We're not going to spend 100% of time in interrupts, do we? :)
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / DAGCombiner.cpp
blob1378f25387e32b10eb0deede475ce18914ab133d
1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "dagcombine"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetFrameInfo.h"
28 #include "llvm/Target/TargetLowering.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MathExtras.h"
37 #include <algorithm>
38 #include <set>
39 using namespace llvm;
41 STATISTIC(NodesCombined , "Number of dag nodes combined");
42 STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43 STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
45 namespace {
46 static cl::opt<bool>
47 CombinerAA("combiner-alias-analysis", cl::Hidden,
48 cl::desc("Turn on alias analysis during testing"));
50 static cl::opt<bool>
51 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
52 cl::desc("Include global information in alias analysis"));
54 //------------------------------ DAGCombiner ---------------------------------//
56 class VISIBILITY_HIDDEN DAGCombiner {
57 SelectionDAG &DAG;
58 const TargetLowering &TLI;
59 CombineLevel Level;
60 CodeGenOpt::Level OptLevel;
61 bool LegalOperations;
62 bool LegalTypes;
64 // Worklist of all of the nodes that need to be simplified.
65 std::vector<SDNode*> WorkList;
67 // AA - Used for DAG load/store alias analysis.
68 AliasAnalysis &AA;
70 /// AddUsersToWorkList - When an instruction is simplified, add all users of
71 /// the instruction to the work lists because they might get more simplified
72 /// now.
73 ///
74 void AddUsersToWorkList(SDNode *N) {
75 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
76 UI != UE; ++UI)
77 AddToWorkList(*UI);
80 /// visit - call the node-specific routine that knows how to fold each
81 /// particular type of node.
82 SDValue visit(SDNode *N);
84 public:
85 /// AddToWorkList - Add to the work list making sure it's instance is at the
86 /// the back (next to be processed.)
87 void AddToWorkList(SDNode *N) {
88 removeFromWorkList(N);
89 WorkList.push_back(N);
92 /// removeFromWorkList - remove all instances of N from the worklist.
93 ///
94 void removeFromWorkList(SDNode *N) {
95 WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
96 WorkList.end());
99 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
100 bool AddTo = true);
102 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
103 return CombineTo(N, &Res, 1, AddTo);
106 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
107 bool AddTo = true) {
108 SDValue To[] = { Res0, Res1 };
109 return CombineTo(N, To, 2, AddTo);
112 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
114 private:
116 /// SimplifyDemandedBits - Check the specified integer node value to see if
117 /// it can be simplified or if things it uses can be simplified by bit
118 /// propagation. If so, return true.
119 bool SimplifyDemandedBits(SDValue Op) {
120 APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
121 return SimplifyDemandedBits(Op, Demanded);
124 bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
126 bool CombineToPreIndexedLoadStore(SDNode *N);
127 bool CombineToPostIndexedLoadStore(SDNode *N);
130 /// combine - call the node-specific routine that knows how to fold each
131 /// particular type of node. If that doesn't do anything, try the
132 /// target-specific DAG combines.
133 SDValue combine(SDNode *N);
135 // Visitation implementation - Implement dag node combining for different
136 // node types. The semantics are as follows:
137 // Return Value:
138 // SDValue.getNode() == 0 - No change was made
139 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
140 // otherwise - N should be replaced by the returned Operand.
142 SDValue visitTokenFactor(SDNode *N);
143 SDValue visitMERGE_VALUES(SDNode *N);
144 SDValue visitADD(SDNode *N);
145 SDValue visitSUB(SDNode *N);
146 SDValue visitADDC(SDNode *N);
147 SDValue visitADDE(SDNode *N);
148 SDValue visitMUL(SDNode *N);
149 SDValue visitSDIV(SDNode *N);
150 SDValue visitUDIV(SDNode *N);
151 SDValue visitSREM(SDNode *N);
152 SDValue visitUREM(SDNode *N);
153 SDValue visitMULHU(SDNode *N);
154 SDValue visitMULHS(SDNode *N);
155 SDValue visitSMUL_LOHI(SDNode *N);
156 SDValue visitUMUL_LOHI(SDNode *N);
157 SDValue visitSDIVREM(SDNode *N);
158 SDValue visitUDIVREM(SDNode *N);
159 SDValue visitAND(SDNode *N);
160 SDValue visitOR(SDNode *N);
161 SDValue visitXOR(SDNode *N);
162 SDValue SimplifyVBinOp(SDNode *N);
163 SDValue visitSHL(SDNode *N);
164 SDValue visitSRA(SDNode *N);
165 SDValue visitSRL(SDNode *N);
166 SDValue visitCTLZ(SDNode *N);
167 SDValue visitCTTZ(SDNode *N);
168 SDValue visitCTPOP(SDNode *N);
169 SDValue visitSELECT(SDNode *N);
170 SDValue visitSELECT_CC(SDNode *N);
171 SDValue visitSETCC(SDNode *N);
172 SDValue visitSIGN_EXTEND(SDNode *N);
173 SDValue visitZERO_EXTEND(SDNode *N);
174 SDValue visitANY_EXTEND(SDNode *N);
175 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
176 SDValue visitTRUNCATE(SDNode *N);
177 SDValue visitBIT_CONVERT(SDNode *N);
178 SDValue visitBUILD_PAIR(SDNode *N);
179 SDValue visitFADD(SDNode *N);
180 SDValue visitFSUB(SDNode *N);
181 SDValue visitFMUL(SDNode *N);
182 SDValue visitFDIV(SDNode *N);
183 SDValue visitFREM(SDNode *N);
184 SDValue visitFCOPYSIGN(SDNode *N);
185 SDValue visitSINT_TO_FP(SDNode *N);
186 SDValue visitUINT_TO_FP(SDNode *N);
187 SDValue visitFP_TO_SINT(SDNode *N);
188 SDValue visitFP_TO_UINT(SDNode *N);
189 SDValue visitFP_ROUND(SDNode *N);
190 SDValue visitFP_ROUND_INREG(SDNode *N);
191 SDValue visitFP_EXTEND(SDNode *N);
192 SDValue visitFNEG(SDNode *N);
193 SDValue visitFABS(SDNode *N);
194 SDValue visitBRCOND(SDNode *N);
195 SDValue visitBR_CC(SDNode *N);
196 SDValue visitLOAD(SDNode *N);
197 SDValue visitSTORE(SDNode *N);
198 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
199 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
200 SDValue visitBUILD_VECTOR(SDNode *N);
201 SDValue visitCONCAT_VECTORS(SDNode *N);
202 SDValue visitVECTOR_SHUFFLE(SDNode *N);
204 SDValue XformToShuffleWithZero(SDNode *N);
205 SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
207 SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
209 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
210 SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
211 SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
212 SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
213 SDValue N3, ISD::CondCode CC,
214 bool NotExtCompare = false);
215 SDValue SimplifySetCC(MVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
216 DebugLoc DL, bool foldBooleans = true);
217 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
218 unsigned HiOp);
219 SDValue CombineConsecutiveLoads(SDNode *N, MVT VT);
220 SDValue ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT);
221 SDValue BuildSDIV(SDNode *N);
222 SDValue BuildUDIV(SDNode *N);
223 SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
224 SDValue ReduceLoadWidth(SDNode *N);
226 SDValue GetDemandedBits(SDValue V, const APInt &Mask);
228 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
229 /// looking for aliasing nodes and adding them to the Aliases vector.
230 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
231 SmallVector<SDValue, 8> &Aliases);
233 /// isAlias - Return true if there is any possibility that the two addresses
234 /// overlap.
235 bool isAlias(SDValue Ptr1, int64_t Size1,
236 const Value *SrcValue1, int SrcValueOffset1,
237 SDValue Ptr2, int64_t Size2,
238 const Value *SrcValue2, int SrcValueOffset2) const;
240 /// FindAliasInfo - Extracts the relevant alias information from the memory
241 /// node. Returns true if the operand was a load.
242 bool FindAliasInfo(SDNode *N,
243 SDValue &Ptr, int64_t &Size,
244 const Value *&SrcValue, int &SrcValueOffset) const;
246 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
247 /// looking for a better chain (aliasing node.)
248 SDValue FindBetterChain(SDNode *N, SDValue Chain);
250 /// getShiftAmountTy - Returns a type large enough to hold any valid
251 /// shift amount - before type legalization these can be huge.
252 MVT getShiftAmountTy() {
253 return LegalTypes ? TLI.getShiftAmountTy() : TLI.getPointerTy();
256 public:
257 DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
258 : DAG(D),
259 TLI(D.getTargetLoweringInfo()),
260 Level(Unrestricted),
261 OptLevel(OL),
262 LegalOperations(false),
263 LegalTypes(false),
264 AA(A) {}
266 /// Run - runs the dag combiner on all nodes in the work list
267 void Run(CombineLevel AtLevel);
272 namespace {
273 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
274 /// nodes from the worklist.
275 class VISIBILITY_HIDDEN WorkListRemover :
276 public SelectionDAG::DAGUpdateListener {
277 DAGCombiner &DC;
278 public:
279 explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
281 virtual void NodeDeleted(SDNode *N, SDNode *E) {
282 DC.removeFromWorkList(N);
285 virtual void NodeUpdated(SDNode *N) {
286 // Ignore updates.
291 //===----------------------------------------------------------------------===//
292 // TargetLowering::DAGCombinerInfo implementation
293 //===----------------------------------------------------------------------===//
295 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
296 ((DAGCombiner*)DC)->AddToWorkList(N);
299 SDValue TargetLowering::DAGCombinerInfo::
300 CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
301 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
304 SDValue TargetLowering::DAGCombinerInfo::
305 CombineTo(SDNode *N, SDValue Res, bool AddTo) {
306 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
310 SDValue TargetLowering::DAGCombinerInfo::
311 CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
312 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
315 void TargetLowering::DAGCombinerInfo::
316 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
317 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
320 //===----------------------------------------------------------------------===//
321 // Helper Functions
322 //===----------------------------------------------------------------------===//
324 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
325 /// specified expression for the same cost as the expression itself, or 2 if we
326 /// can compute the negated form more cheaply than the expression itself.
327 static char isNegatibleForFree(SDValue Op, bool LegalOperations,
328 unsigned Depth = 0) {
329 // No compile time optimizations on this type.
330 if (Op.getValueType() == MVT::ppcf128)
331 return 0;
333 // fneg is removable even if it has multiple uses.
334 if (Op.getOpcode() == ISD::FNEG) return 2;
336 // Don't allow anything with multiple uses.
337 if (!Op.hasOneUse()) return 0;
339 // Don't recurse exponentially.
340 if (Depth > 6) return 0;
342 switch (Op.getOpcode()) {
343 default: return false;
344 case ISD::ConstantFP:
345 // Don't invert constant FP values after legalize. The negated constant
346 // isn't necessarily legal.
347 return LegalOperations ? 0 : 1;
348 case ISD::FADD:
349 // FIXME: determine better conditions for this xform.
350 if (!UnsafeFPMath) return 0;
352 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
353 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
354 return V;
355 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
356 return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
357 case ISD::FSUB:
358 // We can't turn -(A-B) into B-A when we honor signed zeros.
359 if (!UnsafeFPMath) return 0;
361 // fold (fneg (fsub A, B)) -> (fsub B, A)
362 return 1;
364 case ISD::FMUL:
365 case ISD::FDIV:
366 if (HonorSignDependentRoundingFPMath()) return 0;
368 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
369 if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
370 return V;
372 return isNegatibleForFree(Op.getOperand(1), LegalOperations, Depth+1);
374 case ISD::FP_EXTEND:
375 case ISD::FP_ROUND:
376 case ISD::FSIN:
377 return isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1);
381 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
382 /// returns the newly negated expression.
383 static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
384 bool LegalOperations, unsigned Depth = 0) {
385 // fneg is removable even if it has multiple uses.
386 if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
388 // Don't allow anything with multiple uses.
389 assert(Op.hasOneUse() && "Unknown reuse!");
391 assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
392 switch (Op.getOpcode()) {
393 default: assert(0 && "Unknown code");
394 case ISD::ConstantFP: {
395 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
396 V.changeSign();
397 return DAG.getConstantFP(V, Op.getValueType());
399 case ISD::FADD:
400 // FIXME: determine better conditions for this xform.
401 assert(UnsafeFPMath);
403 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
404 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
405 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
406 GetNegatedExpression(Op.getOperand(0), DAG,
407 LegalOperations, Depth+1),
408 Op.getOperand(1));
409 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
410 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
411 GetNegatedExpression(Op.getOperand(1), DAG,
412 LegalOperations, Depth+1),
413 Op.getOperand(0));
414 case ISD::FSUB:
415 // We can't turn -(A-B) into B-A when we honor signed zeros.
416 assert(UnsafeFPMath);
418 // fold (fneg (fsub 0, B)) -> B
419 if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
420 if (N0CFP->getValueAPF().isZero())
421 return Op.getOperand(1);
423 // fold (fneg (fsub A, B)) -> (fsub B, A)
424 return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
425 Op.getOperand(1), Op.getOperand(0));
427 case ISD::FMUL:
428 case ISD::FDIV:
429 assert(!HonorSignDependentRoundingFPMath());
431 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
432 if (isNegatibleForFree(Op.getOperand(0), LegalOperations, Depth+1))
433 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
434 GetNegatedExpression(Op.getOperand(0), DAG,
435 LegalOperations, Depth+1),
436 Op.getOperand(1));
438 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
439 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
440 Op.getOperand(0),
441 GetNegatedExpression(Op.getOperand(1), DAG,
442 LegalOperations, Depth+1));
444 case ISD::FP_EXTEND:
445 case ISD::FSIN:
446 return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
447 GetNegatedExpression(Op.getOperand(0), DAG,
448 LegalOperations, Depth+1));
449 case ISD::FP_ROUND:
450 return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
451 GetNegatedExpression(Op.getOperand(0), DAG,
452 LegalOperations, Depth+1),
453 Op.getOperand(1));
458 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
459 // that selects between the values 1 and 0, making it equivalent to a setcc.
460 // Also, set the incoming LHS, RHS, and CC references to the appropriate
461 // nodes based on the type of node we are checking. This simplifies life a
462 // bit for the callers.
463 static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
464 SDValue &CC) {
465 if (N.getOpcode() == ISD::SETCC) {
466 LHS = N.getOperand(0);
467 RHS = N.getOperand(1);
468 CC = N.getOperand(2);
469 return true;
471 if (N.getOpcode() == ISD::SELECT_CC &&
472 N.getOperand(2).getOpcode() == ISD::Constant &&
473 N.getOperand(3).getOpcode() == ISD::Constant &&
474 cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
475 cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
476 LHS = N.getOperand(0);
477 RHS = N.getOperand(1);
478 CC = N.getOperand(4);
479 return true;
481 return false;
484 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
485 // one use. If this is true, it allows the users to invert the operation for
486 // free when it is profitable to do so.
487 static bool isOneUseSetCC(SDValue N) {
488 SDValue N0, N1, N2;
489 if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
490 return true;
491 return false;
494 SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
495 SDValue N0, SDValue N1) {
496 MVT VT = N0.getValueType();
497 if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
498 if (isa<ConstantSDNode>(N1)) {
499 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
500 SDValue OpNode =
501 DAG.FoldConstantArithmetic(Opc, VT,
502 cast<ConstantSDNode>(N0.getOperand(1)),
503 cast<ConstantSDNode>(N1));
504 return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
505 } else if (N0.hasOneUse()) {
506 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
507 SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
508 N0.getOperand(0), N1);
509 AddToWorkList(OpNode.getNode());
510 return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
514 if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
515 if (isa<ConstantSDNode>(N0)) {
516 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
517 SDValue OpNode =
518 DAG.FoldConstantArithmetic(Opc, VT,
519 cast<ConstantSDNode>(N1.getOperand(1)),
520 cast<ConstantSDNode>(N0));
521 return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
522 } else if (N1.hasOneUse()) {
523 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
524 SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
525 N1.getOperand(0), N0);
526 AddToWorkList(OpNode.getNode());
527 return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
531 return SDValue();
534 SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
535 bool AddTo) {
536 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
537 ++NodesCombined;
538 DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
539 DOUT << "\nWith: "; DEBUG(To[0].getNode()->dump(&DAG));
540 DOUT << " and " << NumTo-1 << " other values\n";
541 DEBUG(for (unsigned i = 0, e = NumTo; i != e; ++i)
542 assert(N->getValueType(i) == To[i].getValueType() &&
543 "Cannot combine value to value of different type!"));
544 WorkListRemover DeadNodes(*this);
545 DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
547 if (AddTo) {
548 // Push the new nodes and any users onto the worklist
549 for (unsigned i = 0, e = NumTo; i != e; ++i) {
550 if (To[i].getNode()) {
551 AddToWorkList(To[i].getNode());
552 AddUsersToWorkList(To[i].getNode());
557 // Finally, if the node is now dead, remove it from the graph. The node
558 // may not be dead if the replacement process recursively simplified to
559 // something else needing this node.
560 if (N->use_empty()) {
561 // Nodes can be reintroduced into the worklist. Make sure we do not
562 // process a node that has been replaced.
563 removeFromWorkList(N);
565 // Finally, since the node is now dead, remove it from the graph.
566 DAG.DeleteNode(N);
568 return SDValue(N, 0);
571 void
572 DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &
573 TLO) {
574 // Replace all uses. If any nodes become isomorphic to other nodes and
575 // are deleted, make sure to remove them from our worklist.
576 WorkListRemover DeadNodes(*this);
577 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
579 // Push the new node and any (possibly new) users onto the worklist.
580 AddToWorkList(TLO.New.getNode());
581 AddUsersToWorkList(TLO.New.getNode());
583 // Finally, if the node is now dead, remove it from the graph. The node
584 // may not be dead if the replacement process recursively simplified to
585 // something else needing this node.
586 if (TLO.Old.getNode()->use_empty()) {
587 removeFromWorkList(TLO.Old.getNode());
589 // If the operands of this node are only used by the node, they will now
590 // be dead. Make sure to visit them first to delete dead nodes early.
591 for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
592 if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
593 AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
595 DAG.DeleteNode(TLO.Old.getNode());
599 /// SimplifyDemandedBits - Check the specified integer node value to see if
600 /// it can be simplified or if things it uses can be simplified by bit
601 /// propagation. If so, return true.
602 bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
603 TargetLowering::TargetLoweringOpt TLO(DAG);
604 APInt KnownZero, KnownOne;
605 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
606 return false;
608 // Revisit the node.
609 AddToWorkList(Op.getNode());
611 // Replace the old value with the new one.
612 ++NodesCombined;
613 DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.getNode()->dump(&DAG));
614 DOUT << "\nWith: "; DEBUG(TLO.New.getNode()->dump(&DAG));
615 DOUT << '\n';
617 CommitTargetLoweringOpt(TLO);
618 return true;
621 //===----------------------------------------------------------------------===//
622 // Main DAG Combiner implementation
623 //===----------------------------------------------------------------------===//
625 void DAGCombiner::Run(CombineLevel AtLevel) {
626 // set the instance variables, so that the various visit routines may use it.
627 Level = AtLevel;
628 LegalOperations = Level >= NoIllegalOperations;
629 LegalTypes = Level >= NoIllegalTypes;
631 // Add all the dag nodes to the worklist.
632 WorkList.reserve(DAG.allnodes_size());
633 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
634 E = DAG.allnodes_end(); I != E; ++I)
635 WorkList.push_back(I);
637 // Create a dummy node (which is not added to allnodes), that adds a reference
638 // to the root node, preventing it from being deleted, and tracking any
639 // changes of the root.
640 HandleSDNode Dummy(DAG.getRoot());
642 // The root of the dag may dangle to deleted nodes until the dag combiner is
643 // done. Set it to null to avoid confusion.
644 DAG.setRoot(SDValue());
646 // while the worklist isn't empty, inspect the node on the end of it and
647 // try and combine it.
648 while (!WorkList.empty()) {
649 SDNode *N = WorkList.back();
650 WorkList.pop_back();
652 // If N has no uses, it is dead. Make sure to revisit all N's operands once
653 // N is deleted from the DAG, since they too may now be dead or may have a
654 // reduced number of uses, allowing other xforms.
655 if (N->use_empty() && N != &Dummy) {
656 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
657 AddToWorkList(N->getOperand(i).getNode());
659 DAG.DeleteNode(N);
660 continue;
663 SDValue RV = combine(N);
665 if (RV.getNode() == 0)
666 continue;
668 ++NodesCombined;
670 // If we get back the same node we passed in, rather than a new node or
671 // zero, we know that the node must have defined multiple values and
672 // CombineTo was used. Since CombineTo takes care of the worklist
673 // mechanics for us, we have no work to do in this case.
674 if (RV.getNode() == N)
675 continue;
677 assert(N->getOpcode() != ISD::DELETED_NODE &&
678 RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
679 "Node was deleted but visit returned new node!");
681 DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
682 DOUT << "\nWith: "; DEBUG(RV.getNode()->dump(&DAG));
683 DOUT << '\n';
684 WorkListRemover DeadNodes(*this);
685 if (N->getNumValues() == RV.getNode()->getNumValues())
686 DAG.ReplaceAllUsesWith(N, RV.getNode(), &DeadNodes);
687 else {
688 assert(N->getValueType(0) == RV.getValueType() &&
689 N->getNumValues() == 1 && "Type mismatch");
690 SDValue OpV = RV;
691 DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
694 // Push the new node and any users onto the worklist
695 AddToWorkList(RV.getNode());
696 AddUsersToWorkList(RV.getNode());
698 // Add any uses of the old node to the worklist in case this node is the
699 // last one that uses them. They may become dead after this node is
700 // deleted.
701 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
702 AddToWorkList(N->getOperand(i).getNode());
704 // Finally, if the node is now dead, remove it from the graph. The node
705 // may not be dead if the replacement process recursively simplified to
706 // something else needing this node.
707 if (N->use_empty()) {
708 // Nodes can be reintroduced into the worklist. Make sure we do not
709 // process a node that has been replaced.
710 removeFromWorkList(N);
712 // Finally, since the node is now dead, remove it from the graph.
713 DAG.DeleteNode(N);
717 // If the root changed (e.g. it was a dead load, update the root).
718 DAG.setRoot(Dummy.getValue());
721 SDValue DAGCombiner::visit(SDNode *N) {
722 switch(N->getOpcode()) {
723 default: break;
724 case ISD::TokenFactor: return visitTokenFactor(N);
725 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
726 case ISD::ADD: return visitADD(N);
727 case ISD::SUB: return visitSUB(N);
728 case ISD::ADDC: return visitADDC(N);
729 case ISD::ADDE: return visitADDE(N);
730 case ISD::MUL: return visitMUL(N);
731 case ISD::SDIV: return visitSDIV(N);
732 case ISD::UDIV: return visitUDIV(N);
733 case ISD::SREM: return visitSREM(N);
734 case ISD::UREM: return visitUREM(N);
735 case ISD::MULHU: return visitMULHU(N);
736 case ISD::MULHS: return visitMULHS(N);
737 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
738 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
739 case ISD::SDIVREM: return visitSDIVREM(N);
740 case ISD::UDIVREM: return visitUDIVREM(N);
741 case ISD::AND: return visitAND(N);
742 case ISD::OR: return visitOR(N);
743 case ISD::XOR: return visitXOR(N);
744 case ISD::SHL: return visitSHL(N);
745 case ISD::SRA: return visitSRA(N);
746 case ISD::SRL: return visitSRL(N);
747 case ISD::CTLZ: return visitCTLZ(N);
748 case ISD::CTTZ: return visitCTTZ(N);
749 case ISD::CTPOP: return visitCTPOP(N);
750 case ISD::SELECT: return visitSELECT(N);
751 case ISD::SELECT_CC: return visitSELECT_CC(N);
752 case ISD::SETCC: return visitSETCC(N);
753 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
754 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
755 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
756 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
757 case ISD::TRUNCATE: return visitTRUNCATE(N);
758 case ISD::BIT_CONVERT: return visitBIT_CONVERT(N);
759 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
760 case ISD::FADD: return visitFADD(N);
761 case ISD::FSUB: return visitFSUB(N);
762 case ISD::FMUL: return visitFMUL(N);
763 case ISD::FDIV: return visitFDIV(N);
764 case ISD::FREM: return visitFREM(N);
765 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
766 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
767 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
768 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
769 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
770 case ISD::FP_ROUND: return visitFP_ROUND(N);
771 case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
772 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
773 case ISD::FNEG: return visitFNEG(N);
774 case ISD::FABS: return visitFABS(N);
775 case ISD::BRCOND: return visitBRCOND(N);
776 case ISD::BR_CC: return visitBR_CC(N);
777 case ISD::LOAD: return visitLOAD(N);
778 case ISD::STORE: return visitSTORE(N);
779 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
780 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
781 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
782 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
783 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
785 return SDValue();
788 SDValue DAGCombiner::combine(SDNode *N) {
789 SDValue RV = visit(N);
791 // If nothing happened, try a target-specific DAG combine.
