1 //===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs a limited form of tail duplication, intended to simplify
11 // CFGs by removing some unconditional branches. This pass is necessary to
12 // straighten out loops created by the C front-end, but also is capable of
13 // making other code nicer. After this pass is run, the CFG simplify pass
14 // should be run to clean up the mess.
16 // This pass could be enhanced in the future to use profile information to be
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "tailduplicate"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/Constant.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Type.h"
29 #include "llvm/Support/CFG.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/SmallPtrSet.h"
40 STATISTIC(NumEliminated
, "Number of unconditional branches eliminated");
42 static cl::opt
<unsigned>
43 TailDupThreshold("taildup-threshold",
44 cl::desc("Max block size to tail duplicate"),
45 cl::init(1), cl::Hidden
);
48 class VISIBILITY_HIDDEN TailDup
: public FunctionPass
{
49 bool runOnFunction(Function
&F
);
51 static char ID
; // Pass identification, replacement for typeid
52 TailDup() : FunctionPass(&ID
) {}
55 inline bool shouldEliminateUnconditionalBranch(TerminatorInst
*, unsigned);
56 inline void eliminateUnconditionalBranch(BranchInst
*BI
);
57 SmallPtrSet
<BasicBlock
*, 4> CycleDetector
;
62 static RegisterPass
<TailDup
> X("tailduplicate", "Tail Duplication");
64 // Public interface to the Tail Duplication pass
65 FunctionPass
*llvm::createTailDuplicationPass() { return new TailDup(); }
67 /// runOnFunction - Top level algorithm - Loop over each unconditional branch in
68 /// the function, eliminating it if it looks attractive enough. CycleDetector
69 /// prevents infinite loops by checking that we aren't redirecting a branch to
70 /// a place it already pointed to earlier; see PR 2323.
71 bool TailDup::runOnFunction(Function
&F
) {
73 CycleDetector
.clear();
74 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ) {
75 if (shouldEliminateUnconditionalBranch(I
->getTerminator(),
77 eliminateUnconditionalBranch(cast
<BranchInst
>(I
->getTerminator()));
81 CycleDetector
.clear();
87 /// shouldEliminateUnconditionalBranch - Return true if this branch looks
88 /// attractive to eliminate. We eliminate the branch if the destination basic
89 /// block has <= 5 instructions in it, not counting PHI nodes. In practice,
90 /// since one of these is a terminator instruction, this means that we will add
91 /// up to 4 instructions to the new block.
93 /// We don't count PHI nodes in the count since they will be removed when the
94 /// contents of the block are copied over.
96 bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst
*TI
,
98 BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
);
99 if (!BI
|| !BI
->isUnconditional()) return false; // Not an uncond branch!
101 BasicBlock
*Dest
= BI
->getSuccessor(0);
102 if (Dest
== BI
->getParent()) return false; // Do not loop infinitely!
104 // Do not inline a block if we will just get another branch to the same block!
105 TerminatorInst
*DTI
= Dest
->getTerminator();
106 if (BranchInst
*DBI
= dyn_cast
<BranchInst
>(DTI
))
107 if (DBI
->isUnconditional() && DBI
->getSuccessor(0) == Dest
)
108 return false; // Do not loop infinitely!
110 // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
111 // because doing so would require breaking critical edges. This should be
113 if (!DTI
->use_empty())
116 // Do not bother with blocks with only a single predecessor: simplify
117 // CFG will fold these two blocks together!
118 pred_iterator PI
= pred_begin(Dest
), PE
= pred_end(Dest
);
120 if (PI
== PE
) return false; // Exactly one predecessor!
122 BasicBlock::iterator I
= Dest
->getFirstNonPHI();
124 for (unsigned Size
= 0; I
!= Dest
->end(); ++I
) {
125 if (Size
== Threshold
) return false; // The block is too large.
127 // Don't tail duplicate call instructions. They are very large compared to
128 // other instructions.
129 if (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) return false;
131 // Allso alloca and malloc.
132 if (isa
<AllocationInst
>(I
)) return false;
134 // Some vector instructions can expand into a number of instructions.
135 if (isa
<ShuffleVectorInst
>(I
) || isa
<ExtractElementInst
>(I
) ||
136 isa
<InsertElementInst
>(I
)) return false;
138 // Only count instructions that are not debugger intrinsics.
139 if (!isa
<DbgInfoIntrinsic
>(I
)) ++Size
;
142 // Do not tail duplicate a block that has thousands of successors into a block
143 // with a single successor if the block has many other predecessors. This can
144 // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
145 // cases that have a large number of indirect gotos.
