1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Analysis/Dominators.h"
32 #include "llvm/Target/TargetData.h"
33 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/GetElementPtrTypeIterator.h"
37 #include "llvm/Support/IRBuilder.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/StringExtras.h"
45 STATISTIC(NumReplaced
, "Number of allocas broken up");
46 STATISTIC(NumPromoted
, "Number of allocas promoted");
47 STATISTIC(NumConverted
, "Number of aggregates converted to scalar");
48 STATISTIC(NumGlobals
, "Number of allocas copied from constant global");
51 struct VISIBILITY_HIDDEN SROA
: public FunctionPass
{
52 static char ID
; // Pass identification, replacement for typeid
53 explicit SROA(signed T
= -1) : FunctionPass(&ID
) {
60 bool runOnFunction(Function
&F
);
62 bool performScalarRepl(Function
&F
);
63 bool performPromotion(Function
&F
);
65 // getAnalysisUsage - This pass does not require any passes, but we know it
66 // will not alter the CFG, so say so.
67 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
68 AU
.addRequired
<DominatorTree
>();
69 AU
.addRequired
<DominanceFrontier
>();
70 AU
.addRequired
<TargetData
>();
77 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78 /// information about the uses. All these fields are initialized to false
79 /// and set to true when something is learned.
81 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
84 /// needsCleanup - This is set to true if there is some use of the alloca
85 /// that requires cleanup.
86 bool needsCleanup
: 1;
88 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
91 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
95 : isUnsafe(false), needsCleanup(false),
96 isMemCpySrc(false), isMemCpyDst(false) {}
101 void MarkUnsafe(AllocaInfo
&I
) { I
.isUnsafe
= true; }
103 int isSafeAllocaToScalarRepl(AllocationInst
*AI
);
105 void isSafeUseOfAllocation(Instruction
*User
, AllocationInst
*AI
,
107 void isSafeElementUse(Value
*Ptr
, bool isFirstElt
, AllocationInst
*AI
,
109 void isSafeMemIntrinsicOnAllocation(MemIntrinsic
*MI
, AllocationInst
*AI
,
110 unsigned OpNo
, AllocaInfo
&Info
);
111 void isSafeUseOfBitCastedAllocation(BitCastInst
*User
, AllocationInst
*AI
,
114 void DoScalarReplacement(AllocationInst
*AI
,
115 std::vector
<AllocationInst
*> &WorkList
);
116 void CleanupGEP(GetElementPtrInst
*GEP
);
117 void CleanupAllocaUsers(AllocationInst
*AI
);
118 AllocaInst
*AddNewAlloca(Function
&F
, const Type
*Ty
, AllocationInst
*Base
);
120 void RewriteBitCastUserOfAlloca(Instruction
*BCInst
, AllocationInst
*AI
,
121 SmallVector
<AllocaInst
*, 32> &NewElts
);
123 void RewriteMemIntrinUserOfAlloca(MemIntrinsic
*MI
, Instruction
*BCInst
,
125 SmallVector
<AllocaInst
*, 32> &NewElts
);
126 void RewriteStoreUserOfWholeAlloca(StoreInst
*SI
, AllocationInst
*AI
,
127 SmallVector
<AllocaInst
*, 32> &NewElts
);
128 void RewriteLoadUserOfWholeAlloca(LoadInst
*LI
, AllocationInst
*AI
,
129 SmallVector
<AllocaInst
*, 32> &NewElts
);
131 bool CanConvertToScalar(Value
*V
, bool &IsNotTrivial
, const Type
*&VecTy
,
132 bool &SawVec
, uint64_t Offset
, unsigned AllocaSize
);
133 void ConvertUsesToScalar(Value
*Ptr
, AllocaInst
*NewAI
, uint64_t Offset
);
134 Value
*ConvertScalar_ExtractValue(Value
*NV
, const Type
*ToType
,
135 uint64_t Offset
, IRBuilder
<> &Builder
);
136 Value
*ConvertScalar_InsertValue(Value
*StoredVal
, Value
*ExistingVal
,
137 uint64_t Offset
, IRBuilder
<> &Builder
);
138 static Instruction
*isOnlyCopiedFromConstantGlobal(AllocationInst
*AI
);
143 static RegisterPass
<SROA
> X("scalarrepl", "Scalar Replacement of Aggregates");
145 // Public interface to the ScalarReplAggregates pass
146 FunctionPass
*llvm::createScalarReplAggregatesPass(signed int Threshold
) {
147 return new SROA(Threshold
);
151 bool SROA::runOnFunction(Function
&F
) {
152 TD
= &getAnalysis
<TargetData
>();
154 bool Changed
= performPromotion(F
);
156 bool LocalChange
= performScalarRepl(F
);
157 if (!LocalChange
) break; // No need to repromote if no scalarrepl
159 LocalChange
= performPromotion(F
);
160 if (!LocalChange
) break; // No need to re-scalarrepl if no promotion
167 bool SROA::performPromotion(Function
&F
) {
168 std::vector
<AllocaInst
*> Allocas
;
169 DominatorTree
&DT
= getAnalysis
<DominatorTree
>();
170 DominanceFrontier
&DF
= getAnalysis
<DominanceFrontier
>();
172 BasicBlock
&BB
= F
.getEntryBlock(); // Get the entry node for the function
174 bool Changed
= false;
179 // Find allocas that are safe to promote, by looking at all instructions in
181 for (BasicBlock::iterator I
= BB
.begin(), E
= --BB
.end(); I
!= E
; ++I
)
182 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) // Is it an alloca?
183 if (isAllocaPromotable(AI
))
184 Allocas
.push_back(AI
);
186 if (Allocas
.empty()) break;
188 PromoteMemToReg(Allocas
, DT
, DF
);
189 NumPromoted
+= Allocas
.size();
196 /// getNumSAElements - Return the number of elements in the specific struct or
198 static uint64_t getNumSAElements(const Type
*T
) {
199 if (const StructType
*ST
= dyn_cast
<StructType
>(T
))
200 return ST
->getNumElements();
201 return cast
<ArrayType
>(T
)->getNumElements();
204 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
205 // which runs on all of the malloc/alloca instructions in the function, removing
206 // them if they are only used by getelementptr instructions.
208 bool SROA::performScalarRepl(Function
&F
) {
209 std::vector
<AllocationInst
*> WorkList
;
211 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
212 BasicBlock
&BB
= F
.getEntryBlock();
213 for (BasicBlock::iterator I
= BB
.begin(), E
= BB
.end(); I
!= E
; ++I
)
214 if (AllocationInst
*A
= dyn_cast
<AllocationInst
>(I
))
215 WorkList
.push_back(A
);
217 // Process the worklist
218 bool Changed
= false;
219 while (!WorkList
.empty()) {
220 AllocationInst
*AI
= WorkList
.back();
223 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
224 // with unused elements.
225 if (AI
->use_empty()) {
226 AI
->eraseFromParent();
230 // If this alloca is impossible for us to promote, reject it early.
231 if (AI
->isArrayAllocation() || !AI
->getAllocatedType()->isSized())
234 // Check to see if this allocation is only modified by a memcpy/memmove from
235 // a constant global. If this is the case, we can change all users to use
236 // the constant global instead. This is commonly produced by the CFE by
237 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
238 // is only subsequently read.
239 if (Instruction
*TheCopy
= isOnlyCopiedFromConstantGlobal(AI
)) {
240 DOUT
<< "Found alloca equal to global: " << *AI
;
241 DOUT
<< " memcpy = " << *TheCopy
;
242 Constant
*TheSrc
= cast
<Constant
>(TheCopy
->getOperand(2));
243 AI
->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc
, AI
->getType()));
244 TheCopy
->eraseFromParent(); // Don't mutate the global.
245 AI
->eraseFromParent();
251 // Check to see if we can perform the core SROA transformation. We cannot
252 // transform the allocation instruction if it is an array allocation
253 // (allocations OF arrays are ok though), and an allocation of a scalar
254 // value cannot be decomposed at all.
255 uint64_t AllocaSize
= TD
->getTypePaddedSize(AI
->getAllocatedType());
257 // Do not promote any struct whose size is too big.
258 if (AllocaSize
> SRThreshold
) continue;
260 if ((isa
<StructType
>(AI
->getAllocatedType()) ||
261 isa
<ArrayType
>(AI
->getAllocatedType())) &&
262 // Do not promote any struct into more than "32" separate vars.
263 getNumSAElements(AI
->getAllocatedType()) <= SRThreshold
/4) {
264 // Check that all of the users of the allocation are capable of being
266 switch (isSafeAllocaToScalarRepl(AI
)) {
267 default: assert(0 && "Unexpected value!");
268 case 0: // Not safe to scalar replace.
270 case 1: // Safe, but requires cleanup/canonicalizations first
271 CleanupAllocaUsers(AI
);
273 case 3: // Safe to scalar replace.
274 DoScalarReplacement(AI
, WorkList
);
280 // If we can turn this aggregate value (potentially with casts) into a
281 // simple scalar value that can be mem2reg'd into a register value.
