the solver
1321 /// should be rerun.
1323 /// This method handles this by finding an unresolved branch and marking it one
1324 /// of the edges from the block as being feasible, even though the condition
1325 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1326 /// CFG and only slightly pessimizes the analysis results (by marking one,
1327 /// potentially infeasible, edge feasible). This cannot usefully modify the
1328 /// constraints on the condition of the branch, as that would impact other users
1331 /// This scan also checks for values that use undefs, whose results are actually
1332 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1333 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1334 /// even if X isn't defined.
1335 bool SCCPSolver::ResolvedUndefsIn(Function
&F
) {
1336 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
1337 if (!BBExecutable
.count(BB
))
1340 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
1341 // Look for instructions which produce undef values.
1342 if (I
->getType() == Type::VoidTy
) continue;
1344 LatticeVal
&LV
= getValueState(I
);
1345 if (!LV
.isUndefined()) continue;
1347 // Get the lattice values of the first two operands for use below.
1348 LatticeVal
&Op0LV
= getValueState(I
->getOperand(0));
1350 if (I
->getNumOperands() == 2) {
1351 // If this is a two-operand instruction, and if both operands are
1352 // undefs, the result stays undef.
1353 Op1LV
= getValueState(I
->getOperand(1));
1354 if (Op0LV
.isUndefined() && Op1LV
.isUndefined())
1358 // If this is an instructions whose result is defined even if the input is
1359 // not fully defined, propagate the information.
1360 const Type
*ITy
= I
->getType();
1361 switch (I
->getOpcode()) {
1362 default: break; // Leave the instruction as an undef.
1363 case Instruction::ZExt
:
1364 // After a zero extend, we know the top part is zero. SExt doesn't have
1365 // to be handled here, because we don't know whether the top part is 1's
1367 assert(Op0LV
.isUndefined());
1368 markForcedConstant(LV
, I
, Constant::getNullValue(ITy
));
1370 case Instruction::Mul
:
1371 case Instruction::And
:
1372 // undef * X -> 0. X could be zero.
1373 // undef & X -> 0. X could be zero.
1374 markForcedConstant(LV
, I
, Constant::getNullValue(ITy
));
1377 case Instruction::Or
:
1378 // undef | X -> -1. X could be -1.
1379 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(ITy
))
1380 markForcedConstant(LV
, I
, ConstantVector::getAllOnesValue(PTy
));
1382 markForcedConstant(LV
, I
, ConstantInt::getAllOnesValue(ITy
));
1385 case Instruction::SDiv
:
1386 case Instruction::UDiv
:
1387 case Instruction::SRem
:
1388 case Instruction::URem
:
1389 // X / undef -> undef. No change.
1390 // X % undef -> undef. No change.
1391 if (Op1LV
.isUndefined()) break;
1393 // undef / X -> 0. X could be maxint.
1394 // undef % X -> 0. X could be 1.
1395 markForcedConstant(LV
, I
, Constant::getNullValue(ITy
));
1398 case Instruction::AShr
:
1399 // undef >>s X -> undef. No change.
1400 if (Op0LV
.isUndefined()) break;
1402 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1403 if (Op0LV
.isConstant())
1404 markForcedConstant(LV
, I
, Op0LV
.getConstant());
1406 markOverdefined(LV
, I
);
1408 case Instruction::LShr
:
1409 case Instruction::Shl
:
1410 // undef >> X -> undef. No change.
1411 // undef << X -> undef. No change.
1412 if (Op0LV
.isUndefined()) break;
1414 // X >> undef -> 0. X could be 0.
1415 // X << undef -> 0. X could be 0.
1416 markForcedConstant(LV
, I
, Constant::getNullValue(ITy
));
1418 case Instruction::Select
:
1419 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1420 if (Op0LV
.isUndefined()) {
1421 if (!Op1LV
.isConstant()) // Pick the constant one if there is any.
1422 Op1LV
= getValueState(I
->getOperand(2));
1423 } else if (Op1LV
.isUndefined()) {
1424 // c ? undef : undef -> undef. No change.
1425 Op1LV
= getValueState(I
->getOperand(2));
1426 if (Op1LV
.isUndefined())
1428 // Otherwise, c ? undef : x -> x.
1430 // Leave Op1LV as Operand(1)'s LatticeValue.
