We're not going to spend 100% of time in interrupts, do we? :)
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blob697caa6ddbbdf747b04d03a610c51e3141aa6ac3
1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/DwarfWriter.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/Target/TargetFrameInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Target/TargetSubtarget.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/DerivedTypes.h"
31 #include "llvm/Function.h"
32 #include "llvm/GlobalVariable.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include <map>
40 using namespace llvm;
42 //===----------------------------------------------------------------------===//
43 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44 /// hacks on it until the target machine can handle it. This involves
45 /// eliminating value sizes the machine cannot handle (promoting small sizes to
46 /// large sizes or splitting up large values into small values) as well as
47 /// eliminating operations the machine cannot handle.
48 ///
49 /// This code also does a small amount of optimization and recognition of idioms
50 /// as part of its processing. For example, if a target does not support a
51 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52 /// will attempt merge setcc and brc instructions into brcc's.
53 ///
54 namespace {
55 class VISIBILITY_HIDDEN SelectionDAGLegalize {
56 TargetLowering &TLI;
57 SelectionDAG &DAG;
58 CodeGenOpt::Level OptLevel;
59 bool TypesNeedLegalizing;
61 // Libcall insertion helpers.
63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64 /// legalized. We use this to ensure that calls are properly serialized
65 /// against each other, including inserted libcalls.
66 SDValue LastCALLSEQ_END;
68 /// IsLegalizingCall - This member is used *only* for purposes of providing
69 /// helpful assertions that a libcall isn't created while another call is
70 /// being legalized (which could lead to non-serialized call sequences).
71 bool IsLegalizingCall;
73 /// IsLegalizingCallArguments - This member is used only for the purpose
74 /// of providing assert to check for LegalizeTypes because legalizing an
75 /// operation might introduce call nodes that might need type legalization.
76 bool IsLegalizingCallArgs;
78 enum LegalizeAction {
79 Legal, // The target natively supports this operation.
80 Promote, // This operation should be executed in a larger type.
81 Expand // Try to expand this to other ops, otherwise use a libcall.
84 /// ValueTypeActions - This is a bitvector that contains two bits for each
85 /// value type, where the two bits correspond to the LegalizeAction enum.
86 /// This can be queried with "getTypeAction(VT)".
87 TargetLowering::ValueTypeActionImpl ValueTypeActions;
89 /// LegalizedNodes - For nodes that are of legal width, and that have more
90 /// than one use, this map indicates what regularized operand to use. This
91 /// allows us to avoid legalizing the same thing more than once.
92 DenseMap<SDValue, SDValue> LegalizedNodes;
94 /// PromotedNodes - For nodes that are below legal width, and that have more
95 /// than one use, this map indicates what promoted value to use. This allows
96 /// us to avoid promoting the same thing more than once.
97 DenseMap<SDValue, SDValue> PromotedNodes;
99 /// ExpandedNodes - For nodes that need to be expanded this map indicates
100 /// which operands are the expanded version of the input. This allows
101 /// us to avoid expanding the same node more than once.
102 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes;
104 /// SplitNodes - For vector nodes that need to be split, this map indicates
105 /// which operands are the split version of the input. This allows us
106 /// to avoid splitting the same node more than once.
107 std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes;
109 /// ScalarizedNodes - For nodes that need to be converted from vector types to
110 /// scalar types, this contains the mapping of ones we have already
111 /// processed to the result.
112 std::map<SDValue, SDValue> ScalarizedNodes;
114 /// WidenNodes - For nodes that need to be widened from one vector type to
115 /// another, this contains the mapping of those that we have already widen.
116 /// This allows us to avoid widening more than once.
117 std::map<SDValue, SDValue> WidenNodes;
119 void AddLegalizedOperand(SDValue From, SDValue To) {
120 LegalizedNodes.insert(std::make_pair(From, To));
121 // If someone requests legalization of the new node, return itself.
122 if (From != To)
123 LegalizedNodes.insert(std::make_pair(To, To));
125 void AddPromotedOperand(SDValue From, SDValue To) {
126 bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second;
127 assert(isNew && "Got into the map somehow?");
128 isNew = isNew;
129 // If someone requests legalization of the new node, return itself.
130 LegalizedNodes.insert(std::make_pair(To, To));
132 void AddWidenedOperand(SDValue From, SDValue To) {
133 bool isNew = WidenNodes.insert(std::make_pair(From, To)).second;
134 assert(isNew && "Got into the map somehow?");
135 isNew = isNew;
136 // If someone requests legalization of the new node, return itself.
137 LegalizedNodes.insert(std::make_pair(To, To));
140 public:
141 explicit SelectionDAGLegalize(SelectionDAG &DAG, bool TypesNeedLegalizing,
142 CodeGenOpt::Level ol);
144 /// getTypeAction - Return how we should legalize values of this type, either
145 /// it is already legal or we need to expand it into multiple registers of
146 /// smaller integer type, or we need to promote it to a larger type.
147 LegalizeAction getTypeAction(MVT VT) const {
148 return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
151 /// isTypeLegal - Return true if this type is legal on this target.
153 bool isTypeLegal(MVT VT) const {
154 return getTypeAction(VT) == Legal;
157 void LegalizeDAG();
159 private:
160 /// HandleOp - Legalize, Promote, or Expand the specified operand as
161 /// appropriate for its type.
162 void HandleOp(SDValue Op);
164 /// LegalizeOp - We know that the specified value has a legal type.
165 /// Recursively ensure that the operands have legal types, then return the
166 /// result.
167 SDValue LegalizeOp(SDValue O);
169 /// UnrollVectorOp - We know that the given vector has a legal type, however
170 /// the operation it performs is not legal and is an operation that we have
171 /// no way of lowering. "Unroll" the vector, splitting out the scalars and
172 /// operating on each element individually.
173 SDValue UnrollVectorOp(SDValue O);
175 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
176 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
177 /// is necessary to spill the vector being inserted into to memory, perform
178 /// the insert there, and then read the result back.
179 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
180 SDValue Idx, DebugLoc dl);
182 /// PromoteOp - Given an operation that produces a value in an invalid type,
183 /// promote it to compute the value into a larger type. The produced value
184 /// will have the correct bits for the low portion of the register, but no
185 /// guarantee is made about the top bits: it may be zero, sign-extended, or
186 /// garbage.
187 SDValue PromoteOp(SDValue O);
189 /// ExpandOp - Expand the specified SDValue into its two component pieces
190 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this,
191 /// the LegalizedNodes map is filled in for any results that are not expanded,
192 /// the ExpandedNodes map is filled in for any results that are expanded, and
193 /// the Lo/Hi values are returned. This applies to integer types and Vector
194 /// types.
195 void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi);
197 /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT
198 /// (e.g., v3i32 to v4i32). The produced value will have the correct value
199 /// for the existing elements but no guarantee is made about the new elements
200 /// at the end of the vector: it may be zero, ones, or garbage. This is useful
201 /// when we have an instruction operating on an illegal vector type and we
202 /// want to widen it to do the computation on a legal wider vector type.
203 SDValue WidenVectorOp(SDValue Op, MVT WidenVT);
205 /// SplitVectorOp - Given an operand of vector type, break it down into
206 /// two smaller values.
207 void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi);
209 /// ScalarizeVectorOp - Given an operand of single-element vector type
210 /// (e.g. v1f32), convert it into the equivalent operation that returns a
211 /// scalar (e.g. f32) value.
212 SDValue ScalarizeVectorOp(SDValue O);
214 /// Useful 16 element vector type that is used to pass operands for widening.
215 typedef SmallVector<SDValue, 16> SDValueVector;
217 /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if
218 /// the LdChain contains a single load and false if it contains a token
219 /// factor for multiple loads. It takes
220 /// Result: location to return the result
221 /// LdChain: location to return the load chain
222 /// Op: load operation to widen
223 /// NVT: widen vector result type we want for the load
224 bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain,
225 SDValue Op, MVT NVT);
227 /// Helper genWidenVectorLoads - Helper function to generate a set of
228 /// loads to load a vector with a resulting wider type. It takes
229 /// LdChain: list of chains for the load we have generated
230 /// Chain: incoming chain for the ld vector
231 /// BasePtr: base pointer to load from
232 /// SV: memory disambiguation source value
233 /// SVOffset: memory disambiugation offset
234 /// Alignment: alignment of the memory
235 /// isVolatile: volatile load
236 /// LdWidth: width of memory that we want to load
237 /// ResType: the wider result result type for the resulting loaded vector
238 SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain,
239 SDValue BasePtr, const Value *SV,
240 int SVOffset, unsigned Alignment,
241 bool isVolatile, unsigned LdWidth,
242 MVT ResType, DebugLoc dl);
244 /// StoreWidenVectorOp - Stores a widen vector into non widen memory
245 /// location. It takes
246 /// ST: store node that we want to replace
247 /// Chain: incoming store chain
248 /// BasePtr: base address of where we want to store into
249 SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain,
250 SDValue BasePtr);
252 /// Helper genWidenVectorStores - Helper function to generate a set of
253 /// stores to store a widen vector into non widen memory
254 // It takes
255 // StChain: list of chains for the stores we have generated
256 // Chain: incoming chain for the ld vector
257 // BasePtr: base pointer to load from
258 // SV: memory disambiguation source value
259 // SVOffset: memory disambiugation offset
260 // Alignment: alignment of the memory
261 // isVolatile: volatile lod
262 // ValOp: value to store
263 // StWidth: width of memory that we want to store
264 void genWidenVectorStores(SDValueVector& StChain, SDValue Chain,
265 SDValue BasePtr, const Value *SV,
266 int SVOffset, unsigned Alignment,
267 bool isVolatile, SDValue ValOp,
268 unsigned StWidth, DebugLoc dl);
270 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
271 /// performs the same shuffe in terms of order or result bytes, but on a type
272 /// whose vector element type is narrower than the original shuffle type.
273 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
274 SDValue ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
275 SDValue N1, SDValue N2,
276 SmallVectorImpl<int> &Mask) const;
278 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
279 SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
281 void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC,
282 DebugLoc dl);
283 void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
284 DebugLoc dl);
285 void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
286 DebugLoc dl) {
287 LegalizeSetCCOperands(LHS, RHS, CC, dl);
288 LegalizeSetCCCondCode(VT, LHS, RHS, CC, dl);
291 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned,
292 SDValue &Hi);
293 SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl);
295 SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT, DebugLoc dl);
296 SDValue ExpandBUILD_VECTOR(SDNode *Node);
297 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
298 SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy,
299 SDValue Op, DebugLoc dl);
300 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT,
301 DebugLoc dl);
302 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned,
303 DebugLoc dl);
304 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned,
305 DebugLoc dl);
307 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
308 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
309 bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt,
310 SDValue &Lo, SDValue &Hi, DebugLoc dl);
311 void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt,
312 SDValue &Lo, SDValue &Hi, DebugLoc dl);
314 SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op);
315 SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op);
319 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
320 /// performs the same shuffe in terms of order or result bytes, but on a type
321 /// whose vector element type is narrower than the original shuffle type.
322 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
323 SDValue
324 SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT, MVT VT, DebugLoc dl,
325 SDValue N1, SDValue N2,
326 SmallVectorImpl<int> &Mask) const {
327 MVT EltVT = NVT.getVectorElementType();
328 unsigned NumMaskElts = VT.getVectorNumElements();
329 unsigned NumDestElts = NVT.getVectorNumElements();
330 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
332 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
334 if (NumEltsGrowth == 1)
335 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
337 SmallVector<int, 8> NewMask;
338 for (unsigned i = 0; i != NumMaskElts; ++i) {
339 int Idx = Mask[i];
340 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
341 if (Idx < 0)
342 NewMask.push_back(-1);
343 else
344 NewMask.push_back(Idx * NumEltsGrowth + j);
347 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
348 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
349 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
352 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
353 bool types, CodeGenOpt::Level ol)
354 : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
355 TypesNeedLegalizing(types), ValueTypeActions(TLI.getValueTypeActions()) {
356 assert(MVT::LAST_VALUETYPE <= 32 &&
357 "Too many value types for ValueTypeActions to hold!");
360 void SelectionDAGLegalize::LegalizeDAG() {
361 LastCALLSEQ_END = DAG.getEntryNode();
362 IsLegalizingCall = false;
363 IsLegalizingCallArgs = false;
365 // The legalize process is inherently a bottom-up recursive process (users
366 // legalize their uses before themselves). Given infinite stack space, we
367 // could just start legalizing on the root and traverse the whole graph. In
368 // practice however, this causes us to run out of stack space on large basic
369 // blocks. To avoid this problem, compute an ordering of the nodes where each
370 // node is only legalized after all of its operands are legalized.
371 DAG.AssignTopologicalOrder();
372 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
373 E = prior(DAG.allnodes_end()); I != next(E); ++I)
374 HandleOp(SDValue(I, 0));
376 // Finally, it's possible the root changed. Get the new root.
377 SDValue OldRoot = DAG.getRoot();
378 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
379 DAG.setRoot(LegalizedNodes[OldRoot]);
381 ExpandedNodes.clear();
382 LegalizedNodes.clear();
383 PromotedNodes.clear();
384 SplitNodes.clear();
385 ScalarizedNodes.clear();
386 WidenNodes.clear();
388 // Remove dead nodes now.
389 DAG.RemoveDeadNodes();
393 /// FindCallEndFromCallStart - Given a chained node that is part of a call
394 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
395 static SDNode *FindCallEndFromCallStart(SDNode *Node) {
396 if (Node->getOpcode() == ISD::CALLSEQ_END)
397 return Node;
398 if (Node->use_empty())
399 return 0; // No CallSeqEnd
401 // The chain is usually at the end.
402 SDValue TheChain(Node, Node->getNumValues()-1);
403 if (TheChain.getValueType() != MVT::Other) {
404 // Sometimes it's at the beginning.
405 TheChain = SDValue(Node, 0);
406 if (TheChain.getValueType() != MVT::Other) {
407 // Otherwise, hunt for it.
408 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
409 if (Node->getValueType(i) == MVT::Other) {
410 TheChain = SDValue(Node, i);
411 break;
414 // Otherwise, we walked into a node without a chain.
415 if (TheChain.getValueType() != MVT::Other)
416 return 0;
420 for (SDNode::use_iterator UI = Node->use_begin(),
421 E = Node->use_end(); UI != E; ++UI) {
423 // Make sure to only follow users of our token chain.
424 SDNode *User = *UI;
425 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
426 if (User->getOperand(i) == TheChain)
427 if (SDNode *Result = FindCallEndFromCallStart(User))
428 return Result;
430 return 0;
433 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
434 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
435 static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
436 assert(Node && "Didn't find callseq_start for a call??");
437 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
439 assert(Node->getOperand(0).getValueType() == MVT::Other &&
440 "Node doesn't have a token chain argument!");
441 return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
444 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
445 /// see if any uses can reach Dest. If no dest operands can get to dest,
446 /// legalize them, legalize ourself, and return false, otherwise, return true.
448 /// Keep track of the nodes we fine that actually do lead to Dest in
449 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
451 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
452 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
453 if (N == Dest) return true; // N certainly leads to Dest :)
455 // If we've already processed this node and it does lead to Dest, there is no
456 // need to reprocess it.
457 if (NodesLeadingTo.count(N)) return true;
459 // If the first result of this node has been already legalized, then it cannot
460 // reach N.
461 switch (getTypeAction(N->getValueType(0))) {
462 case Legal:
463 if (LegalizedNodes.count(SDValue(N, 0))) return false;
464 break;
465 case Promote:
466 if (PromotedNodes.count(SDValue(N, 0))) return false;
467 break;
468 case Expand:
469 if (ExpandedNodes.count(SDValue(N, 0))) return false;
470 break;
473 // Okay, this node has not already been legalized. Check and legalize all
474 // operands. If none lead to Dest, then we can legalize this node.
475 bool OperandsLeadToDest = false;
476 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
477 OperandsLeadToDest |= // If an operand leads to Dest, so do we.
478 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
480 if (OperandsLeadToDest) {
481 NodesLeadingTo.insert(N);
482 return true;
485 // Okay, this node looks safe, legalize it and return false.
486 HandleOp(SDValue(N, 0));
487 return false;
490 /// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as
491 /// appropriate for its type.
492 void SelectionDAGLegalize::HandleOp(SDValue Op) {
493 MVT VT = Op.getValueType();
494 // If the type legalizer was run then we should never see any illegal result
495 // types here except for target constants (the type legalizer does not touch
496 // those) or for build vector used as a mask for a vector shuffle.
497 assert((TypesNeedLegalizing || getTypeAction(VT) == Legal ||
498 IsLegalizingCallArgs || Op.getOpcode() == ISD::TargetConstant) &&
499 "Illegal type introduced after type legalization?");
500 switch (getTypeAction(VT)) {
501 default: assert(0 && "Bad type action!");
502 case Legal: (void)LegalizeOp(Op); break;
503 case Promote:
504 if (!VT.isVector()) {
505 (void)PromoteOp(Op);
506 break;
508 else {
509 // See if we can widen otherwise use Expand to either scalarize or split
510 MVT WidenVT = TLI.getWidenVectorType(VT);
511 if (WidenVT != MVT::Other) {
512 (void) WidenVectorOp(Op, WidenVT);
513 break;
515 // else fall thru to expand since we can't widen the vector
517 case Expand:
518 if (!VT.isVector()) {
519 // If this is an illegal scalar, expand it into its two component
520 // pieces.
521 SDValue X, Y;
522 if (Op.getOpcode() == ISD::TargetConstant)
523 break; // Allow illegal target nodes.
524 ExpandOp(Op, X, Y);
525 } else if (VT.getVectorNumElements() == 1) {
526 // If this is an illegal single element vector, convert it to a
527 // scalar operation.
528 (void)ScalarizeVectorOp(Op);
529 } else {
530 // This is an illegal multiple element vector.
531 // Split it in half and legalize both parts.
532 SDValue X, Y;
533 SplitVectorOp(Op, X, Y);
535 break;
539 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
540 /// a load from the constant pool.
541 static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
542 SelectionDAG &DAG, const TargetLowering &TLI) {
543 bool Extend = false;
544 DebugLoc dl = CFP->getDebugLoc();
546 // If a FP immediate is precise when represented as a float and if the
547 // target can do an extending load from float to double, we put it into
548 // the constant pool as a float, even if it's is statically typed as a
549 // double. This shrinks FP constants and canonicalizes them for targets where
550 // an FP extending load is the same cost as a normal load (such as on the x87
551 // fp stack or PPC FP unit).
552 MVT VT = CFP->getValueType(0);
553 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
554 if (!UseCP) {
555 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
556 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
557 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
560 MVT OrigVT = VT;
561 MVT SVT = VT;
562 while (SVT != MVT::f32) {
563 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
564 if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
565 // Only do this if the target has a native EXTLOAD instruction from
566 // smaller type.
567 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
568 TLI.ShouldShrinkFPConstant(OrigVT)) {
569 const Type *SType = SVT.getTypeForMVT();
570 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
571 VT = SVT;
572 Extend = true;
576 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
577 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
578 if (Extend)
579 return DAG.getExtLoad(ISD::EXTLOAD, dl,
580 OrigVT, DAG.getEntryNode(),
581 CPIdx, PseudoSourceValue::getConstantPool(),
582 0, VT, false, Alignment);
583 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
584 PseudoSourceValue::getConstantPool(), 0, false, Alignment);
588 /// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise
589 /// operations.
590 static
591 SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT,
592 SelectionDAG &DAG,
593 const TargetLowering &TLI) {
594 DebugLoc dl = Node->getDebugLoc();
595 MVT VT = Node->getValueType(0);
596 MVT SrcVT = Node->getOperand(1).getValueType();
597 assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) &&
598 "fcopysign expansion only supported for f32 and f64");
599 MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32;
601 // First get the sign bit of second operand.
602 SDValue Mask1 = (SrcVT == MVT::f64)
603 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT)
604 : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT);
605 Mask1 = DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT, Mask1);
606 SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, dl, SrcNVT,
607 Node->getOperand(1));
608 SignBit = DAG.getNode(ISD::AND, dl, SrcNVT, SignBit, Mask1);
609 // Shift right or sign-extend it if the two operands have different types.
610 int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits();
611 if (SizeDiff > 0) {
612 SignBit = DAG.getNode(ISD::SRL, dl, SrcNVT, SignBit,
613 DAG.getConstant(SizeDiff, TLI.getShiftAmountTy()));
614 SignBit = DAG.getNode(ISD::TRUNCATE, dl, NVT, SignBit);
615 } else if (SizeDiff < 0) {
616 SignBit = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, SignBit);
617 SignBit = DAG.getNode(ISD::SHL, dl, NVT, SignBit,
618 DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy()));
621 // Clear the sign bit of first operand.
622 SDValue Mask2 = (VT == MVT::f64)
623 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT)
624 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT);
625 Mask2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask2);
626 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
627 Result = DAG.getNode(ISD::AND, dl, NVT, Result, Mask2);
629 // Or the value with the sign bit.
630 Result = DAG.getNode(ISD::OR, dl, NVT, Result, SignBit);
631 return Result;
634 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
635 static
636 SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
637 const TargetLowering &TLI) {
638 SDValue Chain = ST->getChain();
639 SDValue Ptr = ST->getBasePtr();
640 SDValue Val = ST->getValue();
641 MVT VT = Val.getValueType();
642 int Alignment = ST->getAlignment();
643 int SVOffset = ST->getSrcValueOffset();
644 DebugLoc dl = ST->getDebugLoc();
645 if (ST->getMemoryVT().isFloatingPoint() ||
646 ST->getMemoryVT().isVector()) {
647 MVT intVT = MVT::getIntegerVT(VT.getSizeInBits());
648 if (TLI.isTypeLegal(intVT)) {
649 // Expand to a bitconvert of the value to the integer type of the
650 // same size, then a (misaligned) int store.
651 // FIXME: Does not handle truncating floating point stores!
652 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
653 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
654 SVOffset, ST->isVolatile(), Alignment);
655 } else {
656 // Do a (aligned) store to a stack slot, then copy from the stack slot
657 // to the final destination using (unaligned) integer loads and stores.
658 MVT StoredVT = ST->getMemoryVT();
659 MVT RegVT =
660 TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits()));
661 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
662 unsigned RegBytes = RegVT.getSizeInBits() / 8;
663 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
665 // Make sure the stack slot is also aligned for the register type.
666 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
668 // Perform the original store, only redirected to the stack slot.
669 SDValue Store = DAG.getTruncStore(Chain, dl,
670 Val, StackPtr, NULL, 0, StoredVT);
671 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
672 SmallVector<SDValue, 8> Stores;
673 unsigned Offset = 0;
675 // Do all but one copies using the full register width.
676 for (unsigned i = 1; i < NumRegs; i++) {
677 // Load one integer register's worth from the stack slot.
678 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0);
679 // Store it to the final location. Remember the store.
680 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
681 ST->getSrcValue(), SVOffset + Offset,
682 ST->isVolatile(),
683 MinAlign(ST->getAlignment(), Offset)));
684 // Increment the pointers.
685 Offset += RegBytes;
686 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
687 Increment);
688 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
691 // The last store may be partial. Do a truncating store. On big-endian
692 // machines this requires an extending load from the stack slot to ensure
693 // that the bits are in the right place.
694 MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset));
696 // Load from the stack slot.
697 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
698 NULL, 0, MemVT);
700 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
701 ST->getSrcValue(), SVOffset + Offset,
702 MemVT, ST->isVolatile(),
703 MinAlign(ST->getAlignment(), Offset)));
704 // The order of the stores doesn't matter - say it with a TokenFactor.
705 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
706 Stores.size());
709 assert(ST->getMemoryVT().isInteger() &&
710 !ST->getMemoryVT().isVector() &&
711 "Unaligned store of unknown type.");
712 // Get the half-size VT
713 MVT NewStoredVT =
714 (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
715 int NumBits = NewStoredVT.getSizeInBits();
716 int IncrementSize = NumBits / 8;
718 // Divide the stored value in two parts.
719 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
720 SDValue Lo = Val;
721 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
723 // Store the two parts
724 SDValue Store1, Store2;
725 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
726 ST->getSrcValue(), SVOffset, NewStoredVT,
727 ST->isVolatile(), Alignment);
728 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
729 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
730 Alignment = MinAlign(Alignment, IncrementSize);
731 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
732 ST->getSrcValue(), SVOffset + IncrementSize,
733 NewStoredVT, ST->isVolatile(), Alignment);
735 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
738 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
739 static
740 SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
741 const TargetLowering &TLI) {
742 int SVOffset = LD->getSrcValueOffset();
743 SDValue Chain = LD->getChain();
744 SDValue Ptr = LD->getBasePtr();
745 MVT VT = LD->getValueType(0);
746 MVT LoadedVT = LD->getMemoryVT();
747 DebugLoc dl = LD->getDebugLoc();
748 if (VT.isFloatingPoint() || VT.isVector()) {
749 MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits());
750 if (TLI.isTypeLegal(intVT)) {
751 // Expand to a (misaligned) integer load of the same size,
752 // then bitconvert to floating point or vector.
753 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
754 SVOffset, LD->isVolatile(),
755 LD->getAlignment());
756 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
757 if (VT.isFloatingPoint() && LoadedVT != VT)
758 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
760 SDValue Ops[] = { Result, Chain };
761 return DAG.getMergeValues(Ops, 2, dl);
762 } else {
763 // Copy the value to a (aligned) stack slot using (unaligned) integer
764 // loads and stores, then do a (aligned) load from the stack slot.
765 MVT RegVT = TLI.getRegisterType(intVT);
766 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
767 unsigned RegBytes = RegVT.getSizeInBits() / 8;
768 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
770 // Make sure the stack slot is also aligned for the register type.
771 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
773 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
774 SmallVector<SDValue, 8> Stores;
775 SDValue StackPtr = StackBase;
776 unsigned Offset = 0;
778 // Do all but one copies using the full register width.
779 for (unsigned i = 1; i < NumRegs; i++) {
780 // Load one integer register's worth from the original location.
781 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
782 SVOffset + Offset, LD->isVolatile(),
783 MinAlign(LD->getAlignment(), Offset));
784 // Follow the load with a store to the stack slot. Remember the store.
785 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
786 NULL, 0));
787 // Increment the pointers.
788 Offset += RegBytes;
789 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
790 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
791 Increment);
794 // The last copy may be partial. Do an extending load.
795 MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset));
796 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
797 LD->getSrcValue(), SVOffset + Offset,
798 MemVT, LD->isVolatile(),
799 MinAlign(LD->getAlignment(), Offset));
800 // Follow the load with a store to the stack slot. Remember the store.
801 // On big-endian machines this requires a truncating store to ensure
802 // that the bits end up in the right place.
803 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
804 NULL, 0, MemVT));
806 // The order of the stores doesn't matter - say it with a TokenFactor.
807 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
808 Stores.size());
810 // Finally, perform the original load only redirected to the stack slot.
811 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
812 NULL, 0, LoadedVT);
814 // Callers expect a MERGE_VALUES node.
815 SDValue Ops[] = { Load, TF };
816 return DAG.getMergeValues(Ops, 2, dl);
819 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
820 "Unaligned load of unsupported type.");
822 // Compute the new VT that is half the size of the old one. This is an
823 // integer MVT.
824 unsigned NumBits = LoadedVT.getSizeInBits();
825 MVT NewLoadedVT;
826 NewLoadedVT = MVT::getIntegerVT(NumBits/2);
827 NumBits >>= 1;
829 unsigned Alignment = LD->getAlignment();
830 unsigned IncrementSize = NumBits / 8;
831 ISD::LoadExtType HiExtType = LD->getExtensionType();
833 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
834 if (HiExtType == ISD::NON_EXTLOAD)
835 HiExtType = ISD::ZEXTLOAD;
837 // Load the value in two parts
838 SDValue Lo, Hi;
839 if (TLI.isLittleEndian()) {
840 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
841 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
842 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
843 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
844 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
845 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
846 MinAlign(Alignment, IncrementSize));
847 } else {
848 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
849 SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
850 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
851 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
852 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
853 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
854 MinAlign(Alignment, IncrementSize));
857 // aggregate the two parts
858 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
859 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
860 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
862 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
863 Hi.getValue(1));
865 SDValue Ops[] = { Result, TF };
866 return DAG.getMergeValues(Ops, 2, dl);
869 /// UnrollVectorOp - We know that the given vector has a legal type, however
870 /// the operation it performs is not legal and is an operation that we have
871 /// no way of lowering. "Unroll" the vector, splitting out the scalars and
872 /// operating on each element individually.
873 SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) {
874 MVT VT = Op.getValueType();
875 assert(isTypeLegal(VT) &&
876 "Caller should expand or promote operands that are not legal!");
877 assert(Op.getNode()->getNumValues() == 1 &&
878 "Can't unroll a vector with multiple results!");
879 unsigned NE = VT.getVectorNumElements();
880 MVT EltVT = VT.getVectorElementType();
881 DebugLoc dl = Op.getDebugLoc();
883 SmallVector<SDValue, 8> Scalars;
884 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
885 for (unsigned i = 0; i != NE; ++i) {
886 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
887 SDValue Operand = Op.getOperand(j);
888 MVT OperandVT = Operand.getValueType();
889 if (OperandVT.isVector()) {
890 // A vector operand; extract a single element.
891 MVT OperandEltVT = OperandVT.getVectorElementType();
892 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
893 OperandEltVT,
894 Operand,
895 DAG.getConstant(i, MVT::i32));
896 } else {
897 // A scalar operand; just use it as is.
898 Operands[j] = Operand;
902 switch (Op.getOpcode()) {
903 default:
904 Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT,
905 &Operands[0], Operands.size()));
906 break;
907 case ISD::SHL:
908 case ISD::SRA:
909 case ISD::SRL:
910 case ISD::ROTL:
911 case ISD::ROTR:
912 Scalars.push_back(DAG.getNode(Op.getOpcode(), dl, EltVT, Operands[0],
913 DAG.getShiftAmountOperand(Operands[1])));
914 break;
918 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Scalars[0], Scalars.size());
921 /// GetFPLibCall - Return the right libcall for the given floating point type.
