1 //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "dagcombine"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetFrameInfo.h"
28 #include "llvm/Target/TargetLowering.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MathExtras.h"
41 STATISTIC(NodesCombined
, "Number of dag nodes combined");
42 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
43 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
47 CombinerAA("combiner-alias-analysis", cl::Hidden
,
48 cl::desc("Turn on alias analysis during testing"));
51 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
52 cl::desc("Include global information in alias analysis"));
54 //------------------------------ DAGCombiner ---------------------------------//
56 class VISIBILITY_HIDDEN DAGCombiner
{
58 const TargetLowering
&TLI
;
60 CodeGenOpt::Level OptLevel
;
64 // Worklist of all of the nodes that need to be simplified.
65 std::vector
<SDNode
*> WorkList
;
67 // AA - Used for DAG load/store alias analysis.
70 /// AddUsersToWorkList - When an instruction is simplified, add all users of
71 /// the instruction to the work lists because they might get more simplified
74 void AddUsersToWorkList(SDNode
*N
) {
75 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
80 /// visit - call the node-specific routine that knows how to fold each
81 /// particular type of node.
82 SDValue
visit(SDNode
*N
);
85 /// AddToWorkList - Add to the work list making sure it's instance is at the
86 /// the back (next to be processed.)
87 void AddToWorkList(SDNode
*N
) {
88 removeFromWorkList(N
);
89 WorkList
.push_back(N
);
92 /// removeFromWorkList - remove all instances of N from the worklist.
94 void removeFromWorkList(SDNode
*N
) {
95 WorkList
.erase(std::remove(WorkList
.begin(), WorkList
.end(), N
),
99 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
102 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
103 return CombineTo(N
, &Res
, 1, AddTo
);
106 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
108 SDValue To
[] = { Res0
, Res1
};
109 return CombineTo(N
, To
, 2, AddTo
);
112 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
116 /// SimplifyDemandedBits - Check the specified integer node value to see if
117 /// it can be simplified or if things it uses can be simplified by bit
118 /// propagation. If so, return true.
119 bool SimplifyDemandedBits(SDValue Op
) {
120 APInt Demanded
= APInt::getAllOnesValue(Op
.getValueSizeInBits());
121 return SimplifyDemandedBits(Op
, Demanded
);
124 bool SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
);
126 bool CombineToPreIndexedLoadStore(SDNode
*N
);
127 bool CombineToPostIndexedLoadStore(SDNode
*N
);
130 /// combine - call the node-specific routine that knows how to fold each
131 /// particular type of node. If that doesn't do anything, try the
132 /// target-specific DAG combines.
133 SDValue
combine(SDNode
*N
);
135 // Visitation implementation - Implement dag node combining for different
136 // node types. The semantics are as follows:
138 // SDValue.getNode() == 0 - No change was made
139 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
140 // otherwise - N should be replaced by the returned Operand.
142 SDValue
visitTokenFactor(SDNode
*N
);
143 SDValue
visitMERGE_VALUES(SDNode
*N
);
144 SDValue
visitADD(SDNode
*N
);
145 SDValue
visitSUB(SDNode
*N
);
146 SDValue
visitADDC(SDNode
*N
);
147 SDValue
visitADDE(SDNode
*N
);
148 SDValue
visitMUL(SDNode
*N
);
149 SDValue
visitSDIV(SDNode
*N
);
150 SDValue
visitUDIV(SDNode
*N
);
151 SDValue
visitSREM(SDNode
*N
);
152 SDValue
visitUREM(SDNode
*N
);
153 SDValue
visitMULHU(SDNode
*N
);
154 SDValue
visitMULHS(SDNode
*N
);
155 SDValue
visitSMUL_LOHI(SDNode
*N
);
156 SDValue
visitUMUL_LOHI(SDNode
*N
);
157 SDValue
visitSDIVREM(SDNode
*N
);
158 SDValue
visitUDIVREM(SDNode
*N
);
159 SDValue
visitAND(SDNode
*N
);
160 SDValue
visitOR(SDNode
*N
);
161 SDValue
visitXOR(SDNode
*N
);
162 SDValue
SimplifyVBinOp(SDNode
*N
);
163 SDValue
visitSHL(SDNode
*N
);
164 SDValue
visitSRA(SDNode
*N
);
165 SDValue
visitSRL(SDNode
*N
);
166 SDValue
visitCTLZ(SDNode
*N
);
167 SDValue
visitCTTZ(SDNode
*N
);
168 SDValue
visitCTPOP(SDNode
*N
);
169 SDValue
visitSELECT(SDNode
*N
);
170 SDValue
visitSELECT_CC(SDNode
*N
);
171 SDValue
visitSETCC(SDNode
*N
);
172 SDValue
visitSIGN_EXTEND(SDNode
*N
);
173 SDValue
visitZERO_EXTEND(SDNode
*N
);
174 SDValue
visitANY_EXTEND(SDNode
*N
);
175 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
176 SDValue
visitTRUNCATE(SDNode
*N
);
177 SDValue
visitBIT_CONVERT(SDNode
*N
);
178 SDValue
visitBUILD_PAIR(SDNode
*N
);
179 SDValue
visitFADD(SDNode
*N
);
180 SDValue
visitFSUB(SDNode
*N
);
181 SDValue
visitFMUL(SDNode
*N
);
182 SDValue
visitFDIV(SDNode
*N
);
183 SDValue
visitFREM(SDNode
*N
);
184 SDValue
visitFCOPYSIGN(SDNode
*N
);
185 SDValue
visitSINT_TO_FP(SDNode
*N
);
186 SDValue
visitUINT_TO_FP(SDNode
*N
);
187 SDValue
visitFP_TO_SINT(SDNode
*N
);
188 SDValue
visitFP_TO_UINT(SDNode
*N
);
189 SDValue
visitFP_ROUND(SDNode
*N
);
190 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
191 SDValue
visitFP_EXTEND(SDNode
*N
);
192 SDValue
visitFNEG(SDNode
*N
);
193 SDValue
visitFABS(SDNode
*N
);
194 SDValue
visitBRCOND(SDNode
*N
);
195 SDValue
visitBR_CC(SDNode
*N
);
196 SDValue
visitLOAD(SDNode
*N
);
197 SDValue
visitSTORE(SDNode
*N
);
198 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
199 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
200 SDValue
visitBUILD_VECTOR(SDNode
*N
);
201 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
202 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
204 SDValue
XformToShuffleWithZero(SDNode
*N
);
205 SDValue
ReassociateOps(unsigned Opc
, DebugLoc DL
, SDValue LHS
, SDValue RHS
);
207 SDValue
visitShiftByConstant(SDNode
*N
, unsigned Amt
);
209 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
210 SDValue
SimplifyBinOpWithSameOpcodeHands(SDNode
*N
);
211 SDValue
SimplifySelect(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
);
212 SDValue
SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
, SDValue N2
,
213 SDValue N3
, ISD::CondCode CC
,
214 bool NotExtCompare
= false);
215 SDValue
SimplifySetCC(MVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
216 DebugLoc DL
, bool foldBooleans
= true);
217 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
219 SDValue
CombineConsecutiveLoads(SDNode
*N
, MVT VT
);
220 SDValue
ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*, MVT
);
221 SDValue
BuildSDIV(SDNode
*N
);
222 SDValue
BuildUDIV(SDNode
*N
);
223 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
);
224 SDValue
ReduceLoadWidth(SDNode
*N
);
226 SDValue
GetDemandedBits(SDValue V
, const APInt
&Mask
);
228 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
229 /// looking for aliasing nodes and adding them to the Aliases vector.
230 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
231 SmallVector
<SDValue
, 8> &Aliases
);
233 /// isAlias - Return true if there is any possibility that the two addresses
235 bool isAlias(SDValue Ptr1
, int64_t Size1
,
236 const Value
*SrcValue1
, int SrcValueOffset1
,
237 SDValue Ptr2
, int64_t Size2
,
238 const Value
*SrcValue2
, int SrcValueOffset2
) const;
240 /// FindAliasInfo - Extracts the relevant alias information from the memory
241 /// node. Returns true if the operand was a load.
242 bool FindAliasInfo(SDNode
*N
,
243 SDValue
&Ptr
, int64_t &Size
,
244 const Value
*&SrcValue
, int &SrcValueOffset
) const;
246 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
247 /// looking for a better chain (aliasing node.)
248 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
250 /// getShiftAmountTy - Returns a type large enough to hold any valid
251 /// shift amount - before type legalization these can be huge.
252 MVT
getShiftAmountTy() {
253 return LegalTypes
? TLI
.getShiftAmountTy() : TLI
.getPointerTy();
257 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
&A
, CodeGenOpt::Level OL
)
259 TLI(D
.getTargetLoweringInfo()),
262 LegalOperations(false),
266 /// Run - runs the dag combiner on all nodes in the work list
267 void Run(CombineLevel AtLevel
);
273 /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
274 /// nodes from the worklist.
275 class VISIBILITY_HIDDEN WorkListRemover
:
276 public SelectionDAG::DAGUpdateListener
{
279 explicit WorkListRemover(DAGCombiner
&dc
) : DC(dc
) {}
281 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
282 DC
.removeFromWorkList(N
);
285 virtual void NodeUpdated(SDNode
*N
) {
291 //===----------------------------------------------------------------------===//
292 // TargetLowering::DAGCombinerInfo implementation
293 //===----------------------------------------------------------------------===//
295 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
296 ((DAGCombiner
*)DC
)->AddToWorkList(N
);
299 SDValue
TargetLowering::DAGCombinerInfo::
300 CombineTo(SDNode
*N
, const std::vector
<SDValue
> &To
, bool AddTo
) {
301 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
304 SDValue
TargetLowering::DAGCombinerInfo::
305 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
306 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
310 SDValue
TargetLowering::DAGCombinerInfo::
311 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
312 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
315 void TargetLowering::DAGCombinerInfo::
316 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
317 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
320 //===----------------------------------------------------------------------===//
322 //===----------------------------------------------------------------------===//
324 /// isNegatibleForFree - Return 1 if we can compute the negated form of the
325 /// specified expression for the same cost as the expression itself, or 2 if we
326 /// can compute the negated form more cheaply than the expression itself.
327 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
328 unsigned Depth
= 0) {
329 // No compile time optimizations on this type.
330 if (Op
.getValueType() == MVT::ppcf128
)
333 // fneg is removable even if it has multiple uses.
334 if (Op
.getOpcode() == ISD::FNEG
) return 2;
336 // Don't allow anything with multiple uses.
337 if (!Op
.hasOneUse()) return 0;
339 // Don't recurse exponentially.
340 if (Depth
> 6) return 0;
342 switch (Op
.getOpcode()) {
343 default: return false;
344 case ISD::ConstantFP
:
345 // Don't invert constant FP values after legalize. The negated constant
346 // isn't necessarily legal.
347 return LegalOperations
? 0 : 1;
349 // FIXME: determine better conditions for this xform.
350 if (!UnsafeFPMath
) return 0;
352 // fold (fsub (fadd A, B)) -> (fsub (fneg A), B)
353 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
355 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
356 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
358 // We can't turn -(A-B) into B-A when we honor signed zeros.
359 if (!UnsafeFPMath
) return 0;
361 // fold (fneg (fsub A, B)) -> (fsub B, A)
366 if (HonorSignDependentRoundingFPMath()) return 0;
368 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
369 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
372 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, Depth
+1);
377 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1);
381 /// GetNegatedExpression - If isNegatibleForFree returns true, this function
382 /// returns the newly negated expression.
383 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
384 bool LegalOperations
, unsigned Depth
= 0) {
385 // fneg is removable even if it has multiple uses.
386 if (Op
.getOpcode() == ISD::FNEG
) return Op
.getOperand(0);
388 // Don't allow anything with multiple uses.
389 assert(Op
.hasOneUse() && "Unknown reuse!");
391 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
392 switch (Op
.getOpcode()) {
393 default: assert(0 && "Unknown code");
394 case ISD::ConstantFP
: {
395 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
397 return DAG
.getConstantFP(V
, Op
.getValueType());
400 // FIXME: determine better conditions for this xform.
401 assert(UnsafeFPMath
);
403 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
404 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
405 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
406 GetNegatedExpression(Op
.getOperand(0), DAG
,
407 LegalOperations
, Depth
+1),
409 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
410 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
411 GetNegatedExpression(Op
.getOperand(1), DAG
,
412 LegalOperations
, Depth
+1),
415 // We can't turn -(A-B) into B-A when we honor signed zeros.
416 assert(UnsafeFPMath
);
418 // fold (fneg (fsub 0, B)) -> B
419 if (ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(Op
.getOperand(0)))
420 if (N0CFP
->getValueAPF().isZero())
421 return Op
.getOperand(1);
423 // fold (fneg (fsub A, B)) -> (fsub B, A)
424 return DAG
.getNode(ISD::FSUB
, Op
.getDebugLoc(), Op
.getValueType(),
425 Op
.getOperand(1), Op
.getOperand(0));
429 assert(!HonorSignDependentRoundingFPMath());
431 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
432 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
, Depth
+1))
433 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
434 GetNegatedExpression(Op
.getOperand(0), DAG
,
435 LegalOperations
, Depth
+1),
438 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
439 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
441 GetNegatedExpression(Op
.getOperand(1), DAG
,
442 LegalOperations
, Depth
+1));
446 return DAG
.getNode(Op
.getOpcode(), Op
.getDebugLoc(), Op
.getValueType(),
447 GetNegatedExpression(Op
.getOperand(0), DAG
,
448 LegalOperations
, Depth
+1));
450 return DAG
.getNode(ISD::FP_ROUND
, Op
.getDebugLoc(), Op
.getValueType(),
451 GetNegatedExpression(Op
.getOperand(0), DAG
,
452 LegalOperations
, Depth
+1),
458 // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
459 // that selects between the values 1 and 0, making it equivalent to a setcc.
460 // Also, set the incoming LHS, RHS, and CC references to the appropriate
461 // nodes based on the type of node we are checking. This simplifies life a
462 // bit for the callers.
463 static bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
465 if (N
.getOpcode() == ISD::SETCC
) {
466 LHS
= N
.getOperand(0);
467 RHS
= N
.getOperand(1);
468 CC
= N
.getOperand(2);
471 if (N
.getOpcode() == ISD::SELECT_CC
&&
472 N
.getOperand(2).getOpcode() == ISD::Constant
&&
473 N
.getOperand(3).getOpcode() == ISD::Constant
&&
474 cast
<ConstantSDNode
>(N
.getOperand(2))->getAPIntValue() == 1 &&
475 cast
<ConstantSDNode
>(N
.getOperand(3))->isNullValue()) {
476 LHS
= N
.getOperand(0);
477 RHS
= N
.getOperand(1);
478 CC
= N
.getOperand(4);
484 // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
485 // one use. If this is true, it allows the users to invert the operation for
486 // free when it is profitable to do so.
487 static bool isOneUseSetCC(SDValue N
) {
489 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
494 SDValue
DAGCombiner::ReassociateOps(unsigned Opc
, DebugLoc DL
,
495 SDValue N0
, SDValue N1
) {
496 MVT VT
= N0
.getValueType();
497 if (N0
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N0
.getOperand(1))) {
498 if (isa
<ConstantSDNode
>(N1
)) {
499 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
501 DAG
.FoldConstantArithmetic(Opc
, VT
,
502 cast
<ConstantSDNode
>(N0
.getOperand(1)),
503 cast
<ConstantSDNode
>(N1
));
504 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
505 } else if (N0
.hasOneUse()) {
506 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
507 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
508 N0
.getOperand(0), N1
);
509 AddToWorkList(OpNode
.getNode());
510 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
514 if (N1
.getOpcode() == Opc
&& isa
<ConstantSDNode
>(N1
.getOperand(1))) {
515 if (isa
<ConstantSDNode
>(N0
)) {
516 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
518 DAG
.FoldConstantArithmetic(Opc
, VT
,
519 cast
<ConstantSDNode
>(N1
.getOperand(1)),
520 cast
<ConstantSDNode
>(N0
));
521 return DAG
.getNode(Opc
, DL
, VT
, N1
.getOperand(0), OpNode
);
522 } else if (N1
.hasOneUse()) {
523 // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
524 SDValue OpNode
= DAG
.getNode(Opc
, N0
.getDebugLoc(), VT
,
525 N1
.getOperand(0), N0
);
526 AddToWorkList(OpNode
.getNode());
527 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N1
.getOperand(1));
534 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
536 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
538 DOUT
<< "\nReplacing.1 "; DEBUG(N
->dump(&DAG
));
539 DOUT
<< "\nWith: "; DEBUG(To
[0].getNode()->dump(&DAG
));
540 DOUT
<< " and " << NumTo
-1 << " other values\n";
541 DEBUG(for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
542 assert(N
->getValueType(i
) == To
[i
].getValueType() &&
543 "Cannot combine value to value of different type!"));
544 WorkListRemover
DeadNodes(*this);
545 DAG
.ReplaceAllUsesWith(N
, To
, &DeadNodes
);
548 // Push the new nodes and any users onto the worklist
549 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
550 if (To
[i
].getNode()) {
551 AddToWorkList(To
[i
].getNode());
552 AddUsersToWorkList(To
[i
].getNode());
557 // Finally, if the node is now dead, remove it from the graph. The node
558 // may not be dead if the replacement process recursively simplified to
559 // something else needing this node.
560 if (N
->use_empty()) {
561 // Nodes can be reintroduced into the worklist. Make sure we do not
562 // process a node that has been replaced.
563 removeFromWorkList(N
);
565 // Finally, since the node is now dead, remove it from the graph.
568 return SDValue(N
, 0);
572 DAGCombiner::CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&
574 // Replace all uses. If any nodes become isomorphic to other nodes and
575 // are deleted, make sure to remove them from our worklist.
576 WorkListRemover
DeadNodes(*this);
577 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
, &DeadNodes
);
579 // Push the new node and any (possibly new) users onto the worklist.
580 AddToWorkList(TLO
.New
.getNode());
581 AddUsersToWorkList(TLO
.New
.getNode());
583 // Finally, if the node is now dead, remove it from the graph. The node
584 // may not be dead if the replacement process recursively simplified to
585 // something else needing this node.
586 if (TLO
.Old
.getNode()->use_empty()) {
587 removeFromWorkList(TLO
.Old
.getNode());
589 // If the operands of this node are only used by the node, they will now
590 // be dead. Make sure to visit them first to delete dead nodes early.
591 for (unsigned i
= 0, e
= TLO
.Old
.getNode()->getNumOperands(); i
!= e
; ++i
)
592 if (TLO
.Old
.getNode()->getOperand(i
).getNode()->hasOneUse())
593 AddToWorkList(TLO
.Old
.getNode()->getOperand(i
).getNode());
595 DAG
.DeleteNode(TLO
.Old
.getNode());
599 /// SimplifyDemandedBits - Check the specified integer node value to see if
600 /// it can be simplified or if things it uses can be simplified by bit
601 /// propagation. If so, return true.
602 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
) {
603 TargetLowering::TargetLoweringOpt
TLO(DAG
);
604 APInt KnownZero
, KnownOne
;
605 if (!TLI
.SimplifyDemandedBits(Op
, Demanded
, KnownZero
, KnownOne
, TLO
))
609 AddToWorkList(Op
.getNode());
611 // Replace the old value with the new one.
613 DOUT
<< "\nReplacing.2 "; DEBUG(TLO
.Old
.getNode()->dump(&DAG
));
614 DOUT
<< "\nWith: "; DEBUG(TLO
.New
.getNode()->dump(&DAG
));
617 CommitTargetLoweringOpt(TLO
);
621 //===----------------------------------------------------------------------===//
622 // Main DAG Combiner implementation
623 //===----------------------------------------------------------------------===//
625 void DAGCombiner::Run(CombineLevel AtLevel
) {
626 // set the instance variables, so that the various visit routines may use it.
628 LegalOperations
= Level
>= NoIllegalOperations
;
629 LegalTypes
= Level
>= NoIllegalTypes
;
631 // Add all the dag nodes to the worklist.
632 WorkList
.reserve(DAG
.allnodes_size());
633 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
634 E
= DAG
.allnodes_end(); I
!= E
; ++I
)
635 WorkList
.push_back(I
);
637 // Create a dummy node (which is not added to allnodes), that adds a reference
638 // to the root node, preventing it from being deleted, and tracking any
639 // changes of the root.
640 HandleSDNode
Dummy(DAG
.getRoot());
642 // The root of the dag may dangle to deleted nodes until the dag combiner is
643 // done. Set it to null to avoid confusion.
644 DAG
.setRoot(SDValue());
646 // while the worklist isn't empty, inspect the node on the end of it and
647 // try and combine it.
648 while (!WorkList
.empty()) {
649 SDNode
*N
= WorkList
.back();
652 // If N has no uses, it is dead. Make sure to revisit all N's operands once
653 // N is deleted from the DAG, since they too may now be dead or may have a
654 // reduced number of uses, allowing other xforms.
655 if (N
->use_empty() && N
!= &Dummy
) {
656 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
657 AddToWorkList(N
->getOperand(i
).getNode());
663 SDValue RV
= combine(N
);
665 if (RV
.getNode() == 0)
670 // If we get back the same node we passed in, rather than a new node or
671 // zero, we know that the node must have defined multiple values and
672 // CombineTo was used. Since CombineTo takes care of the worklist
673 // mechanics for us, we have no work to do in this case.
674 if (RV
.getNode() == N
)
677 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
678 RV
.getNode()->getOpcode() != ISD::DELETED_NODE
&&
679 "Node was deleted but visit returned new node!");
681 DOUT
<< "\nReplacing.3 "; DEBUG(N
->dump(&DAG
));
682 DOUT
<< "\nWith: "; DEBUG(RV
.getNode()->dump(&DAG
));
684 WorkListRemover
DeadNodes(*this);
685 if (N
->getNumValues() == RV
.getNode()->getNumValues())
686 DAG
.ReplaceAllUsesWith(N
, RV
.getNode(), &DeadNodes
);
688 assert(N
->getValueType(0) == RV
.getValueType() &&
689 N
->getNumValues() == 1 && "Type mismatch");
691 DAG
.ReplaceAllUsesWith(N
, &OpV
, &DeadNodes
);
694 // Push the new node and any users onto the worklist
695 AddToWorkList(RV
.getNode());
696 AddUsersToWorkList(RV
.getNode());
698 // Add any uses of the old node to the worklist in case this node is the
699 // last one that uses them. They may become dead after this node is
701 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
702 AddToWorkList(N
->getOperand(i
).getNode());
704 // Finally, if the node is now dead, remove it from the graph. The node
705 // may not be dead if the replacement process recursively simplified to
706 // something else needing this node.
707 if (N
->use_empty()) {
708 // Nodes can be reintroduced into the worklist. Make sure we do not
709 // process a node that has been replaced.
710 removeFromWorkList(N
);
712 // Finally, since the node is now dead, remove it from the graph.
717 // If the root changed (e.g. it was a dead load, update the root).
718 DAG
.setRoot(Dummy
.getValue());
721 SDValue
DAGCombiner::visit(SDNode
*N
) {
722 switch(N
->getOpcode()) {
724 case ISD::TokenFactor
: return visitTokenFactor(N
);
725 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
726 case ISD::ADD
: return visitADD(N
);
727 case ISD::SUB
: return visitSUB(N
);
728 case ISD::ADDC
: return visitADDC(N
);
729 case ISD::ADDE
: return visitADDE(N
);
730 case ISD::MUL
: return visitMUL(N
);
731 case ISD::SDIV
: return visitSDIV(N
);
732 case ISD::UDIV
: return visitUDIV(N
);
733 case ISD::SREM
: return visitSREM(N
);
734 case ISD::UREM
: return visitUREM(N
);
735 case ISD::MULHU
: return visitMULHU(N
);
736 case ISD::MULHS
: return visitMULHS(N
);
737 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
738 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
739 case ISD::SDIVREM
: return visitSDIVREM(N
);
740 case ISD::UDIVREM
: return visitUDIVREM(N
);
741 case ISD::AND
: return visitAND(N
);
742 case ISD::OR
: return visitOR(N
);
743 case ISD::XOR
: return visitXOR(N
);
744 case ISD::SHL
: return visitSHL(N
);
745 case ISD::SRA
: return visitSRA(N
);
746 case ISD::SRL
: return visitSRL(N
);
747 case ISD::CTLZ
: return visitCTLZ(N
);
748 case ISD::CTTZ
: return visitCTTZ(N
);
749 case ISD::CTPOP
: return visitCTPOP(N
);
750 case ISD::SELECT
: return visitSELECT(N
);
751 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
752 case ISD::SETCC
: return visitSETCC(N
);
753 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
754 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
755 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
756 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
757 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
758 case ISD::BIT_CONVERT
: return visitBIT_CONVERT(N
);
759 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
760 case ISD::FADD
: return visitFADD(N
);
761 case ISD::FSUB
: return visitFSUB(N
);
762 case ISD::FMUL
: return visitFMUL(N
);
763 case ISD::FDIV
: return visitFDIV(N
);
764 case ISD::FREM
: return visitFREM(N
);
765 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
766 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
767 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
768 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
769 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
770 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
771 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
772 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
773 case ISD::FNEG
: return visitFNEG(N
);
774 case ISD::FABS
: return visitFABS(N
);
775 case ISD::BRCOND
: return visitBRCOND(N
);
776 case ISD::BR_CC
: return visitBR_CC(N
);
777 case ISD::LOAD
: return visitLOAD(N
);
778 case ISD::STORE
: return visitSTORE(N
);
779 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
780 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
781 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
782 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
783 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
788 SDValue
DAGCombiner::combine(SDNode
*N
) {
789 SDValue RV
= visit(N
);
791 // If nothing happened, try a target-specific DAG combine.
792 if (RV
.getNode() == 0) {
793 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
794 "Node was deleted but visit returned NULL!");
796 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
797 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
799 // Expose the DAG combiner to the target combiner impls.
800 TargetLowering::DAGCombinerInfo
801 DagCombineInfo(DAG
, Level
== Unrestricted
, false, this);
803 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
807 // If N is a commutative binary node, try commuting it to enable more
809 if (RV
.getNode() == 0 &&
810 SelectionDAG::isCommutativeBinOp(N
->getOpcode()) &&
811 N
->getNumValues() == 1) {
812 SDValue N0
= N
->getOperand(0);
813 SDValue N1
= N
->getOperand(1);
815 // Constant operands are canonicalized to RHS.