792 if (RV.getNode() == 0) {
793 assert(N->getOpcode() != ISD::DELETED_NODE &&
794 "Node was deleted but visit returned NULL!");
796 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
797 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
799 // Expose the DAG combiner to the target combiner impls.
800 TargetLowering::DAGCombinerInfo
801 DagCombineInfo(DAG, Level == Unrestricted, false, this);
803 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
807 // If N is a commutative binary node, try commuting it to enable more
808 // sdisel CSE.
809 if (RV.getNode() == 0 &&
810 SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
811 N->getNumValues() == 1) {
812 SDValue N0 = N->getOperand(0);
813 SDValue N1 = N->getOperand(1);
815 // Constant operands are canonicalized to RHS.
816 if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
817 SDValue Ops[] = { N1, N0 };
818 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
819 Ops, 2);
820 if (CSENode)
821 return SDValue(CSENode, 0);
825 return RV;
828 /// getInputChainForNode - Given a node, return its input chain if it has one,
829 /// otherwise return a null sd operand.
830 static SDValue getInputChainForNode(SDNode *N) {
831 if (unsigned NumOps = N->getNumOperands()) {
832 if (N->getOperand(0).getValueType() == MVT::Other)
833 return N->getOperand(0);
834 else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
835 return N->getOperand(NumOps-1);
836 for (unsigned i = 1; i < NumOps-1; ++i)
837 if (N->getOperand(i).getValueType() == MVT::Other)
838 return N->getOperand(i);
840 return SDValue();
843 SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
844 // If N has two operands, where one has an input chain equal to the other,
845 // the 'other' chain is redundant.
846 if (N->getNumOperands() == 2) {
847 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
848 return N->getOperand(0);
849 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
850 return N->getOperand(1);
853 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
854 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
855 SmallPtrSet<SDNode*, 16> SeenOps;
856 bool Changed = false; // If we should replace this token factor.
858 // Start out with this token factor.
859 TFs.push_back(N);
861 // Iterate through token factors. The TFs grows when new token factors are
862 // encountered.
863 for (unsigned i = 0; i < TFs.size(); ++i) {
864 SDNode *TF = TFs[i];
866 // Check each of the operands.
867 for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
868 SDValue Op = TF->getOperand(i);
870 switch (Op.getOpcode()) {
871 case ISD::EntryToken:
872 // Entry tokens don't need to be added to the list. They are
873 // rededundant.
874 Changed = true;
875 break;
877 case ISD::TokenFactor:
878 if ((CombinerAA || Op.hasOneUse()) &&
879 std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
880 // Queue up for processing.
881 TFs.push_back(Op.getNode());
882 // Clean up in case the token factor is removed.
883 AddToWorkList(Op.getNode());
884 Changed = true;
885 break;
887 // Fall thru
889 default:
890 // Only add if it isn't already in the list.
891 if (SeenOps.insert(Op.getNode()))
892 Ops.push_back(Op);
893 else
894 Changed = true;
895 break;
900 SDValue Result;
902 // If we've change things around then replace token factor.
903 if (Changed) {
904 if (Ops.empty()) {
905 // The entry token is the only possible outcome.
906 Result = DAG.getEntryNode();
907 } else {
908 // New and improved token factor.
909 Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
910 MVT::Other, &Ops[0], Ops.size());
913 // Don't add users to work list.
914 return CombineTo(N, Result, false);
917 return Result;
920 /// MERGE_VALUES can always be eliminated.
921 SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
922 WorkListRemover DeadNodes(*this);
923 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
924 DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i),
925 &DeadNodes);
926 removeFromWorkList(N);
927 DAG.DeleteNode(N);
928 return SDValue(N, 0); // Return N so it doesn't get rechecked!
931 static
932 SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
933 SelectionDAG &DAG) {
934 MVT VT = N0.getValueType();
935 SDValue N00 = N0.getOperand(0);
936 SDValue N01 = N0.getOperand(1);
937 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
939 if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
940 isa<ConstantSDNode>(N00.getOperand(1))) {
941 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
942 N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
943 DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
944 N00.getOperand(0), N01),
945 DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
946 N00.getOperand(1), N01));
947 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
950 return SDValue();
953 SDValue DAGCombiner::visitADD(SDNode *N) {
954 SDValue N0 = N->getOperand(0);
955 SDValue N1 = N->getOperand(1);
956 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
957 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
958 MVT VT = N0.getValueType();
960 // fold vector ops
961 if (VT.isVector()) {
962 SDValue FoldedVOp = SimplifyVBinOp(N);
963 if (FoldedVOp.getNode()) return FoldedVOp;
966 // fold (add x, undef) -> undef
967 if (N0.getOpcode() == ISD::UNDEF)
968 return N0;
969 if (N1.getOpcode() == ISD::UNDEF)
970 return N1;
971 // fold (add c1, c2) -> c1+c2
972 if (N0C && N1C)
973 return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
974 // canonicalize constant to RHS
975 if (N0C && !N1C)
976 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
977 // fold (add x, 0) -> x
978 if (N1C && N1C->isNullValue())
979 return N0;
980 // fold (add Sym, c) -> Sym+c
981 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
982 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
983 GA->getOpcode() == ISD::GlobalAddress)
984 return DAG.getGlobalAddress(GA->getGlobal(), VT,
985 GA->getOffset() +
986 (uint64_t)N1C->getSExtValue());
987 // fold ((c1-A)+c2) -> (c1+c2)-A
988 if (N1C && N0.getOpcode() == ISD::SUB)
989 if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
990 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
991 DAG.getConstant(N1C->getAPIntValue()+
992 N0C->getAPIntValue(), VT),
993 N0.getOperand(1));
994 // reassociate add
995 SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
996 if (RADD.getNode() != 0)
997 return RADD;
998 // fold ((0-A) + B) -> B-A
999 if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1000 cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1001 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1002 // fold (A + (0-B)) -> A-B
1003 if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1004 cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1005 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1006 // fold (A+(B-A)) -> B
1007 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1008 return N1.getOperand(0);
1009 // fold ((B-A)+A) -> B
1010 if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1011 return N0.getOperand(0);
1012 // fold (A+(B-(A+C))) to (B-C)
1013 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1014 N0 == N1.getOperand(1).getOperand(0))
1015 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1016 N1.getOperand(1).getOperand(1));
1017 // fold (A+(B-(C+A))) to (B-C)
1018 if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1019 N0 == N1.getOperand(1).getOperand(1))
1020 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1021 N1.getOperand(1).getOperand(0));
1022 // fold (A+((B-A)+or-C)) to (B+or-C)
1023 if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1024 N1.getOperand(0).getOpcode() == ISD::SUB &&
1025 N0 == N1.getOperand(0).getOperand(1))
1026 return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1027 N1.getOperand(0).getOperand(0), N1.getOperand(1));
1029 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1030 if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1031 SDValue N00 = N0.getOperand(0);
1032 SDValue N01 = N0.getOperand(1);
1033 SDValue N10 = N1.getOperand(0);
1034 SDValue N11 = N1.getOperand(1);
1036 if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1037 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1038 DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1039 DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1042 if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1043 return SDValue(N, 0);
1045 // fold (a+b) -> (a|b) iff a and b share no bits.
1046 if (VT.isInteger() && !VT.isVector()) {
1047 APInt LHSZero, LHSOne;
1048 APInt RHSZero, RHSOne;
1049 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
1050 DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1052 if (LHSZero.getBoolValue()) {
1053 DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1055 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1056 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1057 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1058 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1059 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1063 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1064 if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1065 SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1066 if (Result.getNode()) return Result;
1068 if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1069 SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1070 if (Result.getNode()) return Result;
1073 return SDValue();
1076 SDValue DAGCombiner::visitADDC(SDNode *N) {
1077 SDValue N0 = N->getOperand(0);
1078 SDValue N1 = N->getOperand(1);
1079 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1080 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1081 MVT VT = N0.getValueType();
1083 // If the flag result is dead, turn this into an ADD.
1084 if (N->hasNUsesOfValue(0, 1))
1085 return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0),
1086 DAG.getNode(ISD::CARRY_FALSE,
1087 N->getDebugLoc(), MVT::Flag));
1089 // canonicalize constant to RHS.
1090 if (N0C && !N1C)
1091 return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1093 // fold (addc x, 0) -> x + no carry out
1094 if (N1C && N1C->isNullValue())
1095 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1096 N->getDebugLoc(), MVT::Flag));
1098 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1099 APInt LHSZero, LHSOne;
1100 APInt RHSZero, RHSOne;
1101 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
1102 DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1104 if (LHSZero.getBoolValue()) {
1105 DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1107 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1108 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1109 if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1110 (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1111 return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1112 DAG.getNode(ISD::CARRY_FALSE,
1113 N->getDebugLoc(), MVT::Flag));
1116 return SDValue();
1119 SDValue DAGCombiner::visitADDE(SDNode *N) {
1120 SDValue N0 = N->getOperand(0);
1121 SDValue N1 = N->getOperand(1);
1122 SDValue CarryIn = N->getOperand(2);
1123 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1124 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1126 // canonicalize constant to RHS
1127 if (N0C && !N1C)
1128 return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1129 N1, N0, CarryIn);
1131 // fold (adde x, y, false) -> (addc x, y)
1132 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1133 return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1135 return SDValue();
1138 SDValue DAGCombiner::visitSUB(SDNode *N) {
1139 SDValue N0 = N->getOperand(0);
1140 SDValue N1 = N->getOperand(1);
1141 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1142 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1143 MVT VT = N0.getValueType();
1145 // fold vector ops
1146 if (VT.isVector()) {
1147 SDValue FoldedVOp = SimplifyVBinOp(N);
1148 if (FoldedVOp.getNode()) return FoldedVOp;
1151 // fold (sub x, x) -> 0
1152 if (N0 == N1)
1153 return DAG.getConstant(0, N->getValueType(0));
1154 // fold (sub c1, c2) -> c1-c2
1155 if (N0C && N1C)
1156 return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1157 // fold (sub x, c) -> (add x, -c)
1158 if (N1C)
1159 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1160 DAG.getConstant(-N1C->getAPIntValue(), VT));
1161 // fold (A+B)-A -> B
1162 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1163 return N0.getOperand(1);
1164 // fold (A+B)-B -> A
1165 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1166 return N0.getOperand(0);
1167 // fold ((A+(B+or-C))-B) -> A+or-C
1168 if (N0.getOpcode() == ISD::ADD &&
1169 (N0.getOperand(1).getOpcode() == ISD::SUB ||
1170 N0.getOperand(1).getOpcode() == ISD::ADD) &&
1171 N0.getOperand(1).getOperand(0) == N1)
1172 return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1173 N0.getOperand(0), N0.getOperand(1).getOperand(1));
1174 // fold ((A+(C+B))-B) -> A+C
1175 if (N0.getOpcode() == ISD::ADD &&
1176 N0.getOperand(1).getOpcode() == ISD::ADD &&
1177 N0.getOperand(1).getOperand(1) == N1)
1178 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1179 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1180 // fold ((A-(B-C))-C) -> A-B
1181 if (N0.getOpcode() == ISD::SUB &&
1182 N0.getOperand(1).getOpcode() == ISD::SUB &&
1183 N0.getOperand(1).getOperand(1) == N1)
1184 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1185 N0.getOperand(0), N0.getOperand(1).getOperand(0));
1187 // If either operand of a sub is undef, the result is undef
1188 if (N0.getOpcode() == ISD::UNDEF)
1189 return N0;
1190 if (N1.getOpcode() == ISD::UNDEF)
1191 return N1;
1193 // If the relocation model supports it, consider symbol offsets.
1194 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1195 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1196 // fold (sub Sym, c) -> Sym-c
1197 if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1198 return DAG.getGlobalAddress(GA->getGlobal(), VT,
1199 GA->getOffset() -
1200 (uint64_t)N1C->getSExtValue());
1201 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1202 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1203 if (GA->getGlobal() == GB->getGlobal())
1204 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1205 VT);
1208 return SDValue();
1211 SDValue DAGCombiner::visitMUL(SDNode *N) {
1212 SDValue N0 = N->getOperand(0);
1213 SDValue N1 = N->getOperand(1);
1214 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1215 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1216 MVT VT = N0.getValueType();
1218 // fold vector ops
1219 if (VT.isVector()) {
1220 SDValue FoldedVOp = SimplifyVBinOp(N);
1221 if (FoldedVOp.getNode()) return FoldedVOp;
1224 // fold (mul x, undef) -> 0
1225 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1226 return DAG.getConstant(0, VT);
1227 // fold (mul c1, c2) -> c1*c2
1228 if (N0C && N1C)
1229 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1230 // canonicalize constant to RHS
1231 if (N0C && !N1C)
1232 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1233 // fold (mul x, 0) -> 0
1234 if (N1C && N1C->isNullValue())
1235 return N1;
1236 // fold (mul x, -1) -> 0-x
1237 if (N1C && N1C->isAllOnesValue())
1238 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1239 DAG.getConstant(0, VT), N0);
1240 // fold (mul x, (1 << c)) -> x << c
1241 if (N1C && N1C->getAPIntValue().isPowerOf2())
1242 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1243 DAG.getConstant(N1C->getAPIntValue().logBase2(),
1244 getShiftAmountTy()));
1245 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1246 if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1247 unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1248 // FIXME: If the input is something that is easily negated (e.g. a
1249 // single-use add), we should put the negate there.
1250 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1251 DAG.getConstant(0, VT),
1252 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1253 DAG.getConstant(Log2Val, getShiftAmountTy())));
1255 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1256 if (N1C && N0.getOpcode() == ISD::SHL &&
1257 isa<ConstantSDNode>(N0.getOperand(1))) {
1258 SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1259 N1, N0.getOperand(1));
1260 AddToWorkList(C3.getNode());
1261 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1262 N0.getOperand(0), C3);
1265 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1266 // use.
1268 SDValue Sh(0,0), Y(0,0);
1269 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1270 if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1271 N0.getNode()->hasOneUse()) {
1272 Sh = N0; Y = N1;
1273 } else if (N1.getOpcode() == ISD::SHL &&
1274 isa<ConstantSDNode>(N1.getOperand(1)) &&
1275 N1.getNode()->hasOneUse()) {
1276 Sh = N1; Y = N0;
1279 if (Sh.getNode()) {
1280 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1281 Sh.getOperand(0), Y);
1282 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1283 Mul, Sh.getOperand(1));
1287 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1288 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1289 isa<ConstantSDNode>(N0.getOperand(1)))
1290 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1291 DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1292 N0.getOperand(0), N1),
1293 DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1294 N0.getOperand(1), N1));
1296 // reassociate mul
1297 SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1298 if (RMUL.getNode() != 0)
1299 return RMUL;
1301 return SDValue();
1304 SDValue DAGCombiner::visitSDIV(SDNode *N) {
1305 SDValue N0 = N->getOperand(0);
1306 SDValue N1 = N->getOperand(1);
1307 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1308 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1309 MVT VT = N->getValueType(0);
1311 // fold vector ops
1312 if (VT.isVector()) {
1313 SDValue FoldedVOp = SimplifyVBinOp(N);
1314 if (FoldedVOp.getNode()) return FoldedVOp;
1317 // fold (sdiv c1, c2) -> c1/c2
1318 if (N0C && N1C && !N1C->isNullValue())
1319 return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1320 // fold (sdiv X, 1) -> X
1321 if (N1C && N1C->getSExtValue() == 1LL)
1322 return N0;
1323 // fold (sdiv X, -1) -> 0-X
1324 if (N1C && N1C->isAllOnesValue())
1325 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1326 DAG.getConstant(0, VT), N0);
1327 // If we know the sign bits of both operands are zero, strength reduce to a
1328 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1329 if (!VT.isVector()) {
1330 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1331 return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1332 N0, N1);
1334 // fold (sdiv X, pow2) -> simple ops after legalize
1335 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
1336 (isPowerOf2_64(N1C->getSExtValue()) ||
1337 isPowerOf2_64(-N1C->getSExtValue()))) {
1338 // If dividing by powers of two is cheap, then don't perform the following
1339 // fold.
1340 if (TLI.isPow2DivCheap())
1341 return SDValue();
1343 int64_t pow2 = N1C->getSExtValue();
1344 int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1345 unsigned lg2 = Log2_64(abs2);
1347 // Splat the sign bit into the register
1348 SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1349 DAG.getConstant(VT.getSizeInBits()-1,
1350 getShiftAmountTy()));
1351 AddToWorkList(SGN.getNode());
1353 // Add (N0 < 0) ? abs2 - 1 : 0;
1354 SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1355 DAG.getConstant(VT.getSizeInBits() - lg2,
1356 getShiftAmountTy()));
1357 SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1358 AddToWorkList(SRL.getNode());
1359 AddToWorkList(ADD.getNode()); // Divide by pow2
1360 SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1361 DAG.getConstant(lg2, getShiftAmountTy()));
1363 // If we're dividing by a positive value, we're done. Otherwise, we must
1364 // negate the result.
1365 if (pow2 > 0)
1366 return SRA;
1368 AddToWorkList(SRA.getNode());
1369 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1370 DAG.getConstant(0, VT), SRA);
1373 // if integer divide is expensive and we satisfy the requirements, emit an
1374 // alternate sequence.
1375 if (N1C && (N1C->getSExtValue() < -1 || N1C->getSExtValue() > 1) &&
1376 !TLI.isIntDivCheap()) {
1377 SDValue Op = BuildSDIV(N);
1378 if (Op.getNode()) return Op;
1381 // undef / X -> 0
1382 if (N0.getOpcode() == ISD::UNDEF)
1383 return DAG.getConstant(0, VT);
1384 // X / undef -> undef
1385 if (N1.getOpcode() == ISD::UNDEF)
1386 return N1;
1388 return SDValue();
1391 SDValue DAGCombiner::visitUDIV(SDNode *N) {
1392 SDValue N0 = N->getOperand(0);
1393 SDValue N1 = N->getOperand(1);
1394 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1395 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1396 MVT VT = N->getValueType(0);
1398 // fold vector ops
1399 if (VT.isVector()) {
1400 SDValue FoldedVOp = SimplifyVBinOp(N);
1401 if (FoldedVOp.getNode()) return FoldedVOp;
1404 // fold (udiv c1, c2) -> c1/c2
1405 if (N0C && N1C && !N1C->isNullValue())
1406 return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1407 // fold (udiv x, (1 << c)) -> x >>u c
1408 if (N1C && N1C->getAPIntValue().isPowerOf2())
1409 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1410 DAG.getConstant(N1C->getAPIntValue().logBase2(),
1411 getShiftAmountTy()));
1412 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1413 if (N1.getOpcode() == ISD::SHL) {
1414 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1415 if (SHC->getAPIntValue().isPowerOf2()) {
1416 MVT ADDVT = N1.getOperand(1).getValueType();
1417 SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1418 N1.getOperand(1),
1419 DAG.getConstant(SHC->getAPIntValue()
1420 .logBase2(),
1421 ADDVT));
1422 AddToWorkList(Add.getNode());
1423 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1427 // fold (udiv x, c) -> alternate
1428 if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1429 SDValue Op = BuildUDIV(N);
1430 if (Op.getNode()) return Op;
1433 // undef / X -> 0
1434 if (N0.getOpcode() == ISD::UNDEF)
1435 return DAG.getConstant(0, VT);
1436 // X / undef -> undef
1437 if (N1.getOpcode() == ISD::UNDEF)
1438 return N1;
1440 return SDValue();
1443 SDValue DAGCombiner::visitSREM(SDNode *N) {
1444 SDValue N0 = N->getOperand(0);
1445 SDValue N1 = N->getOperand(1);
1446 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1447 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1448 MVT VT = N->getValueType(0);
1450 // fold (srem c1, c2) -> c1%c2
1451 if (N0C && N1C && !N1C->isNullValue())
1452 return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1453 // If we know the sign bits of both operands are zero, strength reduce to a
1454 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1455 if (!VT.isVector()) {
1456 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1457 return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
1460 // If X/C can be simplified by the division-by-constant logic, lower
1461 // X%C to the equivalent of X-X/C*C.
1462 if (N1C && !N1C->isNullValue()) {
1463 SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
1464 AddToWorkList(Div.getNode());
1465 SDValue OptimizedDiv = combine(Div.getNode());
1466 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1467 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1468 OptimizedDiv, N1);
1469 SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
1470 AddToWorkList(Mul.getNode());
1471 return Sub;
1475 // undef % X -> 0
1476 if (N0.getOpcode() == ISD::UNDEF)
1477 return DAG.getConstant(0, VT);
1478 // X % undef -> undef
1479 if (N1.getOpcode() == ISD::UNDEF)
1480 return N1;
1482 return SDValue();
1485 SDValue DAGCombiner::visitUREM(SDNode *N) {
1486 SDValue N0 = N->getOperand(0);
1487 SDValue N1 = N->getOperand(1);
1488 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1489 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1490 MVT VT = N->getValueType(0);
1492 // fold (urem c1, c2) -> c1%c2
1493 if (N0C && N1C && !N1C->isNullValue())
1494 return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
1495 // fold (urem x, pow2) -> (and x, pow2-1)
1496 if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
1497 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
1498 DAG.getConstant(N1C->getAPIntValue()-1,VT));
1499 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1500 if (N1.getOpcode() == ISD::SHL) {
1501 if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1502 if (SHC->getAPIntValue().isPowerOf2()) {
1503 SDValue Add =
1504 DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
1505 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
1506 VT));
1507 AddToWorkList(Add.getNode());
1508 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
1513 // If X/C can be simplified by the division-by-constant logic, lower
1514 // X%C to the equivalent of X-X/C*C.
