1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative expression to use an accumulator variable,
20 // thus compiling the typical naive factorial or 'fib' implementation into
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access theier caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
32 // There are several improvements that could be made:
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately preceeds the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
51 //===----------------------------------------------------------------------===//
53 #define DEBUG_TYPE "tailcallelim"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Constants.h"
56 #include "llvm/DerivedTypes.h"
57 #include "llvm/Function.h"
58 #include "llvm/Instructions.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/CFG.h"
61 #include "llvm/ADT/Statistic.h"
62 #include "llvm/Support/Compiler.h"
65 STATISTIC(NumEliminated
, "Number of tail calls removed");
66 STATISTIC(NumAccumAdded
, "Number of accumulators introduced");
69 struct VISIBILITY_HIDDEN TailCallElim
: public FunctionPass
{
70 static char ID
; // Pass identification, replacement for typeid
71 TailCallElim() : FunctionPass(&ID
) {}
73 virtual bool runOnFunction(Function
&F
);
76 bool ProcessReturningBlock(ReturnInst
*RI
, BasicBlock
*&OldEntry
,
77 bool &TailCallsAreMarkedTail
,
78 std::vector
<PHINode
*> &ArgumentPHIs
,
79 bool CannotTailCallElimCallsMarkedTail
);
80 bool CanMoveAboveCall(Instruction
*I
, CallInst
*CI
);
81 Value
*CanTransformAccumulatorRecursion(Instruction
*I
, CallInst
*CI
);
85 char TailCallElim::ID
= 0;
86 static RegisterPass
<TailCallElim
> X("tailcallelim", "Tail Call Elimination");
88 // Public interface to the TailCallElimination pass
89 FunctionPass
*llvm::createTailCallEliminationPass() {
90 return new TailCallElim();
94 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
95 /// callees of this function. We only do very simple analysis right now, this
96 /// could be expanded in the future to use mod/ref information for particular
97 /// call sites if desired.
98 static bool AllocaMightEscapeToCalls(AllocaInst
*AI
) {
99 // FIXME: do simple 'address taken' analysis.
103 /// FunctionContainsAllocas - Scan the specified basic block for alloca
104 /// instructions. If it contains any that might be accessed by calls, return
106 static bool CheckForEscapingAllocas(BasicBlock
*BB
,
107 bool &CannotTCETailMarkedCall
) {
109 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
110 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) {
111 RetVal
|= AllocaMightEscapeToCalls(AI
);
113 // If this alloca is in the body of the function, or if it is a variable
114 // sized allocation, we cannot tail call eliminate calls marked 'tail'
115 // with this mechanism.
116 if (BB
!= &BB
->getParent()->getEntryBlock() ||
117 !isa
<ConstantInt
>(AI
->getArraySize()))
118 CannotTCETailMarkedCall
= true;
123 bool TailCallElim::runOnFunction(Function
&F
) {
124 // If this function is a varargs function, we won't be able to PHI the args
125 // right, so don't even try to convert it...
126 if (F
.getFunctionType()->isVarArg()) return false;
128 BasicBlock
*OldEntry
= 0;
129 bool TailCallsAreMarkedTail
= false;
130 std::vector
<PHINode
*> ArgumentPHIs
;
131 bool MadeChange
= false;
133 bool FunctionContainsEscapingAllocas
= false;
135 // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
136 // marked with the 'tail' attribute, because doing so would cause the stack
137 // size to increase (real TCE would deallocate variable sized allocas, TCE
139 bool CannotTCETailMarkedCall
= false;
141 // Loop over the function, looking for any returning blocks, and keeping track
142 // of whether this function has any non-trivially used allocas.
143 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
144 if (FunctionContainsEscapingAllocas
&& CannotTCETailMarkedCall
)
147 FunctionContainsEscapingAllocas
|=
148 CheckForEscapingAllocas(BB
, CannotTCETailMarkedCall
);
151 /// FIXME: The code generator produces really bad code when an 'escaping
152 /// alloca' is changed from being a static alloca to being a dynamic alloca.
153 /// Until this is resolved, disable this transformation if that would ever
154 /// happen. This bug is PR962.
155 if (FunctionContainsEscapingAllocas
)
159 // Second pass, change any tail calls to loops.
