Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
blob1bc8a1e3ea82c0a7c610f6cd6b700bef893a1be5
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Analysis/Dominators.h"
32 #include "llvm/Target/TargetData.h"
33 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/GetElementPtrTypeIterator.h"
37 #include "llvm/Support/IRBuilder.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/StringExtras.h"
43 using namespace llvm;
45 STATISTIC(NumReplaced, "Number of allocas broken up");
46 STATISTIC(NumPromoted, "Number of allocas promoted");
47 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
48 STATISTIC(NumGlobals, "Number of allocas copied from constant global");
50 namespace {
51 struct VISIBILITY_HIDDEN SROA : public FunctionPass {
52 static char ID; // Pass identification, replacement for typeid
53 explicit SROA(signed T = -1) : FunctionPass(&ID) {
54 if (T == -1)
55 SRThreshold = 128;
56 else
57 SRThreshold = T;
60 bool runOnFunction(Function &F);
62 bool performScalarRepl(Function &F);
63 bool performPromotion(Function &F);
65 // getAnalysisUsage - This pass does not require any passes, but we know it
66 // will not alter the CFG, so say so.
67 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
68 AU.addRequired<DominatorTree>();
69 AU.addRequired<DominanceFrontier>();
70 AU.addRequired<TargetData>();
71 AU.setPreservesCFG();
74 private:
75 TargetData *TD;
77 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78 /// information about the uses. All these fields are initialized to false
79 /// and set to true when something is learned.
80 struct AllocaInfo {
81 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
82 bool isUnsafe : 1;
84 /// needsCleanup - This is set to true if there is some use of the alloca
85 /// that requires cleanup.
86 bool needsCleanup : 1;
88 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
89 bool isMemCpySrc : 1;
91 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
92 bool isMemCpyDst : 1;
94 AllocaInfo()
95 : isUnsafe(false), needsCleanup(false),
96 isMemCpySrc(false), isMemCpyDst(false) {}
99 unsigned SRThreshold;
101 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
103 int isSafeAllocaToScalarRepl(AllocationInst *AI);
105 void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
106 AllocaInfo &Info);
107 void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
108 AllocaInfo &Info);
109 void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
110 unsigned OpNo, AllocaInfo &Info);
111 void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
112 AllocaInfo &Info);
114 void DoScalarReplacement(AllocationInst *AI,
115 std::vector<AllocationInst*> &WorkList);
116 void CleanupGEP(GetElementPtrInst *GEP);
117 void CleanupAllocaUsers(AllocationInst *AI);
118 AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
120 void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
121 SmallVector<AllocaInst*, 32> &NewElts);
123 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
124 AllocationInst *AI,
125 SmallVector<AllocaInst*, 32> &NewElts);
126 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
127 SmallVector<AllocaInst*, 32> &NewElts);
128 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
129 SmallVector<AllocaInst*, 32> &NewElts);
131 bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
132 bool &SawVec, uint64_t Offset, unsigned AllocaSize);
133 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
134 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
135 uint64_t Offset, IRBuilder<> &Builder);
136 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
137 uint64_t Offset, IRBuilder<> &Builder);
138 static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
142 char SROA::ID = 0;
143 static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
145 // Public interface to the ScalarReplAggregates pass
146 FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
147 return new SROA(Threshold);
151 bool SROA::runOnFunction(Function &F) {
152 TD = &getAnalysis<TargetData>();
154 bool Changed = performPromotion(F);
155 while (1) {
156 bool LocalChange = performScalarRepl(F);
157 if (!LocalChange) break; // No need to repromote if no scalarrepl
158 Changed = true;
159 LocalChange = performPromotion(F);
160 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
163 return Changed;
167 bool SROA::performPromotion(Function &F) {
168 std::vector<AllocaInst*> Allocas;
169 DominatorTree &DT = getAnalysis<DominatorTree>();
170 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
172 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
174 bool Changed = false;
176 while (1) {
177 Allocas.clear();
179 // Find allocas that are safe to promote, by looking at all instructions in
180 // the entry node
181 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
182 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
183 if (isAllocaPromotable(AI))
184 Allocas.push_back(AI);
186 if (Allocas.empty()) break;
188 PromoteMemToReg(Allocas, DT, DF);
189 NumPromoted += Allocas.size();
190 Changed = true;
193 return Changed;
196 /// getNumSAElements - Return the number of elements in the specific struct or
197 /// array.
198 static uint64_t getNumSAElements(const Type *T) {
199 if (const StructType *ST = dyn_cast<StructType>(T))
200 return ST->getNumElements();
201 return cast<ArrayType>(T)->getNumElements();
204 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
205 // which runs on all of the malloc/alloca instructions in the function, removing
206 // them if they are only used by getelementptr instructions.
208 bool SROA::performScalarRepl(Function &F) {
209 std::vector<AllocationInst*> WorkList;
211 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
212 BasicBlock &BB = F.getEntryBlock();
213 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
214 if (AllocationInst *A = dyn_cast<AllocationInst>(I))
215 WorkList.push_back(A);
217 // Process the worklist
218 bool Changed = false;
219 while (!WorkList.empty()) {
220 AllocationInst *AI = WorkList.back();
221 WorkList.pop_back();
223 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
224 // with unused elements.
225 if (AI->use_empty()) {
226 AI->eraseFromParent();
227 continue;
230 // If this alloca is impossible for us to promote, reject it early.
231 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
232 continue;
234 // Check to see if this allocation is only modified by a memcpy/memmove from
235 // a constant global. If this is the case, we can change all users to use
236 // the constant global instead. This is commonly produced by the CFE by
237 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
238 // is only subsequently read.
239 if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
240 DOUT << "Found alloca equal to global: " << *AI;
241 DOUT << " memcpy = " << *TheCopy;
242 Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
243 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
244 TheCopy->eraseFromParent(); // Don't mutate the global.
245 AI->eraseFromParent();
246 ++NumGlobals;
247 Changed = true;
248 continue;
251 // Check to see if we can perform the core SROA transformation. We cannot
252 // transform the allocation instruction if it is an array allocation
253 // (allocations OF arrays are ok though), and an allocation of a scalar
254 // value cannot be decomposed at all.
255 uint64_t AllocaSize = TD->getTypePaddedSize(AI->getAllocatedType());
257 // Do not promote any struct whose size is too big.
258 if (AllocaSize > SRThreshold) continue;
260 if ((isa<StructType>(AI->getAllocatedType()) ||
261 isa<ArrayType>(AI->getAllocatedType())) &&
262 // Do not promote any struct into more than "32" separate vars.
263 getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
264 // Check that all of the users of the allocation are capable of being
265 // transformed.
266 switch (isSafeAllocaToScalarRepl(AI)) {
267 default: assert(0 && "Unexpected value!");
268 case 0: // Not safe to scalar replace.