816 if (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
)) {
817 SDValue Ops
[] = { N1
, N0
};
818 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(),
821 return SDValue(CSENode
, 0);
828 /// getInputChainForNode - Given a node, return its input chain if it has one,
829 /// otherwise return a null sd operand.
830 static SDValue
getInputChainForNode(SDNode
*N
) {
831 if (unsigned NumOps
= N
->getNumOperands()) {
832 if (N
->getOperand(0).getValueType() == MVT::Other
)
833 return N
->getOperand(0);
834 else if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
835 return N
->getOperand(NumOps
-1);
836 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
837 if (N
->getOperand(i
).getValueType() == MVT::Other
)
838 return N
->getOperand(i
);
843 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
844 // If N has two operands, where one has an input chain equal to the other,
845 // the 'other' chain is redundant.
846 if (N
->getNumOperands() == 2) {
847 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
848 return N
->getOperand(0);
849 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
850 return N
->getOperand(1);
853 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
854 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
855 SmallPtrSet
<SDNode
*, 16> SeenOps
;
856 bool Changed
= false; // If we should replace this token factor.
858 // Start out with this token factor.
861 // Iterate through token factors. The TFs grows when new token factors are
863 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
866 // Check each of the operands.
867 for (unsigned i
= 0, ie
= TF
->getNumOperands(); i
!= ie
; ++i
) {
868 SDValue Op
= TF
->getOperand(i
);
870 switch (Op
.getOpcode()) {
871 case ISD::EntryToken
:
872 // Entry tokens don't need to be added to the list. They are
877 case ISD::TokenFactor
:
878 if ((CombinerAA
|| Op
.hasOneUse()) &&
879 std::find(TFs
.begin(), TFs
.end(), Op
.getNode()) == TFs
.end()) {
880 // Queue up for processing.
881 TFs
.push_back(Op
.getNode());
882 // Clean up in case the token factor is removed.
883 AddToWorkList(Op
.getNode());
890 // Only add if it isn't already in the list.
891 if (SeenOps
.insert(Op
.getNode()))
902 // If we've change things around then replace token factor.
905 // The entry token is the only possible outcome.
906 Result
= DAG
.getEntryNode();
908 // New and improved token factor.
909 Result
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
910 MVT::Other
, &Ops
[0], Ops
.size());
913 // Don't add users to work list.
914 return CombineTo(N
, Result
, false);
920 /// MERGE_VALUES can always be eliminated.
921 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
922 WorkListRemover
DeadNodes(*this);
923 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
924 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, i
), N
->getOperand(i
),
926 removeFromWorkList(N
);
928 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
932 SDValue
combineShlAddConstant(DebugLoc DL
, SDValue N0
, SDValue N1
,
934 MVT VT
= N0
.getValueType();
935 SDValue N00
= N0
.getOperand(0);
936 SDValue N01
= N0
.getOperand(1);
937 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N01
);
939 if (N01C
&& N00
.getOpcode() == ISD::ADD
&& N00
.getNode()->hasOneUse() &&
940 isa
<ConstantSDNode
>(N00
.getOperand(1))) {
941 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
942 N0
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
,
943 DAG
.getNode(ISD::SHL
, N00
.getDebugLoc(), VT
,
944 N00
.getOperand(0), N01
),
945 DAG
.getNode(ISD::SHL
, N01
.getDebugLoc(), VT
,
946 N00
.getOperand(1), N01
));
947 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
);
953 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
954 SDValue N0
= N
->getOperand(0);
955 SDValue N1
= N
->getOperand(1);
956 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
957 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
958 MVT VT
= N0
.getValueType();
962 SDValue FoldedVOp
= SimplifyVBinOp(N
);
963 if (FoldedVOp
.getNode()) return FoldedVOp
;
966 // fold (add x, undef) -> undef
967 if (N0
.getOpcode() == ISD::UNDEF
)
969 if (N1
.getOpcode() == ISD::UNDEF
)
971 // fold (add c1, c2) -> c1+c2
973 return DAG
.FoldConstantArithmetic(ISD::ADD
, VT
, N0C
, N1C
);
974 // canonicalize constant to RHS
976 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
);
977 // fold (add x, 0) -> x
978 if (N1C
&& N1C
->isNullValue())
980 // fold (add Sym, c) -> Sym+c
981 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
982 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
) && N1C
&&
983 GA
->getOpcode() == ISD::GlobalAddress
)
984 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
986 (uint64_t)N1C
->getSExtValue());
987 // fold ((c1-A)+c2) -> (c1+c2)-A
988 if (N1C
&& N0
.getOpcode() == ISD::SUB
)
989 if (ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0)))
990 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
991 DAG
.getConstant(N1C
->getAPIntValue()+
992 N0C
->getAPIntValue(), VT
),
995 SDValue RADD
= ReassociateOps(ISD::ADD
, N
->getDebugLoc(), N0
, N1
);
996 if (RADD
.getNode() != 0)
998 // fold ((0-A) + B) -> B-A
999 if (N0
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N0
.getOperand(0)) &&
1000 cast
<ConstantSDNode
>(N0
.getOperand(0))->isNullValue())
1001 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
, N0
.getOperand(1));
1002 // fold (A + (0-B)) -> A-B
1003 if (N1
.getOpcode() == ISD::SUB
&& isa
<ConstantSDNode
>(N1
.getOperand(0)) &&
1004 cast
<ConstantSDNode
>(N1
.getOperand(0))->isNullValue())
1005 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, N1
.getOperand(1));
1006 // fold (A+(B-A)) -> B
1007 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
1008 return N1
.getOperand(0);
1009 // fold ((B-A)+A) -> B
1010 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
1011 return N0
.getOperand(0);
1012 // fold (A+(B-(A+C))) to (B-C)
1013 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1014 N0
== N1
.getOperand(1).getOperand(0))
1015 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1016 N1
.getOperand(1).getOperand(1));
1017 // fold (A+(B-(C+A))) to (B-C)
1018 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
1019 N0
== N1
.getOperand(1).getOperand(1))
1020 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N1
.getOperand(0),
1021 N1
.getOperand(1).getOperand(0));
1022 // fold (A+((B-A)+or-C)) to (B+or-C)
1023 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
1024 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
1025 N0
== N1
.getOperand(0).getOperand(1))
1026 return DAG
.getNode(N1
.getOpcode(), N
->getDebugLoc(), VT
,
1027 N1
.getOperand(0).getOperand(0), N1
.getOperand(1));
1029 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1030 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
1031 SDValue N00
= N0
.getOperand(0);
1032 SDValue N01
= N0
.getOperand(1);
1033 SDValue N10
= N1
.getOperand(0);
1034 SDValue N11
= N1
.getOperand(1);
1036 if (isa
<ConstantSDNode
>(N00
) || isa
<ConstantSDNode
>(N10
))
1037 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1038 DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), VT
, N00
, N10
),
1039 DAG
.getNode(ISD::ADD
, N1
.getDebugLoc(), VT
, N01
, N11
));
1042 if (!VT
.isVector() && SimplifyDemandedBits(SDValue(N
, 0)))
1043 return SDValue(N
, 0);
1045 // fold (a+b) -> (a|b) iff a and b share no bits.
1046 if (VT
.isInteger() && !VT
.isVector()) {
1047 APInt LHSZero
, LHSOne
;
1048 APInt RHSZero
, RHSOne
;
1049 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1050 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1052 if (LHSZero
.getBoolValue()) {
1053 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1055 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1056 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1057 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1058 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1059 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
);
1063 // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1064 if (N0
.getOpcode() == ISD::SHL
&& N0
.getNode()->hasOneUse()) {
1065 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N0
, N1
, DAG
);
1066 if (Result
.getNode()) return Result
;
1068 if (N1
.getOpcode() == ISD::SHL
&& N1
.getNode()->hasOneUse()) {
1069 SDValue Result
= combineShlAddConstant(N
->getDebugLoc(), N1
, N0
, DAG
);
1070 if (Result
.getNode()) return Result
;
1076 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
1077 SDValue N0
= N
->getOperand(0);
1078 SDValue N1
= N
->getOperand(1);
1079 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1080 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1081 MVT VT
= N0
.getValueType();
1083 // If the flag result is dead, turn this into an ADD.
1084 if (N
->hasNUsesOfValue(0, 1))
1085 return CombineTo(N
, DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
, N0
),
1086 DAG
.getNode(ISD::CARRY_FALSE
,
1087 N
->getDebugLoc(), MVT::Flag
));
1089 // canonicalize constant to RHS.
1091 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1093 // fold (addc x, 0) -> x + no carry out
1094 if (N1C
&& N1C
->isNullValue())
1095 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
1096 N
->getDebugLoc(), MVT::Flag
));
1098 // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1099 APInt LHSZero
, LHSOne
;
1100 APInt RHSZero
, RHSOne
;
1101 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
1102 DAG
.ComputeMaskedBits(N0
, Mask
, LHSZero
, LHSOne
);
1104 if (LHSZero
.getBoolValue()) {
1105 DAG
.ComputeMaskedBits(N1
, Mask
, RHSZero
, RHSOne
);
1107 // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1108 // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1109 if ((RHSZero
& (~LHSZero
& Mask
)) == (~LHSZero
& Mask
) ||
1110 (LHSZero
& (~RHSZero
& Mask
)) == (~RHSZero
& Mask
))
1111 return CombineTo(N
, DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N1
),
1112 DAG
.getNode(ISD::CARRY_FALSE
,
1113 N
->getDebugLoc(), MVT::Flag
));
1119 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
1120 SDValue N0
= N
->getOperand(0);
1121 SDValue N1
= N
->getOperand(1);
1122 SDValue CarryIn
= N
->getOperand(2);
1123 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1124 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1126 // canonicalize constant to RHS
1128 return DAG
.getNode(ISD::ADDE
, N
->getDebugLoc(), N
->getVTList(),
1131 // fold (adde x, y, false) -> (addc x, y)
1132 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
1133 return DAG
.getNode(ISD::ADDC
, N
->getDebugLoc(), N
->getVTList(), N1
, N0
);
1138 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
1139 SDValue N0
= N
->getOperand(0);
1140 SDValue N1
= N
->getOperand(1);
1141 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1142 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1143 MVT VT
= N0
.getValueType();
1146 if (VT
.isVector()) {
1147 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1148 if (FoldedVOp
.getNode()) return FoldedVOp
;
1151 // fold (sub x, x) -> 0
1153 return DAG
.getConstant(0, N
->getValueType(0));
1154 // fold (sub c1, c2) -> c1-c2
1156 return DAG
.FoldConstantArithmetic(ISD::SUB
, VT
, N0C
, N1C
);
1157 // fold (sub x, c) -> (add x, -c)
1159 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
,
1160 DAG
.getConstant(-N1C
->getAPIntValue(), VT
));
1161 // fold (A+B)-A -> B
1162 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
1163 return N0
.getOperand(1);
1164 // fold (A+B)-B -> A
1165 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
1166 return N0
.getOperand(0);
1167 // fold ((A+(B+or-C))-B) -> A+or-C
1168 if (N0
.getOpcode() == ISD::ADD
&&
1169 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
1170 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
1171 N0
.getOperand(1).getOperand(0) == N1
)
1172 return DAG
.getNode(N0
.getOperand(1).getOpcode(), N
->getDebugLoc(), VT
,
1173 N0
.getOperand(0), N0
.getOperand(1).getOperand(1));
1174 // fold ((A+(C+B))-B) -> A+C
1175 if (N0
.getOpcode() == ISD::ADD
&&
1176 N0
.getOperand(1).getOpcode() == ISD::ADD
&&
1177 N0
.getOperand(1).getOperand(1) == N1
)
1178 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1179 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1180 // fold ((A-(B-C))-C) -> A-B
1181 if (N0
.getOpcode() == ISD::SUB
&&
1182 N0
.getOperand(1).getOpcode() == ISD::SUB
&&
1183 N0
.getOperand(1).getOperand(1) == N1
)
1184 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1185 N0
.getOperand(0), N0
.getOperand(1).getOperand(0));
1187 // If either operand of a sub is undef, the result is undef
1188 if (N0
.getOpcode() == ISD::UNDEF
)
1190 if (N1
.getOpcode() == ISD::UNDEF
)
1193 // If the relocation model supports it, consider symbol offsets.
1194 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
1195 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
1196 // fold (sub Sym, c) -> Sym-c
1197 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
1198 return DAG
.getGlobalAddress(GA
->getGlobal(), VT
,
1200 (uint64_t)N1C
->getSExtValue());
1201 // fold (sub Sym+c1, Sym+c2) -> c1-c2
1202 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
1203 if (GA
->getGlobal() == GB
->getGlobal())
1204 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
1211 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
1212 SDValue N0
= N
->getOperand(0);
1213 SDValue N1
= N
->getOperand(1);
1214 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1215 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1216 MVT VT
= N0
.getValueType();
1219 if (VT
.isVector()) {
1220 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1221 if (FoldedVOp
.getNode()) return FoldedVOp
;
1224 // fold (mul x, undef) -> 0
1225 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1226 return DAG
.getConstant(0, VT
);
1227 // fold (mul c1, c2) -> c1*c2
1229 return DAG
.FoldConstantArithmetic(ISD::MUL
, VT
, N0C
, N1C
);
1230 // canonicalize constant to RHS
1232 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
, N1
, N0
);
1233 // fold (mul x, 0) -> 0
1234 if (N1C
&& N1C
->isNullValue())
1236 // fold (mul x, -1) -> 0-x
1237 if (N1C
&& N1C
->isAllOnesValue())
1238 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1239 DAG
.getConstant(0, VT
), N0
);
1240 // fold (mul x, (1 << c)) -> x << c
1241 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1242 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1243 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1244 getShiftAmountTy()));
1245 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1246 if (N1C
&& (-N1C
->getAPIntValue()).isPowerOf2()) {
1247 unsigned Log2Val
= (-N1C
->getAPIntValue()).logBase2();
1248 // FIXME: If the input is something that is easily negated (e.g. a
1249 // single-use add), we should put the negate there.
1250 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1251 DAG
.getConstant(0, VT
),
1252 DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
1253 DAG
.getConstant(Log2Val
, getShiftAmountTy())));
1255 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1256 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
1257 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1258 SDValue C3
= DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1259 N1
, N0
.getOperand(1));
1260 AddToWorkList(C3
.getNode());
1261 return DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1262 N0
.getOperand(0), C3
);
1265 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1268 SDValue
Sh(0,0), Y(0,0);
1269 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
1270 if (N0
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1271 N0
.getNode()->hasOneUse()) {
1273 } else if (N1
.getOpcode() == ISD::SHL
&&
1274 isa
<ConstantSDNode
>(N1
.getOperand(1)) &&
1275 N1
.getNode()->hasOneUse()) {
1280 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1281 Sh
.getOperand(0), Y
);
1282 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
,
1283 Mul
, Sh
.getOperand(1));
1287 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1288 if (N1C
&& N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse() &&
1289 isa
<ConstantSDNode
>(N0
.getOperand(1)))
1290 return DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
,
1291 DAG
.getNode(ISD::MUL
, N0
.getDebugLoc(), VT
,
1292 N0
.getOperand(0), N1
),
1293 DAG
.getNode(ISD::MUL
, N1
.getDebugLoc(), VT
,
1294 N0
.getOperand(1), N1
));
1297 SDValue RMUL
= ReassociateOps(ISD::MUL
, N
->getDebugLoc(), N0
, N1
);
1298 if (RMUL
.getNode() != 0)
1304 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
1305 SDValue N0
= N
->getOperand(0);
1306 SDValue N1
= N
->getOperand(1);
1307 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1308 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1309 MVT VT
= N
->getValueType(0);
1312 if (VT
.isVector()) {
1313 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1314 if (FoldedVOp
.getNode()) return FoldedVOp
;
1317 // fold (sdiv c1, c2) -> c1/c2
1318 if (N0C
&& N1C
&& !N1C
->isNullValue())
1319 return DAG
.FoldConstantArithmetic(ISD::SDIV
, VT
, N0C
, N1C
);
1320 // fold (sdiv X, 1) -> X
1321 if (N1C
&& N1C
->getSExtValue() == 1LL)
1323 // fold (sdiv X, -1) -> 0-X
1324 if (N1C
&& N1C
->isAllOnesValue())
1325 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1326 DAG
.getConstant(0, VT
), N0
);
1327 // If we know the sign bits of both operands are zero, strength reduce to a
1328 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
1329 if (!VT
.isVector()) {
1330 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1331 return DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), N1
.getValueType(),
1334 // fold (sdiv X, pow2) -> simple ops after legalize
1335 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap() &&
1336 (isPowerOf2_64(N1C
->getSExtValue()) ||
1337 isPowerOf2_64(-N1C
->getSExtValue()))) {
1338 // If dividing by powers of two is cheap, then don't perform the following
1340 if (TLI
.isPow2DivCheap())
1343 int64_t pow2
= N1C
->getSExtValue();
1344 int64_t abs2
= pow2
> 0 ? pow2
: -pow2
;
1345 unsigned lg2
= Log2_64(abs2
);
1347 // Splat the sign bit into the register
1348 SDValue SGN
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
1349 DAG
.getConstant(VT
.getSizeInBits()-1,
1350 getShiftAmountTy()));
1351 AddToWorkList(SGN
.getNode());
1353 // Add (N0 < 0) ? abs2 - 1 : 0;
1354 SDValue SRL
= DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, SGN
,
1355 DAG
.getConstant(VT
.getSizeInBits() - lg2
,
1356 getShiftAmountTy()));
1357 SDValue ADD
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N0
, SRL
);
1358 AddToWorkList(SRL
.getNode());
1359 AddToWorkList(ADD
.getNode()); // Divide by pow2
1360 SDValue SRA
= DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, ADD
,
1361 DAG
.getConstant(lg2
, getShiftAmountTy()));
1363 // If we're dividing by a positive value, we're done. Otherwise, we must
1364 // negate the result.
1368 AddToWorkList(SRA
.getNode());
1369 return DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
,
1370 DAG
.getConstant(0, VT
), SRA
);
1373 // if integer divide is expensive and we satisfy the requirements, emit an
1374 // alternate sequence.
1375 if (N1C
&& (N1C
->getSExtValue() < -1 || N1C
->getSExtValue() > 1) &&
1376 !TLI
.isIntDivCheap()) {
1377 SDValue Op
= BuildSDIV(N
);
1378 if (Op
.getNode()) return Op
;
1382 if (N0
.getOpcode() == ISD::UNDEF
)
1383 return DAG
.getConstant(0, VT
);
1384 // X / undef -> undef
1385 if (N1
.getOpcode() == ISD::UNDEF
)
1391 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
1392 SDValue N0
= N
->getOperand(0);
1393 SDValue N1
= N
->getOperand(1);
1394 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
.getNode());
1395 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
1396 MVT VT
= N
->getValueType(0);
1399 if (VT
.isVector()) {
1400 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1401 if (FoldedVOp
.getNode()) return FoldedVOp
;
1404 // fold (udiv c1, c2) -> c1/c2
1405 if (N0C
&& N1C
&& !N1C
->isNullValue())
1406 return DAG
.FoldConstantArithmetic(ISD::UDIV
, VT
, N0C
, N1C
);
1407 // fold (udiv x, (1 << c)) -> x >>u c
1408 if (N1C
&& N1C
->getAPIntValue().isPowerOf2())
1409 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
1410 DAG
.getConstant(N1C
->getAPIntValue().logBase2(),
1411 getShiftAmountTy()));
1412 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1413 if (N1
.getOpcode() == ISD::SHL
) {
1414 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1415 if (SHC
->getAPIntValue().isPowerOf2()) {
1416 MVT ADDVT
= N1
.getOperand(1).getValueType();
1417 SDValue Add
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), ADDVT
,
1419 DAG
.getConstant(SHC
->getAPIntValue()
1422 AddToWorkList(Add
.getNode());
1423 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, Add
);
1427 // fold (udiv x, c) -> alternate
1428 if (N1C
&& !N1C
->isNullValue() && !TLI
.isIntDivCheap()) {
1429 SDValue Op
= BuildUDIV(N
);
1430 if (Op
.getNode()) return Op
;
1434 if (N0
.getOpcode() == ISD::UNDEF
)
1435 return DAG
.getConstant(0, VT
);
1436 // X / undef -> undef
1437 if (N1
.getOpcode() == ISD::UNDEF
)
1443 SDValue
DAGCombiner::visitSREM(SDNode
*N
) {
1444 SDValue N0
= N
->getOperand(0);
1445 SDValue N1
= N
->getOperand(1);
1446 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1447 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1448 MVT VT
= N
->getValueType(0);
1450 // fold (srem c1, c2) -> c1%c2
1451 if (N0C
&& N1C
&& !N1C
->isNullValue())
1452 return DAG
.FoldConstantArithmetic(ISD::SREM
, VT
, N0C
, N1C
);
1453 // If we know the sign bits of both operands are zero, strength reduce to a
1454 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1455 if (!VT
.isVector()) {
1456 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
1457 return DAG
.getNode(ISD::UREM
, N
->getDebugLoc(), VT
, N0
, N1
);
1460 // If X/C can be simplified by the division-by-constant logic, lower
1461 // X%C to the equivalent of X-X/C*C.
1462 if (N1C
&& !N1C
->isNullValue()) {
1463 SDValue Div
= DAG
.getNode(ISD::SDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1464 AddToWorkList(Div
.getNode());
1465 SDValue OptimizedDiv
= combine(Div
.getNode());
1466 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1467 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1469 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1470 AddToWorkList(Mul
.getNode());
1476 if (N0
.getOpcode() == ISD::UNDEF
)
1477 return DAG
.getConstant(0, VT
);
1478 // X % undef -> undef
1479 if (N1
.getOpcode() == ISD::UNDEF
)
1485 SDValue
DAGCombiner::visitUREM(SDNode
*N
) {
1486 SDValue N0
= N
->getOperand(0);
1487 SDValue N1
= N
->getOperand(1);
1488 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1489 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1490 MVT VT
= N
->getValueType(0);
1492 // fold (urem c1, c2) -> c1%c2
1493 if (N0C
&& N1C
&& !N1C
->isNullValue())
1494 return DAG
.FoldConstantArithmetic(ISD::UREM
, VT
, N0C
, N1C
);
1495 // fold (urem x, pow2) -> (and x, pow2-1)
1496 if (N1C
&& !N1C
->isNullValue() && N1C
->getAPIntValue().isPowerOf2())
1497 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
,
1498 DAG
.getConstant(N1C
->getAPIntValue()-1,VT
));
1499 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1500 if (N1
.getOpcode() == ISD::SHL
) {
1501 if (ConstantSDNode
*SHC
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(0))) {
1502 if (SHC
->getAPIntValue().isPowerOf2()) {
1504 DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), VT
, N1
,
1505 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()),
1507 AddToWorkList(Add
.getNode());
1508 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, Add
);
1513 // If X/C can be simplified by the division-by-constant logic, lower
1514 // X%C to the equivalent of X-X/C*C.
1515 if (N1C
&& !N1C
->isNullValue()) {
1516 SDValue Div
= DAG
.getNode(ISD::UDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
1517 AddToWorkList(Div
.getNode());
1518 SDValue OptimizedDiv
= combine(Div
.getNode());
1519 if (OptimizedDiv
.getNode() && OptimizedDiv
.getNode() != Div
.getNode()) {
1520 SDValue Mul
= DAG
.getNode(ISD::MUL
, N
->getDebugLoc(), VT
,
1522 SDValue Sub
= DAG
.getNode(ISD::SUB
, N
->getDebugLoc(), VT
, N0
, Mul
);
1523 AddToWorkList(Mul
.getNode());
1529 if (N0
.getOpcode() == ISD::UNDEF
)
1530 return DAG
.getConstant(0, VT
);
1531 // X % undef -> undef
1532 if (N1
.getOpcode() == ISD::UNDEF
)
1538 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
1539 SDValue N0
= N
->getOperand(0);
1540 SDValue N1
= N
->getOperand(1);
1541 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1542 MVT VT
= N
->getValueType(0);
1544 // fold (mulhs x, 0) -> 0
1545 if (N1C
&& N1C
->isNullValue())
1547 // fold (mulhs x, 1) -> (sra x, size(x)-1)
1548 if (N1C
&& N1C
->getAPIntValue() == 1)
1549 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), N0
.getValueType(), N0
,
1550 DAG
.getConstant(N0
.getValueType().getSizeInBits() - 1,
1551 getShiftAmountTy()));
1552 // fold (mulhs x, undef) -> 0
1553 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1554 return DAG
.getConstant(0, VT
);
1559 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
1560 SDValue N0
= N
->getOperand(0);
1561 SDValue N1
= N
->getOperand(1);
1562 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1563 MVT VT
= N
->getValueType(0);
1565 // fold (mulhu x, 0) -> 0
1566 if (N1C
&& N1C
->isNullValue())
1568 // fold (mulhu x, 1) -> 0
1569 if (N1C
&& N1C
->getAPIntValue() == 1)
1570 return DAG
.getConstant(0, N0
.getValueType());
1571 // fold (mulhu x, undef) -> 0
1572 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1573 return DAG
.getConstant(0, VT
);
1578 /// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1579 /// compute two values. LoOp and HiOp give the opcodes for the two computations
1580 /// that are being performed. Return true if a simplification was made.
1582 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
1584 // If the high half is not needed, just compute the low half.
1585 bool HiExists
= N
->hasAnyUseOfValue(1);
1587 (!LegalOperations
||
1588 TLI
.isOperationLegal(LoOp
, N
->getValueType(0)))) {
1589 SDValue Res
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1590 N
->op_begin(), N
->getNumOperands());
1591 return CombineTo(N
, Res
, Res
);
1594 // If the low half is not needed, just compute the high half.
1595 bool LoExists
= N
->hasAnyUseOfValue(0);
1597 (!LegalOperations
||
1598 TLI
.isOperationLegal(HiOp
, N
->getValueType(1)))) {
1599 SDValue Res
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1600 N
->op_begin(), N
->getNumOperands());
1601 return CombineTo(N
, Res
, Res
);
1604 // If both halves are used, return as it is.
1605 if (LoExists
&& HiExists
)
1608 // If the two computed results can be simplified separately, separate them.