922 static RTLIB::Libcall GetFPLibCall(MVT VT,
923 RTLIB::Libcall Call_F32,
924 RTLIB::Libcall Call_F64,
925 RTLIB::Libcall Call_F80,
926 RTLIB::Libcall Call_PPCF128) {
927 return
928 VT == MVT::f32 ? Call_F32 :
929 VT == MVT::f64 ? Call_F64 :
930 VT == MVT::f80 ? Call_F80 :
931 VT == MVT::ppcf128 ? Call_PPCF128 :
932 RTLIB::UNKNOWN_LIBCALL;
935 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
936 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
937 /// is necessary to spill the vector being inserted into to memory, perform
938 /// the insert there, and then read the result back.
939 SDValue SelectionDAGLegalize::
940 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
941 DebugLoc dl) {
942 SDValue Tmp1 = Vec;
943 SDValue Tmp2 = Val;
944 SDValue Tmp3 = Idx;
946 // If the target doesn't support this, we have to spill the input vector
947 // to a temporary stack slot, update the element, then reload it. This is
948 // badness. We could also load the value into a vector register (either
949 // with a "move to register" or "extload into register" instruction, then
950 // permute it into place, if the idx is a constant and if the idx is
951 // supported by the target.
952 MVT VT = Tmp1.getValueType();
953 MVT EltVT = VT.getVectorElementType();
954 MVT IdxVT = Tmp3.getValueType();
955 MVT PtrVT = TLI.getPointerTy();
956 SDValue StackPtr = DAG.CreateStackTemporary(VT);
958 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
960 // Store the vector.
961 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
962 PseudoSourceValue::getFixedStack(SPFI), 0);
964 // Truncate or zero extend offset to target pointer type.
965 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
966 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
967 // Add the offset to the index.
968 unsigned EltSize = EltVT.getSizeInBits()/8;
969 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
970 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
971 // Store the scalar value.
972 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
973 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
974 // Load the updated vector.
975 return DAG.getLoad(VT, dl, Ch, StackPtr,
976 PseudoSourceValue::getFixedStack(SPFI), 0);
980 /// LegalizeOp - We know that the specified value has a legal type, and
981 /// that its operands are legal. Now ensure that the operation itself
982 /// is legal, recursively ensuring that the operands' operations remain
983 /// legal.
984 SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
985 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
986 return Op;
988 assert(isTypeLegal(Op.getValueType()) &&
989 "Caller should expand or promote operands that are not legal!");
990 SDNode *Node = Op.getNode();
991 DebugLoc dl = Node->getDebugLoc();
993 // If this operation defines any values that cannot be represented in a
994 // register on this target, make sure to expand or promote them.
995 if (Node->getNumValues() > 1) {
996 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
997 if (getTypeAction(Node->getValueType(i)) != Legal) {
998 HandleOp(Op.getValue(i));
999 assert(LegalizedNodes.count(Op) &&
1000 "Handling didn't add legal operands!");
1001 return LegalizedNodes[Op];
1005 // Note that LegalizeOp may be reentered even from single-use nodes, which
1006 // means that we always must cache transformed nodes.
1007 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1008 if (I != LegalizedNodes.end()) return I->second;
1010 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
1011 SDValue Result = Op;
1012 bool isCustom = false;
1014 switch (Node->getOpcode()) {
1015 case ISD::FrameIndex:
1016 case ISD::EntryToken:
1017 case ISD::Register:
1018 case ISD::BasicBlock:
1019 case ISD::TargetFrameIndex:
1020 case ISD::TargetJumpTable:
1021 case ISD::TargetConstant:
1022 case ISD::TargetConstantFP:
1023 case ISD::TargetConstantPool:
1024 case ISD::TargetGlobalAddress:
1025 case ISD::TargetGlobalTLSAddress:
1026 case ISD::TargetExternalSymbol:
1027 case ISD::VALUETYPE:
1028 case ISD::SRCVALUE:
1029 case ISD::MEMOPERAND:
1030 case ISD::CONDCODE:
1031 case ISD::ARG_FLAGS:
1032 // Primitives must all be legal.
1033 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) &&
1034 "This must be legal!");
1035 break;
1036 default:
1037 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1038 // If this is a target node, legalize it by legalizing the operands then
1039 // passing it through.
1040 SmallVector<SDValue, 8> Ops;
1041 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1042 Ops.push_back(LegalizeOp(Node->getOperand(i)));
1044 Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size());
1046 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1047 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
1048 return Result.getValue(Op.getResNo());
1050 // Otherwise this is an unhandled builtin node. splat.
1051 #ifndef NDEBUG
1052 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
1053 #endif
1054 assert(0 && "Do not know how to legalize this operator!");
1055 abort();
1056 case ISD::GLOBAL_OFFSET_TABLE:
1057 case ISD::GlobalAddress:
1058 case ISD::GlobalTLSAddress:
1059 case ISD::ExternalSymbol:
1060 case ISD::ConstantPool:
1061 case ISD::JumpTable: // Nothing to do.
1062 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
1063 default: assert(0 && "This action is not supported yet!");
1064 case TargetLowering::Custom:
1065 Tmp1 = TLI.LowerOperation(Op, DAG);
1066 if (Tmp1.getNode()) Result = Tmp1;
1067 // FALLTHROUGH if the target doesn't want to lower this op after all.
1068 case TargetLowering::Legal:
1069 break;
1071 break;
1072 case ISD::FRAMEADDR:
1073 case ISD::RETURNADDR:
1074 // The only option for these nodes is to custom lower them. If the target
1075 // does not custom lower them, then return zero.
1076 Tmp1 = TLI.LowerOperation(Op, DAG);
1077 if (Tmp1.getNode())
1078 Result = Tmp1;
1079 else
1080 Result = DAG.getConstant(0, TLI.getPointerTy());
1081 break;
1082 case ISD::FRAME_TO_ARGS_OFFSET: {
1083 MVT VT = Node->getValueType(0);
1084 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1085 default: assert(0 && "This action is not supported yet!");
1086 case TargetLowering::Custom:
1087 Result = TLI.LowerOperation(Op, DAG);
1088 if (Result.getNode()) break;
1089 // Fall Thru
1090 case TargetLowering::Legal:
1091 Result = DAG.getConstant(0, VT);
1092 break;
1095 break;
1096 case ISD::EXCEPTIONADDR: {
1097 Tmp1 = LegalizeOp(Node->getOperand(0));
1098 MVT VT = Node->getValueType(0);
1099 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1100 default: assert(0 && "This action is not supported yet!");
1101 case TargetLowering::Expand: {
1102 unsigned Reg = TLI.getExceptionAddressRegister();
1103 Result = DAG.getCopyFromReg(Tmp1, dl, Reg, VT);
1105 break;
1106 case TargetLowering::Custom:
1107 Result = TLI.LowerOperation(Op, DAG);
1108 if (Result.getNode()) break;
1109 // Fall Thru
1110 case TargetLowering::Legal: {
1111 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 };
1112 Result = DAG.getMergeValues(Ops, 2, dl);
1113 break;
1117 if (Result.getNode()->getNumValues() == 1) break;
1119 assert(Result.getNode()->getNumValues() == 2 &&
1120 "Cannot return more than two values!");
1122 // Since we produced two values, make sure to remember that we
1123 // legalized both of them.
1124 Tmp1 = LegalizeOp(Result);
1125 Tmp2 = LegalizeOp(Result.getValue(1));
1126 AddLegalizedOperand(Op.getValue(0), Tmp1);
1127 AddLegalizedOperand(Op.getValue(1), Tmp2);
1128 return Op.getResNo() ? Tmp2 : Tmp1;
1129 case ISD::EHSELECTION: {
1130 Tmp1 = LegalizeOp(Node->getOperand(0));
1131 Tmp2 = LegalizeOp(Node->getOperand(1));
1132 MVT VT = Node->getValueType(0);
1133 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1134 default: assert(0 && "This action is not supported yet!");
1135 case TargetLowering::Expand: {
1136 unsigned Reg = TLI.getExceptionSelectorRegister();
1137 Result = DAG.getCopyFromReg(Tmp2, dl, Reg, VT);
1139 break;
1140 case TargetLowering::Custom:
1141 Result = TLI.LowerOperation(Op, DAG);
1142 if (Result.getNode()) break;
1143 // Fall Thru
1144 case TargetLowering::Legal: {
1145 SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 };
1146 Result = DAG.getMergeValues(Ops, 2, dl);
1147 break;
1151 if (Result.getNode()->getNumValues() == 1) break;
1153 assert(Result.getNode()->getNumValues() == 2 &&
1154 "Cannot return more than two values!");
1156 // Since we produced two values, make sure to remember that we
1157 // legalized both of them.
1158 Tmp1 = LegalizeOp(Result);
1159 Tmp2 = LegalizeOp(Result.getValue(1));
1160 AddLegalizedOperand(Op.getValue(0), Tmp1);
1161 AddLegalizedOperand(Op.getValue(1), Tmp2);
1162 return Op.getResNo() ? Tmp2 : Tmp1;
1163 case ISD::EH_RETURN: {
1164 MVT VT = Node->getValueType(0);
1165 // The only "good" option for this node is to custom lower it.
1166 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1167 default: assert(0 && "This action is not supported at all!");
1168 case TargetLowering::Custom:
1169 Result = TLI.LowerOperation(Op, DAG);
1170 if (Result.getNode()) break;
1171 // Fall Thru
1172 case TargetLowering::Legal:
1173 // Target does not know, how to lower this, lower to noop
1174 Result = LegalizeOp(Node->getOperand(0));
1175 break;
1178 break;
1179 case ISD::AssertSext:
1180 case ISD::AssertZext:
1181 Tmp1 = LegalizeOp(Node->getOperand(0));
1182 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
1183 break;
1184 case ISD::MERGE_VALUES:
1185 // Legalize eliminates MERGE_VALUES nodes.
1186 Result = Node->getOperand(Op.getResNo());
1187 break;
1188 case ISD::CopyFromReg:
1189 Tmp1 = LegalizeOp(Node->getOperand(0));
1190 Result = Op.getValue(0);
1191 if (Node->getNumValues() == 2) {
1192 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
1193 } else {
1194 assert(Node->getNumValues() == 3 && "Invalid copyfromreg!");
1195 if (Node->getNumOperands() == 3) {
1196 Tmp2 = LegalizeOp(Node->getOperand(2));
1197 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2);
1198 } else {
1199 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
1201 AddLegalizedOperand(Op.getValue(2), Result.getValue(2));
1203 // Since CopyFromReg produces two values, make sure to remember that we
1204 // legalized both of them.
1205 AddLegalizedOperand(Op.getValue(0), Result);
1206 AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1207 return Result.getValue(Op.getResNo());
1208 case ISD::UNDEF: {
1209 MVT VT = Op.getValueType();
1210 switch (TLI.getOperationAction(ISD::UNDEF, VT)) {
1211 default: assert(0 && "This action is not supported yet!");
1212 case TargetLowering::Expand:
1213 if (VT.isInteger())
1214 Result = DAG.getConstant(0, VT);
1215 else if (VT.isFloatingPoint())
1216 Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)),
1217 VT);
1218 else
1219 assert(0 && "Unknown value type!");
1220 break;
1221 case TargetLowering::Legal:
1222 break;
1224 break;
1227 case ISD::INTRINSIC_W_CHAIN:
1228 case ISD::INTRINSIC_WO_CHAIN:
1229 case ISD::INTRINSIC_VOID: {
1230 SmallVector<SDValue, 8> Ops;
1231 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1232 Ops.push_back(LegalizeOp(Node->getOperand(i)));
1233 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1235 // Allow the target to custom lower its intrinsics if it wants to.
1236 if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) ==
1237 TargetLowering::Custom) {
1238 Tmp3 = TLI.LowerOperation(Result, DAG);
1239 if (Tmp3.getNode()) Result = Tmp3;
1242 if (Result.getNode()->getNumValues() == 1) break;
1244 // Must have return value and chain result.
1245 assert(Result.getNode()->getNumValues() == 2 &&
1246 "Cannot return more than two values!");
1248 // Since loads produce two values, make sure to remember that we
1249 // legalized both of them.
1250 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1251 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1252 return Result.getValue(Op.getResNo());
1255 case ISD::DBG_STOPPOINT:
1256 assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!");
1257 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain.
1259 switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) {
1260 case TargetLowering::Promote:
1261 default: assert(0 && "This action is not supported yet!");
1262 case TargetLowering::Expand: {
1263 DwarfWriter *DW = DAG.getDwarfWriter();
1264 bool useDEBUG_LOC = TLI.isOperationLegalOrCustom(ISD::DEBUG_LOC,
1265 MVT::Other);
1266 bool useLABEL = TLI.isOperationLegalOrCustom(ISD::DBG_LABEL, MVT::Other);
1268 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
1269 GlobalVariable *CU_GV = cast<GlobalVariable>(DSP->getCompileUnit());
1270 if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) {
1271 DICompileUnit CU(cast<GlobalVariable>(DSP->getCompileUnit()));
1273 unsigned Line = DSP->getLine();
1274 unsigned Col = DSP->getColumn();
1276 if (OptLevel == CodeGenOpt::None) {
1277 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1278 // won't hurt anything.
1279 if (useDEBUG_LOC) {
1280 SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32),
1281 DAG.getConstant(Col, MVT::i32),
1282 DAG.getSrcValue(CU.getGV()) };
1283 Result = DAG.getNode(ISD::DEBUG_LOC, dl, MVT::Other, Ops, 4);
1284 } else {
1285 unsigned ID = DW->RecordSourceLine(Line, Col, CU);
1286 Result = DAG.getLabel(ISD::DBG_LABEL, dl, Tmp1, ID);
1288 } else {
1289 Result = Tmp1; // chain
1291 } else {
1292 Result = Tmp1; // chain
1294 break;
1296 case TargetLowering::Custom:
1297 Result = TLI.LowerOperation(Op, DAG);
1298 if (Result.getNode())
1299 break;
1300 case TargetLowering::Legal: {
1301 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType());
1302 if (Action == Legal && Tmp1 == Node->getOperand(0))
1303 break;
1305 SmallVector<SDValue, 8> Ops;
1306 Ops.push_back(Tmp1);
1307 if (Action == Legal) {
1308 Ops.push_back(Node->getOperand(1)); // line # must be legal.
1309 Ops.push_back(Node->getOperand(2)); // col # must be legal.
1310 } else {
1311 // Otherwise promote them.
1312 Ops.push_back(PromoteOp(Node->getOperand(1)));
1313 Ops.push_back(PromoteOp(Node->getOperand(2)));
1315 Ops.push_back(Node->getOperand(3)); // filename must be legal.
1316 Ops.push_back(Node->getOperand(4)); // working dir # must be legal.
1317 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1318 break;
1321 break;
1323 case ISD::DECLARE:
1324 assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!");
1325 switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) {
1326 default: assert(0 && "This action is not supported yet!");
1327 case TargetLowering::Legal:
1328 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1329 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address.
1330 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable.
1331 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1332 break;
1333 case TargetLowering::Expand:
1334 Result = LegalizeOp(Node->getOperand(0));
1335 break;
1337 break;
1339 case ISD::DEBUG_LOC:
1340 assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!");
1341 switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) {
1342 default: assert(0 && "This action is not supported yet!");
1343 case TargetLowering::Legal: {
1344 LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType());
1345 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1346 if (Action == Legal && Tmp1 == Node->getOperand(0))
1347 break;
1348 if (Action == Legal) {
1349 Tmp2 = Node->getOperand(1);
1350 Tmp3 = Node->getOperand(2);
1351 Tmp4 = Node->getOperand(3);
1352 } else {
1353 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #.
1354 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #.
1355 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id.
1357 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4);
1358 break;
1361 break;
1363 case ISD::DBG_LABEL:
1364 case ISD::EH_LABEL:
1365 assert(Node->getNumOperands() == 1 && "Invalid LABEL node!");
1366 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
1367 default: assert(0 && "This action is not supported yet!");
1368 case TargetLowering::Legal:
1369 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1370 Result = DAG.UpdateNodeOperands(Result, Tmp1);
1371 break;
1372 case TargetLowering::Expand:
1373 Result = LegalizeOp(Node->getOperand(0));
1374 break;
1376 break;
1378 case ISD::PREFETCH:
1379 assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!");
1380 switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) {
1381 default: assert(0 && "This action is not supported yet!");
1382 case TargetLowering::Legal:
1383 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1384 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address.
1385 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the rw specifier.
1386 Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize locality specifier.
1387 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4);
1388 break;
1389 case TargetLowering::Expand:
1390 // It's a noop.
1391 Result = LegalizeOp(Node->getOperand(0));
1392 break;
1394 break;
1396 case ISD::MEMBARRIER: {
1397 assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!");
1398 switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) {
1399 default: assert(0 && "This action is not supported yet!");
1400 case TargetLowering::Legal: {
1401 SDValue Ops[6];
1402 Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1403 for (int x = 1; x < 6; ++x) {
1404 Ops[x] = Node->getOperand(x);
1405 if (!isTypeLegal(Ops[x].getValueType()))
1406 Ops[x] = PromoteOp(Ops[x]);
1408 Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6);
1409 break;
1411 case TargetLowering::Expand:
1412 //There is no libgcc call for this op
1413 Result = Node->getOperand(0); // Noop
1414 break;
1416 break;
1419 case ISD::ATOMIC_CMP_SWAP: {
1420 unsigned int num_operands = 4;
1421 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!");
1422 SDValue Ops[4];
1423 for (unsigned int x = 0; x < num_operands; ++x)
1424 Ops[x] = LegalizeOp(Node->getOperand(x));
1425 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands);
1427 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
1428 default: assert(0 && "This action is not supported yet!");
1429 case TargetLowering::Custom:
1430 Result = TLI.LowerOperation(Result, DAG);
1431 break;
1432 case TargetLowering::Legal:
1433 break;
1435 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1436 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1437 return Result.getValue(Op.getResNo());
1439 case ISD::ATOMIC_LOAD_ADD:
1440 case ISD::ATOMIC_LOAD_SUB:
1441 case ISD::ATOMIC_LOAD_AND:
1442 case ISD::ATOMIC_LOAD_OR:
1443 case ISD::ATOMIC_LOAD_XOR:
1444 case ISD::ATOMIC_LOAD_NAND:
1445 case ISD::ATOMIC_LOAD_MIN:
1446 case ISD::ATOMIC_LOAD_MAX:
1447 case ISD::ATOMIC_LOAD_UMIN:
1448 case ISD::ATOMIC_LOAD_UMAX:
1449 case ISD::ATOMIC_SWAP: {
1450 unsigned int num_operands = 3;
1451 assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!");
1452 SDValue Ops[3];
1453 for (unsigned int x = 0; x < num_operands; ++x)
1454 Ops[x] = LegalizeOp(Node->getOperand(x));
1455 Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands);
1457 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
1458 default: assert(0 && "This action is not supported yet!");
1459 case TargetLowering::Custom:
1460 Result = TLI.LowerOperation(Result, DAG);
1461 break;
1462 case TargetLowering::Legal:
1463 break;
1465 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1466 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1467 return Result.getValue(Op.getResNo());
1469 case ISD::Constant: {
1470 ConstantSDNode *CN = cast<ConstantSDNode>(Node);
1471 unsigned opAction =
1472 TLI.getOperationAction(ISD::Constant, CN->getValueType(0));
1474 // We know we don't need to expand constants here, constants only have one
1475 // value and we check that it is fine above.
1477 if (opAction == TargetLowering::Custom) {
1478 Tmp1 = TLI.LowerOperation(Result, DAG);
1479 if (Tmp1.getNode())
1480 Result = Tmp1;
1482 break;
1484 case ISD::ConstantFP: {
1485 // Spill FP immediates to the constant pool if the target cannot directly
1486 // codegen them. Targets often have some immediate values that can be
1487 // efficiently generated into an FP register without a load. We explicitly
1488 // leave these constants as ConstantFP nodes for the target to deal with.
1489 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
1491 switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) {
1492 default: assert(0 && "This action is not supported yet!");
1493 case TargetLowering::Legal:
1494 break;
1495 case TargetLowering::Custom:
1496 Tmp3 = TLI.LowerOperation(Result, DAG);
1497 if (Tmp3.getNode()) {
1498 Result = Tmp3;
1499 break;
1501 // FALLTHROUGH
1502 case TargetLowering::Expand: {
1503 // Check to see if this FP immediate is already legal.
1504 bool isLegal = false;
1505 for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
1506 E = TLI.legal_fpimm_end(); I != E; ++I) {
1507 if (CFP->isExactlyValue(*I)) {
1508 isLegal = true;
1509 break;
1512 // If this is a legal constant, turn it into a TargetConstantFP node.
1513 if (isLegal)
1514 break;
1515 Result = ExpandConstantFP(CFP, true, DAG, TLI);
1518 break;
1520 case ISD::TokenFactor:
1521 if (Node->getNumOperands() == 2) {
1522 Tmp1 = LegalizeOp(Node->getOperand(0));
1523 Tmp2 = LegalizeOp(Node->getOperand(1));
1524 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
1525 } else if (Node->getNumOperands() == 3) {
1526 Tmp1 = LegalizeOp(Node->getOperand(0));
1527 Tmp2 = LegalizeOp(Node->getOperand(1));
1528 Tmp3 = LegalizeOp(Node->getOperand(2));
1529 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1530 } else {
1531 SmallVector<SDValue, 8> Ops;
1532 // Legalize the operands.
1533 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1534 Ops.push_back(LegalizeOp(Node->getOperand(i)));
1535 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1537 break;
1539 case ISD::FORMAL_ARGUMENTS:
1540 case ISD::CALL:
1541 // The only option for this is to custom lower it.
1542 Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
1543 assert(Tmp3.getNode() && "Target didn't custom lower this node!");
1544 // A call within a calling sequence must be legalized to something
1545 // other than the normal CALLSEQ_END. Violating this gets Legalize
1546 // into an infinite loop.
1547 assert ((!IsLegalizingCall ||
1548 Node->getOpcode() != ISD::CALL ||
1549 Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
1550 "Nested CALLSEQ_START..CALLSEQ_END not supported.");
1552 // The number of incoming and outgoing values should match; unless the final
1553 // outgoing value is a flag.
1554 assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
1555 (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
1556 Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
1557 MVT::Flag)) &&
1558 "Lowering call/formal_arguments produced unexpected # results!");
1560 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
1561 // remember that we legalized all of them, so it doesn't get relegalized.
1562 for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
1563 if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
1564 continue;
1565 Tmp1 = LegalizeOp(Tmp3.getValue(i));
1566 if (Op.getResNo() == i)
1567 Tmp2 = Tmp1;
1568 AddLegalizedOperand(SDValue(Node, i), Tmp1);
1570 return Tmp2;
1571 case ISD::BUILD_VECTOR:
1572 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
1573 default: assert(0 && "This action is not supported yet!");
1574 case TargetLowering::Custom:
1575 Tmp3 = TLI.LowerOperation(Result, DAG);
1576 if (Tmp3.getNode()) {
1577 Result = Tmp3;
1578 break;
1580 // FALLTHROUGH
1581 case TargetLowering::Expand:
1582 Result = ExpandBUILD_VECTOR(Result.getNode());
1583 break;
1585 break;
1586 case ISD::INSERT_VECTOR_ELT:
1587 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec
1588 Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo
1590 // The type of the value to insert may not be legal, even though the vector
1591 // type is legal. Legalize/Promote accordingly. We do not handle Expand
1592 // here.
1593 switch (getTypeAction(Node->getOperand(1).getValueType())) {
1594 default: assert(0 && "Cannot expand insert element operand");
1595 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break;
1596 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break;
1597 case Expand:
1598 // FIXME: An alternative would be to check to see if the target is not
1599 // going to custom lower this operation, we could bitcast to half elt
1600 // width and perform two inserts at that width, if that is legal.
1601 Tmp2 = Node->getOperand(1);
1602 break;
1604 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1606 switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT,
1607 Node->getValueType(0))) {
1608 default: assert(0 && "This action is not supported yet!");
1609 case TargetLowering::Legal:
1610 break;
1611 case TargetLowering::Custom:
1612 Tmp4 = TLI.LowerOperation(Result, DAG);
1613 if (Tmp4.getNode()) {
1614 Result = Tmp4;
1615 break;
1617 // FALLTHROUGH
1618 case TargetLowering::Promote:
1619 // Fall thru for vector case
1620 case TargetLowering::Expand: {
1621 // If the insert index is a constant, codegen this as a scalar_to_vector,
1622 // then a shuffle that inserts it into the right position in the vector.
1623 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) {
1624 // SCALAR_TO_VECTOR requires that the type of the value being inserted
1625 // match the element type of the vector being created, except for
1626 // integers in which case the inserted value can be over width.
1627 MVT EltVT = Op.getValueType().getVectorElementType();
1628 if (Tmp2.getValueType() == EltVT ||
1629 (EltVT.isInteger() && Tmp2.getValueType().bitsGE(EltVT))) {
1630 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
1631 Tmp1.getValueType(), Tmp2);
1633 unsigned NumElts = Tmp1.getValueType().getVectorNumElements();
1634 // We generate a shuffle of InVec and ScVec, so the shuffle mask
1635 // should be 0,1,2,3,4,5... with the appropriate element replaced with
1636 // elt 0 of the RHS.
1637 SmallVector<int, 8> ShufOps;
1638 for (unsigned i = 0; i != NumElts; ++i)
1639 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
1641 Result = DAG.getVectorShuffle(Tmp1.getValueType(), dl, Tmp1, ScVec,
1642 &ShufOps[0]);
1643 Result = LegalizeOp(Result);
1644 break;
1647 Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3, dl);
1648 break;
1651 break;
1652 case ISD::SCALAR_TO_VECTOR:
1653 if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) {
1654 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node));
1655 break;
1658 Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal
1659 Result = DAG.UpdateNodeOperands(Result, Tmp1);
1660 switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR,
1661 Node->getValueType(0))) {
1662 default: assert(0 && "This action is not supported yet!");
1663 case TargetLowering::Legal:
1664 break;
1665 case TargetLowering::Custom:
1666 Tmp3 = TLI.LowerOperation(Result, DAG);
1667 if (Tmp3.getNode()) {
1668 Result = Tmp3;
1669 break;
1671 // FALLTHROUGH
1672 case TargetLowering::Expand:
1673 Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node));
1674 break;
1676 break;
1677 case ISD::VECTOR_SHUFFLE: {
1678 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors,
1679 Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask.
1680 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
1681 MVT VT = Result.getValueType();
1683 // Copy the Mask to a local SmallVector for use with isShuffleMaskLegal.
1684 SmallVector<int, 8> Mask;
1685 cast<ShuffleVectorSDNode>(Result)->getMask(Mask);
1687 // Allow targets to custom lower the SHUFFLEs they support.
1688 switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) {
1689 default: assert(0 && "Unknown operation action!");
1690 case TargetLowering::Legal:
1691 assert(TLI.isShuffleMaskLegal(Mask, VT) &&
1692 "vector shuffle should not be created if not legal!");
1693 break;
1694 case TargetLowering::Custom:
1695 Tmp3 = TLI.LowerOperation(Result, DAG);
1696 if (Tmp3.getNode()) {
1697 Result = Tmp3;
1698 break;
1700 // FALLTHROUGH
1701 case TargetLowering::Expand: {
1702 MVT EltVT = VT.getVectorElementType();
1703 unsigned NumElems = VT.getVectorNumElements();
1704 SmallVector<SDValue, 8> Ops;
1705 for (unsigned i = 0; i != NumElems; ++i) {
1706 if (Mask[i] < 0) {
1707 Ops.push_back(DAG.getUNDEF(EltVT));
1708 continue;
1710 unsigned Idx = Mask[i];
1711 if (Idx < NumElems)
1712 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp1,
1713 DAG.getIntPtrConstant(Idx)));
1714 else
1715 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Tmp2,
1716 DAG.getIntPtrConstant(Idx - NumElems)));
1718 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
1719 break;
1721 case TargetLowering::Promote: {
1722 // Change base type to a different vector type.
1723 MVT OVT = Node->getValueType(0);
1724 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
1726 // Cast the two input vectors.
1727 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1);
1728 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2);
1730 // Convert the shuffle mask to the right # elements.
1731 Result = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
1732 Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result);
1733 break;
1736 break;
1738 case ISD::EXTRACT_VECTOR_ELT:
1739 Tmp1 = Node->getOperand(0);
1740 Tmp2 = LegalizeOp(Node->getOperand(1));
1741 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
1742 Result = ExpandEXTRACT_VECTOR_ELT(Result);
1743 break;
1745 case ISD::EXTRACT_SUBVECTOR:
1746 Tmp1 = Node->getOperand(0);
1747 Tmp2 = LegalizeOp(Node->getOperand(1));
1748 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
1749 Result = ExpandEXTRACT_SUBVECTOR(Result);
1750 break;
1752 case ISD::CONCAT_VECTORS: {
1753 // Legalize the operands.
1754 SmallVector<SDValue, 8> Ops;
1755 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1756 Ops.push_back(LegalizeOp(Node->getOperand(i)));
1757 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1759 switch (TLI.getOperationAction(ISD::CONCAT_VECTORS,
1760 Node->getValueType(0))) {
1761 default: assert(0 && "Unknown operation action!");
1762 case TargetLowering::Legal:
1763 break;
1764 case TargetLowering::Custom:
1765 Tmp3 = TLI.LowerOperation(Result, DAG);
1766 if (Tmp3.getNode()) {
1767 Result = Tmp3;
1768 break;
1770 // FALLTHROUGH
1771 case TargetLowering::Expand: {
1772 // Use extract/insert/build vector for now. We might try to be
1773 // more clever later.
1774 MVT PtrVT = TLI.getPointerTy();
1775 SmallVector<SDValue, 8> Ops;
1776 unsigned NumOperands = Node->getNumOperands();
1777 for (unsigned i=0; i < NumOperands; ++i) {
1778 SDValue SubOp = Node->getOperand(i);
1779 MVT VVT = SubOp.getNode()->getValueType(0);
1780 MVT EltVT = VVT.getVectorElementType();
1781 unsigned NumSubElem = VVT.getVectorNumElements();
1782 for (unsigned j=0; j < NumSubElem; ++j) {
1783 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1784 DAG.getConstant(j, PtrVT)));
1787 return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, dl,
1788 Node->getValueType(0),
1789 &Ops[0], Ops.size()));
1792 break;
1795 case ISD::CALLSEQ_START: {
1796 SDNode *CallEnd = FindCallEndFromCallStart(Node);
1798 // Recursively Legalize all of the inputs of the call end that do not lead
1799 // to this call start. This ensures that any libcalls that need be inserted
1800 // are inserted *before* the CALLSEQ_START.