160 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
161 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
->getTerminator()))
162 MadeChange
|= ProcessReturningBlock(Ret
, OldEntry
, TailCallsAreMarkedTail
,
163 ArgumentPHIs
,CannotTCETailMarkedCall
);
165 // If we eliminated any tail recursions, it's possible that we inserted some
166 // silly PHI nodes which just merge an initial value (the incoming operand)
167 // with themselves. Check to see if we did and clean up our mess if so. This
168 // occurs when a function passes an argument straight through to its tail
170 if (!ArgumentPHIs
.empty()) {
171 for (unsigned i
= 0, e
= ArgumentPHIs
.size(); i
!= e
; ++i
) {
172 PHINode
*PN
= ArgumentPHIs
[i
];
174 // If the PHI Node is a dynamic constant, replace it with the value it is.
175 if (Value
*PNV
= PN
->hasConstantValue()) {
176 PN
->replaceAllUsesWith(PNV
);
177 PN
->eraseFromParent();
182 // Finally, if this function contains no non-escaping allocas, mark all calls
183 // in the function as eligible for tail calls (there is no stack memory for
185 if (!FunctionContainsEscapingAllocas
)
186 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
187 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
188 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
197 /// CanMoveAboveCall - Return true if it is safe to move the specified
198 /// instruction from after the call to before the call, assuming that all
199 /// instructions between the call and this instruction are movable.
201 bool TailCallElim::CanMoveAboveCall(Instruction
*I
, CallInst
*CI
) {
202 // FIXME: We can move load/store/call/free instructions above the call if the
203 // call does not mod/ref the memory location being processed.
204 if (I
->mayWriteToMemory() || isa
<LoadInst
>(I
))
207 // Otherwise, if this is a side-effect free instruction, check to make sure
208 // that it does not use the return value of the call. If it doesn't use the
209 // return value of the call, it must only use things that are defined before
210 // the call, or movable instructions between the call and the instruction
212 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
213 if (I
->getOperand(i
) == CI
)
218 // isDynamicConstant - Return true if the specified value is the same when the
219 // return would exit as it was when the initial iteration of the recursive
220 // function was executed.
222 // We currently handle static constants and arguments that are not modified as
223 // part of the recursion.
225 static bool isDynamicConstant(Value
*V
, CallInst
*CI
) {
226 if (isa
<Constant
>(V
)) return true; // Static constants are always dyn consts
228 // Check to see if this is an immutable argument, if so, the value
229 // will be available to initialize the accumulator.
230 if (Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
231 // Figure out which argument number this is...
233 Function
*F
= CI
->getParent()->getParent();
234 for (Function::arg_iterator AI
= F
->arg_begin(); &*AI
!= Arg
; ++AI
)
237 // If we are passing this argument into call as the corresponding
238 // argument operand, then the argument is dynamically constant.
239 // Otherwise, we cannot transform this function safely.
240 if (CI
->getOperand(ArgNo
+1) == Arg
)
243 // Not a constant or immutable argument, we can't safely transform.
247 // getCommonReturnValue - Check to see if the function containing the specified
248 // return instruction and tail call consistently returns the same
249 // runtime-constant value at all exit points. If so, return the returned value.
251 static Value
*getCommonReturnValue(ReturnInst
*TheRI
, CallInst
*CI
) {
252 Function
*F
= TheRI
->getParent()->getParent();
253 Value
*ReturnedValue
= 0;
255 // TODO: Handle multiple value ret instructions;
256 if (isa
<StructType
>(F
->getReturnType()))
259 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
)
260 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator()))
262 Value
*RetOp
= RI
->getOperand(0);
264 // We can only perform this transformation if the value returned is
265 // evaluatable at the start of the initial invocation of the function,
266 // instead of at the end of the evaluation.
268 if (!isDynamicConstant(RetOp
, CI
))
271 if (ReturnedValue
&& RetOp
!= ReturnedValue
)
272 return 0; // Cannot transform if differing values are returned.
273 ReturnedValue
= RetOp
;
275 return ReturnedValue
;
278 /// CanTransformAccumulatorRecursion - If the specified instruction can be
279 /// transformed using accumulator recursion elimination, return the constant
280 /// which is the start of the accumulator value. Otherwise return null.