1610 SDValue Lo
= DAG
.getNode(LoOp
, N
->getDebugLoc(), N
->getValueType(0),
1611 N
->op_begin(), N
->getNumOperands());
1612 AddToWorkList(Lo
.getNode());
1613 SDValue LoOpt
= combine(Lo
.getNode());
1614 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
1615 (!LegalOperations
||
1616 TLI
.isOperationLegal(LoOpt
.getOpcode(), LoOpt
.getValueType())))
1617 return CombineTo(N
, LoOpt
, LoOpt
);
1621 SDValue Hi
= DAG
.getNode(HiOp
, N
->getDebugLoc(), N
->getValueType(1),
1622 N
->op_begin(), N
->getNumOperands());
1623 AddToWorkList(Hi
.getNode());
1624 SDValue HiOpt
= combine(Hi
.getNode());
1625 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
1626 (!LegalOperations
||
1627 TLI
.isOperationLegal(HiOpt
.getOpcode(), HiOpt
.getValueType())))
1628 return CombineTo(N
, HiOpt
, HiOpt
);
1634 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
1635 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
);
1636 if (Res
.getNode()) return Res
;
1641 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
1642 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
);
1643 if (Res
.getNode()) return Res
;
1648 SDValue
DAGCombiner::visitSDIVREM(SDNode
*N
) {
1649 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::SDIV
, ISD::SREM
);
1650 if (Res
.getNode()) return Res
;
1655 SDValue
DAGCombiner::visitUDIVREM(SDNode
*N
) {
1656 SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::UDIV
, ISD::UREM
);
1657 if (Res
.getNode()) return Res
;
1662 /// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1663 /// two operands of the same opcode, try to simplify it.
1664 SDValue
DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode
*N
) {
1665 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
1666 MVT VT
= N0
.getValueType();
1667 assert(N0
.getOpcode() == N1
.getOpcode() && "Bad input!");
1669 // For each of OP in AND/OR/XOR:
1670 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1671 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1672 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1673 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
1674 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
||
1675 N0
.getOpcode() == ISD::SIGN_EXTEND
||
1676 (N0
.getOpcode() == ISD::TRUNCATE
&&
1677 !TLI
.isTruncateFree(N0
.getOperand(0).getValueType(), VT
))) &&
1678 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()) {
1679 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1680 N0
.getOperand(0).getValueType(),
1681 N0
.getOperand(0), N1
.getOperand(0));
1682 AddToWorkList(ORNode
.getNode());
1683 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, ORNode
);
1686 // For each of OP in SHL/SRL/SRA/AND...
1687 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1688 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
1689 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1690 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
||
1691 N0
.getOpcode() == ISD::SRA
|| N0
.getOpcode() == ISD::AND
) &&
1692 N0
.getOperand(1) == N1
.getOperand(1)) {
1693 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), N0
.getDebugLoc(),
1694 N0
.getOperand(0).getValueType(),
1695 N0
.getOperand(0), N1
.getOperand(0));
1696 AddToWorkList(ORNode
.getNode());
1697 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
1698 ORNode
, N0
.getOperand(1));
1704 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
1705 SDValue N0
= N
->getOperand(0);
1706 SDValue N1
= N
->getOperand(1);
1707 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1708 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1709 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1710 MVT VT
= N1
.getValueType();
1711 unsigned BitWidth
= VT
.getSizeInBits();
1714 if (VT
.isVector()) {
1715 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1716 if (FoldedVOp
.getNode()) return FoldedVOp
;
1719 // fold (and x, undef) -> 0
1720 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1721 return DAG
.getConstant(0, VT
);
1722 // fold (and c1, c2) -> c1&c2
1724 return DAG
.FoldConstantArithmetic(ISD::AND
, VT
, N0C
, N1C
);
1725 // canonicalize constant to RHS
1727 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N1
, N0
);
1728 // fold (and x, -1) -> x
1729 if (N1C
&& N1C
->isAllOnesValue())
1731 // if (and x, c) is known to be zero, return 0
1732 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
1733 APInt::getAllOnesValue(BitWidth
)))
1734 return DAG
.getConstant(0, VT
);
1736 SDValue RAND
= ReassociateOps(ISD::AND
, N
->getDebugLoc(), N0
, N1
);
1737 if (RAND
.getNode() != 0)
1739 // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1740 if (N1C
&& N0
.getOpcode() == ISD::OR
)
1741 if (ConstantSDNode
*ORI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
1742 if ((ORI
->getAPIntValue() & N1C
->getAPIntValue()) == N1C
->getAPIntValue())
1744 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1745 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
1746 SDValue N0Op0
= N0
.getOperand(0);
1747 APInt Mask
= ~N1C
->getAPIntValue();
1748 Mask
.trunc(N0Op0
.getValueSizeInBits());
1749 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
1750 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(),
1751 N0
.getValueType(), N0Op0
);
1753 // Replace uses of the AND with uses of the Zero extend node.
1756 // We actually want to replace all uses of the any_extend with the
1757 // zero_extend, to avoid duplicating things. This will later cause this
1758 // AND to be folded.
1759 CombineTo(N0
.getNode(), Zext
);
1760 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1763 // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1764 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1765 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1766 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1768 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1769 LL
.getValueType().isInteger()) {
1770 // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
1771 if (cast
<ConstantSDNode
>(LR
)->isNullValue() && Op1
== ISD::SETEQ
) {
1772 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1773 LR
.getValueType(), LL
, RL
);
1774 AddToWorkList(ORNode
.getNode());
1775 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1777 // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
1778 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETEQ
) {
1779 SDValue ANDNode
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(),
1780 LR
.getValueType(), LL
, RL
);
1781 AddToWorkList(ANDNode
.getNode());
1782 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1784 // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
1785 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() && Op1
== ISD::SETGT
) {
1786 SDValue ORNode
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(),
1787 LR
.getValueType(), LL
, RL
);
1788 AddToWorkList(ORNode
.getNode());
1789 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1792 // canonicalize equivalent to ll == rl
1793 if (LL
== RR
&& LR
== RL
) {
1794 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1797 if (LL
== RL
&& LR
== RR
) {
1798 bool isInteger
= LL
.getValueType().isInteger();
1799 ISD::CondCode Result
= ISD::getSetCCAndOperation(Op0
, Op1
, isInteger
);
1800 if (Result
!= ISD::SETCC_INVALID
&&
1801 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
1802 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
1807 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
1808 if (N0
.getOpcode() == N1
.getOpcode()) {
1809 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
1810 if (Tmp
.getNode()) return Tmp
;
1813 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1814 // fold (and (sra)) -> (and (srl)) when possible.
1815 if (!VT
.isVector() &&
1816 SimplifyDemandedBits(SDValue(N
, 0)))
1817 return SDValue(N
, 0);
1818 // fold (zext_inreg (extload x)) -> (zextload x)
1819 if (ISD::isEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode())) {
1820 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1821 MVT EVT
= LN0
->getMemoryVT();
1822 // If we zero all the possible extended bits, then we can turn this into
1823 // a zextload if we are running before legalize or the operation is legal.
1824 unsigned BitWidth
= N1
.getValueSizeInBits();
1825 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1826 BitWidth
- EVT
.getSizeInBits())) &&
1827 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1828 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1829 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1830 LN0
->getChain(), LN0
->getBasePtr(),
1832 LN0
->getSrcValueOffset(), EVT
,
1833 LN0
->isVolatile(), LN0
->getAlignment());
1835 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1836 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1839 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1840 if (ISD::isSEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
1842 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1843 MVT EVT
= LN0
->getMemoryVT();
1844 // If we zero all the possible extended bits, then we can turn this into
1845 // a zextload if we are running before legalize or the operation is legal.
1846 unsigned BitWidth
= N1
.getValueSizeInBits();
1847 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
1848 BitWidth
- EVT
.getSizeInBits())) &&
1849 ((!LegalOperations
&& !LN0
->isVolatile()) ||
1850 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1851 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N0
.getDebugLoc(), VT
,
1853 LN0
->getBasePtr(), LN0
->getSrcValue(),
1854 LN0
->getSrcValueOffset(), EVT
,
1855 LN0
->isVolatile(), LN0
->getAlignment());
1857 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
1858 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1862 // fold (and (load x), 255) -> (zextload x, i8)
1863 // fold (and (extload x, i16), 255) -> (zextload x, i8)
1864 if (N1C
&& N0
.getOpcode() == ISD::LOAD
) {
1865 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
1866 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&&
1867 LN0
->isUnindexed() && N0
.hasOneUse() &&
1868 // Do not change the width of a volatile load.
1869 !LN0
->isVolatile()) {
1870 MVT EVT
= MVT::Other
;
1871 uint32_t ActiveBits
= N1C
->getAPIntValue().getActiveBits();
1872 if (ActiveBits
> 0 && APIntOps::isMask(ActiveBits
, N1C
->getAPIntValue()))
1873 EVT
= MVT::getIntegerVT(ActiveBits
);
1875 MVT LoadedVT
= LN0
->getMemoryVT();
1877 // Do not generate loads of non-round integer types since these can
1878 // be expensive (and would be wrong if the type is not byte sized).
1879 if (EVT
!= MVT::Other
&& LoadedVT
.bitsGT(EVT
) && EVT
.isRound() &&
1880 (!LegalOperations
|| TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
))) {
1881 MVT PtrType
= N0
.getOperand(1).getValueType();
1883 // For big endian targets, we need to add an offset to the pointer to
1884 // load the correct bytes. For little endian systems, we merely need to
1885 // read fewer bytes from the same pointer.
1886 unsigned LVTStoreBytes
= LoadedVT
.getStoreSizeInBits()/8;
1887 unsigned EVTStoreBytes
= EVT
.getStoreSizeInBits()/8;
1888 unsigned PtrOff
= LVTStoreBytes
- EVTStoreBytes
;
1889 unsigned Alignment
= LN0
->getAlignment();
1890 SDValue NewPtr
= LN0
->getBasePtr();
1892 if (TLI
.isBigEndian()) {
1893 NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(), PtrType
,
1894 NewPtr
, DAG
.getConstant(PtrOff
, PtrType
));
1895 Alignment
= MinAlign(Alignment
, PtrOff
);
1898 AddToWorkList(NewPtr
.getNode());
1900 DAG
.getExtLoad(ISD::ZEXTLOAD
, LN0
->getDebugLoc(), VT
, LN0
->getChain(),
1901 NewPtr
, LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
1902 EVT
, LN0
->isVolatile(), Alignment
);
1904 CombineTo(N0
.getNode(), Load
, Load
.getValue(1));
1905 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1913 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
1914 SDValue N0
= N
->getOperand(0);
1915 SDValue N1
= N
->getOperand(1);
1916 SDValue LL
, LR
, RL
, RR
, CC0
, CC1
;
1917 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1918 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1919 MVT VT
= N1
.getValueType();
1922 if (VT
.isVector()) {
1923 SDValue FoldedVOp
= SimplifyVBinOp(N
);
1924 if (FoldedVOp
.getNode()) return FoldedVOp
;
1927 // fold (or x, undef) -> -1
1928 if (N0
.getOpcode() == ISD::UNDEF
|| N1
.getOpcode() == ISD::UNDEF
)
1929 return DAG
.getConstant(~0ULL, VT
);
1930 // fold (or c1, c2) -> c1|c2
1932 return DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N0C
, N1C
);
1933 // canonicalize constant to RHS
1935 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N1
, N0
);
1936 // fold (or x, 0) -> x
1937 if (N1C
&& N1C
->isNullValue())
1939 // fold (or x, -1) -> -1
1940 if (N1C
&& N1C
->isAllOnesValue())
1942 // fold (or x, c) -> c iff (x & ~c) == 0
1943 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
1946 SDValue ROR
= ReassociateOps(ISD::OR
, N
->getDebugLoc(), N0
, N1
);
1947 if (ROR
.getNode() != 0)
1949 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1950 if (N1C
&& N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
1951 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1952 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N0
.getOperand(1));
1953 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
1954 DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
1955 N0
.getOperand(0), N1
),
1956 DAG
.FoldConstantArithmetic(ISD::OR
, VT
, N1C
, C1
));
1958 // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1959 if (isSetCCEquivalent(N0
, LL
, LR
, CC0
) && isSetCCEquivalent(N1
, RL
, RR
, CC1
)){
1960 ISD::CondCode Op0
= cast
<CondCodeSDNode
>(CC0
)->get();
1961 ISD::CondCode Op1
= cast
<CondCodeSDNode
>(CC1
)->get();
1963 if (LR
== RR
&& isa
<ConstantSDNode
>(LR
) && Op0
== Op1
&&
1964 LL
.getValueType().isInteger()) {
1965 // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
1966 // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
1967 if (cast
<ConstantSDNode
>(LR
)->isNullValue() &&
1968 (Op1
== ISD::SETNE
|| Op1
== ISD::SETLT
)) {
1969 SDValue ORNode
= DAG
.getNode(ISD::OR
, LR
.getDebugLoc(),
1970 LR
.getValueType(), LL
, RL
);
1971 AddToWorkList(ORNode
.getNode());
1972 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ORNode
, LR
, Op1
);
1974 // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
1975 // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
1976 if (cast
<ConstantSDNode
>(LR
)->isAllOnesValue() &&
1977 (Op1
== ISD::SETNE
|| Op1
== ISD::SETGT
)) {
1978 SDValue ANDNode
= DAG
.getNode(ISD::AND
, LR
.getDebugLoc(),
1979 LR
.getValueType(), LL
, RL
);
1980 AddToWorkList(ANDNode
.getNode());
1981 return DAG
.getSetCC(N
->getDebugLoc(), VT
, ANDNode
, LR
, Op1
);
1984 // canonicalize equivalent to ll == rl
1985 if (LL
== RR
&& LR
== RL
) {
1986 Op1
= ISD::getSetCCSwappedOperands(Op1
);
1989 if (LL
== RL
&& LR
== RR
) {
1990 bool isInteger
= LL
.getValueType().isInteger();
1991 ISD::CondCode Result
= ISD::getSetCCOrOperation(Op0
, Op1
, isInteger
);
1992 if (Result
!= ISD::SETCC_INVALID
&&
1993 (!LegalOperations
|| TLI
.isCondCodeLegal(Result
, LL
.getValueType())))
1994 return DAG
.getSetCC(N
->getDebugLoc(), N0
.getValueType(),
1999 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
2000 if (N0
.getOpcode() == N1
.getOpcode()) {
2001 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2002 if (Tmp
.getNode()) return Tmp
;
2005 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
2006 if (N0
.getOpcode() == ISD::AND
&&
2007 N1
.getOpcode() == ISD::AND
&&
2008 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
2009 N1
.getOperand(1).getOpcode() == ISD::Constant
&&
2010 // Don't increase # computations.
2011 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
2012 // We can only do this xform if we know that bits from X that are set in C2
2013 // but not in C1 are already zero. Likewise for Y.
2014 const APInt
&LHSMask
=
2015 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
2016 const APInt
&RHSMask
=
2017 cast
<ConstantSDNode
>(N1
.getOperand(1))->getAPIntValue();
2019 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
2020 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
2021 SDValue X
= DAG
.getNode(ISD::OR
, N0
.getDebugLoc(), VT
,
2022 N0
.getOperand(0), N1
.getOperand(0));
2023 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, X
,
2024 DAG
.getConstant(LHSMask
| RHSMask
, VT
));
2028 // See if this is some rotate idiom.
2029 if (SDNode
*Rot
= MatchRotate(N0
, N1
, N
->getDebugLoc()))
2030 return SDValue(Rot
, 0);
2035 /// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
2036 static bool MatchRotateHalf(SDValue Op
, SDValue
&Shift
, SDValue
&Mask
) {
2037 if (Op
.getOpcode() == ISD::AND
) {
2038 if (isa
<ConstantSDNode
>(Op
.getOperand(1))) {
2039 Mask
= Op
.getOperand(1);
2040 Op
= Op
.getOperand(0);
2046 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
2054 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
2055 // idioms for rotate, and if the target supports rotation instructions, generate
2057 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, DebugLoc DL
) {
2058 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
2059 MVT VT
= LHS
.getValueType();
2060 if (!TLI
.isTypeLegal(VT
)) return 0;
2062 // The target must have at least one rotate flavor.
2063 bool HasROTL
= TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
);
2064 bool HasROTR
= TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
);
2065 if (!HasROTL
&& !HasROTR
) return 0;
2067 // Match "(X shl/srl V1) & V2" where V2 may not be present.
2068 SDValue LHSShift
; // The shift.
2069 SDValue LHSMask
; // AND value if any.
2070 if (!MatchRotateHalf(LHS
, LHSShift
, LHSMask
))
2071 return 0; // Not part of a rotate.
2073 SDValue RHSShift
; // The shift.
2074 SDValue RHSMask
; // AND value if any.
2075 if (!MatchRotateHalf(RHS
, RHSShift
, RHSMask
))
2076 return 0; // Not part of a rotate.
2078 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
2079 return 0; // Not shifting the same value.
2081 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
2082 return 0; // Shifts must disagree.
2084 // Canonicalize shl to left side in a shl/srl pair.
2085 if (RHSShift
.getOpcode() == ISD::SHL
) {
2086 std::swap(LHS
, RHS
);
2087 std::swap(LHSShift
, RHSShift
);
2088 std::swap(LHSMask
, RHSMask
);
2091 unsigned OpSizeInBits
= VT
.getSizeInBits();
2092 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
2093 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
2094 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
2096 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
2097 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2098 if (LHSShiftAmt
.getOpcode() == ISD::Constant
&&
2099 RHSShiftAmt
.getOpcode() == ISD::Constant
) {
2100 uint64_t LShVal
= cast
<ConstantSDNode
>(LHSShiftAmt
)->getZExtValue();
2101 uint64_t RShVal
= cast
<ConstantSDNode
>(RHSShiftAmt
)->getZExtValue();
2102 if ((LShVal
+ RShVal
) != OpSizeInBits
)
2107 Rot
= DAG
.getNode(ISD::ROTL
, DL
, VT
, LHSShiftArg
, LHSShiftAmt
);
2109 Rot
= DAG
.getNode(ISD::ROTR
, DL
, VT
, LHSShiftArg
, RHSShiftAmt
);
2111 // If there is an AND of either shifted operand, apply it to the result.
2112 if (LHSMask
.getNode() || RHSMask
.getNode()) {
2113 APInt Mask
= APInt::getAllOnesValue(OpSizeInBits
);
2115 if (LHSMask
.getNode()) {
2116 APInt RHSBits
= APInt::getLowBitsSet(OpSizeInBits
, LShVal
);
2117 Mask
&= cast
<ConstantSDNode
>(LHSMask
)->getAPIntValue() | RHSBits
;
2119 if (RHSMask
.getNode()) {
2120 APInt LHSBits
= APInt::getHighBitsSet(OpSizeInBits
, RShVal
);
2121 Mask
&= cast
<ConstantSDNode
>(RHSMask
)->getAPIntValue() | LHSBits
;
2124 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, DAG
.getConstant(Mask
, VT
));
2127 return Rot
.getNode();
2130 // If there is a mask here, and we have a variable shift, we can't be sure
2131 // that we're masking out the right stuff.
2132 if (LHSMask
.getNode() || RHSMask
.getNode())
2135 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2136 // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2137 if (RHSShiftAmt
.getOpcode() == ISD::SUB
&&
2138 LHSShiftAmt
== RHSShiftAmt
.getOperand(1)) {
2139 if (ConstantSDNode
*SUBC
=
2140 dyn_cast
<ConstantSDNode
>(RHSShiftAmt
.getOperand(0))) {
2141 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2143 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2144 LHSShiftArg
, LHSShiftAmt
).getNode();
2146 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2147 LHSShiftArg
, RHSShiftAmt
).getNode();
2152 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2153 // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2154 if (LHSShiftAmt
.getOpcode() == ISD::SUB
&&
2155 RHSShiftAmt
== LHSShiftAmt
.getOperand(1)) {
2156 if (ConstantSDNode
*SUBC
=
2157 dyn_cast
<ConstantSDNode
>(LHSShiftAmt
.getOperand(0))) {
2158 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2160 return DAG
.getNode(ISD::ROTR
, DL
, VT
,
2161 LHSShiftArg
, RHSShiftAmt
).getNode();
2163 return DAG
.getNode(ISD::ROTL
, DL
, VT
,
2164 LHSShiftArg
, LHSShiftAmt
).getNode();
2169 // Look for sign/zext/any-extended or truncate cases:
2170 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2171 || LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2172 || LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2173 || LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
2174 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
2175 || RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
2176 || RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
2177 || RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
2178 SDValue LExtOp0
= LHSShiftAmt
.getOperand(0);
2179 SDValue RExtOp0
= RHSShiftAmt
.getOperand(0);
2180 if (RExtOp0
.getOpcode() == ISD::SUB
&&
2181 RExtOp0
.getOperand(1) == LExtOp0
) {
2182 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2184 // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2185 // (rotr x, (sub 32, y))
2186 if (ConstantSDNode
*SUBC
=
2187 dyn_cast
<ConstantSDNode
>(RExtOp0
.getOperand(0))) {
2188 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2189 return DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
2191 HasROTL
? LHSShiftAmt
: RHSShiftAmt
).getNode();
2194 } else if (LExtOp0
.getOpcode() == ISD::SUB
&&
2195 RExtOp0
== LExtOp0
.getOperand(1)) {
2196 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2198 // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
2199 // (rotl x, (sub 32, y))
2200 if (ConstantSDNode
*SUBC
=
2201 dyn_cast
<ConstantSDNode
>(LExtOp0
.getOperand(0))) {
2202 if (SUBC
->getAPIntValue() == OpSizeInBits
) {
2203 return DAG
.getNode(HasROTR
? ISD::ROTR
: ISD::ROTL
, DL
, VT
,
2205 HasROTR
? RHSShiftAmt
: LHSShiftAmt
).getNode();
2214 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
2215 SDValue N0
= N
->getOperand(0);
2216 SDValue N1
= N
->getOperand(1);
2217 SDValue LHS
, RHS
, CC
;
2218 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2219 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2220 MVT VT
= N0
.getValueType();
2223 if (VT
.isVector()) {
2224 SDValue FoldedVOp
= SimplifyVBinOp(N
);
2225 if (FoldedVOp
.getNode()) return FoldedVOp
;
2228 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2229 if (N0
.getOpcode() == ISD::UNDEF
&& N1
.getOpcode() == ISD::UNDEF
)
2230 return DAG
.getConstant(0, VT
);
2231 // fold (xor x, undef) -> undef
2232 if (N0
.getOpcode() == ISD::UNDEF
)
2234 if (N1
.getOpcode() == ISD::UNDEF
)
2236 // fold (xor c1, c2) -> c1^c2
2238 return DAG
.FoldConstantArithmetic(ISD::XOR
, VT
, N0C
, N1C
);
2239 // canonicalize constant to RHS
2241 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N1
, N0
);
2242 // fold (xor x, 0) -> x
2243 if (N1C
&& N1C
->isNullValue())
2246 SDValue RXOR
= ReassociateOps(ISD::XOR
, N
->getDebugLoc(), N0
, N1
);
2247 if (RXOR
.getNode() != 0)
2250 // fold !(x cc y) -> (x !cc y)
2251 if (N1C
&& N1C
->getAPIntValue() == 1 && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
2252 bool isInt
= LHS
.getValueType().isInteger();
2253 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
2256 if (!LegalOperations
|| TLI
.isCondCodeLegal(NotCC
, LHS
.getValueType())) {
2257 switch (N0
.getOpcode()) {
2259 assert(0 && "Unhandled SetCC Equivalent!");
2262 return DAG
.getSetCC(N
->getDebugLoc(), VT
, LHS
, RHS
, NotCC
);
2263 case ISD::SELECT_CC
:
2264 return DAG
.getSelectCC(N
->getDebugLoc(), LHS
, RHS
, N0
.getOperand(2),
2265 N0
.getOperand(3), NotCC
);
2270 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2271 if (N1C
&& N1C
->getAPIntValue() == 1 && N0
.getOpcode() == ISD::ZERO_EXTEND
&&
2272 N0
.getNode()->hasOneUse() &&
2273 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
2274 SDValue V
= N0
.getOperand(0);
2275 V
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), V
.getValueType(), V
,
2276 DAG
.getConstant(1, V
.getValueType()));
2277 AddToWorkList(V
.getNode());
2278 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, V
);
2281 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
2282 if (N1C
&& N1C
->getAPIntValue() == 1 && VT
== MVT::i1
&&
2283 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2284 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2285 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
2286 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2287 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2288 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2289 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2290 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2293 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
2294 if (N1C
&& N1C
->isAllOnesValue() &&
2295 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
2296 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
2297 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
2298 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
2299 LHS
= DAG
.getNode(ISD::XOR
, LHS
.getDebugLoc(), VT
, LHS
, N1
); // LHS = ~LHS
2300 RHS
= DAG
.getNode(ISD::XOR
, RHS
.getDebugLoc(), VT
, RHS
, N1
); // RHS = ~RHS
2301 AddToWorkList(LHS
.getNode()); AddToWorkList(RHS
.getNode());
2302 return DAG
.getNode(NewOpcode
, N
->getDebugLoc(), VT
, LHS
, RHS
);
2305 // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
2306 if (N1C
&& N0
.getOpcode() == ISD::XOR
) {
2307 ConstantSDNode
*N00C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0));
2308 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2310 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(1),
2311 DAG
.getConstant(N1C
->getAPIntValue() ^
2312 N00C
->getAPIntValue(), VT
));
2314 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2315 DAG
.getConstant(N1C
->getAPIntValue() ^
2316 N01C
->getAPIntValue(), VT
));
2318 // fold (xor x, x) -> 0
2320 if (!VT
.isVector()) {
2321 return DAG
.getConstant(0, VT
);
2322 } else if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)){
2323 // Produce a vector of zeros.
2324 SDValue El
= DAG
.getConstant(0, VT
.getVectorElementType());
2325 std::vector
<SDValue
> Ops(VT
.getVectorNumElements(), El
);
2326 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
2327 &Ops
[0], Ops
.size());
2331 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
2332 if (N0
.getOpcode() == N1
.getOpcode()) {
2333 SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
);
2334 if (Tmp
.getNode()) return Tmp
;
2337 // Simplify the expression using non-local knowledge.
2338 if (!VT
.isVector() &&
2339 SimplifyDemandedBits(SDValue(N
, 0)))
2340 return SDValue(N
, 0);
2345 /// visitShiftByConstant - Handle transforms common to the three shifts, when
2346 /// the shift amount is a constant.