269 break;
270 case 1: // Safe, but requires cleanup/canonicalizations first
271 CleanupAllocaUsers(AI);
272 // FALL THROUGH.
273 case 3: // Safe to scalar replace.
274 DoScalarReplacement(AI, WorkList);
275 Changed = true;
276 continue;
280 // If we can turn this aggregate value (potentially with casts) into a
281 // simple scalar value that can be mem2reg'd into a register value.
282 // IsNotTrivial tracks whether this is something that mem2reg could have
283 // promoted itself. If so, we don't want to transform it needlessly. Note
284 // that we can't just check based on the type: the alloca may be of an i32
285 // but that has pointer arithmetic to set byte 3 of it or something.
286 bool IsNotTrivial = false;
287 const Type *VectorTy = 0;
288 bool HadAVector = false;
289 if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
290 0, unsigned(AllocaSize)) && IsNotTrivial) {
291 AllocaInst *NewAI;
292 // If we were able to find a vector type that can handle this with
293 // insert/extract elements, and if there was at least one use that had
294 // a vector type, promote this to a vector. We don't want to promote
295 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
296 // we just get a lot of insert/extracts. If at least one vector is
297 // involved, then we probably really do have a union of vector/array.
298 if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
299 DOUT << "CONVERT TO VECTOR: " << *AI << " TYPE = " << *VectorTy <<"\n";
301 // Create and insert the vector alloca.
302 NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
303 ConvertUsesToScalar(AI, NewAI, 0);
304 } else {
305 DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
307 // Create and insert the integer alloca.
308 const Type *NewTy = IntegerType::get(AllocaSize*8);
309 NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
310 ConvertUsesToScalar(AI, NewAI, 0);
312 NewAI->takeName(AI);
313 AI->eraseFromParent();
314 ++NumConverted;
315 Changed = true;
316 continue;
319 // Otherwise, couldn't process this alloca.
322 return Changed;
325 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
326 /// predicate, do SROA now.
327 void SROA::DoScalarReplacement(AllocationInst *AI,
328 std::vector<AllocationInst*> &WorkList) {
329 DOUT << "Found inst to SROA: " << *AI;
330 SmallVector<AllocaInst*, 32> ElementAllocas;
331 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
332 ElementAllocas.reserve(ST->getNumContainedTypes());
333 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
334 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
335 AI->getAlignment(),
336 AI->getName() + "." + utostr(i), AI);
337 ElementAllocas.push_back(NA);
338 WorkList.push_back(NA); // Add to worklist for recursive processing
340 } else {
341 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
342 ElementAllocas.reserve(AT->getNumElements());
343 const Type *ElTy = AT->getElementType();
344 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
345 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
346 AI->getName() + "." + utostr(i), AI);
347 ElementAllocas.push_back(NA);
348 WorkList.push_back(NA); // Add to worklist for recursive processing
352 // Now that we have created the alloca instructions that we want to use,
353 // expand the getelementptr instructions to use them.
355 while (!AI->use_empty()) {
356 Instruction *User = cast<Instruction>(AI->use_back());
357 if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
358 RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
359 BCInst->eraseFromParent();
360 continue;
363 // Replace:
364 // %res = load { i32, i32 }* %alloc
365 // with:
366 // %load.0 = load i32* %alloc.0
367 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
368 // %load.1 = load i32* %alloc.1
369 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
370 // (Also works for arrays instead of structs)
371 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
372 Value *Insert = UndefValue::get(LI->getType());
373 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
374 Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
375 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
377 LI->replaceAllUsesWith(Insert);
378 LI->eraseFromParent();
379 continue;
382 // Replace:
383 // store { i32, i32 } %val, { i32, i32 }* %alloc
384 // with:
385 // %val.0 = extractvalue { i32, i32 } %val, 0
386 // store i32 %val.0, i32* %alloc.0
387 // %val.1 = extractvalue { i32, i32 } %val, 1
388 // store i32 %val.1, i32* %alloc.1
389 // (Also works for arrays instead of structs)
390 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
391 Value *Val = SI->getOperand(0);
392 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
393 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
394 new StoreInst(Extract, ElementAllocas[i], SI);
396 SI->eraseFromParent();
397 continue;
400 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
401 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
402 unsigned Idx =
403 (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
405 assert(Idx < ElementAllocas.size() && "Index out of range?");
406 AllocaInst *AllocaToUse = ElementAllocas[Idx];
408 Value *RepValue;
409 if (GEPI->getNumOperands() == 3) {
410 // Do not insert a new getelementptr instruction with zero indices, only
411 // to have it optimized out later.
412 RepValue = AllocaToUse;
413 } else {
414 // We are indexing deeply into the structure, so we still need a
415 // getelement ptr instruction to finish the indexing. This may be
416 // expanded itself once the worklist is rerun.
418 SmallVector<Value*, 8> NewArgs;
419 NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
420 NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
421 RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
422 NewArgs.end(), "", GEPI);
423 RepValue->takeName(GEPI);
426 // If this GEP is to the start of the aggregate, check for memcpys.
427 if (Idx == 0 && GEPI->hasAllZeroIndices())
428 RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
430 // Move all of the users over to the new GEP.
431 GEPI->replaceAllUsesWith(RepValue);
432 // Delete the old GEP
433 GEPI->eraseFromParent();
436 // Finally, delete the Alloca instruction
437 AI->eraseFromParent();
438 NumReplaced++;
442 /// isSafeElementUse - Check to see if this use is an allowed use for a
443 /// getelementptr instruction of an array aggregate allocation. isFirstElt
444 /// indicates whether Ptr is known to the start of the aggregate.
446 void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
447 AllocaInfo &Info) {
448 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
449 I != E; ++I) {
450 Instruction *User = cast<Instruction>(*I);
451 switch (User->getOpcode()) {
452 case Instruction::Load: break;
453 case Instruction::Store:
454 // Store is ok if storing INTO the pointer, not storing the pointer
455 if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
456 break;
457 case Instruction::GetElementPtr: {
458 GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
459 bool AreAllZeroIndices = isFirstElt;
460 if (GEP->getNumOperands() > 1) {
461 if (!isa<ConstantInt>(GEP->getOperand(1)) ||
462 !cast<ConstantInt>(GEP->getOperand(1))->isZero())
463 // Using pointer arithmetic to navigate the array.