282 // IsNotTrivial tracks whether this is something that mem2reg could have
283 // promoted itself. If so, we don't want to transform it needlessly. Note
284 // that we can't just check based on the type: the alloca may be of an i32
285 // but that has pointer arithmetic to set byte 3 of it or something.
286 bool IsNotTrivial
= false;
287 const Type
*VectorTy
= 0;
288 bool HadAVector
= false;
289 if (CanConvertToScalar(AI
, IsNotTrivial
, VectorTy
, HadAVector
,
290 0, unsigned(AllocaSize
)) && IsNotTrivial
) {
292 // If we were able to find a vector type that can handle this with
293 // insert/extract elements, and if there was at least one use that had
294 // a vector type, promote this to a vector. We don't want to promote
295 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
296 // we just get a lot of insert/extracts. If at least one vector is
297 // involved, then we probably really do have a union of vector/array.
298 if (VectorTy
&& isa
<VectorType
>(VectorTy
) && HadAVector
) {
299 DOUT
<< "CONVERT TO VECTOR: " << *AI
<< " TYPE = " << *VectorTy
<<"\n";
301 // Create and insert the vector alloca.
302 NewAI
= new AllocaInst(VectorTy
, 0, "", AI
->getParent()->begin());
303 ConvertUsesToScalar(AI
, NewAI
, 0);
305 DOUT
<< "CONVERT TO SCALAR INTEGER: " << *AI
<< "\n";
307 // Create and insert the integer alloca.
308 const Type
*NewTy
= IntegerType::get(AllocaSize
*8);
309 NewAI
= new AllocaInst(NewTy
, 0, "", AI
->getParent()->begin());
310 ConvertUsesToScalar(AI
, NewAI
, 0);
313 AI
->eraseFromParent();
319 // Otherwise, couldn't process this alloca.
325 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
326 /// predicate, do SROA now.
327 void SROA::DoScalarReplacement(AllocationInst
*AI
,
328 std::vector
<AllocationInst
*> &WorkList
) {
329 DOUT
<< "Found inst to SROA: " << *AI
;
330 SmallVector
<AllocaInst
*, 32> ElementAllocas
;
331 if (const StructType
*ST
= dyn_cast
<StructType
>(AI
->getAllocatedType())) {
332 ElementAllocas
.reserve(ST
->getNumContainedTypes());
333 for (unsigned i
= 0, e
= ST
->getNumContainedTypes(); i
!= e
; ++i
) {
334 AllocaInst
*NA
= new AllocaInst(ST
->getContainedType(i
), 0,
336 AI
->getName() + "." + utostr(i
), AI
);
337 ElementAllocas
.push_back(NA
);
338 WorkList
.push_back(NA
); // Add to worklist for recursive processing
341 const ArrayType
*AT
= cast
<ArrayType
>(AI
->getAllocatedType());
342 ElementAllocas
.reserve(AT
->getNumElements());
343 const Type
*ElTy
= AT
->getElementType();
344 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
345 AllocaInst
*NA
= new AllocaInst(ElTy
, 0, AI
->getAlignment(),
346 AI
->getName() + "." + utostr(i
), AI
);
347 ElementAllocas
.push_back(NA
);
348 WorkList
.push_back(NA
); // Add to worklist for recursive processing
352 // Now that we have created the alloca instructions that we want to use,
353 // expand the getelementptr instructions to use them.
355 while (!AI
->use_empty()) {
356 Instruction
*User
= cast
<Instruction
>(AI
->use_back());
357 if (BitCastInst
*BCInst
= dyn_cast
<BitCastInst
>(User
)) {
358 RewriteBitCastUserOfAlloca(BCInst
, AI
, ElementAllocas
);
359 BCInst
->eraseFromParent();
364 // %res = load { i32, i32 }* %alloc
366 // %load.0 = load i32* %alloc.0
367 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
368 // %load.1 = load i32* %alloc.1
369 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
370 // (Also works for arrays instead of structs)
371 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
372 Value
*Insert
= UndefValue::get(LI
->getType());
373 for (unsigned i
= 0, e
= ElementAllocas
.size(); i
!= e
; ++i
) {
374 Value
*Load
= new LoadInst(ElementAllocas
[i
], "load", LI
);
375 Insert
= InsertValueInst::Create(Insert
, Load
, i
, "insert", LI
);
377 LI
->replaceAllUsesWith(Insert
);
378 LI
->eraseFromParent();
383 // store { i32, i32 } %val, { i32, i32 }* %alloc
385 // %val.0 = extractvalue { i32, i32 } %val, 0
386 // store i32 %val.0, i32* %alloc.0
387 // %val.1 = extractvalue { i32, i32 } %val, 1
388 // store i32 %val.1, i32* %alloc.1
389 // (Also works for arrays instead of structs)
390 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
391 Value
*Val
= SI
->getOperand(0);
392 for (unsigned i
= 0, e
= ElementAllocas
.size(); i
!= e
; ++i
) {
393 Value
*Extract
= ExtractValueInst::Create(Val
, i
, Val
->getName(), SI
);
394 new StoreInst(Extract
, ElementAllocas
[i
], SI
);
396 SI
->eraseFromParent();
400 GetElementPtrInst
*GEPI
= cast
<GetElementPtrInst
>(User
);
401 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
403 (unsigned)cast
<ConstantInt
>(GEPI
->getOperand(2))->getZExtValue();
405 assert(Idx
< ElementAllocas
.size() && "Index out of range?");
406 AllocaInst
*AllocaToUse
= ElementAllocas
[Idx
];
409 if (GEPI
->getNumOperands() == 3) {
410 // Do not insert a new getelementptr instruction with zero indices, only
411 // to have it optimized out later.
412 RepValue
= AllocaToUse
;
414 // We are indexing deeply into the structure, so we still need a
415 // getelement ptr instruction to finish the indexing. This may be
416 // expanded itself once the worklist is rerun.
418 SmallVector
<Value
*, 8> NewArgs
;
419 NewArgs
.push_back(Constant::getNullValue(Type::Int32Ty
));
420 NewArgs
.append(GEPI
->op_begin()+3, GEPI
->op_end());
421 RepValue
= GetElementPtrInst::Create(AllocaToUse
, NewArgs
.begin(),
422 NewArgs
.end(), "", GEPI
);
423 RepValue
->takeName(GEPI
);
426 // If this GEP is to the start of the aggregate, check for memcpys.
427 if (Idx
== 0 && GEPI
->hasAllZeroIndices())
428 RewriteBitCastUserOfAlloca(GEPI
, AI
, ElementAllocas
);
430 // Move all of the users over to the new GEP.
431 GEPI
->replaceAllUsesWith(RepValue
);
432 // Delete the old GEP
433 GEPI
->eraseFromParent();
436 // Finally, delete the Alloca instruction
437 AI
->eraseFromParent();
442 /// isSafeElementUse - Check to see if this use is an allowed use for a
443 /// getelementptr instruction of an array aggregate allocation. isFirstElt
444 /// indicates whether Ptr is known to the start of the aggregate.
446 void SROA::isSafeElementUse(Value
*Ptr
, bool isFirstElt
, AllocationInst
*AI
,
448 for (Value::use_iterator I
= Ptr
->use_begin(), E
= Ptr
->use_end();
450 Instruction
*User
= cast
<Instruction
>(*I
);
451 switch (User
->getOpcode()) {
452 case Instruction::Load
: break;
453 case Instruction::Store
:
454 // Store is ok if storing INTO the pointer, not storing the pointer
455 if (User
->getOperand(0) == Ptr
) return MarkUnsafe(Info
);
457 case Instruction::GetElementPtr
: {
458 GetElementPtrInst
*GEP
= cast
<GetElementPtrInst
>(User
);
459 bool AreAllZeroIndices
= isFirstElt
;
460 if (GEP
->getNumOperands() > 1) {
461 if (!isa
<ConstantInt
>(GEP
->getOperand(1)) ||
462 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero())
463 // Using pointer arithmetic to navigate the array.
464 return MarkUnsafe(Info
);
466 if (AreAllZeroIndices
)
467 AreAllZeroIndices
= GEP
->hasAllZeroIndices();
469 isSafeElementUse(GEP
, AreAllZeroIndices
, AI
, Info
);
470 if (Info
.isUnsafe
) return;
473 case Instruction::BitCast
:
475 isSafeUseOfBitCastedAllocation(cast
<BitCastInst
>(User
), AI
, Info
);
476 if (Info
.isUnsafe
) return;
479 DOUT
<< " Transformation preventing inst: " << *User
;
480 return MarkUnsafe(Info
);
481 case Instruction::Call
:
482 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(User
)) {
484 isSafeMemIntrinsicOnAllocation(MI
, AI
, I
.getOperandNo(), Info
);
485 if (Info
.isUnsafe
) return;
489 DOUT
<< " Transformation preventing inst: " << *User
;
490 return MarkUnsafe(Info
);
492 DOUT
<< " Transformation preventing inst: " << *User
;
493 return MarkUnsafe(Info
);
496 return; // All users look ok :)
499 /// AllUsersAreLoads - Return true if all users of this value are loads.