2347 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
, unsigned Amt
) {
2348 SDNode
*LHS
= N
->getOperand(0).getNode();
2349 if (!LHS
->hasOneUse()) return SDValue();
2351 // We want to pull some binops through shifts, so that we have (and (shift))
2352 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
2353 // thing happens with address calculations, so it's important to canonicalize
2355 bool HighBitSet
= false; // Can we transform this if the high bit is set?
2357 switch (LHS
->getOpcode()) {
2358 default: return SDValue();
2361 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2364 HighBitSet
= true; // We can only transform sra if the high bit is set.
2367 if (N
->getOpcode() != ISD::SHL
)
2368 return SDValue(); // only shl(add) not sr[al](add).
2369 HighBitSet
= false; // We can only transform sra if the high bit is clear.
2373 // We require the RHS of the binop to be a constant as well.
2374 ConstantSDNode
*BinOpCst
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
2375 if (!BinOpCst
) return SDValue();
2377 // FIXME: disable this unless the input to the binop is a shift by a constant.
2378 // If it is not a shift, it pessimizes some common cases like:
2380 // void foo(int *X, int i) { X[i & 1235] = 1; }
2381 // int bar(int *X, int i) { return X[i & 255]; }
2382 SDNode
*BinOpLHSVal
= LHS
->getOperand(0).getNode();
2383 if ((BinOpLHSVal
->getOpcode() != ISD::SHL
&&
2384 BinOpLHSVal
->getOpcode() != ISD::SRA
&&
2385 BinOpLHSVal
->getOpcode() != ISD::SRL
) ||
2386 !isa
<ConstantSDNode
>(BinOpLHSVal
->getOperand(1)))
2389 MVT VT
= N
->getValueType(0);
2391 // If this is a signed shift right, and the high bit is modified by the
2392 // logical operation, do not perform the transformation. The highBitSet
2393 // boolean indicates the value of the high bit of the constant which would
2394 // cause it to be modified for this operation.
2395 if (N
->getOpcode() == ISD::SRA
) {
2396 bool BinOpRHSSignSet
= BinOpCst
->getAPIntValue().isNegative();
2397 if (BinOpRHSSignSet
!= HighBitSet
)
2401 // Fold the constants, shifting the binop RHS by the shift amount.
2402 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(1).getDebugLoc(),
2404 LHS
->getOperand(1), N
->getOperand(1));
2406 // Create the new shift.
2407 SDValue NewShift
= DAG
.getNode(N
->getOpcode(), LHS
->getOperand(0).getDebugLoc(),
2408 VT
, LHS
->getOperand(0), N
->getOperand(1));
2410 // Create the new binop.
2411 return DAG
.getNode(LHS
->getOpcode(), N
->getDebugLoc(), VT
, NewShift
, NewRHS
);
2414 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
2415 SDValue N0
= N
->getOperand(0);
2416 SDValue N1
= N
->getOperand(1);
2417 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2418 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2419 MVT VT
= N0
.getValueType();
2420 unsigned OpSizeInBits
= VT
.getSizeInBits();
2422 // fold (shl c1, c2) -> c1<<c2
2424 return DAG
.FoldConstantArithmetic(ISD::SHL
, VT
, N0C
, N1C
);
2425 // fold (shl 0, x) -> 0
2426 if (N0C
&& N0C
->isNullValue())
2428 // fold (shl x, c >= size(x)) -> undef
2429 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2430 return DAG
.getUNDEF(VT
);
2431 // fold (shl x, 0) -> x
2432 if (N1C
&& N1C
->isNullValue())
2434 // if (shl x, c) is known to be zero, return 0
2435 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
2436 APInt::getAllOnesValue(VT
.getSizeInBits())))
2437 return DAG
.getConstant(0, VT
);
2438 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
2439 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2440 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2441 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2442 SDValue N101
= N1
.getOperand(0).getOperand(1);
2443 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2444 MVT TruncVT
= N1
.getValueType();
2445 SDValue N100
= N1
.getOperand(0).getOperand(0);
2446 APInt TruncC
= N101C
->getAPIntValue();
2447 TruncC
.trunc(TruncVT
.getSizeInBits());
2448 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
,
2449 DAG
.getNode(ISD::AND
, N
->getDebugLoc(), TruncVT
,
2450 DAG
.getNode(ISD::TRUNCATE
,
2453 DAG
.getConstant(TruncC
, TruncVT
)));
2457 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2458 return SDValue(N
, 0);
2460 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
2461 if (N1C
&& N0
.getOpcode() == ISD::SHL
&&
2462 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2463 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2464 uint64_t c2
= N1C
->getZExtValue();
2465 if (c1
+ c2
> OpSizeInBits
)
2466 return DAG
.getConstant(0, VT
);
2467 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2468 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2470 // fold (shl (srl x, c1), c2) -> (shl (and x, (shl -1, c1)), (sub c2, c1)) or
2471 // (srl (and x, (shl -1, c1)), (sub c1, c2))
2472 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2473 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2474 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2475 uint64_t c2
= N1C
->getZExtValue();
2476 SDValue Mask
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), VT
, N0
.getOperand(0),
2477 DAG
.getConstant(~0ULL << c1
, VT
));
2479 return DAG
.getNode(ISD::SHL
, N
->getDebugLoc(), VT
, Mask
,
2480 DAG
.getConstant(c2
-c1
, N1
.getValueType()));
2482 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, Mask
,
2483 DAG
.getConstant(c1
-c2
, N1
.getValueType()));
2485 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
2486 if (N1C
&& N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1))
2487 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2488 DAG
.getConstant(~0ULL << N1C
->getZExtValue(), VT
));
2490 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2493 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
2494 SDValue N0
= N
->getOperand(0);
2495 SDValue N1
= N
->getOperand(1);
2496 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2497 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2498 MVT VT
= N0
.getValueType();
2500 // fold (sra c1, c2) -> (sra c1, c2)
2502 return DAG
.FoldConstantArithmetic(ISD::SRA
, VT
, N0C
, N1C
);
2503 // fold (sra 0, x) -> 0
2504 if (N0C
&& N0C
->isNullValue())
2506 // fold (sra -1, x) -> -1
2507 if (N0C
&& N0C
->isAllOnesValue())
2509 // fold (sra x, (setge c, size(x))) -> undef
2510 if (N1C
&& N1C
->getZExtValue() >= VT
.getSizeInBits())
2511 return DAG
.getUNDEF(VT
);
2512 // fold (sra x, 0) -> x
2513 if (N1C
&& N1C
->isNullValue())
2515 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2517 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
2518 unsigned LowBits
= VT
.getSizeInBits() - (unsigned)N1C
->getZExtValue();
2519 MVT EVT
= MVT::getIntegerVT(LowBits
);
2520 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, EVT
)))
2521 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
2522 N0
.getOperand(0), DAG
.getValueType(EVT
));
2525 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
2526 if (N1C
&& N0
.getOpcode() == ISD::SRA
) {
2527 if (ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2528 unsigned Sum
= N1C
->getZExtValue() + C1
->getZExtValue();
2529 if (Sum
>= VT
.getSizeInBits()) Sum
= VT
.getSizeInBits()-1;
2530 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2531 DAG
.getConstant(Sum
, N1C
->getValueType(0)));
2535 // fold (sra (shl X, m), (sub result_size, n))
2536 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
2537 // result_size - n != m.
2538 // If truncate is free for the target sext(shl) is likely to result in better
2540 if (N0
.getOpcode() == ISD::SHL
) {
2541 // Get the two constanst of the shifts, CN0 = m, CN = n.
2542 const ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
2544 // Determine what the truncate's result bitsize and type would be.
2545 unsigned VTValSize
= VT
.getSizeInBits();
2547 MVT::getIntegerVT(VTValSize
- N1C
->getZExtValue());
2548 // Determine the residual right-shift amount.
2549 unsigned ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
2551 // If the shift is not a no-op (in which case this should be just a sign
2552 // extend already), the truncated to type is legal, sign_extend is legal
2553 // on that type, and the the truncate to that type is both legal and free,
2554 // perform the transform.
2556 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
2557 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
2558 TLI
.isTruncateFree(VT
, TruncVT
)) {
2560 SDValue Amt
= DAG
.getConstant(ShiftAmt
, getShiftAmountTy());
2561 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
,
2562 N0
.getOperand(0), Amt
);
2563 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), TruncVT
,
2565 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(),
2566 N
->getValueType(0), Trunc
);
2571 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
2572 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2573 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2574 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2575 SDValue N101
= N1
.getOperand(0).getOperand(1);
2576 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2577 MVT TruncVT
= N1
.getValueType();
2578 SDValue N100
= N1
.getOperand(0).getOperand(0);
2579 APInt TruncC
= N101C
->getAPIntValue();
2580 TruncC
.trunc(TruncVT
.getSizeInBits());
2581 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
, N0
,
2582 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2584 DAG
.getNode(ISD::TRUNCATE
,
2587 DAG
.getConstant(TruncC
, TruncVT
)));
2591 // Simplify, based on bits shifted out of the LHS.
2592 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2593 return SDValue(N
, 0);
2596 // If the sign bit is known to be zero, switch this to a SRL.
2597 if (DAG
.SignBitIsZero(N0
))
2598 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
, N1
);
2600 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2603 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
2604 SDValue N0
= N
->getOperand(0);
2605 SDValue N1
= N
->getOperand(1);
2606 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2607 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2608 MVT VT
= N0
.getValueType();
2609 unsigned OpSizeInBits
= VT
.getSizeInBits();
2611 // fold (srl c1, c2) -> c1 >>u c2
2613 return DAG
.FoldConstantArithmetic(ISD::SRL
, VT
, N0C
, N1C
);
2614 // fold (srl 0, x) -> 0
2615 if (N0C
&& N0C
->isNullValue())
2617 // fold (srl x, c >= size(x)) -> undef
2618 if (N1C
&& N1C
->getZExtValue() >= OpSizeInBits
)
2619 return DAG
.getUNDEF(VT
);
2620 // fold (srl x, 0) -> x
2621 if (N1C
&& N1C
->isNullValue())
2623 // if (srl x, c) is known to be zero, return 0
2624 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
2625 APInt::getAllOnesValue(OpSizeInBits
)))
2626 return DAG
.getConstant(0, VT
);
2628 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
2629 if (N1C
&& N0
.getOpcode() == ISD::SRL
&&
2630 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2631 uint64_t c1
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
2632 uint64_t c2
= N1C
->getZExtValue();
2633 if (c1
+ c2
> OpSizeInBits
)
2634 return DAG
.getConstant(0, VT
);
2635 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
2636 DAG
.getConstant(c1
+ c2
, N1
.getValueType()));
2639 // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2640 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
2641 // Shifting in all undef bits?
2642 MVT SmallVT
= N0
.getOperand(0).getValueType();
2643 if (N1C
->getZExtValue() >= SmallVT
.getSizeInBits())
2644 return DAG
.getUNDEF(VT
);
2646 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), SmallVT
,
2647 N0
.getOperand(0), N1
);
2648 AddToWorkList(SmallShift
.getNode());
2649 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, SmallShift
);
2652 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
2653 // bit, which is unmodified by sra.
2654 if (N1C
&& N1C
->getZExtValue() + 1 == VT
.getSizeInBits()) {
2655 if (N0
.getOpcode() == ISD::SRA
)
2656 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
.getOperand(0), N1
);
2659 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
2660 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
2661 N1C
->getAPIntValue() == Log2_32(VT
.getSizeInBits())) {
2662 APInt KnownZero
, KnownOne
;
2663 APInt Mask
= APInt::getAllOnesValue(VT
.getSizeInBits());
2664 DAG
.ComputeMaskedBits(N0
.getOperand(0), Mask
, KnownZero
, KnownOne
);
2666 // If any of the input bits are KnownOne, then the input couldn't be all
2667 // zeros, thus the result of the srl will always be zero.
2668 if (KnownOne
.getBoolValue()) return DAG
.getConstant(0, VT
);
2670 // If all of the bits input the to ctlz node are known to be zero, then
2671 // the result of the ctlz is "32" and the result of the shift is one.
2672 APInt UnknownBits
= ~KnownZero
& Mask
;
2673 if (UnknownBits
== 0) return DAG
.getConstant(1, VT
);
2675 // Otherwise, check to see if there is exactly one bit input to the ctlz.
2676 if ((UnknownBits
& (UnknownBits
- 1)) == 0) {
2677 // Okay, we know that only that the single bit specified by UnknownBits
2678 // could be set on input to the CTLZ node. If this bit is set, the SRL
2679 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
2680 // to an SRL/XOR pair, which is likely to simplify more.
2681 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
2682 SDValue Op
= N0
.getOperand(0);
2685 Op
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), VT
, Op
,
2686 DAG
.getConstant(ShAmt
, getShiftAmountTy()));
2687 AddToWorkList(Op
.getNode());
2690 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
2691 Op
, DAG
.getConstant(1, VT
));
2695 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
2696 if (N1
.getOpcode() == ISD::TRUNCATE
&&
2697 N1
.getOperand(0).getOpcode() == ISD::AND
&&
2698 N1
.hasOneUse() && N1
.getOperand(0).hasOneUse()) {
2699 SDValue N101
= N1
.getOperand(0).getOperand(1);
2700 if (ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N101
)) {
2701 MVT TruncVT
= N1
.getValueType();
2702 SDValue N100
= N1
.getOperand(0).getOperand(0);
2703 APInt TruncC
= N101C
->getAPIntValue();
2704 TruncC
.trunc(TruncVT
.getSizeInBits());
2705 return DAG
.getNode(ISD::SRL
, N
->getDebugLoc(), VT
, N0
,
2706 DAG
.getNode(ISD::AND
, N
->getDebugLoc(),
2708 DAG
.getNode(ISD::TRUNCATE
,
2711 DAG
.getConstant(TruncC
, TruncVT
)));
2715 // fold operands of srl based on knowledge that the low bits are not
2717 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
2718 return SDValue(N
, 0);
2720 return N1C
? visitShiftByConstant(N
, N1C
->getZExtValue()) : SDValue();
2723 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
2724 SDValue N0
= N
->getOperand(0);
2725 MVT VT
= N
->getValueType(0);
2727 // fold (ctlz c1) -> c2
2728 if (isa
<ConstantSDNode
>(N0
))
2729 return DAG
.getNode(ISD::CTLZ
, N
->getDebugLoc(), VT
, N0
);
2733 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
2734 SDValue N0
= N
->getOperand(0);
2735 MVT VT
= N
->getValueType(0);
2737 // fold (cttz c1) -> c2
2738 if (isa
<ConstantSDNode
>(N0
))
2739 return DAG
.getNode(ISD::CTTZ
, N
->getDebugLoc(), VT
, N0
);
2743 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
2744 SDValue N0
= N
->getOperand(0);
2745 MVT VT
= N
->getValueType(0);
2747 // fold (ctpop c1) -> c2
2748 if (isa
<ConstantSDNode
>(N0
))
2749 return DAG
.getNode(ISD::CTPOP
, N
->getDebugLoc(), VT
, N0
);
2753 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
2754 SDValue N0
= N
->getOperand(0);
2755 SDValue N1
= N
->getOperand(1);
2756 SDValue N2
= N
->getOperand(2);
2757 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2758 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2759 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2760 MVT VT
= N
->getValueType(0);
2761 MVT VT0
= N0
.getValueType();
2763 // fold (select C, X, X) -> X
2766 // fold (select true, X, Y) -> X
2767 if (N0C
&& !N0C
->isNullValue())
2769 // fold (select false, X, Y) -> Y
2770 if (N0C
&& N0C
->isNullValue())
2772 // fold (select C, 1, X) -> (or C, X)
2773 if (VT
== MVT::i1
&& N1C
&& N1C
->getAPIntValue() == 1)
2774 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2775 // fold (select C, 0, 1) -> (xor C, 1)
2776 if (VT
.isInteger() &&
2779 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
)) &&
2780 N1C
&& N2C
&& N1C
->isNullValue() && N2C
->getAPIntValue() == 1) {
2783 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT0
,
2784 N0
, DAG
.getConstant(1, VT0
));
2785 XORNode
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), VT0
,
2786 N0
, DAG
.getConstant(1, VT0
));
2787 AddToWorkList(XORNode
.getNode());
2789 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, XORNode
);
2790 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, XORNode
);
2792 // fold (select C, 0, X) -> (and (not C), X)
2793 if (VT
== VT0
&& VT
== MVT::i1
&& N1C
&& N1C
->isNullValue()) {
2794 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2795 AddToWorkList(NOTNode
.getNode());
2796 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, NOTNode
, N2
);
2798 // fold (select C, X, 1) -> (or (not C), X)
2799 if (VT
== VT0
&& VT
== MVT::i1
&& N2C
&& N2C
->getAPIntValue() == 1) {
2800 SDValue NOTNode
= DAG
.getNOT(N0
.getDebugLoc(), N0
, VT
);
2801 AddToWorkList(NOTNode
.getNode());
2802 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, NOTNode
, N1
);
2804 // fold (select C, X, 0) -> (and C, X)
2805 if (VT
== MVT::i1
&& N2C
&& N2C
->isNullValue())
2806 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2807 // fold (select X, X, Y) -> (or X, Y)
2808 // fold (select X, 1, Y) -> (or X, Y)
2809 if (VT
== MVT::i1
&& (N0
== N1
|| (N1C
&& N1C
->getAPIntValue() == 1)))
2810 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, N0
, N2
);
2811 // fold (select X, Y, X) -> (and X, Y)
2812 // fold (select X, Y, 0) -> (and X, Y)
2813 if (VT
== MVT::i1
&& (N0
== N2
|| (N2C
&& N2C
->getAPIntValue() == 0)))
2814 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
, N0
, N1
);
2816 // If we can fold this based on the true/false value, do so.
2817 if (SimplifySelectOps(N
, N1
, N2
))
2818 return SDValue(N
, 0); // Don't revisit N.
2820 // fold selects based on a setcc into other things, such as min/max/abs
2821 if (N0
.getOpcode() == ISD::SETCC
) {
2823 // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2824 // having to say they don't support SELECT_CC on every type the DAG knows
2825 // about, since there is no way to mark an opcode illegal at all value types
2826 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, MVT::Other
))
2827 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), VT
,
2828 N0
.getOperand(0), N0
.getOperand(1),
2829 N1
, N2
, N0
.getOperand(2));
2830 return SimplifySelect(N
->getDebugLoc(), N0
, N1
, N2
);
2836 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
2837 SDValue N0
= N
->getOperand(0);
2838 SDValue N1
= N
->getOperand(1);
2839 SDValue N2
= N
->getOperand(2);
2840 SDValue N3
= N
->getOperand(3);
2841 SDValue N4
= N
->getOperand(4);
2842 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
2844 // fold select_cc lhs, rhs, x, x, cc -> x
2848 // Determine if the condition we're dealing with is constant
2849 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
2850 N0
, N1
, CC
, N
->getDebugLoc(), false);
2851 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
2853 if (ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode())) {
2854 if (!SCCC
->isNullValue())
2855 return N2
; // cond always true -> true val
2857 return N3
; // cond always false -> false val
2860 // Fold to a simpler select_cc
2861 if (SCC
.getNode() && SCC
.getOpcode() == ISD::SETCC
)
2862 return DAG
.getNode(ISD::SELECT_CC
, N
->getDebugLoc(), N2
.getValueType(),
2863 SCC
.getOperand(0), SCC
.getOperand(1), N2
, N3
,
2866 // If we can fold this based on the true/false value, do so.
2867 if (SimplifySelectOps(N
, N2
, N3
))
2868 return SDValue(N
, 0); // Don't revisit N.
2870 // fold select_cc into other things, such as min/max/abs
2871 return SimplifySelectCC(N
->getDebugLoc(), N0
, N1
, N2
, N3
, CC
);
2874 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
2875 return SimplifySetCC(N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
2876 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(),
2880 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2881 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
2882 // transformation. Returns true if extension are possible and the above
2883 // mentioned transformation is profitable.
2884 static bool ExtendUsesToFormExtLoad(SDNode
*N
, SDValue N0
,
2886 SmallVector
<SDNode
*, 4> &ExtendNodes
,
2887 const TargetLowering
&TLI
) {
2888 bool HasCopyToRegUses
= false;
2889 bool isTruncFree
= TLI
.isTruncateFree(N
->getValueType(0), N0
.getValueType());
2890 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
2891 UE
= N0
.getNode()->use_end();
2896 if (UI
.getUse().getResNo() != N0
.getResNo())
2898 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2899 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
2900 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
2901 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
2902 // Sign bits will be lost after a zext.
2905 for (unsigned i
= 0; i
!= 2; ++i
) {
2906 SDValue UseOp
= User
->getOperand(i
);
2909 if (!isa
<ConstantSDNode
>(UseOp
))
2914 ExtendNodes
.push_back(User
);
2917 // If truncates aren't free and there are users we can't
2918 // extend, it isn't worthwhile.
2921 // Remember if this value is live-out.
2922 if (User
->getOpcode() == ISD::CopyToReg
)
2923 HasCopyToRegUses
= true;
2926 if (HasCopyToRegUses
) {
2927 bool BothLiveOut
= false;
2928 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
2930 SDUse
&Use
= UI
.getUse();
2931 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
2937 // Both unextended and extended values are live out. There had better be
2938 // good a reason for the transformation.
2939 return ExtendNodes
.size();
2944 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
2945 SDValue N0
= N
->getOperand(0);
2946 MVT VT
= N
->getValueType(0);
2948 // fold (sext c1) -> c1
2949 if (isa
<ConstantSDNode
>(N0
))
2950 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N0
);
2952 // fold (sext (sext x)) -> (sext x)
2953 // fold (sext (aext x)) -> (sext x)
2954 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
2955 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
,
2958 if (N0
.getOpcode() == ISD::TRUNCATE
) {
2959 // fold (sext (truncate (load x))) -> (sext (smaller load x))
2960 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2961 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
2962 if (NarrowLoad
.getNode()) {
2963 if (NarrowLoad
.getNode() != N0
.getNode())
2964 CombineTo(N0
.getNode(), NarrowLoad
);
2965 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
2968 // See if the value being truncated is already sign extended. If so, just
2969 // eliminate the trunc/sext pair.
2970 SDValue Op
= N0
.getOperand(0);
2971 unsigned OpBits
= Op
.getValueType().getSizeInBits();
2972 unsigned MidBits
= N0
.getValueType().getSizeInBits();
2973 unsigned DestBits
= VT
.getSizeInBits();
2974 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
2976 if (OpBits
== DestBits
) {
2977 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
2978 // bits, it is already ready.
2979 if (NumSignBits
> DestBits
-MidBits
)
2981 } else if (OpBits
< DestBits
) {
2982 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
2983 // bits, just sext from i32.
2984 if (NumSignBits
> OpBits
-MidBits
)
2985 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, Op
);
2987 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
2988 // bits, just truncate to i32.
2989 if (NumSignBits
> OpBits
-MidBits
)
2990 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
2993 // fold (sext (truncate x)) -> (sextinreg x).
2994 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
2995 N0
.getValueType())) {
2996 if (Op
.getValueType().bitsLT(VT
))
2997 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N0
.getDebugLoc(), VT
, Op
);
2998 else if (Op
.getValueType().bitsGT(VT
))
2999 Op
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), VT
, Op
);
3000 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, Op
,
3001 DAG
.getValueType(N0
.getValueType()));
3005 // fold (sext (load x)) -> (sext (truncate (sextload x)))
3006 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3007 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3008 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, N0
.getValueType()))) {
3009 bool DoXform
= true;
3010 SmallVector
<SDNode
*, 4> SetCCs
;
3011 if (!N0
.hasOneUse())
3012 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::SIGN_EXTEND
, SetCCs
, TLI
);
3014 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3015 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3017 LN0
->getBasePtr(), LN0
->getSrcValue(),
3018 LN0
->getSrcValueOffset(),
3020 LN0
->isVolatile(), LN0
->getAlignment());
3021 CombineTo(N
, ExtLoad
);
3022 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3023 N0
.getValueType(), ExtLoad
);
3024 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3026 // Extend SetCC uses if necessary.
3027 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3028 SDNode
*SetCC
= SetCCs
[i
];
3029 SmallVector
<SDValue
, 4> Ops
;
3031 for (unsigned j
= 0; j
!= 2; ++j
) {
3032 SDValue SOp
= SetCC
->getOperand(j
);
3034 Ops
.push_back(ExtLoad
);
3036 Ops
.push_back(DAG
.getNode(ISD::SIGN_EXTEND
,
3037 N
->getDebugLoc(), VT
, SOp
));
3040 Ops
.push_back(SetCC
->getOperand(2));
3041 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3042 SetCC
->getValueType(0),
3043 &Ops
[0], Ops
.size()));
3046 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3050 // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
3051 // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
3052 if ((ISD::isSEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3053 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3054 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3055 MVT EVT
= LN0
->getMemoryVT();
3056 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3057 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
)) {
3058 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3060 LN0
->getBasePtr(), LN0
->getSrcValue(),
3061 LN0
->getSrcValueOffset(), EVT
,
3062 LN0
->isVolatile(), LN0
->getAlignment());
3063 CombineTo(N
, ExtLoad
);
3064 CombineTo(N0
.getNode(),
3065 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3066 N0
.getValueType(), ExtLoad
),
3067 ExtLoad
.getValue(1));
3068 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3072 // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
3073 if (N0
.getOpcode() == ISD::SETCC
) {
3075 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3076 DAG
.getConstant(~0ULL, VT
), DAG
.getConstant(0, VT
),
3077 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3078 if (SCC
.getNode()) return SCC
;
3081 // fold (sext x) -> (zext x) if the sign bit is known zero.