1515 if (N1C && !N1C->isNullValue()) {
1516 SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
1517 AddToWorkList(Div.getNode());
1518 SDValue OptimizedDiv = combine(Div.getNode());
1519 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1520 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1521 OptimizedDiv, N1);
1522 SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
1523 AddToWorkList(Mul.getNode());
1524 return Sub;
1528 // undef % X -> 0
1529 if (N0.getOpcode() == ISD::UNDEF)
1530 return DAG.getConstant(0, VT);
1531 // X % undef -> undef
1532 if (N1.getOpcode() == ISD::UNDEF)
1533 return N1;
1535 return SDValue();
1538 SDValue DAGCombiner::visitMULHS(SDNode *N) {
1539 SDValue N0 = N->getOperand(0);
1540 SDValue N1 = N->getOperand(1);
1541 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1542 MVT VT = N->getValueType(0);
1544 // fold (mulhs x, 0) -> 0
1545 if (N1C && N1C->isNullValue())
1546 return N1;
1547 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1548 if (N1C && N1C->getAPIntValue() == 1)
1549 return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
1550 DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
1551 getShiftAmountTy()));
1552 // fold (mulhs x, undef) -> 0
1553 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1554 return DAG.getConstant(0, VT);
1556 return SDValue();
1559 SDValue DAGCombiner::visitMULHU(SDNode *N) {
1560 SDValue N0 = N->getOperand(0);
1561 SDValue N1 = N->getOperand(1);
1562 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1563 MVT VT = N->getValueType(0);
1565 // fold (mulhu x, 0) -> 0
1566 if (N1C && N1C->isNullValue())
1567 return N1;
1568 // fold (mulhu x, 1) -> 0
1569 if (N1C && N1C->getAPIntValue() == 1)
1570 return DAG.getConstant(0, N0.getValueType());
1571 // fold (mulhu x, undef) -> 0
1572 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1573 return DAG.getConstant(0, VT);
1575 return SDValue();
1578 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1579 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1580 /// that are being performed. Return true if a simplification was made.
1582 SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1583 unsigned HiOp) {
1584 // If the high half is not needed, just compute the low half.
1585 bool HiExists = N->hasAnyUseOfValue(1);
1586 if (!HiExists &&
1587 (!LegalOperations ||
1588 TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1589 SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
1590 N->op_begin(), N->getNumOperands());
1591 return CombineTo(N, Res, Res);
1594 // If the low half is not needed, just compute the high half.
1595 bool LoExists = N->hasAnyUseOfValue(0);
1596 if (!LoExists &&
1597 (!LegalOperations ||
1598 TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1599 SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
1600 N->op_begin(), N->getNumOperands());
1601 return CombineTo(N, Res, Res);
1604 // If both halves are used, return as it is.
1605 if (LoExists && HiExists)
1606 return SDValue();
1608 // If the two computed results can be simplified separately, separate them.
1609 if (LoExists) {
1610 SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
1611 N->op_begin(), N->getNumOperands());
1612 AddToWorkList(Lo.getNode());
1613 SDValue LoOpt = combine(Lo.getNode());
1614 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
1615 (!LegalOperations ||
1616 TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
1617 return CombineTo(N, LoOpt, LoOpt);
1620 if (HiExists) {
1621 SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
1622 N->op_begin(), N->getNumOperands());
1623 AddToWorkList(Hi.getNode());
1624 SDValue HiOpt = combine(Hi.getNode());
1625 if (HiOpt.getNode() && HiOpt != Hi &&
1626 (!LegalOperations ||
1627 TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
1628 return CombineTo(N, HiOpt, HiOpt);
1631 return SDValue();
1634 SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1635 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1636 if (Res.getNode()) return Res;
1638 return SDValue();
1641 SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1642 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1643 if (Res.getNode()) return Res;
1645 return SDValue();
1648 SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
1649 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1650 if (Res.getNode()) return Res;
1652 return SDValue();
1655 SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
1656 SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1657 if (Res.getNode()) return Res;
1659 return SDValue();
1662 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1663 /// two operands of the same opcode, try to simplify it.
1664 SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1665 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
1666 MVT VT = N0.getValueType();
1667 assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1669 // For each of OP in AND/OR/XOR:
1670 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1671 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1672 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1673 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
1674 if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1675 N0.getOpcode() == ISD::SIGN_EXTEND ||
1676 (N0.getOpcode() == ISD::TRUNCATE &&
1677 !TLI.isTruncateFree(N0.getOperand(0).getValueType(), VT))) &&
1678 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1679 SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
1680 N0.getOperand(0).getValueType(),
1681 N0.getOperand(0), N1.getOperand(0));
1682 AddToWorkList(ORNode.getNode());
1683 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
1686 // For each of OP in SHL/SRL/SRA/AND...
1687 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1688 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1689 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1690 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1691 N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1692 N0.getOperand(1) == N1.getOperand(1)) {
1693 SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
1694 N0.getOperand(0).getValueType(),
1695 N0.getOperand(0), N1.getOperand(0));
1696 AddToWorkList(ORNode.getNode());
1697 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
1698 ORNode, N0.getOperand(1));
1701 return SDValue();
1704 SDValue DAGCombiner::visitAND(SDNode *N) {
1705 SDValue N0 = N->getOperand(0);
1706 SDValue N1 = N->getOperand(1);
1707 SDValue LL, LR, RL, RR, CC0, CC1;
1708 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1709 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1710 MVT VT = N1.getValueType();
1711 unsigned BitWidth = VT.getSizeInBits();
1713 // fold vector ops
1714 if (VT.isVector()) {
1715 SDValue FoldedVOp = SimplifyVBinOp(N);
1716 if (FoldedVOp.getNode()) return FoldedVOp;
1719 // fold (and x, undef) -> 0
1720 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1721 return DAG.getConstant(0, VT);
1722 // fold (and c1, c2) -> c1&c2
1723 if (N0C && N1C)
1724 return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
1725 // canonicalize constant to RHS
1726 if (N0C && !N1C)
1727 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
1728 // fold (and x, -1) -> x
1729 if (N1C && N1C->isAllOnesValue())
1730 return N0;
1731 // if (and x, c) is known to be zero, return 0
1732 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
1733 APInt::getAllOnesValue(BitWidth)))
1734 return DAG.getConstant(0, VT);
1735 // reassociate and
1736 SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
1737 if (RAND.getNode() != 0)
1738 return RAND;
1739 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1740 if (N1C && N0.getOpcode() == ISD::OR)
1741 if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1742 if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
1743 return N1;
1744 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1745 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1746 SDValue N0Op0 = N0.getOperand(0);
1747 APInt Mask = ~N1C->getAPIntValue();
1748 Mask.trunc(N0Op0.getValueSizeInBits());
1749 if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1750 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
1751 N0.getValueType(), N0Op0);
1753 // Replace uses of the AND with uses of the Zero extend node.
1754 CombineTo(N, Zext);
1756 // We actually want to replace all uses of the any_extend with the
1757 // zero_extend, to avoid duplicating things. This will later cause this
1758 // AND to be folded.
1759 CombineTo(N0.getNode(), Zext);
1760 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1763 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1764 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1765 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1766 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1768 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1769 LL.getValueType().isInteger()) {
1770 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
1771 if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
1772 SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
1773 LR.getValueType(), LL, RL);
1774 AddToWorkList(ORNode.getNode());
1775 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1777 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
1778 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1779 SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
1780 LR.getValueType(), LL, RL);
1781 AddToWorkList(ANDNode.getNode());
1782 return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
1784 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
1785 if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1786 SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
1787 LR.getValueType(), LL, RL);
1788 AddToWorkList(ORNode.getNode());
1789 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1792 // canonicalize equivalent to ll == rl
1793 if (LL == RR && LR == RL) {
1794 Op1 = ISD::getSetCCSwappedOperands(Op1);
1795 std::swap(RL, RR);
1797 if (LL == RL && LR == RR) {
1798 bool isInteger = LL.getValueType().isInteger();
1799 ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1800 if (Result != ISD::SETCC_INVALID &&
1801 (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
1802 return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
1803 LL, LR, Result);
1807 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
1808 if (N0.getOpcode() == N1.getOpcode()) {
1809 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1810 if (Tmp.getNode()) return Tmp;
1813 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1814 // fold (and (sra)) -> (and (srl)) when possible.
1815 if (!VT.isVector() &&
1816 SimplifyDemandedBits(SDValue(N, 0)))
1817 return SDValue(N, 0);
1818 // fold (zext_inreg (extload x)) -> (zextload x)
1819 if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
1820 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1821 MVT EVT = LN0->getMemoryVT();
1822 // If we zero all the possible extended bits, then we can turn this into
1823 // a zextload if we are running before legalize or the operation is legal.
1824 unsigned BitWidth = N1.getValueSizeInBits();
1825 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1826 BitWidth - EVT.getSizeInBits())) &&
1827 ((!LegalOperations && !LN0->isVolatile()) ||
1828 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
1829 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
1830 LN0->getChain(), LN0->getBasePtr(),
1831 LN0->getSrcValue(),
1832 LN0->getSrcValueOffset(), EVT,
1833 LN0->isVolatile(), LN0->getAlignment());
1834 AddToWorkList(N);
1835 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
1836 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1839 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1840 if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
1841 N0.hasOneUse()) {
1842 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1843 MVT EVT = LN0->getMemoryVT();
1844 // If we zero all the possible extended bits, then we can turn this into
1845 // a zextload if we are running before legalize or the operation is legal.
1846 unsigned BitWidth = N1.getValueSizeInBits();
1847 if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1848 BitWidth - EVT.getSizeInBits())) &&
1849 ((!LegalOperations && !LN0->isVolatile()) ||
1850 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
1851 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
1852 LN0->getChain(),
1853 LN0->getBasePtr(), LN0->getSrcValue(),
1854 LN0->getSrcValueOffset(), EVT,
1855 LN0->isVolatile(), LN0->getAlignment());
1856 AddToWorkList(N);
1857 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
1858 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1862 // fold (and (load x), 255) -> (zextload x, i8)
1863 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1864 if (N1C && N0.getOpcode() == ISD::LOAD) {
1865 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1866 if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1867 LN0->isUnindexed() && N0.hasOneUse() &&
1868 // Do not change the width of a volatile load.
1869 !LN0->isVolatile()) {
1870 MVT EVT = MVT::Other;
1871 uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
1872 if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue()))
1873 EVT = MVT::getIntegerVT(ActiveBits);
1875 MVT LoadedVT = LN0->getMemoryVT();
1877 // Do not generate loads of non-round integer types since these can
1878 // be expensive (and would be wrong if the type is not byte sized).
1879 if (EVT != MVT::Other && LoadedVT.bitsGT(EVT) && EVT.isRound() &&
1880 (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT))) {
1881 MVT PtrType = N0.getOperand(1).getValueType();
1883 // For big endian targets, we need to add an offset to the pointer to
1884 // load the correct bytes. For little endian systems, we merely need to
1885 // read fewer bytes from the same pointer.
1886 unsigned LVTStoreBytes = LoadedVT.getStoreSizeInBits()/8;
1887 unsigned EVTStoreBytes = EVT.getStoreSizeInBits()/8;
1888 unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1889 unsigned Alignment = LN0->getAlignment();
1890 SDValue NewPtr = LN0->getBasePtr();
1892 if (TLI.isBigEndian()) {
1893 NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
1894 NewPtr, DAG.getConstant(PtrOff, PtrType));
1895 Alignment = MinAlign(Alignment, PtrOff);
1898 AddToWorkList(NewPtr.getNode());
1899 SDValue Load =
1900 DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT, LN0->getChain(),
1901 NewPtr, LN0->getSrcValue(), LN0->getSrcValueOffset(),
1902 EVT, LN0->isVolatile(), Alignment);
1903 AddToWorkList(N);
1904 CombineTo(N0.getNode(), Load, Load.getValue(1));
1905 return SDValue(N, 0); // Return N so it doesn't get rechecked!
1910 return SDValue();
1913 SDValue DAGCombiner::visitOR(SDNode *N) {
1914 SDValue N0 = N->getOperand(0);
1915 SDValue N1 = N->getOperand(1);
1916 SDValue LL, LR, RL, RR, CC0, CC1;
1917 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1918 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1919 MVT VT = N1.getValueType();
1921 // fold vector ops
1922 if (VT.isVector()) {
1923 SDValue FoldedVOp = SimplifyVBinOp(N);
1924 if (FoldedVOp.getNode()) return FoldedVOp;
1927 // fold (or x, undef) -> -1
1928 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1929 return DAG.getConstant(~0ULL, VT);
1930 // fold (or c1, c2) -> c1|c2
1931 if (N0C && N1C)
1932 return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
1933 // canonicalize constant to RHS
1934 if (N0C && !N1C)
1935 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
1936 // fold (or x, 0) -> x
1937 if (N1C && N1C->isNullValue())
1938 return N0;
1939 // fold (or x, -1) -> -1
1940 if (N1C && N1C->isAllOnesValue())
1941 return N1;
1942 // fold (or x, c) -> c iff (x & ~c) == 0
1943 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1944 return N1;
1945 // reassociate or
1946 SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
1947 if (ROR.getNode() != 0)
1948 return ROR;
1949 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1950 if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1951 isa<ConstantSDNode>(N0.getOperand(1))) {
1952 ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1953 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
1954 DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
1955 N0.getOperand(0), N1),
1956 DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
1958 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1959 if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1960 ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1961 ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1963 if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1964 LL.getValueType().isInteger()) {
1965 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
1966 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
1967 if (cast<ConstantSDNode>(LR)->isNullValue() &&
1968 (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1969 SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
1970 LR.getValueType(), LL, RL);
1971 AddToWorkList(ORNode.getNode());
1972 return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
1974 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
1975 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
1976 if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1977 (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1978 SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
1979 LR.getValueType(), LL, RL);
1980 AddToWorkList(ANDNode.getNode());
1981 return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
1984 // canonicalize equivalent to ll == rl
1985 if (LL == RR && LR == RL) {
1986 Op1 = ISD::getSetCCSwappedOperands(Op1);
1987 std::swap(RL, RR);
1989 if (LL == RL && LR == RR) {
1990 bool isInteger = LL.getValueType().isInteger();
1991 ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1992 if (Result != ISD::SETCC_INVALID &&
1993 (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
1994 return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
1995 LL, LR, Result);
1999 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
2000 if (N0.getOpcode() == N1.getOpcode()) {
2001 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2002 if (Tmp.getNode()) return Tmp;
2005 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2006 if (N0.getOpcode() == ISD::AND &&
2007 N1.getOpcode() == ISD::AND &&
2008 N0.getOperand(1).getOpcode() == ISD::Constant &&
2009 N1.getOperand(1).getOpcode() == ISD::Constant &&
2010 // Don't increase # computations.
2011 (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
2012 // We can only do this xform if we know that bits from X that are set in C2
2013 // but not in C1 are already zero. Likewise for Y.
2014 const APInt &LHSMask =
2015 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2016 const APInt &RHSMask =
2017 cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
2019 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
2020 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
2021 SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
2022 N0.getOperand(0), N1.getOperand(0));
2023 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
2024 DAG.getConstant(LHSMask | RHSMask, VT));
2028 // See if this is some rotate idiom.
2029 if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
2030 return SDValue(Rot, 0);
2032 return SDValue();
2035 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2036 static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
2037 if (Op.getOpcode() == ISD::AND) {
2038 if (isa<ConstantSDNode>(Op.getOperand(1))) {
2039 Mask = Op.getOperand(1);
2040 Op = Op.getOperand(0);
2041 } else {
2042 return false;
2046 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
2047 Shift = Op;
2048 return true;
2051 return false;
2054 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2055 // idioms for rotate, and if the target supports rotation instructions, generate
2056 // a rot[lr].
2057 SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
2058 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2059 MVT VT = LHS.getValueType();
2060 if (!TLI.isTypeLegal(VT)) return 0;
2062 // The target must have at least one rotate flavor.
2063 bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
2064 bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
2065 if (!HasROTL && !HasROTR) return 0;
2067 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2068 SDValue LHSShift; // The shift.
2069 SDValue LHSMask; // AND value if any.
2070 if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
2071 return 0; // Not part of a rotate.
2073 SDValue RHSShift; // The shift.
2074 SDValue RHSMask; // AND value if any.
2075 if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
2076 return 0; // Not part of a rotate.
2078 if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
2079 return 0; // Not shifting the same value.
2081 if (LHSShift.getOpcode() == RHSShift.getOpcode())
2082 return 0; // Shifts must disagree.
2084 // Canonicalize shl to left side in a shl/srl pair.
2085 if (RHSShift.getOpcode() == ISD::SHL) {
2086 std::swap(LHS, RHS);
2087 std::swap(LHSShift, RHSShift);
2088 std::swap(LHSMask , RHSMask );
2091 unsigned OpSizeInBits = VT.getSizeInBits();
2092 SDValue LHSShiftArg = LHSShift.getOperand(0);
2093 SDValue LHSShiftAmt = LHSShift.getOperand(1);
2094 SDValue RHSShiftAmt = RHSShift.getOperand(1);
2096 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2097 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2098 if (LHSShiftAmt.getOpcode() == ISD::Constant &&
2099 RHSShiftAmt.getOpcode() == ISD::Constant) {
2100 uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
2101 uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
2102 if ((LShVal + RShVal) != OpSizeInBits)
2103 return 0;
2105 SDValue Rot;
2106 if (HasROTL)
2107 Rot = DAG.getNode(ISD::ROTL, DL, VT, LHSShiftArg, LHSShiftAmt);
2108 else
2109 Rot = DAG.getNode(ISD::ROTR, DL, VT, LHSShiftArg, RHSShiftAmt);
2111 // If there is an AND of either shifted operand, apply it to the result.
2112 if (LHSMask.getNode() || RHSMask.getNode()) {
2113 APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
2115 if (LHSMask.getNode()) {
2116 APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
2117 Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
2119 if (RHSMask.getNode()) {
2120 APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2121 Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2124 Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
2127 return Rot.getNode();
2130 // If there is a mask here, and we have a variable shift, we can't be sure
2131 // that we're masking out the right stuff.
2132 if (LHSMask.getNode() || RHSMask.getNode())
2133 return 0;
2135 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2136 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2137 if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2138 LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2139 if (ConstantSDNode *SUBC =
2140 dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2141 if (SUBC->getAPIntValue() == OpSizeInBits) {
2142 if (HasROTL)
2143 return DAG.getNode(ISD::ROTL, DL, VT,
2144 LHSShiftArg, LHSShiftAmt).getNode();
2145 else
2146 return DAG.getNode(ISD::ROTR, DL, VT,
2147 LHSShiftArg, RHSShiftAmt).getNode();
2152 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2153 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2154 if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2155 RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2156 if (ConstantSDNode *SUBC =
2157 dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2158 if (SUBC->getAPIntValue() == OpSizeInBits) {
2159 if (HasROTR)
2160 return DAG.getNode(ISD::ROTR, DL, VT,
2161 LHSShiftArg, RHSShiftAmt).getNode();
2162 else
2163 return DAG.getNode(ISD::ROTL, DL, VT,
2164 LHSShiftArg, LHSShiftAmt).getNode();
2169 // Look for sign/zext/any-extended or truncate cases:
2170 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2171 || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2172 || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
2173 || LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
2174 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2175 || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2176 || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND
2177 || RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
2178 SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
2179 SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
2180 if (RExtOp0.getOpcode() == ISD::SUB &&
2181 RExtOp0.getOperand(1) == LExtOp0) {
2182 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2183 // (rotl x, y)
2184 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2185 // (rotr x, (sub 32, y))
2186 if (ConstantSDNode *SUBC =
2187 dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2188 if (SUBC->getAPIntValue() == OpSizeInBits) {
2189 return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
2190 LHSShiftArg,
2191 HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
2194 } else if (LExtOp0.getOpcode() == ISD::SUB &&
2195 RExtOp0 == LExtOp0.getOperand(1)) {
2196 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2197 // (rotr x, y)
2198 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2199 // (rotl x, (sub 32, y))
2200 if (ConstantSDNode *SUBC =
2201 dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2202 if (SUBC->getAPIntValue() == OpSizeInBits) {
2203 return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
2204 LHSShiftArg,
2205 HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
2211 return 0;
2214 SDValue DAGCombiner::visitXOR(SDNode *N) {
2215 SDValue N0 = N->getOperand(0);
2216 SDValue N1 = N->getOperand(1);
2217 SDValue LHS, RHS, CC;
2218 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2219 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2220 MVT VT = N0.getValueType();
2222 // fold vector ops
2223 if (VT.isVector()) {
2224 SDValue FoldedVOp = SimplifyVBinOp(N);
2225 if (FoldedVOp.getNode()) return FoldedVOp;
2228 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2229 if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
2230 return DAG.getConstant(0, VT);
2231 // fold (xor x, undef) -> undef
2232 if (N0.getOpcode() == ISD::UNDEF)
2233 return N0;
2234 if (N1.getOpcode() == ISD::UNDEF)
2235 return N1;
2236 // fold (xor c1, c2) -> c1^c2
2237 if (N0C && N1C)
2238 return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
2239 // canonicalize constant to RHS
2240 if (N0C && !N1C)
2241 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
2242 // fold (xor x, 0) -> x
2243 if (N1C && N1C->isNullValue())
2244 return N0;
2245 // reassociate xor
2246 SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
2247 if (RXOR.getNode() != 0)
2248 return RXOR;
2250 // fold !(x cc y) -> (x !cc y)
2251 if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2252 bool isInt = LHS.getValueType().isInteger();
2253 ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2254 isInt);
2256 if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
2257 switch (N0.getOpcode()) {
2258 default:
2259 assert(0 && "Unhandled SetCC Equivalent!");
2260 abort();
2261 case ISD::SETCC:
2262 return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
2263 case ISD::SELECT_CC:
2264 return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
2265 N0.getOperand(3), NotCC);
2270 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2271 if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2272 N0.getNode()->hasOneUse() &&
2273 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2274 SDValue V = N0.getOperand(0);
2275 V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
2276 DAG.getConstant(1, V.getValueType()));
2277 AddToWorkList(V.getNode());
2278 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
2281 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2282 if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
2283 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2284 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2285 if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2286 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2287 LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
2288 RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
2289 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
2290 return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
2293 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2294 if (N1C && N1C->isAllOnesValue() &&
2295 (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2296 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2297 if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2298 unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2299 LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
2300 RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
2301 AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
2302 return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
2305 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2306 if (N1C && N0.getOpcode() == ISD::XOR) {
2307 ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2308 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2309 if (N00C)
2310 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
2311 DAG.getConstant(N1C->getAPIntValue() ^
2312 N00C->getAPIntValue(), VT));
2313 if (N01C)
2314 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
2315 DAG.getConstant(N1C->getAPIntValue() ^
2316 N01C->getAPIntValue(), VT));
2318 // fold (xor x, x) -> 0
2319 if (N0 == N1) {
2320 if (!VT.isVector()) {
2321 return DAG.getConstant(0, VT);
2322 } else if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)){
2323 // Produce a vector of zeros.
2324 SDValue El = DAG.getConstant(0, VT.getVectorElementType());
2325 std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
2326 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
2327 &Ops[0], Ops.size());
2331 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2332 if (N0.getOpcode() == N1.getOpcode()) {
2333 SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2334 if (Tmp.getNode()) return Tmp;
2337 // Simplify the expression using non-local knowledge.
2338 if (!VT.isVector() &&
2339 SimplifyDemandedBits(SDValue(N, 0)))
2340 return SDValue(N, 0);
2342 return SDValue();
2345 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2346 /// the shift amount is a constant.
2347 SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2348 SDNode *LHS = N->getOperand(0).getNode();
2349 if (!LHS->hasOneUse()) return SDValue();
2351 // We want to pull some binops through shifts, so that we have (and (shift))
2352 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2353 // thing happens with address calculations, so it's important to canonicalize
2354 // it.
2355 bool HighBitSet = false; // Can we transform this if the high bit is set?
2357 switch (LHS->getOpcode()) {
2358 default: return SDValue();
2359 case ISD::OR:
2360 case ISD::XOR:
2361 HighBitSet = false; // We can only transform sra if the high bit is clear.
2362 break;
2363 case ISD::AND:
2364 HighBitSet = true; // We can only transform sra if the high bit is set.
2365 break;
2366 case ISD::ADD:
2367 if (N->getOpcode() != ISD::SHL)
2368 return SDValue(); // only shl(add) not sr[al](add).
2369 HighBitSet = false; // We can only transform sra if the high bit is clear.
2370 break;
2373 // We require the RHS of the binop to be a constant as well.
2374 ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2375 if (!BinOpCst) return SDValue();
2377 // FIXME: disable this unless the input to the binop is a shift by a constant.