500 static bool AllUsersAreLoads(Value
*Ptr
) {
501 for (Value::use_iterator I
= Ptr
->use_begin(), E
= Ptr
->use_end();
503 if (cast
<Instruction
>(*I
)->getOpcode() != Instruction::Load
)
508 /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
509 /// aggregate allocation.
511 void SROA::isSafeUseOfAllocation(Instruction
*User
, AllocationInst
*AI
,
513 if (BitCastInst
*C
= dyn_cast
<BitCastInst
>(User
))
514 return isSafeUseOfBitCastedAllocation(C
, AI
, Info
);
516 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
))
517 if (!LI
->isVolatile())
518 return;// Loads (returning a first class aggregrate) are always rewritable
520 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
))
521 if (!SI
->isVolatile() && SI
->getOperand(0) != AI
)
522 return;// Store is ok if storing INTO the pointer, not storing the pointer
524 GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
);
526 return MarkUnsafe(Info
);
528 gep_type_iterator I
= gep_type_begin(GEPI
), E
= gep_type_end(GEPI
);
530 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
532 I
.getOperand() != Constant::getNullValue(I
.getOperand()->getType())) {
533 return MarkUnsafe(Info
);
537 if (I
== E
) return MarkUnsafe(Info
); // ran out of GEP indices??
539 bool IsAllZeroIndices
= true;
541 // If the first index is a non-constant index into an array, see if we can
542 // handle it as a special case.
543 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(*I
)) {
544 if (!isa
<ConstantInt
>(I
.getOperand())) {
545 IsAllZeroIndices
= 0;
546 uint64_t NumElements
= AT
->getNumElements();
548 // If this is an array index and the index is not constant, we cannot
549 // promote... that is unless the array has exactly one or two elements in
550 // it, in which case we CAN promote it, but we have to canonicalize this
551 // out if this is the only problem.
552 if ((NumElements
== 1 || NumElements
== 2) &&
553 AllUsersAreLoads(GEPI
)) {
554 Info
.needsCleanup
= true;
555 return; // Canonicalization required!
557 return MarkUnsafe(Info
);
561 // Walk through the GEP type indices, checking the types that this indexes
563 for (; I
!= E
; ++I
) {
564 // Ignore struct elements, no extra checking needed for these.
565 if (isa
<StructType
>(*I
))
568 ConstantInt
*IdxVal
= dyn_cast
<ConstantInt
>(I
.getOperand());
569 if (!IdxVal
) return MarkUnsafe(Info
);
571 // Are all indices still zero?
572 IsAllZeroIndices
&= IdxVal
->isZero();
574 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(*I
)) {
575 // This GEP indexes an array. Verify that this is an in-range constant
576 // integer. Specifically, consider A[0][i]. We cannot know that the user
577 // isn't doing invalid things like allowing i to index an out-of-range
578 // subscript that accesses A[1]. Because of this, we have to reject SROA
579 // of any accesses into structs where any of the components are variables.
580 if (IdxVal
->getZExtValue() >= AT
->getNumElements())
581 return MarkUnsafe(Info
);
582 } else if (const VectorType
*VT
= dyn_cast
<VectorType
>(*I
)) {
583 if (IdxVal
->getZExtValue() >= VT
->getNumElements())
584 return MarkUnsafe(Info
);
588 // If there are any non-simple uses of this getelementptr, make sure to reject
590 return isSafeElementUse(GEPI
, IsAllZeroIndices
, AI
, Info
);
593 /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
594 /// intrinsic can be promoted by SROA. At this point, we know that the operand
595 /// of the memintrinsic is a pointer to the beginning of the allocation.
596 void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic
*MI
, AllocationInst
*AI
,
597 unsigned OpNo
, AllocaInfo
&Info
) {
598 // If not constant length, give up.
599 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(MI
->getLength());
600 if (!Length
) return MarkUnsafe(Info
);
602 // If not the whole aggregate, give up.
603 if (Length
->getZExtValue() !=
604 TD
->getTypePaddedSize(AI
->getType()->getElementType()))
605 return MarkUnsafe(Info
);
607 // We only know about memcpy/memset/memmove.
608 if (!isa
<MemIntrinsic
>(MI
))
609 return MarkUnsafe(Info
);
611 // Otherwise, we can transform it. Determine whether this is a memcpy/set
612 // into or out of the aggregate.
614 Info
.isMemCpyDst
= true;
617 Info
.isMemCpySrc
= true;
621 /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
623 void SROA::isSafeUseOfBitCastedAllocation(BitCastInst
*BC
, AllocationInst
*AI
,
625 for (Value::use_iterator UI
= BC
->use_begin(), E
= BC
->use_end();
627 if (BitCastInst
*BCU
= dyn_cast
<BitCastInst
>(UI
)) {
628 isSafeUseOfBitCastedAllocation(BCU
, AI
, Info
);
629 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(UI
)) {
630 isSafeMemIntrinsicOnAllocation(MI
, AI
, UI
.getOperandNo(), Info
);
631 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
)) {
632 if (SI
->isVolatile())
633 return MarkUnsafe(Info
);
635 // If storing the entire alloca in one chunk through a bitcasted pointer
636 // to integer, we can transform it. This happens (for example) when you
637 // cast a {i32,i32}* to i64* and store through it. This is similar to the
638 // memcpy case and occurs in various "byval" cases and emulated memcpys.
639 if (isa
<IntegerType
>(SI
->getOperand(0)->getType()) &&
640 TD
->getTypePaddedSize(SI
->getOperand(0)->getType()) ==
641 TD
->getTypePaddedSize(AI
->getType()->getElementType())) {
642 Info
.isMemCpyDst
= true;
645 return MarkUnsafe(Info
);
646 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UI
)) {
647 if (LI
->isVolatile())
648 return MarkUnsafe(Info
);
650 // If loading the entire alloca in one chunk through a bitcasted pointer
651 // to integer, we can transform it. This happens (for example) when you
652 // cast a {i32,i32}* to i64* and load through it. This is similar to the
653 // memcpy case and occurs in various "byval" cases and emulated memcpys.
654 if (isa
<IntegerType
>(LI
->getType()) &&
655 TD
->getTypePaddedSize(LI
->getType()) ==
656 TD
->getTypePaddedSize(AI
->getType()->getElementType())) {
657 Info
.isMemCpySrc
= true;
660 return MarkUnsafe(Info
);
661 } else if (isa
<DbgInfoIntrinsic
>(UI
)) {
662 // If one user is DbgInfoIntrinsic then check if all users are
663 // DbgInfoIntrinsics.
664 if (OnlyUsedByDbgInfoIntrinsics(BC
)) {
665 Info
.needsCleanup
= true;
672 return MarkUnsafe(Info
);
674 if (Info
.isUnsafe
) return;
678 /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
679 /// to its first element. Transform users of the cast to use the new values
681 void SROA::RewriteBitCastUserOfAlloca(Instruction
*BCInst
, AllocationInst
*AI
,
682 SmallVector
<AllocaInst
*, 32> &NewElts
) {
683 Value::use_iterator UI
= BCInst
->use_begin(), UE
= BCInst
->use_end();
685 Instruction
*User
= cast
<Instruction
>(*UI
++);
686 if (BitCastInst
*BCU
= dyn_cast
<BitCastInst
>(User
)) {
687 RewriteBitCastUserOfAlloca(BCU
, AI
, NewElts
);
688 if (BCU
->use_empty()) BCU
->eraseFromParent();
692 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(User
)) {
693 // This must be memcpy/memmove/memset of the entire aggregate.
694 // Split into one per element.
695 RewriteMemIntrinUserOfAlloca(MI
, BCInst
, AI
, NewElts
);
699 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
700 // If this is a store of the entire alloca from an integer, rewrite it.
701 RewriteStoreUserOfWholeAlloca(SI
, AI
, NewElts
);
705 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
706 // If this is a load of the entire alloca to an integer, rewrite it.
707 RewriteLoadUserOfWholeAlloca(LI
, AI
, NewElts
);
711 // Otherwise it must be some other user of a gep of the first pointer. Just
712 // leave these alone.
717 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
718 /// Rewrite it to copy or set the elements of the scalarized memory.
719 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic
*MI
, Instruction
*BCInst
,
721 SmallVector
<AllocaInst
*, 32> &NewElts
) {
723 // If this is a memcpy/memmove, construct the other pointer as the
724 // appropriate type. The "Other" pointer is the pointer that goes to memory
725 // that doesn't have anything to do with the alloca that we are promoting. For
726 // memset, this Value* stays null.
728 unsigned MemAlignment
= MI
->getAlignment();
729 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) { // memmove/memcopy
730 if (BCInst
== MTI
->getRawDest())
731 OtherPtr
= MTI
->getRawSource();
733 assert(BCInst
== MTI
->getRawSource());
734 OtherPtr
= MTI
->getRawDest();
738 // If there is an other pointer, we want to convert it to the same pointer
739 // type as AI has, so we can GEP through it safely.
741 // It is likely that OtherPtr is a bitcast, if so, remove it.