3082 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
3083 DAG
.SignBitIsZero(N0
))
3084 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3089 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
3090 SDValue N0
= N
->getOperand(0);
3091 MVT VT
= N
->getValueType(0);
3093 // fold (zext c1) -> c1
3094 if (isa
<ConstantSDNode
>(N0
))
3095 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3096 // fold (zext (zext x)) -> (zext x)
3097 // fold (zext (aext x)) -> (zext x)
3098 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
3099 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
,
3102 // fold (zext (truncate (load x))) -> (zext (smaller load x))
3103 // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
3104 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3105 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3106 if (NarrowLoad
.getNode()) {
3107 if (NarrowLoad
.getNode() != N0
.getNode())
3108 CombineTo(N0
.getNode(), NarrowLoad
);
3109 return DAG
.getNode(ISD::ZERO_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3113 // fold (zext (truncate x)) -> (and x, mask)
3114 if (N0
.getOpcode() == ISD::TRUNCATE
&&
3115 (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
))) {
3116 SDValue Op
= N0
.getOperand(0);
3117 if (Op
.getValueType().bitsLT(VT
)) {
3118 Op
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, Op
);
3119 } else if (Op
.getValueType().bitsGT(VT
)) {
3120 Op
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Op
);
3122 return DAG
.getZeroExtendInReg(Op
, N
->getDebugLoc(), N0
.getValueType());
3125 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
3126 // if either of the casts is not free.
3127 if (N0
.getOpcode() == ISD::AND
&&
3128 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3129 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3130 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3131 N0
.getValueType()) ||
3132 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
3133 SDValue X
= N0
.getOperand(0).getOperand(0);
3134 if (X
.getValueType().bitsLT(VT
)) {
3135 X
= DAG
.getNode(ISD::ANY_EXTEND
, X
.getDebugLoc(), VT
, X
);
3136 } else if (X
.getValueType().bitsGT(VT
)) {
3137 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3139 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3140 Mask
.zext(VT
.getSizeInBits());
3141 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3142 X
, DAG
.getConstant(Mask
, VT
));
3145 // fold (zext (load x)) -> (zext (truncate (zextload x)))
3146 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3147 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3148 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, N0
.getValueType()))) {
3149 bool DoXform
= true;
3150 SmallVector
<SDNode
*, 4> SetCCs
;
3151 if (!N0
.hasOneUse())
3152 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ZERO_EXTEND
, SetCCs
, TLI
);
3154 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3155 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3157 LN0
->getBasePtr(), LN0
->getSrcValue(),
3158 LN0
->getSrcValueOffset(),
3160 LN0
->isVolatile(), LN0
->getAlignment());
3161 CombineTo(N
, ExtLoad
);
3162 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3163 N0
.getValueType(), ExtLoad
);
3164 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3166 // Extend SetCC uses if necessary.
3167 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3168 SDNode
*SetCC
= SetCCs
[i
];
3169 SmallVector
<SDValue
, 4> Ops
;
3171 for (unsigned j
= 0; j
!= 2; ++j
) {
3172 SDValue SOp
= SetCC
->getOperand(j
);
3174 Ops
.push_back(ExtLoad
);
3176 Ops
.push_back(DAG
.getNode(ISD::ZERO_EXTEND
,
3177 N
->getDebugLoc(), VT
, SOp
));
3180 Ops
.push_back(SetCC
->getOperand(2));
3181 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3182 SetCC
->getValueType(0),
3183 &Ops
[0], Ops
.size()));
3186 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3190 // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
3191 // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
3192 if ((ISD::isZEXTLoad(N0
.getNode()) || ISD::isEXTLoad(N0
.getNode())) &&
3193 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
3194 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3195 MVT EVT
= LN0
->getMemoryVT();
3196 if ((!LegalOperations
&& !LN0
->isVolatile()) ||
3197 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, EVT
)) {
3198 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, N
->getDebugLoc(), VT
,
3200 LN0
->getBasePtr(), LN0
->getSrcValue(),
3201 LN0
->getSrcValueOffset(), EVT
,
3202 LN0
->isVolatile(), LN0
->getAlignment());
3203 CombineTo(N
, ExtLoad
);
3204 CombineTo(N0
.getNode(),
3205 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(), N0
.getValueType(),
3207 ExtLoad
.getValue(1));
3208 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3212 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3213 if (N0
.getOpcode() == ISD::SETCC
) {
3215 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3216 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3217 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3218 if (SCC
.getNode()) return SCC
;
3224 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
3225 SDValue N0
= N
->getOperand(0);
3226 MVT VT
= N
->getValueType(0);
3228 // fold (aext c1) -> c1
3229 if (isa
<ConstantSDNode
>(N0
))
3230 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, N0
);
3231 // fold (aext (aext x)) -> (aext x)
3232 // fold (aext (zext x)) -> (zext x)
3233 // fold (aext (sext x)) -> (sext x)
3234 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
3235 N0
.getOpcode() == ISD::ZERO_EXTEND
||
3236 N0
.getOpcode() == ISD::SIGN_EXTEND
)
3237 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
, N0
.getOperand(0));
3239 // fold (aext (truncate (load x))) -> (aext (smaller load x))
3240 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3241 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3242 SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode());
3243 if (NarrowLoad
.getNode()) {
3244 if (NarrowLoad
.getNode() != N0
.getNode())
3245 CombineTo(N0
.getNode(), NarrowLoad
);
3246 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, NarrowLoad
);
3250 // fold (aext (truncate x))
3251 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3252 SDValue TruncOp
= N0
.getOperand(0);
3253 if (TruncOp
.getValueType() == VT
)
3254 return TruncOp
; // x iff x size == zext size.
3255 if (TruncOp
.getValueType().bitsGT(VT
))
3256 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, TruncOp
);
3257 return DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, TruncOp
);
3260 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
3261 // if the trunc is not free.
3262 if (N0
.getOpcode() == ISD::AND
&&
3263 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
3264 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
3265 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
3266 N0
.getValueType())) {
3267 SDValue X
= N0
.getOperand(0).getOperand(0);
3268 if (X
.getValueType().bitsLT(VT
)) {
3269 X
= DAG
.getNode(ISD::ANY_EXTEND
, N
->getDebugLoc(), VT
, X
);
3270 } else if (X
.getValueType().bitsGT(VT
)) {
3271 X
= DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, X
);
3273 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
3274 Mask
.zext(VT
.getSizeInBits());
3275 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3276 X
, DAG
.getConstant(Mask
, VT
));
3279 // fold (aext (load x)) -> (aext (truncate (extload x)))
3280 if (ISD::isNON_EXTLoad(N0
.getNode()) &&
3281 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3282 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
3283 bool DoXform
= true;
3284 SmallVector
<SDNode
*, 4> SetCCs
;
3285 if (!N0
.hasOneUse())
3286 DoXform
= ExtendUsesToFormExtLoad(N
, N0
, ISD::ANY_EXTEND
, SetCCs
, TLI
);
3288 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3289 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
3291 LN0
->getBasePtr(), LN0
->getSrcValue(),
3292 LN0
->getSrcValueOffset(),
3294 LN0
->isVolatile(), LN0
->getAlignment());
3295 CombineTo(N
, ExtLoad
);
3296 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3297 N0
.getValueType(), ExtLoad
);
3298 CombineTo(N0
.getNode(), Trunc
, ExtLoad
.getValue(1));
3300 // Extend SetCC uses if necessary.
3301 for (unsigned i
= 0, e
= SetCCs
.size(); i
!= e
; ++i
) {
3302 SDNode
*SetCC
= SetCCs
[i
];
3303 SmallVector
<SDValue
, 4> Ops
;
3305 for (unsigned j
= 0; j
!= 2; ++j
) {
3306 SDValue SOp
= SetCC
->getOperand(j
);
3308 Ops
.push_back(ExtLoad
);
3310 Ops
.push_back(DAG
.getNode(ISD::ANY_EXTEND
,
3311 N
->getDebugLoc(), VT
, SOp
));
3314 Ops
.push_back(SetCC
->getOperand(2));
3315 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, N
->getDebugLoc(),
3316 SetCC
->getValueType(0),
3317 &Ops
[0], Ops
.size()));
3320 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3324 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3325 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3326 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
3327 if (N0
.getOpcode() == ISD::LOAD
&&
3328 !ISD::isNON_EXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3330 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3331 MVT EVT
= LN0
->getMemoryVT();
3332 SDValue ExtLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), N
->getDebugLoc(),
3333 VT
, LN0
->getChain(), LN0
->getBasePtr(),
3335 LN0
->getSrcValueOffset(), EVT
,
3336 LN0
->isVolatile(), LN0
->getAlignment());
3337 CombineTo(N
, ExtLoad
);
3338 CombineTo(N0
.getNode(),
3339 DAG
.getNode(ISD::TRUNCATE
, N0
.getDebugLoc(),
3340 N0
.getValueType(), ExtLoad
),
3341 ExtLoad
.getValue(1));
3342 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3345 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3346 if (N0
.getOpcode() == ISD::SETCC
) {
3348 SimplifySelectCC(N
->getDebugLoc(), N0
.getOperand(0), N0
.getOperand(1),
3349 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3350 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true);
3358 /// GetDemandedBits - See if the specified operand can be simplified with the
3359 /// knowledge that only the bits specified by Mask are used. If so, return the
3360 /// simpler operand, otherwise return a null SDValue.
3361 SDValue
DAGCombiner::GetDemandedBits(SDValue V
, const APInt
&Mask
) {
3362 switch (V
.getOpcode()) {
3366 // If the LHS or RHS don't contribute bits to the or, drop them.
3367 if (DAG
.MaskedValueIsZero(V
.getOperand(0), Mask
))
3368 return V
.getOperand(1);
3369 if (DAG
.MaskedValueIsZero(V
.getOperand(1), Mask
))
3370 return V
.getOperand(0);
3373 // Only look at single-use SRLs.
3374 if (!V
.getNode()->hasOneUse())
3376 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
3377 // See if we can recursively simplify the LHS.
3378 unsigned Amt
= RHSC
->getZExtValue();
3380 // Watch out for shift count overflow though.
3381 if (Amt
>= Mask
.getBitWidth()) break;
3382 APInt NewMask
= Mask
<< Amt
;
3383 SDValue SimplifyLHS
= GetDemandedBits(V
.getOperand(0), NewMask
);
3384 if (SimplifyLHS
.getNode())
3385 return DAG
.getNode(ISD::SRL
, V
.getDebugLoc(), V
.getValueType(),
3386 SimplifyLHS
, V
.getOperand(1));
3392 /// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3393 /// bits and then truncated to a narrower type and where N is a multiple
3394 /// of number of bits of the narrower type, transform it to a narrower load
3395 /// from address + N / num of bits of new type. If the result is to be
3396 /// extended, also fold the extension to form a extending load.
3397 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
3398 unsigned Opc
= N
->getOpcode();
3399 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
3400 SDValue N0
= N
->getOperand(0);
3401 MVT VT
= N
->getValueType(0);
3404 // This transformation isn't valid for vector loads.
3408 // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3410 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
3411 ExtType
= ISD::SEXTLOAD
;
3412 EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
3413 if (LegalOperations
&& !TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))
3417 unsigned EVTBits
= EVT
.getSizeInBits();
3419 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
3420 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3421 ShAmt
= N01
->getZExtValue();
3422 // Is the shift amount a multiple of size of VT?
3423 if ((ShAmt
& (EVTBits
-1)) == 0) {
3424 N0
= N0
.getOperand(0);
3425 if (N0
.getValueType().getSizeInBits() <= EVTBits
)
3431 // Do not generate loads of non-round integer types since these can
3432 // be expensive (and would be wrong if the type is not byte sized).
3433 if (isa
<LoadSDNode
>(N0
) && N0
.hasOneUse() && EVT
.isRound() &&
3434 cast
<LoadSDNode
>(N0
)->getMemoryVT().getSizeInBits() > EVTBits
&&
3435 // Do not change the width of a volatile load.
3436 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
3437 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3438 MVT PtrType
= N0
.getOperand(1).getValueType();
3440 // For big endian targets, we need to adjust the offset to the pointer to
3441 // load the correct bytes.
3442 if (TLI
.isBigEndian()) {
3443 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
3444 unsigned EVTStoreBits
= EVT
.getStoreSizeInBits();
3445 ShAmt
= LVTStoreBits
- EVTStoreBits
- ShAmt
;
3448 uint64_t PtrOff
= ShAmt
/ 8;
3449 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
3450 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, LN0
->getDebugLoc(),
3451 PtrType
, LN0
->getBasePtr(),
3452 DAG
.getConstant(PtrOff
, PtrType
));
3453 AddToWorkList(NewPtr
.getNode());
3455 SDValue Load
= (ExtType
== ISD::NON_EXTLOAD
)
3456 ? DAG
.getLoad(VT
, N0
.getDebugLoc(), LN0
->getChain(), NewPtr
,
3457 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3458 LN0
->isVolatile(), NewAlign
)
3459 : DAG
.getExtLoad(ExtType
, N0
.getDebugLoc(), VT
, LN0
->getChain(), NewPtr
,
3460 LN0
->getSrcValue(), LN0
->getSrcValueOffset() + PtrOff
,
3461 EVT
, LN0
->isVolatile(), NewAlign
);
3463 // Replace the old load's chain with the new load's chain.
3464 WorkListRemover
DeadNodes(*this);
3465 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1),
3468 // Return the new loaded value.
3475 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
3476 SDValue N0
= N
->getOperand(0);
3477 SDValue N1
= N
->getOperand(1);
3478 MVT VT
= N
->getValueType(0);
3479 MVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
3480 unsigned VTBits
= VT
.getSizeInBits();
3481 unsigned EVTBits
= EVT
.getSizeInBits();
3483 // fold (sext_in_reg c1) -> c1
3484 if (isa
<ConstantSDNode
>(N0
) || N0
.getOpcode() == ISD::UNDEF
)
3485 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
, N0
, N1
);
3487 // If the input is already sign extended, just drop the extension.
3488 if (DAG
.ComputeNumSignBits(N0
) >= VT
.getSizeInBits()-EVTBits
+1)
3491 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3492 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3493 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT())) {
3494 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, N
->getDebugLoc(), VT
,
3495 N0
.getOperand(0), N1
);
3498 // fold (sext_in_reg (sext x)) -> (sext x)
3499 // fold (sext_in_reg (aext x)) -> (sext x)
3500 // if x is small enough.
3501 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
3502 SDValue N00
= N0
.getOperand(0);
3503 if (N00
.getValueType().getSizeInBits() < EVTBits
)
3504 return DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, N00
, N1
);
3507 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3508 if (DAG
.MaskedValueIsZero(N0
, APInt::getBitsSet(VTBits
, EVTBits
-1, EVTBits
)))
3509 return DAG
.getZeroExtendInReg(N0
, N
->getDebugLoc(), EVT
);
3511 // fold operands of sext_in_reg based on knowledge that the top bits are not
3513 if (SimplifyDemandedBits(SDValue(N
, 0)))
3514 return SDValue(N
, 0);
3516 // fold (sext_in_reg (load x)) -> (smaller sextload x)
3517 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3518 SDValue NarrowLoad
= ReduceLoadWidth(N
);
3519 if (NarrowLoad
.getNode())
3522 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
3523 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
3524 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3525 if (N0
.getOpcode() == ISD::SRL
) {
3526 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
3527 if (ShAmt
->getZExtValue()+EVTBits
<= VT
.getSizeInBits()) {
3528 // We can turn this into an SRA iff the input to the SRL is already sign
3530 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
3531 if (VT
.getSizeInBits()-(ShAmt
->getZExtValue()+EVTBits
) < InSignBits
)
3532 return DAG
.getNode(ISD::SRA
, N
->getDebugLoc(), VT
,
3533 N0
.getOperand(0), N0
.getOperand(1));
3537 // fold (sext_inreg (extload x)) -> (sextload x)
3538 if (ISD::isEXTLoad(N0
.getNode()) &&
3539 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3540 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3541 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3542 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3543 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3544 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3546 LN0
->getBasePtr(), LN0
->getSrcValue(),
3547 LN0
->getSrcValueOffset(), EVT
,
3548 LN0
->isVolatile(), LN0
->getAlignment());
3549 CombineTo(N
, ExtLoad
);
3550 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3551 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3553 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3554 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
3556 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
3557 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
3558 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, EVT
))) {
3559 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3560 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, N
->getDebugLoc(), VT
,
3562 LN0
->getBasePtr(), LN0
->getSrcValue(),
3563 LN0
->getSrcValueOffset(), EVT
,
3564 LN0
->isVolatile(), LN0
->getAlignment());
3565 CombineTo(N
, ExtLoad
);
3566 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
3567 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
3572 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
3573 SDValue N0
= N
->getOperand(0);
3574 MVT VT
= N
->getValueType(0);
3577 if (N0
.getValueType() == N
->getValueType(0))
3579 // fold (truncate c1) -> c1
3580 if (isa
<ConstantSDNode
>(N0
))
3581 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
);
3582 // fold (truncate (truncate x)) -> (truncate x)
3583 if (N0
.getOpcode() == ISD::TRUNCATE
)
3584 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3585 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3586 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::SIGN_EXTEND
||
3587 N0
.getOpcode() == ISD::ANY_EXTEND
) {
3588 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
3589 // if the source is smaller than the dest, we still need an extend
3590 return DAG
.getNode(N0
.getOpcode(), N
->getDebugLoc(), VT
,
3592 else if (N0
.getOperand(0).getValueType().bitsGT(VT
))
3593 // if the source is larger than the dest, than we just need the truncate
3594 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
3596 // if the source and dest are the same type, we can drop both the extend
3598 return N0
.getOperand(0);
3601 // See if we can simplify the input to this truncate through knowledge that
3602 // only the low bits are being used. For example "trunc (or (shl x, 8), y)"
3605 GetDemandedBits(N0
, APInt::getLowBitsSet(N0
.getValueSizeInBits(),
3606 VT
.getSizeInBits()));
3607 if (Shorter
.getNode())
3608 return DAG
.getNode(ISD::TRUNCATE
, N
->getDebugLoc(), VT
, Shorter
);
3610 // fold (truncate (load x)) -> (smaller load x)
3611 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3612 return ReduceLoadWidth(N
);
3615 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
3616 SDValue Elt
= N
->getOperand(i
);
3617 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
3618 return Elt
.getNode();
3619 return Elt
.getOperand(Elt
.getResNo()).getNode();
3622 /// CombineConsecutiveLoads - build_pair (load, load) -> load
3623 /// if load locations are consecutive.
3624 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, MVT VT
) {
3625 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
3627 SDNode
*LD1
= getBuildPairElt(N
, 0);
3628 if (!ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse())
3630 MVT LD1VT
= LD1
->getValueType(0);
3631 SDNode
*LD2
= getBuildPairElt(N
, 1);
3632 const MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3634 if (ISD::isNON_EXTLoad(LD2
) &&
3636 // If both are volatile this would reduce the number of volatile loads.
3637 // If one is volatile it might be ok, but play conservative and bail out.
3638 !cast
<LoadSDNode
>(LD1
)->isVolatile() &&
3639 !cast
<LoadSDNode
>(LD2
)->isVolatile() &&
3640 TLI
.isConsecutiveLoad(LD2
, LD1
, LD1VT
.getSizeInBits()/8, 1, MFI
)) {
3641 LoadSDNode
*LD
= cast
<LoadSDNode
>(LD1
);
3642 unsigned Align
= LD
->getAlignment();
3643 unsigned NewAlign
= TLI
.getTargetData()->
3644 getABITypeAlignment(VT
.getTypeForMVT());
3646 if (NewAlign
<= Align
&&
3647 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
3648 return DAG
.getLoad(VT
, N
->getDebugLoc(), LD
->getChain(), LD
->getBasePtr(),
3649 LD
->getSrcValue(), LD
->getSrcValueOffset(),
3656 SDValue
DAGCombiner::visitBIT_CONVERT(SDNode
*N
) {
3657 SDValue N0
= N
->getOperand(0);
3658 MVT VT
= N
->getValueType(0);
3660 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3661 // Only do this before legalize, since afterward the target may be depending
3662 // on the bitconvert.
3663 // First check to see if this is all constant.
3665 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
3667 bool isSimple
= true;
3668 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
)
3669 if (N0
.getOperand(i
).getOpcode() != ISD::UNDEF
&&
3670 N0
.getOperand(i
).getOpcode() != ISD::Constant
&&
3671 N0
.getOperand(i
).getOpcode() != ISD::ConstantFP
) {
3676 MVT DestEltVT
= N
->getValueType(0).getVectorElementType();
3677 assert(!DestEltVT
.isVector() &&
3678 "Element type of vector ValueType must not be vector!");
3680 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0
.getNode(), DestEltVT
);
3683 // If the input is a constant, let getNode fold it.
3684 if (isa
<ConstantSDNode
>(N0
) || isa
<ConstantFPSDNode
>(N0
)) {
3685 SDValue Res
= DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, N0
);
3686 if (Res
.getNode() != N
) return Res
;
3689 // (conv (conv x, t1), t2) -> (conv x, t2)
3690 if (N0
.getOpcode() == ISD::BIT_CONVERT
)
3691 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
,
3694 // fold (conv (load x)) -> (load (conv*)x)
3695 // If the resultant load doesn't need a higher alignment than the original!
3696 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
3697 // Do not change the width of a volatile load.
3698 !cast
<LoadSDNode
>(N0
)->isVolatile() &&
3699 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
))) {
3700 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
3701 unsigned Align
= TLI
.getTargetData()->
3702 getABITypeAlignment(VT
.getTypeForMVT());
3703 unsigned OrigAlign
= LN0
->getAlignment();
3705 if (Align
<= OrigAlign
) {
3706 SDValue Load
= DAG
.getLoad(VT
, N
->getDebugLoc(), LN0
->getChain(),
3708 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
3709 LN0
->isVolatile(), OrigAlign
);
3711 CombineTo(N0
.getNode(),
3712 DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3713 N0
.getValueType(), Load
),
3719 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
3720 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
3721 // This often reduces constant pool loads.
3722 if ((N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FABS
) &&
3723 N0
.getNode()->hasOneUse() && VT
.isInteger() && !VT
.isVector()) {
3724 SDValue NewConv
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(), VT
,
3726 AddToWorkList(NewConv
.getNode());
3728 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3729 if (N0
.getOpcode() == ISD::FNEG
)
3730 return DAG
.getNode(ISD::XOR
, N
->getDebugLoc(), VT
,
3731 NewConv
, DAG
.getConstant(SignBit
, VT
));
3732 assert(N0
.getOpcode() == ISD::FABS
);
3733 return DAG
.getNode(ISD::AND
, N
->getDebugLoc(), VT
,
3734 NewConv
, DAG
.getConstant(~SignBit
, VT
));
3737 // fold (bitconvert (fcopysign cst, x)) ->
3738 // (or (and (bitconvert x), sign), (and cst, (not sign)))
3739 // Note that we don't handle (copysign x, cst) because this can always be
3740 // folded to an fneg or fabs.
3741 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
3742 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
3743 VT
.isInteger() && !VT
.isVector()) {
3744 unsigned OrigXWidth
= N0
.getOperand(1).getValueType().getSizeInBits();
3745 MVT IntXVT
= MVT::getIntegerVT(OrigXWidth
);
3746 if (TLI
.isTypeLegal(IntXVT
) || !LegalTypes
) {
3747 SDValue X
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3748 IntXVT
, N0
.getOperand(1));
3749 AddToWorkList(X
.getNode());
3751 // If X has a different width than the result/lhs, sext it or truncate it.
3752 unsigned VTWidth
= VT
.getSizeInBits();
3753 if (OrigXWidth
< VTWidth
) {
3754 X
= DAG
.getNode(ISD::SIGN_EXTEND
, N
->getDebugLoc(), VT
, X
);
3755 AddToWorkList(X
.getNode());
3756 } else if (OrigXWidth
> VTWidth
) {
3757 // To get the sign bit in the right place, we have to shift it right
3758 // before truncating.
3759 X
= DAG
.getNode(ISD::SRL
, X
.getDebugLoc(),
3760 X
.getValueType(), X
,
3761 DAG
.getConstant(OrigXWidth
-VTWidth
, X
.getValueType()));
3762 AddToWorkList(X
.getNode());
3763 X
= DAG
.getNode(ISD::TRUNCATE
, X
.getDebugLoc(), VT
, X
);
3764 AddToWorkList(X
.getNode());
3767 APInt SignBit
= APInt::getSignBit(VT
.getSizeInBits());
3768 X
= DAG
.getNode(ISD::AND
, X
.getDebugLoc(), VT
,
3769 X
, DAG
.getConstant(SignBit
, VT
));
3770 AddToWorkList(X
.getNode());
3772 SDValue Cst
= DAG
.getNode(ISD::BIT_CONVERT
, N0
.getDebugLoc(),
3773 VT
, N0
.getOperand(0));
3774 Cst
= DAG
.getNode(ISD::AND
, Cst
.getDebugLoc(), VT
,
3775 Cst
, DAG
.getConstant(~SignBit
, VT
));
3776 AddToWorkList(Cst
.getNode());
3778 return DAG
.getNode(ISD::OR
, N
->getDebugLoc(), VT
, X
, Cst
);
3782 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3783 if (N0
.getOpcode() == ISD::BUILD_PAIR
) {
3784 SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
);
3785 if (CombineLD
.getNode())
3792 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
3793 MVT VT
= N
->getValueType(0);
3794 return CombineConsecutiveLoads(N
, VT
);
3797 /// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3798 /// node with Constant, ConstantFP or Undef operands. DstEltVT indicates the
3799 /// destination element value type.
3800 SDValue
DAGCombiner::
3801 ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode
*BV
, MVT DstEltVT
) {
3802 MVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
3804 // If this is already the right type, we're done.
3805 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
3807 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
3808 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
3810 // If this is a conversion of N elements of one type to N elements of another
3811 // type, convert each element. This handles FP<->INT cases.
3812 if (SrcBitSize
== DstBitSize
) {
3813 SmallVector
<SDValue
, 8> Ops
;
3814 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3815 SDValue Op
= BV
->getOperand(i
);
3816 // If the vector element type is not legal, the BUILD_VECTOR operands
3817 // are promoted and implicitly truncated. Make that explicit here.
3818 if (Op
.getValueType() != SrcEltVT
)
3819 Op
= DAG
.getNode(ISD::TRUNCATE
, BV
->getDebugLoc(), SrcEltVT
, Op
);
3820 Ops
.push_back(DAG
.getNode(ISD::BIT_CONVERT
, BV
->getDebugLoc(),
3822 AddToWorkList(Ops
.back().getNode());
3824 MVT VT
= MVT::getVectorVT(DstEltVT
,
3825 BV
->getValueType(0).getVectorNumElements());
3826 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3827 &Ops
[0], Ops
.size());
3830 // Otherwise, we're growing or shrinking the elements. To avoid having to
3831 // handle annoying details of growing/shrinking FP values, we convert them to
3833 if (SrcEltVT
.isFloatingPoint()) {
3834 // Convert the input float vector to a int vector where the elements are the
3836 assert((SrcEltVT
== MVT::f32
|| SrcEltVT
== MVT::f64
) && "Unknown FP VT!");
3837 MVT IntVT
= MVT::getIntegerVT(SrcEltVT
.getSizeInBits());
3838 BV
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, IntVT
).getNode();
3842 // Now we know the input is an integer vector. If the output is a FP type,
3843 // convert to integer first, then to FP of the right size.