1801 IsLegalizingCallArgs = true;
1802 {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1803 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1804 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1805 NodesLeadingTo);
1807 IsLegalizingCallArgs = false;
1809 // Now that we legalized all of the inputs (which may have inserted
1810 // libcalls) create the new CALLSEQ_START node.
1811 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1813 // Merge in the last call, to ensure that this call start after the last
1814 // call ended.
1815 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1816 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1817 Tmp1, LastCALLSEQ_END);
1818 Tmp1 = LegalizeOp(Tmp1);
1821 // Do not try to legalize the target-specific arguments (#1+).
1822 if (Tmp1 != Node->getOperand(0)) {
1823 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1824 Ops[0] = Tmp1;
1825 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1828 // Remember that the CALLSEQ_START is legalized.
1829 AddLegalizedOperand(Op.getValue(0), Result);
1830 if (Node->getNumValues() == 2) // If this has a flag result, remember it.
1831 AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1833 // Now that the callseq_start and all of the non-call nodes above this call
1834 // sequence have been legalized, legalize the call itself. During this
1835 // process, no libcalls can/will be inserted, guaranteeing that no calls
1836 // can overlap.
1837 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1838 // Note that we are selecting this call!
1839 LastCALLSEQ_END = SDValue(CallEnd, 0);
1840 IsLegalizingCall = true;
1842 // Legalize the call, starting from the CALLSEQ_END.
1843 LegalizeOp(LastCALLSEQ_END);
1844 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1845 return Result;
1847 case ISD::CALLSEQ_END:
1848 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1849 // will cause this node to be legalized as well as handling libcalls right.
1850 if (LastCALLSEQ_END.getNode() != Node) {
1851 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1852 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1853 assert(I != LegalizedNodes.end() &&
1854 "Legalizing the call start should have legalized this node!");
1855 return I->second;
1858 // Otherwise, the call start has been legalized and everything is going
1859 // according to plan. Just legalize ourselves normally here.
1860 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1861 // Do not try to legalize the target-specific arguments (#1+), except for
1862 // an optional flag input.
1863 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1864 if (Tmp1 != Node->getOperand(0)) {
1865 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1866 Ops[0] = Tmp1;
1867 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1869 } else {
1870 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1871 if (Tmp1 != Node->getOperand(0) ||
1872 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1873 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1874 Ops[0] = Tmp1;
1875 Ops.back() = Tmp2;
1876 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1879 assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1880 // This finishes up call legalization.
1881 IsLegalizingCall = false;
1883 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1884 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1885 if (Node->getNumValues() == 2)
1886 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1887 return Result.getValue(Op.getResNo());
1888 case ISD::DYNAMIC_STACKALLOC: {
1889 MVT VT = Node->getValueType(0);
1890 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1891 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size.
1892 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment.
1893 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
1895 Tmp1 = Result.getValue(0);
1896 Tmp2 = Result.getValue(1);
1897 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1898 default: assert(0 && "This action is not supported yet!");
1899 case TargetLowering::Expand: {
1900 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1901 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1902 " not tell us which reg is the stack pointer!");
1903 SDValue Chain = Tmp1.getOperand(0);
1905 // Chain the dynamic stack allocation so that it doesn't modify the stack
1906 // pointer when other instructions are using the stack.
1907 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1909 SDValue Size = Tmp2.getOperand(1);
1910 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1911 Chain = SP.getValue(1);
1912 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1913 unsigned StackAlign =
1914 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1915 if (Align > StackAlign)
1916 SP = DAG.getNode(ISD::AND, dl, VT, SP,
1917 DAG.getConstant(-(uint64_t)Align, VT));
1918 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1919 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1921 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1922 DAG.getIntPtrConstant(0, true), SDValue());
1924 Tmp1 = LegalizeOp(Tmp1);
1925 Tmp2 = LegalizeOp(Tmp2);
1926 break;
1928 case TargetLowering::Custom:
1929 Tmp3 = TLI.LowerOperation(Tmp1, DAG);
1930 if (Tmp3.getNode()) {
1931 Tmp1 = LegalizeOp(Tmp3);
1932 Tmp2 = LegalizeOp(Tmp3.getValue(1));
1934 break;
1935 case TargetLowering::Legal:
1936 break;
1938 // Since this op produce two values, make sure to remember that we
1939 // legalized both of them.
1940 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1941 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1942 return Op.getResNo() ? Tmp2 : Tmp1;
1944 case ISD::INLINEASM: {
1945 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1946 bool Changed = false;
1947 // Legalize all of the operands of the inline asm, in case they are nodes
1948 // that need to be expanded or something. Note we skip the asm string and
1949 // all of the TargetConstant flags.
1950 SDValue Op = LegalizeOp(Ops[0]);
1951 Changed = Op != Ops[0];
1952 Ops[0] = Op;
1954 bool HasInFlag = Ops.back().getValueType() == MVT::Flag;
1955 for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) {
1956 unsigned NumVals = InlineAsm::
1957 getNumOperandRegisters(cast<ConstantSDNode>(Ops[i])->getZExtValue());
1958 for (++i; NumVals; ++i, --NumVals) {
1959 SDValue Op = LegalizeOp(Ops[i]);
1960 if (Op != Ops[i]) {
1961 Changed = true;
1962 Ops[i] = Op;
1967 if (HasInFlag) {
1968 Op = LegalizeOp(Ops.back());
1969 Changed |= Op != Ops.back();
1970 Ops.back() = Op;
1973 if (Changed)
1974 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1976 // INLINE asm returns a chain and flag, make sure to add both to the map.
1977 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1978 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1979 return Result.getValue(Op.getResNo());
1981 case ISD::BR:
1982 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1983 // Ensure that libcalls are emitted before a branch.
1984 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
1985 Tmp1 = LegalizeOp(Tmp1);
1986 LastCALLSEQ_END = DAG.getEntryNode();
1988 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
1989 break;
1990 case ISD::BRIND:
1991 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1992 // Ensure that libcalls are emitted before a branch.
1993 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
1994 Tmp1 = LegalizeOp(Tmp1);
1995 LastCALLSEQ_END = DAG.getEntryNode();
1997 switch (getTypeAction(Node->getOperand(1).getValueType())) {
1998 default: assert(0 && "Indirect target must be legal type (pointer)!");
1999 case Legal:
2000 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
2001 break;
2003 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
2004 break;
2005 case ISD::BR_JT:
2006 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
2007 // Ensure that libcalls are emitted before a branch.
2008 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
2009 Tmp1 = LegalizeOp(Tmp1);
2010 LastCALLSEQ_END = DAG.getEntryNode();
2012 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node.
2013 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
2015 switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) {
2016 default: assert(0 && "This action is not supported yet!");
2017 case TargetLowering::Legal: break;
2018 case TargetLowering::Custom:
2019 Tmp1 = TLI.LowerOperation(Result, DAG);
2020 if (Tmp1.getNode()) Result = Tmp1;
2021 break;
2022 case TargetLowering::Expand: {
2023 SDValue Chain = Result.getOperand(0);
2024 SDValue Table = Result.getOperand(1);
2025 SDValue Index = Result.getOperand(2);
2027 MVT PTy = TLI.getPointerTy();
2028 MachineFunction &MF = DAG.getMachineFunction();
2029 unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
2030 Index= DAG.getNode(ISD::MUL, dl, PTy,
2031 Index, DAG.getConstant(EntrySize, PTy));
2032 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2034 MVT MemVT = MVT::getIntegerVT(EntrySize * 8);
2035 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2036 PseudoSourceValue::getJumpTable(), 0, MemVT);
2037 Addr = LD;
2038 if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2039 // For PIC, the sequence is:
2040 // BRIND(load(Jumptable + index) + RelocBase)
2041 // RelocBase can be JumpTable, GOT or some sort of global base.
2042 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2043 TLI.getPICJumpTableRelocBase(Table, DAG));
2045 Result = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2048 break;
2049 case ISD::BRCOND:
2050 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
2051 // Ensure that libcalls are emitted before a return.
2052 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
2053 Tmp1 = LegalizeOp(Tmp1);
2054 LastCALLSEQ_END = DAG.getEntryNode();
2056 switch (getTypeAction(Node->getOperand(1).getValueType())) {
2057 case Expand: assert(0 && "It's impossible to expand bools");
2058 case Legal:
2059 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
2060 break;
2061 case Promote: {
2062 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition.
2064 // The top bits of the promoted condition are not necessarily zero, ensure
2065 // that the value is properly zero extended.
2066 unsigned BitWidth = Tmp2.getValueSizeInBits();
2067 if (!DAG.MaskedValueIsZero(Tmp2,
2068 APInt::getHighBitsSet(BitWidth, BitWidth-1)))
2069 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, MVT::i1);
2070 break;
2074 // Basic block destination (Op#2) is always legal.
2075 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
2077 switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) {
2078 default: assert(0 && "This action is not supported yet!");
2079 case TargetLowering::Legal: break;
2080 case TargetLowering::Custom:
2081 Tmp1 = TLI.LowerOperation(Result, DAG);
2082 if (Tmp1.getNode()) Result = Tmp1;
2083 break;
2084 case TargetLowering::Expand:
2085 // Expand brcond's setcc into its constituent parts and create a BR_CC
2086 // Node.
2087 if (Tmp2.getOpcode() == ISD::SETCC) {
2088 Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2089 Tmp1, Tmp2.getOperand(2),
2090 Tmp2.getOperand(0), Tmp2.getOperand(1),
2091 Node->getOperand(2));
2092 } else {
2093 Result = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2094 DAG.getCondCode(ISD::SETNE), Tmp2,
2095 DAG.getConstant(0, Tmp2.getValueType()),
2096 Node->getOperand(2));
2098 break;
2100 break;
2101 case ISD::BR_CC:
2102 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
2103 // Ensure that libcalls are emitted before a branch.
2104 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
2105 Tmp1 = LegalizeOp(Tmp1);
2106 Tmp2 = Node->getOperand(2); // LHS
2107 Tmp3 = Node->getOperand(3); // RHS
2108 Tmp4 = Node->getOperand(1); // CC
2110 LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()),
2111 Tmp2, Tmp3, Tmp4, dl);
2112 LastCALLSEQ_END = DAG.getEntryNode();
2114 // If we didn't get both a LHS and RHS back from LegalizeSetCC,
2115 // the LHS is a legal SETCC itself. In this case, we need to compare
2116 // the result against zero to select between true and false values.
2117 if (Tmp3.getNode() == 0) {
2118 Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2119 Tmp4 = DAG.getCondCode(ISD::SETNE);
2122 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3,
2123 Node->getOperand(4));
2125 switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) {
2126 default: assert(0 && "Unexpected action for BR_CC!");
2127 case TargetLowering::Legal: break;
2128 case TargetLowering::Custom:
2129 Tmp4 = TLI.LowerOperation(Result, DAG);
2130 if (Tmp4.getNode()) Result = Tmp4;
2131 break;
2133 break;
2134 case ISD::LOAD: {
2135 LoadSDNode *LD = cast<LoadSDNode>(Node);
2136 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
2137 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
2139 ISD::LoadExtType ExtType = LD->getExtensionType();
2140 if (ExtType == ISD::NON_EXTLOAD) {
2141 MVT VT = Node->getValueType(0);
2142 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
2143 Tmp3 = Result.getValue(0);
2144 Tmp4 = Result.getValue(1);
2146 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
2147 default: assert(0 && "This action is not supported yet!");
2148 case TargetLowering::Legal:
2149 // If this is an unaligned load and the target doesn't support it,
2150 // expand it.
2151 if (!TLI.allowsUnalignedMemoryAccesses()) {
2152 unsigned ABIAlignment = TLI.getTargetData()->
2153 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
2154 if (LD->getAlignment() < ABIAlignment){
2155 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
2156 TLI);
2157 Tmp3 = Result.getOperand(0);
2158 Tmp4 = Result.getOperand(1);
2159 Tmp3 = LegalizeOp(Tmp3);
2160 Tmp4 = LegalizeOp(Tmp4);
2163 break;
2164 case TargetLowering::Custom:
2165 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
2166 if (Tmp1.getNode()) {
2167 Tmp3 = LegalizeOp(Tmp1);
2168 Tmp4 = LegalizeOp(Tmp1.getValue(1));
2170 break;
2171 case TargetLowering::Promote: {
2172 // Only promote a load of vector type to another.
2173 assert(VT.isVector() && "Cannot promote this load!");
2174 // Change base type to a different vector type.
2175 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
2177 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
2178 LD->getSrcValueOffset(),
2179 LD->isVolatile(), LD->getAlignment());
2180 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
2181 Tmp4 = LegalizeOp(Tmp1.getValue(1));
2182 break;
2185 // Since loads produce two values, make sure to remember that we
2186 // legalized both of them.
2187 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
2188 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
2189 return Op.getResNo() ? Tmp4 : Tmp3;
2190 } else {
2191 MVT SrcVT = LD->getMemoryVT();
2192 unsigned SrcWidth = SrcVT.getSizeInBits();
2193 int SVOffset = LD->getSrcValueOffset();
2194 unsigned Alignment = LD->getAlignment();
2195 bool isVolatile = LD->isVolatile();
2197 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
2198 // Some targets pretend to have an i1 loading operation, and actually
2199 // load an i8. This trick is correct for ZEXTLOAD because the top 7
2200 // bits are guaranteed to be zero; it helps the optimizers understand
2201 // that these bits are zero. It is also useful for EXTLOAD, since it
2202 // tells the optimizers that those bits are undefined. It would be
2203 // nice to have an effective generic way of getting these benefits...
2204 // Until such a way is found, don't insist on promoting i1 here.
2205 (SrcVT != MVT::i1 ||
2206 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
2207 // Promote to a byte-sized load if not loading an integral number of
2208 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2209 unsigned NewWidth = SrcVT.getStoreSizeInBits();
2210 MVT NVT = MVT::getIntegerVT(NewWidth);
2211 SDValue Ch;
2213 // The extra bits are guaranteed to be zero, since we stored them that
2214 // way. A zext load from NVT thus automatically gives zext from SrcVT.
2216 ISD::LoadExtType NewExtType =
2217 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
2219 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
2220 Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
2221 NVT, isVolatile, Alignment);
2223 Ch = Result.getValue(1); // The chain.
2225 if (ExtType == ISD::SEXTLOAD)
2226 // Having the top bits zero doesn't help when sign extending.
2227 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
2228 Result.getValueType(),
2229 Result, DAG.getValueType(SrcVT));
2230 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
2231 // All the top bits are guaranteed to be zero - inform the optimizers.
2232 Result = DAG.getNode(ISD::AssertZext, dl,
2233 Result.getValueType(), Result,
2234 DAG.getValueType(SrcVT));
2236 Tmp1 = LegalizeOp(Result);
2237 Tmp2 = LegalizeOp(Ch);
2238 } else if (SrcWidth & (SrcWidth - 1)) {
2239 // If not loading a power-of-2 number of bits, expand as two loads.
2240 assert(SrcVT.isExtended() && !SrcVT.isVector() &&
2241 "Unsupported extload!");
2242 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
2243 assert(RoundWidth < SrcWidth);
2244 unsigned ExtraWidth = SrcWidth - RoundWidth;
2245 assert(ExtraWidth < RoundWidth);
2246 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
2247 "Load size not an integral number of bytes!");
2248 MVT RoundVT = MVT::getIntegerVT(RoundWidth);
2249 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
2250 SDValue Lo, Hi, Ch;
2251 unsigned IncrementSize;
2253 if (TLI.isLittleEndian()) {
2254 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
2255 // Load the bottom RoundWidth bits.
2256 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
2257 Node->getValueType(0), Tmp1, Tmp2,
2258 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
2259 Alignment);
2261 // Load the remaining ExtraWidth bits.
2262 IncrementSize = RoundWidth / 8;
2263 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
2264 DAG.getIntPtrConstant(IncrementSize));
2265 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
2266 LD->getSrcValue(), SVOffset + IncrementSize,
2267 ExtraVT, isVolatile,
2268 MinAlign(Alignment, IncrementSize));
2270 // Build a factor node to remember that this load is independent of the
2271 // other one.
2272 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2273 Hi.getValue(1));
2275 // Move the top bits to the right place.
2276 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
2277 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
2279 // Join the hi and lo parts.
2280 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
2281 } else {
2282 // Big endian - avoid unaligned loads.
2283 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
2284 // Load the top RoundWidth bits.
2285 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
2286 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
2287 Alignment);
2289 // Load the remaining ExtraWidth bits.
2290 IncrementSize = RoundWidth / 8;
2291 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
2292 DAG.getIntPtrConstant(IncrementSize));
2293 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
2294 Node->getValueType(0), Tmp1, Tmp2,
2295 LD->getSrcValue(), SVOffset + IncrementSize,
2296 ExtraVT, isVolatile,
2297 MinAlign(Alignment, IncrementSize));
2299 // Build a factor node to remember that this load is independent of the
2300 // other one.
2301 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2302 Hi.getValue(1));
2304 // Move the top bits to the right place.
2305 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
2306 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
2308 // Join the hi and lo parts.
2309 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
2312 Tmp1 = LegalizeOp(Result);
2313 Tmp2 = LegalizeOp(Ch);
2314 } else {
2315 switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
2316 default: assert(0 && "This action is not supported yet!");
2317 case TargetLowering::Custom:
2318 isCustom = true;
2319 // FALLTHROUGH
2320 case TargetLowering::Legal:
2321 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
2322 Tmp1 = Result.getValue(0);
2323 Tmp2 = Result.getValue(1);
2325 if (isCustom) {
2326 Tmp3 = TLI.LowerOperation(Result, DAG);
2327 if (Tmp3.getNode()) {
2328 Tmp1 = LegalizeOp(Tmp3);
2329 Tmp2 = LegalizeOp(Tmp3.getValue(1));
2331 } else {
2332 // If this is an unaligned load and the target doesn't support it,
2333 // expand it.
2334 if (!TLI.allowsUnalignedMemoryAccesses()) {
2335 unsigned ABIAlignment = TLI.getTargetData()->
2336 getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
2337 if (LD->getAlignment() < ABIAlignment){
2338 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
2339 TLI);
2340 Tmp1 = Result.getOperand(0);
2341 Tmp2 = Result.getOperand(1);
2342 Tmp1 = LegalizeOp(Tmp1);
2343 Tmp2 = LegalizeOp(Tmp2);
2347 break;
2348 case TargetLowering::Expand:
2349 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
2350 if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
2351 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
2352 LD->getSrcValueOffset(),
2353 LD->isVolatile(), LD->getAlignment());
2354 Result = DAG.getNode(ISD::FP_EXTEND, dl,
2355 Node->getValueType(0), Load);
2356 Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
2357 Tmp2 = LegalizeOp(Load.getValue(1));
2358 break;
2360 assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
2361 // Turn the unsupported load into an EXTLOAD followed by an explicit
2362 // zero/sign extend inreg.
2363 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
2364 Tmp1, Tmp2, LD->getSrcValue(),
2365 LD->getSrcValueOffset(), SrcVT,
2366 LD->isVolatile(), LD->getAlignment());
2367 SDValue ValRes;
2368 if (ExtType == ISD::SEXTLOAD)
2369 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
2370 Result.getValueType(),
2371 Result, DAG.getValueType(SrcVT));
2372 else
2373 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
2374 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
2375 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
2376 break;
2380 // Since loads produce two values, make sure to remember that we legalized
2381 // both of them.
2382 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
2383 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
2384 return Op.getResNo() ? Tmp2 : Tmp1;
2387 case ISD::EXTRACT_ELEMENT: {
2388 MVT OpTy = Node->getOperand(0).getValueType();
2389 switch (getTypeAction(OpTy)) {
2390 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!");
2391 case Legal:
2392 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2393 // 1 -> Hi
2394 Result = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2395 DAG.getConstant(OpTy.getSizeInBits()/2,
2396 TLI.getShiftAmountTy()));
2397 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result);
2398 } else {
2399 // 0 -> Lo
2400 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2401 Node->getOperand(0));
2403 break;
2404 case Expand:
2405 // Get both the low and high parts.
2406 ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
2407 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue())
2408 Result = Tmp2; // 1 -> Hi
2409 else
2410 Result = Tmp1; // 0 -> Lo
2411 break;
2413 break;
2416 case ISD::CopyToReg:
2417 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
2419 assert(isTypeLegal(Node->getOperand(2).getValueType()) &&
2420 "Register type must be legal!");
2421 // Legalize the incoming value (must be a legal type).
2422 Tmp2 = LegalizeOp(Node->getOperand(2));
2423 if (Node->getNumValues() == 1) {
2424 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2);
2425 } else {
2426 assert(Node->getNumValues() == 2 && "Unknown CopyToReg");
2427 if (Node->getNumOperands() == 4) {
2428 Tmp3 = LegalizeOp(Node->getOperand(3));
2429 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2,
2430 Tmp3);
2431 } else {
2432 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2);
2435 // Since this produces two values, make sure to remember that we legalized
2436 // both of them.
2437 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
2438 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
2439 return Result;
2441 break;
2443 case ISD::RET:
2444 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
2446 // Ensure that libcalls are emitted before a return.
2447 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1, LastCALLSEQ_END);
2448 Tmp1 = LegalizeOp(Tmp1);
2449 LastCALLSEQ_END = DAG.getEntryNode();
2451 switch (Node->getNumOperands()) {
2452 case 3: // ret val
2453 Tmp2 = Node->getOperand(1);
2454 Tmp3 = Node->getOperand(2); // Signness
2455 switch (getTypeAction(Tmp2.getValueType())) {
2456 case Legal:
2457 Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3);
2458 break;
2459 case Expand:
2460 if (!Tmp2.getValueType().isVector()) {
2461 SDValue Lo, Hi;
2462 ExpandOp(Tmp2, Lo, Hi);
2464 // Big endian systems want the hi reg first.
2465 if (TLI.isBigEndian())
2466 std::swap(Lo, Hi);
2468 if (Hi.getNode())
2469 Result = DAG.getNode(ISD::RET, dl, MVT::Other,
2470 Tmp1, Lo, Tmp3, Hi, Tmp3);
2471 else
2472 Result = DAG.getNode(ISD::RET, dl, MVT::Other, Tmp1, Lo, Tmp3);
2473 Result = LegalizeOp(Result);
2474 } else {
2475 SDNode *InVal = Tmp2.getNode();
2476 int InIx = Tmp2.getResNo();
2477 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements();
2478 MVT EVT = InVal->getValueType(InIx).getVectorElementType();
2480 // Figure out if there is a simple type corresponding to this Vector
2481 // type. If so, convert to the vector type.
2482 MVT TVT = MVT::getVectorVT(EVT, NumElems);
2483 if (TLI.isTypeLegal(TVT)) {
2484 // Turn this into a return of the vector type.
2485 Tmp2 = LegalizeOp(Tmp2);
2486 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
2487 } else if (NumElems == 1) {
2488 // Turn this into a return of the scalar type.
2489 Tmp2 = ScalarizeVectorOp(Tmp2);
2490 Tmp2 = LegalizeOp(Tmp2);
2491 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
2493 // FIXME: Returns of gcc generic vectors smaller than a legal type
2494 // should be returned in integer registers!
2496 // The scalarized value type may not be legal, e.g. it might require
2497 // promotion or expansion. Relegalize the return.
2498 Result = LegalizeOp(Result);
2499 } else {
2500 // FIXME: Returns of gcc generic vectors larger than a legal vector
2501 // type should be returned by reference!
2502 SDValue Lo, Hi;
2503 SplitVectorOp(Tmp2, Lo, Hi);
2504 Result = DAG.getNode(ISD::RET, dl, MVT::Other,
2505 Tmp1, Lo, Tmp3, Hi, Tmp3);
2506 Result = LegalizeOp(Result);
2509 break;
2510 case Promote:
2511 Tmp2 = PromoteOp(Node->getOperand(1));
2512 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
2513 Result = LegalizeOp(Result);
2514 break;
2516 break;
2517 case 1: // ret void
2518 Result = DAG.UpdateNodeOperands(Result, Tmp1);
2519 break;
2520 default: { // ret <values>
2521 SmallVector<SDValue, 8> NewValues;
2522 NewValues.push_back(Tmp1);
2523 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2)
2524 switch (getTypeAction(Node->getOperand(i).getValueType())) {
2525 case Legal:
2526 NewValues.push_back(LegalizeOp(Node->getOperand(i)));
2527 NewValues.push_back(Node->getOperand(i+1));
2528 break;
2529 case Expand: {
2530 SDValue Lo, Hi;
2531 assert(!Node->getOperand(i).getValueType().isExtended() &&
2532 "FIXME: TODO: implement returning non-legal vector types!");
2533 ExpandOp(Node->getOperand(i), Lo, Hi);
2534 NewValues.push_back(Lo);
2535 NewValues.push_back(Node->getOperand(i+1));
2536 if (Hi.getNode()) {
2537 NewValues.push_back(Hi);
2538 NewValues.push_back(Node->getOperand(i+1));
2540 break;
2542 case Promote:
2543 assert(0 && "Can't promote multiple return value yet!");
2546 if (NewValues.size() == Node->getNumOperands())
2547 Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size());
2548 else
2549 Result = DAG.getNode(ISD::RET, dl, MVT::Other,
2550 &NewValues[0], NewValues.size());
2551 break;
2555 if (Result.getOpcode() == ISD::RET) {
2556 switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) {
2557 default: assert(0 && "This action is not supported yet!");
2558 case TargetLowering::Legal: break;
2559 case TargetLowering::Custom:
2560 Tmp1 = TLI.LowerOperation(Result, DAG);
2561 if (Tmp1.getNode()) Result = Tmp1;
2562 break;
2565 break;
2566 case ISD::STORE: {
2567 StoreSDNode *ST = cast<StoreSDNode>(Node);
2568 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
2569 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
2570 int SVOffset = ST->getSrcValueOffset();
2571 unsigned Alignment = ST->getAlignment();
2572 bool isVolatile = ST->isVolatile();
2574 if (!ST->isTruncatingStore()) {
2575 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
2576 // FIXME: We shouldn't do this for TargetConstantFP's.
2577 // FIXME: move this to the DAG Combiner! Note that we can't regress due
2578 // to phase ordering between legalized code and the dag combiner. This
2579 // probably means that we need to integrate dag combiner and legalizer
2580 // together.
2581 // We generally can't do this one for long doubles.
2582 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
2583 if (CFP->getValueType(0) == MVT::f32 &&
2584 getTypeAction(MVT::i32) == Legal) {
2585 Tmp3 = DAG.getConstant(CFP->getValueAPF().
2586 bitcastToAPInt().zextOrTrunc(32),
2587 MVT::i32);
2588 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2589 SVOffset, isVolatile, Alignment);
2590 break;
2591 } else if (CFP->getValueType(0) == MVT::f64) {
2592 // If this target supports 64-bit registers, do a single 64-bit store.
2593 if (getTypeAction(MVT::i64) == Legal) {
2594 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
2595 zextOrTrunc(64), MVT::i64);
2596 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2597 SVOffset, isVolatile, Alignment);
2598 break;
2599 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
2600 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
2601 // stores. If the target supports neither 32- nor 64-bits, this
2602 // xform is certainly not worth it.
2603 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
2604 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
2605 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
2606 if (TLI.isBigEndian()) std::swap(Lo, Hi);
2608 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
2609 SVOffset, isVolatile, Alignment);
2610 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
2611 DAG.getIntPtrConstant(4));
2612 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
2613 isVolatile, MinAlign(Alignment, 4U));
2615 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2616 break;
2621 switch (getTypeAction(ST->getMemoryVT())) {
2622 case Legal: {
2623 Tmp3 = LegalizeOp(ST->getValue());
2624 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
2625 ST->getOffset());
2627 MVT VT = Tmp3.getValueType();
2628 switch (TLI.getOperationAction(ISD::STORE, VT)) {
2629 default: assert(0 && "This action is not supported yet!");
2630 case TargetLowering::Legal:
2631 // If this is an unaligned store and the target doesn't support it,
2632 // expand it.
2633 if (!TLI.allowsUnalignedMemoryAccesses()) {
2634 unsigned ABIAlignment = TLI.getTargetData()->
2635 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
2636 if (ST->getAlignment() < ABIAlignment)
2637 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
2638 TLI);
2640 break;
2641 case TargetLowering::Custom:
2642 Tmp1 = TLI.LowerOperation(Result, DAG);
2643 if (Tmp1.getNode()) Result = Tmp1;
2644 break;
2645 case TargetLowering::Promote:
2646 assert(VT.isVector() && "Unknown legal promote case!");
2647 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
2648 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
2649 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
2650 ST->getSrcValue(), SVOffset, isVolatile,
2651 Alignment);
2652 break;
2654 break;
2656 case Promote:
2657 if (!ST->getMemoryVT().isVector()) {
2658 // Truncate the value and store the result.
2659 Tmp3 = PromoteOp(ST->getValue());
2660 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2661 SVOffset, ST->getMemoryVT(),
2662 isVolatile, Alignment);
2663 break;
2665 // Fall thru to expand for vector
2666 case Expand: {
2667 unsigned IncrementSize = 0;
2668 SDValue Lo, Hi;
2670 // If this is a vector type, then we have to calculate the increment as
2671 // the product of the element size in bytes, and the number of elements
2672 // in the high half of the vector.
2673 if (ST->getValue().getValueType().isVector()) {
2674 SDNode *InVal = ST->getValue().getNode();
2675 int InIx = ST->getValue().getResNo();
2676 MVT InVT = InVal->getValueType(InIx);
2677 unsigned NumElems = InVT.getVectorNumElements();
2678 MVT EVT = InVT.getVectorElementType();
2680 // Figure out if there is a simple type corresponding to this Vector
2681 // type. If so, convert to the vector type.
2682 MVT TVT = MVT::getVectorVT(EVT, NumElems);
2683 if (TLI.isTypeLegal(TVT)) {
2684 // Turn this into a normal store of the vector type.
2685 Tmp3 = LegalizeOp(ST->getValue());
2686 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2687 SVOffset, isVolatile, Alignment);
2688 Result = LegalizeOp(Result);
2689 break;
2690 } else if (NumElems == 1) {
2691 // Turn this into a normal store of the scalar type.
2692 Tmp3 = ScalarizeVectorOp(ST->getValue());
2693 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2694 SVOffset, isVolatile, Alignment);
2695 // The scalarized value type may not be legal, e.g. it might require
2696 // promotion or expansion. Relegalize the scalar store.