742 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(OtherPtr
))
743 OtherPtr
= BC
->getOperand(0);
744 // All zero GEPs are effectively bitcasts.
745 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(OtherPtr
))
746 if (GEP
->hasAllZeroIndices())
747 OtherPtr
= GEP
->getOperand(0);
749 if (ConstantExpr
*BCE
= dyn_cast
<ConstantExpr
>(OtherPtr
))
750 if (BCE
->getOpcode() == Instruction::BitCast
)
751 OtherPtr
= BCE
->getOperand(0);
753 // If the pointer is not the right type, insert a bitcast to the right
755 if (OtherPtr
->getType() != AI
->getType())
756 OtherPtr
= new BitCastInst(OtherPtr
, AI
->getType(), OtherPtr
->getName(),
760 // Process each element of the aggregate.
761 Value
*TheFn
= MI
->getOperand(0);
762 const Type
*BytePtrTy
= MI
->getRawDest()->getType();
763 bool SROADest
= MI
->getRawDest() == BCInst
;
765 Constant
*Zero
= Constant::getNullValue(Type::Int32Ty
);
767 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
768 // If this is a memcpy/memmove, emit a GEP of the other element address.
770 unsigned OtherEltAlign
= MemAlignment
;
773 Value
*Idx
[2] = { Zero
, ConstantInt::get(Type::Int32Ty
, i
) };
774 OtherElt
= GetElementPtrInst::Create(OtherPtr
, Idx
, Idx
+ 2,
775 OtherPtr
->getNameStr()+"."+utostr(i
),
778 const PointerType
*OtherPtrTy
= cast
<PointerType
>(OtherPtr
->getType());
779 if (const StructType
*ST
=
780 dyn_cast
<StructType
>(OtherPtrTy
->getElementType())) {
781 EltOffset
= TD
->getStructLayout(ST
)->getElementOffset(i
);
784 cast
<SequentialType
>(OtherPtr
->getType())->getElementType();
785 EltOffset
= TD
->getTypePaddedSize(EltTy
)*i
;
788 // The alignment of the other pointer is the guaranteed alignment of the
789 // element, which is affected by both the known alignment of the whole
790 // mem intrinsic and the alignment of the element. If the alignment of
791 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
792 // known alignment is just 4 bytes.
793 OtherEltAlign
= (unsigned)MinAlign(OtherEltAlign
, EltOffset
);
796 Value
*EltPtr
= NewElts
[i
];
797 const Type
*EltTy
= cast
<PointerType
>(EltPtr
->getType())->getElementType();
799 // If we got down to a scalar, insert a load or store as appropriate.
800 if (EltTy
->isSingleValueType()) {
801 if (isa
<MemTransferInst
>(MI
)) {
803 // From Other to Alloca.
804 Value
*Elt
= new LoadInst(OtherElt
, "tmp", false, OtherEltAlign
, MI
);
805 new StoreInst(Elt
, EltPtr
, MI
);
807 // From Alloca to Other.
808 Value
*Elt
= new LoadInst(EltPtr
, "tmp", MI
);
809 new StoreInst(Elt
, OtherElt
, false, OtherEltAlign
, MI
);
813 assert(isa
<MemSetInst
>(MI
));
815 // If the stored element is zero (common case), just store a null
818 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(MI
->getOperand(2))) {
820 StoreVal
= Constant::getNullValue(EltTy
); // 0.0, null, 0, <0,0>
822 // If EltTy is a vector type, get the element type.
823 const Type
*ValTy
= EltTy
;
824 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(ValTy
))
825 ValTy
= VTy
->getElementType();
827 // Construct an integer with the right value.
828 unsigned EltSize
= TD
->getTypeSizeInBits(ValTy
);
829 APInt
OneVal(EltSize
, CI
->getZExtValue());
830 APInt
TotalVal(OneVal
);
832 for (unsigned i
= 0; 8*i
< EltSize
; ++i
) {
833 TotalVal
= TotalVal
.shl(8);
837 // Convert the integer value to the appropriate type.
838 StoreVal
= ConstantInt::get(TotalVal
);
839 if (isa
<PointerType
>(ValTy
))
840 StoreVal
= ConstantExpr::getIntToPtr(StoreVal
, ValTy
);
841 else if (ValTy
->isFloatingPoint())
842 StoreVal
= ConstantExpr::getBitCast(StoreVal
, ValTy
);
843 assert(StoreVal
->getType() == ValTy
&& "Type mismatch!");
845 // If the requested value was a vector constant, create it.
846 if (EltTy
!= ValTy
) {
847 unsigned NumElts
= cast
<VectorType
>(ValTy
)->getNumElements();
848 SmallVector
<Constant
*, 16> Elts(NumElts
, StoreVal
);
849 StoreVal
= ConstantVector::get(&Elts
[0], NumElts
);
852 new StoreInst(StoreVal
, EltPtr
, MI
);
855 // Otherwise, if we're storing a byte variable, use a memset call for
859 // Cast the element pointer to BytePtrTy.
860 if (EltPtr
->getType() != BytePtrTy
)
861 EltPtr
= new BitCastInst(EltPtr
, BytePtrTy
, EltPtr
->getNameStr(), MI
);
863 // Cast the other pointer (if we have one) to BytePtrTy.
864 if (OtherElt
&& OtherElt
->getType() != BytePtrTy
)
865 OtherElt
= new BitCastInst(OtherElt
, BytePtrTy
,OtherElt
->getNameStr(),
868 unsigned EltSize
= TD
->getTypePaddedSize(EltTy
);
870 // Finally, insert the meminst for this element.
871 if (isa
<MemTransferInst
>(MI
)) {
873 SROADest
? EltPtr
: OtherElt
, // Dest ptr
874 SROADest
? OtherElt
: EltPtr
, // Src ptr
875 ConstantInt::get(MI
->getOperand(3)->getType(), EltSize
), // Size
876 ConstantInt::get(Type::Int32Ty
, OtherEltAlign
) // Align
878 CallInst::Create(TheFn
, Ops
, Ops
+ 4, "", MI
);
880 assert(isa
<MemSetInst
>(MI
));
882 EltPtr
, MI
->getOperand(2), // Dest, Value,
883 ConstantInt::get(MI
->getOperand(3)->getType(), EltSize
), // Size
886 CallInst::Create(TheFn
, Ops
, Ops
+ 4, "", MI
);
889 MI
->eraseFromParent();
892 /// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
893 /// overwrites the entire allocation. Extract out the pieces of the stored
894 /// integer and store them individually.
895 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst
*SI
,
897 SmallVector
<AllocaInst
*, 32> &NewElts
){
898 // Extract each element out of the integer according to its structure offset
899 // and store the element value to the individual alloca.
900 Value
*SrcVal
= SI
->getOperand(0);
901 const Type
*AllocaEltTy
= AI
->getType()->getElementType();
902 uint64_t AllocaSizeBits
= TD
->getTypePaddedSizeInBits(AllocaEltTy
);
904 // If this isn't a store of an integer to the whole alloca, it may be a store
905 // to the first element. Just ignore the store in this case and normal SROA
907 if (!isa
<IntegerType
>(SrcVal
->getType()) ||
908 TD
->getTypePaddedSizeInBits(SrcVal
->getType()) != AllocaSizeBits
)
911 DOUT
<< "PROMOTING STORE TO WHOLE ALLOCA: " << *AI
<< *SI
;
913 // There are two forms here: AI could be an array or struct. Both cases
914 // have different ways to compute the element offset.
915 if (const StructType
*EltSTy
= dyn_cast
<StructType
>(AllocaEltTy
)) {
916 const StructLayout
*Layout
= TD
->getStructLayout(EltSTy
);
918 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
919 // Get the number of bits to shift SrcVal to get the value.
920 const Type
*FieldTy
= EltSTy
->getElementType(i
);
921 uint64_t Shift
= Layout
->getElementOffsetInBits(i
);
923 if (TD
->isBigEndian())
924 Shift
= AllocaSizeBits
-Shift
-TD
->getTypePaddedSizeInBits(FieldTy
);
926 Value
*EltVal
= SrcVal
;
928 Value
*ShiftVal
= ConstantInt::get(EltVal
->getType(), Shift
);
929 EltVal
= BinaryOperator::CreateLShr(EltVal
, ShiftVal
,
930 "sroa.store.elt", SI
);
933 // Truncate down to an integer of the right size.
934 uint64_t FieldSizeBits
= TD
->getTypeSizeInBits(FieldTy
);
936 // Ignore zero sized fields like {}, they obviously contain no data.
937 if (FieldSizeBits
== 0) continue;
939 if (FieldSizeBits
!= AllocaSizeBits
)
940 EltVal
= new TruncInst(EltVal
, IntegerType::get(FieldSizeBits
), "", SI
);
941 Value
*DestField
= NewElts
[i
];
942 if (EltVal
->getType() == FieldTy
) {
943 // Storing to an integer field of this size, just do it.
944 } else if (FieldTy
->isFloatingPoint() || isa
<VectorType
>(FieldTy
)) {
945 // Bitcast to the right element type (for fp/vector values).