464 return MarkUnsafe(Info);
466 if (AreAllZeroIndices)
467 AreAllZeroIndices = GEP->hasAllZeroIndices();
469 isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
470 if (Info.isUnsafe) return;
471 break;
473 case Instruction::BitCast:
474 if (isFirstElt) {
475 isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
476 if (Info.isUnsafe) return;
477 break;
479 DOUT << " Transformation preventing inst: " << *User;
480 return MarkUnsafe(Info);
481 case Instruction::Call:
482 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
483 if (isFirstElt) {
484 isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
485 if (Info.isUnsafe) return;
486 break;
489 DOUT << " Transformation preventing inst: " << *User;
490 return MarkUnsafe(Info);
491 default:
492 DOUT << " Transformation preventing inst: " << *User;
493 return MarkUnsafe(Info);
496 return; // All users look ok :)
499 /// AllUsersAreLoads - Return true if all users of this value are loads.
500 static bool AllUsersAreLoads(Value *Ptr) {
501 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
502 I != E; ++I)
503 if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
504 return false;
505 return true;
508 /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
509 /// aggregate allocation.
511 void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
512 AllocaInfo &Info) {
513 if (BitCastInst *C = dyn_cast<BitCastInst>(User))
514 return isSafeUseOfBitCastedAllocation(C, AI, Info);
516 if (LoadInst *LI = dyn_cast<LoadInst>(User))
517 if (!LI->isVolatile())
518 return;// Loads (returning a first class aggregrate) are always rewritable
520 if (StoreInst *SI = dyn_cast<StoreInst>(User))
521 if (!SI->isVolatile() && SI->getOperand(0) != AI)
522 return;// Store is ok if storing INTO the pointer, not storing the pointer
524 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
525 if (GEPI == 0)
526 return MarkUnsafe(Info);
528 gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
530 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
531 if (I == E ||
532 I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
533 return MarkUnsafe(Info);
536 ++I;
537 if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
539 bool IsAllZeroIndices = true;
541 // If the first index is a non-constant index into an array, see if we can
542 // handle it as a special case.
543 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
544 if (!isa<ConstantInt>(I.getOperand())) {
545 IsAllZeroIndices = 0;
546 uint64_t NumElements = AT->getNumElements();
548 // If this is an array index and the index is not constant, we cannot
549 // promote... that is unless the array has exactly one or two elements in
550 // it, in which case we CAN promote it, but we have to canonicalize this
551 // out if this is the only problem.
552 if ((NumElements == 1 || NumElements == 2) &&
553 AllUsersAreLoads(GEPI)) {
554 Info.needsCleanup = true;
555 return; // Canonicalization required!
557 return MarkUnsafe(Info);
561 // Walk through the GEP type indices, checking the types that this indexes
562 // into.
563 for (; I != E; ++I) {
564 // Ignore struct elements, no extra checking needed for these.
565 if (isa<StructType>(*I))
566 continue;
568 ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
569 if (!IdxVal) return MarkUnsafe(Info);
571 // Are all indices still zero?
572 IsAllZeroIndices &= IdxVal->isZero();
574 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
575 // This GEP indexes an array. Verify that this is an in-range constant
576 // integer. Specifically, consider A[0][i]. We cannot know that the user
577 // isn't doing invalid things like allowing i to index an out-of-range
578 // subscript that accesses A[1]. Because of this, we have to reject SROA
579 // of any accesses into structs where any of the components are variables.
580 if (IdxVal->getZExtValue() >= AT->getNumElements())
581 return MarkUnsafe(Info);
582 } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
583 if (IdxVal->getZExtValue() >= VT->getNumElements())
584 return MarkUnsafe(Info);
588 // If there are any non-simple uses of this getelementptr, make sure to reject
589 // them.
590 return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
593 /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
594 /// intrinsic can be promoted by SROA. At this point, we know that the operand
595 /// of the memintrinsic is a pointer to the beginning of the allocation.
596 void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
597 unsigned OpNo, AllocaInfo &Info) {
598 // If not constant length, give up.
599 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
600 if (!Length) return MarkUnsafe(Info);
602 // If not the whole aggregate, give up.
603 if (Length->getZExtValue() !=
604 TD->getTypePaddedSize(AI->getType()->getElementType()))
605 return MarkUnsafe(Info);
607 // We only know about memcpy/memset/memmove.
608 if (!isa<MemIntrinsic>(MI))
609 return MarkUnsafe(Info);
611 // Otherwise, we can transform it. Determine whether this is a memcpy/set
612 // into or out of the aggregate.
613 if (OpNo == 1)
614 Info.isMemCpyDst = true;
615 else {
616 assert(OpNo == 2);
617 Info.isMemCpySrc = true;
621 /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
622 /// are
623 void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
624 AllocaInfo &Info) {
625 for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
626 UI != E; ++UI) {
627 if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
628 isSafeUseOfBitCastedAllocation(BCU, AI, Info);
629 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
630 isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
631 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
632 if (SI->isVolatile())
633 return MarkUnsafe(Info);
635 // If storing the entire alloca in one chunk through a bitcasted pointer
636 // to integer, we can transform it. This happens (for example) when you
637 // cast a {i32,i32}* to i64* and store through it. This is similar to the
638 // memcpy case and occurs in various "byval" cases and emulated memcpys.
639 if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
640 TD->getTypePaddedSize(SI->getOperand(0)->getType()) ==
641 TD->getTypePaddedSize(AI->getType()->getElementType())) {
642 Info.isMemCpyDst = true;
643 continue;
645 return MarkUnsafe(Info);
646 } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
647 if (LI->isVolatile())
648 return MarkUnsafe(Info);
650 // If loading the entire alloca in one chunk through a bitcasted pointer
651 // to integer, we can transform it. This happens (for example) when you
652 // cast a {i32,i32}* to i64* and load through it. This is similar to the
653 // memcpy case and occurs in various "byval" cases and emulated memcpys.
654 if (isa<IntegerType>(LI->getType()) &&
655 TD->getTypePaddedSize(LI->getType()) ==
656 TD->getTypePaddedSize(AI->getType()->getElementType())) {
657 Info.isMemCpySrc = true;
658 continue;
660 return MarkUnsafe(Info);
661 } else if (isa<DbgInfoIntrinsic>(UI)) {
662 // If one user is DbgInfoIntrinsic then check if all users are
663 // DbgInfoIntrinsics.
664 if (OnlyUsedByDbgInfoIntrinsics(BC)) {
665 Info.needsCleanup = true;
666 return;
668 else
669 MarkUnsafe(Info);
671 else {
672 return MarkUnsafe(Info);
674 if (Info.isUnsafe) return;
678 /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
679 /// to its first element. Transform users of the cast to use the new values
680 /// instead.
681 void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
682 SmallVector<AllocaInst*, 32> &NewElts) {
683 Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
684 while (UI != UE) {
685 Instruction *User = cast<Instruction>(*UI++);
686 if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
687 RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
688 if (BCU->use_empty()) BCU->eraseFromParent();
689 continue;
692 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
693 // This must be memcpy/memmove/memset of the entire aggregate.