2697 Result = LegalizeOp(Result);
2698 break;
2699 } else {
2700 // Check if we have widen this node with another value
2701 std::map<SDValue, SDValue>::iterator I =
2702 WidenNodes.find(ST->getValue());
2703 if (I != WidenNodes.end()) {
2704 Result = StoreWidenVectorOp(ST, Tmp1, Tmp2);
2705 break;
2707 else {
2708 SplitVectorOp(ST->getValue(), Lo, Hi);
2709 IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() *
2710 EVT.getSizeInBits()/8;
2713 } else {
2714 ExpandOp(ST->getValue(), Lo, Hi);
2715 IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0;
2717 if (Hi.getNode() && TLI.isBigEndian())
2718 std::swap(Lo, Hi);
2721 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
2722 SVOffset, isVolatile, Alignment);
2724 if (Hi.getNode() == NULL) {
2725 // Must be int <-> float one-to-one expansion.
2726 Result = Lo;
2727 break;
2730 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
2731 DAG.getIntPtrConstant(IncrementSize));
2732 assert(isTypeLegal(Tmp2.getValueType()) &&
2733 "Pointers must be legal!");
2734 SVOffset += IncrementSize;
2735 Alignment = MinAlign(Alignment, IncrementSize);
2736 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
2737 SVOffset, isVolatile, Alignment);
2738 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2739 break;
2740 } // case Expand
2742 } else {
2743 switch (getTypeAction(ST->getValue().getValueType())) {
2744 case Legal:
2745 Tmp3 = LegalizeOp(ST->getValue());
2746 break;
2747 case Promote:
2748 if (!ST->getValue().getValueType().isVector()) {
2749 // We can promote the value, the truncstore will still take care of it.
2750 Tmp3 = PromoteOp(ST->getValue());
2751 break;
2753 // Vector case falls through to expand
2754 case Expand:
2755 // Just store the low part. This may become a non-trunc store, so make
2756 // sure to use getTruncStore, not UpdateNodeOperands below.
2757 ExpandOp(ST->getValue(), Tmp3, Tmp4);
2758 return DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2759 SVOffset, MVT::i8, isVolatile, Alignment);
2762 MVT StVT = ST->getMemoryVT();
2763 unsigned StWidth = StVT.getSizeInBits();
2765 if (StWidth != StVT.getStoreSizeInBits()) {
2766 // Promote to a byte-sized store with upper bits zero if not
2767 // storing an integral number of bytes. For example, promote
2768 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
2769 MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
2770 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
2771 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2772 SVOffset, NVT, isVolatile, Alignment);
2773 } else if (StWidth & (StWidth - 1)) {
2774 // If not storing a power-of-2 number of bits, expand as two stores.
2775 assert(StVT.isExtended() && !StVT.isVector() &&
2776 "Unsupported truncstore!");
2777 unsigned RoundWidth = 1 << Log2_32(StWidth);
2778 assert(RoundWidth < StWidth);
2779 unsigned ExtraWidth = StWidth - RoundWidth;
2780 assert(ExtraWidth < RoundWidth);
2781 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
2782 "Store size not an integral number of bytes!");
2783 MVT RoundVT = MVT::getIntegerVT(RoundWidth);
2784 MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
2785 SDValue Lo, Hi;
2786 unsigned IncrementSize;
2788 if (TLI.isLittleEndian()) {
2789 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
2790 // Store the bottom RoundWidth bits.
2791 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2792 SVOffset, RoundVT,
2793 isVolatile, Alignment);
2795 // Store the remaining ExtraWidth bits.
2796 IncrementSize = RoundWidth / 8;
2797 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
2798 DAG.getIntPtrConstant(IncrementSize));
2799 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
2800 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
2801 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
2802 SVOffset + IncrementSize, ExtraVT, isVolatile,
2803 MinAlign(Alignment, IncrementSize));
2804 } else {
2805 // Big endian - avoid unaligned stores.
2806 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
2807 // Store the top RoundWidth bits.
2808 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
2809 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
2810 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
2811 SVOffset, RoundVT, isVolatile, Alignment);
2813 // Store the remaining ExtraWidth bits.
2814 IncrementSize = RoundWidth / 8;
2815 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
2816 DAG.getIntPtrConstant(IncrementSize));
2817 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2818 SVOffset + IncrementSize, ExtraVT, isVolatile,
2819 MinAlign(Alignment, IncrementSize));
2822 // The order of the stores doesn't matter.
2823 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2824 } else {
2825 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
2826 Tmp2 != ST->getBasePtr())
2827 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
2828 ST->getOffset());
2830 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
2831 default: assert(0 && "This action is not supported yet!");
2832 case TargetLowering::Legal:
2833 // If this is an unaligned store and the target doesn't support it,
2834 // expand it.
2835 if (!TLI.allowsUnalignedMemoryAccesses()) {
2836 unsigned ABIAlignment = TLI.getTargetData()->
2837 getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
2838 if (ST->getAlignment() < ABIAlignment)
2839 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
2840 TLI);
2842 break;
2843 case TargetLowering::Custom:
2844 Result = TLI.LowerOperation(Result, DAG);
2845 break;
2846 case Expand:
2847 // TRUNCSTORE:i16 i32 -> STORE i16
2848 assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
2849 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
2850 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
2851 SVOffset, isVolatile, Alignment);
2852 break;
2856 break;
2858 case ISD::PCMARKER:
2859 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
2860 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
2861 break;
2862 case ISD::STACKSAVE:
2863 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
2864 Result = DAG.UpdateNodeOperands(Result, Tmp1);
2865 Tmp1 = Result.getValue(0);
2866 Tmp2 = Result.getValue(1);
2868 switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) {
2869 default: assert(0 && "This action is not supported yet!");
2870 case TargetLowering::Legal: break;
2871 case TargetLowering::Custom:
2872 Tmp3 = TLI.LowerOperation(Result, DAG);
2873 if (Tmp3.getNode()) {
2874 Tmp1 = LegalizeOp(Tmp3);
2875 Tmp2 = LegalizeOp(Tmp3.getValue(1));
2877 break;
2878 case TargetLowering::Expand:
2879 // Expand to CopyFromReg if the target set
2880 // StackPointerRegisterToSaveRestore.
2881 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2882 Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), dl, SP,
2883 Node->getValueType(0));
2884 Tmp2 = Tmp1.getValue(1);
2885 } else {
2886 Tmp1 = DAG.getUNDEF(Node->getValueType(0));
2887 Tmp2 = Node->getOperand(0);
2889 break;
2892 // Since stacksave produce two values, make sure to remember that we
2893 // legalized both of them.
2894 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
2895 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
2896 return Op.getResNo() ? Tmp2 : Tmp1;
2898 case ISD::STACKRESTORE:
2899 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
2900 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
2901 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
2903 switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) {
2904 default: assert(0 && "This action is not supported yet!");
2905 case TargetLowering::Legal: break;
2906 case TargetLowering::Custom:
2907 Tmp1 = TLI.LowerOperation(Result, DAG);
2908 if (Tmp1.getNode()) Result = Tmp1;
2909 break;
2910 case TargetLowering::Expand:
2911 // Expand to CopyToReg if the target set
2912 // StackPointerRegisterToSaveRestore.
2913 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2914 Result = DAG.getCopyToReg(Tmp1, dl, SP, Tmp2);
2915 } else {
2916 Result = Tmp1;
2918 break;
2920 break;
2922 case ISD::READCYCLECOUNTER:
2923 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain
2924 Result = DAG.UpdateNodeOperands(Result, Tmp1);
2925 switch (TLI.getOperationAction(ISD::READCYCLECOUNTER,
2926 Node->getValueType(0))) {
2927 default: assert(0 && "This action is not supported yet!");
2928 case TargetLowering::Legal:
2929 Tmp1 = Result.getValue(0);
2930 Tmp2 = Result.getValue(1);
2931 break;
2932 case TargetLowering::Custom:
2933 Result = TLI.LowerOperation(Result, DAG);
2934 Tmp1 = LegalizeOp(Result.getValue(0));
2935 Tmp2 = LegalizeOp(Result.getValue(1));
2936 break;
2939 // Since rdcc produce two values, make sure to remember that we legalized
2940 // both of them.
2941 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
2942 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
2943 return Result;
2945 case ISD::SELECT:
2946 switch (getTypeAction(Node->getOperand(0).getValueType())) {
2947 case Expand: assert(0 && "It's impossible to expand bools");
2948 case Legal:
2949 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition.
2950 break;
2951 case Promote: {
2952 assert(!Node->getOperand(0).getValueType().isVector() && "not possible");
2953 Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition.
2954 // Make sure the condition is either zero or one.
2955 unsigned BitWidth = Tmp1.getValueSizeInBits();
2956 if (!DAG.MaskedValueIsZero(Tmp1,
2957 APInt::getHighBitsSet(BitWidth, BitWidth-1)))
2958 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, MVT::i1);
2959 break;
2962 Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal
2963 Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal
2965 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
2967 switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) {
2968 default: assert(0 && "This action is not supported yet!");
2969 case TargetLowering::Legal: break;
2970 case TargetLowering::Custom: {
2971 Tmp1 = TLI.LowerOperation(Result, DAG);
2972 if (Tmp1.getNode()) Result = Tmp1;
2973 break;
2975 case TargetLowering::Expand:
2976 if (Tmp1.getOpcode() == ISD::SETCC) {
2977 Result = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2978 Tmp2, Tmp3,
2979 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2980 } else {
2981 Result = DAG.getSelectCC(dl, Tmp1,
2982 DAG.getConstant(0, Tmp1.getValueType()),
2983 Tmp2, Tmp3, ISD::SETNE);
2985 break;
2986 case TargetLowering::Promote: {
2987 MVT NVT =
2988 TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType());
2989 unsigned ExtOp, TruncOp;
2990 if (Tmp2.getValueType().isVector()) {
2991 ExtOp = ISD::BIT_CONVERT;
2992 TruncOp = ISD::BIT_CONVERT;
2993 } else if (Tmp2.getValueType().isInteger()) {
2994 ExtOp = ISD::ANY_EXTEND;
2995 TruncOp = ISD::TRUNCATE;
2996 } else {
2997 ExtOp = ISD::FP_EXTEND;
2998 TruncOp = ISD::FP_ROUND;
3000 // Promote each of the values to the new type.
3001 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Tmp2);
3002 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Tmp3);
3003 // Perform the larger operation, then round down.
3004 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3005 if (TruncOp != ISD::FP_ROUND)
3006 Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result);
3007 else
3008 Result = DAG.getNode(TruncOp, dl, Node->getValueType(0), Result,
3009 DAG.getIntPtrConstant(0));
3010 break;
3013 break;
3014 case ISD::SELECT_CC: {
3015 Tmp1 = Node->getOperand(0); // LHS
3016 Tmp2 = Node->getOperand(1); // RHS
3017 Tmp3 = LegalizeOp(Node->getOperand(2)); // True
3018 Tmp4 = LegalizeOp(Node->getOperand(3)); // False
3019 SDValue CC = Node->getOperand(4);
3021 LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()),
3022 Tmp1, Tmp2, CC, dl);
3024 // If we didn't get both a LHS and RHS back from LegalizeSetCC,
3025 // the LHS is a legal SETCC itself. In this case, we need to compare
3026 // the result against zero to select between true and false values.
3027 if (Tmp2.getNode() == 0) {
3028 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3029 CC = DAG.getCondCode(ISD::SETNE);
3031 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC);
3033 // Everything is legal, see if we should expand this op or something.
3034 switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) {
3035 default: assert(0 && "This action is not supported yet!");
3036 case TargetLowering::Legal: break;
3037 case TargetLowering::Custom:
3038 Tmp1 = TLI.LowerOperation(Result, DAG);
3039 if (Tmp1.getNode()) Result = Tmp1;
3040 break;
3042 break;
3044 case ISD::SETCC:
3045 Tmp1 = Node->getOperand(0);
3046 Tmp2 = Node->getOperand(1);
3047 Tmp3 = Node->getOperand(2);
3048 LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3050 // If we had to Expand the SetCC operands into a SELECT node, then it may
3051 // not always be possible to return a true LHS & RHS. In this case, just
3052 // return the value we legalized, returned in the LHS
3053 if (Tmp2.getNode() == 0) {
3054 Result = Tmp1;
3055 break;
3058 switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) {
3059 default: assert(0 && "Cannot handle this action for SETCC yet!");
3060 case TargetLowering::Custom:
3061 isCustom = true;
3062 // FALLTHROUGH.
3063 case TargetLowering::Legal:
3064 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
3065 if (isCustom) {
3066 Tmp4 = TLI.LowerOperation(Result, DAG);
3067 if (Tmp4.getNode()) Result = Tmp4;
3069 break;
3070 case TargetLowering::Promote: {
3071 // First step, figure out the appropriate operation to use.
3072 // Allow SETCC to not be supported for all legal data types
3073 // Mostly this targets FP
3074 MVT NewInTy = Node->getOperand(0).getValueType();
3075 MVT OldVT = NewInTy; OldVT = OldVT;
3077 // Scan for the appropriate larger type to use.
3078 while (1) {
3079 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
3081 assert(NewInTy.isInteger() == OldVT.isInteger() &&
3082 "Fell off of the edge of the integer world");
3083 assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
3084 "Fell off of the edge of the floating point world");
3086 // If the target supports SETCC of this type, use it.
3087 if (TLI.isOperationLegalOrCustom(ISD::SETCC, NewInTy))
3088 break;
3090 if (NewInTy.isInteger())
3091 assert(0 && "Cannot promote Legal Integer SETCC yet");
3092 else {
3093 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp1);
3094 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NewInTy, Tmp2);
3096 Tmp1 = LegalizeOp(Tmp1);
3097 Tmp2 = LegalizeOp(Tmp2);
3098 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
3099 Result = LegalizeOp(Result);
3100 break;
3102 case TargetLowering::Expand:
3103 // Expand a setcc node into a select_cc of the same condition, lhs, and
3104 // rhs that selects between const 1 (true) and const 0 (false).
3105 MVT VT = Node->getValueType(0);
3106 Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3107 DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3108 Tmp3);
3109 break;
3111 break;
3112 case ISD::VSETCC: {
3113 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
3114 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
3115 SDValue CC = Node->getOperand(2);
3117 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC);
3119 // Everything is legal, see if we should expand this op or something.
3120 switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) {
3121 default: assert(0 && "This action is not supported yet!");
3122 case TargetLowering::Legal: break;
3123 case TargetLowering::Custom:
3124 Tmp1 = TLI.LowerOperation(Result, DAG);
3125 if (Tmp1.getNode()) Result = Tmp1;
3126 break;
3127 case TargetLowering::Expand: {
3128 // Unroll into a nasty set of scalar code for now.
3129 MVT VT = Node->getValueType(0);
3130 unsigned NumElems = VT.getVectorNumElements();
3131 MVT EltVT = VT.getVectorElementType();
3132 MVT TmpEltVT = Tmp1.getValueType().getVectorElementType();
3133 SmallVector<SDValue, 8> Ops(NumElems);
3134 for (unsigned i = 0; i < NumElems; ++i) {
3135 SDValue In1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT,
3136 Tmp1, DAG.getIntPtrConstant(i));
3137 Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT),
3138 In1, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3139 TmpEltVT, Tmp2,
3140 DAG.getIntPtrConstant(i)),
3141 CC);
3142 Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i],
3143 DAG.getConstant(APInt::getAllOnesValue
3144 (EltVT.getSizeInBits()), EltVT),
3145 DAG.getConstant(0, EltVT));
3147 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems);
3148 break;
3151 break;
3154 case ISD::SHL_PARTS:
3155 case ISD::SRA_PARTS:
3156 case ISD::SRL_PARTS: {
3157 SmallVector<SDValue, 8> Ops;
3158 bool Changed = false;
3159 unsigned N = Node->getNumOperands();
3160 for (unsigned i = 0; i + 1 < N; ++i) {
3161 Ops.push_back(LegalizeOp(Node->getOperand(i)));
3162 Changed |= Ops.back() != Node->getOperand(i);
3164 Ops.push_back(LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(N-1))));
3165 Changed |= Ops.back() != Node->getOperand(N-1);
3166 if (Changed)
3167 Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
3169 switch (TLI.getOperationAction(Node->getOpcode(),
3170 Node->getValueType(0))) {
3171 default: assert(0 && "This action is not supported yet!");
3172 case TargetLowering::Legal: break;
3173 case TargetLowering::Custom:
3174 Tmp1 = TLI.LowerOperation(Result, DAG);
3175 if (Tmp1.getNode()) {
3176 SDValue Tmp2, RetVal(0, 0);
3177 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
3178 Tmp2 = LegalizeOp(Tmp1.getValue(i));
3179 AddLegalizedOperand(SDValue(Node, i), Tmp2);
3180 if (i == Op.getResNo())
3181 RetVal = Tmp2;
3183 assert(RetVal.getNode() && "Illegal result number");
3184 return RetVal;
3186 break;
3189 // Since these produce multiple values, make sure to remember that we
3190 // legalized all of them.
3191 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3192 AddLegalizedOperand(SDValue(Node, i), Result.getValue(i));
3193 return Result.getValue(Op.getResNo());
3196 // Binary operators
3197 case ISD::ADD:
3198 case ISD::SUB:
3199 case ISD::MUL:
3200 case ISD::MULHS:
3201 case ISD::MULHU:
3202 case ISD::UDIV:
3203 case ISD::SDIV:
3204 case ISD::AND:
3205 case ISD::OR:
3206 case ISD::XOR:
3207 case ISD::SHL:
3208 case ISD::SRL:
3209 case ISD::SRA:
3210 case ISD::FADD:
3211 case ISD::FSUB:
3212 case ISD::FMUL:
3213 case ISD::FDIV:
3214 case ISD::FPOW:
3215 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
3216 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
3218 if ((Node->getOpcode() == ISD::SHL ||
3219 Node->getOpcode() == ISD::SRL ||
3220 Node->getOpcode() == ISD::SRA) &&
3221 !Node->getValueType(0).isVector())
3222 Tmp2 = DAG.getShiftAmountOperand(Tmp2);
3224 switch (getTypeAction(Tmp2.getValueType())) {
3225 case Expand: assert(0 && "Not possible");
3226 case Legal:
3227 Tmp2 = LegalizeOp(Tmp2); // Legalize the RHS.
3228 break;
3229 case Promote:
3230 Tmp2 = PromoteOp(Tmp2); // Promote the RHS.
3231 break;
3234 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
3236 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3237 default: assert(0 && "BinOp legalize operation not supported");
3238 case TargetLowering::Legal: break;
3239 case TargetLowering::Custom:
3240 Tmp1 = TLI.LowerOperation(Result, DAG);
3241 if (Tmp1.getNode()) {
3242 Result = Tmp1;
3243 break;
3245 // Fall through if the custom lower can't deal with the operation
3246 case TargetLowering::Expand: {
3247 MVT VT = Op.getValueType();
3249 // See if multiply or divide can be lowered using two-result operations.
3250 SDVTList VTs = DAG.getVTList(VT, VT);
3251 if (Node->getOpcode() == ISD::MUL) {
3252 // We just need the low half of the multiply; try both the signed
3253 // and unsigned forms. If the target supports both SMUL_LOHI and
3254 // UMUL_LOHI, form a preference by checking which forms of plain
3255 // MULH it supports.
3256 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3257 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3258 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3259 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3260 unsigned OpToUse = 0;
3261 if (HasSMUL_LOHI && !HasMULHS) {
3262 OpToUse = ISD::SMUL_LOHI;
3263 } else if (HasUMUL_LOHI && !HasMULHU) {
3264 OpToUse = ISD::UMUL_LOHI;
3265 } else if (HasSMUL_LOHI) {
3266 OpToUse = ISD::SMUL_LOHI;
3267 } else if (HasUMUL_LOHI) {
3268 OpToUse = ISD::UMUL_LOHI;
3270 if (OpToUse) {
3271 Result = SDValue(DAG.getNode(OpToUse, dl, VTs, Tmp1, Tmp2).getNode(),
3273 break;
3276 if (Node->getOpcode() == ISD::MULHS &&
3277 TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3278 Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl,
3279 VTs, Tmp1, Tmp2).getNode(),
3281 break;
3283 if (Node->getOpcode() == ISD::MULHU &&
3284 TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
3285 Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl,
3286 VTs, Tmp1, Tmp2).getNode(),
3288 break;
3290 if (Node->getOpcode() == ISD::SDIV &&
3291 TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
3292 Result = SDValue(DAG.getNode(ISD::SDIVREM, dl,
3293 VTs, Tmp1, Tmp2).getNode(),
3295 break;
3297 if (Node->getOpcode() == ISD::UDIV &&
3298 TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) {
3299 Result = SDValue(DAG.getNode(ISD::UDIVREM, dl,
3300 VTs, Tmp1, Tmp2).getNode(),
3302 break;
3305 // Check to see if we have a libcall for this operator.
3306 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3307 bool isSigned = false;
3308 switch (Node->getOpcode()) {
3309 case ISD::UDIV:
3310 case ISD::SDIV:
3311 if (VT == MVT::i32) {
3312 LC = Node->getOpcode() == ISD::UDIV
3313 ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32;
3314 isSigned = Node->getOpcode() == ISD::SDIV;
3316 break;
3317 case ISD::MUL:
3318 if (VT == MVT::i32)
3319 LC = RTLIB::MUL_I32;
3320 else if (VT == MVT::i64)
3321 LC = RTLIB::MUL_I64;
3322 break;
3323 case ISD::FPOW:
3324 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
3325 RTLIB::POW_PPCF128);
3326 break;
3327 case ISD::FDIV:
3328 LC = GetFPLibCall(VT, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80,
3329 RTLIB::DIV_PPCF128);
3330 break;
3331 default: break;
3333 if (LC != RTLIB::UNKNOWN_LIBCALL) {
3334 SDValue Dummy;
3335 Result = ExpandLibCall(LC, Node, isSigned, Dummy);
3336 break;
3339 assert(Node->getValueType(0).isVector() &&
3340 "Cannot expand this binary operator!");
3341 // Expand the operation into a bunch of nasty scalar code.
3342 Result = LegalizeOp(UnrollVectorOp(Op));
3343 break;
3345 case TargetLowering::Promote: {
3346 switch (Node->getOpcode()) {
3347 default: assert(0 && "Do not know how to promote this BinOp!");
3348 case ISD::AND:
3349 case ISD::OR:
3350 case ISD::XOR: {
3351 MVT OVT = Node->getValueType(0);
3352 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3353 assert(OVT.isVector() && "Cannot promote this BinOp!");
3354 // Bit convert each of the values to the new type.
3355 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp1);
3356 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Tmp2);
3357 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3358 // Bit convert the result back the original type.
3359 Result = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Result);
3360 break;
3365 break;
3367 case ISD::SMUL_LOHI:
3368 case ISD::UMUL_LOHI:
3369 case ISD::SDIVREM:
3370 case ISD::UDIVREM:
3371 // These nodes will only be produced by target-specific lowering, so
3372 // they shouldn't be here if they aren't legal.
3373 assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) &&
3374 "This must be legal!");
3376 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
3377 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
3378 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
3379 break;
3381 case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type!
3382 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
3383 switch (getTypeAction(Node->getOperand(1).getValueType())) {
3384 case Expand: assert(0 && "Not possible");
3385 case Legal:
3386 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS.
3387 break;
3388 case Promote:
3389 Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS.
3390 break;
3393 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
3395 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3396 default: assert(0 && "Operation not supported");
3397 case TargetLowering::Custom:
3398 Tmp1 = TLI.LowerOperation(Result, DAG);
3399 if (Tmp1.getNode()) Result = Tmp1;
3400 break;
3401 case TargetLowering::Legal: break;
3402 case TargetLowering::Expand: {
3403 // If this target supports fabs/fneg natively and select is cheap,
3404 // do this efficiently.
3405 if (!TLI.isSelectExpensive() &&
3406 TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) ==
3407 TargetLowering::Legal &&
3408 TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) ==
3409 TargetLowering::Legal) {
3410 // Get the sign bit of the RHS.
3411 MVT IVT =
3412 Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64;
3413 SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
3414 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(IVT),
3415 SignBit, DAG.getConstant(0, IVT), ISD::SETLT);
3416 // Get the absolute value of the result.
3417 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
3418 // Select between the nabs and abs value based on the sign bit of
3419 // the input.
3420 Result = DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
3421 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(),
3422 AbsVal),
3423 AbsVal);
3424 Result = LegalizeOp(Result);
3425 break;
3428 // Otherwise, do bitwise ops!
3429 MVT NVT =
3430 Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64;
3431 Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI);
3432 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), Result);
3433 Result = LegalizeOp(Result);
3434 break;
3437 break;
3439 case ISD::ADDC:
3440 case ISD::SUBC:
3441 Tmp1 = LegalizeOp(Node->getOperand(0));
3442 Tmp2 = LegalizeOp(Node->getOperand(1));
3443 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
3444 Tmp3 = Result.getValue(0);
3445 Tmp4 = Result.getValue(1);
3447 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3448 default: assert(0 && "This action is not supported yet!");
3449 case TargetLowering::Legal:
3450 break;
3451 case TargetLowering::Custom:
3452 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
3453 if (Tmp1.getNode() != NULL) {
3454 Tmp3 = LegalizeOp(Tmp1);
3455 Tmp4 = LegalizeOp(Tmp1.getValue(1));
3457 break;
3459 // Since this produces two values, make sure to remember that we legalized
3460 // both of them.
3461 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
3462 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
3463 return Op.getResNo() ? Tmp4 : Tmp3;
3465 case ISD::ADDE:
3466 case ISD::SUBE:
3467 Tmp1 = LegalizeOp(Node->getOperand(0));
3468 Tmp2 = LegalizeOp(Node->getOperand(1));
3469 Tmp3 = LegalizeOp(Node->getOperand(2));
3470 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
3471 Tmp3 = Result.getValue(0);
3472 Tmp4 = Result.getValue(1);
3474 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3475 default: assert(0 && "This action is not supported yet!");
3476 case TargetLowering::Legal:
3477 break;
3478 case TargetLowering::Custom:
3479 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
3480 if (Tmp1.getNode() != NULL) {
3481 Tmp3 = LegalizeOp(Tmp1);
3482 Tmp4 = LegalizeOp(Tmp1.getValue(1));
3484 break;
3486 // Since this produces two values, make sure to remember that we legalized
3487 // both of them.
3488 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
3489 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
3490 return Op.getResNo() ? Tmp4 : Tmp3;
3492 case ISD::BUILD_PAIR: {
3493 MVT PairTy = Node->getValueType(0);
3494 // TODO: handle the case where the Lo and Hi operands are not of legal type
3495 Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo
3496 Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi
3497 switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) {
3498 case TargetLowering::Promote:
3499 case TargetLowering::Custom:
3500 assert(0 && "Cannot promote/custom this yet!");
3501 case TargetLowering::Legal:
3502 if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
3503 Result = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Tmp1, Tmp2);
3504 break;
3505 case TargetLowering::Expand:
3506 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Tmp1);
3507 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Tmp2);
3508 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3509 DAG.getConstant(PairTy.getSizeInBits()/2,
3510 TLI.getShiftAmountTy()));
3511 Result = DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2);
3512 break;
3514 break;
3517 case ISD::UREM:
3518 case ISD::SREM:
3519 case ISD::FREM:
3520 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
3521 Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
3523 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3524 case TargetLowering::Promote: assert(0 && "Cannot promote this yet!");
3525 case TargetLowering::Custom:
3526 isCustom = true;
3527 // FALLTHROUGH
3528 case TargetLowering::Legal:
3529 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
3530 if (isCustom) {
3531 Tmp1 = TLI.LowerOperation(Result, DAG);
3532 if (Tmp1.getNode()) Result = Tmp1;
3534 break;
3535 case TargetLowering::Expand: {
3536 unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV;
3537 bool isSigned = DivOpc == ISD::SDIV;
3538 MVT VT = Node->getValueType(0);
3540 // See if remainder can be lowered using two-result operations.
3541 SDVTList VTs = DAG.getVTList(VT, VT);
3542 if (Node->getOpcode() == ISD::SREM &&
3543 TLI.isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
3544 Result = SDValue(DAG.getNode(ISD::SDIVREM, dl,
3545 VTs, Tmp1, Tmp2).getNode(), 1);
3546 break;
3548 if (Node->getOpcode() == ISD::UREM &&
3549 TLI.isOperationLegalOrCustom(ISD::UDIVREM, VT)) {
3550 Result = SDValue(DAG.getNode(ISD::UDIVREM, dl,
3551 VTs, Tmp1, Tmp2).getNode(), 1);
3552 break;
3555 if (VT.isInteger()) {
3556 if (TLI.getOperationAction(DivOpc, VT) ==
3557 TargetLowering::Legal) {
3558 // X % Y -> X-X/Y*Y
3559 Result = DAG.getNode(DivOpc, dl, VT, Tmp1, Tmp2);
3560 Result = DAG.getNode(ISD::MUL, dl, VT, Result, Tmp2);
3561 Result = DAG.getNode(ISD::SUB, dl, VT, Tmp1, Result);
3562 } else if (VT.isVector()) {
3563 Result = LegalizeOp(UnrollVectorOp(Op));
3564 } else {
3565 assert(VT == MVT::i32 &&
3566 "Cannot expand this binary operator!");
3567 RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM
3568 ? RTLIB::UREM_I32 : RTLIB::SREM_I32;
3569 SDValue Dummy;
3570 Result = ExpandLibCall(LC, Node, isSigned, Dummy);
3572 } else {
3573 assert(VT.isFloatingPoint() &&
3574 "remainder op must have integer or floating-point type");
3575 if (VT.isVector()) {
3576 Result = LegalizeOp(UnrollVectorOp(Op));
3577 } else {
3578 // Floating point mod -> fmod libcall.