946 EltVal
= new BitCastInst(EltVal
, FieldTy
, "", SI
);
948 // Otherwise, bitcast the dest pointer (for aggregates).
949 DestField
= new BitCastInst(DestField
,
950 PointerType::getUnqual(EltVal
->getType()),
953 new StoreInst(EltVal
, DestField
, SI
);
957 const ArrayType
*ATy
= cast
<ArrayType
>(AllocaEltTy
);
958 const Type
*ArrayEltTy
= ATy
->getElementType();
959 uint64_t ElementOffset
= TD
->getTypePaddedSizeInBits(ArrayEltTy
);
960 uint64_t ElementSizeBits
= TD
->getTypeSizeInBits(ArrayEltTy
);
964 if (TD
->isBigEndian())
965 Shift
= AllocaSizeBits
-ElementOffset
;
969 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
970 // Ignore zero sized fields like {}, they obviously contain no data.
971 if (ElementSizeBits
== 0) continue;
973 Value
*EltVal
= SrcVal
;
975 Value
*ShiftVal
= ConstantInt::get(EltVal
->getType(), Shift
);
976 EltVal
= BinaryOperator::CreateLShr(EltVal
, ShiftVal
,
977 "sroa.store.elt", SI
);
980 // Truncate down to an integer of the right size.
981 if (ElementSizeBits
!= AllocaSizeBits
)
982 EltVal
= new TruncInst(EltVal
, IntegerType::get(ElementSizeBits
),"",SI
);
983 Value
*DestField
= NewElts
[i
];
984 if (EltVal
->getType() == ArrayEltTy
) {
985 // Storing to an integer field of this size, just do it.
986 } else if (ArrayEltTy
->isFloatingPoint() || isa
<VectorType
>(ArrayEltTy
)) {
987 // Bitcast to the right element type (for fp/vector values).
988 EltVal
= new BitCastInst(EltVal
, ArrayEltTy
, "", SI
);
990 // Otherwise, bitcast the dest pointer (for aggregates).
991 DestField
= new BitCastInst(DestField
,
992 PointerType::getUnqual(EltVal
->getType()),
995 new StoreInst(EltVal
, DestField
, SI
);
997 if (TD
->isBigEndian())
998 Shift
-= ElementOffset
;
1000 Shift
+= ElementOffset
;
1004 SI
->eraseFromParent();
1007 /// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1008 /// an integer. Load the individual pieces to form the aggregate value.
1009 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst
*LI
, AllocationInst
*AI
,
1010 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1011 // Extract each element out of the NewElts according to its structure offset
1012 // and form the result value.
1013 const Type
*AllocaEltTy
= AI
->getType()->getElementType();
1014 uint64_t AllocaSizeBits
= TD
->getTypePaddedSizeInBits(AllocaEltTy
);
1016 // If this isn't a load of the whole alloca to an integer, it may be a load
1017 // of the first element. Just ignore the load in this case and normal SROA
1019 if (!isa
<IntegerType
>(LI
->getType()) ||
1020 TD
->getTypePaddedSizeInBits(LI
->getType()) != AllocaSizeBits
)
1023 DOUT
<< "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI
<< *LI
;
1025 // There are two forms here: AI could be an array or struct. Both cases
1026 // have different ways to compute the element offset.
1027 const StructLayout
*Layout
= 0;
1028 uint64_t ArrayEltBitOffset
= 0;
1029 if (const StructType
*EltSTy
= dyn_cast
<StructType
>(AllocaEltTy
)) {
1030 Layout
= TD
->getStructLayout(EltSTy
);
1032 const Type
*ArrayEltTy
= cast
<ArrayType
>(AllocaEltTy
)->getElementType();
1033 ArrayEltBitOffset
= TD
->getTypePaddedSizeInBits(ArrayEltTy
);
1036 Value
*ResultVal
= Constant::getNullValue(LI
->getType());
1038 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1039 // Load the value from the alloca. If the NewElt is an aggregate, cast
1040 // the pointer to an integer of the same size before doing the load.
1041 Value
*SrcField
= NewElts
[i
];
1042 const Type
*FieldTy
=
1043 cast
<PointerType
>(SrcField
->getType())->getElementType();
1044 uint64_t FieldSizeBits
= TD
->getTypeSizeInBits(FieldTy
);
1046 // Ignore zero sized fields like {}, they obviously contain no data.
1047 if (FieldSizeBits
== 0) continue;
1049 const IntegerType
*FieldIntTy
= IntegerType::get(FieldSizeBits
);
1050 if (!isa
<IntegerType
>(FieldTy
) && !FieldTy
->isFloatingPoint() &&
1051 !isa
<VectorType
>(FieldTy
))
1052 SrcField
= new BitCastInst(SrcField
, PointerType::getUnqual(FieldIntTy
),
1054 SrcField
= new LoadInst(SrcField
, "sroa.load.elt", LI
);
1056 // If SrcField is a fp or vector of the right size but that isn't an
1057 // integer type, bitcast to an integer so we can shift it.
1058 if (SrcField
->getType() != FieldIntTy
)
1059 SrcField
= new BitCastInst(SrcField
, FieldIntTy
, "", LI
);
1061 // Zero extend the field to be the same size as the final alloca so that
1062 // we can shift and insert it.
1063 if (SrcField
->getType() != ResultVal
->getType())
1064 SrcField
= new ZExtInst(SrcField
, ResultVal
->getType(), "", LI
);
1066 // Determine the number of bits to shift SrcField.
1068 if (Layout
) // Struct case.
1069 Shift
= Layout
->getElementOffsetInBits(i
);
1071 Shift
= i
*ArrayEltBitOffset
;
1073 if (TD
->isBigEndian())
1074 Shift
= AllocaSizeBits
-Shift
-FieldIntTy
->getBitWidth();
1077 Value
*ShiftVal
= ConstantInt::get(SrcField
->getType(), Shift
);
1078 SrcField
= BinaryOperator::CreateShl(SrcField
, ShiftVal
, "", LI
);
1081 ResultVal
= BinaryOperator::CreateOr(SrcField
, ResultVal
, "", LI
);
1084 LI
->replaceAllUsesWith(ResultVal
);
1085 LI
->eraseFromParent();
1089 /// HasPadding - Return true if the specified type has any structure or
1090 /// alignment padding, false otherwise.
1091 static bool HasPadding(const Type
*Ty
, const TargetData
&TD
) {
1092 if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1093 const StructLayout
*SL
= TD
.getStructLayout(STy
);
1094 unsigned PrevFieldBitOffset
= 0;
1095 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1096 unsigned FieldBitOffset
= SL
->getElementOffsetInBits(i
);
1098 // Padding in sub-elements?
1099 if (HasPadding(STy
->getElementType(i
), TD
))
1102 // Check to see if there is any padding between this element and the
1105 unsigned PrevFieldEnd
=
1106 PrevFieldBitOffset
+TD
.getTypeSizeInBits(STy
->getElementType(i
-1));
1107 if (PrevFieldEnd
< FieldBitOffset
)
1111 PrevFieldBitOffset
= FieldBitOffset
;
1114 // Check for tail padding.
1115 if (unsigned EltCount
= STy
->getNumElements()) {
1116 unsigned PrevFieldEnd
= PrevFieldBitOffset
+
1117 TD
.getTypeSizeInBits(STy
->getElementType(EltCount
-1));
1118 if (PrevFieldEnd
< SL
->getSizeInBits())
1122 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1123 return HasPadding(ATy
->getElementType(), TD
);
1124 } else if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
1125 return HasPadding(VTy
->getElementType(), TD
);
1127 return TD
.getTypeSizeInBits(Ty
) != TD
.getTypePaddedSizeInBits(Ty
);
1130 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1131 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
1132 /// or 1 if safe after canonicalization has been performed.
1134 int SROA::isSafeAllocaToScalarRepl(AllocationInst
*AI
) {
1135 // Loop over the use list of the alloca. We can only transform it if all of
1136 // the users are safe to transform.
1139 for (Value::use_iterator I
= AI
->use_begin(), E
= AI
->use_end();
1141 isSafeUseOfAllocation(cast
<Instruction
>(*I
), AI
, Info
);
1142 if (Info
.isUnsafe
) {
1143 DOUT
<< "Cannot transform: " << *AI
<< " due to user: " << **I
;
1148 // Okay, we know all the users are promotable. If the aggregate is a memcpy
1149 // source and destination, we have to be careful. In particular, the memcpy
1150 // could be moving around elements that live in structure padding of the LLVM
1151 // types, but may actually be used. In these cases, we refuse to promote the
1153 if (Info
.isMemCpySrc
&& Info
.isMemCpyDst
&&
1154 HasPadding(AI
->getType()->getElementType(), *TD
))
1157 // If we require cleanup, return 1, otherwise return 3.
1158 return Info
.needsCleanup
? 1 : 3;
1161 /// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1162 /// is canonicalized here.