2378 // If it is not a shift, it pessimizes some common cases like:
2380 // void foo(int *X, int i) { X[i & 1235] = 1; }
2381 // int bar(int *X, int i) { return X[i & 255]; }
2382 SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
2383 if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2384 BinOpLHSVal->getOpcode() != ISD::SRA &&
2385 BinOpLHSVal->getOpcode() != ISD::SRL) ||
2386 !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2387 return SDValue();
2389 MVT VT = N->getValueType(0);
2391 // If this is a signed shift right, and the high bit is modified by the
2392 // logical operation, do not perform the transformation. The highBitSet
2393 // boolean indicates the value of the high bit of the constant which would
2394 // cause it to be modified for this operation.
2395 if (N->getOpcode() == ISD::SRA) {
2396 bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2397 if (BinOpRHSSignSet != HighBitSet)
2398 return SDValue();
2401 // Fold the constants, shifting the binop RHS by the shift amount.
2402 SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
2403 N->getValueType(0),
2404 LHS->getOperand(1), N->getOperand(1));
2406 // Create the new shift.
2407 SDValue NewShift = DAG.getNode(N->getOpcode(), LHS->getOperand(0).getDebugLoc(),
2408 VT, LHS->getOperand(0), N->getOperand(1));
2410 // Create the new binop.
2411 return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
2414 SDValue DAGCombiner::visitSHL(SDNode *N) {
2415 SDValue N0 = N->getOperand(0);
2416 SDValue N1 = N->getOperand(1);
2417 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2418 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2419 MVT VT = N0.getValueType();
2420 unsigned OpSizeInBits = VT.getSizeInBits();
2422 // fold (shl c1, c2) -> c1<<c2
2423 if (N0C && N1C)
2424 return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
2425 // fold (shl 0, x) -> 0
2426 if (N0C && N0C->isNullValue())
2427 return N0;
2428 // fold (shl x, c >= size(x)) -> undef
2429 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
2430 return DAG.getUNDEF(VT);
2431 // fold (shl x, 0) -> x
2432 if (N1C && N1C->isNullValue())
2433 return N0;
2434 // if (shl x, c) is known to be zero, return 0
2435 if (DAG.MaskedValueIsZero(SDValue(N, 0),
2436 APInt::getAllOnesValue(VT.getSizeInBits())))
2437 return DAG.getConstant(0, VT);
2438 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2439 if (N1.getOpcode() == ISD::TRUNCATE &&
2440 N1.getOperand(0).getOpcode() == ISD::AND &&
2441 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2442 SDValue N101 = N1.getOperand(0).getOperand(1);
2443 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2444 MVT TruncVT = N1.getValueType();
2445 SDValue N100 = N1.getOperand(0).getOperand(0);
2446 APInt TruncC = N101C->getAPIntValue();
2447 TruncC.trunc(TruncVT.getSizeInBits());
2448 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
2449 DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
2450 DAG.getNode(ISD::TRUNCATE,
2451 N->getDebugLoc(),
2452 TruncVT, N100),
2453 DAG.getConstant(TruncC, TruncVT)));
2457 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2458 return SDValue(N, 0);
2460 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2461 if (N1C && N0.getOpcode() == ISD::SHL &&
2462 N0.getOperand(1).getOpcode() == ISD::Constant) {
2463 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2464 uint64_t c2 = N1C->getZExtValue();
2465 if (c1 + c2 > OpSizeInBits)
2466 return DAG.getConstant(0, VT);
2467 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
2468 DAG.getConstant(c1 + c2, N1.getValueType()));
2470 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2471 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2472 if (N1C && N0.getOpcode() == ISD::SRL &&
2473 N0.getOperand(1).getOpcode() == ISD::Constant) {
2474 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2475 uint64_t c2 = N1C->getZExtValue();
2476 SDValue Mask = DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, N0.getOperand(0),
2477 DAG.getConstant(~0ULL << c1, VT));
2478 if (c2 > c1)
2479 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, Mask,
2480 DAG.getConstant(c2-c1, N1.getValueType()));
2481 else
2482 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Mask,
2483 DAG.getConstant(c1-c2, N1.getValueType()));
2485 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2486 if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2487 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
2488 DAG.getConstant(~0ULL << N1C->getZExtValue(), VT));
2490 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2493 SDValue DAGCombiner::visitSRA(SDNode *N) {
2494 SDValue N0 = N->getOperand(0);
2495 SDValue N1 = N->getOperand(1);
2496 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2497 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2498 MVT VT = N0.getValueType();
2500 // fold (sra c1, c2) -> (sra c1, c2)
2501 if (N0C && N1C)
2502 return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
2503 // fold (sra 0, x) -> 0
2504 if (N0C && N0C->isNullValue())
2505 return N0;
2506 // fold (sra -1, x) -> -1
2507 if (N0C && N0C->isAllOnesValue())
2508 return N0;
2509 // fold (sra x, (setge c, size(x))) -> undef
2510 if (N1C && N1C->getZExtValue() >= VT.getSizeInBits())
2511 return DAG.getUNDEF(VT);
2512 // fold (sra x, 0) -> x
2513 if (N1C && N1C->isNullValue())
2514 return N0;
2515 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2516 // sext_inreg.
2517 if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2518 unsigned LowBits = VT.getSizeInBits() - (unsigned)N1C->getZExtValue();
2519 MVT EVT = MVT::getIntegerVT(LowBits);
2520 if ((!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT)))
2521 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
2522 N0.getOperand(0), DAG.getValueType(EVT));
2525 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2526 if (N1C && N0.getOpcode() == ISD::SRA) {
2527 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2528 unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
2529 if (Sum >= VT.getSizeInBits()) Sum = VT.getSizeInBits()-1;
2530 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
2531 DAG.getConstant(Sum, N1C->getValueType(0)));
2535 // fold (sra (shl X, m), (sub result_size, n))
2536 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2537 // result_size - n != m.
2538 // If truncate is free for the target sext(shl) is likely to result in better
2539 // code.
2540 if (N0.getOpcode() == ISD::SHL) {
2541 // Get the two constanst of the shifts, CN0 = m, CN = n.
2542 const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2543 if (N01C && N1C) {
2544 // Determine what the truncate's result bitsize and type would be.
2545 unsigned VTValSize = VT.getSizeInBits();
2546 MVT TruncVT =
2547 MVT::getIntegerVT(VTValSize - N1C->getZExtValue());
2548 // Determine the residual right-shift amount.
2549 unsigned ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
2551 // If the shift is not a no-op (in which case this should be just a sign
2552 // extend already), the truncated to type is legal, sign_extend is legal
2553 // on that type, and the the truncate to that type is both legal and free,
2554 // perform the transform.
2555 if (ShiftAmt &&
2556 TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
2557 TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
2558 TLI.isTruncateFree(VT, TruncVT)) {
2560 SDValue Amt = DAG.getConstant(ShiftAmt, getShiftAmountTy());
2561 SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
2562 N0.getOperand(0), Amt);
2563 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
2564 Shift);
2565 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
2566 N->getValueType(0), Trunc);
2571 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
2572 if (N1.getOpcode() == ISD::TRUNCATE &&
2573 N1.getOperand(0).getOpcode() == ISD::AND &&
2574 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2575 SDValue N101 = N1.getOperand(0).getOperand(1);
2576 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2577 MVT TruncVT = N1.getValueType();
2578 SDValue N100 = N1.getOperand(0).getOperand(0);
2579 APInt TruncC = N101C->getAPIntValue();
2580 TruncC.trunc(TruncVT.getSizeInBits());
2581 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
2582 DAG.getNode(ISD::AND, N->getDebugLoc(),
2583 TruncVT,
2584 DAG.getNode(ISD::TRUNCATE,
2585 N->getDebugLoc(),
2586 TruncVT, N100),
2587 DAG.getConstant(TruncC, TruncVT)));
2591 // Simplify, based on bits shifted out of the LHS.
2592 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2593 return SDValue(N, 0);
2596 // If the sign bit is known to be zero, switch this to a SRL.
2597 if (DAG.SignBitIsZero(N0))
2598 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
2600 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2603 SDValue DAGCombiner::visitSRL(SDNode *N) {
2604 SDValue N0 = N->getOperand(0);
2605 SDValue N1 = N->getOperand(1);
2606 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2607 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2608 MVT VT = N0.getValueType();
2609 unsigned OpSizeInBits = VT.getSizeInBits();
2611 // fold (srl c1, c2) -> c1 >>u c2
2612 if (N0C && N1C)
2613 return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
2614 // fold (srl 0, x) -> 0
2615 if (N0C && N0C->isNullValue())
2616 return N0;
2617 // fold (srl x, c >= size(x)) -> undef
2618 if (N1C && N1C->getZExtValue() >= OpSizeInBits)
2619 return DAG.getUNDEF(VT);
2620 // fold (srl x, 0) -> x
2621 if (N1C && N1C->isNullValue())
2622 return N0;
2623 // if (srl x, c) is known to be zero, return 0
2624 if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2625 APInt::getAllOnesValue(OpSizeInBits)))
2626 return DAG.getConstant(0, VT);
2628 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
2629 if (N1C && N0.getOpcode() == ISD::SRL &&
2630 N0.getOperand(1).getOpcode() == ISD::Constant) {
2631 uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
2632 uint64_t c2 = N1C->getZExtValue();
2633 if (c1 + c2 > OpSizeInBits)
2634 return DAG.getConstant(0, VT);
2635 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
2636 DAG.getConstant(c1 + c2, N1.getValueType()));
2639 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2640 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2641 // Shifting in all undef bits?
2642 MVT SmallVT = N0.getOperand(0).getValueType();
2643 if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
2644 return DAG.getUNDEF(VT);
2646 SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
2647 N0.getOperand(0), N1);
2648 AddToWorkList(SmallShift.getNode());
2649 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
2652 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
2653 // bit, which is unmodified by sra.
2654 if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
2655 if (N0.getOpcode() == ISD::SRA)
2656 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
2659 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2660 if (N1C && N0.getOpcode() == ISD::CTLZ &&
2661 N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
2662 APInt KnownZero, KnownOne;
2663 APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits());
2664 DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2666 // If any of the input bits are KnownOne, then the input couldn't be all
2667 // zeros, thus the result of the srl will always be zero.
2668 if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2670 // If all of the bits input the to ctlz node are known to be zero, then
2671 // the result of the ctlz is "32" and the result of the shift is one.
2672 APInt UnknownBits = ~KnownZero & Mask;
2673 if (UnknownBits == 0) return DAG.getConstant(1, VT);
2675 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2676 if ((UnknownBits & (UnknownBits - 1)) == 0) {
2677 // Okay, we know that only that the single bit specified by UnknownBits
2678 // could be set on input to the CTLZ node. If this bit is set, the SRL
2679 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2680 // to an SRL/XOR pair, which is likely to simplify more.
2681 unsigned ShAmt = UnknownBits.countTrailingZeros();
2682 SDValue Op = N0.getOperand(0);
2684 if (ShAmt) {
2685 Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
2686 DAG.getConstant(ShAmt, getShiftAmountTy()));
2687 AddToWorkList(Op.getNode());
2690 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
2691 Op, DAG.getConstant(1, VT));
2695 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
2696 if (N1.getOpcode() == ISD::TRUNCATE &&
2697 N1.getOperand(0).getOpcode() == ISD::AND &&
2698 N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
2699 SDValue N101 = N1.getOperand(0).getOperand(1);
2700 if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
2701 MVT TruncVT = N1.getValueType();
2702 SDValue N100 = N1.getOperand(0).getOperand(0);
2703 APInt TruncC = N101C->getAPIntValue();
2704 TruncC.trunc(TruncVT.getSizeInBits());
2705 return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
2706 DAG.getNode(ISD::AND, N->getDebugLoc(),
2707 TruncVT,
2708 DAG.getNode(ISD::TRUNCATE,
2709 N->getDebugLoc(),
2710 TruncVT, N100),
2711 DAG.getConstant(TruncC, TruncVT)));
2715 // fold operands of srl based on knowledge that the low bits are not
2716 // demanded.
2717 if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
2718 return SDValue(N, 0);
2720 return N1C ? visitShiftByConstant(N, N1C->getZExtValue()) : SDValue();
2723 SDValue DAGCombiner::visitCTLZ(SDNode *N) {
2724 SDValue N0 = N->getOperand(0);
2725 MVT VT = N->getValueType(0);
2727 // fold (ctlz c1) -> c2
2728 if (isa<ConstantSDNode>(N0))
2729 return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
2730 return SDValue();
2733 SDValue DAGCombiner::visitCTTZ(SDNode *N) {
2734 SDValue N0 = N->getOperand(0);
2735 MVT VT = N->getValueType(0);
2737 // fold (cttz c1) -> c2
2738 if (isa<ConstantSDNode>(N0))
2739 return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
2740 return SDValue();
2743 SDValue DAGCombiner::visitCTPOP(SDNode *N) {
2744 SDValue N0 = N->getOperand(0);
2745 MVT VT = N->getValueType(0);
2747 // fold (ctpop c1) -> c2
2748 if (isa<ConstantSDNode>(N0))
2749 return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
2750 return SDValue();
2753 SDValue DAGCombiner::visitSELECT(SDNode *N) {
2754 SDValue N0 = N->getOperand(0);
2755 SDValue N1 = N->getOperand(1);
2756 SDValue N2 = N->getOperand(2);
2757 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2758 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2759 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2760 MVT VT = N->getValueType(0);
2761 MVT VT0 = N0.getValueType();
2763 // fold (select C, X, X) -> X
2764 if (N1 == N2)
2765 return N1;
2766 // fold (select true, X, Y) -> X
2767 if (N0C && !N0C->isNullValue())
2768 return N1;
2769 // fold (select false, X, Y) -> Y
2770 if (N0C && N0C->isNullValue())
2771 return N2;
2772 // fold (select C, 1, X) -> (or C, X)
2773 if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
2774 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
2775 // fold (select C, 0, 1) -> (xor C, 1)
2776 if (VT.isInteger() &&
2777 (VT0 == MVT::i1 ||
2778 (VT0.isInteger() &&
2779 TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent)) &&
2780 N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
2781 SDValue XORNode;
2782 if (VT == VT0)
2783 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
2784 N0, DAG.getConstant(1, VT0));
2785 XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
2786 N0, DAG.getConstant(1, VT0));
2787 AddToWorkList(XORNode.getNode());
2788 if (VT.bitsGT(VT0))
2789 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
2790 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
2792 // fold (select C, 0, X) -> (and (not C), X)
2793 if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2794 SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
2795 AddToWorkList(NOTNode.getNode());
2796 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
2798 // fold (select C, X, 1) -> (or (not C), X)
2799 if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
2800 SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
2801 AddToWorkList(NOTNode.getNode());
2802 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
2804 // fold (select C, X, 0) -> (and C, X)
2805 if (VT == MVT::i1 && N2C && N2C->isNullValue())
2806 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
2807 // fold (select X, X, Y) -> (or X, Y)
2808 // fold (select X, 1, Y) -> (or X, Y)
2809 if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
2810 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
2811 // fold (select X, Y, X) -> (and X, Y)
2812 // fold (select X, Y, 0) -> (and X, Y)
2813 if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
2814 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
2816 // If we can fold this based on the true/false value, do so.
2817 if (SimplifySelectOps(N, N1, N2))
2818 return SDValue(N, 0); // Don't revisit N.
2820 // fold selects based on a setcc into other things, such as min/max/abs
2821 if (N0.getOpcode() == ISD::SETCC) {
2822 // FIXME:
2823 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2824 // having to say they don't support SELECT_CC on every type the DAG knows
2825 // about, since there is no way to mark an opcode illegal at all value types
2826 if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other))
2827 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
2828 N0.getOperand(0), N0.getOperand(1),
2829 N1, N2, N0.getOperand(2));
2830 return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
2833 return SDValue();
2836 SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
2837 SDValue N0 = N->getOperand(0);
2838 SDValue N1 = N->getOperand(1);
2839 SDValue N2 = N->getOperand(2);
2840 SDValue N3 = N->getOperand(3);
2841 SDValue N4 = N->getOperand(4);
2842 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2844 // fold select_cc lhs, rhs, x, x, cc -> x
2845 if (N2 == N3)
2846 return N2;
2848 // Determine if the condition we're dealing with is constant
2849 SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
2850 N0, N1, CC, N->getDebugLoc(), false);
2851 if (SCC.getNode()) AddToWorkList(SCC.getNode());
2853 if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
2854 if (!SCCC->isNullValue())
2855 return N2; // cond always true -> true val
2856 else
2857 return N3; // cond always false -> false val
2860 // Fold to a simpler select_cc
2861 if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
2862 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
2863 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2864 SCC.getOperand(2));
2866 // If we can fold this based on the true/false value, do so.
2867 if (SimplifySelectOps(N, N2, N3))
2868 return SDValue(N, 0); // Don't revisit N.
2870 // fold select_cc into other things, such as min/max/abs
2871 return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
2874 SDValue DAGCombiner::visitSETCC(SDNode *N) {
2875 return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2876 cast<CondCodeSDNode>(N->getOperand(2))->get(),
2877 N->getDebugLoc());
2880 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2881 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
2882 // transformation. Returns true if extension are possible and the above
2883 // mentioned transformation is profitable.
2884 static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
2885 unsigned ExtOpc,
2886 SmallVector<SDNode*, 4> &ExtendNodes,
2887 const TargetLowering &TLI) {
2888 bool HasCopyToRegUses = false;
2889 bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2890 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
2891 UE = N0.getNode()->use_end();
2892 UI != UE; ++UI) {
2893 SDNode *User = *UI;
2894 if (User == N)
2895 continue;
2896 if (UI.getUse().getResNo() != N0.getResNo())
2897 continue;
2898 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2899 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
2900 ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2901 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2902 // Sign bits will be lost after a zext.
2903 return false;
2904 bool Add = false;
2905 for (unsigned i = 0; i != 2; ++i) {
2906 SDValue UseOp = User->getOperand(i);
2907 if (UseOp == N0)
2908 continue;
2909 if (!isa<ConstantSDNode>(UseOp))
2910 return false;
2911 Add = true;
2913 if (Add)
2914 ExtendNodes.push_back(User);
2915 continue;
2917 // If truncates aren't free and there are users we can't
2918 // extend, it isn't worthwhile.
2919 if (!isTruncFree)
2920 return false;
2921 // Remember if this value is live-out.
2922 if (User->getOpcode() == ISD::CopyToReg)
2923 HasCopyToRegUses = true;
2926 if (HasCopyToRegUses) {
2927 bool BothLiveOut = false;
2928 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2929 UI != UE; ++UI) {
2930 SDUse &Use = UI.getUse();
2931 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
2932 BothLiveOut = true;
2933 break;
2936 if (BothLiveOut)
2937 // Both unextended and extended values are live out. There had better be
2938 // good a reason for the transformation.
2939 return ExtendNodes.size();
2941 return true;
2944 SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2945 SDValue N0 = N->getOperand(0);
2946 MVT VT = N->getValueType(0);
2948 // fold (sext c1) -> c1
2949 if (isa<ConstantSDNode>(N0))
2950 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
2952 // fold (sext (sext x)) -> (sext x)
2953 // fold (sext (aext x)) -> (sext x)
2954 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2955 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
2956 N0.getOperand(0));
2958 if (N0.getOpcode() == ISD::TRUNCATE) {
2959 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2960 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2961 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
2962 if (NarrowLoad.getNode()) {
2963 if (NarrowLoad.getNode() != N0.getNode())
2964 CombineTo(N0.getNode(), NarrowLoad);
2965 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2968 // See if the value being truncated is already sign extended. If so, just
2969 // eliminate the trunc/sext pair.
2970 SDValue Op = N0.getOperand(0);
2971 unsigned OpBits = Op.getValueType().getSizeInBits();
2972 unsigned MidBits = N0.getValueType().getSizeInBits();
2973 unsigned DestBits = VT.getSizeInBits();
2974 unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2976 if (OpBits == DestBits) {
2977 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
2978 // bits, it is already ready.
2979 if (NumSignBits > DestBits-MidBits)
2980 return Op;
2981 } else if (OpBits < DestBits) {
2982 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
2983 // bits, just sext from i32.
2984 if (NumSignBits > OpBits-MidBits)
2985 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
2986 } else {
2987 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
2988 // bits, just truncate to i32.
2989 if (NumSignBits > OpBits-MidBits)
2990 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
2993 // fold (sext (truncate x)) -> (sextinreg x).
2994 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2995 N0.getValueType())) {
2996 if (Op.getValueType().bitsLT(VT))
2997 Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
2998 else if (Op.getValueType().bitsGT(VT))
2999 Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
3000 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
3001 DAG.getValueType(N0.getValueType()));
3005 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3006 if (ISD::isNON_EXTLoad(N0.getNode()) &&
3007 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3008 TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
3009 bool DoXform = true;
3010 SmallVector<SDNode*, 4> SetCCs;
3011 if (!N0.hasOneUse())
3012 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
3013 if (DoXform) {
3014 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3015 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3016 LN0->getChain(),
3017 LN0->getBasePtr(), LN0->getSrcValue(),
3018 LN0->getSrcValueOffset(),
3019 N0.getValueType(),
3020 LN0->isVolatile(), LN0->getAlignment());
3021 CombineTo(N, ExtLoad);
3022 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3023 N0.getValueType(), ExtLoad);
3024 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
3026 // Extend SetCC uses if necessary.
3027 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3028 SDNode *SetCC = SetCCs[i];
3029 SmallVector<SDValue, 4> Ops;
3031 for (unsigned j = 0; j != 2; ++j) {
3032 SDValue SOp = SetCC->getOperand(j);
3033 if (SOp == Trunc)
3034 Ops.push_back(ExtLoad);
3035 else
3036 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND,
3037 N->getDebugLoc(), VT, SOp));
3040 Ops.push_back(SetCC->getOperand(2));
3041 CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
3042 SetCC->getValueType(0),
3043 &Ops[0], Ops.size()));
3046 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3050 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3051 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3052 if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
3053 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
3054 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3055 MVT EVT = LN0->getMemoryVT();
3056 if ((!LegalOperations && !LN0->isVolatile()) ||
3057 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT)) {
3058 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3059 LN0->getChain(),
3060 LN0->getBasePtr(), LN0->getSrcValue(),
3061 LN0->getSrcValueOffset(), EVT,
3062 LN0->isVolatile(), LN0->getAlignment());
3063 CombineTo(N, ExtLoad);
3064 CombineTo(N0.getNode(),
3065 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3066 N0.getValueType(), ExtLoad),
3067 ExtLoad.getValue(1));
3068 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3072 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3073 if (N0.getOpcode() == ISD::SETCC) {
3074 SDValue SCC =
3075 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3076 DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
3077 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3078 if (SCC.getNode()) return SCC;
3081 // fold (sext x) -> (zext x) if the sign bit is known zero.
3082 if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
3083 DAG.SignBitIsZero(N0))
3084 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
3086 return SDValue();
3089 SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
3090 SDValue N0 = N->getOperand(0);
3091 MVT VT = N->getValueType(0);
3093 // fold (zext c1) -> c1
3094 if (isa<ConstantSDNode>(N0))
3095 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
3096 // fold (zext (zext x)) -> (zext x)
3097 // fold (zext (aext x)) -> (zext x)
3098 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
3099 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
3100 N0.getOperand(0));
3102 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3103 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3104 if (N0.getOpcode() == ISD::TRUNCATE) {
3105 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
3106 if (NarrowLoad.getNode()) {
3107 if (NarrowLoad.getNode() != N0.getNode())
3108 CombineTo(N0.getNode(), NarrowLoad);
3109 return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
3113 // fold (zext (truncate x)) -> (and x, mask)
3114 if (N0.getOpcode() == ISD::TRUNCATE &&
3115 (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
3116 SDValue Op = N0.getOperand(0);
3117 if (Op.getValueType().bitsLT(VT)) {
3118 Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
3119 } else if (Op.getValueType().bitsGT(VT)) {
3120 Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
3122 return DAG.getZeroExtendInReg(Op, N->getDebugLoc(), N0.getValueType());
3125 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
3126 // if either of the casts is not free.