3844 if (DstEltVT
.isFloatingPoint()) {
3845 assert((DstEltVT
== MVT::f32
|| DstEltVT
== MVT::f64
) && "Unknown FP VT!");
3846 MVT TmpVT
= MVT::getIntegerVT(DstEltVT
.getSizeInBits());
3847 SDNode
*Tmp
= ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV
, TmpVT
).getNode();
3849 // Next, convert to FP elements of the same size.
3850 return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp
, DstEltVT
);
3853 // Okay, we know the src/dst types are both integers of differing types.
3854 // Handling growing first.
3855 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
3856 if (SrcBitSize
< DstBitSize
) {
3857 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
3859 SmallVector
<SDValue
, 8> Ops
;
3860 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
3861 i
+= NumInputsPerOutput
) {
3862 bool isLE
= TLI
.isLittleEndian();
3863 APInt NewBits
= APInt(DstBitSize
, 0);
3864 bool EltIsUndef
= true;
3865 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
3866 // Shift the previously computed bits over.
3867 NewBits
<<= SrcBitSize
;
3868 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
3869 if (Op
.getOpcode() == ISD::UNDEF
) continue;
3872 NewBits
|= (APInt(cast
<ConstantSDNode
>(Op
)->getAPIntValue()).
3873 zextOrTrunc(SrcBitSize
).zext(DstBitSize
));
3877 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3879 Ops
.push_back(DAG
.getConstant(NewBits
, DstEltVT
));
3882 MVT VT
= MVT::getVectorVT(DstEltVT
, Ops
.size());
3883 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3884 &Ops
[0], Ops
.size());
3887 // Finally, this must be the case where we are shrinking elements: each input
3888 // turns into multiple outputs.
3889 bool isS2V
= ISD::isScalarToVector(BV
);
3890 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
3891 MVT VT
= MVT::getVectorVT(DstEltVT
, NumOutputsPerInput
*BV
->getNumOperands());
3892 SmallVector
<SDValue
, 8> Ops
;
3894 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
3895 if (BV
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
3896 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
)
3897 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
3901 APInt OpVal
= APInt(cast
<ConstantSDNode
>(BV
->getOperand(i
))->
3902 getAPIntValue()).zextOrTrunc(SrcBitSize
);
3904 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
3905 APInt ThisVal
= APInt(OpVal
).trunc(DstBitSize
);
3906 Ops
.push_back(DAG
.getConstant(ThisVal
, DstEltVT
));
3907 if (isS2V
&& i
== 0 && j
== 0 && APInt(ThisVal
).zext(SrcBitSize
) == OpVal
)
3908 // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3909 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, BV
->getDebugLoc(), VT
,
3911 OpVal
= OpVal
.lshr(DstBitSize
);
3914 // For big endian targets, swap the order of the pieces of each element.
3915 if (TLI
.isBigEndian())
3916 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
3919 return DAG
.getNode(ISD::BUILD_VECTOR
, BV
->getDebugLoc(), VT
,
3920 &Ops
[0], Ops
.size());
3923 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
3924 SDValue N0
= N
->getOperand(0);
3925 SDValue N1
= N
->getOperand(1);
3926 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3927 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
3928 MVT VT
= N
->getValueType(0);
3931 if (VT
.isVector()) {
3932 SDValue FoldedVOp
= SimplifyVBinOp(N
);
3933 if (FoldedVOp
.getNode()) return FoldedVOp
;
3936 // fold (fadd c1, c2) -> (fadd c1, c2)
3937 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
3938 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N1
);
3939 // canonicalize constant to RHS
3940 if (N0CFP
&& !N1CFP
)
3941 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N1
, N0
);
3942 // fold (fadd A, 0) -> A
3943 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
3945 // fold (fadd A, (fneg B)) -> (fsub A, B)
3946 if (isNegatibleForFree(N1
, LegalOperations
) == 2)
3947 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
,
3948 GetNegatedExpression(N1
, DAG
, LegalOperations
));
3949 // fold (fadd (fneg A), B) -> (fsub B, A)
3950 if (isNegatibleForFree(N0
, LegalOperations
) == 2)
3951 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N1
,
3952 GetNegatedExpression(N0
, DAG
, LegalOperations
));
3954 // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3955 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
3956 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
3957 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
3958 DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
,
3959 N0
.getOperand(1), N1
));
3964 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
3965 SDValue N0
= N
->getOperand(0);
3966 SDValue N1
= N
->getOperand(1);
3967 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
3968 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
3969 MVT VT
= N
->getValueType(0);
3972 if (VT
.isVector()) {
3973 SDValue FoldedVOp
= SimplifyVBinOp(N
);
3974 if (FoldedVOp
.getNode()) return FoldedVOp
;
3977 // fold (fsub c1, c2) -> c1-c2
3978 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
3979 return DAG
.getNode(ISD::FSUB
, N
->getDebugLoc(), VT
, N0
, N1
);
3980 // fold (fsub A, 0) -> A
3981 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
3983 // fold (fsub 0, B) -> -B
3984 if (UnsafeFPMath
&& N0CFP
&& N0CFP
->getValueAPF().isZero()) {
3985 if (isNegatibleForFree(N1
, LegalOperations
))
3986 return GetNegatedExpression(N1
, DAG
, LegalOperations
);
3987 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
3988 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N1
);
3990 // fold (fsub A, (fneg B)) -> (fadd A, B)
3991 if (isNegatibleForFree(N1
, LegalOperations
))
3992 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
,
3993 GetNegatedExpression(N1
, DAG
, LegalOperations
));
3998 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
3999 SDValue N0
= N
->getOperand(0);
4000 SDValue N1
= N
->getOperand(1);
4001 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4002 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4003 MVT VT
= N
->getValueType(0);
4006 if (VT
.isVector()) {
4007 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4008 if (FoldedVOp
.getNode()) return FoldedVOp
;
4011 // fold (fmul c1, c2) -> c1*c2
4012 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4013 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
, N1
);
4014 // canonicalize constant to RHS
4015 if (N0CFP
&& !N1CFP
)
4016 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N1
, N0
);
4017 // fold (fmul A, 0) -> 0
4018 if (UnsafeFPMath
&& N1CFP
&& N1CFP
->getValueAPF().isZero())
4020 // fold (fmul X, 2.0) -> (fadd X, X)
4021 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
4022 return DAG
.getNode(ISD::FADD
, N
->getDebugLoc(), VT
, N0
, N0
);
4023 // fold (fmul X, (fneg 1.0)) -> (fneg X)
4024 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
4025 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4026 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
, N0
);
4028 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
4029 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4030 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4031 // Both can be negated for free, check to see if at least one is cheaper
4033 if (LHSNeg
== 2 || RHSNeg
== 2)
4034 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4035 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4036 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4040 // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
4041 if (UnsafeFPMath
&& N1CFP
&& N0
.getOpcode() == ISD::FMUL
&&
4042 N0
.getNode()->hasOneUse() && isa
<ConstantFPSDNode
>(N0
.getOperand(1)))
4043 return DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4044 DAG
.getNode(ISD::FMUL
, N
->getDebugLoc(), VT
,
4045 N0
.getOperand(1), N1
));
4050 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
4051 SDValue N0
= N
->getOperand(0);
4052 SDValue N1
= N
->getOperand(1);
4053 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4054 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4055 MVT VT
= N
->getValueType(0);
4058 if (VT
.isVector()) {
4059 SDValue FoldedVOp
= SimplifyVBinOp(N
);
4060 if (FoldedVOp
.getNode()) return FoldedVOp
;
4063 // fold (fdiv c1, c2) -> c1/c2
4064 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4065 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
, N0
, N1
);
4068 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
4069 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
)) {
4070 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
)) {
4071 // Both can be negated for free, check to see if at least one is cheaper
4073 if (LHSNeg
== 2 || RHSNeg
== 2)
4074 return DAG
.getNode(ISD::FDIV
, N
->getDebugLoc(), VT
,
4075 GetNegatedExpression(N0
, DAG
, LegalOperations
),
4076 GetNegatedExpression(N1
, DAG
, LegalOperations
));
4083 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
4084 SDValue N0
= N
->getOperand(0);
4085 SDValue N1
= N
->getOperand(1);
4086 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4087 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4088 MVT VT
= N
->getValueType(0);
4090 // fold (frem c1, c2) -> fmod(c1,c2)
4091 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
)
4092 return DAG
.getNode(ISD::FREM
, N
->getDebugLoc(), VT
, N0
, N1
);
4097 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
4098 SDValue N0
= N
->getOperand(0);
4099 SDValue N1
= N
->getOperand(1);
4100 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4101 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4102 MVT VT
= N
->getValueType(0);
4104 if (N0CFP
&& N1CFP
&& VT
!= MVT::ppcf128
) // Constant fold
4105 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
, N0
, N1
);
4108 const APFloat
& V
= N1CFP
->getValueAPF();
4109 // copysign(x, c1) -> fabs(x) iff ispos(c1)
4110 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
4111 if (!V
.isNegative()) {
4112 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
4113 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4115 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
4116 return DAG
.getNode(ISD::FNEG
, N
->getDebugLoc(), VT
,
4117 DAG
.getNode(ISD::FABS
, N0
.getDebugLoc(), VT
, N0
));
4121 // copysign(fabs(x), y) -> copysign(x, y)
4122 // copysign(fneg(x), y) -> copysign(x, y)
4123 // copysign(copysign(x,z), y) -> copysign(x, y)
4124 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
4125 N0
.getOpcode() == ISD::FCOPYSIGN
)
4126 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4127 N0
.getOperand(0), N1
);
4129 // copysign(x, abs(y)) -> abs(x)
4130 if (N1
.getOpcode() == ISD::FABS
)
4131 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4133 // copysign(x, copysign(y,z)) -> copysign(x, z)
4134 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
4135 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4136 N0
, N1
.getOperand(1));
4138 // copysign(x, fp_extend(y)) -> copysign(x, y)
4139 // copysign(x, fp_round(y)) -> copysign(x, y)
4140 if (N1
.getOpcode() == ISD::FP_EXTEND
|| N1
.getOpcode() == ISD::FP_ROUND
)
4141 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4142 N0
, N1
.getOperand(0));
4147 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
4148 SDValue N0
= N
->getOperand(0);
4149 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4150 MVT VT
= N
->getValueType(0);
4151 MVT OpVT
= N0
.getValueType();
4153 // fold (sint_to_fp c1) -> c1fp
4154 if (N0C
&& OpVT
!= MVT::ppcf128
)
4155 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4157 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
4158 // but UINT_TO_FP is legal on this target, try to convert.
4159 if (!TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
) &&
4160 TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
)) {
4161 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
4162 if (DAG
.SignBitIsZero(N0
))
4163 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4169 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
4170 SDValue N0
= N
->getOperand(0);
4171 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
4172 MVT VT
= N
->getValueType(0);
4173 MVT OpVT
= N0
.getValueType();
4175 // fold (uint_to_fp c1) -> c1fp
4176 if (N0C
&& OpVT
!= MVT::ppcf128
)
4177 return DAG
.getNode(ISD::UINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4179 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
4180 // but SINT_TO_FP is legal on this target, try to convert.
4181 if (!TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
) &&
4182 TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
)) {
4183 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
4184 if (DAG
.SignBitIsZero(N0
))
4185 return DAG
.getNode(ISD::SINT_TO_FP
, N
->getDebugLoc(), VT
, N0
);
4191 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
4192 SDValue N0
= N
->getOperand(0);
4193 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4194 MVT VT
= N
->getValueType(0);
4196 // fold (fp_to_sint c1fp) -> c1
4198 return DAG
.getNode(ISD::FP_TO_SINT
, N
->getDebugLoc(), VT
, N0
);
4203 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
4204 SDValue N0
= N
->getOperand(0);
4205 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4206 MVT VT
= N
->getValueType(0);
4208 // fold (fp_to_uint c1fp) -> c1
4209 if (N0CFP
&& VT
!= MVT::ppcf128
)
4210 return DAG
.getNode(ISD::FP_TO_UINT
, N
->getDebugLoc(), VT
, N0
);
4215 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
4216 SDValue N0
= N
->getOperand(0);
4217 SDValue N1
= N
->getOperand(1);
4218 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4219 MVT VT
= N
->getValueType(0);
4221 // fold (fp_round c1fp) -> c1fp
4222 if (N0CFP
&& N0
.getValueType() != MVT::ppcf128
)
4223 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
, N1
);
4225 // fold (fp_round (fp_extend x)) -> x
4226 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
4227 return N0
.getOperand(0);
4229 // fold (fp_round (fp_round x)) -> (fp_round x)
4230 if (N0
.getOpcode() == ISD::FP_ROUND
) {
4231 // This is a value preserving truncation if both round's are.
4232 bool IsTrunc
= N
->getConstantOperandVal(1) == 1 &&
4233 N0
.getNode()->getConstantOperandVal(1) == 1;
4234 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
, N0
.getOperand(0),
4235 DAG
.getIntPtrConstant(IsTrunc
));
4238 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
4239 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
4240 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(), VT
,
4241 N0
.getOperand(0), N1
);
4242 AddToWorkList(Tmp
.getNode());
4243 return DAG
.getNode(ISD::FCOPYSIGN
, N
->getDebugLoc(), VT
,
4244 Tmp
, N0
.getOperand(1));
4250 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
4251 SDValue N0
= N
->getOperand(0);
4252 MVT VT
= N
->getValueType(0);
4253 MVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
4254 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4256 // fold (fp_round_inreg c1fp) -> c1fp
4257 if (N0CFP
&& (TLI
.isTypeLegal(EVT
) || !LegalTypes
)) {
4258 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), EVT
);
4259 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, Round
);
4265 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
4266 SDValue N0
= N
->getOperand(0);
4267 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4268 MVT VT
= N
->getValueType(0);
4270 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
4271 if (N
->hasOneUse() &&
4272 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
4275 // fold (fp_extend c1fp) -> c1fp
4276 if (N0CFP
&& VT
!= MVT::ppcf128
)
4277 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, N0
);
4279 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
4281 if (N0
.getOpcode() == ISD::FP_ROUND
4282 && N0
.getNode()->getConstantOperandVal(1) == 1) {
4283 SDValue In
= N0
.getOperand(0);
4284 if (In
.getValueType() == VT
) return In
;
4285 if (VT
.bitsLT(In
.getValueType()))
4286 return DAG
.getNode(ISD::FP_ROUND
, N
->getDebugLoc(), VT
,
4287 In
, N0
.getOperand(1));
4288 return DAG
.getNode(ISD::FP_EXTEND
, N
->getDebugLoc(), VT
, In
);
4291 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
4292 if (ISD::isNON_EXTLoad(N0
.getNode()) && N0
.hasOneUse() &&
4293 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
4294 TLI
.isLoadExtLegal(ISD::EXTLOAD
, N0
.getValueType()))) {
4295 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4296 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, N
->getDebugLoc(), VT
,
4298 LN0
->getBasePtr(), LN0
->getSrcValue(),
4299 LN0
->getSrcValueOffset(),
4301 LN0
->isVolatile(), LN0
->getAlignment());
4302 CombineTo(N
, ExtLoad
);
4303 CombineTo(N0
.getNode(),
4304 DAG
.getNode(ISD::FP_ROUND
, N0
.getDebugLoc(),
4305 N0
.getValueType(), ExtLoad
, DAG
.getIntPtrConstant(1)),
4306 ExtLoad
.getValue(1));
4307 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4313 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
4314 SDValue N0
= N
->getOperand(0);
4316 if (isNegatibleForFree(N0
, LegalOperations
))
4317 return GetNegatedExpression(N0
, DAG
, LegalOperations
);
4319 // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
4320 // constant pool values.
4321 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4322 N0
.getOperand(0).getValueType().isInteger() &&
4323 !N0
.getOperand(0).getValueType().isVector()) {
4324 SDValue Int
= N0
.getOperand(0);
4325 MVT IntVT
= Int
.getValueType();
4326 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4327 Int
= DAG
.getNode(ISD::XOR
, N0
.getDebugLoc(), IntVT
, Int
,
4328 DAG
.getConstant(APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4329 AddToWorkList(Int
.getNode());
4330 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4331 N
->getValueType(0), Int
);
4338 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
4339 SDValue N0
= N
->getOperand(0);
4340 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
4341 MVT VT
= N
->getValueType(0);
4343 // fold (fabs c1) -> fabs(c1)
4344 if (N0CFP
&& VT
!= MVT::ppcf128
)
4345 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
);
4346 // fold (fabs (fabs x)) -> (fabs x)
4347 if (N0
.getOpcode() == ISD::FABS
)
4348 return N
->getOperand(0);
4349 // fold (fabs (fneg x)) -> (fabs x)
4350 // fold (fabs (fcopysign x, y)) -> (fabs x)
4351 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
4352 return DAG
.getNode(ISD::FABS
, N
->getDebugLoc(), VT
, N0
.getOperand(0));
4354 // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4355 // constant pool values.
4356 if (N0
.getOpcode() == ISD::BIT_CONVERT
&& N0
.getNode()->hasOneUse() &&
4357 N0
.getOperand(0).getValueType().isInteger() &&
4358 !N0
.getOperand(0).getValueType().isVector()) {
4359 SDValue Int
= N0
.getOperand(0);
4360 MVT IntVT
= Int
.getValueType();
4361 if (IntVT
.isInteger() && !IntVT
.isVector()) {
4362 Int
= DAG
.getNode(ISD::AND
, N0
.getDebugLoc(), IntVT
, Int
,
4363 DAG
.getConstant(~APInt::getSignBit(IntVT
.getSizeInBits()), IntVT
));
4364 AddToWorkList(Int
.getNode());
4365 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(),
4366 N
->getValueType(0), Int
);
4373 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
4374 SDValue Chain
= N
->getOperand(0);
4375 SDValue N1
= N
->getOperand(1);
4376 SDValue N2
= N
->getOperand(2);
4377 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
4379 // never taken branch, fold to chain
4380 if (N1C
&& N1C
->isNullValue())
4382 // unconditional branch
4383 if (N1C
&& N1C
->getAPIntValue() == 1)
4384 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
, Chain
, N2
);
4385 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4387 if (N1
.getOpcode() == ISD::SETCC
&&
4388 TLI
.isOperationLegalOrCustom(ISD::BR_CC
, MVT::Other
)) {
4389 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4390 Chain
, N1
.getOperand(2),
4391 N1
.getOperand(0), N1
.getOperand(1), N2
);
4394 if (N1
.hasOneUse() && N1
.getOpcode() == ISD::SRL
) {
4395 // Match this pattern so that we can generate simpler code:
4398 // %b = and i32 %a, 2
4399 // %c = srl i32 %b, 1
4400 // brcond i32 %c ...
4406 // %c = setcc eq %b, 0
4409 // This applies only when the AND constant value has one bit set and the
4410 // SRL constant is equal to the log2 of the AND constant. The back-end is
4411 // smart enough to convert the result into a TEST/JMP sequence.
4412 SDValue Op0
= N1
.getOperand(0);
4413 SDValue Op1
= N1
.getOperand(1);
4415 if (Op0
.getOpcode() == ISD::AND
&&
4417 Op1
.getOpcode() == ISD::Constant
) {
4418 SDValue AndOp0
= Op0
.getOperand(0);
4419 SDValue AndOp1
= Op0
.getOperand(1);
4421 if (AndOp1
.getOpcode() == ISD::Constant
) {
4422 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
4424 if (AndConst
.isPowerOf2() &&
4425 cast
<ConstantSDNode
>(Op1
)->getAPIntValue()==AndConst
.logBase2()) {
4427 DAG
.getSetCC(N
->getDebugLoc(),
4428 TLI
.getSetCCResultType(Op0
.getValueType()),
4429 Op0
, DAG
.getConstant(0, Op0
.getValueType()),
4432 // Replace the uses of SRL with SETCC
4433 DAG
.ReplaceAllUsesOfValueWith(N1
, SetCC
);
4434 removeFromWorkList(N1
.getNode());
4435 DAG
.DeleteNode(N1
.getNode());
4436 return DAG
.getNode(ISD::BRCOND
, N
->getDebugLoc(),
4437 MVT::Other
, Chain
, SetCC
, N2
);
4446 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4448 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
4449 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
4450 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
4452 // Use SimplifySetCC to simplify SETCC's.
4453 SDValue Simp
= SimplifySetCC(TLI
.getSetCCResultType(CondLHS
.getValueType()),
4454 CondLHS
, CondRHS
, CC
->get(), N
->getDebugLoc(),
4456 if (Simp
.getNode()) AddToWorkList(Simp
.getNode());
4458 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(Simp
.getNode());
4460 // fold br_cc true, dest -> br dest (unconditional branch)
4461 if (SCCC
&& !SCCC
->isNullValue())
4462 return DAG
.getNode(ISD::BR
, N
->getDebugLoc(), MVT::Other
,
4463 N
->getOperand(0), N
->getOperand(4));
4464 // fold br_cc false, dest -> unconditional fall through
4465 if (SCCC
&& SCCC
->isNullValue())
4466 return N
->getOperand(0);
4468 // fold to a simpler setcc
4469 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
4470 return DAG
.getNode(ISD::BR_CC
, N
->getDebugLoc(), MVT::Other
,
4471 N
->getOperand(0), Simp
.getOperand(2),
4472 Simp
.getOperand(0), Simp
.getOperand(1),
4478 /// CombineToPreIndexedLoadStore - Try turning a load / store into a
4479 /// pre-indexed load / store when the base pointer is an add or subtract
4480 /// and it has other uses besides the load / store. After the
4481 /// transformation, the new indexed load / store has effectively folded
4482 /// the add / subtract in and all of its other uses are redirected to the
4483 /// new load / store.
4484 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
4485 if (!LegalOperations
)
4491 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4492 if (LD
->isIndexed())
4494 VT
= LD
->getMemoryVT();
4495 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
4496 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
4498 Ptr
= LD
->getBasePtr();
4499 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4500 if (ST
->isIndexed())
4502 VT
= ST
->getMemoryVT();
4503 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
4504 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
4506 Ptr
= ST
->getBasePtr();
4512 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4513 // out. There is no reason to make this a preinc/predec.
4514 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
4515 Ptr
.getNode()->hasOneUse())
4518 // Ask the target to do addressing mode selection.
4521 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4522 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
4524 // Don't create a indexed load / store with zero offset.
4525 if (isa
<ConstantSDNode
>(Offset
) &&
4526 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4529 // Try turning it into a pre-indexed load / store except when:
4530 // 1) The new base ptr is a frame index.
4531 // 2) If N is a store and the new base ptr is either the same as or is a
4532 // predecessor of the value being stored.
4533 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4534 // that would create a cycle.
4535 // 4) All uses are load / store ops that use it as old base ptr.
4537 // Check #1. Preinc'ing a frame index would require copying the stack pointer
4538 // (plus the implicit offset) to a register to preinc anyway.
4539 if (isa
<FrameIndexSDNode
>(BasePtr
))
4544 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
4545 if (Val
== BasePtr
|| BasePtr
.getNode()->isPredecessorOf(Val
.getNode()))
4549 // Now check for #3 and #4.
4550 bool RealUse
= false;
4551 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4552 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4556 if (Use
->isPredecessorOf(N
))
4559 if (!((Use
->getOpcode() == ISD::LOAD
&&
4560 cast
<LoadSDNode
>(Use
)->getBasePtr() == Ptr
) ||
4561 (Use
->getOpcode() == ISD::STORE
&&
4562 cast
<StoreSDNode
>(Use
)->getBasePtr() == Ptr
)))
4571 Result
= DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4572 BasePtr
, Offset
, AM
);
4574 Result
= DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4575 BasePtr
, Offset
, AM
);
4578 DOUT
<< "\nReplacing.4 "; DEBUG(N
->dump(&DAG
));
4579 DOUT
<< "\nWith: "; DEBUG(Result
.getNode()->dump(&DAG
));
4581 WorkListRemover
DeadNodes(*this);
4583 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4585 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4588 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4592 // Finally, since the node is now dead, remove it from the graph.
4595 // Replace the uses of Ptr with uses of the updated base value.
4596 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0),
4598 removeFromWorkList(Ptr
.getNode());
4599 DAG
.DeleteNode(Ptr
.getNode());
4604 /// CombineToPostIndexedLoadStore - Try to combine a load / store with a
4605 /// add / sub of the base pointer node into a post-indexed load / store.
4606 /// The transformation folded the add / subtract into the new indexed
4607 /// load / store effectively and all of its uses are redirected to the
4608 /// new load / store.
4609 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
4610 if (!LegalOperations
)
4616 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
4617 if (LD
->isIndexed())
4619 VT
= LD
->getMemoryVT();
4620 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
4621 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
4623 Ptr
= LD
->getBasePtr();
4624 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
4625 if (ST
->isIndexed())
4627 VT
= ST
->getMemoryVT();
4628 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
4629 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
4631 Ptr
= ST
->getBasePtr();
4637 if (Ptr
.getNode()->hasOneUse())
4640 for (SDNode::use_iterator I
= Ptr
.getNode()->use_begin(),
4641 E
= Ptr
.getNode()->use_end(); I
!= E
; ++I
) {
4644 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
4649 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
4650 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
4652 std::swap(BasePtr
, Offset
);
4655 // Don't create a indexed load / store with zero offset.
4656 if (isa
<ConstantSDNode
>(Offset
) &&
4657 cast
<ConstantSDNode
>(Offset
)->isNullValue())
4660 // Try turning it into a post-indexed load / store except when
4661 // 1) All uses are load / store ops that use it as base ptr.