3579 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64,
3580 RTLIB::REM_F80, RTLIB::REM_PPCF128);
3581 SDValue Dummy;
3582 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy);
3585 break;
3588 break;
3589 case ISD::VAARG: {
3590 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
3591 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
3593 MVT VT = Node->getValueType(0);
3594 switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
3595 default: assert(0 && "This action is not supported yet!");
3596 case TargetLowering::Custom:
3597 isCustom = true;
3598 // FALLTHROUGH
3599 case TargetLowering::Legal:
3600 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
3601 Result = Result.getValue(0);
3602 Tmp1 = Result.getValue(1);
3604 if (isCustom) {
3605 Tmp2 = TLI.LowerOperation(Result, DAG);
3606 if (Tmp2.getNode()) {
3607 Result = LegalizeOp(Tmp2);
3608 Tmp1 = LegalizeOp(Tmp2.getValue(1));
3611 break;
3612 case TargetLowering::Expand: {
3613 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3614 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
3615 // Increment the pointer, VAList, to the next vaarg
3616 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3617 DAG.getConstant(TLI.getTargetData()->
3618 getTypePaddedSize(VT.getTypeForMVT()),
3619 TLI.getPointerTy()));
3620 // Store the incremented VAList to the legalized pointer
3621 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
3622 // Load the actual argument out of the pointer VAList
3623 Result = DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0);
3624 Tmp1 = LegalizeOp(Result.getValue(1));
3625 Result = LegalizeOp(Result);
3626 break;
3629 // Since VAARG produces two values, make sure to remember that we
3630 // legalized both of them.
3631 AddLegalizedOperand(SDValue(Node, 0), Result);
3632 AddLegalizedOperand(SDValue(Node, 1), Tmp1);
3633 return Op.getResNo() ? Tmp1 : Result;
3636 case ISD::VACOPY:
3637 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
3638 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer.
3639 Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer.
3641 switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) {
3642 default: assert(0 && "This action is not supported yet!");
3643 case TargetLowering::Custom:
3644 isCustom = true;
3645 // FALLTHROUGH
3646 case TargetLowering::Legal:
3647 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3,
3648 Node->getOperand(3), Node->getOperand(4));
3649 if (isCustom) {
3650 Tmp1 = TLI.LowerOperation(Result, DAG);
3651 if (Tmp1.getNode()) Result = Tmp1;
3653 break;
3654 case TargetLowering::Expand:
3655 // This defaults to loading a pointer from the input and storing it to the
3656 // output, returning the chain.
3657 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3658 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3659 Tmp4 = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp3, VS, 0);
3660 Result = DAG.getStore(Tmp4.getValue(1), dl, Tmp4, Tmp2, VD, 0);
3661 break;
3663 break;
3665 case ISD::VAEND:
3666 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
3667 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
3669 switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) {
3670 default: assert(0 && "This action is not supported yet!");
3671 case TargetLowering::Custom:
3672 isCustom = true;
3673 // FALLTHROUGH
3674 case TargetLowering::Legal:
3675 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
3676 if (isCustom) {
3677 Tmp1 = TLI.LowerOperation(Tmp1, DAG);
3678 if (Tmp1.getNode()) Result = Tmp1;
3680 break;
3681 case TargetLowering::Expand:
3682 Result = Tmp1; // Default to a no-op, return the chain
3683 break;
3685 break;
3687 case ISD::VASTART:
3688 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
3689 Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
3691 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
3693 switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) {
3694 default: assert(0 && "This action is not supported yet!");
3695 case TargetLowering::Legal: break;
3696 case TargetLowering::Custom:
3697 Tmp1 = TLI.LowerOperation(Result, DAG);
3698 if (Tmp1.getNode()) Result = Tmp1;
3699 break;
3701 break;
3703 case ISD::ROTL:
3704 case ISD::ROTR:
3705 Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
3706 Tmp2 = LegalizeOp(DAG.getShiftAmountOperand(Node->getOperand(1))); // RHS
3707 Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
3708 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3709 default:
3710 assert(0 && "ROTL/ROTR legalize operation not supported");
3711 break;
3712 case TargetLowering::Legal:
3713 break;
3714 case TargetLowering::Custom:
3715 Tmp1 = TLI.LowerOperation(Result, DAG);
3716 if (Tmp1.getNode()) Result = Tmp1;
3717 break;
3718 case TargetLowering::Promote:
3719 assert(0 && "Do not know how to promote ROTL/ROTR");
3720 break;
3721 case TargetLowering::Expand:
3722 assert(0 && "Do not know how to expand ROTL/ROTR");
3723 break;
3725 break;
3727 case ISD::BSWAP:
3728 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op
3729 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3730 case TargetLowering::Custom:
3731 assert(0 && "Cannot custom legalize this yet!");
3732 case TargetLowering::Legal:
3733 Result = DAG.UpdateNodeOperands(Result, Tmp1);
3734 break;
3735 case TargetLowering::Promote: {
3736 MVT OVT = Tmp1.getValueType();
3737 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3738 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3740 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3741 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3742 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3743 DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3744 break;
3746 case TargetLowering::Expand:
3747 Result = ExpandBSWAP(Tmp1, dl);
3748 break;
3750 break;
3752 case ISD::CTPOP:
3753 case ISD::CTTZ:
3754 case ISD::CTLZ:
3755 Tmp1 = LegalizeOp(Node->getOperand(0)); // Op
3756 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3757 case TargetLowering::Custom:
3758 case TargetLowering::Legal:
3759 Result = DAG.UpdateNodeOperands(Result, Tmp1);
3760 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) ==
3761 TargetLowering::Custom) {
3762 Tmp1 = TLI.LowerOperation(Result, DAG);
3763 if (Tmp1.getNode()) {
3764 Result = Tmp1;
3767 break;
3768 case TargetLowering::Promote: {
3769 MVT OVT = Tmp1.getValueType();
3770 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3772 // Zero extend the argument.
3773 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
3774 // Perform the larger operation, then subtract if needed.
3775 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1);
3776 switch (Node->getOpcode()) {
3777 case ISD::CTPOP:
3778 Result = Tmp1;
3779 break;
3780 case ISD::CTTZ:
3781 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3782 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3783 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3784 ISD::SETEQ);
3785 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3786 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3787 break;
3788 case ISD::CTLZ:
3789 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3790 Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3791 DAG.getConstant(NVT.getSizeInBits() -
3792 OVT.getSizeInBits(), NVT));
3793 break;
3795 break;
3797 case TargetLowering::Expand:
3798 Result = ExpandBitCount(Node->getOpcode(), Tmp1, dl);
3799 break;
3801 break;
3803 // Unary operators
3804 case ISD::FABS:
3805 case ISD::FNEG:
3806 case ISD::FSQRT:
3807 case ISD::FSIN:
3808 case ISD::FCOS:
3809 case ISD::FLOG:
3810 case ISD::FLOG2:
3811 case ISD::FLOG10:
3812 case ISD::FEXP:
3813 case ISD::FEXP2:
3814 case ISD::FTRUNC:
3815 case ISD::FFLOOR:
3816 case ISD::FCEIL:
3817 case ISD::FRINT:
3818 case ISD::FNEARBYINT:
3819 Tmp1 = LegalizeOp(Node->getOperand(0));
3820 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
3821 case TargetLowering::Promote:
3822 case TargetLowering::Custom:
3823 isCustom = true;
3824 // FALLTHROUGH
3825 case TargetLowering::Legal:
3826 Result = DAG.UpdateNodeOperands(Result, Tmp1);
3827 if (isCustom) {
3828 Tmp1 = TLI.LowerOperation(Result, DAG);
3829 if (Tmp1.getNode()) Result = Tmp1;
3831 break;
3832 case TargetLowering::Expand:
3833 switch (Node->getOpcode()) {
3834 default: assert(0 && "Unreachable!");
3835 case ISD::FNEG:
3836 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3837 Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3838 Result = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp2, Tmp1);
3839 break;
3840 case ISD::FABS: {
3841 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3842 MVT VT = Node->getValueType(0);
3843 Tmp2 = DAG.getConstantFP(0.0, VT);
3844 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3845 Tmp1, Tmp2, ISD::SETUGT);
3846 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3847 Result = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3848 break;
3850 case ISD::FSQRT:
3851 case ISD::FSIN:
3852 case ISD::FCOS:
3853 case ISD::FLOG:
3854 case ISD::FLOG2:
3855 case ISD::FLOG10:
3856 case ISD::FEXP:
3857 case ISD::FEXP2:
3858 case ISD::FTRUNC:
3859 case ISD::FFLOOR:
3860 case ISD::FCEIL:
3861 case ISD::FRINT:
3862 case ISD::FNEARBYINT: {
3863 MVT VT = Node->getValueType(0);
3865 // Expand unsupported unary vector operators by unrolling them.
3866 if (VT.isVector()) {
3867 Result = LegalizeOp(UnrollVectorOp(Op));
3868 break;
3871 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3872 switch(Node->getOpcode()) {
3873 case ISD::FSQRT:
3874 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3875 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128);
3876 break;
3877 case ISD::FSIN:
3878 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64,
3879 RTLIB::SIN_F80, RTLIB::SIN_PPCF128);
3880 break;
3881 case ISD::FCOS:
3882 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64,
3883 RTLIB::COS_F80, RTLIB::COS_PPCF128);
3884 break;
3885 case ISD::FLOG:
3886 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64,
3887 RTLIB::LOG_F80, RTLIB::LOG_PPCF128);
3888 break;
3889 case ISD::FLOG2:
3890 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3891 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128);
3892 break;
3893 case ISD::FLOG10:
3894 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3895 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128);
3896 break;
3897 case ISD::FEXP:
3898 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64,
3899 RTLIB::EXP_F80, RTLIB::EXP_PPCF128);
3900 break;
3901 case ISD::FEXP2:
3902 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3903 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128);
3904 break;
3905 case ISD::FTRUNC:
3906 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3907 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128);
3908 break;
3909 case ISD::FFLOOR:
3910 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3911 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128);
3912 break;
3913 case ISD::FCEIL:
3914 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3915 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128);
3916 break;
3917 case ISD::FRINT:
3918 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64,
3919 RTLIB::RINT_F80, RTLIB::RINT_PPCF128);
3920 break;
3921 case ISD::FNEARBYINT:
3922 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64,
3923 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128);
3924 break;
3925 break;
3926 default: assert(0 && "Unreachable!");
3928 SDValue Dummy;
3929 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy);
3930 break;
3933 break;
3935 break;
3936 case ISD::FPOWI: {
3937 MVT VT = Node->getValueType(0);
3939 // Expand unsupported unary vector operators by unrolling them.
3940 if (VT.isVector()) {
3941 Result = LegalizeOp(UnrollVectorOp(Op));
3942 break;
3945 // We always lower FPOWI into a libcall. No target support for it yet.
3946 RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64,
3947 RTLIB::POWI_F80, RTLIB::POWI_PPCF128);
3948 SDValue Dummy;
3949 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy);
3950 break;
3952 case ISD::BIT_CONVERT:
3953 if (!isTypeLegal(Node->getOperand(0).getValueType())) {
3954 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3955 Node->getValueType(0), dl);
3956 } else if (Op.getOperand(0).getValueType().isVector()) {
3957 // The input has to be a vector type, we have to either scalarize it, pack
3958 // it, or convert it based on whether the input vector type is legal.
3959 SDNode *InVal = Node->getOperand(0).getNode();
3960 int InIx = Node->getOperand(0).getResNo();
3961 unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements();
3962 MVT EVT = InVal->getValueType(InIx).getVectorElementType();
3964 // Figure out if there is a simple type corresponding to this Vector
3965 // type. If so, convert to the vector type.
3966 MVT TVT = MVT::getVectorVT(EVT, NumElems);
3967 if (TLI.isTypeLegal(TVT)) {
3968 // Turn this into a bit convert of the vector input.
3969 Tmp1 = LegalizeOp(Node->getOperand(0));
3970 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), Tmp1);
3971 break;
3972 } else if (NumElems == 1) {
3973 // Turn this into a bit convert of the scalar input.
3974 Result = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
3975 ScalarizeVectorOp(Node->getOperand(0)));
3976 break;
3977 } else {
3978 // FIXME: UNIMP! Store then reload
3979 assert(0 && "Cast from unsupported vector type not implemented yet!");
3981 } else {
3982 switch (TLI.getOperationAction(ISD::BIT_CONVERT,
3983 Node->getOperand(0).getValueType())) {
3984 default: assert(0 && "Unknown operation action!");
3985 case TargetLowering::Expand:
3986 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3987 Node->getValueType(0), dl);
3988 break;
3989 case TargetLowering::Legal:
3990 Tmp1 = LegalizeOp(Node->getOperand(0));
3991 Result = DAG.UpdateNodeOperands(Result, Tmp1);
3992 break;
3995 break;
3996 case ISD::CONVERT_RNDSAT: {
3997 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode();
3998 switch (CvtCode) {
3999 default: assert(0 && "Unknown cvt code!");
4000 case ISD::CVT_SF:
4001 case ISD::CVT_UF:
4002 case ISD::CVT_FF:
4003 break;
4004 case ISD::CVT_FS:
4005 case ISD::CVT_FU:
4006 case ISD::CVT_SS:
4007 case ISD::CVT_SU:
4008 case ISD::CVT_US:
4009 case ISD::CVT_UU: {
4010 SDValue DTyOp = Node->getOperand(1);
4011 SDValue STyOp = Node->getOperand(2);
4012 SDValue RndOp = Node->getOperand(3);
4013 SDValue SatOp = Node->getOperand(4);
4014 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4015 case Expand: assert(0 && "Shouldn't need to expand other operators here!");
4016 case Legal:
4017 Tmp1 = LegalizeOp(Node->getOperand(0));
4018 Result = DAG.UpdateNodeOperands(Result, Tmp1, DTyOp, STyOp,
4019 RndOp, SatOp);
4020 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) ==
4021 TargetLowering::Custom) {
4022 Tmp1 = TLI.LowerOperation(Result, DAG);
4023 if (Tmp1.getNode()) Result = Tmp1;
4025 break;
4026 case Promote:
4027 Result = PromoteOp(Node->getOperand(0));
4028 // For FP, make Op1 a i32
4030 Result = DAG.getConvertRndSat(Op.getValueType(), dl, Result,
4031 DTyOp, STyOp, RndOp, SatOp, CvtCode);
4032 break;
4034 break;
4036 } // end switch CvtCode
4037 break;
4039 // Conversion operators. The source and destination have different types.
4040 case ISD::SINT_TO_FP:
4041 case ISD::UINT_TO_FP: {
4042 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP;
4043 Result = LegalizeINT_TO_FP(Result, isSigned,
4044 Node->getValueType(0), Node->getOperand(0), dl);
4045 break;
4047 case ISD::TRUNCATE:
4048 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4049 case Legal:
4050 Tmp1 = LegalizeOp(Node->getOperand(0));
4051 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
4052 default: assert(0 && "Unknown TRUNCATE legalization operation action!");
4053 case TargetLowering::Custom:
4054 isCustom = true;
4055 // FALLTHROUGH
4056 case TargetLowering::Legal:
4057 Result = DAG.UpdateNodeOperands(Result, Tmp1);
4058 if (isCustom) {
4059 Tmp1 = TLI.LowerOperation(Result, DAG);
4060 if (Tmp1.getNode()) Result = Tmp1;
4062 break;
4063 case TargetLowering::Expand:
4064 assert(Result.getValueType().isVector() && "must be vector type");
4065 // Unroll the truncate. We should do better.
4066 Result = LegalizeOp(UnrollVectorOp(Result));
4068 break;
4069 case Expand:
4070 ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
4072 // Since the result is legal, we should just be able to truncate the low
4073 // part of the source.
4074 Result = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
4075 break;
4076 case Promote:
4077 Result = PromoteOp(Node->getOperand(0));
4078 Result = DAG.getNode(ISD::TRUNCATE, dl, Op.getValueType(), Result);
4079 break;
4081 break;
4083 case ISD::FP_TO_SINT:
4084 case ISD::FP_TO_UINT:
4085 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4086 case Legal:
4087 Tmp1 = LegalizeOp(Node->getOperand(0));
4089 switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){
4090 default: assert(0 && "Unknown operation action!");
4091 case TargetLowering::Custom:
4092 isCustom = true;
4093 // FALLTHROUGH
4094 case TargetLowering::Legal:
4095 Result = DAG.UpdateNodeOperands(Result, Tmp1);
4096 if (isCustom) {
4097 Tmp1 = TLI.LowerOperation(Result, DAG);
4098 if (Tmp1.getNode()) Result = Tmp1;
4100 break;
4101 case TargetLowering::Promote:
4102 Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0),
4103 Node->getOpcode() == ISD::FP_TO_SINT,
4104 dl);
4105 break;
4106 case TargetLowering::Expand:
4107 if (Node->getOpcode() == ISD::FP_TO_UINT) {
4108 SDValue True, False;
4109 MVT VT = Node->getOperand(0).getValueType();
4110 MVT NVT = Node->getValueType(0);
4111 const uint64_t zero[] = {0, 0};
4112 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
4113 APInt x = APInt::getSignBit(NVT.getSizeInBits());
4114 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
4115 Tmp2 = DAG.getConstantFP(apf, VT);
4116 Tmp3 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
4117 Node->getOperand(0),
4118 Tmp2, ISD::SETLT);
4119 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
4120 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
4121 DAG.getNode(ISD::FSUB, dl, VT,
4122 Node->getOperand(0), Tmp2));
4123 False = DAG.getNode(ISD::XOR, dl, NVT, False,
4124 DAG.getConstant(x, NVT));
4125 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp3, True, False);
4126 break;
4127 } else {
4128 assert(0 && "Do not know how to expand FP_TO_SINT yet!");
4130 break;
4132 break;
4133 case Expand: {
4134 MVT VT = Op.getValueType();
4135 MVT OVT = Node->getOperand(0).getValueType();
4136 // Convert ppcf128 to i32
4137 if (OVT == MVT::ppcf128 && VT == MVT::i32) {
4138 if (Node->getOpcode() == ISD::FP_TO_SINT) {
4139 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, MVT::ppcf128,
4140 Node->getOperand(0), DAG.getValueType(MVT::f64));
4141 Result = DAG.getNode(ISD::FP_ROUND, dl, MVT::f64, Result,
4142 DAG.getIntPtrConstant(1));
4143 Result = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Result);
4144 } else {
4145 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
4146 APFloat apf = APFloat(APInt(128, 2, TwoE31));
4147 Tmp2 = DAG.getConstantFP(apf, OVT);
4148 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
4149 // FIXME: generated code sucks.
4150 Result = DAG.getNode(ISD::SELECT_CC, dl, VT, Node->getOperand(0),
4151 Tmp2,
4152 DAG.getNode(ISD::ADD, dl, MVT::i32,
4153 DAG.getNode(ISD::FP_TO_SINT, dl, VT,
4154 DAG.getNode(ISD::FSUB, dl, OVT,
4155 Node->getOperand(0), Tmp2)),
4156 DAG.getConstant(0x80000000, MVT::i32)),
4157 DAG.getNode(ISD::FP_TO_SINT, dl, VT,
4158 Node->getOperand(0)),
4159 DAG.getCondCode(ISD::SETGE));
4161 break;
4163 // Convert f32 / f64 to i32 / i64 / i128.
4164 RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ?
4165 RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT);
4166 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!");
4167 SDValue Dummy;
4168 Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy);
4169 break;
4171 case Promote:
4172 Tmp1 = PromoteOp(Node->getOperand(0));
4173 Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1));
4174 Result = LegalizeOp(Result);
4175 break;
4177 break;
4179 case ISD::FP_EXTEND: {
4180 MVT DstVT = Op.getValueType();
4181 MVT SrcVT = Op.getOperand(0).getValueType();
4182 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) {
4183 // The only other way we can lower this is to turn it into a STORE,
4184 // LOAD pair, targetting a temporary location (a stack slot).
4185 Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT, dl);
4186 break;
4188 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4189 case Expand: assert(0 && "Shouldn't need to expand other operators here!");
4190 case Legal:
4191 Tmp1 = LegalizeOp(Node->getOperand(0));
4192 Result = DAG.UpdateNodeOperands(Result, Tmp1);
4193 break;
4194 case Promote:
4195 Tmp1 = PromoteOp(Node->getOperand(0));
4196 Result = DAG.getNode(ISD::FP_EXTEND, dl, Op.getValueType(), Tmp1);
4197 break;
4199 break;
4201 case ISD::FP_ROUND: {
4202 MVT DstVT = Op.getValueType();
4203 MVT SrcVT = Op.getOperand(0).getValueType();
4204 if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) {
4205 if (SrcVT == MVT::ppcf128) {
4206 SDValue Lo;
4207 ExpandOp(Node->getOperand(0), Lo, Result);
4208 // Round it the rest of the way (e.g. to f32) if needed.
4209 if (DstVT!=MVT::f64)
4210 Result = DAG.getNode(ISD::FP_ROUND, dl,
4211 DstVT, Result, Op.getOperand(1));
4212 break;
4214 // The only other way we can lower this is to turn it into a STORE,
4215 // LOAD pair, targetting a temporary location (a stack slot).
4216 Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT, dl);
4217 break;
4219 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4220 case Expand: assert(0 && "Shouldn't need to expand other operators here!");
4221 case Legal:
4222 Tmp1 = LegalizeOp(Node->getOperand(0));
4223 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
4224 break;
4225 case Promote:
4226 Tmp1 = PromoteOp(Node->getOperand(0));
4227 Result = DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(), Tmp1,
4228 Node->getOperand(1));
4229 break;
4231 break;
4233 case ISD::ANY_EXTEND:
4234 case ISD::ZERO_EXTEND:
4235 case ISD::SIGN_EXTEND:
4236 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4237 case Expand: assert(0 && "Shouldn't need to expand other operators here!");
4238 case Legal:
4239 Tmp1 = LegalizeOp(Node->getOperand(0));
4240 Result = DAG.UpdateNodeOperands(Result, Tmp1);
4241 if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) ==
4242 TargetLowering::Custom) {
4243 Tmp1 = TLI.LowerOperation(Result, DAG);
4244 if (Tmp1.getNode()) Result = Tmp1;
4246 break;
4247 case Promote:
4248 switch (Node->getOpcode()) {
4249 case ISD::ANY_EXTEND:
4250 Tmp1 = PromoteOp(Node->getOperand(0));
4251 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Tmp1);
4252 break;
4253 case ISD::ZERO_EXTEND:
4254 Result = PromoteOp(Node->getOperand(0));
4255 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result);
4256 Result = DAG.getZeroExtendInReg(Result, dl,
4257 Node->getOperand(0).getValueType());
4258 break;
4259 case ISD::SIGN_EXTEND:
4260 Result = PromoteOp(Node->getOperand(0));
4261 Result = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), Result);
4262 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(),
4263 Result,
4264 DAG.getValueType(Node->getOperand(0).getValueType()));
4265 break;
4268 break;
4269 case ISD::FP_ROUND_INREG:
4270 case ISD::SIGN_EXTEND_INREG: {
4271 Tmp1 = LegalizeOp(Node->getOperand(0));
4272 MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
4274 // If this operation is not supported, convert it to a shl/shr or load/store
4275 // pair.
4276 switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) {
4277 default: assert(0 && "This action not supported for this op yet!");
4278 case TargetLowering::Legal:
4279 Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
4280 break;
4281 case TargetLowering::Expand:
4282 // If this is an integer extend and shifts are supported, do that.
4283 if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) {
4284 // NOTE: we could fall back on load/store here too for targets without
4285 // SAR. However, it is doubtful that any exist.
4286 unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
4287 ExtraVT.getSizeInBits();
4288 SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
4289 Result = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
4290 Node->getOperand(0), ShiftCst);
4291 Result = DAG.getNode(ISD::SRA, dl, Node->getValueType(0),
4292 Result, ShiftCst);
4293 } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) {
4294 // The only way we can lower this is to turn it into a TRUNCSTORE,
4295 // EXTLOAD pair, targetting a temporary location (a stack slot).
4297 // NOTE: there is a choice here between constantly creating new stack
4298 // slots and always reusing the same one. We currently always create
4299 // new ones, as reuse may inhibit scheduling.
4300 Result = EmitStackConvert(Node->getOperand(0), ExtraVT,
4301 Node->getValueType(0), dl);
4302 } else {
4303 assert(0 && "Unknown op");
4305 break;
4307 break;
4309 case ISD::TRAMPOLINE: {
4310 SDValue Ops[6];
4311 for (unsigned i = 0; i != 6; ++i)
4312 Ops[i] = LegalizeOp(Node->getOperand(i));
4313 Result = DAG.UpdateNodeOperands(Result, Ops, 6);
4314 // The only option for this node is to custom lower it.
4315 Result = TLI.LowerOperation(Result, DAG);
4316 assert(Result.getNode() && "Should always custom lower!");
4318 // Since trampoline produces two values, make sure to remember that we
4319 // legalized both of them.
4320 Tmp1 = LegalizeOp(Result.getValue(1));
4321 Result = LegalizeOp(Result);
4322 AddLegalizedOperand(SDValue(Node, 0), Result);
4323 AddLegalizedOperand(SDValue(Node, 1), Tmp1);
4324 return Op.getResNo() ? Tmp1 : Result;
4326 case ISD::FLT_ROUNDS_: {
4327 MVT VT = Node->getValueType(0);
4328 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
4329 default: assert(0 && "This action not supported for this op yet!");
4330 case TargetLowering::Custom:
4331 Result = TLI.LowerOperation(Op, DAG);
4332 if (Result.getNode()) break;
4333 // Fall Thru
4334 case TargetLowering::Legal:
4335 // If this operation is not supported, lower it to constant 1
4336 Result = DAG.getConstant(1, VT);
4337 break;
4339 break;
4341 case ISD::TRAP: {
4342 MVT VT = Node->getValueType(0);
4343 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
4344 default: assert(0 && "This action not supported for this op yet!");
4345 case TargetLowering::Legal:
4346 Tmp1 = LegalizeOp(Node->getOperand(0));
4347 Result = DAG.UpdateNodeOperands(Result, Tmp1);
4348 break;
4349 case TargetLowering::Custom:
4350 Result = TLI.LowerOperation(Op, DAG);
4351 if (Result.getNode()) break;
4352 // Fall Thru
4353 case TargetLowering::Expand:
4354 // If this operation is not supported, lower it to 'abort()' call
4355 Tmp1 = LegalizeOp(Node->getOperand(0));
4356 TargetLowering::ArgListTy Args;
4357 std::pair<SDValue, SDValue> CallResult =
4358 TLI.LowerCallTo(Tmp1, Type::VoidTy,
4359 false, false, false, false, CallingConv::C, false,
4360 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
4361 Args, DAG, dl);
4362 Result = CallResult.second;
4363 break;
4365 break;
4368 case ISD::SADDO:
4369 case ISD::SSUBO: {
4370 MVT VT = Node->getValueType(0);
4371 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
4372 default: assert(0 && "This action not supported for this op yet!");
4373 case TargetLowering::Custom:
4374 Result = TLI.LowerOperation(Op, DAG);
4375 if (Result.getNode()) break;
4376 // FALLTHROUGH
4377 case TargetLowering::Legal: {
4378 SDValue LHS = LegalizeOp(Node->getOperand(0));
4379 SDValue RHS = LegalizeOp(Node->getOperand(1));
4381 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
4382 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
4383 LHS, RHS);
4384 MVT OType = Node->getValueType(1);
4386 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
4388 // LHSSign -> LHS >= 0
4389 // RHSSign -> RHS >= 0
4390 // SumSign -> Sum >= 0
4392 // Add:
4393 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
4394 // Sub:
4395 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
4397 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
4398 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
4399 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
4400 Node->getOpcode() == ISD::SADDO ?
4401 ISD::SETEQ : ISD::SETNE);
4403 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
4404 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
4406 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
4408 MVT ValueVTs[] = { LHS.getValueType(), OType };
4409 SDValue Ops[] = { Sum, Cmp };
4411 Result = DAG.getNode(ISD::MERGE_VALUES, dl,
4412 DAG.getVTList(&ValueVTs[0], 2),
4413 &Ops[0], 2);
4414 SDNode *RNode = Result.getNode();
4415 DAG.ReplaceAllUsesWith(Node, RNode);
4416 break;
4420 break;
4422 case ISD::UADDO:
4423 case ISD::USUBO: {
4424 MVT VT = Node->getValueType(0);
4425 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
4426 default: assert(0 && "This action not supported for this op yet!");
4427 case TargetLowering::Custom:
4428 Result = TLI.LowerOperation(Op, DAG);
4429 if (Result.getNode()) break;
4430 // FALLTHROUGH
4431 case TargetLowering::Legal: {
4432 SDValue LHS = LegalizeOp(Node->getOperand(0));
4433 SDValue RHS = LegalizeOp(Node->getOperand(1));
4435 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
4436 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
4437 LHS, RHS);
4438 MVT OType = Node->getValueType(1);
4439 SDValue Cmp = DAG.getSetCC(dl, OType, Sum, LHS,
4440 Node->getOpcode () == ISD::UADDO ?
4441 ISD::SETULT : ISD::SETUGT);
4443 MVT ValueVTs[] = { LHS.getValueType(), OType };
4444 SDValue Ops[] = { Sum, Cmp };
4446 Result = DAG.getNode(ISD::MERGE_VALUES, dl,
4447 DAG.getVTList(&ValueVTs[0], 2),
4448 &Ops[0], 2);
4449 SDNode *RNode = Result.getNode();
4450 DAG.ReplaceAllUsesWith(Node, RNode);
4451 break;
4455 break;
4457 case ISD::SMULO:
4458 case ISD::UMULO: {
4459 MVT VT = Node->getValueType(0);
4460 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
4461 default: assert(0 && "This action is not supported at all!");
4462 case TargetLowering::Custom:
4463 Result = TLI.LowerOperation(Op, DAG);
4464 if (Result.getNode()) break;
4465 // Fall Thru
4466 case TargetLowering::Legal:
4467 // FIXME: According to Hacker's Delight, this can be implemented in
4468 // target independent lowering, but it would be inefficient, since it
4469 // requires a division + a branch.
4470 assert(0 && "Target independent lowering is not supported for SMULO/UMULO!");
4471 break;
4473 break;
4478 assert(Result.getValueType() == Op.getValueType() &&
4479 "Bad legalization!");
4481 // Make sure that the generated code is itself legal.
4482 if (Result != Op)
4483 Result = LegalizeOp(Result);
4485 // Note that LegalizeOp may be reentered even from single-use nodes, which
4486 // means that we always must cache transformed nodes.
4487 AddLegalizedOperand(Op, Result);
4488 return Result;
4491 /// PromoteOp - Given an operation that produces a value in an invalid type,
4492 /// promote it to compute the value into a larger type. The produced value will
4493 /// have the correct bits for the low portion of the register, but no guarantee
4494 /// is made about the top bits: it may be zero, sign-extended, or garbage.