3127 if (N0.getOpcode() == ISD::AND &&
3128 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3129 N0.getOperand(1).getOpcode() == ISD::Constant &&
3130 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
3131 N0.getValueType()) ||
3132 !TLI.isZExtFree(N0.getValueType(), VT))) {
3133 SDValue X = N0.getOperand(0).getOperand(0);
3134 if (X.getValueType().bitsLT(VT)) {
3135 X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
3136 } else if (X.getValueType().bitsGT(VT)) {
3137 X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
3139 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3140 Mask.zext(VT.getSizeInBits());
3141 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3142 X, DAG.getConstant(Mask, VT));
3145 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3146 if (ISD::isNON_EXTLoad(N0.getNode()) &&
3147 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3148 TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
3149 bool DoXform = true;
3150 SmallVector<SDNode*, 4> SetCCs;
3151 if (!N0.hasOneUse())
3152 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
3153 if (DoXform) {
3154 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3155 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
3156 LN0->getChain(),
3157 LN0->getBasePtr(), LN0->getSrcValue(),
3158 LN0->getSrcValueOffset(),
3159 N0.getValueType(),
3160 LN0->isVolatile(), LN0->getAlignment());
3161 CombineTo(N, ExtLoad);
3162 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3163 N0.getValueType(), ExtLoad);
3164 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
3166 // Extend SetCC uses if necessary.
3167 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3168 SDNode *SetCC = SetCCs[i];
3169 SmallVector<SDValue, 4> Ops;
3171 for (unsigned j = 0; j != 2; ++j) {
3172 SDValue SOp = SetCC->getOperand(j);
3173 if (SOp == Trunc)
3174 Ops.push_back(ExtLoad);
3175 else
3176 Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND,
3177 N->getDebugLoc(), VT, SOp));
3180 Ops.push_back(SetCC->getOperand(2));
3181 CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
3182 SetCC->getValueType(0),
3183 &Ops[0], Ops.size()));
3186 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3190 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3191 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3192 if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
3193 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
3194 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3195 MVT EVT = LN0->getMemoryVT();
3196 if ((!LegalOperations && !LN0->isVolatile()) ||
3197 TLI.isLoadExtLegal(ISD::ZEXTLOAD, EVT)) {
3198 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
3199 LN0->getChain(),
3200 LN0->getBasePtr(), LN0->getSrcValue(),
3201 LN0->getSrcValueOffset(), EVT,
3202 LN0->isVolatile(), LN0->getAlignment());
3203 CombineTo(N, ExtLoad);
3204 CombineTo(N0.getNode(),
3205 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
3206 ExtLoad),
3207 ExtLoad.getValue(1));
3208 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3212 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3213 if (N0.getOpcode() == ISD::SETCC) {
3214 SDValue SCC =
3215 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3216 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3217 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3218 if (SCC.getNode()) return SCC;
3221 return SDValue();
3224 SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
3225 SDValue N0 = N->getOperand(0);
3226 MVT VT = N->getValueType(0);
3228 // fold (aext c1) -> c1
3229 if (isa<ConstantSDNode>(N0))
3230 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
3231 // fold (aext (aext x)) -> (aext x)
3232 // fold (aext (zext x)) -> (zext x)
3233 // fold (aext (sext x)) -> (sext x)
3234 if (N0.getOpcode() == ISD::ANY_EXTEND ||
3235 N0.getOpcode() == ISD::ZERO_EXTEND ||
3236 N0.getOpcode() == ISD::SIGN_EXTEND)
3237 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
3239 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3240 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3241 if (N0.getOpcode() == ISD::TRUNCATE) {
3242 SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
3243 if (NarrowLoad.getNode()) {
3244 if (NarrowLoad.getNode() != N0.getNode())
3245 CombineTo(N0.getNode(), NarrowLoad);
3246 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, NarrowLoad);
3250 // fold (aext (truncate x))
3251 if (N0.getOpcode() == ISD::TRUNCATE) {
3252 SDValue TruncOp = N0.getOperand(0);
3253 if (TruncOp.getValueType() == VT)
3254 return TruncOp; // x iff x size == zext size.
3255 if (TruncOp.getValueType().bitsGT(VT))
3256 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
3257 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
3260 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
3261 // if the trunc is not free.
3262 if (N0.getOpcode() == ISD::AND &&
3263 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3264 N0.getOperand(1).getOpcode() == ISD::Constant &&
3265 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
3266 N0.getValueType())) {
3267 SDValue X = N0.getOperand(0).getOperand(0);
3268 if (X.getValueType().bitsLT(VT)) {
3269 X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
3270 } else if (X.getValueType().bitsGT(VT)) {
3271 X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
3273 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3274 Mask.zext(VT.getSizeInBits());
3275 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3276 X, DAG.getConstant(Mask, VT));
3279 // fold (aext (load x)) -> (aext (truncate (extload x)))
3280 if (ISD::isNON_EXTLoad(N0.getNode()) &&
3281 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3282 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
3283 bool DoXform = true;
3284 SmallVector<SDNode*, 4> SetCCs;
3285 if (!N0.hasOneUse())
3286 DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
3287 if (DoXform) {
3288 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3289 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
3290 LN0->getChain(),
3291 LN0->getBasePtr(), LN0->getSrcValue(),
3292 LN0->getSrcValueOffset(),
3293 N0.getValueType(),
3294 LN0->isVolatile(), LN0->getAlignment());
3295 CombineTo(N, ExtLoad);
3296 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3297 N0.getValueType(), ExtLoad);
3298 CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
3300 // Extend SetCC uses if necessary.
3301 for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
3302 SDNode *SetCC = SetCCs[i];
3303 SmallVector<SDValue, 4> Ops;
3305 for (unsigned j = 0; j != 2; ++j) {
3306 SDValue SOp = SetCC->getOperand(j);
3307 if (SOp == Trunc)
3308 Ops.push_back(ExtLoad);
3309 else
3310 Ops.push_back(DAG.getNode(ISD::ANY_EXTEND,
3311 N->getDebugLoc(), VT, SOp));
3314 Ops.push_back(SetCC->getOperand(2));
3315 CombineTo(SetCC, DAG.getNode(ISD::SETCC, N->getDebugLoc(),
3316 SetCC->getValueType(0),
3317 &Ops[0], Ops.size()));
3320 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3324 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3325 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3326 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3327 if (N0.getOpcode() == ISD::LOAD &&
3328 !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3329 N0.hasOneUse()) {
3330 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3331 MVT EVT = LN0->getMemoryVT();
3332 SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
3333 VT, LN0->getChain(), LN0->getBasePtr(),
3334 LN0->getSrcValue(),
3335 LN0->getSrcValueOffset(), EVT,
3336 LN0->isVolatile(), LN0->getAlignment());
3337 CombineTo(N, ExtLoad);
3338 CombineTo(N0.getNode(),
3339 DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
3340 N0.getValueType(), ExtLoad),
3341 ExtLoad.getValue(1));
3342 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3345 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3346 if (N0.getOpcode() == ISD::SETCC) {
3347 SDValue SCC =
3348 SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
3349 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3350 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3351 if (SCC.getNode())
3352 return SCC;
3355 return SDValue();
3358 /// GetDemandedBits - See if the specified operand can be simplified with the
3359 /// knowledge that only the bits specified by Mask are used. If so, return the
3360 /// simpler operand, otherwise return a null SDValue.
3361 SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
3362 switch (V.getOpcode()) {
3363 default: break;
3364 case ISD::OR:
3365 case ISD::XOR:
3366 // If the LHS or RHS don't contribute bits to the or, drop them.
3367 if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3368 return V.getOperand(1);
3369 if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3370 return V.getOperand(0);
3371 break;
3372 case ISD::SRL:
3373 // Only look at single-use SRLs.
3374 if (!V.getNode()->hasOneUse())
3375 break;
3376 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3377 // See if we can recursively simplify the LHS.
3378 unsigned Amt = RHSC->getZExtValue();
3380 // Watch out for shift count overflow though.
3381 if (Amt >= Mask.getBitWidth()) break;
3382 APInt NewMask = Mask << Amt;
3383 SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3384 if (SimplifyLHS.getNode())
3385 return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
3386 SimplifyLHS, V.getOperand(1));
3389 return SDValue();
3392 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3393 /// bits and then truncated to a narrower type and where N is a multiple
3394 /// of number of bits of the narrower type, transform it to a narrower load
3395 /// from address + N / num of bits of new type. If the result is to be
3396 /// extended, also fold the extension to form a extending load.
3397 SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
3398 unsigned Opc = N->getOpcode();
3399 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3400 SDValue N0 = N->getOperand(0);
3401 MVT VT = N->getValueType(0);
3402 MVT EVT = VT;
3404 // This transformation isn't valid for vector loads.
3405 if (VT.isVector())
3406 return SDValue();
3408 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3409 // extended to VT.
3410 if (Opc == ISD::SIGN_EXTEND_INREG) {
3411 ExtType = ISD::SEXTLOAD;
3412 EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3413 if (LegalOperations && !TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))
3414 return SDValue();
3417 unsigned EVTBits = EVT.getSizeInBits();
3418 unsigned ShAmt = 0;
3419 if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3420 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3421 ShAmt = N01->getZExtValue();
3422 // Is the shift amount a multiple of size of VT?
3423 if ((ShAmt & (EVTBits-1)) == 0) {
3424 N0 = N0.getOperand(0);
3425 if (N0.getValueType().getSizeInBits() <= EVTBits)
3426 return SDValue();
3431 // Do not generate loads of non-round integer types since these can
3432 // be expensive (and would be wrong if the type is not byte sized).
3433 if (isa<LoadSDNode>(N0) && N0.hasOneUse() && EVT.isRound() &&
3434 cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() > EVTBits &&
3435 // Do not change the width of a volatile load.
3436 !cast<LoadSDNode>(N0)->isVolatile()) {
3437 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3438 MVT PtrType = N0.getOperand(1).getValueType();
3440 // For big endian targets, we need to adjust the offset to the pointer to
3441 // load the correct bytes.
3442 if (TLI.isBigEndian()) {
3443 unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
3444 unsigned EVTStoreBits = EVT.getStoreSizeInBits();
3445 ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3448 uint64_t PtrOff = ShAmt / 8;
3449 unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3450 SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
3451 PtrType, LN0->getBasePtr(),
3452 DAG.getConstant(PtrOff, PtrType));
3453 AddToWorkList(NewPtr.getNode());
3455 SDValue Load = (ExtType == ISD::NON_EXTLOAD)
3456 ? DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
3457 LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
3458 LN0->isVolatile(), NewAlign)
3459 : DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(), NewPtr,
3460 LN0->getSrcValue(), LN0->getSrcValueOffset() + PtrOff,
3461 EVT, LN0->isVolatile(), NewAlign);
3463 // Replace the old load's chain with the new load's chain.
3464 WorkListRemover DeadNodes(*this);
3465 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3466 &DeadNodes);
3468 // Return the new loaded value.
3469 return Load;
3472 return SDValue();
3475 SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3476 SDValue N0 = N->getOperand(0);
3477 SDValue N1 = N->getOperand(1);
3478 MVT VT = N->getValueType(0);
3479 MVT EVT = cast<VTSDNode>(N1)->getVT();
3480 unsigned VTBits = VT.getSizeInBits();
3481 unsigned EVTBits = EVT.getSizeInBits();
3483 // fold (sext_in_reg c1) -> c1
3484 if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3485 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
3487 // If the input is already sign extended, just drop the extension.
3488 if (DAG.ComputeNumSignBits(N0) >= VT.getSizeInBits()-EVTBits+1)
3489 return N0;
3491 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3492 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3493 EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
3494 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3495 N0.getOperand(0), N1);
3498 // fold (sext_in_reg (sext x)) -> (sext x)
3499 // fold (sext_in_reg (aext x)) -> (sext x)
3500 // if x is small enough.
3501 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
3502 SDValue N00 = N0.getOperand(0);
3503 if (N00.getValueType().getSizeInBits() < EVTBits)
3504 return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
3507 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3508 if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3509 return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
3511 // fold operands of sext_in_reg based on knowledge that the top bits are not
3512 // demanded.
3513 if (SimplifyDemandedBits(SDValue(N, 0)))
3514 return SDValue(N, 0);
3516 // fold (sext_in_reg (load x)) -> (smaller sextload x)
3517 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3518 SDValue NarrowLoad = ReduceLoadWidth(N);
3519 if (NarrowLoad.getNode())
3520 return NarrowLoad;
3522 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
3523 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
3524 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3525 if (N0.getOpcode() == ISD::SRL) {
3526 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3527 if (ShAmt->getZExtValue()+EVTBits <= VT.getSizeInBits()) {
3528 // We can turn this into an SRA iff the input to the SRL is already sign
3529 // extended enough.
3530 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3531 if (VT.getSizeInBits()-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
3532 return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
3533 N0.getOperand(0), N0.getOperand(1));
3537 // fold (sext_inreg (extload x)) -> (sextload x)
3538 if (ISD::isEXTLoad(N0.getNode()) &&
3539 ISD::isUNINDEXEDLoad(N0.getNode()) &&
3540 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3541 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3542 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
3543 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3544 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3545 LN0->getChain(),
3546 LN0->getBasePtr(), LN0->getSrcValue(),
3547 LN0->getSrcValueOffset(), EVT,
3548 LN0->isVolatile(), LN0->getAlignment());
3549 CombineTo(N, ExtLoad);
3550 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3551 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3553 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3554 if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3555 N0.hasOneUse() &&
3556 EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3557 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
3558 TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
3559 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3560 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
3561 LN0->getChain(),
3562 LN0->getBasePtr(), LN0->getSrcValue(),
3563 LN0->getSrcValueOffset(), EVT,
3564 LN0->isVolatile(), LN0->getAlignment());
3565 CombineTo(N, ExtLoad);
3566 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3567 return SDValue(N, 0); // Return N so it doesn't get rechecked!
3569 return SDValue();
3572 SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
3573 SDValue N0 = N->getOperand(0);
3574 MVT VT = N->getValueType(0);
3576 // noop truncate
3577 if (N0.getValueType() == N->getValueType(0))
3578 return N0;
3579 // fold (truncate c1) -> c1
3580 if (isa<ConstantSDNode>(N0))
3581 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
3582 // fold (truncate (truncate x)) -> (truncate x)
3583 if (N0.getOpcode() == ISD::TRUNCATE)
3584 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
3585 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3586 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3587 N0.getOpcode() == ISD::ANY_EXTEND) {
3588 if (N0.getOperand(0).getValueType().bitsLT(VT))
3589 // if the source is smaller than the dest, we still need an extend
3590 return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
3591 N0.getOperand(0));
3592 else if (N0.getOperand(0).getValueType().bitsGT(VT))
3593 // if the source is larger than the dest, than we just need the truncate
3594 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
3595 else
3596 // if the source and dest are the same type, we can drop both the extend
3597 // and the truncate
3598 return N0.getOperand(0);
3601 // See if we can simplify the input to this truncate through knowledge that
3602 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
3603 // -> trunc y
3604 SDValue Shorter =
3605 GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3606 VT.getSizeInBits()));
3607 if (Shorter.getNode())
3608 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
3610 // fold (truncate (load x)) -> (smaller load x)
3611 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3612 return ReduceLoadWidth(N);
3615 static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
3616 SDValue Elt = N->getOperand(i);
3617 if (Elt.getOpcode() != ISD::MERGE_VALUES)
3618 return Elt.getNode();
3619 return Elt.getOperand(Elt.getResNo()).getNode();
3622 /// CombineConsecutiveLoads - build_pair (load, load) -> load
3623 /// if load locations are consecutive.
3624 SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT VT) {
3625 assert(N->getOpcode() == ISD::BUILD_PAIR);
3627 SDNode *LD1 = getBuildPairElt(N, 0);
3628 if (!ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse())
3629 return SDValue();
3630 MVT LD1VT = LD1->getValueType(0);
3631 SDNode *LD2 = getBuildPairElt(N, 1);
3632 const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3634 if (ISD::isNON_EXTLoad(LD2) &&
3635 LD2->hasOneUse() &&
3636 // If both are volatile this would reduce the number of volatile loads.
3637 // If one is volatile it might be ok, but play conservative and bail out.
3638 !cast<LoadSDNode>(LD1)->isVolatile() &&
3639 !cast<LoadSDNode>(LD2)->isVolatile() &&
3640 TLI.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1, MFI)) {
3641 LoadSDNode *LD = cast<LoadSDNode>(LD1);
3642 unsigned Align = LD->getAlignment();
3643 unsigned NewAlign = TLI.getTargetData()->
3644 getABITypeAlignment(VT.getTypeForMVT());
3646 if (NewAlign <= Align &&
3647 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
3648 return DAG.getLoad(VT, N->getDebugLoc(), LD->getChain(), LD->getBasePtr(),
3649 LD->getSrcValue(), LD->getSrcValueOffset(),
3650 false, Align);
3653 return SDValue();
3656 SDValue DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3657 SDValue N0 = N->getOperand(0);
3658 MVT VT = N->getValueType(0);
3660 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3661 // Only do this before legalize, since afterward the target may be depending
3662 // on the bitconvert.
3663 // First check to see if this is all constant.
3664 if (!LegalTypes &&
3665 N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
3666 VT.isVector()) {
3667 bool isSimple = true;
3668 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3669 if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3670 N0.getOperand(i).getOpcode() != ISD::Constant &&
3671 N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3672 isSimple = false;
3673 break;
3676 MVT DestEltVT = N->getValueType(0).getVectorElementType();
3677 assert(!DestEltVT.isVector() &&
3678 "Element type of vector ValueType must not be vector!");
3679 if (isSimple)
3680 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.getNode(), DestEltVT);
3683 // If the input is a constant, let getNode fold it.
3684 if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3685 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, N0);
3686 if (Res.getNode() != N) return Res;
3689 // (conv (conv x, t1), t2) -> (conv x, t2)
3690 if (N0.getOpcode() == ISD::BIT_CONVERT)
3691 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT,
3692 N0.getOperand(0));
3694 // fold (conv (load x)) -> (load (conv*)x)
3695 // If the resultant load doesn't need a higher alignment than the original!
3696 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
3697 // Do not change the width of a volatile load.
3698 !cast<LoadSDNode>(N0)->isVolatile() &&
3699 (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
3700 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3701 unsigned Align = TLI.getTargetData()->
3702 getABITypeAlignment(VT.getTypeForMVT());
3703 unsigned OrigAlign = LN0->getAlignment();
3705 if (Align <= OrigAlign) {
3706 SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
3707 LN0->getBasePtr(),
3708 LN0->getSrcValue(), LN0->getSrcValueOffset(),
3709 LN0->isVolatile(), OrigAlign);
3710 AddToWorkList(N);
3711 CombineTo(N0.getNode(),
3712 DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3713 N0.getValueType(), Load),
3714 Load.getValue(1));
3715 return Load;
3719 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3720 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3721 // This often reduces constant pool loads.
3722 if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3723 N0.getNode()->hasOneUse() && VT.isInteger() && !VT.isVector()) {
3724 SDValue NewConv = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(), VT,
3725 N0.getOperand(0));
3726 AddToWorkList(NewConv.getNode());
3728 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
3729 if (N0.getOpcode() == ISD::FNEG)
3730 return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3731 NewConv, DAG.getConstant(SignBit, VT));
3732 assert(N0.getOpcode() == ISD::FABS);
3733 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3734 NewConv, DAG.getConstant(~SignBit, VT));
3737 // fold (bitconvert (fcopysign cst, x)) ->
3738 // (or (and (bitconvert x), sign), (and cst, (not sign)))
3739 // Note that we don't handle (copysign x, cst) because this can always be
3740 // folded to an fneg or fabs.
3741 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
3742 isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3743 VT.isInteger() && !VT.isVector()) {
3744 unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
3745 MVT IntXVT = MVT::getIntegerVT(OrigXWidth);
3746 if (TLI.isTypeLegal(IntXVT) || !LegalTypes) {
3747 SDValue X = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3748 IntXVT, N0.getOperand(1));
3749 AddToWorkList(X.getNode());
3751 // If X has a different width than the result/lhs, sext it or truncate it.
3752 unsigned VTWidth = VT.getSizeInBits();
3753 if (OrigXWidth < VTWidth) {
3754 X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
3755 AddToWorkList(X.getNode());
3756 } else if (OrigXWidth > VTWidth) {
3757 // To get the sign bit in the right place, we have to shift it right
3758 // before truncating.
3759 X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
3760 X.getValueType(), X,
3761 DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3762 AddToWorkList(X.getNode());
3763 X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
3764 AddToWorkList(X.getNode());
3767 APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
3768 X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
3769 X, DAG.getConstant(SignBit, VT));
3770 AddToWorkList(X.getNode());
3772 SDValue Cst = DAG.getNode(ISD::BIT_CONVERT, N0.getDebugLoc(),
3773 VT, N0.getOperand(0));
3774 Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
3775 Cst, DAG.getConstant(~SignBit, VT));
3776 AddToWorkList(Cst.getNode());
3778 return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
3782 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3783 if (N0.getOpcode() == ISD::BUILD_PAIR) {
3784 SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
3785 if (CombineLD.getNode())
3786 return CombineLD;
3789 return SDValue();
3792 SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
3793 MVT VT = N->getValueType(0);
3794 return CombineConsecutiveLoads(N, VT);
3797 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3798 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
3799 /// destination element value type.
3800 SDValue DAGCombiner::
3801 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT DstEltVT) {
3802 MVT SrcEltVT = BV->getValueType(0).getVectorElementType();
3804 // If this is already the right type, we're done.
3805 if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
3807 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
3808 unsigned DstBitSize = DstEltVT.getSizeInBits();
3810 // If this is a conversion of N elements of one type to N elements of another
3811 // type, convert each element. This handles FP<->INT cases.
3812 if (SrcBitSize == DstBitSize) {
3813 SmallVector<SDValue, 8> Ops;
3814 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3815 SDValue Op = BV->getOperand(i);
3816 // If the vector element type is not legal, the BUILD_VECTOR operands
3817 // are promoted and implicitly truncated. Make that explicit here.
3818 if (Op.getValueType() != SrcEltVT)
3819 Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
3820 Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, BV->getDebugLoc(),
3821 DstEltVT, Op));
3822 AddToWorkList(Ops.back().getNode());
3824 MVT VT = MVT::getVectorVT(DstEltVT,
3825 BV->getValueType(0).getVectorNumElements());
3826 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3827 &Ops[0], Ops.size());
3830 // Otherwise, we're growing or shrinking the elements. To avoid having to
3831 // handle annoying details of growing/shrinking FP values, we convert them to
3832 // int first.
3833 if (SrcEltVT.isFloatingPoint()) {
3834 // Convert the input float vector to a int vector where the elements are the
3835 // same sizes.
3836 assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3837 MVT IntVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits());
3838 BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).getNode();
3839 SrcEltVT = IntVT;
3842 // Now we know the input is an integer vector. If the output is a FP type,
3843 // convert to integer first, then to FP of the right size.
3844 if (DstEltVT.isFloatingPoint()) {
3845 assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3846 MVT TmpVT = MVT::getIntegerVT(DstEltVT.getSizeInBits());
3847 SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).getNode();
3849 // Next, convert to FP elements of the same size.
3850 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3853 // Okay, we know the src/dst types are both integers of differing types.
3854 // Handling growing first.