694 // Split into one per element.
695 RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
696 continue;
699 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
700 // If this is a store of the entire alloca from an integer, rewrite it.
701 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
702 continue;
705 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
706 // If this is a load of the entire alloca to an integer, rewrite it.
707 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
708 continue;
711 // Otherwise it must be some other user of a gep of the first pointer. Just
712 // leave these alone.
713 continue;
717 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
718 /// Rewrite it to copy or set the elements of the scalarized memory.
719 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
720 AllocationInst *AI,
721 SmallVector<AllocaInst*, 32> &NewElts) {
723 // If this is a memcpy/memmove, construct the other pointer as the
724 // appropriate type. The "Other" pointer is the pointer that goes to memory
725 // that doesn't have anything to do with the alloca that we are promoting. For
726 // memset, this Value* stays null.
727 Value *OtherPtr = 0;
728 unsigned MemAlignment = MI->getAlignment();
729 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
730 if (BCInst == MTI->getRawDest())
731 OtherPtr = MTI->getRawSource();
732 else {
733 assert(BCInst == MTI->getRawSource());
734 OtherPtr = MTI->getRawDest();
738 // If there is an other pointer, we want to convert it to the same pointer
739 // type as AI has, so we can GEP through it safely.
740 if (OtherPtr) {
741 // It is likely that OtherPtr is a bitcast, if so, remove it.
742 if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
743 OtherPtr = BC->getOperand(0);
744 // All zero GEPs are effectively bitcasts.
745 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
746 if (GEP->hasAllZeroIndices())
747 OtherPtr = GEP->getOperand(0);
749 if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
750 if (BCE->getOpcode() == Instruction::BitCast)
751 OtherPtr = BCE->getOperand(0);
753 // If the pointer is not the right type, insert a bitcast to the right
754 // type.
755 if (OtherPtr->getType() != AI->getType())
756 OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
757 MI);
760 // Process each element of the aggregate.
761 Value *TheFn = MI->getOperand(0);
762 const Type *BytePtrTy = MI->getRawDest()->getType();
763 bool SROADest = MI->getRawDest() == BCInst;
765 Constant *Zero = Constant::getNullValue(Type::Int32Ty);
767 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
768 // If this is a memcpy/memmove, emit a GEP of the other element address.
769 Value *OtherElt = 0;
770 unsigned OtherEltAlign = MemAlignment;
772 if (OtherPtr) {
773 Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
774 OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
775 OtherPtr->getNameStr()+"."+utostr(i),
776 MI);
777 uint64_t EltOffset;
778 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
779 if (const StructType *ST =
780 dyn_cast<StructType>(OtherPtrTy->getElementType())) {
781 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
782 } else {
783 const Type *EltTy =
784 cast<SequentialType>(OtherPtr->getType())->getElementType();
785 EltOffset = TD->getTypePaddedSize(EltTy)*i;
788 // The alignment of the other pointer is the guaranteed alignment of the
789 // element, which is affected by both the known alignment of the whole
790 // mem intrinsic and the alignment of the element. If the alignment of
791 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
792 // known alignment is just 4 bytes.
793 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
796 Value *EltPtr = NewElts[i];
797 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
799 // If we got down to a scalar, insert a load or store as appropriate.
800 if (EltTy->isSingleValueType()) {
801 if (isa<MemTransferInst>(MI)) {
802 if (SROADest) {
803 // From Other to Alloca.
804 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
805 new StoreInst(Elt, EltPtr, MI);
806 } else {
807 // From Alloca to Other.
808 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
809 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
811 continue;
813 assert(isa<MemSetInst>(MI));
815 // If the stored element is zero (common case), just store a null
816 // constant.
817 Constant *StoreVal;
818 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
819 if (CI->isZero()) {
820 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
821 } else {
822 // If EltTy is a vector type, get the element type.
823 const Type *ValTy = EltTy;
824 if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
825 ValTy = VTy->getElementType();
827 // Construct an integer with the right value.
828 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
829 APInt OneVal(EltSize, CI->getZExtValue());
830 APInt TotalVal(OneVal);
831 // Set each byte.
832 for (unsigned i = 0; 8*i < EltSize; ++i) {
833 TotalVal = TotalVal.shl(8);
834 TotalVal |= OneVal;
837 // Convert the integer value to the appropriate type.
838 StoreVal = ConstantInt::get(TotalVal);
839 if (isa<PointerType>(ValTy))
840 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
841 else if (ValTy->isFloatingPoint())
842 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
843 assert(StoreVal->getType() == ValTy && "Type mismatch!");
845 // If the requested value was a vector constant, create it.
846 if (EltTy != ValTy) {
847 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
848 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
849 StoreVal = ConstantVector::get(&Elts[0], NumElts);
852 new StoreInst(StoreVal, EltPtr, MI);
853 continue;
855 // Otherwise, if we're storing a byte variable, use a memset call for
856 // this element.
859 // Cast the element pointer to BytePtrTy.
860 if (EltPtr->getType() != BytePtrTy)
861 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
863 // Cast the other pointer (if we have one) to BytePtrTy.
864 if (OtherElt && OtherElt->getType() != BytePtrTy)
865 OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
866 MI);
868 unsigned EltSize = TD->getTypePaddedSize(EltTy);
870 // Finally, insert the meminst for this element.
871 if (isa<MemTransferInst>(MI)) {
872 Value *Ops[] = {
873 SROADest ? EltPtr : OtherElt, // Dest ptr
874 SROADest ? OtherElt : EltPtr, // Src ptr
875 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
876 ConstantInt::get(Type::Int32Ty, OtherEltAlign) // Align
878 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
879 } else {
880 assert(isa<MemSetInst>(MI));
881 Value *Ops[] = {
882 EltPtr, MI->getOperand(2), // Dest, Value,
883 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
884 Zero // Align
886 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
889 MI->eraseFromParent();
892 /// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
893 /// overwrites the entire allocation. Extract out the pieces of the stored
894 /// integer and store them individually.
895 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
896 AllocationInst *AI,
897 SmallVector<AllocaInst*, 32> &NewElts){
898 // Extract each element out of the integer according to its structure offset
899 // and store the element value to the individual alloca.
900 Value *SrcVal = SI->getOperand(0);
901 const Type *AllocaEltTy = AI->getType()->getElementType();
902 uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
904 // If this isn't a store of an integer to the whole alloca, it may be a store
905 // to the first element. Just ignore the store in this case and normal SROA
906 // will handle it.
907 if (!isa<IntegerType>(SrcVal->getType()) ||
908 TD->getTypePaddedSizeInBits(SrcVal->getType()) != AllocaSizeBits)
909 return;
911 DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
913 // There are two forms here: AI could be an array or struct. Both cases
914 // have different ways to compute the element offset.