1433 if (Op1LV
.isConstant())
1434 markForcedConstant(LV
, I
, Op1LV
.getConstant());
1436 markOverdefined(LV
, I
);
1438 case Instruction::Call
:
1439 // If a call has an undef result, it is because it is constant foldable
1440 // but one of the inputs was undef. Just force the result to
1442 markOverdefined(LV
, I
);
1447 TerminatorInst
*TI
= BB
->getTerminator();
1448 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1449 if (!BI
->isConditional()) continue;
1450 if (!getValueState(BI
->getCondition()).isUndefined())
1452 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
1453 if (SI
->getNumSuccessors()<2) // no cases
1455 if (!getValueState(SI
->getCondition()).isUndefined())
1461 // If the edge to the second successor isn't thought to be feasible yet,
1462 // mark it so now. We pick the second one so that this goes to some
1463 // enumerated value in a switch instead of going to the default destination.
1464 if (KnownFeasibleEdges
.count(Edge(BB
, TI
->getSuccessor(1))))
1467 // Otherwise, it isn't already thought to be feasible. Mark it as such now
1468 // and return. This will make other blocks reachable, which will allow new
1469 // values to be discovered and existing ones to be moved in the lattice.
1470 markEdgeExecutable(BB
, TI
->getSuccessor(1));
1472 // This must be a conditional branch of switch on undef. At this point,
1473 // force the old terminator to branch to the first successor. This is
1474 // required because we are now influencing the dataflow of the function with
1475 // the assumption that this edge is taken. If we leave the branch condition
1476 // as undef, then further analysis could think the undef went another way
1477 // leading to an inconsistent set of conclusions.
1478 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1479 BI
->setCondition(ConstantInt::getFalse());
1481 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
1482 SI
->setCondition(SI
->getCaseValue(1));
1493 //===--------------------------------------------------------------------===//
1495 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1496 /// Sparse Conditional Constant Propagator.
1498 struct VISIBILITY_HIDDEN SCCP
: public FunctionPass
{
1499 static char ID
; // Pass identification, replacement for typeid
1500 SCCP() : FunctionPass(&ID
) {}
1502 // runOnFunction - Run the Sparse Conditional Constant Propagation
1503 // algorithm, and return true if the function was modified.
1505 bool runOnFunction(Function
&F
);
1507 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
1508 AU
.setPreservesCFG();
1511 } // end anonymous namespace
1514 static RegisterPass
<SCCP
>
1515 X("sccp", "Sparse Conditional Constant Propagation");
1517 // createSCCPPass - This is the public interface to this file...
1518 FunctionPass
*llvm::createSCCPPass() {
1523 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1524 // and return true if the function was modified.
1526 bool SCCP::runOnFunction(Function
&F
) {
1527 DOUT
<< "SCCP on function '" << F
.getNameStart() << "'\n";
1530 // Mark the first block of the function as being executable.
1531 Solver
.MarkBlockExecutable(F
.begin());
1533 // Mark all arguments to the function as being overdefined.
1534 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end(); AI
!= E
;++AI
)
1535 Solver
.markOverdefined(AI
);
1537 // Solve for constants.
1538 bool ResolvedUndefs
= true;
1539 while (ResolvedUndefs
) {
1541 DOUT
<< "RESOLVING UNDEFs\n";
1542 ResolvedUndefs
= Solver
.ResolvedUndefsIn(F
);
1545 bool MadeChanges
= false;
1547 // If we decided that there are basic blocks that are dead in this function,
1548 // delete their contents now. Note that we cannot actually delete the blocks,
1549 // as we cannot modify the CFG of the function.
1551 SmallVector
<Instruction
*, 512> Insts
;
1552 std::map
<Value
*, LatticeVal
> &Values
= Solver
.getValueMapping();
1554 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
1555 if (!Solver
.isBlockExecutable(BB
)) {
1556 DOUT
<< " BasicBlock Dead:" << *BB
;
1559 // Delete the instructions backwards, as it has a reduced likelihood of
1560 // having to update as many def-use and use-def chains.
1561 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->getTerminator();
1564 while (!Insts
.empty()) {
1565 Instruction
*I
= Insts
.back();
1567 if (!I
->use_empty())
1568 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
1569 BB
->getInstList().erase(I
);
1574 // Iterate over all of the instructions in a function, replacing them with
1575 // constants if we have found them to be of constant values.
1577 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
1578 Instruction
*Inst
= BI
++;
1579 if (Inst
->getType() == Type::VoidTy
||
1580 isa
<TerminatorInst
>(Inst
))
1583 LatticeVal
&IV
= Values
[Inst
];
1584 if (!IV
.isConstant() && !IV
.isUndefined())
1587 Constant
*Const
= IV
.isConstant()
1588 ? IV
.getConstant() : UndefValue::get(Inst
->getType());
1589 DOUT
<< " Constant: " << *Const
<< " = " << *Inst
;
1591 // Replaces all of the uses of a variable with uses of the constant.