4662 // 2) Op must be independent of N, i.e. Op is neither a predecessor
4663 // nor a successor of N. Otherwise, if Op is folded that would
4667 bool TryNext
= false;
4668 for (SDNode::use_iterator II
= BasePtr
.getNode()->use_begin(),
4669 EE
= BasePtr
.getNode()->use_end(); II
!= EE
; ++II
) {
4671 if (Use
== Ptr
.getNode())
4674 // If all the uses are load / store addresses, then don't do the
4676 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
4677 bool RealUse
= false;
4678 for (SDNode::use_iterator III
= Use
->use_begin(),
4679 EEE
= Use
->use_end(); III
!= EEE
; ++III
) {
4680 SDNode
*UseUse
= *III
;
4681 if (!((UseUse
->getOpcode() == ISD::LOAD
&&
4682 cast
<LoadSDNode
>(UseUse
)->getBasePtr().getNode() == Use
) ||
4683 (UseUse
->getOpcode() == ISD::STORE
&&
4684 cast
<StoreSDNode
>(UseUse
)->getBasePtr().getNode() == Use
)))
4699 if (!Op
->isPredecessorOf(N
) && !N
->isPredecessorOf(Op
)) {
4700 SDValue Result
= isLoad
4701 ? DAG
.getIndexedLoad(SDValue(N
,0), N
->getDebugLoc(),
4702 BasePtr
, Offset
, AM
)
4703 : DAG
.getIndexedStore(SDValue(N
,0), N
->getDebugLoc(),
4704 BasePtr
, Offset
, AM
);
4707 DOUT
<< "\nReplacing.5 "; DEBUG(N
->dump(&DAG
));
4708 DOUT
<< "\nWith: "; DEBUG(Result
.getNode()->dump(&DAG
));
4710 WorkListRemover
DeadNodes(*this);
4712 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0),
4714 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2),
4717 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1),
4721 // Finally, since the node is now dead, remove it from the graph.
4724 // Replace the uses of Use with uses of the updated base value.
4725 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
4726 Result
.getValue(isLoad
? 1 : 0),
4728 removeFromWorkList(Op
);
4738 /// InferAlignment - If we can infer some alignment information from this
4739 /// pointer, return it.
4740 static unsigned InferAlignment(SDValue Ptr
, SelectionDAG
&DAG
) {
4741 // If this is a direct reference to a stack slot, use information about the
4742 // stack slot's alignment.
4743 int FrameIdx
= 1 << 31;
4744 int64_t FrameOffset
= 0;
4745 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
4746 FrameIdx
= FI
->getIndex();
4747 } else if (Ptr
.getOpcode() == ISD::ADD
&&
4748 isa
<ConstantSDNode
>(Ptr
.getOperand(1)) &&
4749 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
4750 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
4751 FrameOffset
= Ptr
.getConstantOperandVal(1);
4754 if (FrameIdx
!= (1 << 31)) {
4755 // FIXME: Handle FI+CST.
4756 const MachineFrameInfo
&MFI
= *DAG
.getMachineFunction().getFrameInfo();
4757 if (MFI
.isFixedObjectIndex(FrameIdx
)) {
4758 int64_t ObjectOffset
= MFI
.getObjectOffset(FrameIdx
) + FrameOffset
;
4760 // The alignment of the frame index can be determined from its offset from
4761 // the incoming frame position. If the frame object is at offset 32 and
4762 // the stack is guaranteed to be 16-byte aligned, then we know that the
4763 // object is 16-byte aligned.
4764 unsigned StackAlign
= DAG
.getTarget().getFrameInfo()->getStackAlignment();
4765 unsigned Align
= MinAlign(ObjectOffset
, StackAlign
);
4767 // Finally, the frame object itself may have a known alignment. Factor
4768 // the alignment + offset into a new alignment. For example, if we know
4769 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
4770 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
4771 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4772 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
4774 return std::max(Align
, FIInfoAlign
);
4781 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
4782 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
4783 SDValue Chain
= LD
->getChain();
4784 SDValue Ptr
= LD
->getBasePtr();
4786 // Try to infer better alignment information than the load already has.
4787 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
4788 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
4789 if (Align
> LD
->getAlignment())
4790 return DAG
.getExtLoad(LD
->getExtensionType(), N
->getDebugLoc(),
4791 LD
->getValueType(0),
4792 Chain
, Ptr
, LD
->getSrcValue(),
4793 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
4794 LD
->isVolatile(), Align
);
4798 // If load is not volatile and there are no uses of the loaded value (and
4799 // the updated indexed value in case of indexed loads), change uses of the
4800 // chain value into uses of the chain input (i.e. delete the dead load).
4801 if (!LD
->isVolatile()) {
4802 if (N
->getValueType(1) == MVT::Other
) {
4804 if (N
->hasNUsesOfValue(0, 0)) {
4805 // It's not safe to use the two value CombineTo variant here. e.g.
4806 // v1, chain2 = load chain1, loc
4807 // v2, chain3 = load chain2, loc
4809 // Now we replace use of chain2 with chain1. This makes the second load
4810 // isomorphic to the one we are deleting, and thus makes this load live.
4811 DOUT
<< "\nReplacing.6 "; DEBUG(N
->dump(&DAG
));
4812 DOUT
<< "\nWith chain: "; DEBUG(Chain
.getNode()->dump(&DAG
));
4814 WorkListRemover
DeadNodes(*this);
4815 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
, &DeadNodes
);
4817 if (N
->use_empty()) {
4818 removeFromWorkList(N
);
4822 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4826 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
4827 if (N
->hasNUsesOfValue(0, 0) && N
->hasNUsesOfValue(0, 1)) {
4828 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
4829 DOUT
<< "\nReplacing.6 "; DEBUG(N
->dump(&DAG
));
4830 DOUT
<< "\nWith: "; DEBUG(Undef
.getNode()->dump(&DAG
));
4831 DOUT
<< " and 2 other values\n";
4832 WorkListRemover
DeadNodes(*this);
4833 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
, &DeadNodes
);
4834 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1),
4835 DAG
.getUNDEF(N
->getValueType(1)),
4837 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
, &DeadNodes
);
4838 removeFromWorkList(N
);
4840 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4845 // If this load is directly stored, replace the load value with the stored
4847 // TODO: Handle store large -> read small portion.
4848 // TODO: Handle TRUNCSTORE/LOADEXT
4849 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
4850 !LD
->isVolatile()) {
4851 if (ISD::isNON_TRUNCStore(Chain
.getNode())) {
4852 StoreSDNode
*PrevST
= cast
<StoreSDNode
>(Chain
);
4853 if (PrevST
->getBasePtr() == Ptr
&&
4854 PrevST
->getValue().getValueType() == N
->getValueType(0))
4855 return CombineTo(N
, Chain
.getOperand(1), Chain
);
4860 // Walk up chain skipping non-aliasing memory nodes.
4861 SDValue BetterChain
= FindBetterChain(N
, Chain
);
4863 // If there is a better chain.
4864 if (Chain
!= BetterChain
) {
4867 // Replace the chain to void dependency.
4868 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
4869 ReplLoad
= DAG
.getLoad(N
->getValueType(0), LD
->getDebugLoc(),
4871 LD
->getSrcValue(), LD
->getSrcValueOffset(),
4872 LD
->isVolatile(), LD
->getAlignment());
4874 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), LD
->getDebugLoc(),
4875 LD
->getValueType(0),
4876 BetterChain
, Ptr
, LD
->getSrcValue(),
4877 LD
->getSrcValueOffset(),
4880 LD
->getAlignment());
4883 // Create token factor to keep old chain connected.
4884 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
4885 MVT::Other
, Chain
, ReplLoad
.getValue(1));
4887 // Replace uses with load result and token factor. Don't add users
4889 return CombineTo(N
, ReplLoad
.getValue(0), Token
, false);
4893 // Try transforming N to an indexed load.
4894 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
4895 return SDValue(N
, 0);
4900 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
4901 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
4902 SDValue Chain
= ST
->getChain();
4903 SDValue Value
= ST
->getValue();
4904 SDValue Ptr
= ST
->getBasePtr();
4906 // Try to infer better alignment information than the store already has.
4907 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
4908 if (unsigned Align
= InferAlignment(Ptr
, DAG
)) {
4909 if (Align
> ST
->getAlignment())
4910 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
,
4911 Ptr
, ST
->getSrcValue(),
4912 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
4913 ST
->isVolatile(), Align
);
4917 // If this is a store of a bit convert, store the input value if the
4918 // resultant store does not need a higher alignment than the original.
4919 if (Value
.getOpcode() == ISD::BIT_CONVERT
&& !ST
->isTruncatingStore() &&
4920 ST
->isUnindexed()) {
4921 unsigned OrigAlign
= ST
->getAlignment();
4922 MVT SVT
= Value
.getOperand(0).getValueType();
4923 unsigned Align
= TLI
.getTargetData()->
4924 getABITypeAlignment(SVT
.getTypeForMVT());
4925 if (Align
<= OrigAlign
&&
4926 ((!LegalOperations
&& !ST
->isVolatile()) ||
4927 TLI
.isOperationLegalOrCustom(ISD::STORE
, SVT
)))
4928 return DAG
.getStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
4929 Ptr
, ST
->getSrcValue(),
4930 ST
->getSrcValueOffset(), ST
->isVolatile(), OrigAlign
);
4933 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4934 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Value
)) {
4935 // NOTE: If the original store is volatile, this transform must not increase
4936 // the number of stores. For example, on x86-32 an f64 can be stored in one
4937 // processor operation but an i64 (which is not legal) requires two. So the
4938 // transform should not be done in this case.
4939 if (Value
.getOpcode() != ISD::TargetConstantFP
) {
4941 switch (CFP
->getValueType(0).getSimpleVT()) {
4942 default: assert(0 && "Unknown FP type");
4943 case MVT::f80
: // We don't do this for these yet.
4948 if (((TLI
.isTypeLegal(MVT::i32
) || !LegalTypes
) && !LegalOperations
&&
4949 !ST
->isVolatile()) ||
4950 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
4951 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
4952 bitcastToAPInt().getZExtValue(), MVT::i32
);
4953 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
4954 Ptr
, ST
->getSrcValue(),
4955 ST
->getSrcValueOffset(), ST
->isVolatile(),
4956 ST
->getAlignment());
4960 if (((TLI
.isTypeLegal(MVT::i64
) || !LegalTypes
) && !LegalOperations
&&
4961 !ST
->isVolatile()) ||
4962 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
4963 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
4964 getZExtValue(), MVT::i64
);
4965 return DAG
.getStore(Chain
, N
->getDebugLoc(), Tmp
,
4966 Ptr
, ST
->getSrcValue(),
4967 ST
->getSrcValueOffset(), ST
->isVolatile(),
4968 ST
->getAlignment());
4969 } else if (!ST
->isVolatile() &&
4970 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
4971 // Many FP stores are not made apparent until after legalize, e.g. for
4972 // argument passing. Since this is so common, custom legalize the
4973 // 64-bit integer store into two 32-bit stores.
4974 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
4975 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, MVT::i32
);
4976 SDValue Hi
= DAG
.getConstant(Val
>> 32, MVT::i32
);
4977 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
4979 int SVOffset
= ST
->getSrcValueOffset();
4980 unsigned Alignment
= ST
->getAlignment();
4981 bool isVolatile
= ST
->isVolatile();
4983 SDValue St0
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Lo
,
4984 Ptr
, ST
->getSrcValue(),
4985 ST
->getSrcValueOffset(),
4986 isVolatile
, ST
->getAlignment());
4987 Ptr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), Ptr
.getValueType(), Ptr
,
4988 DAG
.getConstant(4, Ptr
.getValueType()));
4990 Alignment
= MinAlign(Alignment
, 4U);
4991 SDValue St1
= DAG
.getStore(Chain
, ST
->getDebugLoc(), Hi
,
4992 Ptr
, ST
->getSrcValue(),
4993 SVOffset
, isVolatile
, Alignment
);
4994 return DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
5004 // Walk up chain skipping non-aliasing memory nodes.
5005 SDValue BetterChain
= FindBetterChain(N
, Chain
);
5007 // If there is a better chain.
5008 if (Chain
!= BetterChain
) {
5009 // Replace the chain to avoid dependency.
5011 if (ST
->isTruncatingStore()) {
5012 ReplStore
= DAG
.getTruncStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
5013 ST
->getSrcValue(),ST
->getSrcValueOffset(),
5015 ST
->isVolatile(), ST
->getAlignment());
5017 ReplStore
= DAG
.getStore(BetterChain
, N
->getDebugLoc(), Value
, Ptr
,
5018 ST
->getSrcValue(), ST
->getSrcValueOffset(),
5019 ST
->isVolatile(), ST
->getAlignment());
5022 // Create token to keep both nodes around.
5023 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(),
5024 MVT::Other
, Chain
, ReplStore
);
5026 // Don't add users to work list.
5027 return CombineTo(N
, Token
, false);
5031 // Try transforming N to an indexed store.
5032 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
5033 return SDValue(N
, 0);
5035 // FIXME: is there such a thing as a truncating indexed store?
5036 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
5037 Value
.getValueType().isInteger()) {
5038 // See if we can simplify the input to this truncstore with knowledge that
5039 // only the low bits are being used. For example:
5040 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
5042 GetDemandedBits(Value
,
5043 APInt::getLowBitsSet(Value
.getValueSizeInBits(),
5044 ST
->getMemoryVT().getSizeInBits()));
5045 AddToWorkList(Value
.getNode());
5046 if (Shorter
.getNode())
5047 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Shorter
,
5048 Ptr
, ST
->getSrcValue(),
5049 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5050 ST
->isVolatile(), ST
->getAlignment());
5052 // Otherwise, see if we can simplify the operation with
5053 // SimplifyDemandedBits, which only works if the value has a single use.
5054 if (SimplifyDemandedBits(Value
,
5055 APInt::getLowBitsSet(
5056 Value
.getValueSizeInBits(),
5057 ST
->getMemoryVT().getSizeInBits())))
5058 return SDValue(N
, 0);
5061 // If this is a load followed by a store to the same location, then the store
5063 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
5064 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
5065 ST
->isUnindexed() && !ST
->isVolatile() &&
5066 // There can't be any side effects between the load and store, such as
5068 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
5069 // The store is dead, remove it.
5074 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
5075 // truncating store. We can do this even if this is already a truncstore.
5076 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
5077 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
5078 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
5079 ST
->getMemoryVT())) {
5080 return DAG
.getTruncStore(Chain
, N
->getDebugLoc(), Value
.getOperand(0),
5081 Ptr
, ST
->getSrcValue(),
5082 ST
->getSrcValueOffset(), ST
->getMemoryVT(),
5083 ST
->isVolatile(), ST
->getAlignment());
5089 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
5090 SDValue InVec
= N
->getOperand(0);
5091 SDValue InVal
= N
->getOperand(1);
5092 SDValue EltNo
= N
->getOperand(2);
5094 // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
5095 // vector with the inserted element.
5096 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& isa
<ConstantSDNode
>(EltNo
)) {
5097 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5098 SmallVector
<SDValue
, 8> Ops(InVec
.getNode()->op_begin(),
5099 InVec
.getNode()->op_end());
5100 if (Elt
< Ops
.size())
5102 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5103 InVec
.getValueType(), &Ops
[0], Ops
.size());
5105 // If the invec is an UNDEF and if EltNo is a constant, create a new
5106 // BUILD_VECTOR with undef elements and the inserted element.
5107 if (!LegalOperations
&& InVec
.getOpcode() == ISD::UNDEF
&&
5108 isa
<ConstantSDNode
>(EltNo
)) {
5109 MVT VT
= InVec
.getValueType();
5110 MVT EVT
= VT
.getVectorElementType();
5111 unsigned NElts
= VT
.getVectorNumElements();
5112 SmallVector
<SDValue
, 8> Ops(NElts
, DAG
.getUNDEF(EVT
));
5114 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5115 if (Elt
< Ops
.size())
5117 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5118 InVec
.getValueType(), &Ops
[0], Ops
.size());
5123 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
5124 // (vextract (scalar_to_vector val, 0) -> val
5125 SDValue InVec
= N
->getOperand(0);
5127 if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
5128 // If the operand is wider than the vector element type then it is implicitly
5129 // truncated. Make that explicit here.
5130 MVT EltVT
= InVec
.getValueType().getVectorElementType();
5131 SDValue InOp
= InVec
.getOperand(0);
5132 if (InOp
.getValueType() != EltVT
)
5133 return DAG
.getNode(ISD::TRUNCATE
, InVec
.getDebugLoc(), EltVT
, InOp
);
5137 // Perform only after legalization to ensure build_vector / vector_shuffle
5138 // optimizations have already been done.
5139 if (!LegalOperations
) return SDValue();
5141 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
5142 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
5143 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
5144 SDValue EltNo
= N
->getOperand(1);
5146 if (isa
<ConstantSDNode
>(EltNo
)) {
5147 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
5148 bool NewLoad
= false;
5149 bool BCNumEltsChanged
= false;
5150 MVT VT
= InVec
.getValueType();
5151 MVT EVT
= VT
.getVectorElementType();
5154 if (InVec
.getOpcode() == ISD::BIT_CONVERT
) {
5155 MVT BCVT
= InVec
.getOperand(0).getValueType();
5156 if (!BCVT
.isVector() || EVT
.bitsGT(BCVT
.getVectorElementType()))
5158 if (VT
.getVectorNumElements() != BCVT
.getVectorNumElements())
5159 BCNumEltsChanged
= true;
5160 InVec
= InVec
.getOperand(0);
5161 EVT
= BCVT
.getVectorElementType();
5165 LoadSDNode
*LN0
= NULL
;
5166 const ShuffleVectorSDNode
*SVN
= NULL
;
5167 if (ISD::isNormalLoad(InVec
.getNode())) {
5168 LN0
= cast
<LoadSDNode
>(InVec
);
5169 } else if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
5170 InVec
.getOperand(0).getValueType() == EVT
&&
5171 ISD::isNormalLoad(InVec
.getOperand(0).getNode())) {
5172 LN0
= cast
<LoadSDNode
>(InVec
.getOperand(0));
5173 } else if ((SVN
= dyn_cast
<ShuffleVectorSDNode
>(InVec
))) {
5174 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
5176 // (load $addr+1*size)
5178 // If the bit convert changed the number of elements, it is unsafe
5179 // to examine the mask.
5180 if (BCNumEltsChanged
)
5183 // Select the input vector, guarding against out of range extract vector.
5184 unsigned NumElems
= VT
.getVectorNumElements();
5185 int Idx
= (Elt
> NumElems
) ? -1 : SVN
->getMaskElt(Elt
);
5186 InVec
= (Idx
< (int)NumElems
) ? InVec
.getOperand(0) : InVec
.getOperand(1);
5188 if (InVec
.getOpcode() == ISD::BIT_CONVERT
)
5189 InVec
= InVec
.getOperand(0);
5190 if (ISD::isNormalLoad(InVec
.getNode())) {
5191 LN0
= cast
<LoadSDNode
>(InVec
);
5192 Elt
= (Idx
< (int)NumElems
) ? Idx
: Idx
- NumElems
;
5196 if (!LN0
|| !LN0
->hasOneUse() || LN0
->isVolatile())
5199 unsigned Align
= LN0
->getAlignment();
5201 // Check the resultant load doesn't need a higher alignment than the
5204 TLI
.getTargetData()->getABITypeAlignment(LVT
.getTypeForMVT());
5206 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, LVT
))
5212 SDValue NewPtr
= LN0
->getBasePtr();
5214 unsigned PtrOff
= LVT
.getSizeInBits() * Elt
/ 8;
5215 MVT PtrType
= NewPtr
.getValueType();
5216 if (TLI
.isBigEndian())
5217 PtrOff
= VT
.getSizeInBits() / 8 - PtrOff
;
5218 NewPtr
= DAG
.getNode(ISD::ADD
, N
->getDebugLoc(), PtrType
, NewPtr
,
5219 DAG
.getConstant(PtrOff
, PtrType
));
5222 return DAG
.getLoad(LVT
, N
->getDebugLoc(), LN0
->getChain(), NewPtr
,
5223 LN0
->getSrcValue(), LN0
->getSrcValueOffset(),
5224 LN0
->isVolatile(), Align
);
5230 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
5231 unsigned NumInScalars
= N
->getNumOperands();
5232 MVT VT
= N
->getValueType(0);
5233 MVT EltType
= VT
.getVectorElementType();
5235 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
5236 // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
5237 // at most two distinct vectors, turn this into a shuffle node.
5238 SDValue VecIn1
, VecIn2
;
5239 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5240 // Ignore undef inputs.
5241 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
5243 // If this input is something other than a EXTRACT_VECTOR_ELT with a
5244 // constant index, bail out.
5245 if (N
->getOperand(i
).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5246 !isa
<ConstantSDNode
>(N
->getOperand(i
).getOperand(1))) {
5247 VecIn1
= VecIn2
= SDValue(0, 0);
5251 // If the input vector type disagrees with the result of the build_vector,
5252 // we can't make a shuffle.
5253 SDValue ExtractedFromVec
= N
->getOperand(i
).getOperand(0);
5254 if (ExtractedFromVec
.getValueType() != VT
) {
5255 VecIn1
= VecIn2
= SDValue(0, 0);
5259 // Otherwise, remember this. We allow up to two distinct input vectors.
5260 if (ExtractedFromVec
== VecIn1
|| ExtractedFromVec
== VecIn2
)
5263 if (VecIn1
.getNode() == 0) {
5264 VecIn1
= ExtractedFromVec
;
5265 } else if (VecIn2
.getNode() == 0) {
5266 VecIn2
= ExtractedFromVec
;
5269 VecIn1
= VecIn2
= SDValue(0, 0);
5274 // If everything is good, we can make a shuffle operation.
5275 if (VecIn1
.getNode()) {
5276 SmallVector
<int, 8> Mask
;
5277 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
5278 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) {
5283 // If extracting from the first vector, just use the index directly.
5284 SDValue Extract
= N
->getOperand(i
);
5285 SDValue ExtVal
= Extract
.getOperand(1);
5286 if (Extract
.getOperand(0) == VecIn1
) {
5287 unsigned ExtIndex
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
5288 if (ExtIndex
> VT
.getVectorNumElements())
5291 Mask
.push_back(ExtIndex
);
5295 // Otherwise, use InIdx + VecSize
5296 unsigned Idx
= cast
<ConstantSDNode
>(ExtVal
)->getZExtValue();
5297 Mask
.push_back(Idx
+NumInScalars
);
5300 // Add count and size info.
5301 if (!TLI
.isTypeLegal(VT
) && LegalTypes
)
5304 // Return the new VECTOR_SHUFFLE node.
5307 Ops
[1] = VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(VT
);
5308 return DAG
.getVectorShuffle(VT
, N
->getDebugLoc(), Ops
[0], Ops
[1], &Mask
[0]);
5314 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
5315 // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
5316 // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
5317 // inputs come from at most two distinct vectors, turn this into a shuffle
5320 // If we only have one input vector, we don't need to do any concatenation.
5321 if (N
->getNumOperands() == 1)
5322 return N
->getOperand(0);
5327 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
5330 MVT VT
= N
->getValueType(0);
5331 unsigned NumElts
= VT
.getVectorNumElements();
5333 SDValue N0
= N
->getOperand(0);
5334 SDValue N1
= N
->getOperand(1);
5336 assert(N0
.getValueType().getVectorNumElements() == NumElts
&&
5337 "Vector shuffle must be normalized in DAG");
5339 // FIXME: implement canonicalizations from DAG.getVectorShuffle()
5341 // If it is a splat, check if the argument vector is a build_vector with
5342 // all scalar elements the same.
5343 if (cast
<ShuffleVectorSDNode
>(N
)->isSplat()) {
5344 SDNode
*V
= N0
.getNode();
5347 // If this is a bit convert that changes the element type of the vector but
5348 // not the number of vector elements, look through it. Be careful not to
5349 // look though conversions that change things like v4f32 to v2f64.
5350 if (V
->getOpcode() == ISD::BIT_CONVERT
) {
5351 SDValue ConvInput
= V
->getOperand(0);
5352 if (ConvInput
.getValueType().isVector() &&
5353 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
5354 V
= ConvInput
.getNode();
5357 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
5358 unsigned NumElems
= V
->getNumOperands();
5359 unsigned BaseIdx
= cast
<ShuffleVectorSDNode
>(N
)->getSplatIndex();
5360 if (NumElems
> BaseIdx
) {
5362 bool AllSame
= true;
5363 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5364 if (V
->getOperand(i
).getOpcode() != ISD::UNDEF
) {
5365 Base
= V
->getOperand(i
);
5369 // Splat of <u, u, u, u>, return <u, u, u, u>
5370 if (!Base
.getNode())
5372 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
5373 if (V
->getOperand(i
) != Base
) {
5378 // Splat of <x, x, x, x>, return <x, x, x, x>
5387 /// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
5388 /// an AND to a vector_shuffle with the destination vector and a zero vector.
5389 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
5390 /// vector_shuffle V, Zero, <0, 4, 2, 4>
5391 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
5392 MVT VT
= N
->getValueType(0);
5393 DebugLoc dl
= N
->getDebugLoc();
5394 SDValue LHS
= N
->getOperand(0);
5395 SDValue RHS
= N
->getOperand(1);
5396 if (N
->getOpcode() == ISD::AND
) {
5397 if (RHS
.getOpcode() == ISD::BIT_CONVERT
)
5398 RHS
= RHS
.getOperand(0);
5399 if (RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5400 SmallVector
<int, 8> Indices
;
5401 unsigned NumElts
= RHS
.getNumOperands();
5402 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5403 SDValue Elt
= RHS
.getOperand(i
);
5404 if (!isa
<ConstantSDNode
>(Elt
))
5406 else if (cast
<ConstantSDNode
>(Elt
)->isAllOnesValue())
5407 Indices
.push_back(i
);
5408 else if (cast
<ConstantSDNode
>(Elt
)->isNullValue())
5409 Indices
.push_back(NumElts
);
5414 // Let's see if the target supports this vector_shuffle.
5415 MVT RVT
= RHS
.getValueType();
5416 if (!TLI
.isVectorClearMaskLegal(Indices
, RVT
))
5419 // Return the new VECTOR_SHUFFLE node.