915 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
916 const StructLayout *Layout = TD->getStructLayout(EltSTy);
918 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
919 // Get the number of bits to shift SrcVal to get the value.
920 const Type *FieldTy = EltSTy->getElementType(i);
921 uint64_t Shift = Layout->getElementOffsetInBits(i);
923 if (TD->isBigEndian())
924 Shift = AllocaSizeBits-Shift-TD->getTypePaddedSizeInBits(FieldTy);
926 Value *EltVal = SrcVal;
927 if (Shift) {
928 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
929 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
930 "sroa.store.elt", SI);
933 // Truncate down to an integer of the right size.
934 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
936 // Ignore zero sized fields like {}, they obviously contain no data.
937 if (FieldSizeBits == 0) continue;
939 if (FieldSizeBits != AllocaSizeBits)
940 EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI);
941 Value *DestField = NewElts[i];
942 if (EltVal->getType() == FieldTy) {
943 // Storing to an integer field of this size, just do it.
944 } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
945 // Bitcast to the right element type (for fp/vector values).
946 EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
947 } else {
948 // Otherwise, bitcast the dest pointer (for aggregates).
949 DestField = new BitCastInst(DestField,
950 PointerType::getUnqual(EltVal->getType()),
951 "", SI);
953 new StoreInst(EltVal, DestField, SI);
956 } else {
957 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
958 const Type *ArrayEltTy = ATy->getElementType();
959 uint64_t ElementOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
960 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
962 uint64_t Shift;
964 if (TD->isBigEndian())
965 Shift = AllocaSizeBits-ElementOffset;
966 else
967 Shift = 0;
969 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
970 // Ignore zero sized fields like {}, they obviously contain no data.
971 if (ElementSizeBits == 0) continue;
973 Value *EltVal = SrcVal;
974 if (Shift) {
975 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
976 EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
977 "sroa.store.elt", SI);
980 // Truncate down to an integer of the right size.
981 if (ElementSizeBits != AllocaSizeBits)
982 EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI);
983 Value *DestField = NewElts[i];
984 if (EltVal->getType() == ArrayEltTy) {
985 // Storing to an integer field of this size, just do it.
986 } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
987 // Bitcast to the right element type (for fp/vector values).
988 EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
989 } else {
990 // Otherwise, bitcast the dest pointer (for aggregates).
991 DestField = new BitCastInst(DestField,
992 PointerType::getUnqual(EltVal->getType()),
993 "", SI);
995 new StoreInst(EltVal, DestField, SI);
997 if (TD->isBigEndian())
998 Shift -= ElementOffset;
999 else
1000 Shift += ElementOffset;
1004 SI->eraseFromParent();
1007 /// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1008 /// an integer. Load the individual pieces to form the aggregate value.
1009 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
1010 SmallVector<AllocaInst*, 32> &NewElts) {
1011 // Extract each element out of the NewElts according to its structure offset
1012 // and form the result value.
1013 const Type *AllocaEltTy = AI->getType()->getElementType();
1014 uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
1016 // If this isn't a load of the whole alloca to an integer, it may be a load
1017 // of the first element. Just ignore the load in this case and normal SROA
1018 // will handle it.
1019 if (!isa<IntegerType>(LI->getType()) ||
1020 TD->getTypePaddedSizeInBits(LI->getType()) != AllocaSizeBits)
1021 return;
1023 DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
1025 // There are two forms here: AI could be an array or struct. Both cases
1026 // have different ways to compute the element offset.
1027 const StructLayout *Layout = 0;
1028 uint64_t ArrayEltBitOffset = 0;
1029 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1030 Layout = TD->getStructLayout(EltSTy);
1031 } else {
1032 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1033 ArrayEltBitOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
1036 Value *ResultVal = Constant::getNullValue(LI->getType());
1038 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1039 // Load the value from the alloca. If the NewElt is an aggregate, cast
1040 // the pointer to an integer of the same size before doing the load.
1041 Value *SrcField = NewElts[i];
1042 const Type *FieldTy =
1043 cast<PointerType>(SrcField->getType())->getElementType();
1044 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1046 // Ignore zero sized fields like {}, they obviously contain no data.
1047 if (FieldSizeBits == 0) continue;
1049 const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
1050 if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1051 !isa<VectorType>(FieldTy))
1052 SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy),
1053 "", LI);
1054 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1056 // If SrcField is a fp or vector of the right size but that isn't an
1057 // integer type, bitcast to an integer so we can shift it.
1058 if (SrcField->getType() != FieldIntTy)
1059 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1061 // Zero extend the field to be the same size as the final alloca so that
1062 // we can shift and insert it.
1063 if (SrcField->getType() != ResultVal->getType())
1064 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1066 // Determine the number of bits to shift SrcField.
1067 uint64_t Shift;
1068 if (Layout) // Struct case.
1069 Shift = Layout->getElementOffsetInBits(i);
1070 else // Array case.
1071 Shift = i*ArrayEltBitOffset;
1073 if (TD->isBigEndian())
1074 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1076 if (Shift) {
1077 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1078 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1081 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1084 LI->replaceAllUsesWith(ResultVal);
1085 LI->eraseFromParent();
1089 /// HasPadding - Return true if the specified type has any structure or
1090 /// alignment padding, false otherwise.
1091 static bool HasPadding(const Type *Ty, const TargetData &TD) {
1092 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1093 const StructLayout *SL = TD.getStructLayout(STy);
1094 unsigned PrevFieldBitOffset = 0;
1095 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1096 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1098 // Padding in sub-elements?
1099 if (HasPadding(STy->getElementType(i), TD))
1100 return true;
1102 // Check to see if there is any padding between this element and the
1103 // previous one.
1104 if (i) {
1105 unsigned PrevFieldEnd =
1106 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1107 if (PrevFieldEnd < FieldBitOffset)
1108 return true;
1111 PrevFieldBitOffset = FieldBitOffset;
1114 // Check for tail padding.
1115 if (unsigned EltCount = STy->getNumElements()) {
1116 unsigned PrevFieldEnd = PrevFieldBitOffset +
1117 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1118 if (PrevFieldEnd < SL->getSizeInBits())
1119 return true;
1122 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1123 return HasPadding(ATy->getElementType(), TD);
1124 } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1125 return HasPadding(VTy->getElementType(), TD);
1127 return TD.getTypeSizeInBits(Ty) != TD.getTypePaddedSizeInBits(Ty);
1130 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1131 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
1132 /// or 1 if safe after canonicalization has been performed.
1134 int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1135 // Loop over the use list of the alloca. We can only transform it if all of
1136 // the users are safe to transform.