3855 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
3856 if (SrcBitSize < DstBitSize) {
3857 unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3859 SmallVector<SDValue, 8> Ops;
3860 for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3861 i += NumInputsPerOutput) {
3862 bool isLE = TLI.isLittleEndian();
3863 APInt NewBits = APInt(DstBitSize, 0);
3864 bool EltIsUndef = true;
3865 for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3866 // Shift the previously computed bits over.
3867 NewBits <<= SrcBitSize;
3868 SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3869 if (Op.getOpcode() == ISD::UNDEF) continue;
3870 EltIsUndef = false;
3872 NewBits |= (APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).
3873 zextOrTrunc(SrcBitSize).zext(DstBitSize));
3876 if (EltIsUndef)
3877 Ops.push_back(DAG.getUNDEF(DstEltVT));
3878 else
3879 Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3882 MVT VT = MVT::getVectorVT(DstEltVT, Ops.size());
3883 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3884 &Ops[0], Ops.size());
3887 // Finally, this must be the case where we are shrinking elements: each input
3888 // turns into multiple outputs.
3889 bool isS2V = ISD::isScalarToVector(BV);
3890 unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3891 MVT VT = MVT::getVectorVT(DstEltVT, NumOutputsPerInput*BV->getNumOperands());
3892 SmallVector<SDValue, 8> Ops;
3894 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3895 if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3896 for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3897 Ops.push_back(DAG.getUNDEF(DstEltVT));
3898 continue;
3901 APInt OpVal = APInt(cast<ConstantSDNode>(BV->getOperand(i))->
3902 getAPIntValue()).zextOrTrunc(SrcBitSize);
3904 for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3905 APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3906 Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3907 if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3908 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3909 return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
3910 Ops[0]);
3911 OpVal = OpVal.lshr(DstBitSize);
3914 // For big endian targets, swap the order of the pieces of each element.
3915 if (TLI.isBigEndian())
3916 std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3919 return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
3920 &Ops[0], Ops.size());
3923 SDValue DAGCombiner::visitFADD(SDNode *N) {
3924 SDValue N0 = N->getOperand(0);
3925 SDValue N1 = N->getOperand(1);
3926 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3927 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3928 MVT VT = N->getValueType(0);
3930 // fold vector ops
3931 if (VT.isVector()) {
3932 SDValue FoldedVOp = SimplifyVBinOp(N);
3933 if (FoldedVOp.getNode()) return FoldedVOp;
3936 // fold (fadd c1, c2) -> (fadd c1, c2)
3937 if (N0CFP && N1CFP && VT != MVT::ppcf128)
3938 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
3939 // canonicalize constant to RHS
3940 if (N0CFP && !N1CFP)
3941 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
3942 // fold (fadd A, 0) -> A
3943 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
3944 return N0;
3945 // fold (fadd A, (fneg B)) -> (fsub A, B)
3946 if (isNegatibleForFree(N1, LegalOperations) == 2)
3947 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
3948 GetNegatedExpression(N1, DAG, LegalOperations));
3949 // fold (fadd (fneg A), B) -> (fsub B, A)
3950 if (isNegatibleForFree(N0, LegalOperations) == 2)
3951 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
3952 GetNegatedExpression(N0, DAG, LegalOperations));
3954 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3955 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3956 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3957 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
3958 DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
3959 N0.getOperand(1), N1));
3961 return SDValue();
3964 SDValue DAGCombiner::visitFSUB(SDNode *N) {
3965 SDValue N0 = N->getOperand(0);
3966 SDValue N1 = N->getOperand(1);
3967 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3968 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3969 MVT VT = N->getValueType(0);
3971 // fold vector ops
3972 if (VT.isVector()) {
3973 SDValue FoldedVOp = SimplifyVBinOp(N);
3974 if (FoldedVOp.getNode()) return FoldedVOp;
3977 // fold (fsub c1, c2) -> c1-c2
3978 if (N0CFP && N1CFP && VT != MVT::ppcf128)
3979 return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
3980 // fold (fsub A, 0) -> A
3981 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
3982 return N0;
3983 // fold (fsub 0, B) -> -B
3984 if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3985 if (isNegatibleForFree(N1, LegalOperations))
3986 return GetNegatedExpression(N1, DAG, LegalOperations);
3987 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
3988 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N1);
3990 // fold (fsub A, (fneg B)) -> (fadd A, B)
3991 if (isNegatibleForFree(N1, LegalOperations))
3992 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0,
3993 GetNegatedExpression(N1, DAG, LegalOperations));
3995 return SDValue();
3998 SDValue DAGCombiner::visitFMUL(SDNode *N) {
3999 SDValue N0 = N->getOperand(0);
4000 SDValue N1 = N->getOperand(1);
4001 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4002 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4003 MVT VT = N->getValueType(0);
4005 // fold vector ops
4006 if (VT.isVector()) {
4007 SDValue FoldedVOp = SimplifyVBinOp(N);
4008 if (FoldedVOp.getNode()) return FoldedVOp;
4011 // fold (fmul c1, c2) -> c1*c2
4012 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4013 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
4014 // canonicalize constant to RHS
4015 if (N0CFP && !N1CFP)
4016 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
4017 // fold (fmul A, 0) -> 0
4018 if (UnsafeFPMath && N1CFP && N1CFP->getValueAPF().isZero())
4019 return N1;
4020 // fold (fmul X, 2.0) -> (fadd X, X)
4021 if (N1CFP && N1CFP->isExactlyValue(+2.0))
4022 return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
4023 // fold (fmul X, (fneg 1.0)) -> (fneg X)
4024 if (N1CFP && N1CFP->isExactlyValue(-1.0))
4025 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
4026 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
4028 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
4029 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
4030 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
4031 // Both can be negated for free, check to see if at least one is cheaper
4032 // negated.
4033 if (LHSNeg == 2 || RHSNeg == 2)
4034 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
4035 GetNegatedExpression(N0, DAG, LegalOperations),
4036 GetNegatedExpression(N1, DAG, LegalOperations));
4040 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4041 if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
4042 N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
4043 return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
4044 DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
4045 N0.getOperand(1), N1));
4047 return SDValue();
4050 SDValue DAGCombiner::visitFDIV(SDNode *N) {
4051 SDValue N0 = N->getOperand(0);
4052 SDValue N1 = N->getOperand(1);
4053 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4054 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4055 MVT VT = N->getValueType(0);
4057 // fold vector ops
4058 if (VT.isVector()) {
4059 SDValue FoldedVOp = SimplifyVBinOp(N);
4060 if (FoldedVOp.getNode()) return FoldedVOp;
4063 // fold (fdiv c1, c2) -> c1/c2
4064 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4065 return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
4068 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4069 if (char LHSNeg = isNegatibleForFree(N0, LegalOperations)) {
4070 if (char RHSNeg = isNegatibleForFree(N1, LegalOperations)) {
4071 // Both can be negated for free, check to see if at least one is cheaper
4072 // negated.
4073 if (LHSNeg == 2 || RHSNeg == 2)
4074 return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
4075 GetNegatedExpression(N0, DAG, LegalOperations),
4076 GetNegatedExpression(N1, DAG, LegalOperations));
4080 return SDValue();
4083 SDValue DAGCombiner::visitFREM(SDNode *N) {
4084 SDValue N0 = N->getOperand(0);
4085 SDValue N1 = N->getOperand(1);
4086 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4087 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4088 MVT VT = N->getValueType(0);
4090 // fold (frem c1, c2) -> fmod(c1,c2)
4091 if (N0CFP && N1CFP && VT != MVT::ppcf128)
4092 return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
4094 return SDValue();
4097 SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
4098 SDValue N0 = N->getOperand(0);
4099 SDValue N1 = N->getOperand(1);
4100 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4101 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
4102 MVT VT = N->getValueType(0);
4104 if (N0CFP && N1CFP && VT != MVT::ppcf128) // Constant fold
4105 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
4107 if (N1CFP) {
4108 const APFloat& V = N1CFP->getValueAPF();
4109 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4110 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4111 if (!V.isNegative()) {
4112 if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
4113 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4114 } else {
4115 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
4116 return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
4117 DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
4121 // copysign(fabs(x), y) -> copysign(x, y)
4122 // copysign(fneg(x), y) -> copysign(x, y)
4123 // copysign(copysign(x,z), y) -> copysign(x, y)
4124 if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
4125 N0.getOpcode() == ISD::FCOPYSIGN)
4126 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4127 N0.getOperand(0), N1);
4129 // copysign(x, abs(y)) -> abs(x)
4130 if (N1.getOpcode() == ISD::FABS)
4131 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4133 // copysign(x, copysign(y,z)) -> copysign(x, z)
4134 if (N1.getOpcode() == ISD::FCOPYSIGN)
4135 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4136 N0, N1.getOperand(1));
4138 // copysign(x, fp_extend(y)) -> copysign(x, y)
4139 // copysign(x, fp_round(y)) -> copysign(x, y)
4140 if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
4141 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4142 N0, N1.getOperand(0));
4144 return SDValue();
4147 SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
4148 SDValue N0 = N->getOperand(0);
4149 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4150 MVT VT = N->getValueType(0);
4151 MVT OpVT = N0.getValueType();
4153 // fold (sint_to_fp c1) -> c1fp
4154 if (N0C && OpVT != MVT::ppcf128)
4155 return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
4157 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4158 // but UINT_TO_FP is legal on this target, try to convert.
4159 if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
4160 TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
4161 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4162 if (DAG.SignBitIsZero(N0))
4163 return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
4166 return SDValue();
4169 SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
4170 SDValue N0 = N->getOperand(0);
4171 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4172 MVT VT = N->getValueType(0);
4173 MVT OpVT = N0.getValueType();
4175 // fold (uint_to_fp c1) -> c1fp
4176 if (N0C && OpVT != MVT::ppcf128)
4177 return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
4179 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4180 // but SINT_TO_FP is legal on this target, try to convert.
4181 if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
4182 TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
4183 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4184 if (DAG.SignBitIsZero(N0))
4185 return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
4188 return SDValue();
4191 SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
4192 SDValue N0 = N->getOperand(0);
4193 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4194 MVT VT = N->getValueType(0);
4196 // fold (fp_to_sint c1fp) -> c1
4197 if (N0CFP)
4198 return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
4200 return SDValue();
4203 SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
4204 SDValue N0 = N->getOperand(0);
4205 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4206 MVT VT = N->getValueType(0);
4208 // fold (fp_to_uint c1fp) -> c1
4209 if (N0CFP && VT != MVT::ppcf128)
4210 return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
4212 return SDValue();
4215 SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
4216 SDValue N0 = N->getOperand(0);
4217 SDValue N1 = N->getOperand(1);
4218 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4219 MVT VT = N->getValueType(0);
4221 // fold (fp_round c1fp) -> c1fp
4222 if (N0CFP && N0.getValueType() != MVT::ppcf128)
4223 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
4225 // fold (fp_round (fp_extend x)) -> x
4226 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
4227 return N0.getOperand(0);
4229 // fold (fp_round (fp_round x)) -> (fp_round x)
4230 if (N0.getOpcode() == ISD::FP_ROUND) {
4231 // This is a value preserving truncation if both round's are.
4232 bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
4233 N0.getNode()->getConstantOperandVal(1) == 1;
4234 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
4235 DAG.getIntPtrConstant(IsTrunc));
4238 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4239 if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
4240 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
4241 N0.getOperand(0), N1);
4242 AddToWorkList(Tmp.getNode());
4243 return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
4244 Tmp, N0.getOperand(1));
4247 return SDValue();
4250 SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
4251 SDValue N0 = N->getOperand(0);
4252 MVT VT = N->getValueType(0);
4253 MVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
4254 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4256 // fold (fp_round_inreg c1fp) -> c1fp
4257 if (N0CFP && (TLI.isTypeLegal(EVT) || !LegalTypes)) {
4258 SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
4259 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
4262 return SDValue();
4265 SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
4266 SDValue N0 = N->getOperand(0);
4267 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4268 MVT VT = N->getValueType(0);
4270 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
4271 if (N->hasOneUse() &&
4272 N->use_begin()->getOpcode() == ISD::FP_ROUND)
4273 return SDValue();
4275 // fold (fp_extend c1fp) -> c1fp
4276 if (N0CFP && VT != MVT::ppcf128)
4277 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
4279 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
4280 // value of X.
4281 if (N0.getOpcode() == ISD::FP_ROUND
4282 && N0.getNode()->getConstantOperandVal(1) == 1) {
4283 SDValue In = N0.getOperand(0);
4284 if (In.getValueType() == VT) return In;
4285 if (VT.bitsLT(In.getValueType()))
4286 return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
4287 In, N0.getOperand(1));
4288 return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
4291 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
4292 if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
4293 ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4294 TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4295 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4296 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4297 LN0->getChain(),
4298 LN0->getBasePtr(), LN0->getSrcValue(),
4299 LN0->getSrcValueOffset(),
4300 N0.getValueType(),
4301 LN0->isVolatile(), LN0->getAlignment());
4302 CombineTo(N, ExtLoad);
4303 CombineTo(N0.getNode(),
4304 DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
4305 N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
4306 ExtLoad.getValue(1));
4307 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4310 return SDValue();
4313 SDValue DAGCombiner::visitFNEG(SDNode *N) {
4314 SDValue N0 = N->getOperand(0);
4316 if (isNegatibleForFree(N0, LegalOperations))
4317 return GetNegatedExpression(N0, DAG, LegalOperations);
4319 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
4320 // constant pool values.
4321 if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
4322 N0.getOperand(0).getValueType().isInteger() &&
4323 !N0.getOperand(0).getValueType().isVector()) {
4324 SDValue Int = N0.getOperand(0);
4325 MVT IntVT = Int.getValueType();
4326 if (IntVT.isInteger() && !IntVT.isVector()) {
4327 Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
4328 DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
4329 AddToWorkList(Int.getNode());
4330 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4331 N->getValueType(0), Int);
4335 return SDValue();
4338 SDValue DAGCombiner::visitFABS(SDNode *N) {
4339 SDValue N0 = N->getOperand(0);
4340 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4341 MVT VT = N->getValueType(0);
4343 // fold (fabs c1) -> fabs(c1)
4344 if (N0CFP && VT != MVT::ppcf128)
4345 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
4346 // fold (fabs (fabs x)) -> (fabs x)
4347 if (N0.getOpcode() == ISD::FABS)
4348 return N->getOperand(0);
4349 // fold (fabs (fneg x)) -> (fabs x)
4350 // fold (fabs (fcopysign x, y)) -> (fabs x)
4351 if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
4352 return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
4354 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4355 // constant pool values.
4356 if (N0.getOpcode() == ISD::BIT_CONVERT && N0.getNode()->hasOneUse() &&
4357 N0.getOperand(0).getValueType().isInteger() &&
4358 !N0.getOperand(0).getValueType().isVector()) {
4359 SDValue Int = N0.getOperand(0);
4360 MVT IntVT = Int.getValueType();
4361 if (IntVT.isInteger() && !IntVT.isVector()) {
4362 Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
4363 DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
4364 AddToWorkList(Int.getNode());
4365 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4366 N->getValueType(0), Int);
4370 return SDValue();
4373 SDValue DAGCombiner::visitBRCOND(SDNode *N) {
4374 SDValue Chain = N->getOperand(0);
4375 SDValue N1 = N->getOperand(1);
4376 SDValue N2 = N->getOperand(2);
4377 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4379 // never taken branch, fold to chain
4380 if (N1C && N1C->isNullValue())
4381 return Chain;
4382 // unconditional branch
4383 if (N1C && N1C->getAPIntValue() == 1)
4384 return DAG.getNode(ISD::BR, N->getDebugLoc(), MVT::Other, Chain, N2);
4385 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4386 // on the target.
4387 if (N1.getOpcode() == ISD::SETCC &&
4388 TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
4389 return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
4390 Chain, N1.getOperand(2),
4391 N1.getOperand(0), N1.getOperand(1), N2);
4394 if (N1.hasOneUse() && N1.getOpcode() == ISD::SRL) {
4395 // Match this pattern so that we can generate simpler code:
4397 // %a = ...
4398 // %b = and i32 %a, 2
4399 // %c = srl i32 %b, 1
4400 // brcond i32 %c ...
4402 // into
4404 // %a = ...
4405 // %b = and %a, 2
4406 // %c = setcc eq %b, 0
4407 // brcond %c ...
4409 // This applies only when the AND constant value has one bit set and the
4410 // SRL constant is equal to the log2 of the AND constant. The back-end is
4411 // smart enough to convert the result into a TEST/JMP sequence.
4412 SDValue Op0 = N1.getOperand(0);
4413 SDValue Op1 = N1.getOperand(1);
4415 if (Op0.getOpcode() == ISD::AND &&
4416 Op0.hasOneUse() &&
4417 Op1.getOpcode() == ISD::Constant) {
4418 SDValue AndOp0 = Op0.getOperand(0);
4419 SDValue AndOp1 = Op0.getOperand(1);
4421 if (AndOp1.getOpcode() == ISD::Constant) {
4422 const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
4424 if (AndConst.isPowerOf2() &&
4425 cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
4426 SDValue SetCC =
4427 DAG.getSetCC(N->getDebugLoc(),
4428 TLI.getSetCCResultType(Op0.getValueType()),
4429 Op0, DAG.getConstant(0, Op0.getValueType()),
4430 ISD::SETNE);
4432 // Replace the uses of SRL with SETCC
4433 DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
4434 removeFromWorkList(N1.getNode());
4435 DAG.DeleteNode(N1.getNode());
4436 return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
4437 MVT::Other, Chain, SetCC, N2);
4443 return SDValue();
4446 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4448 SDValue DAGCombiner::visitBR_CC(SDNode *N) {
4449 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
4450 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
4452 // Use SimplifySetCC to simplify SETCC's.
4453 SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
4454 CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
4455 false);
4456 if (Simp.getNode()) AddToWorkList(Simp.getNode());
4458 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.getNode());
4460 // fold br_cc true, dest -> br dest (unconditional branch)
4461 if (SCCC && !SCCC->isNullValue())
4462 return DAG.getNode(ISD::BR, N->getDebugLoc(), MVT::Other,
4463 N->getOperand(0), N->getOperand(4));
4464 // fold br_cc false, dest -> unconditional fall through
4465 if (SCCC && SCCC->isNullValue())
4466 return N->getOperand(0);
4468 // fold to a simpler setcc
4469 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
4470 return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
4471 N->getOperand(0), Simp.getOperand(2),
4472 Simp.getOperand(0), Simp.getOperand(1),
4473 N->getOperand(4));
4475 return SDValue();
4478 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
4479 /// pre-indexed load / store when the base pointer is an add or subtract
4480 /// and it has other uses besides the load / store. After the
4481 /// transformation, the new indexed load / store has effectively folded
4482 /// the add / subtract in and all of its other uses are redirected to the
4483 /// new load / store.
4484 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
4485 if (!LegalOperations)
4486 return false;
4488 bool isLoad = true;
4489 SDValue Ptr;
4490 MVT VT;
4491 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4492 if (LD->isIndexed())
4493 return false;
4494 VT = LD->getMemoryVT();
4495 if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
4496 !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
4497 return false;
4498 Ptr = LD->getBasePtr();
4499 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4500 if (ST->isIndexed())
4501 return false;
4502 VT = ST->getMemoryVT();
4503 if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
4504 !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
4505 return false;
4506 Ptr = ST->getBasePtr();
4507 isLoad = false;
4508 } else {
4509 return false;
4512 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4513 // out. There is no reason to make this a preinc/predec.
4514 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4515 Ptr.getNode()->hasOneUse())
4516 return false;
4518 // Ask the target to do addressing mode selection.
4519 SDValue BasePtr;
4520 SDValue Offset;
4521 ISD::MemIndexedMode AM = ISD::UNINDEXED;
4522 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4523 return false;
4524 // Don't create a indexed load / store with zero offset.
4525 if (isa<ConstantSDNode>(Offset) &&
4526 cast<ConstantSDNode>(Offset)->isNullValue())
4527 return false;
4529 // Try turning it into a pre-indexed load / store except when:
4530 // 1) The new base ptr is a frame index.
4531 // 2) If N is a store and the new base ptr is either the same as or is a
4532 // predecessor of the value being stored.
4533 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4534 // that would create a cycle.
4535 // 4) All uses are load / store ops that use it as old base ptr.
4537 // Check #1. Preinc'ing a frame index would require copying the stack pointer
4538 // (plus the implicit offset) to a register to preinc anyway.
4539 if (isa<FrameIndexSDNode>(BasePtr))
4540 return false;
4542 // Check #2.
4543 if (!isLoad) {
4544 SDValue Val = cast<StoreSDNode>(N)->getValue();
4545 if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
4546 return false;
4549 // Now check for #3 and #4.
4550 bool RealUse = false;
4551 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
4552 E = Ptr.getNode()->use_end(); I != E; ++I) {
4553 SDNode *Use = *I;
4554 if (Use == N)
4555 continue;
4556 if (Use->isPredecessorOf(N))
4557 return false;
4559 if (!((Use->getOpcode() == ISD::LOAD &&
4560 cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4561 (Use->getOpcode() == ISD::STORE &&
4562 cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4563 RealUse = true;
4566 if (!RealUse)
4567 return false;
4569 SDValue Result;
4570 if (isLoad)
4571 Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
4572 BasePtr, Offset, AM);
4573 else
4574 Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
4575 BasePtr, Offset, AM);
4576 ++PreIndexedNodes;
4577 ++NodesCombined;
4578 DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4579 DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
4580 DOUT << '\n';
4581 WorkListRemover DeadNodes(*this);
4582 if (isLoad) {
4583 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
4584 &DeadNodes);
4585 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
4586 &DeadNodes);
4587 } else {
4588 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
4589 &DeadNodes);
4592 // Finally, since the node is now dead, remove it from the graph.
4593 DAG.DeleteNode(N);
4595 // Replace the uses of Ptr with uses of the updated base value.
4596 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4597 &DeadNodes);
4598 removeFromWorkList(Ptr.getNode());
4599 DAG.DeleteNode(Ptr.getNode());
4601 return true;
4604 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
4605 /// add / sub of the base pointer node into a post-indexed load / store.
4606 /// The transformation folded the add / subtract into the new indexed
4607 /// load / store effectively and all of its uses are redirected to the
4608 /// new load / store.
4609 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4610 if (!LegalOperations)
4611 return false;
4613 bool isLoad = true;
4614 SDValue Ptr;
4615 MVT VT;
4616 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4617 if (LD->isIndexed())
4618 return false;
4619 VT = LD->getMemoryVT();
4620 if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4621 !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4622 return false;
4623 Ptr = LD->getBasePtr();
4624 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4625 if (ST->isIndexed())
4626 return false;
4627 VT = ST->getMemoryVT();
4628 if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4629 !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4630 return false;
4631 Ptr = ST->getBasePtr();
4632 isLoad = false;
4633 } else {
4634 return false;
4637 if (Ptr.getNode()->hasOneUse())
4638 return false;
4640 for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
4641 E = Ptr.getNode()->use_end(); I != E; ++I) {
4642 SDNode *Op = *I;
4643 if (Op == N ||
4644 (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4645 continue;
4647 SDValue BasePtr;
4648 SDValue Offset;
4649 ISD::MemIndexedMode AM = ISD::UNINDEXED;
4650 if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4651 if (Ptr == Offset)
4652 std::swap(BasePtr, Offset);
4653 if (Ptr != BasePtr)
4654 continue;
4655 // Don't create a indexed load / store with zero offset.
4656 if (isa<ConstantSDNode>(Offset) &&
4657 cast<ConstantSDNode>(Offset)->isNullValue())
4658 continue;
4660 // Try turning it into a post-indexed load / store except when
4661 // 1) All uses are load / store ops that use it as base ptr.
4662 // 2) Op must be independent of N, i.e. Op is neither a predecessor
4663 // nor a successor of N. Otherwise, if Op is folded that would
4664 // create a cycle.