146 unsigned NumSuccs
= DTI
->getNumSuccessors();
148 unsigned TooMany
= 128;
149 if (NumSuccs
>= TooMany
) return false;
150 TooMany
= TooMany
/NumSuccs
;
151 for (; PI
!= PE
; ++PI
)
152 if (TooMany
-- == 0) return false;
155 // If this unconditional branch is a fall-through, be careful about
156 // tail duplicating it. In particular, we don't want to taildup it if the
157 // original block will still be there after taildup is completed: doing so
158 // would eliminate the fall-through, requiring unconditional branches.
159 Function::iterator DestI
= Dest
;
160 if (&*--DestI
== BI
->getParent()) {
161 // The uncond branch is a fall-through. Tail duplication of the block is
162 // will eliminate the fall-through-ness and end up cloning the terminator
163 // at the end of the Dest block. Since the original Dest block will
164 // continue to exist, this means that one or the other will not be able to
165 // fall through. One typical example that this helps with is code like:
170 // Cloning the 'if b' block into the end of the first foo block is messy.
172 // The messy case is when the fall-through block falls through to other
173 // blocks. This is what we would be preventing if we cloned the block.
175 if (++DestI
!= Dest
->getParent()->end()) {
176 BasicBlock
*DestSucc
= DestI
;
177 // If any of Dest's successors are fall-throughs, don't do this xform.
178 for (succ_iterator SI
= succ_begin(Dest
), SE
= succ_end(Dest
);
185 // Finally, check that we haven't redirected to this target block earlier;
186 // there are cases where we loop forever if we don't check this (PR 2323).
187 if (!CycleDetector
.insert(Dest
))
193 /// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
194 /// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we
195 /// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
196 /// DstBlock, return it.
197 static BasicBlock
*FindObviousSharedDomOf(BasicBlock
*SrcBlock
,
198 BasicBlock
*DstBlock
) {
199 // SrcBlock must have a single predecessor.
200 pred_iterator PI
= pred_begin(SrcBlock
), PE
= pred_end(SrcBlock
);
201 if (PI
== PE
|| ++PI
!= PE
) return 0;
203 BasicBlock
*SrcPred
= *pred_begin(SrcBlock
);
205 // Look at the predecessors of DstBlock. One of them will be SrcBlock. If
206 // there is only one other pred, get it, otherwise we can't handle it.
207 PI
= pred_begin(DstBlock
); PE
= pred_end(DstBlock
);
208 BasicBlock
*DstOtherPred
= 0;
209 if (*PI
== SrcBlock
) {
210 if (++PI
== PE
) return 0;
212 if (++PI
!= PE
) return 0;
215 if (++PI
== PE
|| *PI
!= SrcBlock
|| ++PI
!= PE
) return 0;
218 // We can handle two situations here: "if then" and "if then else" blocks. An
219 // 'if then' situation is just where DstOtherPred == SrcPred.
220 if (DstOtherPred
== SrcPred
)
223 // Check to see if we have an "if then else" situation, which means that
224 // DstOtherPred will have a single predecessor and it will be SrcPred.
225 PI
= pred_begin(DstOtherPred
); PE
= pred_end(DstOtherPred
);
226 if (PI
!= PE
&& *PI
== SrcPred
) {
227 if (++PI
!= PE
) return 0; // Not a single pred.
228 return SrcPred
; // Otherwise, it's an "if then" situation. Return the if.
231 // Otherwise, this is something we can't handle.
236 /// eliminateUnconditionalBranch - Clone the instructions from the destination
237 /// block into the source block, eliminating the specified unconditional branch.
238 /// If the destination block defines values used by successors of the dest
239 /// block, we may need to insert PHI nodes.
241 void TailDup::eliminateUnconditionalBranch(BranchInst
*Branch
) {
242 BasicBlock
*SourceBlock
= Branch
->getParent();
243 BasicBlock
*DestBlock
= Branch
->getSuccessor(0);
244 assert(SourceBlock
!= DestBlock
&& "Our predicate is broken!");
246 DOUT
<< "TailDuplication[" << SourceBlock
->getParent()->getName()
247 << "]: Eliminating branch: " << *Branch
;
249 // See if we can avoid duplicating code by moving it up to a dominator of both
251 if (BasicBlock
*DomBlock
= FindObviousSharedDomOf(SourceBlock
, DestBlock
)) {
252 DOUT
<< "Found shared dominator: " << DomBlock
->getName() << "\n";
254 // If there are non-phi instructions in DestBlock that have no operands
255 // defined in DestBlock, and if the instruction has no side effects, we can
256 // move the instruction to DomBlock instead of duplicating it.