1137 AllocaInfo Info;
1139 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1140 I != E; ++I) {
1141 isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1142 if (Info.isUnsafe) {
1143 DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
1144 return 0;
1148 // Okay, we know all the users are promotable. If the aggregate is a memcpy
1149 // source and destination, we have to be careful. In particular, the memcpy
1150 // could be moving around elements that live in structure padding of the LLVM
1151 // types, but may actually be used. In these cases, we refuse to promote the
1152 // struct.
1153 if (Info.isMemCpySrc && Info.isMemCpyDst &&
1154 HasPadding(AI->getType()->getElementType(), *TD))
1155 return 0;
1157 // If we require cleanup, return 1, otherwise return 3.
1158 return Info.needsCleanup ? 1 : 3;
1161 /// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1162 /// is canonicalized here.
1163 void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1164 gep_type_iterator I = gep_type_begin(GEPI);
1165 ++I;
1167 const ArrayType *AT = dyn_cast<ArrayType>(*I);
1168 if (!AT)
1169 return;
1171 uint64_t NumElements = AT->getNumElements();
1173 if (isa<ConstantInt>(I.getOperand()))
1174 return;
1176 if (NumElements == 1) {
1177 GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
1178 return;
1181 assert(NumElements == 2 && "Unhandled case!");
1182 // All users of the GEP must be loads. At each use of the GEP, insert
1183 // two loads of the appropriate indexed GEP and select between them.
1184 Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
1185 Constant::getNullValue(I.getOperand()->getType()),
1186 "isone", GEPI);
1187 // Insert the new GEP instructions, which are properly indexed.
1188 SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1189 Indices[1] = Constant::getNullValue(Type::Int32Ty);
1190 Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1191 Indices.begin(),
1192 Indices.end(),
1193 GEPI->getName()+".0", GEPI);
1194 Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1195 Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1196 Indices.begin(),
1197 Indices.end(),
1198 GEPI->getName()+".1", GEPI);
1199 // Replace all loads of the variable index GEP with loads from both
1200 // indexes and a select.
1201 while (!GEPI->use_empty()) {
1202 LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1203 Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1204 Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
1205 Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1206 LI->replaceAllUsesWith(R);
1207 LI->eraseFromParent();
1209 GEPI->eraseFromParent();
1213 /// CleanupAllocaUsers - If SROA reported that it can promote the specified
1214 /// allocation, but only if cleaned up, perform the cleanups required.
1215 void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1216 // At this point, we know that the end result will be SROA'd and promoted, so
1217 // we can insert ugly code if required so long as sroa+mem2reg will clean it
1218 // up.
1219 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1220 UI != E; ) {
1221 User *U = *UI++;
1222 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1223 CleanupGEP(GEPI);
1224 else if (Instruction *I = dyn_cast<Instruction>(U)) {
1225 SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1226 if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1227 // Safe to remove debug info uses.
1228 while (!DbgInUses.empty()) {
1229 DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1230 DI->eraseFromParent();
1232 I->eraseFromParent();
1238 /// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1239 /// the offset specified by Offset (which is specified in bytes).
1241 /// There are two cases we handle here:
1242 /// 1) A union of vector types of the same size and potentially its elements.
1243 /// Here we turn element accesses into insert/extract element operations.
1244 /// This promotes a <4 x float> with a store of float to the third element
1245 /// into a <4 x float> that uses insert element.
1246 /// 2) A fully general blob of memory, which we turn into some (potentially
1247 /// large) integer type with extract and insert operations where the loads
1248 /// and stores would mutate the memory.
1249 static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1250 unsigned AllocaSize, const TargetData &TD) {
1251 // If this could be contributing to a vector, analyze it.
1252 if (VecTy != Type::VoidTy) { // either null or a vector type.
1254 // If the In type is a vector that is the same size as the alloca, see if it
1255 // matches the existing VecTy.
1256 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1257 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1258 // If we're storing/loading a vector of the right size, allow it as a
1259 // vector. If this the first vector we see, remember the type so that
1260 // we know the element size.
1261 if (VecTy == 0)
1262 VecTy = VInTy;
1263 return;
1265 } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1266 (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1267 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1268 // If we're accessing something that could be an element of a vector, see
1269 // if the implied vector agrees with what we already have and if Offset is
1270 // compatible with it.
1271 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1272 if (Offset % EltSize == 0 &&
1273 AllocaSize % EltSize == 0 &&
1274 (VecTy == 0 ||
1275 cast<VectorType>(VecTy)->getElementType()
1276 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1277 if (VecTy == 0)
1278 VecTy = VectorType::get(In, AllocaSize/EltSize);
1279 return;
1284 // Otherwise, we have a case that we can't handle with an optimized vector
1285 // form. We can still turn this into a large integer.
1286 VecTy = Type::VoidTy;
1289 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
1290 /// its accesses to use a to single vector type, return true, and set VecTy to
1291 /// the new type. If we could convert the alloca into a single promotable
1292 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
1293 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
1294 /// is the current offset from the base of the alloca being analyzed.
1296 /// If we see at least one access to the value that is as a vector type, set the
1297 /// SawVec flag.
1299 bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1300 bool &SawVec, uint64_t Offset,
1301 unsigned AllocaSize) {
1302 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1303 Instruction *User = cast<Instruction>(*UI);
1305 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1306 // Don't break volatile loads.
1307 if (LI->isVolatile())
1308 return false;
1309 MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD);
1310 SawVec |= isa<VectorType>(LI->getType());
1311 continue;
1314 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1315 // Storing the pointer, not into the value?
1316 if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1317 MergeInType(SI->getOperand(0)->getType(), Offset, VecTy, AllocaSize, *TD);
1318 SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1319 continue;
1322 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1323 if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1324 AllocaSize))
1325 return false;
1326 IsNotTrivial = true;
1327 continue;
1330 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1331 // If this is a GEP with a variable indices, we can't handle it.
1332 if (!GEP->hasAllConstantIndices())
1333 return false;
1335 // Compute the offset that this GEP adds to the pointer.
1336 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1337 uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1338 &Indices[0], Indices.size());
1339 // See if all uses can be converted.
1340 if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1341 AllocaSize))
1342 return false;
1343 IsNotTrivial = true;
1344 continue;
1347 // If this is a constant sized memset of a constant value (e.g. 0) we can
1348 // handle it.
1349 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1350 // Store of constant value and constant size.
1351 if (isa<ConstantInt>(MSI->getValue()) &&
1352 isa<ConstantInt>(MSI->getLength())) {
1353 IsNotTrivial = true;
1354 continue;
1358 // If this is a memcpy or memmove into or out of the whole allocation, we
1359 // can handle it like a load or store of the scalar type.
1360 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1361 if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1362 if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1363 IsNotTrivial = true;
1364 continue;
1368 // Ignore dbg intrinsic.