4666 // Check for #1.
4667 bool TryNext = false;
4668 for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
4669 EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
4670 SDNode *Use = *II;
4671 if (Use == Ptr.getNode())
4672 continue;
4674 // If all the uses are load / store addresses, then don't do the
4675 // transformation.
4676 if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4677 bool RealUse = false;
4678 for (SDNode::use_iterator III = Use->use_begin(),
4679 EEE = Use->use_end(); III != EEE; ++III) {
4680 SDNode *UseUse = *III;
4681 if (!((UseUse->getOpcode() == ISD::LOAD &&
4682 cast<LoadSDNode>(UseUse)->getBasePtr().getNode() == Use) ||
4683 (UseUse->getOpcode() == ISD::STORE &&
4684 cast<StoreSDNode>(UseUse)->getBasePtr().getNode() == Use)))
4685 RealUse = true;
4688 if (!RealUse) {
4689 TryNext = true;
4690 break;
4695 if (TryNext)
4696 continue;
4698 // Check for #2
4699 if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4700 SDValue Result = isLoad
4701 ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
4702 BasePtr, Offset, AM)
4703 : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
4704 BasePtr, Offset, AM);
4705 ++PostIndexedNodes;
4706 ++NodesCombined;
4707 DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4708 DOUT << "\nWith: "; DEBUG(Result.getNode()->dump(&DAG));
4709 DOUT << '\n';
4710 WorkListRemover DeadNodes(*this);
4711 if (isLoad) {
4712 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0),
4713 &DeadNodes);
4714 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2),
4715 &DeadNodes);
4716 } else {
4717 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1),
4718 &DeadNodes);
4721 // Finally, since the node is now dead, remove it from the graph.
4722 DAG.DeleteNode(N);
4724 // Replace the uses of Use with uses of the updated base value.
4725 DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
4726 Result.getValue(isLoad ? 1 : 0),
4727 &DeadNodes);
4728 removeFromWorkList(Op);
4729 DAG.DeleteNode(Op);
4730 return true;
4735 return false;
4738 /// InferAlignment - If we can infer some alignment information from this
4739 /// pointer, return it.
4740 static unsigned InferAlignment(SDValue Ptr, SelectionDAG &DAG) {
4741 // If this is a direct reference to a stack slot, use information about the
4742 // stack slot's alignment.
4743 int FrameIdx = 1 << 31;
4744 int64_t FrameOffset = 0;
4745 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4746 FrameIdx = FI->getIndex();
4747 } else if (Ptr.getOpcode() == ISD::ADD &&
4748 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4749 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4750 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4751 FrameOffset = Ptr.getConstantOperandVal(1);
4754 if (FrameIdx != (1 << 31)) {
4755 // FIXME: Handle FI+CST.
4756 const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4757 if (MFI.isFixedObjectIndex(FrameIdx)) {
4758 int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
4760 // The alignment of the frame index can be determined from its offset from
4761 // the incoming frame position. If the frame object is at offset 32 and
4762 // the stack is guaranteed to be 16-byte aligned, then we know that the
4763 // object is 16-byte aligned.
4764 unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4765 unsigned Align = MinAlign(ObjectOffset, StackAlign);
4767 // Finally, the frame object itself may have a known alignment. Factor
4768 // the alignment + offset into a new alignment. For example, if we know
4769 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
4770 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
4771 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4772 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4773 FrameOffset);
4774 return std::max(Align, FIInfoAlign);
4778 return 0;
4781 SDValue DAGCombiner::visitLOAD(SDNode *N) {
4782 LoadSDNode *LD = cast<LoadSDNode>(N);
4783 SDValue Chain = LD->getChain();
4784 SDValue Ptr = LD->getBasePtr();
4786 // Try to infer better alignment information than the load already has.
4787 if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
4788 if (unsigned Align = InferAlignment(Ptr, DAG)) {
4789 if (Align > LD->getAlignment())
4790 return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
4791 LD->getValueType(0),
4792 Chain, Ptr, LD->getSrcValue(),
4793 LD->getSrcValueOffset(), LD->getMemoryVT(),
4794 LD->isVolatile(), Align);
4798 // If load is not volatile and there are no uses of the loaded value (and
4799 // the updated indexed value in case of indexed loads), change uses of the
4800 // chain value into uses of the chain input (i.e. delete the dead load).
4801 if (!LD->isVolatile()) {
4802 if (N->getValueType(1) == MVT::Other) {
4803 // Unindexed loads.
4804 if (N->hasNUsesOfValue(0, 0)) {
4805 // It's not safe to use the two value CombineTo variant here. e.g.
4806 // v1, chain2 = load chain1, loc
4807 // v2, chain3 = load chain2, loc
4808 // v3 = add v2, c
4809 // Now we replace use of chain2 with chain1. This makes the second load
4810 // isomorphic to the one we are deleting, and thus makes this load live.
4811 DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4812 DOUT << "\nWith chain: "; DEBUG(Chain.getNode()->dump(&DAG));
4813 DOUT << "\n";
4814 WorkListRemover DeadNodes(*this);
4815 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain, &DeadNodes);
4817 if (N->use_empty()) {
4818 removeFromWorkList(N);
4819 DAG.DeleteNode(N);
4822 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4824 } else {
4825 // Indexed loads.
4826 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4827 if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4828 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
4829 DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4830 DOUT << "\nWith: "; DEBUG(Undef.getNode()->dump(&DAG));
4831 DOUT << " and 2 other values\n";
4832 WorkListRemover DeadNodes(*this);
4833 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef, &DeadNodes);
4834 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
4835 DAG.getUNDEF(N->getValueType(1)),
4836 &DeadNodes);
4837 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain, &DeadNodes);
4838 removeFromWorkList(N);
4839 DAG.DeleteNode(N);
4840 return SDValue(N, 0); // Return N so it doesn't get rechecked!
4845 // If this load is directly stored, replace the load value with the stored
4846 // value.
4847 // TODO: Handle store large -> read small portion.
4848 // TODO: Handle TRUNCSTORE/LOADEXT
4849 if (LD->getExtensionType() == ISD::NON_EXTLOAD &&
4850 !LD->isVolatile()) {
4851 if (ISD::isNON_TRUNCStore(Chain.getNode())) {
4852 StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4853 if (PrevST->getBasePtr() == Ptr &&
4854 PrevST->getValue().getValueType() == N->getValueType(0))
4855 return CombineTo(N, Chain.getOperand(1), Chain);
4859 if (CombinerAA) {
4860 // Walk up chain skipping non-aliasing memory nodes.
4861 SDValue BetterChain = FindBetterChain(N, Chain);
4863 // If there is a better chain.
4864 if (Chain != BetterChain) {
4865 SDValue ReplLoad;
4867 // Replace the chain to void dependency.
4868 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4869 ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
4870 BetterChain, Ptr,
4871 LD->getSrcValue(), LD->getSrcValueOffset(),
4872 LD->isVolatile(), LD->getAlignment());
4873 } else {
4874 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
4875 LD->getValueType(0),
4876 BetterChain, Ptr, LD->getSrcValue(),
4877 LD->getSrcValueOffset(),
4878 LD->getMemoryVT(),
4879 LD->isVolatile(),
4880 LD->getAlignment());
4883 // Create token factor to keep old chain connected.
4884 SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
4885 MVT::Other, Chain, ReplLoad.getValue(1));
4887 // Replace uses with load result and token factor. Don't add users
4888 // to work list.
4889 return CombineTo(N, ReplLoad.getValue(0), Token, false);
4893 // Try transforming N to an indexed load.
4894 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4895 return SDValue(N, 0);
4897 return SDValue();
4900 SDValue DAGCombiner::visitSTORE(SDNode *N) {
4901 StoreSDNode *ST = cast<StoreSDNode>(N);
4902 SDValue Chain = ST->getChain();
4903 SDValue Value = ST->getValue();
4904 SDValue Ptr = ST->getBasePtr();
4906 // Try to infer better alignment information than the store already has.
4907 if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
4908 if (unsigned Align = InferAlignment(Ptr, DAG)) {
4909 if (Align > ST->getAlignment())
4910 return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
4911 Ptr, ST->getSrcValue(),
4912 ST->getSrcValueOffset(), ST->getMemoryVT(),
4913 ST->isVolatile(), Align);
4917 // If this is a store of a bit convert, store the input value if the
4918 // resultant store does not need a higher alignment than the original.
4919 if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4920 ST->isUnindexed()) {
4921 unsigned OrigAlign = ST->getAlignment();
4922 MVT SVT = Value.getOperand(0).getValueType();
4923 unsigned Align = TLI.getTargetData()->
4924 getABITypeAlignment(SVT.getTypeForMVT());
4925 if (Align <= OrigAlign &&
4926 ((!LegalOperations && !ST->isVolatile()) ||
4927 TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
4928 return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
4929 Ptr, ST->getSrcValue(),
4930 ST->getSrcValueOffset(), ST->isVolatile(), OrigAlign);
4933 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4934 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4935 // NOTE: If the original store is volatile, this transform must not increase
4936 // the number of stores. For example, on x86-32 an f64 can be stored in one
4937 // processor operation but an i64 (which is not legal) requires two. So the
4938 // transform should not be done in this case.
4939 if (Value.getOpcode() != ISD::TargetConstantFP) {
4940 SDValue Tmp;
4941 switch (CFP->getValueType(0).getSimpleVT()) {
4942 default: assert(0 && "Unknown FP type");
4943 case MVT::f80: // We don't do this for these yet.
4944 case MVT::f128:
4945 case MVT::ppcf128:
4946 break;
4947 case MVT::f32:
4948 if (((TLI.isTypeLegal(MVT::i32) || !LegalTypes) && !LegalOperations &&
4949 !ST->isVolatile()) ||
4950 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
4951 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4952 bitcastToAPInt().getZExtValue(), MVT::i32);
4953 return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
4954 Ptr, ST->getSrcValue(),
4955 ST->getSrcValueOffset(), ST->isVolatile(),
4956 ST->getAlignment());
4958 break;
4959 case MVT::f64:
4960 if (((TLI.isTypeLegal(MVT::i64) || !LegalTypes) && !LegalOperations &&
4961 !ST->isVolatile()) ||
4962 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
4963 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
4964 getZExtValue(), MVT::i64);
4965 return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
4966 Ptr, ST->getSrcValue(),
4967 ST->getSrcValueOffset(), ST->isVolatile(),
4968 ST->getAlignment());
4969 } else if (!ST->isVolatile() &&
4970 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
4971 // Many FP stores are not made apparent until after legalize, e.g. for
4972 // argument passing. Since this is so common, custom legalize the
4973 // 64-bit integer store into two 32-bit stores.
4974 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
4975 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4976 SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
4977 if (TLI.isBigEndian()) std::swap(Lo, Hi);
4979 int SVOffset = ST->getSrcValueOffset();
4980 unsigned Alignment = ST->getAlignment();
4981 bool isVolatile = ST->isVolatile();
4983 SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
4984 Ptr, ST->getSrcValue(),
4985 ST->getSrcValueOffset(),
4986 isVolatile, ST->getAlignment());
4987 Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
4988 DAG.getConstant(4, Ptr.getValueType()));
4989 SVOffset += 4;
4990 Alignment = MinAlign(Alignment, 4U);
4991 SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
4992 Ptr, ST->getSrcValue(),
4993 SVOffset, isVolatile, Alignment);
4994 return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
4995 St0, St1);
4998 break;
5003 if (CombinerAA) {
5004 // Walk up chain skipping non-aliasing memory nodes.
5005 SDValue BetterChain = FindBetterChain(N, Chain);
5007 // If there is a better chain.
5008 if (Chain != BetterChain) {
5009 // Replace the chain to avoid dependency.
5010 SDValue ReplStore;
5011 if (ST->isTruncatingStore()) {
5012 ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
5013 ST->getSrcValue(),ST->getSrcValueOffset(),
5014 ST->getMemoryVT(),
5015 ST->isVolatile(), ST->getAlignment());
5016 } else {
5017 ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
5018 ST->getSrcValue(), ST->getSrcValueOffset(),
5019 ST->isVolatile(), ST->getAlignment());
5022 // Create token to keep both nodes around.
5023 SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
5024 MVT::Other, Chain, ReplStore);
5026 // Don't add users to work list.
5027 return CombineTo(N, Token, false);
5031 // Try transforming N to an indexed store.
5032 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
5033 return SDValue(N, 0);
5035 // FIXME: is there such a thing as a truncating indexed store?
5036 if (ST->isTruncatingStore() && ST->isUnindexed() &&
5037 Value.getValueType().isInteger()) {
5038 // See if we can simplify the input to this truncstore with knowledge that
5039 // only the low bits are being used. For example:
5040 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
5041 SDValue Shorter =
5042 GetDemandedBits(Value,
5043 APInt::getLowBitsSet(Value.getValueSizeInBits(),
5044 ST->getMemoryVT().getSizeInBits()));
5045 AddToWorkList(Value.getNode());
5046 if (Shorter.getNode())
5047 return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
5048 Ptr, ST->getSrcValue(),
5049 ST->getSrcValueOffset(), ST->getMemoryVT(),
5050 ST->isVolatile(), ST->getAlignment());
5052 // Otherwise, see if we can simplify the operation with
5053 // SimplifyDemandedBits, which only works if the value has a single use.
5054 if (SimplifyDemandedBits(Value,
5055 APInt::getLowBitsSet(
5056 Value.getValueSizeInBits(),
5057 ST->getMemoryVT().getSizeInBits())))
5058 return SDValue(N, 0);
5061 // If this is a load followed by a store to the same location, then the store
5062 // is dead/noop.
5063 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
5064 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
5065 ST->isUnindexed() && !ST->isVolatile() &&
5066 // There can't be any side effects between the load and store, such as
5067 // a call or store.
5068 Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
5069 // The store is dead, remove it.
5070 return Chain;
5074 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
5075 // truncating store. We can do this even if this is already a truncstore.
5076 if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
5077 && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
5078 TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
5079 ST->getMemoryVT())) {
5080 return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
5081 Ptr, ST->getSrcValue(),
5082 ST->getSrcValueOffset(), ST->getMemoryVT(),
5083 ST->isVolatile(), ST->getAlignment());
5086 return SDValue();
5089 SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
5090 SDValue InVec = N->getOperand(0);
5091 SDValue InVal = N->getOperand(1);
5092 SDValue EltNo = N->getOperand(2);
5094 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
5095 // vector with the inserted element.
5096 if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
5097 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5098 SmallVector<SDValue, 8> Ops(InVec.getNode()->op_begin(),
5099 InVec.getNode()->op_end());
5100 if (Elt < Ops.size())
5101 Ops[Elt] = InVal;
5102 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5103 InVec.getValueType(), &Ops[0], Ops.size());
5105 // If the invec is an UNDEF and if EltNo is a constant, create a new
5106 // BUILD_VECTOR with undef elements and the inserted element.
5107 if (!LegalOperations && InVec.getOpcode() == ISD::UNDEF &&
5108 isa<ConstantSDNode>(EltNo)) {
5109 MVT VT = InVec.getValueType();
5110 MVT EVT = VT.getVectorElementType();
5111 unsigned NElts = VT.getVectorNumElements();
5112 SmallVector<SDValue, 8> Ops(NElts, DAG.getUNDEF(EVT));
5114 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5115 if (Elt < Ops.size())
5116 Ops[Elt] = InVal;
5117 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5118 InVec.getValueType(), &Ops[0], Ops.size());
5120 return SDValue();
5123 SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
5124 // (vextract (scalar_to_vector val, 0) -> val
5125 SDValue InVec = N->getOperand(0);
5127 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5128 // If the operand is wider than the vector element type then it is implicitly
5129 // truncated. Make that explicit here.
5130 MVT EltVT = InVec.getValueType().getVectorElementType();
5131 SDValue InOp = InVec.getOperand(0);
5132 if (InOp.getValueType() != EltVT)
5133 return DAG.getNode(ISD::TRUNCATE, InVec.getDebugLoc(), EltVT, InOp);
5134 return InOp;
5137 // Perform only after legalization to ensure build_vector / vector_shuffle
5138 // optimizations have already been done.
5139 if (!LegalOperations) return SDValue();
5141 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
5142 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
5143 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
5144 SDValue EltNo = N->getOperand(1);
5146 if (isa<ConstantSDNode>(EltNo)) {
5147 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5148 bool NewLoad = false;
5149 bool BCNumEltsChanged = false;
5150 MVT VT = InVec.getValueType();
5151 MVT EVT = VT.getVectorElementType();
5152 MVT LVT = EVT;
5154 if (InVec.getOpcode() == ISD::BIT_CONVERT) {
5155 MVT BCVT = InVec.getOperand(0).getValueType();
5156 if (!BCVT.isVector() || EVT.bitsGT(BCVT.getVectorElementType()))
5157 return SDValue();
5158 if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
5159 BCNumEltsChanged = true;
5160 InVec = InVec.getOperand(0);
5161 EVT = BCVT.getVectorElementType();
5162 NewLoad = true;
5165 LoadSDNode *LN0 = NULL;
5166 const ShuffleVectorSDNode *SVN = NULL;
5167 if (ISD::isNormalLoad(InVec.getNode())) {
5168 LN0 = cast<LoadSDNode>(InVec);
5169 } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5170 InVec.getOperand(0).getValueType() == EVT &&
5171 ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
5172 LN0 = cast<LoadSDNode>(InVec.getOperand(0));
5173 } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
5174 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
5175 // =>
5176 // (load $addr+1*size)
5178 // If the bit convert changed the number of elements, it is unsafe
5179 // to examine the mask.
5180 if (BCNumEltsChanged)
5181 return SDValue();
5183 // Select the input vector, guarding against out of range extract vector.
5184 unsigned NumElems = VT.getVectorNumElements();
5185 int Idx = (Elt > NumElems) ? -1 : SVN->getMaskElt(Elt);
5186 InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
5188 if (InVec.getOpcode() == ISD::BIT_CONVERT)
5189 InVec = InVec.getOperand(0);
5190 if (ISD::isNormalLoad(InVec.getNode())) {
5191 LN0 = cast<LoadSDNode>(InVec);
5192 Elt = (Idx < (int)NumElems) ? Idx : Idx - NumElems;
5196 if (!LN0 || !LN0->hasOneUse() || LN0->isVolatile())
5197 return SDValue();
5199 unsigned Align = LN0->getAlignment();
5200 if (NewLoad) {
5201 // Check the resultant load doesn't need a higher alignment than the
5202 // original load.
5203 unsigned NewAlign =
5204 TLI.getTargetData()->getABITypeAlignment(LVT.getTypeForMVT());
5206 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
5207 return SDValue();
5209 Align = NewAlign;
5212 SDValue NewPtr = LN0->getBasePtr();
5213 if (Elt) {
5214 unsigned PtrOff = LVT.getSizeInBits() * Elt / 8;
5215 MVT PtrType = NewPtr.getValueType();
5216 if (TLI.isBigEndian())
5217 PtrOff = VT.getSizeInBits() / 8 - PtrOff;
5218 NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
5219 DAG.getConstant(PtrOff, PtrType));
5222 return DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
5223 LN0->getSrcValue(), LN0->getSrcValueOffset(),
5224 LN0->isVolatile(), Align);
5227 return SDValue();
5230 SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
5231 unsigned NumInScalars = N->getNumOperands();
5232 MVT VT = N->getValueType(0);
5233 MVT EltType = VT.getVectorElementType();
5235 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
5236 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
5237 // at most two distinct vectors, turn this into a shuffle node.
5238 SDValue VecIn1, VecIn2;
5239 for (unsigned i = 0; i != NumInScalars; ++i) {
5240 // Ignore undef inputs.
5241 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
5243 // If this input is something other than a EXTRACT_VECTOR_ELT with a
5244 // constant index, bail out.
5245 if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5246 !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
5247 VecIn1 = VecIn2 = SDValue(0, 0);
5248 break;
5251 // If the input vector type disagrees with the result of the build_vector,
5252 // we can't make a shuffle.
5253 SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
5254 if (ExtractedFromVec.getValueType() != VT) {
5255 VecIn1 = VecIn2 = SDValue(0, 0);
5256 break;
5259 // Otherwise, remember this. We allow up to two distinct input vectors.
5260 if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
5261 continue;
5263 if (VecIn1.getNode() == 0) {
5264 VecIn1 = ExtractedFromVec;
5265 } else if (VecIn2.getNode() == 0) {
5266 VecIn2 = ExtractedFromVec;
5267 } else {
5268 // Too many inputs.
5269 VecIn1 = VecIn2 = SDValue(0, 0);
5270 break;
5274 // If everything is good, we can make a shuffle operation.
5275 if (VecIn1.getNode()) {
5276 SmallVector<int, 8> Mask;
5277 for (unsigned i = 0; i != NumInScalars; ++i) {
5278 if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
5279 Mask.push_back(-1);
5280 continue;
5283 // If extracting from the first vector, just use the index directly.
5284 SDValue Extract = N->getOperand(i);
5285 SDValue ExtVal = Extract.getOperand(1);
5286 if (Extract.getOperand(0) == VecIn1) {
5287 unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
5288 if (ExtIndex > VT.getVectorNumElements())
5289 return SDValue();
5291 Mask.push_back(ExtIndex);
5292 continue;
5295 // Otherwise, use InIdx + VecSize
5296 unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
5297 Mask.push_back(Idx+NumInScalars);
5300 // Add count and size info.
5301 if (!TLI.isTypeLegal(VT) && LegalTypes)
5302 return SDValue();
5304 // Return the new VECTOR_SHUFFLE node.
5305 SDValue Ops[2];
5306 Ops[0] = VecIn1;
5307 Ops[1] = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5308 return DAG.getVectorShuffle(VT, N->getDebugLoc(), Ops[0], Ops[1], &Mask[0]);
5311 return SDValue();
5314 SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
5315 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
5316 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
5317 // inputs come from at most two distinct vectors, turn this into a shuffle
5318 // node.
5320 // If we only have one input vector, we don't need to do any concatenation.
5321 if (N->getNumOperands() == 1)
5322 return N->getOperand(0);
5324 return SDValue();
5327 SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
5328 return SDValue();
5330 MVT VT = N->getValueType(0);
5331 unsigned NumElts = VT.getVectorNumElements();
5333 SDValue N0 = N->getOperand(0);
5334 SDValue N1 = N->getOperand(1);
5336 assert(N0.getValueType().getVectorNumElements() == NumElts &&
5337 "Vector shuffle must be normalized in DAG");
5339 // FIXME: implement canonicalizations from DAG.getVectorShuffle()
5341 // If it is a splat, check if the argument vector is a build_vector with
5342 // all scalar elements the same.
5343 if (cast<ShuffleVectorSDNode>(N)->isSplat()) {
5344 SDNode *V = N0.getNode();
5347 // If this is a bit convert that changes the element type of the vector but
5348 // not the number of vector elements, look through it. Be careful not to
5349 // look though conversions that change things like v4f32 to v2f64.
5350 if (V->getOpcode() == ISD::BIT_CONVERT) {
5351 SDValue ConvInput = V->getOperand(0);
5352 if (ConvInput.getValueType().isVector() &&
5353 ConvInput.getValueType().getVectorNumElements() == NumElts)
5354 V = ConvInput.getNode();
5357 if (V->getOpcode() == ISD::BUILD_VECTOR) {
5358 unsigned NumElems = V->getNumOperands();
5359 unsigned BaseIdx = cast<ShuffleVectorSDNode>(N)->getSplatIndex();
5360 if (NumElems > BaseIdx) {
5361 SDValue Base;
5362 bool AllSame = true;
5363 for (unsigned i = 0; i != NumElems; ++i) {
5364 if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
5365 Base = V->getOperand(i);
5366 break;
5369 // Splat of <u, u, u, u>, return <u, u, u, u>
5370 if (!Base.getNode())
5371 return N0;
5372 for (unsigned i = 0; i != NumElems; ++i) {
5373 if (V->getOperand(i) != Base) {
5374 AllSame = false;
5375 break;
5378 // Splat of <x, x, x, x>, return <x, x, x, x>
5379 if (AllSame)
5380 return N0;
5384 return SDValue();
5387 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
5388 /// an AND to a vector_shuffle with the destination vector and a zero vector.