4495 SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) {
4496 MVT VT = Op.getValueType();
4497 MVT NVT = TLI.getTypeToTransformTo(VT);
4498 assert(getTypeAction(VT) == Promote &&
4499 "Caller should expand or legalize operands that are not promotable!");
4500 assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() &&
4501 "Cannot promote to smaller type!");
4503 SDValue Tmp1, Tmp2, Tmp3;
4504 SDValue Result;
4505 SDNode *Node = Op.getNode();
4506 DebugLoc dl = Node->getDebugLoc();
4508 DenseMap<SDValue, SDValue>::iterator I = PromotedNodes.find(Op);
4509 if (I != PromotedNodes.end()) return I->second;
4511 switch (Node->getOpcode()) {
4512 case ISD::CopyFromReg:
4513 assert(0 && "CopyFromReg must be legal!");
4514 default:
4515 #ifndef NDEBUG
4516 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
4517 #endif
4518 assert(0 && "Do not know how to promote this operator!");
4519 abort();
4520 case ISD::UNDEF:
4521 Result = DAG.getUNDEF(NVT);
4522 break;
4523 case ISD::Constant:
4524 if (VT != MVT::i1)
4525 Result = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Op);
4526 else
4527 Result = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Op);
4528 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?");
4529 break;
4530 case ISD::ConstantFP:
4531 Result = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op);
4532 assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?");
4533 break;
4535 case ISD::SETCC: {
4536 MVT VT0 = Node->getOperand(0).getValueType();
4537 assert(isTypeLegal(TLI.getSetCCResultType(VT0))
4538 && "SetCC type is not legal??");
4539 Result = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(VT0),
4540 Node->getOperand(0), Node->getOperand(1),
4541 Node->getOperand(2));
4542 break;
4544 case ISD::TRUNCATE:
4545 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4546 case Legal:
4547 Result = LegalizeOp(Node->getOperand(0));
4548 assert(Result.getValueType().bitsGE(NVT) &&
4549 "This truncation doesn't make sense!");
4550 if (Result.getValueType().bitsGT(NVT)) // Truncate to NVT instead of VT
4551 Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Result);
4552 break;
4553 case Promote:
4554 // The truncation is not required, because we don't guarantee anything
4555 // about high bits anyway.
4556 Result = PromoteOp(Node->getOperand(0));
4557 break;
4558 case Expand:
4559 ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
4560 // Truncate the low part of the expanded value to the result type
4561 Result = DAG.getNode(ISD::TRUNCATE, dl, NVT, Tmp1);
4563 break;
4564 case ISD::SIGN_EXTEND:
4565 case ISD::ZERO_EXTEND:
4566 case ISD::ANY_EXTEND:
4567 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4568 case Expand: assert(0 && "BUG: Smaller reg should have been promoted!");
4569 case Legal:
4570 // Input is legal? Just do extend all the way to the larger type.
4571 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0));
4572 break;
4573 case Promote:
4574 // Promote the reg if it's smaller.
4575 Result = PromoteOp(Node->getOperand(0));
4576 // The high bits are not guaranteed to be anything. Insert an extend.
4577 if (Node->getOpcode() == ISD::SIGN_EXTEND)
4578 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result,
4579 DAG.getValueType(Node->getOperand(0).getValueType()));
4580 else if (Node->getOpcode() == ISD::ZERO_EXTEND)
4581 Result = DAG.getZeroExtendInReg(Result, dl,
4582 Node->getOperand(0).getValueType());
4583 break;
4585 break;
4586 case ISD::CONVERT_RNDSAT: {
4587 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode();
4588 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
4589 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
4590 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
4591 "can only promote integers");
4592 Result = DAG.getConvertRndSat(NVT, dl, Node->getOperand(0),
4593 Node->getOperand(1), Node->getOperand(2),
4594 Node->getOperand(3), Node->getOperand(4),
4595 CvtCode);
4596 break;
4599 case ISD::BIT_CONVERT:
4600 Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
4601 Node->getValueType(0), dl);
4602 Result = PromoteOp(Result);
4603 break;
4605 case ISD::FP_EXTEND:
4606 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
4607 case ISD::FP_ROUND:
4608 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4609 case Expand: assert(0 && "BUG: Cannot expand FP regs!");
4610 case Promote: assert(0 && "Unreachable with 2 FP types!");
4611 case Legal:
4612 if (Node->getConstantOperandVal(1) == 0) {
4613 // Input is legal? Do an FP_ROUND_INREG.
4614 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Node->getOperand(0),
4615 DAG.getValueType(VT));
4616 } else {
4617 // Just remove the truncate, it isn't affecting the value.
4618 Result = DAG.getNode(ISD::FP_ROUND, dl, NVT, Node->getOperand(0),
4619 Node->getOperand(1));
4621 break;
4623 break;
4624 case ISD::SINT_TO_FP:
4625 case ISD::UINT_TO_FP:
4626 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4627 case Legal:
4628 // No extra round required here.
4629 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Node->getOperand(0));
4630 break;
4632 case Promote:
4633 Result = PromoteOp(Node->getOperand(0));
4634 if (Node->getOpcode() == ISD::SINT_TO_FP)
4635 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Result.getValueType(),
4636 Result,
4637 DAG.getValueType(Node->getOperand(0).getValueType()));
4638 else
4639 Result = DAG.getZeroExtendInReg(Result, dl,
4640 Node->getOperand(0).getValueType());
4641 // No extra round required here.
4642 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Result);
4643 break;
4644 case Expand:
4645 Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT,
4646 Node->getOperand(0), dl);
4647 // Round if we cannot tolerate excess precision.
4648 if (NoExcessFPPrecision)
4649 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result,
4650 DAG.getValueType(VT));
4651 break;
4653 break;
4655 case ISD::SIGN_EXTEND_INREG:
4656 Result = PromoteOp(Node->getOperand(0));
4657 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Result,
4658 Node->getOperand(1));
4659 break;
4660 case ISD::FP_TO_SINT:
4661 case ISD::FP_TO_UINT:
4662 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4663 case Legal:
4664 case Expand:
4665 Tmp1 = Node->getOperand(0);
4666 break;
4667 case Promote:
4668 // The input result is prerounded, so we don't have to do anything
4669 // special.
4670 Tmp1 = PromoteOp(Node->getOperand(0));
4671 break;
4673 // If we're promoting a UINT to a larger size, check to see if the new node
4674 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since
4675 // we can use that instead. This allows us to generate better code for
4676 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
4677 // legal, such as PowerPC.
4678 if (Node->getOpcode() == ISD::FP_TO_UINT &&
4679 !TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NVT) &&
4680 (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT) ||
4681 TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){
4682 Result = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Tmp1);
4683 } else {
4684 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4686 break;
4688 case ISD::FABS:
4689 case ISD::FNEG:
4690 Tmp1 = PromoteOp(Node->getOperand(0));
4691 assert(Tmp1.getValueType() == NVT);
4692 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4693 // NOTE: we do not have to do any extra rounding here for
4694 // NoExcessFPPrecision, because we know the input will have the appropriate
4695 // precision, and these operations don't modify precision at all.
4696 break;
4698 case ISD::FLOG:
4699 case ISD::FLOG2:
4700 case ISD::FLOG10:
4701 case ISD::FEXP:
4702 case ISD::FEXP2:
4703 case ISD::FSQRT:
4704 case ISD::FSIN:
4705 case ISD::FCOS:
4706 case ISD::FTRUNC:
4707 case ISD::FFLOOR:
4708 case ISD::FCEIL:
4709 case ISD::FRINT:
4710 case ISD::FNEARBYINT:
4711 Tmp1 = PromoteOp(Node->getOperand(0));
4712 assert(Tmp1.getValueType() == NVT);
4713 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4714 if (NoExcessFPPrecision)
4715 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result,
4716 DAG.getValueType(VT));
4717 break;
4719 case ISD::FPOW:
4720 case ISD::FPOWI: {
4721 // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall
4722 // directly as well, which may be better.
4723 Tmp1 = PromoteOp(Node->getOperand(0));
4724 Tmp2 = Node->getOperand(1);
4725 if (Node->getOpcode() == ISD::FPOW)
4726 Tmp2 = PromoteOp(Tmp2);
4727 assert(Tmp1.getValueType() == NVT);
4728 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4729 if (NoExcessFPPrecision)
4730 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result,
4731 DAG.getValueType(VT));
4732 break;
4735 case ISD::ATOMIC_CMP_SWAP: {
4736 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node);
4737 Tmp2 = PromoteOp(Node->getOperand(2));
4738 Tmp3 = PromoteOp(Node->getOperand(3));
4739 Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(),
4740 AtomNode->getChain(),
4741 AtomNode->getBasePtr(), Tmp2, Tmp3,
4742 AtomNode->getSrcValue(),
4743 AtomNode->getAlignment());
4744 // Remember that we legalized the chain.
4745 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
4746 break;
4748 case ISD::ATOMIC_LOAD_ADD:
4749 case ISD::ATOMIC_LOAD_SUB:
4750 case ISD::ATOMIC_LOAD_AND:
4751 case ISD::ATOMIC_LOAD_OR:
4752 case ISD::ATOMIC_LOAD_XOR:
4753 case ISD::ATOMIC_LOAD_NAND:
4754 case ISD::ATOMIC_LOAD_MIN:
4755 case ISD::ATOMIC_LOAD_MAX:
4756 case ISD::ATOMIC_LOAD_UMIN:
4757 case ISD::ATOMIC_LOAD_UMAX:
4758 case ISD::ATOMIC_SWAP: {
4759 AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node);
4760 Tmp2 = PromoteOp(Node->getOperand(2));
4761 Result = DAG.getAtomic(Node->getOpcode(), dl, AtomNode->getMemoryVT(),
4762 AtomNode->getChain(),
4763 AtomNode->getBasePtr(), Tmp2,
4764 AtomNode->getSrcValue(),
4765 AtomNode->getAlignment());
4766 // Remember that we legalized the chain.
4767 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
4768 break;
4771 case ISD::AND:
4772 case ISD::OR:
4773 case ISD::XOR:
4774 case ISD::ADD:
4775 case ISD::SUB:
4776 case ISD::MUL:
4777 // The input may have strange things in the top bits of the registers, but
4778 // these operations don't care. They may have weird bits going out, but
4779 // that too is okay if they are integer operations.
4780 Tmp1 = PromoteOp(Node->getOperand(0));
4781 Tmp2 = PromoteOp(Node->getOperand(1));
4782 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT);
4783 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4784 break;
4785 case ISD::FADD:
4786 case ISD::FSUB:
4787 case ISD::FMUL:
4788 Tmp1 = PromoteOp(Node->getOperand(0));
4789 Tmp2 = PromoteOp(Node->getOperand(1));
4790 assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT);
4791 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4793 // Floating point operations will give excess precision that we may not be
4794 // able to tolerate. If we DO allow excess precision, just leave it,
4795 // otherwise excise it.
4796 // FIXME: Why would we need to round FP ops more than integer ones?
4797 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C))
4798 if (NoExcessFPPrecision)
4799 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result,
4800 DAG.getValueType(VT));
4801 break;
4803 case ISD::SDIV:
4804 case ISD::SREM:
4805 // These operators require that their input be sign extended.
4806 Tmp1 = PromoteOp(Node->getOperand(0));
4807 Tmp2 = PromoteOp(Node->getOperand(1));
4808 if (NVT.isInteger()) {
4809 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1,
4810 DAG.getValueType(VT));
4811 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2,
4812 DAG.getValueType(VT));
4814 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4816 // Perform FP_ROUND: this is probably overly pessimistic.
4817 if (NVT.isFloatingPoint() && NoExcessFPPrecision)
4818 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result,
4819 DAG.getValueType(VT));
4820 break;
4821 case ISD::FDIV:
4822 case ISD::FREM:
4823 case ISD::FCOPYSIGN:
4824 // These operators require that their input be fp extended.
4825 switch (getTypeAction(Node->getOperand(0).getValueType())) {
4826 case Expand: assert(0 && "not implemented");
4827 case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break;
4828 case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break;
4830 switch (getTypeAction(Node->getOperand(1).getValueType())) {
4831 case Expand: assert(0 && "not implemented");
4832 case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break;
4833 case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break;
4835 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4837 // Perform FP_ROUND: this is probably overly pessimistic.
4838 if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN)
4839 Result = DAG.getNode(ISD::FP_ROUND_INREG, dl, NVT, Result,
4840 DAG.getValueType(VT));
4841 break;
4843 case ISD::UDIV:
4844 case ISD::UREM:
4845 // These operators require that their input be zero extended.
4846 Tmp1 = PromoteOp(Node->getOperand(0));
4847 Tmp2 = PromoteOp(Node->getOperand(1));
4848 assert(NVT.isInteger() && "Operators don't apply to FP!");
4849 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT);
4850 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT);
4851 Result = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4852 break;
4854 case ISD::SHL:
4855 Tmp1 = PromoteOp(Node->getOperand(0));
4856 Result = DAG.getNode(ISD::SHL, dl, NVT, Tmp1, Node->getOperand(1));
4857 break;
4858 case ISD::SRA:
4859 // The input value must be properly sign extended.
4860 Tmp1 = PromoteOp(Node->getOperand(0));
4861 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1,
4862 DAG.getValueType(VT));
4863 Result = DAG.getNode(ISD::SRA, dl, NVT, Tmp1, Node->getOperand(1));
4864 break;
4865 case ISD::SRL:
4866 // The input value must be properly zero extended.
4867 Tmp1 = PromoteOp(Node->getOperand(0));
4868 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT);
4869 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, Node->getOperand(1));
4870 break;
4872 case ISD::VAARG:
4873 Tmp1 = Node->getOperand(0); // Get the chain.
4874 Tmp2 = Node->getOperand(1); // Get the pointer.
4875 if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) {
4876 Tmp3 = DAG.getVAArg(VT, dl, Tmp1, Tmp2, Node->getOperand(2));
4877 Result = TLI.LowerOperation(Tmp3, DAG);
4878 } else {
4879 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
4880 SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0);
4881 // Increment the pointer, VAList, to the next vaarg
4882 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
4883 DAG.getConstant(VT.getSizeInBits()/8,
4884 TLI.getPointerTy()));
4885 // Store the incremented VAList to the legalized pointer
4886 Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
4887 // Load the actual argument out of the pointer VAList
4888 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Tmp3, VAList, NULL, 0, VT);
4890 // Remember that we legalized the chain.
4891 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
4892 break;
4894 case ISD::LOAD: {
4895 LoadSDNode *LD = cast<LoadSDNode>(Node);
4896 ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node)
4897 ? ISD::EXTLOAD : LD->getExtensionType();
4898 Result = DAG.getExtLoad(ExtType, dl, NVT,
4899 LD->getChain(), LD->getBasePtr(),
4900 LD->getSrcValue(), LD->getSrcValueOffset(),
4901 LD->getMemoryVT(),
4902 LD->isVolatile(),
4903 LD->getAlignment());
4904 // Remember that we legalized the chain.
4905 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
4906 break;
4908 case ISD::SELECT: {
4909 Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0
4910 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1
4912 MVT VT2 = Tmp2.getValueType();
4913 assert(VT2 == Tmp3.getValueType()
4914 && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match");
4915 // Ensure that the resulting node is at least the same size as the operands'
4916 // value types, because we cannot assume that TLI.getSetCCValueType() is
4917 // constant.
4918 Result = DAG.getNode(ISD::SELECT, dl, VT2, Node->getOperand(0), Tmp2, Tmp3);
4919 break;
4921 case ISD::SELECT_CC:
4922 Tmp2 = PromoteOp(Node->getOperand(2)); // True
4923 Tmp3 = PromoteOp(Node->getOperand(3)); // False
4924 Result = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0),
4925 Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4));
4926 break;
4927 case ISD::BSWAP:
4928 Tmp1 = Node->getOperand(0);
4929 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Tmp1);
4930 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
4931 Result = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
4932 DAG.getConstant(NVT.getSizeInBits() -
4933 VT.getSizeInBits(),
4934 TLI.getShiftAmountTy()));
4935 break;
4936 case ISD::CTPOP:
4937 case ISD::CTTZ:
4938 case ISD::CTLZ:
4939 // Zero extend the argument
4940 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4941 // Perform the larger operation, then subtract if needed.
4942 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4943 switch(Node->getOpcode()) {
4944 case ISD::CTPOP:
4945 Result = Tmp1;
4946 break;
4947 case ISD::CTTZ:
4948 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
4949 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1,
4950 DAG.getConstant(NVT.getSizeInBits(), NVT),
4951 ISD::SETEQ);
4952 Result = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
4953 DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1);
4954 break;
4955 case ISD::CTLZ:
4956 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4957 Result = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4958 DAG.getConstant(NVT.getSizeInBits() -
4959 VT.getSizeInBits(), NVT));
4960 break;
4962 break;
4963 case ISD::EXTRACT_SUBVECTOR:
4964 Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op));
4965 break;
4966 case ISD::EXTRACT_VECTOR_ELT:
4967 Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op));
4968 break;
4971 assert(Result.getNode() && "Didn't set a result!");
4973 // Make sure the result is itself legal.
4974 Result = LegalizeOp(Result);
4976 // Remember that we promoted this!
4977 AddPromotedOperand(Op, Result);
4978 return Result;
4981 /// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into
4982 /// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic,
4983 /// based on the vector type. The return type of this matches the element type
4984 /// of the vector, which may not be legal for the target.
4985 SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) {
4986 // We know that operand #0 is the Vec vector. If the index is a constant
4987 // or if the invec is a supported hardware type, we can use it. Otherwise,
4988 // lower to a store then an indexed load.
4989 SDValue Vec = Op.getOperand(0);
4990 SDValue Idx = Op.getOperand(1);
4991 DebugLoc dl = Op.getDebugLoc();
4993 MVT TVT = Vec.getValueType();
4994 unsigned NumElems = TVT.getVectorNumElements();
4996 switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) {
4997 default: assert(0 && "This action is not supported yet!");
4998 case TargetLowering::Custom: {
4999 Vec = LegalizeOp(Vec);
5000 Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
5001 SDValue Tmp3 = TLI.LowerOperation(Op, DAG);
5002 if (Tmp3.getNode())
5003 return Tmp3;
5004 break;
5006 case TargetLowering::Legal:
5007 if (isTypeLegal(TVT)) {
5008 Vec = LegalizeOp(Vec);
5009 Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
5010 return Op;
5012 break;
5013 case TargetLowering::Promote:
5014 assert(TVT.isVector() && "not vector type");
5015 // fall thru to expand since vectors are by default are promote
5016 case TargetLowering::Expand:
5017 break;
5020 if (NumElems == 1) {
5021 // This must be an access of the only element. Return it.
5022 Op = ScalarizeVectorOp(Vec);
5023 } else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) {
5024 unsigned NumLoElts = 1 << Log2_32(NumElems-1);
5025 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx);
5026 SDValue Lo, Hi;
5027 SplitVectorOp(Vec, Lo, Hi);
5028 if (CIdx->getZExtValue() < NumLoElts) {
5029 Vec = Lo;
5030 } else {
5031 Vec = Hi;
5032 Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts,
5033 Idx.getValueType());
5036 // It's now an extract from the appropriate high or low part. Recurse.
5037 Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
5038 Op = ExpandEXTRACT_VECTOR_ELT(Op);
5039 } else {
5040 // Store the value to a temporary stack slot, then LOAD the scalar
5041 // element back out.
5042 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
5043 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0);
5045 // Add the offset to the index.
5046 unsigned EltSize = Op.getValueType().getSizeInBits()/8;
5047 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
5048 DAG.getConstant(EltSize, Idx.getValueType()));
5050 if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
5051 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
5052 else
5053 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
5055 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
5057 Op = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0);
5059 return Op;
5062 /// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now
5063 /// we assume the operation can be split if it is not already legal.
5064 SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) {
5065 // We know that operand #0 is the Vec vector. For now we assume the index
5066 // is a constant and that the extracted result is a supported hardware type.
5067 SDValue Vec = Op.getOperand(0);
5068 SDValue Idx = LegalizeOp(Op.getOperand(1));
5070 unsigned NumElems = Vec.getValueType().getVectorNumElements();
5072 if (NumElems == Op.getValueType().getVectorNumElements()) {
5073 // This must be an access of the desired vector length. Return it.
5074 return Vec;
5077 ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx);
5078 SDValue Lo, Hi;
5079 SplitVectorOp(Vec, Lo, Hi);
5080 if (CIdx->getZExtValue() < NumElems/2) {
5081 Vec = Lo;
5082 } else {
5083 Vec = Hi;
5084 Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2,
5085 Idx.getValueType());
5088 // It's now an extract from the appropriate high or low part. Recurse.
5089 Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
5090 return ExpandEXTRACT_SUBVECTOR(Op);
5093 /// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC
5094 /// with condition CC on the current target. This usually involves legalizing
5095 /// or promoting the arguments. In the case where LHS and RHS must be expanded,
5096 /// there may be no choice but to create a new SetCC node to represent the
5097 /// legalized value of setcc lhs, rhs. In this case, the value is returned in
5098 /// LHS, and the SDValue returned in RHS has a nil SDNode value.
5099 void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS,
5100 SDValue &RHS,
5101 SDValue &CC,
5102 DebugLoc dl) {
5103 SDValue Tmp1, Tmp2, Tmp3, Result;
5105 switch (getTypeAction(LHS.getValueType())) {
5106 case Legal:
5107 Tmp1 = LegalizeOp(LHS); // LHS
5108 Tmp2 = LegalizeOp(RHS); // RHS
5109 break;
5110 case Promote:
5111 Tmp1 = PromoteOp(LHS); // LHS
5112 Tmp2 = PromoteOp(RHS); // RHS
5114 // If this is an FP compare, the operands have already been extended.
5115 if (LHS.getValueType().isInteger()) {
5116 MVT VT = LHS.getValueType();
5117 MVT NVT = TLI.getTypeToTransformTo(VT);
5119 // Otherwise, we have to insert explicit sign or zero extends. Note
5120 // that we could insert sign extends for ALL conditions, but zero extend
5121 // is cheaper on many machines (an AND instead of two shifts), so prefer
5122 // it.
5123 switch (cast<CondCodeSDNode>(CC)->get()) {
5124 default: assert(0 && "Unknown integer comparison!");
5125 case ISD::SETEQ:
5126 case ISD::SETNE:
5127 case ISD::SETUGE:
5128 case ISD::SETUGT:
5129 case ISD::SETULE:
5130 case ISD::SETULT:
5131 // ALL of these operations will work if we either sign or zero extend
5132 // the operands (including the unsigned comparisons!). Zero extend is
5133 // usually a simpler/cheaper operation, so prefer it.
5134 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, VT);
5135 Tmp2 = DAG.getZeroExtendInReg(Tmp2, dl, VT);
5136 break;
5137 case ISD::SETGE:
5138 case ISD::SETGT:
5139 case ISD::SETLT:
5140 case ISD::SETLE:
5141 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp1,
5142 DAG.getValueType(VT));
5143 Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Tmp2,
5144 DAG.getValueType(VT));
5145 Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes.
5146 Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes.
5147 break;
5150 break;
5151 case Expand: {
5152 MVT VT = LHS.getValueType();
5153 if (VT == MVT::f32 || VT == MVT::f64) {
5154 // Expand into one or more soft-fp libcall(s).
5155 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
5156 switch (cast<CondCodeSDNode>(CC)->get()) {
5157 case ISD::SETEQ:
5158 case ISD::SETOEQ:
5159 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
5160 break;
5161 case ISD::SETNE:
5162 case ISD::SETUNE:
5163 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64;
5164 break;
5165 case ISD::SETGE:
5166 case ISD::SETOGE:
5167 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
5168 break;
5169 case ISD::SETLT:
5170 case ISD::SETOLT:
5171 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
5172 break;
5173 case ISD::SETLE:
5174 case ISD::SETOLE:
5175 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
5176 break;
5177 case ISD::SETGT:
5178 case ISD::SETOGT:
5179 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
5180 break;
5181 case ISD::SETUO:
5182 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
5183 break;
5184 case ISD::SETO:
5185 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64;
5186 break;
5187 default:
5188 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
5189 switch (cast<CondCodeSDNode>(CC)->get()) {
5190 case ISD::SETONE:
5191 // SETONE = SETOLT | SETOGT
5192 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
5193 // Fallthrough
5194 case ISD::SETUGT:
5195 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
5196 break;
5197 case ISD::SETUGE:
5198 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
5199 break;
5200 case ISD::SETULT:
5201 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
5202 break;
5203 case ISD::SETULE:
5204 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
5205 break;
5206 case ISD::SETUEQ:
5207 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
5208 break;
5209 default: assert(0 && "Unsupported FP setcc!");
5213 SDValue Dummy;
5214 SDValue Ops[2] = { LHS, RHS };
5215 Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2, dl).getNode(),
5216 false /*sign irrelevant*/, Dummy);
5217 Tmp2 = DAG.getConstant(0, MVT::i32);
5218 CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1));
5219 if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
5220 Tmp1 = DAG.getNode(ISD::SETCC, dl,
5221 TLI.getSetCCResultType(Tmp1.getValueType()),
5222 Tmp1, Tmp2, CC);
5223 LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2, dl).getNode(),
5224 false /*sign irrelevant*/, Dummy);
5225 Tmp2 = DAG.getNode(ISD::SETCC, dl,
5226 TLI.getSetCCResultType(LHS.getValueType()), LHS,
5227 Tmp2, DAG.getCondCode(TLI.getCmpLibcallCC(LC2)));
5228 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2);
5229 Tmp2 = SDValue();
5231 LHS = LegalizeOp(Tmp1);
5232 RHS = Tmp2;
5233 return;
5236 SDValue LHSLo, LHSHi, RHSLo, RHSHi;
5237 ExpandOp(LHS, LHSLo, LHSHi);
5238 ExpandOp(RHS, RHSLo, RHSHi);
5239 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
5241 if (VT==MVT::ppcf128) {
5242 // FIXME: This generated code sucks. We want to generate
5243 // FCMPU crN, hi1, hi2
5244 // BNE crN, L:
5245 // FCMPU crN, lo1, lo2
5246 // The following can be improved, but not that much.
5247 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
5248 LHSHi, RHSHi, ISD::SETOEQ);
5249 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
5250 LHSLo, RHSLo, CCCode);
5251 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2);
5252 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
5253 LHSHi, RHSHi, ISD::SETUNE);
5254 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
5255 LHSHi, RHSHi, CCCode);
5256 Tmp1 = DAG.getNode(ISD::AND, dl, Tmp1.getValueType(), Tmp1, Tmp2);
5257 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp3);
5258 Tmp2 = SDValue();
5259 break;
5262 switch (CCCode) {
5263 case ISD::SETEQ:
5264 case ISD::SETNE:
5265 if (RHSLo == RHSHi)
5266 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo))
5267 if (RHSCST->isAllOnesValue()) {
5268 // Comparison to -1.
5269 Tmp1 = DAG.getNode(ISD::AND, dl,LHSLo.getValueType(), LHSLo, LHSHi);
5270 Tmp2 = RHSLo;
5271 break;
5274 Tmp1 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
5275 Tmp2 = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
5276 Tmp1 = DAG.getNode(ISD::OR, dl, Tmp1.getValueType(), Tmp1, Tmp2);
5277 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
5278 break;
5279 default:
5280 // If this is a comparison of the sign bit, just look at the top part.
5281 // X > -1, x < 0
5282 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS))
5283 if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT &&
5284 CST->isNullValue()) || // X < 0
5285 (cast<CondCodeSDNode>(CC)->get() == ISD::SETGT &&
5286 CST->isAllOnesValue())) { // X > -1
5287 Tmp1 = LHSHi;
5288 Tmp2 = RHSHi;
5289 break;
5292 // FIXME: This generated code sucks.
5293 ISD::CondCode LowCC;
5294 switch (CCCode) {
5295 default: assert(0 && "Unknown integer setcc!");
5296 case ISD::SETLT:
5297 case ISD::SETULT: LowCC = ISD::SETULT; break;
5298 case ISD::SETGT:
5299 case ISD::SETUGT: LowCC = ISD::SETUGT; break;
5300 case ISD::SETLE:
5301 case ISD::SETULE: LowCC = ISD::SETULE; break;
5302 case ISD::SETGE:
5303 case ISD::SETUGE: LowCC = ISD::SETUGE; break;
5306 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
5307 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
5308 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
5310 // NOTE: on targets without efficient SELECT of bools, we can always use
5311 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
5312 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
5313 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
5314 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
5315 if (!Tmp1.getNode())
5316 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
5317 LHSLo, RHSLo, LowCC);
5318 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
5319 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
5320 if (!Tmp2.getNode())
5321 Tmp2 = DAG.getNode(ISD::SETCC, dl,
5322 TLI.getSetCCResultType(LHSHi.getValueType()),
5323 LHSHi, RHSHi, CC);
5325 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
5326 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
5327 if ((Tmp1C && Tmp1C->isNullValue()) ||
5328 (Tmp2C && Tmp2C->isNullValue() &&
5329 (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
5330 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
5331 (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
5332 (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
5333 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
5334 // low part is known false, returns high part.
5335 // For LE / GE, if high part is known false, ignore the low part.
5336 // For LT / GT, if high part is known true, ignore the low part.
5337 Tmp1 = Tmp2;
5338 Tmp2 = SDValue();
5339 } else {
5340 Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
5341 LHSHi, RHSHi, ISD::SETEQ, false,
5342 DagCombineInfo, dl);
5343 if (!Result.getNode())
5344 Result=DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
5345 LHSHi, RHSHi, ISD::SETEQ);
5346 Result = LegalizeOp(DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(),
5347 Result, Tmp1, Tmp2));
5348 Tmp1 = Result;
5349 Tmp2 = SDValue();
5354 LHS = Tmp1;
5355 RHS = Tmp2;
5358 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
5359 /// condition code CC on the current target. This routine assumes LHS and rHS
5360 /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
5361 /// illegal condition code into AND / OR of multiple SETCC values.
5362 void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
5363 SDValue &LHS, SDValue &RHS,
5364 SDValue &CC,
5365 DebugLoc dl) {
5366 MVT OpVT = LHS.getValueType();
5367 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
5368 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
5369 default: assert(0 && "Unknown condition code action!");
5370 case TargetLowering::Legal:
5371 // Nothing to do.
5372 break;
5373 case TargetLowering::Expand: {
5374 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
5375 unsigned Opc = 0;
5376 switch (CCCode) {
5377 default: assert(0 && "Don't know how to expand this condition!"); abort();
5378 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
5379 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
5380 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
5381 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
5382 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
5383 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
5384 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
5385 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
5386 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
5387 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
5388 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
5389 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
5390 // FIXME: Implement more expansions.