1369 if (isa<DbgInfoIntrinsic>(User))
1370 continue;
1372 // Otherwise, we cannot handle this!
1373 return false;
1376 return true;
1380 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1381 /// directly. This happens when we are converting an "integer union" to a
1382 /// single integer scalar, or when we are converting a "vector union" to a
1383 /// vector with insert/extractelement instructions.
1385 /// Offset is an offset from the original alloca, in bits that need to be
1386 /// shifted to the right. By the end of this, there should be no uses of Ptr.
1387 void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1388 while (!Ptr->use_empty()) {
1389 Instruction *User = cast<Instruction>(Ptr->use_back());
1391 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1392 ConvertUsesToScalar(CI, NewAI, Offset);
1393 CI->eraseFromParent();
1394 continue;
1397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1398 // Compute the offset that this GEP adds to the pointer.
1399 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1400 uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1401 &Indices[0], Indices.size());
1402 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1403 GEP->eraseFromParent();
1404 continue;
1407 IRBuilder<> Builder(User->getParent(), User);
1409 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1410 // The load is a bit extract from NewAI shifted right by Offset bits.
1411 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1412 Value *NewLoadVal
1413 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1414 LI->replaceAllUsesWith(NewLoadVal);
1415 LI->eraseFromParent();
1416 continue;
1419 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1420 assert(SI->getOperand(0) != Ptr && "Consistency error!");
1421 Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1422 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1423 Builder);
1424 Builder.CreateStore(New, NewAI);
1425 SI->eraseFromParent();
1426 continue;
1429 // If this is a constant sized memset of a constant value (e.g. 0) we can
1430 // transform it into a store of the expanded constant value.
1431 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1432 assert(MSI->getRawDest() == Ptr && "Consistency error!");
1433 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1434 if (NumBytes != 0) {
1435 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1437 // Compute the value replicated the right number of times.
1438 APInt APVal(NumBytes*8, Val);
1440 // Splat the value if non-zero.
1441 if (Val)
1442 for (unsigned i = 1; i != NumBytes; ++i)
1443 APVal |= APVal << 8;
1445 Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1446 Value *New = ConvertScalar_InsertValue(ConstantInt::get(APVal), Old,
1447 Offset, Builder);
1448 Builder.CreateStore(New, NewAI);
1450 MSI->eraseFromParent();
1451 continue;
1454 // If this is a memcpy or memmove into or out of the whole allocation, we
1455 // can handle it like a load or store of the scalar type.
1456 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1457 assert(Offset == 0 && "must be store to start of alloca");
1459 // If the source and destination are both to the same alloca, then this is
1460 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
1461 // as appropriate.
1462 AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1464 if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1465 // Dest must be OrigAI, change this to be a load from the original
1466 // pointer (bitcasted), then a store to our new alloca.
1467 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1468 Value *SrcPtr = MTI->getSource();
1469 SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1471 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1472 SrcVal->setAlignment(MTI->getAlignment());
1473 Builder.CreateStore(SrcVal, NewAI);
1474 } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1475 // Src must be OrigAI, change this to be a load from NewAI then a store
1476 // through the original dest pointer (bitcasted).
1477 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1478 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1480 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1481 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1482 NewStore->setAlignment(MTI->getAlignment());
1483 } else {
1484 // Noop transfer. Src == Dst
1488 MTI->eraseFromParent();
1489 continue;
1492 // If user is a dbg info intrinsic then it is safe to remove it.
1493 if (isa<DbgInfoIntrinsic>(User)) {
1494 User->eraseFromParent();
1495 continue;
1498 assert(0 && "Unsupported operation!");
1499 abort();
1503 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1504 /// or vector value FromVal, extracting the bits from the offset specified by
1505 /// Offset. This returns the value, which is of type ToType.
1507 /// This happens when we are converting an "integer union" to a single
1508 /// integer scalar, or when we are converting a "vector union" to a vector with
1509 /// insert/extractelement instructions.
1511 /// Offset is an offset from the original alloca, in bits that need to be
1512 /// shifted to the right.
1513 Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1514 uint64_t Offset, IRBuilder<> &Builder) {
1515 // If the load is of the whole new alloca, no conversion is needed.
1516 if (FromVal->getType() == ToType && Offset == 0)
1517 return FromVal;
1519 // If the result alloca is a vector type, this is either an element
1520 // access or a bitcast to another vector type of the same size.
1521 if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1522 if (isa<VectorType>(ToType))
1523 return Builder.CreateBitCast(FromVal, ToType, "tmp");
1525 // Otherwise it must be an element access.
1526 unsigned Elt = 0;
1527 if (Offset) {
1528 unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
1529 Elt = Offset/EltSize;
1530 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1532 // Return the element extracted out of it.
1533 Value *V = Builder.CreateExtractElement(FromVal,
1534 ConstantInt::get(Type::Int32Ty,Elt),
1535 "tmp");
1536 if (V->getType() != ToType)
1537 V = Builder.CreateBitCast(V, ToType, "tmp");
1538 return V;
1541 // If ToType is a first class aggregate, extract out each of the pieces and
1542 // use insertvalue's to form the FCA.
1543 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1544 const StructLayout &Layout = *TD->getStructLayout(ST);
1545 Value *Res = UndefValue::get(ST);
1546 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1547 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1548 Offset+Layout.getElementOffsetInBits(i),
1549 Builder);
1550 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1552 return Res;
1555 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1556 uint64_t EltSize = TD->getTypePaddedSizeInBits(AT->getElementType());
1557 Value *Res = UndefValue::get(AT);
1558 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1559 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1560 Offset+i*EltSize, Builder);
1561 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1563 return Res;
1566 // Otherwise, this must be a union that was converted to an integer value.
1567 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1569 // If this is a big-endian system and the load is narrower than the
1570 // full alloca type, we need to do a shift to get the right bits.
1571 int ShAmt = 0;
1572 if (TD->isBigEndian()) {
1573 // On big-endian machines, the lowest bit is stored at the bit offset
1574 // from the pointer given by getTypeStoreSizeInBits. This matters for
1575 // integers with a bitwidth that is not a multiple of 8.
1576 ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1577 TD->getTypeStoreSizeInBits(ToType) - Offset;
1578 } else {
1579 ShAmt = Offset;
1582 // Note: we support negative bitwidths (with shl) which are not defined.
1583 // We do this to support (f.e.) loads off the end of a structure where
1584 // only some bits are used.
1585 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1586 FromVal = Builder.CreateLShr(FromVal, ConstantInt::get(FromVal->getType(),
1587 ShAmt), "tmp");
1588 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1589 FromVal = Builder.CreateShl(FromVal, ConstantInt::get(FromVal->getType(),
1590 -ShAmt), "tmp");
1592 // Finally, unconditionally truncate the integer to the right width.