5389 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
5390 /// vector_shuffle V, Zero, <0, 4, 2, 4>
5391 SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
5392 MVT VT = N->getValueType(0);
5393 DebugLoc dl = N->getDebugLoc();
5394 SDValue LHS = N->getOperand(0);
5395 SDValue RHS = N->getOperand(1);
5396 if (N->getOpcode() == ISD::AND) {
5397 if (RHS.getOpcode() == ISD::BIT_CONVERT)
5398 RHS = RHS.getOperand(0);
5399 if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
5400 SmallVector<int, 8> Indices;
5401 unsigned NumElts = RHS.getNumOperands();
5402 for (unsigned i = 0; i != NumElts; ++i) {
5403 SDValue Elt = RHS.getOperand(i);
5404 if (!isa<ConstantSDNode>(Elt))
5405 return SDValue();
5406 else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
5407 Indices.push_back(i);
5408 else if (cast<ConstantSDNode>(Elt)->isNullValue())
5409 Indices.push_back(NumElts);
5410 else
5411 return SDValue();
5414 // Let's see if the target supports this vector_shuffle.
5415 MVT RVT = RHS.getValueType();
5416 if (!TLI.isVectorClearMaskLegal(Indices, RVT))
5417 return SDValue();
5419 // Return the new VECTOR_SHUFFLE node.
5420 MVT EVT = RVT.getVectorElementType();
5421 SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
5422 DAG.getConstant(0, EVT));
5423 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5424 RVT, &ZeroOps[0], ZeroOps.size());
5425 LHS = DAG.getNode(ISD::BIT_CONVERT, dl, RVT, LHS);
5426 SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
5427 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuf);
5431 return SDValue();
5434 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5435 SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
5436 // After legalize, the target may be depending on adds and other
5437 // binary ops to provide legal ways to construct constants or other
5438 // things. Simplifying them may result in a loss of legality.
5439 if (LegalOperations) return SDValue();
5441 MVT VT = N->getValueType(0);
5442 assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
5444 MVT EltType = VT.getVectorElementType();
5445 SDValue LHS = N->getOperand(0);
5446 SDValue RHS = N->getOperand(1);
5447 SDValue Shuffle = XformToShuffleWithZero(N);
5448 if (Shuffle.getNode()) return Shuffle;
5450 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5451 // this operation.
5452 if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
5453 RHS.getOpcode() == ISD::BUILD_VECTOR) {
5454 SmallVector<SDValue, 8> Ops;
5455 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
5456 SDValue LHSOp = LHS.getOperand(i);
5457 SDValue RHSOp = RHS.getOperand(i);
5458 // If these two elements can't be folded, bail out.
5459 if ((LHSOp.getOpcode() != ISD::UNDEF &&
5460 LHSOp.getOpcode() != ISD::Constant &&
5461 LHSOp.getOpcode() != ISD::ConstantFP) ||
5462 (RHSOp.getOpcode() != ISD::UNDEF &&
5463 RHSOp.getOpcode() != ISD::Constant &&
5464 RHSOp.getOpcode() != ISD::ConstantFP))
5465 break;
5467 // Can't fold divide by zero.
5468 if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
5469 N->getOpcode() == ISD::FDIV) {
5470 if ((RHSOp.getOpcode() == ISD::Constant &&
5471 cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
5472 (RHSOp.getOpcode() == ISD::ConstantFP &&
5473 cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
5474 break;
5477 Ops.push_back(DAG.getNode(N->getOpcode(), LHS.getDebugLoc(),
5478 EltType, LHSOp, RHSOp));
5479 AddToWorkList(Ops.back().getNode());
5480 assert((Ops.back().getOpcode() == ISD::UNDEF ||
5481 Ops.back().getOpcode() == ISD::Constant ||
5482 Ops.back().getOpcode() == ISD::ConstantFP) &&
5483 "Scalar binop didn't fold!");
5486 if (Ops.size() == LHS.getNumOperands()) {
5487 MVT VT = LHS.getValueType();
5488 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
5489 &Ops[0], Ops.size());
5493 return SDValue();
5496 SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
5497 SDValue N1, SDValue N2){
5498 assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
5500 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
5501 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5503 // If we got a simplified select_cc node back from SimplifySelectCC, then
5504 // break it down into a new SETCC node, and a new SELECT node, and then return
5505 // the SELECT node, since we were called with a SELECT node.
5506 if (SCC.getNode()) {
5507 // Check to see if we got a select_cc back (to turn into setcc/select).
5508 // Otherwise, just return whatever node we got back, like fabs.
5509 if (SCC.getOpcode() == ISD::SELECT_CC) {
5510 SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
5511 N0.getValueType(),
5512 SCC.getOperand(0), SCC.getOperand(1),
5513 SCC.getOperand(4));
5514 AddToWorkList(SETCC.getNode());
5515 return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
5516 SCC.getOperand(2), SCC.getOperand(3), SETCC);
5519 return SCC;
5521 return SDValue();
5524 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5525 /// are the two values being selected between, see if we can simplify the
5526 /// select. Callers of this should assume that TheSelect is deleted if this
5527 /// returns true. As such, they should return the appropriate thing (e.g. the
5528 /// node) back to the top-level of the DAG combiner loop to avoid it being
5529 /// looked at.
5530 bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
5531 SDValue RHS) {
5533 // If this is a select from two identical things, try to pull the operation
5534 // through the select.
5535 if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
5536 // If this is a load and the token chain is identical, replace the select
5537 // of two loads with a load through a select of the address to load from.
5538 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5539 // constants have been dropped into the constant pool.
5540 if (LHS.getOpcode() == ISD::LOAD &&
5541 // Do not let this transformation reduce the number of volatile loads.
5542 !cast<LoadSDNode>(LHS)->isVolatile() &&
5543 !cast<LoadSDNode>(RHS)->isVolatile() &&
5544 // Token chains must be identical.
5545 LHS.getOperand(0) == RHS.getOperand(0)) {
5546 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5547 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5549 // If this is an EXTLOAD, the VT's must match.
5550 if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5551 // FIXME: this conflates two src values, discarding one. This is not
5552 // the right thing to do, but nothing uses srcvalues now. When they do,
5553 // turn SrcValue into a list of locations.
5554 SDValue Addr;
5555 if (TheSelect->getOpcode() == ISD::SELECT) {
5556 // Check that the condition doesn't reach either load. If so, folding
5557 // this will induce a cycle into the DAG.
5558 if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5559 !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode())) {
5560 Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
5561 LLD->getBasePtr().getValueType(),
5562 TheSelect->getOperand(0), LLD->getBasePtr(),
5563 RLD->getBasePtr());
5565 } else {
5566 // Check that the condition doesn't reach either load. If so, folding
5567 // this will induce a cycle into the DAG.
5568 if (!LLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5569 !RLD->isPredecessorOf(TheSelect->getOperand(0).getNode()) &&
5570 !LLD->isPredecessorOf(TheSelect->getOperand(1).getNode()) &&
5571 !RLD->isPredecessorOf(TheSelect->getOperand(1).getNode())) {
5572 Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
5573 LLD->getBasePtr().getValueType(),
5574 TheSelect->getOperand(0),
5575 TheSelect->getOperand(1),
5576 LLD->getBasePtr(), RLD->getBasePtr(),
5577 TheSelect->getOperand(4));
5581 if (Addr.getNode()) {
5582 SDValue Load;
5583 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
5584 Load = DAG.getLoad(TheSelect->getValueType(0),
5585 TheSelect->getDebugLoc(),
5586 LLD->getChain(),
5587 Addr,LLD->getSrcValue(),
5588 LLD->getSrcValueOffset(),
5589 LLD->isVolatile(),
5590 LLD->getAlignment());
5591 } else {
5592 Load = DAG.getExtLoad(LLD->getExtensionType(),
5593 TheSelect->getDebugLoc(),
5594 TheSelect->getValueType(0),
5595 LLD->getChain(), Addr, LLD->getSrcValue(),
5596 LLD->getSrcValueOffset(),
5597 LLD->getMemoryVT(),
5598 LLD->isVolatile(),
5599 LLD->getAlignment());
5602 // Users of the select now use the result of the load.
5603 CombineTo(TheSelect, Load);
5605 // Users of the old loads now use the new load's chain. We know the
5606 // old-load value is dead now.
5607 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
5608 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
5609 return true;
5615 return false;
5618 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
5619 /// where 'cond' is the comparison specified by CC.
5620 SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
5621 SDValue N2, SDValue N3,
5622 ISD::CondCode CC, bool NotExtCompare) {
5623 // (x ? y : y) -> y.
5624 if (N2 == N3) return N2;
5626 MVT VT = N2.getValueType();
5627 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
5628 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
5629 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
5631 // Determine if the condition we're dealing with is constant
5632 SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
5633 N0, N1, CC, DL, false);
5634 if (SCC.getNode()) AddToWorkList(SCC.getNode());
5635 ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
5637 // fold select_cc true, x, y -> x
5638 if (SCCC && !SCCC->isNullValue())
5639 return N2;
5640 // fold select_cc false, x, y -> y
5641 if (SCCC && SCCC->isNullValue())
5642 return N3;
5644 // Check to see if we can simplify the select into an fabs node
5645 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5646 // Allow either -0.0 or 0.0
5647 if (CFP->getValueAPF().isZero()) {
5648 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5649 if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5650 N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5651 N2 == N3.getOperand(0))
5652 return DAG.getNode(ISD::FABS, DL, VT, N0);
5654 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5655 if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5656 N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5657 N2.getOperand(0) == N3)
5658 return DAG.getNode(ISD::FABS, DL, VT, N3);
5662 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
5663 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
5664 // in it. This is a win when the constant is not otherwise available because
5665 // it replaces two constant pool loads with one. We only do this if the FP
5666 // type is known to be legal, because if it isn't, then we are before legalize
5667 // types an we want the other legalization to happen first (e.g. to avoid
5668 // messing with soft float) and if the ConstantFP is not legal, because if
5669 // it is legal, we may not need to store the FP constant in a constant pool.
5670 if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
5671 if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
5672 if (TLI.isTypeLegal(N2.getValueType()) &&
5673 (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
5674 TargetLowering::Legal) &&
5675 // If both constants have multiple uses, then we won't need to do an
5676 // extra load, they are likely around in registers for other users.
5677 (TV->hasOneUse() || FV->hasOneUse())) {
5678 Constant *Elts[] = {
5679 const_cast<ConstantFP*>(FV->getConstantFPValue()),
5680 const_cast<ConstantFP*>(TV->getConstantFPValue())
5682 const Type *FPTy = Elts[0]->getType();
5683 const TargetData &TD = *TLI.getTargetData();
5685 // Create a ConstantArray of the two constants.
5686 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts, 2);
5687 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
5688 TD.getPrefTypeAlignment(FPTy));
5689 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
5691 // Get the offsets to the 0 and 1 element of the array so that we can
5692 // select between them.
5693 SDValue Zero = DAG.getIntPtrConstant(0);
5694 unsigned EltSize = (unsigned)TD.getTypePaddedSize(Elts[0]->getType());
5695 SDValue One = DAG.getIntPtrConstant(EltSize);
5697 SDValue Cond = DAG.getSetCC(DL,
5698 TLI.getSetCCResultType(N0.getValueType()),
5699 N0, N1, CC);
5700 SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
5701 Cond, One, Zero);
5702 CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
5703 CstOffset);
5704 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
5705 PseudoSourceValue::getConstantPool(), 0, false,
5706 Alignment);
5711 // Check to see if we can perform the "gzip trick", transforming
5712 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
5713 if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5714 N0.getValueType().isInteger() &&
5715 N2.getValueType().isInteger() &&
5716 (N1C->isNullValue() || // (a < 0) ? b : 0
5717 (N1C->getAPIntValue() == 1 && N0 == N2))) { // (a < 1) ? a : 0
5718 MVT XType = N0.getValueType();
5719 MVT AType = N2.getValueType();
5720 if (XType.bitsGE(AType)) {
5721 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5722 // single-bit constant.
5723 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
5724 unsigned ShCtV = N2C->getAPIntValue().logBase2();
5725 ShCtV = XType.getSizeInBits()-ShCtV-1;
5726 SDValue ShCt = DAG.getConstant(ShCtV, getShiftAmountTy());
5727 SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
5728 XType, N0, ShCt);
5729 AddToWorkList(Shift.getNode());
5731 if (XType.bitsGT(AType)) {
5732 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
5733 AddToWorkList(Shift.getNode());
5736 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
5739 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
5740 XType, N0,
5741 DAG.getConstant(XType.getSizeInBits()-1,
5742 getShiftAmountTy()));
5743 AddToWorkList(Shift.getNode());
5745 if (XType.bitsGT(AType)) {
5746 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
5747 AddToWorkList(Shift.getNode());
5750 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
5754 // fold select C, 16, 0 -> shl C, 4
5755 if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
5756 TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent) {
5758 // If the caller doesn't want us to simplify this into a zext of a compare,
5759 // don't do it.
5760 if (NotExtCompare && N2C->getAPIntValue() == 1)
5761 return SDValue();
5763 // Get a SetCC of the condition
5764 // FIXME: Should probably make sure that setcc is legal if we ever have a
5765 // target where it isn't.
5766 SDValue Temp, SCC;
5767 // cast from setcc result type to select result type
5768 if (LegalTypes) {
5769 SCC = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
5770 N0, N1, CC);
5771 if (N2.getValueType().bitsLT(SCC.getValueType()))
5772 Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
5773 else
5774 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
5775 N2.getValueType(), SCC);
5776 } else {
5777 SCC = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
5778 Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
5779 N2.getValueType(), SCC);
5782 AddToWorkList(SCC.getNode());
5783 AddToWorkList(Temp.getNode());
5785 if (N2C->getAPIntValue() == 1)
5786 return Temp;
5788 // shl setcc result by log2 n2c
5789 return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
5790 DAG.getConstant(N2C->getAPIntValue().logBase2(),
5791 getShiftAmountTy()));
5794 // Check to see if this is the equivalent of setcc
5795 // FIXME: Turn all of these into setcc if setcc if setcc is legal
5796 // otherwise, go ahead with the folds.
5797 if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
5798 MVT XType = N0.getValueType();
5799 if (!LegalOperations ||
5800 TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
5801 SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
5802 if (Res.getValueType() != VT)
5803 Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
5804 return Res;
5807 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
5808 if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5809 (!LegalOperations ||
5810 TLI.isOperationLegal(ISD::CTLZ, XType))) {
5811 SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
5812 return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
5813 DAG.getConstant(Log2_32(XType.getSizeInBits()),
5814 getShiftAmountTy()));
5816 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
5817 if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5818 SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
5819 XType, DAG.getConstant(0, XType), N0);
5820 SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
5821 return DAG.getNode(ISD::SRL, DL, XType,
5822 DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
5823 DAG.getConstant(XType.getSizeInBits()-1,
5824 getShiftAmountTy()));
5826 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
5827 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5828 SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
5829 DAG.getConstant(XType.getSizeInBits()-1,
5830 getShiftAmountTy()));
5831 return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
5835 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5836 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5837 if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5838 N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5839 N2.getOperand(0) == N1 && N0.getValueType().isInteger()) {
5840 MVT XType = N0.getValueType();
5841 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType, N0,
5842 DAG.getConstant(XType.getSizeInBits()-1,
5843 getShiftAmountTy()));
5844 SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(), XType,
5845 N0, Shift);
5846 AddToWorkList(Shift.getNode());
5847 AddToWorkList(Add.getNode());
5848 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
5850 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5851 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5852 if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5853 N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5854 if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5855 MVT XType = N0.getValueType();
5856 if (SubC->isNullValue() && XType.isInteger()) {
5857 SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
5859 DAG.getConstant(XType.getSizeInBits()-1,
5860 getShiftAmountTy()));
5861 SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
5862 XType, N0, Shift);
5863 AddToWorkList(Shift.getNode());
5864 AddToWorkList(Add.getNode());
5865 return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
5870 return SDValue();
5873 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5874 SDValue DAGCombiner::SimplifySetCC(MVT VT, SDValue N0,
5875 SDValue N1, ISD::CondCode Cond,
5876 DebugLoc DL, bool foldBooleans) {
5877 TargetLowering::DAGCombinerInfo
5878 DagCombineInfo(DAG, Level == Unrestricted, false, this);
5879 return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
5882 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5883 /// return a DAG expression to select that will generate the same value by
5884 /// multiplying by a magic number. See:
5885 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5886 SDValue DAGCombiner::BuildSDIV(SDNode *N) {
5887 std::vector<SDNode*> Built;
5888 SDValue S = TLI.BuildSDIV(N, DAG, &Built);
5890 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5891 ii != ee; ++ii)
5892 AddToWorkList(*ii);
5893 return S;
5896 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5897 /// return a DAG expression to select that will generate the same value by
5898 /// multiplying by a magic number. See:
5899 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5900 SDValue DAGCombiner::BuildUDIV(SDNode *N) {
5901 std::vector<SDNode*> Built;
5902 SDValue S = TLI.BuildUDIV(N, DAG, &Built);
5904 for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5905 ii != ee; ++ii)
5906 AddToWorkList(*ii);
5907 return S;
5910 /// FindBaseOffset - Return true if base is known not to alias with anything
5911 /// but itself. Provides base object and offset as results.
5912 static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset) {
5913 // Assume it is a primitive operation.
5914 Base = Ptr; Offset = 0;
5916 // If it's an adding a simple constant then integrate the offset.
5917 if (Base.getOpcode() == ISD::ADD) {
5918 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5919 Base = Base.getOperand(0);
5920 Offset += C->getZExtValue();
5924 // If it's any of the following then it can't alias with anything but itself.
5925 return isa<FrameIndexSDNode>(Base) ||
5926 isa<ConstantPoolSDNode>(Base) ||
5927 isa<GlobalAddressSDNode>(Base);
5930 /// isAlias - Return true if there is any possibility that the two addresses
5931 /// overlap.
5932 bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
5933 const Value *SrcValue1, int SrcValueOffset1,
5934 SDValue Ptr2, int64_t Size2,
5935 const Value *SrcValue2, int SrcValueOffset2) const {
5936 // If they are the same then they must be aliases.
5937 if (Ptr1 == Ptr2) return true;
5939 // Gather base node and offset information.
5940 SDValue Base1, Base2;
5941 int64_t Offset1, Offset2;
5942 bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5943 bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5945 // If they have a same base address then...
5946 if (Base1 == Base2)
5947 // Check to see if the addresses overlap.
5948 return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5950 // If we know both bases then they can't alias.
5951 if (KnownBase1 && KnownBase2) return false;
5953 if (CombinerGlobalAA) {
5954 // Use alias analysis information.
5955 int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5956 int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5957 int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5958 AliasAnalysis::AliasResult AAResult =
5959 AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5960 if (AAResult == AliasAnalysis::NoAlias)
5961 return false;
5964 // Otherwise we have to assume they alias.
5965 return true;
5968 /// FindAliasInfo - Extracts the relevant alias information from the memory
5969 /// node. Returns true if the operand was a load.
5970 bool DAGCombiner::FindAliasInfo(SDNode *N,
5971 SDValue &Ptr, int64_t &Size,
5972 const Value *&SrcValue, int &SrcValueOffset) const {
5973 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5974 Ptr = LD->getBasePtr();
5975 Size = LD->getMemoryVT().getSizeInBits() >> 3;
5976 SrcValue = LD->getSrcValue();
5977 SrcValueOffset = LD->getSrcValueOffset();
5978 return true;
5979 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5980 Ptr = ST->getBasePtr();
5981 Size = ST->getMemoryVT().getSizeInBits() >> 3;
5982 SrcValue = ST->getSrcValue();
5983 SrcValueOffset = ST->getSrcValueOffset();
5984 } else {
5985 assert(0 && "FindAliasInfo expected a memory operand");
5988 return false;
5991 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5992 /// looking for aliasing nodes and adding them to the Aliases vector.
5993 void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
5994 SmallVector<SDValue, 8> &Aliases) {
5995 SmallVector<SDValue, 8> Chains; // List of chains to visit.
5996 std::set<SDNode *> Visited; // Visited node set.
5998 // Get alias information for node.
5999 SDValue Ptr;
6000 int64_t Size;
6001 const Value *SrcValue;
6002 int SrcValueOffset;
6003 bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
6005 // Starting off.
6006 Chains.push_back(OriginalChain);
6008 // Look at each chain and determine if it is an alias. If so, add it to the
6009 // aliases list. If not, then continue up the chain looking for the next
6010 // candidate.
6011 while (!Chains.empty()) {
6012 SDValue Chain = Chains.back();
6013 Chains.pop_back();
6015 // Don't bother if we've been before.
6016 if (Visited.find(Chain.getNode()) != Visited.end()) continue;
6017 Visited.insert(Chain.getNode());
6019 switch (Chain.getOpcode()) {
6020 case ISD::EntryToken:
6021 // Entry token is ideal chain operand, but handled in FindBetterChain.
6022 break;
6024 case ISD::LOAD:
6025 case ISD::STORE: {
6026 // Get alias information for Chain.
6027 SDValue OpPtr;
6028 int64_t OpSize;
6029 const Value *OpSrcValue;
6030 int OpSrcValueOffset;
6031 bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
6032 OpSrcValue, OpSrcValueOffset);
6034 // If chain is alias then stop here.
6035 if (!(IsLoad && IsOpLoad) &&
6036 isAlias(Ptr, Size, SrcValue, SrcValueOffset,
6037 OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
6038 Aliases.push_back(Chain);
6039 } else {
6040 // Look further up the chain.
6041 Chains.push_back(Chain.getOperand(0));
6042 // Clean up old chain.
6043 AddToWorkList(Chain.getNode());
6045 break;
6048 case ISD::TokenFactor:
6049 // We have to check each of the operands of the token factor, so we queue
6050 // then up. Adding the operands to the queue (stack) in reverse order
6051 // maintains the original order and increases the likelihood that getNode
6052 // will find a matching token factor (CSE.)
6053 for (unsigned n = Chain.getNumOperands(); n;)
6054 Chains.push_back(Chain.getOperand(--n));
6055 // Eliminate the token factor if we can.
6056 AddToWorkList(Chain.getNode());
6057 break;
6059 default:
6060 // For all other instructions we will just have to take what we can get.
6061 Aliases.push_back(Chain);
6062 break;
6067 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
6068 /// for a better chain (aliasing node.)
6069 SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
6070 SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
6072 // Accumulate all the aliases to this node.
6073 GatherAllAliases(N, OldChain, Aliases);
6075 if (Aliases.size() == 0) {
6076 // If no operands then chain to entry token.
6077 return DAG.getEntryNode();
6078 } else if (Aliases.size() == 1) {
6079 // If a single operand then chain to it. We don't need to revisit it.
6080 return Aliases[0];
6083 // Construct a custom tailored token factor.
6084 SDValue NewChain = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
6085 &Aliases[0], Aliases.size());
6087 // Make sure the old chain gets cleaned up.
6088 if (NewChain != OldChain) AddToWorkList(OldChain.getNode());
6090 return NewChain;
6093 // SelectionDAG::Combine - This is the entry point for the file.
6095 void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
6096 CodeGenOpt::Level OptLevel) {
6097 /// run - This is the main entry point to this class.
6099 DAGCombiner(*this, AA, OptLevel).Run(Level);