1592 Inst
->replaceAllUsesWith(Const
);
1594 // Delete the instruction.
1595 Inst
->eraseFromParent();
1597 // Hey, we just changed something!
1607 //===--------------------------------------------------------------------===//
1609 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1610 /// Constant Propagation.
1612 struct VISIBILITY_HIDDEN IPSCCP
: public ModulePass
{
1614 IPSCCP() : ModulePass(&ID
) {}
1615 bool runOnModule(Module
&M
);
1617 } // end anonymous namespace
1619 char IPSCCP::ID
= 0;
1620 static RegisterPass
<IPSCCP
>
1621 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1623 // createIPSCCPPass - This is the public interface to this file...
1624 ModulePass
*llvm::createIPSCCPPass() {
1625 return new IPSCCP();
1629 static bool AddressIsTaken(GlobalValue
*GV
) {
1630 // Delete any dead constantexpr klingons.
1631 GV
->removeDeadConstantUsers();
1633 for (Value::use_iterator UI
= GV
->use_begin(), E
= GV
->use_end();
1635 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
1636 if (SI
->getOperand(0) == GV
|| SI
->isVolatile())
1637 return true; // Storing addr of GV.
1638 } else if (isa
<InvokeInst
>(*UI
) || isa
<CallInst
>(*UI
)) {
1639 // Make sure we are calling the function, not passing the address.
1640 CallSite CS
= CallSite::get(cast
<Instruction
>(*UI
));
1641 if (CS
.hasArgument(GV
))
1643 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
1644 if (LI
->isVolatile())
1652 bool IPSCCP::runOnModule(Module
&M
) {
1655 // Loop over all functions, marking arguments to those with their addresses
1656 // taken or that are external as overdefined.
1658 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
1659 if (!F
->hasLocalLinkage() || AddressIsTaken(F
)) {
1660 if (!F
->isDeclaration())
1661 Solver
.MarkBlockExecutable(F
->begin());
1662 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1664 Solver
.markOverdefined(AI
);
1666 Solver
.AddTrackedFunction(F
);
1669 // Loop over global variables. We inform the solver about any internal global
1670 // variables that do not have their 'addresses taken'. If they don't have
1671 // their addresses taken, we can propagate constants through them.
1672 for (Module::global_iterator G
= M
.global_begin(), E
= M
.global_end();
1674 if (!G
->isConstant() && G
->hasLocalLinkage() && !AddressIsTaken(G
))
1675 Solver
.TrackValueOfGlobalVariable(G
);
1677 // Solve for constants.
1678 bool ResolvedUndefs
= true;
1679 while (ResolvedUndefs
) {
1682 DOUT
<< "RESOLVING UNDEFS\n";
1683 ResolvedUndefs
= false;
1684 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
1685 ResolvedUndefs
|= Solver
.ResolvedUndefsIn(*F
);
1688 bool MadeChanges
= false;
1690 // Iterate over all of the instructions in the module, replacing them with
1691 // constants if we have found them to be of constant values.
1693 SmallVector
<Instruction
*, 512> Insts
;
1694 SmallVector
<BasicBlock
*, 512> BlocksToErase
;
1695 std::map
<Value
*, LatticeVal
> &Values
= Solver
.getValueMapping();
1697 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
) {
1698 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1700 if (!AI
->use_empty()) {
1701 LatticeVal
&IV
= Values
[AI
];
1702 if (IV
.isConstant() || IV
.isUndefined()) {
1703 Constant
*CST
= IV
.isConstant() ?
1704 IV
.getConstant() : UndefValue::get(AI
->getType());
1705 DOUT
<< "*** Arg " << *AI
<< " = " << *CST
<<"\n";
1707 // Replaces all of the uses of a variable with uses of the
1709 AI
->replaceAllUsesWith(CST
);
1714 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
1715 if (!Solver
.isBlockExecutable(BB
)) {
1716 DOUT
<< " BasicBlock Dead:" << *BB
;
1719 // Delete the instructions backwards, as it has a reduced likelihood of
1720 // having to update as many def-use and use-def chains.