1593 unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1594 if (LIBitWidth < NTy->getBitWidth())
1595 FromVal = Builder.CreateTrunc(FromVal, IntegerType::get(LIBitWidth), "tmp");
1596 else if (LIBitWidth > NTy->getBitWidth())
1597 FromVal = Builder.CreateZExt(FromVal, IntegerType::get(LIBitWidth), "tmp");
1599 // If the result is an integer, this is a trunc or bitcast.
1600 if (isa<IntegerType>(ToType)) {
1601 // Should be done.
1602 } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1603 // Just do a bitcast, we know the sizes match up.
1604 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1605 } else {
1606 // Otherwise must be a pointer.
1607 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1609 assert(FromVal->getType() == ToType && "Didn't convert right?");
1610 return FromVal;
1614 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1615 /// or vector value "Old" at the offset specified by Offset.
1617 /// This happens when we are converting an "integer union" to a
1618 /// single integer scalar, or when we are converting a "vector union" to a
1619 /// vector with insert/extractelement instructions.
1621 /// Offset is an offset from the original alloca, in bits that need to be
1622 /// shifted to the right.
1623 Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1624 uint64_t Offset, IRBuilder<> &Builder) {
1626 // Convert the stored type to the actual type, shift it left to insert
1627 // then 'or' into place.
1628 const Type *AllocaType = Old->getType();
1630 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1631 uint64_t VecSize = TD->getTypePaddedSizeInBits(VTy);
1632 uint64_t ValSize = TD->getTypePaddedSizeInBits(SV->getType());
1634 // Changing the whole vector with memset or with an access of a different
1635 // vector type?
1636 if (ValSize == VecSize)
1637 return Builder.CreateBitCast(SV, AllocaType, "tmp");
1639 uint64_t EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
1641 // Must be an element insertion.
1642 unsigned Elt = Offset/EltSize;
1644 if (SV->getType() != VTy->getElementType())
1645 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1647 SV = Builder.CreateInsertElement(Old, SV,
1648 ConstantInt::get(Type::Int32Ty, Elt),
1649 "tmp");
1650 return SV;
1653 // If SV is a first-class aggregate value, insert each value recursively.
1654 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1655 const StructLayout &Layout = *TD->getStructLayout(ST);
1656 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1657 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1658 Old = ConvertScalar_InsertValue(Elt, Old,
1659 Offset+Layout.getElementOffsetInBits(i),
1660 Builder);
1662 return Old;
1665 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1666 uint64_t EltSize = TD->getTypePaddedSizeInBits(AT->getElementType());
1667 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1668 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1669 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1671 return Old;
1674 // If SV is a float, convert it to the appropriate integer type.
1675 // If it is a pointer, do the same.
1676 unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1677 unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1678 unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1679 unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1680 if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1681 SV = Builder.CreateBitCast(SV, IntegerType::get(SrcWidth), "tmp");
1682 else if (isa<PointerType>(SV->getType()))
1683 SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
1685 // Zero extend or truncate the value if needed.
1686 if (SV->getType() != AllocaType) {
1687 if (SV->getType()->getPrimitiveSizeInBits() <
1688 AllocaType->getPrimitiveSizeInBits())
1689 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1690 else {
1691 // Truncation may be needed if storing more than the alloca can hold
1692 // (undefined behavior).
1693 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1694 SrcWidth = DestWidth;
1695 SrcStoreWidth = DestStoreWidth;
1699 // If this is a big-endian system and the store is narrower than the
1700 // full alloca type, we need to do a shift to get the right bits.
1701 int ShAmt = 0;
1702 if (TD->isBigEndian()) {
1703 // On big-endian machines, the lowest bit is stored at the bit offset
1704 // from the pointer given by getTypeStoreSizeInBits. This matters for
1705 // integers with a bitwidth that is not a multiple of 8.
1706 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1707 } else {
1708 ShAmt = Offset;
1711 // Note: we support negative bitwidths (with shr) which are not defined.
1712 // We do this to support (f.e.) stores off the end of a structure where
1713 // only some bits in the structure are set.
1714 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1715 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1716 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt), "tmp");
1717 Mask <<= ShAmt;
1718 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1719 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt), "tmp");
1720 Mask = Mask.lshr(-ShAmt);
1723 // Mask out the bits we are about to insert from the old value, and or
1724 // in the new bits.
1725 if (SrcWidth != DestWidth) {
1726 assert(DestWidth > SrcWidth);
1727 Old = Builder.CreateAnd(Old, ConstantInt::get(~Mask), "mask");
1728 SV = Builder.CreateOr(Old, SV, "ins");
1730 return SV;
1735 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1736 /// some part of a constant global variable. This intentionally only accepts
1737 /// constant expressions because we don't can't rewrite arbitrary instructions.
1738 static bool PointsToConstantGlobal(Value *V) {
1739 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1740 return GV->isConstant();
1741 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1742 if (CE->getOpcode() == Instruction::BitCast ||
1743 CE->getOpcode() == Instruction::GetElementPtr)
1744 return PointsToConstantGlobal(CE->getOperand(0));
1745 return false;
1748 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1749 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
1750 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
1751 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
1752 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1753 /// the alloca, and if the source pointer is a pointer to a constant global, we
1754 /// can optimize this.
1755 static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1756 bool isOffset) {
1757 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1758 if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1759 // Ignore non-volatile loads, they are always ok.
1760 if (!LI->isVolatile())
1761 continue;
1763 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1764 // If uses of the bitcast are ok, we are ok.
1765 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1766 return false;
1767 continue;
1769 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1770 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1771 // doesn't, it does.
1772 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1773 isOffset || !GEP->hasAllZeroIndices()))
1774 return false;
1775 continue;
1778 // If this is isn't our memcpy/memmove, reject it as something we can't
1779 // handle.
1780 if (!isa<MemTransferInst>(*UI))
1781 return false;
1783 // If we already have seen a copy, reject the second one.
1784 if (TheCopy) return false;
1786 // If the pointer has been offset from the start of the alloca, we can't
1787 // safely handle this.
1788 if (isOffset) return false;
1790 // If the memintrinsic isn't using the alloca as the dest, reject it.
1791 if (UI.getOperandNo() != 1) return false;
1793 MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1795 // If the source of the memcpy/move is not a constant global, reject it.
1796 if (!PointsToConstantGlobal(MI->getOperand(2)))
1797 return false;
1799 // Otherwise, the transform is safe. Remember the copy instruction.
1800 TheCopy = MI;
1802 return true;
1805 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1806 /// modified by a copy from a constant global. If we can prove this, we can
1807 /// replace any uses of the alloca with uses of the global directly.
1808 Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1809 Instruction *TheCopy = 0;
1810 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1811 return TheCopy;
1812 return 0;