5393 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
5394 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
5395 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
5396 RHS = SDValue();
5397 CC = SDValue();
5398 break;
5403 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
5404 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
5405 /// a load from the stack slot to DestVT, extending it if needed.
5406 /// The resultant code need not be legal.
5407 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
5408 MVT SlotVT,
5409 MVT DestVT,
5410 DebugLoc dl) {
5411 // Create the stack frame object.
5412 unsigned SrcAlign =
5413 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
5414 getTypeForMVT());
5415 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
5417 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
5418 int SPFI = StackPtrFI->getIndex();
5419 const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
5421 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
5422 unsigned SlotSize = SlotVT.getSizeInBits();
5423 unsigned DestSize = DestVT.getSizeInBits();
5424 unsigned DestAlign =
5425 TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForMVT());
5427 // Emit a store to the stack slot. Use a truncstore if the input value is
5428 // later than DestVT.
5429 SDValue Store;
5431 if (SrcSize > SlotSize)
5432 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
5433 SV, 0, SlotVT, false, SrcAlign);
5434 else {
5435 assert(SrcSize == SlotSize && "Invalid store");
5436 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
5437 SV, 0, false, SrcAlign);
5440 // Result is a load from the stack slot.
5441 if (SlotSize == DestSize)
5442 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, DestAlign);
5444 assert(SlotSize < DestSize && "Unknown extension!");
5445 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
5446 false, DestAlign);
5449 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
5450 DebugLoc dl = Node->getDebugLoc();
5451 // Create a vector sized/aligned stack slot, store the value to element #0,
5452 // then load the whole vector back out.
5453 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
5455 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
5456 int SPFI = StackPtrFI->getIndex();
5458 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
5459 StackPtr,
5460 PseudoSourceValue::getFixedStack(SPFI), 0,
5461 Node->getValueType(0).getVectorElementType());
5462 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
5463 PseudoSourceValue::getFixedStack(SPFI), 0);
5467 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
5468 /// support the operation, but do support the resultant vector type.
5469 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
5470 unsigned NumElems = Node->getNumOperands();
5471 SDValue SplatValue = Node->getOperand(0);
5472 DebugLoc dl = Node->getDebugLoc();
5473 MVT VT = Node->getValueType(0);
5474 MVT OpVT = SplatValue.getValueType();
5475 MVT EltVT = VT.getVectorElementType();
5477 // If the only non-undef value is the low element, turn this into a
5478 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
5479 bool isOnlyLowElement = true;
5481 // FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
5482 // and use a bitmask instead of a list of elements.
5483 // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat.
5484 std::map<SDValue, std::vector<unsigned> > Values;
5485 Values[SplatValue].push_back(0);
5486 bool isConstant = true;
5487 if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
5488 SplatValue.getOpcode() != ISD::UNDEF)
5489 isConstant = false;
5491 for (unsigned i = 1; i < NumElems; ++i) {
5492 SDValue V = Node->getOperand(i);
5493 Values[V].push_back(i);
5494 if (V.getOpcode() != ISD::UNDEF)
5495 isOnlyLowElement = false;
5496 if (SplatValue != V)
5497 SplatValue = SDValue(0, 0);
5499 // If this isn't a constant element or an undef, we can't use a constant
5500 // pool load.
5501 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
5502 V.getOpcode() != ISD::UNDEF)
5503 isConstant = false;
5506 if (isOnlyLowElement) {
5507 // If the low element is an undef too, then this whole things is an undef.
5508 if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
5509 return DAG.getUNDEF(VT);
5510 // Otherwise, turn this into a scalar_to_vector node.
5511 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
5514 // If all elements are constants, create a load from the constant pool.
5515 if (isConstant) {
5516 std::vector<Constant*> CV;
5517 for (unsigned i = 0, e = NumElems; i != e; ++i) {
5518 if (ConstantFPSDNode *V =
5519 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
5520 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
5521 } else if (ConstantSDNode *V =
5522 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
5523 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
5524 } else {
5525 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
5526 const Type *OpNTy = OpVT.getTypeForMVT();
5527 CV.push_back(UndefValue::get(OpNTy));
5530 Constant *CP = ConstantVector::get(CV);
5531 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
5532 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
5533 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5534 PseudoSourceValue::getConstantPool(), 0,
5535 false, Alignment);
5538 if (SplatValue.getNode()) { // Splat of one value?
5539 // Build the shuffle constant vector: <0, 0, 0, 0>
5540 SmallVector<int, 8> ZeroVec(NumElems, 0);
5542 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
5543 if (TLI.isShuffleMaskLegal(ZeroVec, Node->getValueType(0))) {
5544 // Get the splatted value into the low element of a vector register.
5545 SDValue LowValVec =
5546 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, SplatValue);
5548 // Return shuffle(LowValVec, undef, <0,0,0,0>)
5549 return DAG.getVectorShuffle(VT, dl, LowValVec, DAG.getUNDEF(VT),
5550 &ZeroVec[0]);
5554 // If there are only two unique elements, we may be able to turn this into a
5555 // vector shuffle.
5556 if (Values.size() == 2) {
5557 // Get the two values in deterministic order.
5558 SDValue Val1 = Node->getOperand(1);
5559 SDValue Val2;
5560 std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin();
5561 if (MI->first != Val1)
5562 Val2 = MI->first;
5563 else
5564 Val2 = (++MI)->first;
5566 // If Val1 is an undef, make sure it ends up as Val2, to ensure that our
5567 // vector shuffle has the undef vector on the RHS.
5568 if (Val1.getOpcode() == ISD::UNDEF)
5569 std::swap(Val1, Val2);
5571 // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
5572 SmallVector<int, 8> ShuffleMask(NumElems, -1);
5574 // Set elements of the shuffle mask for Val1.
5575 std::vector<unsigned> &Val1Elts = Values[Val1];
5576 for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i)
5577 ShuffleMask[Val1Elts[i]] = 0;
5579 // Set elements of the shuffle mask for Val2.
5580 std::vector<unsigned> &Val2Elts = Values[Val2];
5581 for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i)
5582 if (Val2.getOpcode() != ISD::UNDEF)
5583 ShuffleMask[Val2Elts[i]] = NumElems;
5585 // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
5586 if (TLI.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR, VT) &&
5587 TLI.isShuffleMaskLegal(ShuffleMask, VT)) {
5588 Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val1);
5589 Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Val2);
5590 return DAG.getVectorShuffle(VT, dl, Val1, Val2, &ShuffleMask[0]);
5594 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently
5595 // aligned object on the stack, store each element into it, then load
5596 // the result as a vector.
5597 // Create the stack frame object.
5598 SDValue FIPtr = DAG.CreateStackTemporary(VT);
5599 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
5600 const Value *SV = PseudoSourceValue::getFixedStack(FI);
5602 // Emit a store of each element to the stack slot.
5603 SmallVector<SDValue, 8> Stores;
5604 unsigned TypeByteSize = OpVT.getSizeInBits() / 8;
5605 // Store (in the right endianness) the elements to memory.
5606 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
5607 // Ignore undef elements.
5608 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
5610 unsigned Offset = TypeByteSize*i;
5612 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
5613 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
5615 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
5616 Idx, SV, Offset));
5619 SDValue StoreChain;
5620 if (!Stores.empty()) // Not all undef elements?
5621 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5622 &Stores[0], Stores.size());
5623 else
5624 StoreChain = DAG.getEntryNode();
5626 // Result is a load from the stack slot.
5627 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0);
5630 void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp,
5631 SDValue Op, SDValue Amt,
5632 SDValue &Lo, SDValue &Hi,
5633 DebugLoc dl) {
5634 // Expand the subcomponents.
5635 SDValue LHSL, LHSH;
5636 ExpandOp(Op, LHSL, LHSH);
5638 SDValue Ops[] = { LHSL, LHSH, Amt };
5639 MVT VT = LHSL.getValueType();
5640 Lo = DAG.getNode(NodeOp, dl, DAG.getVTList(VT, VT), Ops, 3);
5641 Hi = Lo.getValue(1);
5645 /// ExpandShift - Try to find a clever way to expand this shift operation out to
5646 /// smaller elements. If we can't find a way that is more efficient than a
5647 /// libcall on this target, return false. Otherwise, return true with the
5648 /// low-parts expanded into Lo and Hi.
5649 bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op, SDValue Amt,
5650 SDValue &Lo, SDValue &Hi,
5651 DebugLoc dl) {
5652 assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) &&
5653 "This is not a shift!");
5655 MVT NVT = TLI.getTypeToTransformTo(Op.getValueType());
5656 SDValue ShAmt = LegalizeOp(Amt);
5657 MVT ShTy = ShAmt.getValueType();
5658 unsigned ShBits = ShTy.getSizeInBits();
5659 unsigned VTBits = Op.getValueType().getSizeInBits();
5660 unsigned NVTBits = NVT.getSizeInBits();
5662 // Handle the case when Amt is an immediate.
5663 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.getNode())) {
5664 unsigned Cst = CN->getZExtValue();
5665 // Expand the incoming operand to be shifted, so that we have its parts
5666 SDValue InL, InH;
5667 ExpandOp(Op, InL, InH);
5668 switch(Opc) {
5669 case ISD::SHL:
5670 if (Cst > VTBits) {
5671 Lo = DAG.getConstant(0, NVT);
5672 Hi = DAG.getConstant(0, NVT);
5673 } else if (Cst > NVTBits) {
5674 Lo = DAG.getConstant(0, NVT);
5675 Hi = DAG.getNode(ISD::SHL, dl,
5676 NVT, InL, DAG.getConstant(Cst-NVTBits, ShTy));
5677 } else if (Cst == NVTBits) {
5678 Lo = DAG.getConstant(0, NVT);
5679 Hi = InL;
5680 } else {
5681 Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, DAG.getConstant(Cst, ShTy));
5682 Hi = DAG.getNode(ISD::OR, dl, NVT,
5683 DAG.getNode(ISD::SHL, dl, NVT, InH, DAG.getConstant(Cst, ShTy)),
5684 DAG.getNode(ISD::SRL, dl, NVT, InL,
5685 DAG.getConstant(NVTBits-Cst, ShTy)));
5687 return true;
5688 case ISD::SRL:
5689 if (Cst > VTBits) {
5690 Lo = DAG.getConstant(0, NVT);
5691 Hi = DAG.getConstant(0, NVT);
5692 } else if (Cst > NVTBits) {
5693 Lo = DAG.getNode(ISD::SRL, dl, NVT,
5694 InH, DAG.getConstant(Cst-NVTBits, ShTy));
5695 Hi = DAG.getConstant(0, NVT);
5696 } else if (Cst == NVTBits) {
5697 Lo = InH;
5698 Hi = DAG.getConstant(0, NVT);
5699 } else {
5700 Lo = DAG.getNode(ISD::OR, dl, NVT,
5701 DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)),
5702 DAG.getNode(ISD::SHL, dl, NVT, InH,
5703 DAG.getConstant(NVTBits-Cst, ShTy)));
5704 Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, DAG.getConstant(Cst, ShTy));
5706 return true;
5707 case ISD::SRA:
5708 if (Cst > VTBits) {
5709 Hi = Lo = DAG.getNode(ISD::SRA, dl, NVT, InH,
5710 DAG.getConstant(NVTBits-1, ShTy));
5711 } else if (Cst > NVTBits) {
5712 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH,
5713 DAG.getConstant(Cst-NVTBits, ShTy));
5714 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,
5715 DAG.getConstant(NVTBits-1, ShTy));
5716 } else if (Cst == NVTBits) {
5717 Lo = InH;
5718 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,
5719 DAG.getConstant(NVTBits-1, ShTy));
5720 } else {
5721 Lo = DAG.getNode(ISD::OR, dl, NVT,
5722 DAG.getNode(ISD::SRL, dl, NVT, InL, DAG.getConstant(Cst, ShTy)),
5723 DAG.getNode(ISD::SHL, dl,
5724 NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy)));
5725 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, DAG.getConstant(Cst, ShTy));
5727 return true;
5731 // Okay, the shift amount isn't constant. However, if we can tell that it is
5732 // >= 32 or < 32, we can still simplify it, without knowing the actual value.
5733 APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
5734 APInt KnownZero, KnownOne;
5735 DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne);
5737 // If we know that if any of the high bits of the shift amount are one, then
5738 // we can do this as a couple of simple shifts.
5739 if (KnownOne.intersects(Mask)) {
5740 // Mask out the high bit, which we know is set.
5741 Amt = DAG.getNode(ISD::AND, dl, Amt.getValueType(), Amt,
5742 DAG.getConstant(~Mask, Amt.getValueType()));
5744 // Expand the incoming operand to be shifted, so that we have its parts
5745 SDValue InL, InH;
5746 ExpandOp(Op, InL, InH);
5747 switch(Opc) {
5748 case ISD::SHL:
5749 Lo = DAG.getConstant(0, NVT); // Low part is zero.
5750 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
5751 return true;
5752 case ISD::SRL:
5753 Hi = DAG.getConstant(0, NVT); // Hi part is zero.
5754 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
5755 return true;
5756 case ISD::SRA:
5757 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part.
5758 DAG.getConstant(NVTBits-1, Amt.getValueType()));
5759 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
5760 return true;
5764 // If we know that the high bits of the shift amount are all zero, then we can
5765 // do this as a couple of simple shifts.
5766 if ((KnownZero & Mask) == Mask) {
5767 // Compute 32-amt.
5768 SDValue Amt2 = DAG.getNode(ISD::SUB, dl, Amt.getValueType(),
5769 DAG.getConstant(NVTBits, Amt.getValueType()),
5770 Amt);
5772 // Expand the incoming operand to be shifted, so that we have its parts
5773 SDValue InL, InH;
5774 ExpandOp(Op, InL, InH);
5775 switch(Opc) {
5776 case ISD::SHL:
5777 Lo = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
5778 Hi = DAG.getNode(ISD::OR, dl, NVT,
5779 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
5780 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt2));
5781 return true;
5782 case ISD::SRL:
5783 Hi = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
5784 Lo = DAG.getNode(ISD::OR, dl, NVT,
5785 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
5786 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2));
5787 return true;
5788 case ISD::SRA:
5789 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
5790 Lo = DAG.getNode(ISD::OR, dl, NVT,
5791 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
5792 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt2));
5793 return true;
5797 return false;
5801 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
5802 // does not fit into a register, return the lo part and set the hi part to the
5803 // by-reg argument. If it does fit into a single register, return the result
5804 // and leave the Hi part unset.
5805 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
5806 bool isSigned, SDValue &Hi) {
5807 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
5808 // The input chain to this libcall is the entry node of the function.
5809 // Legalizing the call will automatically add the previous call to the
5810 // dependence.
5811 SDValue InChain = DAG.getEntryNode();
5813 TargetLowering::ArgListTy Args;
5814 TargetLowering::ArgListEntry Entry;
5815 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
5816 MVT ArgVT = Node->getOperand(i).getValueType();
5817 const Type *ArgTy = ArgVT.getTypeForMVT();
5818 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
5819 Entry.isSExt = isSigned;
5820 Entry.isZExt = !isSigned;
5821 Args.push_back(Entry);
5823 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
5824 TLI.getPointerTy());
5826 // Splice the libcall in wherever FindInputOutputChains tells us to.
5827 const Type *RetTy = Node->getValueType(0).getTypeForMVT();
5828 std::pair<SDValue, SDValue> CallInfo =
5829 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
5830 CallingConv::C, false, Callee, Args, DAG,
5831 Node->getDebugLoc());
5833 // Legalize the call sequence, starting with the chain. This will advance
5834 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
5835 // was added by LowerCallTo (guaranteeing proper serialization of calls).
5836 LegalizeOp(CallInfo.second);
5837 SDValue Result;
5838 switch (getTypeAction(CallInfo.first.getValueType())) {
5839 default: assert(0 && "Unknown thing");
5840 case Legal:
5841 Result = CallInfo.first;
5842 break;
5843 case Expand:
5844 ExpandOp(CallInfo.first, Result, Hi);
5845 break;
5847 return Result;
5850 /// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation.
5852 SDValue SelectionDAGLegalize::
5853 LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op,
5854 DebugLoc dl) {
5855 bool isCustom = false;
5856 SDValue Tmp1;
5857 switch (getTypeAction(Op.getValueType())) {
5858 case Legal:
5859 switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
5860 Op.getValueType())) {
5861 default: assert(0 && "Unknown operation action!");
5862 case TargetLowering::Custom:
5863 isCustom = true;
5864 // FALLTHROUGH
5865 case TargetLowering::Legal:
5866 Tmp1 = LegalizeOp(Op);
5867 if (Result.getNode())
5868 Result = DAG.UpdateNodeOperands(Result, Tmp1);
5869 else
5870 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl,
5871 DestTy, Tmp1);
5872 if (isCustom) {
5873 Tmp1 = TLI.LowerOperation(Result, DAG);
5874 if (Tmp1.getNode()) Result = Tmp1;
5876 break;
5877 case TargetLowering::Expand:
5878 Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy, dl);
5879 break;
5880 case TargetLowering::Promote:
5881 Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned, dl);
5882 break;
5884 break;
5885 case Expand:
5886 Result = ExpandIntToFP(isSigned, DestTy, Op, dl) ;
5887 break;
5888 case Promote:
5889 Tmp1 = PromoteOp(Op);
5890 if (isSigned) {
5891 Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp1.getValueType(),
5892 Tmp1, DAG.getValueType(Op.getValueType()));
5893 } else {
5894 Tmp1 = DAG.getZeroExtendInReg(Tmp1, dl, Op.getValueType());
5896 if (Result.getNode())
5897 Result = DAG.UpdateNodeOperands(Result, Tmp1);
5898 else
5899 Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, dl,
5900 DestTy, Tmp1);
5901 Result = LegalizeOp(Result); // The 'op' is not necessarily legal!
5902 break;
5904 return Result;
5907 /// ExpandIntToFP - Expand a [US]INT_TO_FP operation.
5909 SDValue SelectionDAGLegalize::
5910 ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source, DebugLoc dl) {
5911 MVT SourceVT = Source.getValueType();
5912 bool ExpandSource = getTypeAction(SourceVT) == Expand;
5914 // Expand unsupported int-to-fp vector casts by unrolling them.
5915 if (DestTy.isVector()) {
5916 if (!ExpandSource)
5917 return LegalizeOp(UnrollVectorOp(Source));
5918 MVT DestEltTy = DestTy.getVectorElementType();
5919 if (DestTy.getVectorNumElements() == 1) {
5920 SDValue Scalar = ScalarizeVectorOp(Source);
5921 SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned,
5922 DestEltTy, Scalar, dl);
5923 return DAG.getNode(ISD::BUILD_VECTOR, dl, DestTy, Result);
5925 SDValue Lo, Hi;
5926 SplitVectorOp(Source, Lo, Hi);
5927 MVT SplitDestTy = MVT::getVectorVT(DestEltTy,
5928 DestTy.getVectorNumElements() / 2);
5929 SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy,
5930 Lo, dl);
5931 SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy,
5932 Hi, dl);
5933 return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, DestTy, LoResult,
5934 HiResult));
5937 // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc.
5938 if (!isSigned && SourceVT != MVT::i32) {
5939 // The integer value loaded will be incorrectly if the 'sign bit' of the
5940 // incoming integer is set. To handle this, we dynamically test to see if
5941 // it is set, and, if so, add a fudge factor.
5942 SDValue Hi;
5943 if (ExpandSource) {
5944 SDValue Lo;
5945 ExpandOp(Source, Lo, Hi);
5946 Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, Lo, Hi);
5947 } else {
5948 // The comparison for the sign bit will use the entire operand.
5949 Hi = Source;
5952 // Check to see if the target has a custom way to lower this. If so, use
5953 // it. (Note we've already expanded the operand in this case.)
5954 switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) {
5955 default: assert(0 && "This action not implemented for this operation!");
5956 case TargetLowering::Legal:
5957 case TargetLowering::Expand:
5958 break; // This case is handled below.
5959 case TargetLowering::Custom: {
5960 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, dl, DestTy,
5961 Source), DAG);
5962 if (NV.getNode())
5963 return LegalizeOp(NV);
5964 break; // The target decided this was legal after all
5968 // If this is unsigned, and not supported, first perform the conversion to
5969 // signed, then adjust the result if the sign bit is set.
5970 SDValue SignedConv = ExpandIntToFP(true, DestTy, Source, dl);
5972 SDValue SignSet = DAG.getSetCC(dl,
5973 TLI.getSetCCResultType(Hi.getValueType()),
5974 Hi, DAG.getConstant(0, Hi.getValueType()),
5975 ISD::SETLT);
5976 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
5977 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
5978 SignSet, Four, Zero);
5979 uint64_t FF = 0x5f800000ULL;
5980 if (TLI.isLittleEndian()) FF <<= 32;
5981 Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
5983 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
5984 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
5985 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
5986 Alignment = std::min(Alignment, 4u);
5987 SDValue FudgeInReg;
5988 if (DestTy == MVT::f32)
5989 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
5990 PseudoSourceValue::getConstantPool(), 0,
5991 false, Alignment);
5992 else if (DestTy.bitsGT(MVT::f32))
5993 // FIXME: Avoid the extend by construction the right constantpool?
5994 FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, dl, DestTy, DAG.getEntryNode(),
5995 CPIdx,
5996 PseudoSourceValue::getConstantPool(), 0,
5997 MVT::f32, false, Alignment);
5998 else
5999 assert(0 && "Unexpected conversion");
6001 MVT SCVT = SignedConv.getValueType();
6002 if (SCVT != DestTy) {
6003 // Destination type needs to be expanded as well. The FADD now we are
6004 // constructing will be expanded into a libcall.
6005 if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) {
6006 assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits());
6007 SignedConv = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy,
6008 SignedConv, SignedConv.getValue(1));
6010 SignedConv = DAG.getNode(ISD::BIT_CONVERT, dl, DestTy, SignedConv);
6012 return DAG.getNode(ISD::FADD, dl, DestTy, SignedConv, FudgeInReg);
6015 // Check to see if the target has a custom way to lower this. If so, use it.
6016 switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) {
6017 default: assert(0 && "This action not implemented for this operation!");
6018 case TargetLowering::Legal:
6019 case TargetLowering::Expand:
6020 break; // This case is handled below.
6021 case TargetLowering::Custom: {
6022 SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, dl, DestTy,
6023 Source), DAG);
6024 if (NV.getNode())
6025 return LegalizeOp(NV);
6026 break; // The target decided this was legal after all
6030 // Expand the source, then glue it back together for the call. We must expand
6031 // the source in case it is shared (this pass of legalize must traverse it).
6032 if (ExpandSource) {
6033 SDValue SrcLo, SrcHi;
6034 ExpandOp(Source, SrcLo, SrcHi);
6035 Source = DAG.getNode(ISD::BUILD_PAIR, dl, SourceVT, SrcLo, SrcHi);
6038 RTLIB::Libcall LC = isSigned ?
6039 RTLIB::getSINTTOFP(SourceVT, DestTy) :
6040 RTLIB::getUINTTOFP(SourceVT, DestTy);
6041 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type");
6043 Source = DAG.getNode(ISD::SINT_TO_FP, dl, DestTy, Source);
6044 SDValue HiPart;
6045 SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart);
6046 if (Result.getValueType() != DestTy && HiPart.getNode())
6047 Result = DAG.getNode(ISD::BUILD_PAIR, dl, DestTy, Result, HiPart);
6048 return Result;
6051 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
6052 /// INT_TO_FP operation of the specified operand when the target requests that
6053 /// we expand it. At this point, we know that the result and operand types are
6054 /// legal for the target.
6055 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
6056 SDValue Op0,
6057 MVT DestVT,
6058 DebugLoc dl) {
6059 if (Op0.getValueType() == MVT::i32) {
6060 // simple 32-bit [signed|unsigned] integer to float/double expansion
6062 // Get the stack frame index of a 8 byte buffer.
6063 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
6065 // word offset constant for Hi/Lo address computation
6066 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
6067 // set up Hi and Lo (into buffer) address based on endian
6068 SDValue Hi = StackSlot;
6069 SDValue Lo = DAG.getNode(ISD::ADD, dl,
6070 TLI.getPointerTy(), StackSlot, WordOff);
6071 if (TLI.isLittleEndian())
6072 std::swap(Hi, Lo);
6074 // if signed map to unsigned space
6075 SDValue Op0Mapped;
6076 if (isSigned) {
6077 // constant used to invert sign bit (signed to unsigned mapping)
6078 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
6079 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
6080 } else {
6081 Op0Mapped = Op0;
6083 // store the lo of the constructed double - based on integer input
6084 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
6085 Op0Mapped, Lo, NULL, 0);
6086 // initial hi portion of constructed double
6087 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
6088 // store the hi of the constructed double - biased exponent
6089 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0);
6090 // load the constructed double
6091 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0);
6092 // FP constant to bias correct the final result
6093 SDValue Bias = DAG.getConstantFP(isSigned ?
6094 BitsToDouble(0x4330000080000000ULL) :
6095 BitsToDouble(0x4330000000000000ULL),
6096 MVT::f64);
6097 // subtract the bias
6098 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
6099 // final result
6100 SDValue Result;
6101 // handle final rounding
6102 if (DestVT == MVT::f64) {
6103 // do nothing
6104 Result = Sub;
6105 } else if (DestVT.bitsLT(MVT::f64)) {
6106 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6107 DAG.getIntPtrConstant(0));
6108 } else if (DestVT.bitsGT(MVT::f64)) {
6109 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6111 return Result;
6113 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
6114 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
6116 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
6117 Op0, DAG.getConstant(0, Op0.getValueType()),
6118 ISD::SETLT);
6119 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
6120 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
6121 SignSet, Four, Zero);
6123 // If the sign bit of the integer is set, the large number will be treated
6124 // as a negative number. To counteract this, the dynamic code adds an
6125 // offset depending on the data type.
6126 uint64_t FF;
6127 switch (Op0.getValueType().getSimpleVT()) {
6128 default: assert(0 && "Unsupported integer type!");
6129 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
6130 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
6131 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
6132 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
6134 if (TLI.isLittleEndian()) FF <<= 32;
6135 Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
6137 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
6138 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
6139 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
6140 Alignment = std::min(Alignment, 4u);
6141 SDValue FudgeInReg;
6142 if (DestVT == MVT::f32)
6143 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
6144 PseudoSourceValue::getConstantPool(), 0,
6145 false, Alignment);
6146 else {
6147 FudgeInReg =
6148 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
6149 DAG.getEntryNode(), CPIdx,
6150 PseudoSourceValue::getConstantPool(), 0,
6151 MVT::f32, false, Alignment));
6154 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
6157 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
6158 /// *INT_TO_FP operation of the specified operand when the target requests that
6159 /// we promote it. At this point, we know that the result and operand types are
6160 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
6161 /// operation that takes a larger input.
6162 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
6163 MVT DestVT,
6164 bool isSigned,
6165 DebugLoc dl) {
6166 // First step, figure out the appropriate *INT_TO_FP operation to use.
6167 MVT NewInTy = LegalOp.getValueType();
6169 unsigned OpToUse = 0;
6171 // Scan for the appropriate larger type to use.
6172 while (1) {
6173 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
6174 assert(NewInTy.isInteger() && "Ran out of possibilities!");
6176 // If the target supports SINT_TO_FP of this type, use it.
6177 switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) {
6178 default: break;
6179 case TargetLowering::Legal:
6180 if (!TLI.isTypeLegal(NewInTy))
6181 break; // Can't use this datatype.
6182 // FALL THROUGH.
6183 case TargetLowering::Custom:
6184 OpToUse = ISD::SINT_TO_FP;
6185 break;
6187 if (OpToUse) break;
6188 if (isSigned) continue;
6190 // If the target supports UINT_TO_FP of this type, use it.
6191 switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) {
6192 default: break;
6193 case TargetLowering::Legal:
6194 if (!TLI.isTypeLegal(NewInTy))
6195 break; // Can't use this datatype.
6196 // FALL THROUGH.
6197 case TargetLowering::Custom:
6198 OpToUse = ISD::UINT_TO_FP;
6199 break;
6201 if (OpToUse) break;
6203 // Otherwise, try a larger type.
6206 // Okay, we found the operation and type to use. Zero extend our input to the
6207 // desired type then run the operation on it.
6208 return DAG.getNode(OpToUse, dl, DestVT,
6209 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
6210 dl, NewInTy, LegalOp));
6213 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
6214 /// FP_TO_*INT operation of the specified operand when the target requests that
6215 /// we promote it. At this point, we know that the result and operand types are
6216 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
6217 /// operation that returns a larger result.
6218 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
6219 MVT DestVT,
6220 bool isSigned,
6221 DebugLoc dl) {
6222 // First step, figure out the appropriate FP_TO*INT operation to use.
6223 MVT NewOutTy = DestVT;
6225 unsigned OpToUse = 0;
6227 // Scan for the appropriate larger type to use.
6228 while (1) {
6229 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
6230 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
6232 // If the target supports FP_TO_SINT returning this type, use it.
6233 switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) {
6234 default: break;
6235 case TargetLowering::Legal:
6236 if (!TLI.isTypeLegal(NewOutTy))
6237 break; // Can't use this datatype.
6238 // FALL THROUGH.
6239 case TargetLowering::Custom:
6240 OpToUse = ISD::FP_TO_SINT;
6241 break;
6243 if (OpToUse) break;
6245 // If the target supports FP_TO_UINT of this type, use it.
6246 switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) {
6247 default: break;
6248 case TargetLowering::Legal:
6249 if (!TLI.isTypeLegal(NewOutTy))
6250 break; // Can't use this datatype.
6251 // FALL THROUGH.
6252 case TargetLowering::Custom:
6253 OpToUse = ISD::FP_TO_UINT;
6254 break;
6256 if (OpToUse) break;
6258 // Otherwise, try a larger type.
6262 // Okay, we found the operation and type to use.
6263 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
6265 // If the operation produces an invalid type, it must be custom lowered. Use
6266 // the target lowering hooks to expand it. Just keep the low part of the
6267 // expanded operation, we know that we're truncating anyway.
6268 if (getTypeAction(NewOutTy) == Expand) {
6269 SmallVector<SDValue, 2> Results;
6270 TLI.ReplaceNodeResults(Operation.getNode(), Results, DAG);
6271 assert(Results.size() == 1 && "Incorrect FP_TO_XINT lowering!");
6272 Operation = Results[0];
6275 // Truncate the result of the extended FP_TO_*INT operation to the desired
6276 // size.