5420 MVT EVT
= RVT
.getVectorElementType();
5421 SmallVector
<SDValue
,8> ZeroOps(RVT
.getVectorNumElements(),
5422 DAG
.getConstant(0, EVT
));
5423 SDValue Zero
= DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(),
5424 RVT
, &ZeroOps
[0], ZeroOps
.size());
5425 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, RVT
, LHS
);
5426 SDValue Shuf
= DAG
.getVectorShuffle(RVT
, dl
, LHS
, Zero
, &Indices
[0]);
5427 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Shuf
);
5434 /// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5435 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
5436 // After legalize, the target may be depending on adds and other
5437 // binary ops to provide legal ways to construct constants or other
5438 // things. Simplifying them may result in a loss of legality.
5439 if (LegalOperations
) return SDValue();
5441 MVT VT
= N
->getValueType(0);
5442 assert(VT
.isVector() && "SimplifyVBinOp only works on vectors!");
5444 MVT EltType
= VT
.getVectorElementType();
5445 SDValue LHS
= N
->getOperand(0);
5446 SDValue RHS
= N
->getOperand(1);
5447 SDValue Shuffle
= XformToShuffleWithZero(N
);
5448 if (Shuffle
.getNode()) return Shuffle
;
5450 // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5452 if (LHS
.getOpcode() == ISD::BUILD_VECTOR
&&
5453 RHS
.getOpcode() == ISD::BUILD_VECTOR
) {
5454 SmallVector
<SDValue
, 8> Ops
;
5455 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
5456 SDValue LHSOp
= LHS
.getOperand(i
);
5457 SDValue RHSOp
= RHS
.getOperand(i
);
5458 // If these two elements can't be folded, bail out.
5459 if ((LHSOp
.getOpcode() != ISD::UNDEF
&&
5460 LHSOp
.getOpcode() != ISD::Constant
&&
5461 LHSOp
.getOpcode() != ISD::ConstantFP
) ||
5462 (RHSOp
.getOpcode() != ISD::UNDEF
&&
5463 RHSOp
.getOpcode() != ISD::Constant
&&
5464 RHSOp
.getOpcode() != ISD::ConstantFP
))
5467 // Can't fold divide by zero.
5468 if (N
->getOpcode() == ISD::SDIV
|| N
->getOpcode() == ISD::UDIV
||
5469 N
->getOpcode() == ISD::FDIV
) {
5470 if ((RHSOp
.getOpcode() == ISD::Constant
&&
5471 cast
<ConstantSDNode
>(RHSOp
.getNode())->isNullValue()) ||
5472 (RHSOp
.getOpcode() == ISD::ConstantFP
&&
5473 cast
<ConstantFPSDNode
>(RHSOp
.getNode())->getValueAPF().isZero()))
5477 Ops
.push_back(DAG
.getNode(N
->getOpcode(), LHS
.getDebugLoc(),
5478 EltType
, LHSOp
, RHSOp
));
5479 AddToWorkList(Ops
.back().getNode());
5480 assert((Ops
.back().getOpcode() == ISD::UNDEF
||
5481 Ops
.back().getOpcode() == ISD::Constant
||
5482 Ops
.back().getOpcode() == ISD::ConstantFP
) &&
5483 "Scalar binop didn't fold!");
5486 if (Ops
.size() == LHS
.getNumOperands()) {
5487 MVT VT
= LHS
.getValueType();
5488 return DAG
.getNode(ISD::BUILD_VECTOR
, N
->getDebugLoc(), VT
,
5489 &Ops
[0], Ops
.size());
5496 SDValue
DAGCombiner::SimplifySelect(DebugLoc DL
, SDValue N0
,
5497 SDValue N1
, SDValue N2
){
5498 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
5500 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
5501 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
5503 // If we got a simplified select_cc node back from SimplifySelectCC, then
5504 // break it down into a new SETCC node, and a new SELECT node, and then return
5505 // the SELECT node, since we were called with a SELECT node.
5506 if (SCC
.getNode()) {
5507 // Check to see if we got a select_cc back (to turn into setcc/select).
5508 // Otherwise, just return whatever node we got back, like fabs.
5509 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
5510 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, N0
.getDebugLoc(),
5512 SCC
.getOperand(0), SCC
.getOperand(1),
5514 AddToWorkList(SETCC
.getNode());
5515 return DAG
.getNode(ISD::SELECT
, SCC
.getDebugLoc(), SCC
.getValueType(),
5516 SCC
.getOperand(2), SCC
.getOperand(3), SETCC
);
5524 /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5525 /// are the two values being selected between, see if we can simplify the
5526 /// select. Callers of this should assume that TheSelect is deleted if this
5527 /// returns true. As such, they should return the appropriate thing (e.g. the
5528 /// node) back to the top-level of the DAG combiner loop to avoid it being
5530 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
5533 // If this is a select from two identical things, try to pull the operation
5534 // through the select.
5535 if (LHS
.getOpcode() == RHS
.getOpcode() && LHS
.hasOneUse() && RHS
.hasOneUse()){
5536 // If this is a load and the token chain is identical, replace the select
5537 // of two loads with a load through a select of the address to load from.
5538 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5539 // constants have been dropped into the constant pool.
5540 if (LHS
.getOpcode() == ISD::LOAD
&&
5541 // Do not let this transformation reduce the number of volatile loads.
5542 !cast
<LoadSDNode
>(LHS
)->isVolatile() &&
5543 !cast
<LoadSDNode
>(RHS
)->isVolatile() &&
5544 // Token chains must be identical.
5545 LHS
.getOperand(0) == RHS
.getOperand(0)) {
5546 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
5547 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
5549 // If this is an EXTLOAD, the VT's must match.
5550 if (LLD
->getMemoryVT() == RLD
->getMemoryVT()) {
5551 // FIXME: this conflates two src values, discarding one. This is not
5552 // the right thing to do, but nothing uses srcvalues now. When they do,
5553 // turn SrcValue into a list of locations.
5555 if (TheSelect
->getOpcode() == ISD::SELECT
) {
5556 // Check that the condition doesn't reach either load. If so, folding
5557 // this will induce a cycle into the DAG.
5558 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5559 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode())) {
5560 Addr
= DAG
.getNode(ISD::SELECT
, TheSelect
->getDebugLoc(),
5561 LLD
->getBasePtr().getValueType(),
5562 TheSelect
->getOperand(0), LLD
->getBasePtr(),
5566 // Check that the condition doesn't reach either load. If so, folding
5567 // this will induce a cycle into the DAG.
5568 if (!LLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5569 !RLD
->isPredecessorOf(TheSelect
->getOperand(0).getNode()) &&
5570 !LLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode()) &&
5571 !RLD
->isPredecessorOf(TheSelect
->getOperand(1).getNode())) {
5572 Addr
= DAG
.getNode(ISD::SELECT_CC
, TheSelect
->getDebugLoc(),
5573 LLD
->getBasePtr().getValueType(),
5574 TheSelect
->getOperand(0),
5575 TheSelect
->getOperand(1),
5576 LLD
->getBasePtr(), RLD
->getBasePtr(),
5577 TheSelect
->getOperand(4));
5581 if (Addr
.getNode()) {
5583 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
5584 Load
= DAG
.getLoad(TheSelect
->getValueType(0),
5585 TheSelect
->getDebugLoc(),
5587 Addr
,LLD
->getSrcValue(),
5588 LLD
->getSrcValueOffset(),
5590 LLD
->getAlignment());
5592 Load
= DAG
.getExtLoad(LLD
->getExtensionType(),
5593 TheSelect
->getDebugLoc(),
5594 TheSelect
->getValueType(0),
5595 LLD
->getChain(), Addr
, LLD
->getSrcValue(),
5596 LLD
->getSrcValueOffset(),
5599 LLD
->getAlignment());
5602 // Users of the select now use the result of the load.
5603 CombineTo(TheSelect
, Load
);
5605 // Users of the old loads now use the new load's chain. We know the
5606 // old-load value is dead now.
5607 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5608 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
5618 /// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
5619 /// where 'cond' is the comparison specified by CC.
5620 SDValue
DAGCombiner::SimplifySelectCC(DebugLoc DL
, SDValue N0
, SDValue N1
,
5621 SDValue N2
, SDValue N3
,
5622 ISD::CondCode CC
, bool NotExtCompare
) {
5623 // (x ? y : y) -> y.
5624 if (N2
== N3
) return N2
;
5626 MVT VT
= N2
.getValueType();
5627 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
5628 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
5629 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
.getNode());
5631 // Determine if the condition we're dealing with is constant
5632 SDValue SCC
= SimplifySetCC(TLI
.getSetCCResultType(N0
.getValueType()),
5633 N0
, N1
, CC
, DL
, false);
5634 if (SCC
.getNode()) AddToWorkList(SCC
.getNode());
5635 ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode());
5637 // fold select_cc true, x, y -> x
5638 if (SCCC
&& !SCCC
->isNullValue())
5640 // fold select_cc false, x, y -> y
5641 if (SCCC
&& SCCC
->isNullValue())
5644 // Check to see if we can simplify the select into an fabs node
5645 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
5646 // Allow either -0.0 or 0.0
5647 if (CFP
->getValueAPF().isZero()) {
5648 // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5649 if ((CC
== ISD::SETGE
|| CC
== ISD::SETGT
) &&
5650 N0
== N2
&& N3
.getOpcode() == ISD::FNEG
&&
5651 N2
== N3
.getOperand(0))
5652 return DAG
.getNode(ISD::FABS
, DL
, VT
, N0
);
5654 // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5655 if ((CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5656 N0
== N3
&& N2
.getOpcode() == ISD::FNEG
&&
5657 N2
.getOperand(0) == N3
)
5658 return DAG
.getNode(ISD::FABS
, DL
, VT
, N3
);
5662 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
5663 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
5664 // in it. This is a win when the constant is not otherwise available because
5665 // it replaces two constant pool loads with one. We only do this if the FP
5666 // type is known to be legal, because if it isn't, then we are before legalize
5667 // types an we want the other legalization to happen first (e.g. to avoid
5668 // messing with soft float) and if the ConstantFP is not legal, because if
5669 // it is legal, we may not need to store the FP constant in a constant pool.
5670 if (ConstantFPSDNode
*TV
= dyn_cast
<ConstantFPSDNode
>(N2
))
5671 if (ConstantFPSDNode
*FV
= dyn_cast
<ConstantFPSDNode
>(N3
)) {
5672 if (TLI
.isTypeLegal(N2
.getValueType()) &&
5673 (TLI
.getOperationAction(ISD::ConstantFP
, N2
.getValueType()) !=
5674 TargetLowering::Legal
) &&
5675 // If both constants have multiple uses, then we won't need to do an
5676 // extra load, they are likely around in registers for other users.
5677 (TV
->hasOneUse() || FV
->hasOneUse())) {
5678 Constant
*Elts
[] = {
5679 const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
5680 const_cast<ConstantFP
*>(TV
->getConstantFPValue())
5682 const Type
*FPTy
= Elts
[0]->getType();
5683 const TargetData
&TD
= *TLI
.getTargetData();
5685 // Create a ConstantArray of the two constants.
5686 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
, 2);
5687 SDValue CPIdx
= DAG
.getConstantPool(CA
, TLI
.getPointerTy(),
5688 TD
.getPrefTypeAlignment(FPTy
));
5689 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5691 // Get the offsets to the 0 and 1 element of the array so that we can
5692 // select between them.
5693 SDValue Zero
= DAG
.getIntPtrConstant(0);
5694 unsigned EltSize
= (unsigned)TD
.getTypePaddedSize(Elts
[0]->getType());
5695 SDValue One
= DAG
.getIntPtrConstant(EltSize
);
5697 SDValue Cond
= DAG
.getSetCC(DL
,
5698 TLI
.getSetCCResultType(N0
.getValueType()),
5700 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, DL
, Zero
.getValueType(),
5702 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, TLI
.getPointerTy(), CPIdx
,
5704 return DAG
.getLoad(TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
5705 PseudoSourceValue::getConstantPool(), 0, false,
5711 // Check to see if we can perform the "gzip trick", transforming
5712 // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
5713 if (N1C
&& N3C
&& N3C
->isNullValue() && CC
== ISD::SETLT
&&
5714 N0
.getValueType().isInteger() &&
5715 N2
.getValueType().isInteger() &&
5716 (N1C
->isNullValue() || // (a < 0) ? b : 0
5717 (N1C
->getAPIntValue() == 1 && N0
== N2
))) { // (a < 1) ? a : 0
5718 MVT XType
= N0
.getValueType();
5719 MVT AType
= N2
.getValueType();
5720 if (XType
.bitsGE(AType
)) {
5721 // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5722 // single-bit constant.
5723 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue()-1)) == 0)) {
5724 unsigned ShCtV
= N2C
->getAPIntValue().logBase2();
5725 ShCtV
= XType
.getSizeInBits()-ShCtV
-1;
5726 SDValue ShCt
= DAG
.getConstant(ShCtV
, getShiftAmountTy());
5727 SDValue Shift
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(),
5729 AddToWorkList(Shift
.getNode());
5731 if (XType
.bitsGT(AType
)) {
5732 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5733 AddToWorkList(Shift
.getNode());
5736 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5739 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(),
5741 DAG
.getConstant(XType
.getSizeInBits()-1,
5742 getShiftAmountTy()));
5743 AddToWorkList(Shift
.getNode());
5745 if (XType
.bitsGT(AType
)) {
5746 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
5747 AddToWorkList(Shift
.getNode());
5750 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
5754 // fold select C, 16, 0 -> shl C, 4
5755 if (N2C
&& N3C
&& N3C
->isNullValue() && N2C
->getAPIntValue().isPowerOf2() &&
5756 TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
) {
5758 // If the caller doesn't want us to simplify this into a zext of a compare,
5760 if (NotExtCompare
&& N2C
->getAPIntValue() == 1)
5763 // Get a SetCC of the condition
5764 // FIXME: Should probably make sure that setcc is legal if we ever have a
5765 // target where it isn't.
5767 // cast from setcc result type to select result type
5769 SCC
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(N0
.getValueType()),
5771 if (N2
.getValueType().bitsLT(SCC
.getValueType()))
5772 Temp
= DAG
.getZeroExtendInReg(SCC
, N2
.getDebugLoc(), N2
.getValueType());
5774 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5775 N2
.getValueType(), SCC
);
5777 SCC
= DAG
.getSetCC(N0
.getDebugLoc(), MVT::i1
, N0
, N1
, CC
);
5778 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, N2
.getDebugLoc(),
5779 N2
.getValueType(), SCC
);
5782 AddToWorkList(SCC
.getNode());
5783 AddToWorkList(Temp
.getNode());
5785 if (N2C
->getAPIntValue() == 1)
5788 // shl setcc result by log2 n2c
5789 return DAG
.getNode(ISD::SHL
, DL
, N2
.getValueType(), Temp
,
5790 DAG
.getConstant(N2C
->getAPIntValue().logBase2(),
5791 getShiftAmountTy()));
5794 // Check to see if this is the equivalent of setcc
5795 // FIXME: Turn all of these into setcc if setcc if setcc is legal
5796 // otherwise, go ahead with the folds.
5797 if (0 && N3C
&& N3C
->isNullValue() && N2C
&& (N2C
->getAPIntValue() == 1ULL)) {
5798 MVT XType
= N0
.getValueType();
5799 if (!LegalOperations
||
5800 TLI
.isOperationLegal(ISD::SETCC
, TLI
.getSetCCResultType(XType
))) {
5801 SDValue Res
= DAG
.getSetCC(DL
, TLI
.getSetCCResultType(XType
), N0
, N1
, CC
);
5802 if (Res
.getValueType() != VT
)
5803 Res
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Res
);
5807 // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
5808 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETEQ
&&
5809 (!LegalOperations
||
5810 TLI
.isOperationLegal(ISD::CTLZ
, XType
))) {
5811 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, N0
.getDebugLoc(), XType
, N0
);
5812 return DAG
.getNode(ISD::SRL
, DL
, XType
, Ctlz
,
5813 DAG
.getConstant(Log2_32(XType
.getSizeInBits()),
5814 getShiftAmountTy()));
5816 // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
5817 if (N1C
&& N1C
->isNullValue() && CC
== ISD::SETGT
) {
5818 SDValue NegN0
= DAG
.getNode(ISD::SUB
, N0
.getDebugLoc(),
5819 XType
, DAG
.getConstant(0, XType
), N0
);
5820 SDValue NotN0
= DAG
.getNOT(N0
.getDebugLoc(), N0
, XType
);
5821 return DAG
.getNode(ISD::SRL
, DL
, XType
,
5822 DAG
.getNode(ISD::AND
, DL
, XType
, NegN0
, NotN0
),
5823 DAG
.getConstant(XType
.getSizeInBits()-1,
5824 getShiftAmountTy()));
5826 // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
5827 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
) {
5828 SDValue Sign
= DAG
.getNode(ISD::SRL
, N0
.getDebugLoc(), XType
, N0
,
5829 DAG
.getConstant(XType
.getSizeInBits()-1,
5830 getShiftAmountTy()));
5831 return DAG
.getNode(ISD::XOR
, DL
, XType
, Sign
, DAG
.getConstant(1, XType
));
5835 // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5836 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5837 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETLT
|| CC
== ISD::SETLE
) &&
5838 N0
== N3
&& N2
.getOpcode() == ISD::SUB
&& N0
== N2
.getOperand(1) &&
5839 N2
.getOperand(0) == N1
&& N0
.getValueType().isInteger()) {
5840 MVT XType
= N0
.getValueType();
5841 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
, N0
,
5842 DAG
.getConstant(XType
.getSizeInBits()-1,
5843 getShiftAmountTy()));
5844 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(), XType
,
5846 AddToWorkList(Shift
.getNode());
5847 AddToWorkList(Add
.getNode());
5848 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
5850 // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5851 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5852 if (N1C
&& N1C
->isAllOnesValue() && CC
== ISD::SETGT
&&
5853 N0
== N2
&& N3
.getOpcode() == ISD::SUB
&& N0
== N3
.getOperand(1)) {
5854 if (ConstantSDNode
*SubC
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(0))) {
5855 MVT XType
= N0
.getValueType();
5856 if (SubC
->isNullValue() && XType
.isInteger()) {
5857 SDValue Shift
= DAG
.getNode(ISD::SRA
, N0
.getDebugLoc(), XType
,
5859 DAG
.getConstant(XType
.getSizeInBits()-1,
5860 getShiftAmountTy()));
5861 SDValue Add
= DAG
.getNode(ISD::ADD
, N0
.getDebugLoc(),
5863 AddToWorkList(Shift
.getNode());
5864 AddToWorkList(Add
.getNode());
5865 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
5873 /// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5874 SDValue
DAGCombiner::SimplifySetCC(MVT VT
, SDValue N0
,
5875 SDValue N1
, ISD::CondCode Cond
,
5876 DebugLoc DL
, bool foldBooleans
) {
5877 TargetLowering::DAGCombinerInfo
5878 DagCombineInfo(DAG
, Level
== Unrestricted
, false, this);
5879 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
5882 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5883 /// return a DAG expression to select that will generate the same value by
5884 /// multiplying by a magic number. See:
5885 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5886 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
5887 std::vector
<SDNode
*> Built
;
5888 SDValue S
= TLI
.BuildSDIV(N
, DAG
, &Built
);
5890 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
5896 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5897 /// return a DAG expression to select that will generate the same value by
5898 /// multiplying by a magic number. See:
5899 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5900 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
5901 std::vector
<SDNode
*> Built
;
5902 SDValue S
= TLI
.BuildUDIV(N
, DAG
, &Built
);
5904 for (std::vector
<SDNode
*>::iterator ii
= Built
.begin(), ee
= Built
.end();
5910 /// FindBaseOffset - Return true if base is known not to alias with anything
5911 /// but itself. Provides base object and offset as results.
5912 static bool FindBaseOffset(SDValue Ptr
, SDValue
&Base
, int64_t &Offset
) {
5913 // Assume it is a primitive operation.
5914 Base
= Ptr
; Offset
= 0;
5916 // If it's an adding a simple constant then integrate the offset.
5917 if (Base
.getOpcode() == ISD::ADD
) {
5918 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Base
.getOperand(1))) {
5919 Base
= Base
.getOperand(0);
5920 Offset
+= C
->getZExtValue();
5924 // If it's any of the following then it can't alias with anything but itself.
5925 return isa
<FrameIndexSDNode
>(Base
) ||
5926 isa
<ConstantPoolSDNode
>(Base
) ||
5927 isa
<GlobalAddressSDNode
>(Base
);
5930 /// isAlias - Return true if there is any possibility that the two addresses
5932 bool DAGCombiner::isAlias(SDValue Ptr1
, int64_t Size1
,
5933 const Value
*SrcValue1
, int SrcValueOffset1
,
5934 SDValue Ptr2
, int64_t Size2
,
5935 const Value
*SrcValue2
, int SrcValueOffset2
) const {
5936 // If they are the same then they must be aliases.
5937 if (Ptr1
== Ptr2
) return true;
5939 // Gather base node and offset information.
5940 SDValue Base1
, Base2
;
5941 int64_t Offset1
, Offset2
;
5942 bool KnownBase1
= FindBaseOffset(Ptr1
, Base1
, Offset1
);
5943 bool KnownBase2
= FindBaseOffset(Ptr2
, Base2
, Offset2
);
5945 // If they have a same base address then...
5947 // Check to see if the addresses overlap.
5948 return !((Offset1
+ Size1
) <= Offset2
|| (Offset2
+ Size2
) <= Offset1
);
5950 // If we know both bases then they can't alias.
5951 if (KnownBase1
&& KnownBase2
) return false;
5953 if (CombinerGlobalAA
) {
5954 // Use alias analysis information.
5955 int64_t MinOffset
= std::min(SrcValueOffset1
, SrcValueOffset2
);
5956 int64_t Overlap1
= Size1
+ SrcValueOffset1
- MinOffset
;
5957 int64_t Overlap2
= Size2
+ SrcValueOffset2
- MinOffset
;
5958 AliasAnalysis::AliasResult AAResult
=
5959 AA
.alias(SrcValue1
, Overlap1
, SrcValue2
, Overlap2
);
5960 if (AAResult
== AliasAnalysis::NoAlias
)
5964 // Otherwise we have to assume they alias.
5968 /// FindAliasInfo - Extracts the relevant alias information from the memory
5969 /// node. Returns true if the operand was a load.
5970 bool DAGCombiner::FindAliasInfo(SDNode
*N
,
5971 SDValue
&Ptr
, int64_t &Size
,
5972 const Value
*&SrcValue
, int &SrcValueOffset
) const {
5973 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
5974 Ptr
= LD
->getBasePtr();
5975 Size
= LD
->getMemoryVT().getSizeInBits() >> 3;
5976 SrcValue
= LD
->getSrcValue();
5977 SrcValueOffset
= LD
->getSrcValueOffset();
5979 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
5980 Ptr
= ST
->getBasePtr();
5981 Size
= ST
->getMemoryVT().getSizeInBits() >> 3;
5982 SrcValue
= ST
->getSrcValue();
5983 SrcValueOffset
= ST
->getSrcValueOffset();
5985 assert(0 && "FindAliasInfo expected a memory operand");
5991 /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5992 /// looking for aliasing nodes and adding them to the Aliases vector.
5993 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
5994 SmallVector
<SDValue
, 8> &Aliases
) {
5995 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
5996 std::set
<SDNode
*> Visited
; // Visited node set.
5998 // Get alias information for node.
6001 const Value
*SrcValue
;
6003 bool IsLoad
= FindAliasInfo(N
, Ptr
, Size
, SrcValue
, SrcValueOffset
);
6006 Chains
.push_back(OriginalChain
);
6008 // Look at each chain and determine if it is an alias. If so, add it to the
6009 // aliases list. If not, then continue up the chain looking for the next
6011 while (!Chains
.empty()) {
6012 SDValue Chain
= Chains
.back();
6015 // Don't bother if we've been before.
6016 if (Visited
.find(Chain
.getNode()) != Visited
.end()) continue;
6017 Visited
.insert(Chain
.getNode());
6019 switch (Chain
.getOpcode()) {
6020 case ISD::EntryToken
:
6021 // Entry token is ideal chain operand, but handled in FindBetterChain.
6026 // Get alias information for Chain.
6029 const Value
*OpSrcValue
;
6030 int OpSrcValueOffset
;
6031 bool IsOpLoad
= FindAliasInfo(Chain
.getNode(), OpPtr
, OpSize
,
6032 OpSrcValue
, OpSrcValueOffset
);
6034 // If chain is alias then stop here.
6035 if (!(IsLoad
&& IsOpLoad
) &&
6036 isAlias(Ptr
, Size
, SrcValue
, SrcValueOffset
,
6037 OpPtr
, OpSize
, OpSrcValue
, OpSrcValueOffset
)) {
6038 Aliases
.push_back(Chain
);
6040 // Look further up the chain.
6041 Chains
.push_back(Chain
.getOperand(0));
6042 // Clean up old chain.
6043 AddToWorkList(Chain
.getNode());
6048 case ISD::TokenFactor
:
6049 // We have to check each of the operands of the token factor, so we queue
6050 // then up. Adding the operands to the queue (stack) in reverse order
6051 // maintains the original order and increases the likelihood that getNode
6052 // will find a matching token factor (CSE.)
6053 for (unsigned n
= Chain
.getNumOperands(); n
;)
6054 Chains
.push_back(Chain
.getOperand(--n
));
6055 // Eliminate the token factor if we can.
6056 AddToWorkList(Chain
.getNode());
6060 // For all other instructions we will just have to take what we can get.
6061 Aliases
.push_back(Chain
);
6067 /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
6068 /// for a better chain (aliasing node.)
6069 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
6070 SmallVector
<SDValue
, 8> Aliases
; // Ops for replacing token factor.
6072 // Accumulate all the aliases to this node.
6073 GatherAllAliases(N
, OldChain
, Aliases
);
6075 if (Aliases
.size() == 0) {
6076 // If no operands then chain to entry token.
6077 return DAG
.getEntryNode();
6078 } else if (Aliases
.size() == 1) {
6079 // If a single operand then chain to it. We don't need to revisit it.
6083 // Construct a custom tailored token factor.
6084 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, N
->getDebugLoc(), MVT::Other
,
6085 &Aliases
[0], Aliases
.size());
6087 // Make sure the old chain gets cleaned up.
6088 if (NewChain
!= OldChain
) AddToWorkList(OldChain
.getNode());
6093 // SelectionDAG::Combine - This is the entry point for the file.
6095 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
&AA
,
6096 CodeGenOpt::Level OptLevel
) {
6097 /// run - This is the main entry point to this class.
6099 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);