257 BasicBlock::iterator BBI
= DestBlock
->getFirstNonPHI();
258 while (!isa
<TerminatorInst
>(BBI
)) {
259 Instruction
*I
= BBI
++;
261 bool CanHoist
= !I
->isTrapping() && !I
->mayWriteToMemory();
263 for (unsigned op
= 0, e
= I
->getNumOperands(); op
!= e
; ++op
)
264 if (Instruction
*OpI
= dyn_cast
<Instruction
>(I
->getOperand(op
)))
265 if (OpI
->getParent() == DestBlock
||
266 (isa
<InvokeInst
>(OpI
) && OpI
->getParent() == DomBlock
)) {
271 // Remove from DestBlock, move right before the term in DomBlock.
272 DestBlock
->getInstList().remove(I
);
273 DomBlock
->getInstList().insert(DomBlock
->getTerminator(), I
);
274 DOUT
<< "Hoisted: " << *I
;
280 // Tail duplication can not update SSA properties correctly if the values
281 // defined in the duplicated tail are used outside of the tail itself. For
282 // this reason, we spill all values that are used outside of the tail to the
284 for (BasicBlock::iterator I
= DestBlock
->begin(); I
!= DestBlock
->end(); ++I
)
285 if (I
->isUsedOutsideOfBlock(DestBlock
)) {
286 // We found a use outside of the tail. Create a new stack slot to
287 // break this inter-block usage pattern.
288 DemoteRegToStack(*I
);
291 // We are going to have to map operands from the original block B to the new
292 // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI
293 // nodes also define part of this mapping. Loop over these PHI nodes, adding
294 // them to our mapping.
296 std::map
<Value
*, Value
*> ValueMapping
;
298 BasicBlock::iterator BI
= DestBlock
->begin();
299 bool HadPHINodes
= isa
<PHINode
>(BI
);
300 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
301 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(SourceBlock
);
303 // Clone the non-phi instructions of the dest block into the source block,
304 // keeping track of the mapping...
306 for (; BI
!= DestBlock
->end(); ++BI
) {
307 Instruction
*New
= BI
->clone();
308 New
->setName(BI
->getName());
309 SourceBlock
->getInstList().push_back(New
);
310 ValueMapping
[BI
] = New
;
313 // Now that we have built the mapping information and cloned all of the
314 // instructions (giving us a new terminator, among other things), walk the new
315 // instructions, rewriting references of old instructions to use new
318 BI
= Branch
; ++BI
; // Get an iterator to the first new instruction
319 for (; BI
!= SourceBlock
->end(); ++BI
)
320 for (unsigned i
= 0, e
= BI
->getNumOperands(); i
!= e
; ++i
)
321 if (Value
*Remapped
= ValueMapping
[BI
->getOperand(i
)])
322 BI
->setOperand(i
, Remapped
);
324 // Next we check to see if any of the successors of DestBlock had PHI nodes.
325 // If so, we need to add entries to the PHI nodes for SourceBlock now.
326 for (succ_iterator SI
= succ_begin(DestBlock
), SE
= succ_end(DestBlock
);
328 BasicBlock
*Succ
= *SI
;
329 for (BasicBlock::iterator PNI
= Succ
->begin(); isa
<PHINode
>(PNI
); ++PNI
) {
330 PHINode
*PN
= cast
<PHINode
>(PNI
);
331 // Ok, we have a PHI node. Figure out what the incoming value was for the
333 Value
*IV
= PN
->getIncomingValueForBlock(DestBlock
);
335 // Remap the value if necessary...
336 if (Value
*MappedIV
= ValueMapping
[IV
])
338 PN
->addIncoming(IV
, SourceBlock
);
342 // Next, remove the old branch instruction, and any PHI node entries that we
344 BI
= Branch
; ++BI
; // Get an iterator to the first new instruction
345 DestBlock
->removePredecessor(SourceBlock
); // Remove entries in PHI nodes...
346 SourceBlock
->getInstList().erase(Branch
); // Destroy the uncond branch...
348 // Final step: now that we have finished everything up, walk the cloned
349 // instructions one last time, constant propagating and DCE'ing them, because
350 // they may not be needed anymore.
353 while (BI
!= SourceBlock
->end()) {
354 Instruction
*Inst
= BI
++;
355 if (isInstructionTriviallyDead(Inst
))
356 Inst
->eraseFromParent();
357 else if (Constant
*C
= ConstantFoldInstruction(Inst
)) {
358 Inst
->replaceAllUsesWith(C
);
359 Inst
->eraseFromParent();
364 ++NumEliminated
; // We just killed a branch!