1163 void SROA::CleanupGEP(GetElementPtrInst
*GEPI
) {
1164 gep_type_iterator I
= gep_type_begin(GEPI
);
1167 const ArrayType
*AT
= dyn_cast
<ArrayType
>(*I
);
1171 uint64_t NumElements
= AT
->getNumElements();
1173 if (isa
<ConstantInt
>(I
.getOperand()))
1176 if (NumElements
== 1) {
1177 GEPI
->setOperand(2, Constant::getNullValue(Type::Int32Ty
));
1181 assert(NumElements
== 2 && "Unhandled case!");
1182 // All users of the GEP must be loads. At each use of the GEP, insert
1183 // two loads of the appropriate indexed GEP and select between them.
1184 Value
*IsOne
= new ICmpInst(ICmpInst::ICMP_NE
, I
.getOperand(),
1185 Constant::getNullValue(I
.getOperand()->getType()),
1187 // Insert the new GEP instructions, which are properly indexed.
1188 SmallVector
<Value
*, 8> Indices(GEPI
->op_begin()+1, GEPI
->op_end());
1189 Indices
[1] = Constant::getNullValue(Type::Int32Ty
);
1190 Value
*ZeroIdx
= GetElementPtrInst::Create(GEPI
->getOperand(0),
1193 GEPI
->getName()+".0", GEPI
);
1194 Indices
[1] = ConstantInt::get(Type::Int32Ty
, 1);
1195 Value
*OneIdx
= GetElementPtrInst::Create(GEPI
->getOperand(0),
1198 GEPI
->getName()+".1", GEPI
);
1199 // Replace all loads of the variable index GEP with loads from both
1200 // indexes and a select.
1201 while (!GEPI
->use_empty()) {
1202 LoadInst
*LI
= cast
<LoadInst
>(GEPI
->use_back());
1203 Value
*Zero
= new LoadInst(ZeroIdx
, LI
->getName()+".0", LI
);
1204 Value
*One
= new LoadInst(OneIdx
, LI
->getName()+".1", LI
);
1205 Value
*R
= SelectInst::Create(IsOne
, One
, Zero
, LI
->getName(), LI
);
1206 LI
->replaceAllUsesWith(R
);
1207 LI
->eraseFromParent();
1209 GEPI
->eraseFromParent();
1213 /// CleanupAllocaUsers - If SROA reported that it can promote the specified
1214 /// allocation, but only if cleaned up, perform the cleanups required.
1215 void SROA::CleanupAllocaUsers(AllocationInst
*AI
) {
1216 // At this point, we know that the end result will be SROA'd and promoted, so
1217 // we can insert ugly code if required so long as sroa+mem2reg will clean it
1219 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
1222 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
))
1224 else if (Instruction
*I
= dyn_cast
<Instruction
>(U
)) {
1225 SmallVector
<DbgInfoIntrinsic
*, 2> DbgInUses
;
1226 if (!isa
<StoreInst
>(I
) && OnlyUsedByDbgInfoIntrinsics(I
, &DbgInUses
)) {
1227 // Safe to remove debug info uses.
1228 while (!DbgInUses
.empty()) {
1229 DbgInfoIntrinsic
*DI
= DbgInUses
.back(); DbgInUses
.pop_back();
1230 DI
->eraseFromParent();
1232 I
->eraseFromParent();
1238 /// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1239 /// the offset specified by Offset (which is specified in bytes).
1241 /// There are two cases we handle here:
1242 /// 1) A union of vector types of the same size and potentially its elements.
1243 /// Here we turn element accesses into insert/extract element operations.
1244 /// This promotes a <4 x float> with a store of float to the third element
1245 /// into a <4 x float> that uses insert element.
1246 /// 2) A fully general blob of memory, which we turn into some (potentially
1247 /// large) integer type with extract and insert operations where the loads
1248 /// and stores would mutate the memory.
1249 static void MergeInType(const Type
*In
, uint64_t Offset
, const Type
*&VecTy
,
1250 unsigned AllocaSize
, const TargetData
&TD
) {
1251 // If this could be contributing to a vector, analyze it.
1252 if (VecTy
!= Type::VoidTy
) { // either null or a vector type.
1254 // If the In type is a vector that is the same size as the alloca, see if it
1255 // matches the existing VecTy.
1256 if (const VectorType
*VInTy
= dyn_cast
<VectorType
>(In
)) {
1257 if (VInTy
->getBitWidth()/8 == AllocaSize
&& Offset
== 0) {
1258 // If we're storing/loading a vector of the right size, allow it as a
1259 // vector. If this the first vector we see, remember the type so that
1260 // we know the element size.
1265 } else if (In
== Type::FloatTy
|| In
== Type::DoubleTy
||
1266 (isa
<IntegerType
>(In
) && In
->getPrimitiveSizeInBits() >= 8 &&
1267 isPowerOf2_32(In
->getPrimitiveSizeInBits()))) {
1268 // If we're accessing something that could be an element of a vector, see
1269 // if the implied vector agrees with what we already have and if Offset is
1270 // compatible with it.
1271 unsigned EltSize
= In
->getPrimitiveSizeInBits()/8;
1272 if (Offset
% EltSize
== 0 &&
1273 AllocaSize
% EltSize
== 0 &&
1275 cast
<VectorType
>(VecTy
)->getElementType()
1276 ->getPrimitiveSizeInBits()/8 == EltSize
)) {
1278 VecTy
= VectorType::get(In
, AllocaSize
/EltSize
);
1284 // Otherwise, we have a case that we can't handle with an optimized vector
1285 // form. We can still turn this into a large integer.
1286 VecTy
= Type::VoidTy
;
1289 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
1290 /// its accesses to use a to single vector type, return true, and set VecTy to
1291 /// the new type. If we could convert the alloca into a single promotable
1292 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
1293 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
1294 /// is the current offset from the base of the alloca being analyzed.
1296 /// If we see at least one access to the value that is as a vector type, set the
1299 bool SROA::CanConvertToScalar(Value
*V
, bool &IsNotTrivial
, const Type
*&VecTy
,
1300 bool &SawVec
, uint64_t Offset
,
1301 unsigned AllocaSize
) {
1302 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!=E
; ++UI
) {
1303 Instruction
*User
= cast
<Instruction
>(*UI
);
1305 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1306 // Don't break volatile loads.
1307 if (LI
->isVolatile())
1309 MergeInType(LI
->getType(), Offset
, VecTy
, AllocaSize
, *TD
);
1310 SawVec
|= isa
<VectorType
>(LI
->getType());
1314 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1315 // Storing the pointer, not into the value?
1316 if (SI
->getOperand(0) == V
|| SI
->isVolatile()) return 0;
1317 MergeInType(SI
->getOperand(0)->getType(), Offset
, VecTy
, AllocaSize
, *TD
);
1318 SawVec
|= isa
<VectorType
>(SI
->getOperand(0)->getType());
1322 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(User
)) {
1323 if (!CanConvertToScalar(BCI
, IsNotTrivial
, VecTy
, SawVec
, Offset
,
1326 IsNotTrivial
= true;
1330 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(User
)) {
1331 // If this is a GEP with a variable indices, we can't handle it.
1332 if (!GEP
->hasAllConstantIndices())
1335 // Compute the offset that this GEP adds to the pointer.
1336 SmallVector
<Value
*, 8> Indices(GEP
->op_begin()+1, GEP
->op_end());
1337 uint64_t GEPOffset
= TD
->getIndexedOffset(GEP
->getOperand(0)->getType(),
1338 &Indices
[0], Indices
.size());
1339 // See if all uses can be converted.
1340 if (!CanConvertToScalar(GEP
, IsNotTrivial
, VecTy
, SawVec
,Offset
+GEPOffset
,
1343 IsNotTrivial
= true;
1347 // If this is a constant sized memset of a constant value (e.g. 0) we can
1349 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(User
)) {
1350 // Store of constant value and constant size.
1351 if (isa
<ConstantInt
>(MSI
->getValue()) &&
1352 isa
<ConstantInt
>(MSI
->getLength())) {
1353 IsNotTrivial
= true;
1358 // If this is a memcpy or memmove into or out of the whole allocation, we
1359 // can handle it like a load or store of the scalar type.
1360 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(User
)) {
1361 if (ConstantInt
*Len
= dyn_cast
<ConstantInt
>(MTI
->getLength()))
1362 if (Len
->getZExtValue() == AllocaSize
&& Offset
== 0) {
1363 IsNotTrivial
= true;
1368 // Ignore dbg intrinsic.
1369 if (isa
<DbgInfoIntrinsic
>(User
))
1372 // Otherwise, we cannot handle this!
1380 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1381 /// directly. This happens when we are converting an "integer union" to a
1382 /// single integer scalar, or when we are converting a "vector union" to a
1383 /// vector with insert/extractelement instructions.
1385 /// Offset is an offset from the original alloca, in bits that need to be
1386 /// shifted to the right. By the end of this, there should be no uses of Ptr.
1387 void SROA::ConvertUsesToScalar(Value
*Ptr
, AllocaInst
*NewAI
, uint64_t Offset
) {
1388 while (!Ptr
->use_empty()) {
1389 Instruction
*User
= cast
<Instruction
>(Ptr
->use_back());
1391 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(User
)) {
1392 ConvertUsesToScalar(CI
, NewAI
, Offset
);
1393 CI
->eraseFromParent();
1397 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(User
)) {
1398 // Compute the offset that this GEP adds to the pointer.