282 Value
*TailCallElim::CanTransformAccumulatorRecursion(Instruction
*I
,
284 if (!I
->isAssociative()) return 0;
285 assert(I
->getNumOperands() == 2 &&
286 "Associative operations should have 2 args!");
288 // Exactly one operand should be the result of the call instruction...
289 if ((I
->getOperand(0) == CI
&& I
->getOperand(1) == CI
) ||
290 (I
->getOperand(0) != CI
&& I
->getOperand(1) != CI
))
293 // The only user of this instruction we allow is a single return instruction.
294 if (!I
->hasOneUse() || !isa
<ReturnInst
>(I
->use_back()))
297 // Ok, now we have to check all of the other return instructions in this
298 // function. If they return non-constants or differing values, then we cannot
299 // transform the function safely.
300 return getCommonReturnValue(cast
<ReturnInst
>(I
->use_back()), CI
);
303 bool TailCallElim::ProcessReturningBlock(ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
304 bool &TailCallsAreMarkedTail
,
305 std::vector
<PHINode
*> &ArgumentPHIs
,
306 bool CannotTailCallElimCallsMarkedTail
) {
307 BasicBlock
*BB
= Ret
->getParent();
308 Function
*F
= BB
->getParent();
310 if (&BB
->front() == Ret
) // Make sure there is something before the ret...
313 // If the return is in the entry block, then making this transformation would
314 // turn infinite recursion into an infinite loop. This transformation is ok
315 // in theory, but breaks some code like:
316 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
317 // disable this xform in this case, because the code generator will lower the
318 // call to fabs into inline code.
319 if (BB
== &F
->getEntryBlock())
322 // Scan backwards from the return, checking to see if there is a tail call in
323 // this block. If so, set CI to it.
325 BasicBlock::iterator BBI
= Ret
;
327 CI
= dyn_cast
<CallInst
>(BBI
);
328 if (CI
&& CI
->getCalledFunction() == F
)
331 if (BBI
== BB
->begin())
332 return false; // Didn't find a potential tail call.
336 // If this call is marked as a tail call, and if there are dynamic allocas in
337 // the function, we cannot perform this optimization.
338 if (CI
->isTailCall() && CannotTailCallElimCallsMarkedTail
)
341 // If we are introducing accumulator recursion to eliminate associative
342 // operations after the call instruction, this variable contains the initial
343 // value for the accumulator. If this value is set, we actually perform
344 // accumulator recursion elimination instead of simple tail recursion
346 Value
*AccumulatorRecursionEliminationInitVal
= 0;
347 Instruction
*AccumulatorRecursionInstr
= 0;
349 // Ok, we found a potential tail call. We can currently only transform the
350 // tail call if all of the instructions between the call and the return are
351 // movable to above the call itself, leaving the call next to the return.
352 // Check that this is the case now.
353 for (BBI
= CI
, ++BBI
; &*BBI
!= Ret
; ++BBI
)
354 if (!CanMoveAboveCall(BBI
, CI
)) {
355 // If we can't move the instruction above the call, it might be because it
356 // is an associative operation that could be tranformed using accumulator
357 // recursion elimination. Check to see if this is the case, and if so,
358 // remember the initial accumulator value for later.
359 if ((AccumulatorRecursionEliminationInitVal
=
360 CanTransformAccumulatorRecursion(BBI
, CI
))) {
361 // Yes, this is accumulator recursion. Remember which instruction
363 AccumulatorRecursionInstr
= BBI
;
365 return false; // Otherwise, we cannot eliminate the tail recursion!
369 // We can only transform call/return pairs that either ignore the return value
370 // of the call and return void, ignore the value of the call and return a
371 // constant, return the value returned by the tail call, or that are being
372 // accumulator recursion variable eliminated.
373 if (Ret
->getNumOperands() == 1 && Ret
->getReturnValue() != CI
&&
374 !isa
<UndefValue
>(Ret
->getReturnValue()) &&
375 AccumulatorRecursionEliminationInitVal
== 0 &&
376 !getCommonReturnValue(Ret
, CI
))
379 // OK! We can transform this tail call. If this is the first one found,
380 // create the new entry block, allowing us to branch back to the old entry.
382 OldEntry
= &F
->getEntryBlock();
383 BasicBlock
*NewEntry
= BasicBlock::Create("", F
, OldEntry
);
384 NewEntry
->takeName(OldEntry
);
385 OldEntry
->setName("tailrecurse");
386 BranchInst::Create(OldEntry
, NewEntry
);
388 // If this tail call is marked 'tail' and if there are any allocas in the
389 // entry block, move them up to the new entry block.