1721 TerminatorInst
*TI
= BB
->getTerminator();
1722 for (BasicBlock::iterator I
= BB
->begin(), E
= TI
; I
!= E
; ++I
)
1725 while (!Insts
.empty()) {
1726 Instruction
*I
= Insts
.back();
1728 if (!I
->use_empty())
1729 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
1730 BB
->getInstList().erase(I
);
1735 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
1736 BasicBlock
*Succ
= TI
->getSuccessor(i
);
1737 if (!Succ
->empty() && isa
<PHINode
>(Succ
->begin()))
1738 TI
->getSuccessor(i
)->removePredecessor(BB
);
1740 if (!TI
->use_empty())
1741 TI
->replaceAllUsesWith(UndefValue::get(TI
->getType()));
1742 BB
->getInstList().erase(TI
);
1744 if (&*BB
!= &F
->front())
1745 BlocksToErase
.push_back(BB
);
1747 new UnreachableInst(BB
);
1750 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
1751 Instruction
*Inst
= BI
++;
1752 if (Inst
->getType() == Type::VoidTy
)
1755 LatticeVal
&IV
= Values
[Inst
];
1756 if (!IV
.isConstant() && !IV
.isUndefined())
1759 Constant
*Const
= IV
.isConstant()
1760 ? IV
.getConstant() : UndefValue::get(Inst
->getType());
1761 DOUT
<< " Constant: " << *Const
<< " = " << *Inst
;
1763 // Replaces all of the uses of a variable with uses of the
1765 Inst
->replaceAllUsesWith(Const
);
1767 // Delete the instruction.
1768 if (!isa
<CallInst
>(Inst
) && !isa
<TerminatorInst
>(Inst
))
1769 Inst
->eraseFromParent();
1771 // Hey, we just changed something!
1777 // Now that all instructions in the function are constant folded, erase dead
1778 // blocks, because we can now use ConstantFoldTerminator to get rid of
1780 for (unsigned i
= 0, e
= BlocksToErase
.size(); i
!= e
; ++i
) {
1781 // If there are any PHI nodes in this successor, drop entries for BB now.
1782 BasicBlock
*DeadBB
= BlocksToErase
[i
];
1783 while (!DeadBB
->use_empty()) {
1784 Instruction
*I
= cast
<Instruction
>(DeadBB
->use_back());
1785 bool Folded
= ConstantFoldTerminator(I
->getParent());
1787 // The constant folder may not have been able to fold the terminator
1788 // if this is a branch or switch on undef. Fold it manually as a
1789 // branch to the first successor.
1791 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
1792 assert(BI
->isConditional() && isa
<UndefValue
>(BI
->getCondition()) &&
1793 "Branch should be foldable!");
1794 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(I
)) {
1795 assert(isa
<UndefValue
>(SI
->getCondition()) && "Switch should fold");
1797 assert(0 && "Didn't fold away reference to block!");
1801 // Make this an uncond branch to the first successor.
1802 TerminatorInst
*TI
= I
->getParent()->getTerminator();
1803 BranchInst::Create(TI
->getSuccessor(0), TI
);
1805 // Remove entries in successor phi nodes to remove edges.
1806 for (unsigned i
= 1, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
1807 TI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
1809 // Remove the old terminator.
1810 TI
->eraseFromParent();
1814 // Finally, delete the basic block.
1815 F
->getBasicBlockList().erase(DeadBB
);
1817 BlocksToErase
.clear();
1820 // If we inferred constant or undef return values for a function, we replaced
1821 // all call uses with the inferred value. This means we don't need to bother
1822 // actually returning anything from the function. Replace all return
1823 // instructions with return undef.
1824 // TODO: Process multiple value ret instructions also.
1825 const DenseMap
<Function
*, LatticeVal
> &RV
= Solver
.getTrackedRetVals();
1826 for (DenseMap
<Function
*, LatticeVal
>::const_iterator I
= RV
.begin(),
1827 E
= RV
.end(); I
!= E
; ++I
)
1828 if (!I
->second
.isOverdefined() &&
1829 I
->first
->getReturnType() != Type::VoidTy
) {
1830 Function
*F
= I
->first
;
1831 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
1832 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator()))
1833 if (!isa
<UndefValue
>(RI
->getOperand(0)))
1834 RI
->setOperand(0, UndefValue::get(F
->getReturnType()));
1837 // If we infered constant or undef values for globals variables, we can delete
1838 // the global and any stores that remain to it.
1839 const DenseMap
<GlobalVariable
*, LatticeVal
> &TG
= Solver
.getTrackedGlobals();
1840 for (DenseMap
<GlobalVariable
*, LatticeVal
>::const_iterator I
= TG
.begin(),
1841 E
= TG
.end(); I
!= E
; ++I
) {
1842 GlobalVariable
*GV
= I
->first
;
1843 assert(!I
->second
.isOverdefined() &&
1844 "Overdefined values should have been taken out of the map!");
1845 DOUT
<< "Found that GV '" << GV
->getNameStart() << "' is constant!\n";
1846 while (!GV
->use_empty()) {
1847 StoreInst
*SI
= cast
<StoreInst
>(GV
->use_back());
1848 SI
->eraseFromParent();
1850 M
.getGlobalList().erase(GV
);