1399 SmallVector
<Value
*, 8> Indices(GEP
->op_begin()+1, GEP
->op_end());
1400 uint64_t GEPOffset
= TD
->getIndexedOffset(GEP
->getOperand(0)->getType(),
1401 &Indices
[0], Indices
.size());
1402 ConvertUsesToScalar(GEP
, NewAI
, Offset
+GEPOffset
*8);
1403 GEP
->eraseFromParent();
1407 IRBuilder
<> Builder(User
->getParent(), User
);
1409 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1410 // The load is a bit extract from NewAI shifted right by Offset bits.
1411 Value
*LoadedVal
= Builder
.CreateLoad(NewAI
, "tmp");
1413 = ConvertScalar_ExtractValue(LoadedVal
, LI
->getType(), Offset
, Builder
);
1414 LI
->replaceAllUsesWith(NewLoadVal
);
1415 LI
->eraseFromParent();
1419 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1420 assert(SI
->getOperand(0) != Ptr
&& "Consistency error!");
1421 Value
*Old
= Builder
.CreateLoad(NewAI
, (NewAI
->getName()+".in").c_str());
1422 Value
*New
= ConvertScalar_InsertValue(SI
->getOperand(0), Old
, Offset
,
1424 Builder
.CreateStore(New
, NewAI
);
1425 SI
->eraseFromParent();
1429 // If this is a constant sized memset of a constant value (e.g. 0) we can
1430 // transform it into a store of the expanded constant value.
1431 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(User
)) {
1432 assert(MSI
->getRawDest() == Ptr
&& "Consistency error!");
1433 unsigned NumBytes
= cast
<ConstantInt
>(MSI
->getLength())->getZExtValue();
1434 if (NumBytes
!= 0) {
1435 unsigned Val
= cast
<ConstantInt
>(MSI
->getValue())->getZExtValue();
1437 // Compute the value replicated the right number of times.
1438 APInt
APVal(NumBytes
*8, Val
);
1440 // Splat the value if non-zero.
1442 for (unsigned i
= 1; i
!= NumBytes
; ++i
)
1443 APVal
|= APVal
<< 8;
1445 Value
*Old
= Builder
.CreateLoad(NewAI
, (NewAI
->getName()+".in").c_str());
1446 Value
*New
= ConvertScalar_InsertValue(ConstantInt::get(APVal
), Old
,
1448 Builder
.CreateStore(New
, NewAI
);
1450 MSI
->eraseFromParent();
1454 // If this is a memcpy or memmove into or out of the whole allocation, we
1455 // can handle it like a load or store of the scalar type.
1456 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(User
)) {
1457 assert(Offset
== 0 && "must be store to start of alloca");
1459 // If the source and destination are both to the same alloca, then this is
1460 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
1462 AllocaInst
*OrigAI
= cast
<AllocaInst
>(Ptr
->getUnderlyingObject());
1464 if (MTI
->getSource()->getUnderlyingObject() != OrigAI
) {
1465 // Dest must be OrigAI, change this to be a load from the original
1466 // pointer (bitcasted), then a store to our new alloca.
1467 assert(MTI
->getRawDest() == Ptr
&& "Neither use is of pointer?");
1468 Value
*SrcPtr
= MTI
->getSource();
1469 SrcPtr
= Builder
.CreateBitCast(SrcPtr
, NewAI
->getType());
1471 LoadInst
*SrcVal
= Builder
.CreateLoad(SrcPtr
, "srcval");
1472 SrcVal
->setAlignment(MTI
->getAlignment());
1473 Builder
.CreateStore(SrcVal
, NewAI
);
1474 } else if (MTI
->getDest()->getUnderlyingObject() != OrigAI
) {
1475 // Src must be OrigAI, change this to be a load from NewAI then a store
1476 // through the original dest pointer (bitcasted).
1477 assert(MTI
->getRawSource() == Ptr
&& "Neither use is of pointer?");
1478 LoadInst
*SrcVal
= Builder
.CreateLoad(NewAI
, "srcval");
1480 Value
*DstPtr
= Builder
.CreateBitCast(MTI
->getDest(), NewAI
->getType());
1481 StoreInst
*NewStore
= Builder
.CreateStore(SrcVal
, DstPtr
);
1482 NewStore
->setAlignment(MTI
->getAlignment());
1484 // Noop transfer. Src == Dst
1488 MTI
->eraseFromParent();
1492 // If user is a dbg info intrinsic then it is safe to remove it.
1493 if (isa
<DbgInfoIntrinsic
>(User
)) {
1494 User
->eraseFromParent();
1498 assert(0 && "Unsupported operation!");
1503 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1504 /// or vector value FromVal, extracting the bits from the offset specified by
1505 /// Offset. This returns the value, which is of type ToType.
1507 /// This happens when we are converting an "integer union" to a single
1508 /// integer scalar, or when we are converting a "vector union" to a vector with
1509 /// insert/extractelement instructions.
1511 /// Offset is an offset from the original alloca, in bits that need to be
1512 /// shifted to the right.
1513 Value
*SROA::ConvertScalar_ExtractValue(Value
*FromVal
, const Type
*ToType
,
1514 uint64_t Offset
, IRBuilder
<> &Builder
) {
1515 // If the load is of the whole new alloca, no conversion is needed.
1516 if (FromVal
->getType() == ToType
&& Offset
== 0)
1519 // If the result alloca is a vector type, this is either an element
1520 // access or a bitcast to another vector type of the same size.
1521 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(FromVal
->getType())) {
1522 if (isa
<VectorType
>(ToType
))
1523 return Builder
.CreateBitCast(FromVal
, ToType
, "tmp");
1525 // Otherwise it must be an element access.
1528 unsigned EltSize
= TD
->getTypePaddedSizeInBits(VTy
->getElementType());
1529 Elt
= Offset
/EltSize
;
1530 assert(EltSize
*Elt
== Offset
&& "Invalid modulus in validity checking");
1532 // Return the element extracted out of it.
1533 Value
*V
= Builder
.CreateExtractElement(FromVal
,
1534 ConstantInt::get(Type::Int32Ty
,Elt
),
1536 if (V
->getType() != ToType
)
1537 V
= Builder
.CreateBitCast(V
, ToType
, "tmp");
1541 // If ToType is a first class aggregate, extract out each of the pieces and
1542 // use insertvalue's to form the FCA.
1543 if (const StructType
*ST
= dyn_cast
<StructType
>(ToType
)) {
1544 const StructLayout
&Layout
= *TD
->getStructLayout(ST
);
1545 Value
*Res
= UndefValue::get(ST
);
1546 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
1547 Value
*Elt
= ConvertScalar_ExtractValue(FromVal
, ST
->getElementType(i
),
1548 Offset
+Layout
.getElementOffsetInBits(i
),
1550 Res
= Builder
.CreateInsertValue(Res
, Elt
, i
, "tmp");
1555 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(ToType
)) {
1556 uint64_t EltSize
= TD
->getTypePaddedSizeInBits(AT
->getElementType());
1557 Value
*Res
= UndefValue::get(AT
);
1558 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
1559 Value
*Elt
= ConvertScalar_ExtractValue(FromVal
, AT
->getElementType(),
1560 Offset
+i
*EltSize
, Builder
);
1561 Res
= Builder
.CreateInsertValue(Res
, Elt
, i
, "tmp");
1566 // Otherwise, this must be a union that was converted to an integer value.
1567 const IntegerType
*NTy
= cast
<IntegerType
>(FromVal
->getType());
1569 // If this is a big-endian system and the load is narrower than the
1570 // full alloca type, we need to do a shift to get the right bits.
1572 if (TD
->isBigEndian()) {
1573 // On big-endian machines, the lowest bit is stored at the bit offset
1574 // from the pointer given by getTypeStoreSizeInBits. This matters for
1575 // integers with a bitwidth that is not a multiple of 8.
1576 ShAmt
= TD
->getTypeStoreSizeInBits(NTy
) -
1577 TD
->getTypeStoreSizeInBits(ToType
) - Offset
;
1582 // Note: we support negative bitwidths (with shl) which are not defined.
1583 // We do this to support (f.e.) loads off the end of a structure where
1584 // only some bits are used.
1585 if (ShAmt
> 0 && (unsigned)ShAmt
< NTy
->getBitWidth())
1586 FromVal
= Builder
.CreateLShr(FromVal
, ConstantInt::get(FromVal
->getType(),
1588 else if (ShAmt
< 0 && (unsigned)-ShAmt
< NTy
->getBitWidth())
1589 FromVal
= Builder
.CreateShl(FromVal
, ConstantInt::get(FromVal
->getType(),
1592 // Finally, unconditionally truncate the integer to the right width.