390 TailCallsAreMarkedTail
= CI
->isTailCall();
391 if (TailCallsAreMarkedTail
)
392 // Move all fixed sized allocas from OldEntry to NewEntry.
393 for (BasicBlock::iterator OEBI
= OldEntry
->begin(), E
= OldEntry
->end(),
394 NEBI
= NewEntry
->begin(); OEBI
!= E
; )
395 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(OEBI
++))
396 if (isa
<ConstantInt
>(AI
->getArraySize()))
397 AI
->moveBefore(NEBI
);
399 // Now that we have created a new block, which jumps to the entry
400 // block, insert a PHI node for each argument of the function.
401 // For now, we initialize each PHI to only have the real arguments
402 // which are passed in.
403 Instruction
*InsertPos
= OldEntry
->begin();
404 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
406 PHINode
*PN
= PHINode::Create(I
->getType(),
407 I
->getName() + ".tr", InsertPos
);
408 I
->replaceAllUsesWith(PN
); // Everyone use the PHI node now!
409 PN
->addIncoming(I
, NewEntry
);
410 ArgumentPHIs
.push_back(PN
);
414 // If this function has self recursive calls in the tail position where some
415 // are marked tail and some are not, only transform one flavor or another. We
416 // have to choose whether we move allocas in the entry block to the new entry
417 // block or not, so we can't make a good choice for both. NOTE: We could do
418 // slightly better here in the case that the function has no entry block
420 if (TailCallsAreMarkedTail
&& !CI
->isTailCall())
423 // Ok, now that we know we have a pseudo-entry block WITH all of the
424 // required PHI nodes, add entries into the PHI node for the actual
425 // parameters passed into the tail-recursive call.
426 for (unsigned i
= 0, e
= CI
->getNumOperands()-1; i
!= e
; ++i
)
427 ArgumentPHIs
[i
]->addIncoming(CI
->getOperand(i
+1), BB
);
429 // If we are introducing an accumulator variable to eliminate the recursion,
430 // do so now. Note that we _know_ that no subsequent tail recursion
431 // eliminations will happen on this function because of the way the
432 // accumulator recursion predicate is set up.
434 if (AccumulatorRecursionEliminationInitVal
) {
435 Instruction
*AccRecInstr
= AccumulatorRecursionInstr
;
436 // Start by inserting a new PHI node for the accumulator.
437 PHINode
*AccPN
= PHINode::Create(AccRecInstr
->getType(), "accumulator.tr",
440 // Loop over all of the predecessors of the tail recursion block. For the
441 // real entry into the function we seed the PHI with the initial value,
442 // computed earlier. For any other existing branches to this block (due to
443 // other tail recursions eliminated) the accumulator is not modified.
444 // Because we haven't added the branch in the current block to OldEntry yet,
445 // it will not show up as a predecessor.
446 for (pred_iterator PI
= pred_begin(OldEntry
), PE
= pred_end(OldEntry
);
448 if (*PI
== &F
->getEntryBlock())
449 AccPN
->addIncoming(AccumulatorRecursionEliminationInitVal
, *PI
);
451 AccPN
->addIncoming(AccPN
, *PI
);
454 // Add an incoming argument for the current block, which is computed by our
455 // associative accumulator instruction.
456 AccPN
->addIncoming(AccRecInstr
, BB
);
458 // Next, rewrite the accumulator recursion instruction so that it does not
459 // use the result of the call anymore, instead, use the PHI node we just
461 AccRecInstr
->setOperand(AccRecInstr
->getOperand(0) != CI
, AccPN
);
463 // Finally, rewrite any return instructions in the program to return the PHI
464 // node instead of the "initval" that they do currently. This loop will
465 // actually rewrite the return value we are destroying, but that's ok.
466 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
)
467 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator()))
468 RI
->setOperand(0, AccPN
);
472 // Now that all of the PHI nodes are in place, remove the call and
473 // ret instructions, replacing them with an unconditional branch.
474 BranchInst::Create(OldEntry
, Ret
);
475 BB
->getInstList().erase(Ret
); // Remove return.
476 BB
->getInstList().erase(CI
); // Remove call.