1593 unsigned LIBitWidth
= TD
->getTypeSizeInBits(ToType
);
1594 if (LIBitWidth
< NTy
->getBitWidth())
1595 FromVal
= Builder
.CreateTrunc(FromVal
, IntegerType::get(LIBitWidth
), "tmp");
1596 else if (LIBitWidth
> NTy
->getBitWidth())
1597 FromVal
= Builder
.CreateZExt(FromVal
, IntegerType::get(LIBitWidth
), "tmp");
1599 // If the result is an integer, this is a trunc or bitcast.
1600 if (isa
<IntegerType
>(ToType
)) {
1602 } else if (ToType
->isFloatingPoint() || isa
<VectorType
>(ToType
)) {
1603 // Just do a bitcast, we know the sizes match up.
1604 FromVal
= Builder
.CreateBitCast(FromVal
, ToType
, "tmp");
1606 // Otherwise must be a pointer.
1607 FromVal
= Builder
.CreateIntToPtr(FromVal
, ToType
, "tmp");
1609 assert(FromVal
->getType() == ToType
&& "Didn't convert right?");
1614 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1615 /// or vector value "Old" at the offset specified by Offset.
1617 /// This happens when we are converting an "integer union" to a
1618 /// single integer scalar, or when we are converting a "vector union" to a
1619 /// vector with insert/extractelement instructions.
1621 /// Offset is an offset from the original alloca, in bits that need to be
1622 /// shifted to the right.
1623 Value
*SROA::ConvertScalar_InsertValue(Value
*SV
, Value
*Old
,
1624 uint64_t Offset
, IRBuilder
<> &Builder
) {
1626 // Convert the stored type to the actual type, shift it left to insert
1627 // then 'or' into place.
1628 const Type
*AllocaType
= Old
->getType();
1630 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(AllocaType
)) {
1631 uint64_t VecSize
= TD
->getTypePaddedSizeInBits(VTy
);
1632 uint64_t ValSize
= TD
->getTypePaddedSizeInBits(SV
->getType());
1634 // Changing the whole vector with memset or with an access of a different
1636 if (ValSize
== VecSize
)
1637 return Builder
.CreateBitCast(SV
, AllocaType
, "tmp");
1639 uint64_t EltSize
= TD
->getTypePaddedSizeInBits(VTy
->getElementType());
1641 // Must be an element insertion.
1642 unsigned Elt
= Offset
/EltSize
;
1644 if (SV
->getType() != VTy
->getElementType())
1645 SV
= Builder
.CreateBitCast(SV
, VTy
->getElementType(), "tmp");
1647 SV
= Builder
.CreateInsertElement(Old
, SV
,
1648 ConstantInt::get(Type::Int32Ty
, Elt
),
1653 // If SV is a first-class aggregate value, insert each value recursively.
1654 if (const StructType
*ST
= dyn_cast
<StructType
>(SV
->getType())) {
1655 const StructLayout
&Layout
= *TD
->getStructLayout(ST
);
1656 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
1657 Value
*Elt
= Builder
.CreateExtractValue(SV
, i
, "tmp");
1658 Old
= ConvertScalar_InsertValue(Elt
, Old
,
1659 Offset
+Layout
.getElementOffsetInBits(i
),
1665 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(SV
->getType())) {
1666 uint64_t EltSize
= TD
->getTypePaddedSizeInBits(AT
->getElementType());
1667 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
1668 Value
*Elt
= Builder
.CreateExtractValue(SV
, i
, "tmp");
1669 Old
= ConvertScalar_InsertValue(Elt
, Old
, Offset
+i
*EltSize
, Builder
);
1674 // If SV is a float, convert it to the appropriate integer type.
1675 // If it is a pointer, do the same.
1676 unsigned SrcWidth
= TD
->getTypeSizeInBits(SV
->getType());
1677 unsigned DestWidth
= TD
->getTypeSizeInBits(AllocaType
);
1678 unsigned SrcStoreWidth
= TD
->getTypeStoreSizeInBits(SV
->getType());
1679 unsigned DestStoreWidth
= TD
->getTypeStoreSizeInBits(AllocaType
);
1680 if (SV
->getType()->isFloatingPoint() || isa
<VectorType
>(SV
->getType()))
1681 SV
= Builder
.CreateBitCast(SV
, IntegerType::get(SrcWidth
), "tmp");
1682 else if (isa
<PointerType
>(SV
->getType()))
1683 SV
= Builder
.CreatePtrToInt(SV
, TD
->getIntPtrType(), "tmp");
1685 // Zero extend or truncate the value if needed.
1686 if (SV
->getType() != AllocaType
) {
1687 if (SV
->getType()->getPrimitiveSizeInBits() <
1688 AllocaType
->getPrimitiveSizeInBits())
1689 SV
= Builder
.CreateZExt(SV
, AllocaType
, "tmp");
1691 // Truncation may be needed if storing more than the alloca can hold
1692 // (undefined behavior).
1693 SV
= Builder
.CreateTrunc(SV
, AllocaType
, "tmp");
1694 SrcWidth
= DestWidth
;
1695 SrcStoreWidth
= DestStoreWidth
;
1699 // If this is a big-endian system and the store is narrower than the
1700 // full alloca type, we need to do a shift to get the right bits.
1702 if (TD
->isBigEndian()) {
1703 // On big-endian machines, the lowest bit is stored at the bit offset
1704 // from the pointer given by getTypeStoreSizeInBits. This matters for
1705 // integers with a bitwidth that is not a multiple of 8.
1706 ShAmt
= DestStoreWidth
- SrcStoreWidth
- Offset
;
1711 // Note: we support negative bitwidths (with shr) which are not defined.
1712 // We do this to support (f.e.) stores off the end of a structure where
1713 // only some bits in the structure are set.
1714 APInt
Mask(APInt::getLowBitsSet(DestWidth
, SrcWidth
));
1715 if (ShAmt
> 0 && (unsigned)ShAmt
< DestWidth
) {
1716 SV
= Builder
.CreateShl(SV
, ConstantInt::get(SV
->getType(), ShAmt
), "tmp");
1718 } else if (ShAmt
< 0 && (unsigned)-ShAmt
< DestWidth
) {
1719 SV
= Builder
.CreateLShr(SV
, ConstantInt::get(SV
->getType(), -ShAmt
), "tmp");
1720 Mask
= Mask
.lshr(-ShAmt
);
1723 // Mask out the bits we are about to insert from the old value, and or
1725 if (SrcWidth
!= DestWidth
) {
1726 assert(DestWidth
> SrcWidth
);
1727 Old
= Builder
.CreateAnd(Old
, ConstantInt::get(~Mask
), "mask");
1728 SV
= Builder
.CreateOr(Old
, SV
, "ins");
1735 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1736 /// some part of a constant global variable. This intentionally only accepts
1737 /// constant expressions because we don't can't rewrite arbitrary instructions.
1738 static bool PointsToConstantGlobal(Value
*V
) {
1739 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
1740 return GV
->isConstant();
1741 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
1742 if (CE
->getOpcode() == Instruction::BitCast
||
1743 CE
->getOpcode() == Instruction::GetElementPtr
)
1744 return PointsToConstantGlobal(CE
->getOperand(0));
1748 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1749 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
1750 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
1751 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
1752 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1753 /// the alloca, and if the source pointer is a pointer to a constant global, we
1754 /// can optimize this.
1755 static bool isOnlyCopiedFromConstantGlobal(Value
*V
, Instruction
*&TheCopy
,
1757 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!=E
; ++UI
) {
1758 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
))
1759 // Ignore non-volatile loads, they are always ok.
1760 if (!LI
->isVolatile())
1763 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(*UI
)) {
1764 // If uses of the bitcast are ok, we are ok.
1765 if (!isOnlyCopiedFromConstantGlobal(BCI
, TheCopy
, isOffset
))
1769 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(*UI
)) {
1770 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1771 // doesn't, it does.
1772 if (!isOnlyCopiedFromConstantGlobal(GEP
, TheCopy
,
1773 isOffset
|| !GEP
->hasAllZeroIndices()))
1778 // If this is isn't our memcpy/memmove, reject it as something we can't
1780 if (!isa
<MemTransferInst
>(*UI
))
1783 // If we already have seen a copy, reject the second one.
1784 if (TheCopy
) return false;
1786 // If the pointer has been offset from the start of the alloca, we can't
1787 // safely handle this.
1788 if (isOffset
) return false;
1790 // If the memintrinsic isn't using the alloca as the dest, reject it.
1791 if (UI
.getOperandNo() != 1) return false;
1793 MemIntrinsic
*MI
= cast
<MemIntrinsic
>(*UI
);
1795 // If the source of the memcpy/move is not a constant global, reject it.
1796 if (!PointsToConstantGlobal(MI
->getOperand(2)))
1799 // Otherwise, the transform is safe. Remember the copy instruction.
1805 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1806 /// modified by a copy from a constant global. If we can prove this, we can
1807 /// replace any uses of the alloca with uses of the global directly.
1808 Instruction
*SROA::isOnlyCopiedFromConstantGlobal(AllocationInst
*AI
) {
1809 Instruction
*TheCopy
= 0;
1810 if (::isOnlyCopiedFromConstantGlobal(AI
, TheCopy
, false))