6277 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
6280 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
6282 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
6283 MVT VT = Op.getValueType();
6284 MVT SHVT = TLI.getShiftAmountTy();
6285 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
6286 switch (VT.getSimpleVT()) {
6287 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
6288 case MVT::i16:
6289 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
6290 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
6291 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6292 case MVT::i32:
6293 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
6294 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
6295 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
6296 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
6297 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
6298 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
6299 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
6300 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
6301 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
6302 case MVT::i64:
6303 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
6304 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
6305 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
6306 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
6307 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
6308 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
6309 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
6310 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
6311 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
6312 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
6313 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
6314 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
6315 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
6316 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
6317 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
6318 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
6319 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
6320 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
6321 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
6322 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
6323 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
6327 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
6329 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
6330 DebugLoc dl) {
6331 switch (Opc) {
6332 default: assert(0 && "Cannot expand this yet!");
6333 case ISD::CTPOP: {
6334 static const uint64_t mask[6] = {
6335 0x5555555555555555ULL, 0x3333333333333333ULL,
6336 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
6337 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
6339 MVT VT = Op.getValueType();
6340 MVT ShVT = TLI.getShiftAmountTy();
6341 unsigned len = VT.getSizeInBits();
6342 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
6343 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
6344 unsigned EltSize = VT.isVector() ?
6345 VT.getVectorElementType().getSizeInBits() : len;
6346 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
6347 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
6348 Op = DAG.getNode(ISD::ADD, dl, VT,
6349 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
6350 DAG.getNode(ISD::AND, dl, VT,
6351 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
6352 Tmp2));
6354 return Op;
6356 case ISD::CTLZ: {
6357 // for now, we do this:
6358 // x = x | (x >> 1);
6359 // x = x | (x >> 2);
6360 // ...
6361 // x = x | (x >>16);
6362 // x = x | (x >>32); // for 64-bit input
6363 // return popcount(~x);
6365 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
6366 MVT VT = Op.getValueType();
6367 MVT ShVT = TLI.getShiftAmountTy();
6368 unsigned len = VT.getSizeInBits();
6369 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
6370 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
6371 Op = DAG.getNode(ISD::OR, dl, VT, Op,
6372 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
6374 Op = DAG.getNOT(dl, Op, VT);
6375 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
6377 case ISD::CTTZ: {
6378 // for now, we use: { return popcount(~x & (x - 1)); }
6379 // unless the target has ctlz but not ctpop, in which case we use:
6380 // { return 32 - nlz(~x & (x-1)); }
6381 // see also http://www.hackersdelight.org/HDcode/ntz.cc
6382 MVT VT = Op.getValueType();
6383 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
6384 DAG.getNOT(dl, Op, VT),
6385 DAG.getNode(ISD::SUB, dl, VT, Op,
6386 DAG.getConstant(1, VT)));
6387 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6388 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6389 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
6390 return DAG.getNode(ISD::SUB, dl, VT,
6391 DAG.getConstant(VT.getSizeInBits(), VT),
6392 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
6393 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
6398 /// ExpandOp - Expand the specified SDValue into its two component pieces
6399 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the
6400 /// LegalizedNodes map is filled in for any results that are not expanded, the
6401 /// ExpandedNodes map is filled in for any results that are expanded, and the
6402 /// Lo/Hi values are returned.
6403 void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){
6404 MVT VT = Op.getValueType();
6405 MVT NVT = TLI.getTypeToTransformTo(VT);
6406 SDNode *Node = Op.getNode();
6407 DebugLoc dl = Node->getDebugLoc();
6408 assert(getTypeAction(VT) == Expand && "Not an expanded type!");
6409 assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() ||
6410 VT.isVector()) && "Cannot expand to FP value or to larger int value!");
6412 // See if we already expanded it.
6413 DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator I
6414 = ExpandedNodes.find(Op);
6415 if (I != ExpandedNodes.end()) {
6416 Lo = I->second.first;
6417 Hi = I->second.second;
6418 return;
6421 switch (Node->getOpcode()) {
6422 case ISD::CopyFromReg:
6423 assert(0 && "CopyFromReg must be legal!");
6424 case ISD::FP_ROUND_INREG:
6425 if (VT == MVT::ppcf128 &&
6426 TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) ==
6427 TargetLowering::Custom) {
6428 SDValue SrcLo, SrcHi, Src;
6429 ExpandOp(Op.getOperand(0), SrcLo, SrcHi);
6430 Src = DAG.getNode(ISD::BUILD_PAIR, dl, VT, SrcLo, SrcHi);
6431 SDValue Result =
6432 TLI.LowerOperation(DAG.getNode(ISD::FP_ROUND_INREG, dl, VT, Src,
6433 Op.getOperand(1)), DAG);
6434 assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR);
6435 Lo = Result.getNode()->getOperand(0);
6436 Hi = Result.getNode()->getOperand(1);
6437 break;
6439 // fall through
6440 default:
6441 #ifndef NDEBUG
6442 cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
6443 #endif
6444 assert(0 && "Do not know how to expand this operator!");
6445 abort();
6446 case ISD::EXTRACT_ELEMENT:
6447 ExpandOp(Node->getOperand(0), Lo, Hi);
6448 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue())
6449 return ExpandOp(Hi, Lo, Hi);
6450 return ExpandOp(Lo, Lo, Hi);
6451 case ISD::EXTRACT_VECTOR_ELT:
6452 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types.
6453 Lo = ExpandEXTRACT_VECTOR_ELT(Op);
6454 return ExpandOp(Lo, Lo, Hi);
6455 case ISD::UNDEF:
6456 Lo = DAG.getUNDEF(NVT);
6457 Hi = DAG.getUNDEF(NVT);
6458 break;
6459 case ISD::Constant: {
6460 unsigned NVTBits = NVT.getSizeInBits();
6461 const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue();
6462 Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT);
6463 Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT);
6464 break;
6466 case ISD::ConstantFP: {
6467 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
6468 if (CFP->getValueType(0) == MVT::ppcf128) {
6469 APInt api = CFP->getValueAPF().bitcastToAPInt();
6470 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])),
6471 MVT::f64);
6472 Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])),
6473 MVT::f64);
6474 break;
6476 Lo = ExpandConstantFP(CFP, false, DAG, TLI);
6477 if (getTypeAction(Lo.getValueType()) == Expand)
6478 ExpandOp(Lo, Lo, Hi);
6479 break;
6481 case ISD::BUILD_PAIR:
6482 // Return the operands.
6483 Lo = Node->getOperand(0);
6484 Hi = Node->getOperand(1);
6485 break;
6487 case ISD::MERGE_VALUES:
6488 if (Node->getNumValues() == 1) {
6489 ExpandOp(Op.getOperand(0), Lo, Hi);
6490 break;
6492 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y)
6493 assert(Op.getResNo() == 0 && Node->getNumValues() == 2 &&
6494 Op.getValue(1).getValueType() == MVT::Other &&
6495 "unhandled MERGE_VALUES");
6496 ExpandOp(Op.getOperand(0), Lo, Hi);
6497 // Remember that we legalized the chain.
6498 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1)));
6499 break;
6501 case ISD::SIGN_EXTEND_INREG:
6502 ExpandOp(Node->getOperand(0), Lo, Hi);
6503 // sext_inreg the low part if needed.
6504 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Lo, Node->getOperand(1));
6506 // The high part gets the sign extension from the lo-part. This handles
6507 // things like sextinreg V:i64 from i8.
6508 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
6509 DAG.getConstant(NVT.getSizeInBits()-1,
6510 TLI.getShiftAmountTy()));
6511 break;
6513 case ISD::BSWAP: {
6514 ExpandOp(Node->getOperand(0), Lo, Hi);
6515 SDValue TempLo = DAG.getNode(ISD::BSWAP, dl, NVT, Hi);
6516 Hi = DAG.getNode(ISD::BSWAP, dl, NVT, Lo);
6517 Lo = TempLo;
6518 break;
6521 case ISD::CTPOP:
6522 ExpandOp(Node->getOperand(0), Lo, Hi);
6523 Lo = DAG.getNode(ISD::ADD, dl, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L)
6524 DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
6525 DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
6526 Hi = DAG.getConstant(0, NVT);
6527 break;
6529 case ISD::CTLZ: {
6530 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32)
6531 ExpandOp(Node->getOperand(0), Lo, Hi);
6532 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT);
6533 SDValue HLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Hi);
6534 SDValue TopNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), HLZ,
6535 BitsC, ISD::SETNE);
6536 SDValue LowPart = DAG.getNode(ISD::CTLZ, dl, NVT, Lo);
6537 LowPart = DAG.getNode(ISD::ADD, dl, NVT, LowPart, BitsC);
6539 Lo = DAG.getNode(ISD::SELECT, dl, NVT, TopNotZero, HLZ, LowPart);
6540 Hi = DAG.getConstant(0, NVT);
6541 break;
6544 case ISD::CTTZ: {
6545 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32)
6546 ExpandOp(Node->getOperand(0), Lo, Hi);
6547 SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT);
6548 SDValue LTZ = DAG.getNode(ISD::CTTZ, dl, NVT, Lo);
6549 SDValue BotNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), LTZ,
6550 BitsC, ISD::SETNE);
6551 SDValue HiPart = DAG.getNode(ISD::CTTZ, dl, NVT, Hi);
6552 HiPart = DAG.getNode(ISD::ADD, dl, NVT, HiPart, BitsC);
6554 Lo = DAG.getNode(ISD::SELECT, dl, NVT, BotNotZero, LTZ, HiPart);
6555 Hi = DAG.getConstant(0, NVT);
6556 break;
6559 case ISD::VAARG: {
6560 SDValue Ch = Node->getOperand(0); // Legalize the chain.
6561 SDValue Ptr = Node->getOperand(1); // Legalize the pointer.
6562 Lo = DAG.getVAArg(NVT, dl, Ch, Ptr, Node->getOperand(2));
6563 Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, Node->getOperand(2));
6565 // Remember that we legalized the chain.
6566 Hi = LegalizeOp(Hi);
6567 AddLegalizedOperand(Op.getValue(1), Hi.getValue(1));
6568 if (TLI.isBigEndian())
6569 std::swap(Lo, Hi);
6570 break;
6573 case ISD::LOAD: {
6574 LoadSDNode *LD = cast<LoadSDNode>(Node);
6575 SDValue Ch = LD->getChain(); // Legalize the chain.
6576 SDValue Ptr = LD->getBasePtr(); // Legalize the pointer.
6577 ISD::LoadExtType ExtType = LD->getExtensionType();
6578 const Value *SV = LD->getSrcValue();
6579 int SVOffset = LD->getSrcValueOffset();
6580 unsigned Alignment = LD->getAlignment();
6581 bool isVolatile = LD->isVolatile();
6583 if (ExtType == ISD::NON_EXTLOAD) {
6584 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset,
6585 isVolatile, Alignment);
6586 if (VT == MVT::f32 || VT == MVT::f64) {
6587 // f32->i32 or f64->i64 one to one expansion.
6588 // Remember that we legalized the chain.
6589 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1)));
6590 // Recursively expand the new load.
6591 if (getTypeAction(NVT) == Expand)
6592 ExpandOp(Lo, Lo, Hi);
6593 break;
6596 // Increment the pointer to the other half.
6597 unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8;
6598 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
6599 DAG.getIntPtrConstant(IncrementSize));
6600 SVOffset += IncrementSize;
6601 Alignment = MinAlign(Alignment, IncrementSize);
6602 Hi = DAG.getLoad(NVT, dl, Ch, Ptr, SV, SVOffset,
6603 isVolatile, Alignment);
6605 // Build a factor node to remember that this load is independent of the
6606 // other one.
6607 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6608 Hi.getValue(1));
6610 // Remember that we legalized the chain.
6611 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF));
6612 if (TLI.isBigEndian())
6613 std::swap(Lo, Hi);
6614 } else {
6615 MVT EVT = LD->getMemoryVT();
6617 if ((VT == MVT::f64 && EVT == MVT::f32) ||
6618 (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) {
6619 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
6620 SDValue Load = DAG.getLoad(EVT, dl, Ch, Ptr, SV,
6621 SVOffset, isVolatile, Alignment);
6622 // Remember that we legalized the chain.
6623 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1)));
6624 ExpandOp(DAG.getNode(ISD::FP_EXTEND, dl, VT, Load), Lo, Hi);
6625 break;
6628 if (EVT == NVT)
6629 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, SV,
6630 SVOffset, isVolatile, Alignment);
6631 else
6632 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, SV,
6633 SVOffset, EVT, isVolatile,
6634 Alignment);
6636 // Remember that we legalized the chain.
6637 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1)));
6639 if (ExtType == ISD::SEXTLOAD) {
6640 // The high part is obtained by SRA'ing all but one of the bits of the
6641 // lo part.
6642 unsigned LoSize = Lo.getValueType().getSizeInBits();
6643 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
6644 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
6645 } else if (ExtType == ISD::ZEXTLOAD) {
6646 // The high part is just a zero.
6647 Hi = DAG.getConstant(0, NVT);
6648 } else /* if (ExtType == ISD::EXTLOAD) */ {
6649 // The high part is undefined.
6650 Hi = DAG.getUNDEF(NVT);
6653 break;
6655 case ISD::AND:
6656 case ISD::OR:
6657 case ISD::XOR: { // Simple logical operators -> two trivial pieces.
6658 SDValue LL, LH, RL, RH;
6659 ExpandOp(Node->getOperand(0), LL, LH);
6660 ExpandOp(Node->getOperand(1), RL, RH);
6661 Lo = DAG.getNode(Node->getOpcode(), dl, NVT, LL, RL);
6662 Hi = DAG.getNode(Node->getOpcode(), dl, NVT, LH, RH);
6663 break;
6665 case ISD::SELECT: {
6666 SDValue LL, LH, RL, RH;
6667 ExpandOp(Node->getOperand(1), LL, LH);
6668 ExpandOp(Node->getOperand(2), RL, RH);
6669 if (getTypeAction(NVT) == Expand)
6670 NVT = TLI.getTypeToExpandTo(NVT);
6671 Lo = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LL, RL);
6672 if (VT != MVT::f32)
6673 Hi = DAG.getNode(ISD::SELECT, dl, NVT, Node->getOperand(0), LH, RH);
6674 break;
6676 case ISD::SELECT_CC: {
6677 SDValue TL, TH, FL, FH;
6678 ExpandOp(Node->getOperand(2), TL, TH);
6679 ExpandOp(Node->getOperand(3), FL, FH);
6680 if (getTypeAction(NVT) == Expand)
6681 NVT = TLI.getTypeToExpandTo(NVT);
6682 Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0),
6683 Node->getOperand(1), TL, FL, Node->getOperand(4));
6684 if (VT != MVT::f32)
6685 Hi = DAG.getNode(ISD::SELECT_CC, dl, NVT, Node->getOperand(0),
6686 Node->getOperand(1), TH, FH, Node->getOperand(4));
6687 break;
6689 case ISD::ANY_EXTEND:
6690 // The low part is any extension of the input (which degenerates to a copy).
6691 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
6692 // The high part is undefined.
6693 Hi = DAG.getUNDEF(NVT);
6694 break;
6695 case ISD::SIGN_EXTEND: {
6696 // The low part is just a sign extension of the input (which degenerates to
6697 // a copy).
6698 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, Node->getOperand(0));
6700 // The high part is obtained by SRA'ing all but one of the bits of the lo
6701 // part.
6702 unsigned LoSize = Lo.getValueType().getSizeInBits();
6703 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
6704 DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
6705 break;
6707 case ISD::ZERO_EXTEND:
6708 // The low part is just a zero extension of the input (which degenerates to
6709 // a copy).
6710 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
6712 // The high part is just a zero.
6713 Hi = DAG.getConstant(0, NVT);
6714 break;
6716 case ISD::TRUNCATE: {
6717 // The input value must be larger than this value. Expand *it*.
6718 SDValue NewLo;
6719 ExpandOp(Node->getOperand(0), NewLo, Hi);
6721 // The low part is now either the right size, or it is closer. If not the
6722 // right size, make an illegal truncate so we recursively expand it.
6723 if (NewLo.getValueType() != Node->getValueType(0))
6724 NewLo = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), NewLo);
6725 ExpandOp(NewLo, Lo, Hi);
6726 break;
6729 case ISD::BIT_CONVERT: {
6730 SDValue Tmp;
6731 if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){
6732 // If the target wants to, allow it to lower this itself.
6733 switch (getTypeAction(Node->getOperand(0).getValueType())) {
6734 case Expand: assert(0 && "cannot expand FP!");
6735 case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break;
6736 case Promote: Tmp = PromoteOp (Node->getOperand(0)); break;
6738 Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp), DAG);
6741 // f32 / f64 must be expanded to i32 / i64.
6742 if (VT == MVT::f32 || VT == MVT::f64) {
6743 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
6744 if (getTypeAction(NVT) == Expand)
6745 ExpandOp(Lo, Lo, Hi);
6746 break;
6749 // If source operand will be expanded to the same type as VT, i.e.
6750 // i64 <- f64, i32 <- f32, expand the source operand instead.
6751 MVT VT0 = Node->getOperand(0).getValueType();
6752 if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) {
6753 ExpandOp(Node->getOperand(0), Lo, Hi);
6754 break;
6757 // Turn this into a load/store pair by default.
6758 if (Tmp.getNode() == 0)
6759 Tmp = EmitStackConvert(Node->getOperand(0), VT, VT, dl);
6761 ExpandOp(Tmp, Lo, Hi);
6762 break;
6765 case ISD::READCYCLECOUNTER: {
6766 assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) ==
6767 TargetLowering::Custom &&
6768 "Must custom expand ReadCycleCounter");
6769 SDValue Tmp = TLI.LowerOperation(Op, DAG);
6770 assert(Tmp.getNode() && "Node must be custom expanded!");
6771 ExpandOp(Tmp.getValue(0), Lo, Hi);
6772 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain.
6773 LegalizeOp(Tmp.getValue(1)));
6774 break;
6777 case ISD::ATOMIC_CMP_SWAP: {
6778 // This operation does not need a loop.
6779 SDValue Tmp = TLI.LowerOperation(Op, DAG);
6780 assert(Tmp.getNode() && "Node must be custom expanded!");
6781 ExpandOp(Tmp.getValue(0), Lo, Hi);
6782 AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain.
6783 LegalizeOp(Tmp.getValue(1)));
6784 break;
6787 case ISD::ATOMIC_LOAD_ADD:
6788 case ISD::ATOMIC_LOAD_SUB:
6789 case ISD::ATOMIC_LOAD_AND:
6790 case ISD::ATOMIC_LOAD_OR:
6791 case ISD::ATOMIC_LOAD_XOR:
6792 case ISD::ATOMIC_LOAD_NAND:
6793 case ISD::ATOMIC_SWAP: {
6794 // These operations require a loop to be generated. We can't do that yet,
6795 // so substitute a target-dependent pseudo and expand that later.
6796 SDValue In2Lo, In2Hi, In2;
6797 ExpandOp(Op.getOperand(2), In2Lo, In2Hi);
6798 In2 = DAG.getNode(ISD::BUILD_PAIR, dl, VT, In2Lo, In2Hi);
6799 AtomicSDNode* Anode = cast<AtomicSDNode>(Node);
6800 SDValue Replace =
6801 DAG.getAtomic(Op.getOpcode(), dl, Anode->getMemoryVT(),
6802 Op.getOperand(0), Op.getOperand(1), In2,
6803 Anode->getSrcValue(), Anode->getAlignment());
6804 SDValue Result = TLI.LowerOperation(Replace, DAG);
6805 ExpandOp(Result.getValue(0), Lo, Hi);
6806 // Remember that we legalized the chain.
6807 AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Result.getValue(1)));
6808 break;
6811 // These operators cannot be expanded directly, emit them as calls to
6812 // library functions.
6813 case ISD::FP_TO_SINT: {
6814 if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) {
6815 SDValue Op;
6816 switch (getTypeAction(Node->getOperand(0).getValueType())) {
6817 case Expand: assert(0 && "cannot expand FP!");
6818 case Legal: Op = LegalizeOp(Node->getOperand(0)); break;
6819 case Promote: Op = PromoteOp (Node->getOperand(0)); break;
6822 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op), DAG);
6824 // Now that the custom expander is done, expand the result, which is still
6825 // VT.
6826 if (Op.getNode()) {
6827 ExpandOp(Op, Lo, Hi);
6828 break;
6832 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(),
6833 VT);
6834 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!");
6835 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi);
6836 break;
6839 case ISD::FP_TO_UINT: {
6840 if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) {
6841 SDValue Op;
6842 switch (getTypeAction(Node->getOperand(0).getValueType())) {
6843 case Expand: assert(0 && "cannot expand FP!");
6844 case Legal: Op = LegalizeOp(Node->getOperand(0)); break;
6845 case Promote: Op = PromoteOp (Node->getOperand(0)); break;
6848 Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, dl, VT, Op), DAG);
6850 // Now that the custom expander is done, expand the result.
6851 if (Op.getNode()) {
6852 ExpandOp(Op, Lo, Hi);
6853 break;
6857 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(),
6858 VT);
6859 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
6860 Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi);
6861 break;
6864 case ISD::SHL: {
6865 // If the target wants custom lowering, do so.
6866 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1));
6867 if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) {
6868 SDValue Op = DAG.getNode(ISD::SHL, dl, VT, Node->getOperand(0), ShiftAmt);
6869 Op = TLI.LowerOperation(Op, DAG);
6870 if (Op.getNode()) {
6871 // Now that the custom expander is done, expand the result, which is
6872 // still VT.
6873 ExpandOp(Op, Lo, Hi);
6874 break;
6878 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit
6879 // this X << 1 as X+X.
6880 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) {
6881 if (ShAmt->getAPIntValue() == 1 &&
6882 TLI.isOperationLegalOrCustom(ISD::ADDC, NVT) &&
6883 TLI.isOperationLegalOrCustom(ISD::ADDE, NVT)) {
6884 SDValue LoOps[2], HiOps[3];
6885 ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]);
6886 SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag);
6887 LoOps[1] = LoOps[0];
6888 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
6890 HiOps[1] = HiOps[0];
6891 HiOps[2] = Lo.getValue(1);
6892 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
6893 break;
6897 // If we can emit an efficient shift operation, do so now.
6898 if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl))
6899 break;
6901 // If this target supports SHL_PARTS, use it.
6902 TargetLowering::LegalizeAction Action =
6903 TLI.getOperationAction(ISD::SHL_PARTS, NVT);
6904 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
6905 Action == TargetLowering::Custom) {
6906 ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0),
6907 ShiftAmt, Lo, Hi, dl);
6908 break;
6911 // Otherwise, emit a libcall.
6912 Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi);
6913 break;
6916 case ISD::SRA: {
6917 // If the target wants custom lowering, do so.
6918 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1));
6919 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) {
6920 SDValue Op = DAG.getNode(ISD::SRA, dl, VT, Node->getOperand(0), ShiftAmt);
6921 Op = TLI.LowerOperation(Op, DAG);
6922 if (Op.getNode()) {
6923 // Now that the custom expander is done, expand the result, which is
6924 // still VT.
6925 ExpandOp(Op, Lo, Hi);
6926 break;
6930 // If we can emit an efficient shift operation, do so now.
6931 if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi, dl))
6932 break;
6934 // If this target supports SRA_PARTS, use it.
6935 TargetLowering::LegalizeAction Action =
6936 TLI.getOperationAction(ISD::SRA_PARTS, NVT);
6937 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
6938 Action == TargetLowering::Custom) {
6939 ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0),
6940 ShiftAmt, Lo, Hi, dl);
6941 break;
6944 // Otherwise, emit a libcall.
6945 Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi);
6946 break;
6949 case ISD::SRL: {
6950 // If the target wants custom lowering, do so.
6951 SDValue ShiftAmt = LegalizeOp(Node->getOperand(1));
6952 if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) {
6953 SDValue Op = DAG.getNode(ISD::SRL, dl, VT, Node->getOperand(0), ShiftAmt);
6954 Op = TLI.LowerOperation(Op, DAG);
6955 if (Op.getNode()) {
6956 // Now that the custom expander is done, expand the result, which is
6957 // still VT.
6958 ExpandOp(Op, Lo, Hi);
6959 break;
6963 // If we can emit an efficient shift operation, do so now.
6964 if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi, dl))
6965 break;
6967 // If this target supports SRL_PARTS, use it.
6968 TargetLowering::LegalizeAction Action =
6969 TLI.getOperationAction(ISD::SRL_PARTS, NVT);
6970 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
6971 Action == TargetLowering::Custom) {
6972 ExpandShiftParts(ISD::SRL_PARTS,
6973 Node->getOperand(0), ShiftAmt, Lo, Hi, dl);
6974 break;
6977 // Otherwise, emit a libcall.
6978 Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi);
6979 break;
6982 case ISD::ADD:
6983 case ISD::SUB: {
6984 // If the target wants to custom expand this, let them.
6985 if (TLI.getOperationAction(Node->getOpcode(), VT) ==
6986 TargetLowering::Custom) {
6987 SDValue Result = TLI.LowerOperation(Op, DAG);
6988 if (Result.getNode()) {
6989 ExpandOp(Result, Lo, Hi);
6990 break;
6993 // Expand the subcomponents.
6994 SDValue LHSL, LHSH, RHSL, RHSH;
6995 ExpandOp(Node->getOperand(0), LHSL, LHSH);
6996 ExpandOp(Node->getOperand(1), RHSL, RHSH);
6997 SDValue LoOps[2], HiOps[3];
6998 LoOps[0] = LHSL;
6999 LoOps[1] = RHSL;
7000 HiOps[0] = LHSH;
7001 HiOps[1] = RHSH;
7003 //cascaded check to see if any smaller size has a a carry flag.
7004 unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC;
7005 bool hasCarry = false;
7006 for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) {
7007 MVT AVT = MVT::getIntegerVT(BitSize);
7008 if (TLI.isOperationLegalOrCustom(OpV, AVT)) {
7009 hasCarry = true;
7010 break;
7014 if(hasCarry) {
7015 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
7016 if (Node->getOpcode() == ISD::ADD) {
7017 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
7018 HiOps[2] = Lo.getValue(1);
7019 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
7020 } else {
7021 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
7022 HiOps[2] = Lo.getValue(1);
7023 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
7025 break;
7026 } else {
7027 if (Node->getOpcode() == ISD::ADD) {
7028 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
7029 Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
7030 SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
7031 Lo, LoOps[0], ISD::SETULT);
7032 SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1,
7033 DAG.getConstant(1, NVT),
7034 DAG.getConstant(0, NVT));
7035 SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
7036 Lo, LoOps[1], ISD::SETULT);
7037 SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2,
7038 DAG.getConstant(1, NVT),
7039 Carry1);
7040 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
7041 } else {
7042 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
7043 Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
7044 SDValue Cmp = DAG.getSetCC(dl, NVT, LoOps[0], LoOps[1], ISD::SETULT);
7045 SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp,
7046 DAG.getConstant(1, NVT),
7047 DAG.getConstant(0, NVT));
7048 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
7050 break;
7054 case ISD::ADDC:
7055 case ISD::SUBC: {
7056 // Expand the subcomponents.
7057 SDValue LHSL, LHSH, RHSL, RHSH;
7058 ExpandOp(Node->getOperand(0), LHSL, LHSH);
7059 ExpandOp(Node->getOperand(1), RHSL, RHSH);
7060 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
7061 SDValue LoOps[2] = { LHSL, RHSL };
7062 SDValue HiOps[3] = { LHSH, RHSH };
7064 if (Node->getOpcode() == ISD::ADDC) {
7065 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
7066 HiOps[2] = Lo.getValue(1);
7067 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
7068 } else {
7069 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
7070 HiOps[2] = Lo.getValue(1);
7071 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
7073 // Remember that we legalized the flag.
7074 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1)));
7075 break;
7077 case ISD::ADDE:
7078 case ISD::SUBE: {
7079 // Expand the subcomponents.
7080 SDValue LHSL, LHSH, RHSL, RHSH;
7081 ExpandOp(Node->getOperand(0), LHSL, LHSH);
7082 ExpandOp(Node->getOperand(1), RHSL, RHSH);
7083 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
7084 SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) };
7085 SDValue HiOps[3] = { LHSH, RHSH };
7087 Lo = DAG.getNode(Node->getOpcode(), dl, VTList, LoOps, 3);
7088 HiOps[2] = Lo.getValue(1);
7089 Hi = DAG.getNode(Node->getOpcode(), dl, VTList, HiOps, 3);
7091 // Remember that we legalized the flag.
7092 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1)));
7093 break;
7095 case ISD::MUL: {
7096 // If the target wants to custom expand this, let them.
7097 if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) {
7098 SDValue New = TLI.LowerOperation(Op, DAG);
7099 if (New.getNode()) {
7100 ExpandOp(New, Lo, Hi);
7101 break;
7105 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
7106 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
7107 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
7108 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
7109 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
7110 SDValue LL, LH, RL, RH;
7111 ExpandOp(Node->getOperand(0), LL, LH);
7112 ExpandOp(Node->getOperand(1), RL, RH);
7113 unsigned OuterBitSize = Op.getValueSizeInBits();
7114 unsigned InnerBitSize = RH.getValueSizeInBits();
7115 unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0));
7116 unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1));
7117 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
7118 if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) &&
7119 DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) {
7120 // The inputs are both zero-extended.
7121 if (HasUMUL_LOHI) {
7122 // We can emit a umul_lohi.
7123 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
7124 Hi = SDValue(Lo.getNode(), 1);
7125 break;
7127 if (HasMULHU) {
7128 // We can emit a mulhu+mul.
7129 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
7130 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
7131 break;
7134 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
7135 // The input values are both sign-extended.
7136 if (HasSMUL_LOHI) {
7137 // We can emit a smul_lohi.
7138 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
7139 Hi = SDValue(Lo.getNode(), 1);
7140 break;
7142 if (HasMULHS) {
7143 // We can emit a mulhs+mul.
7144 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
7145 Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
7146 break;
7149 if (HasUMUL_LOHI) {
7150 // Lo,Hi = umul LHS, RHS.
7151 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
7152 DAG.getVTList(NVT, NVT), LL, RL);
7153 Lo = UMulLOHI;
7154 Hi = UMulLOHI.getValue(1);
7155 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
7156 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
7157 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
7158 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
7159 break;
7161 if (HasMULHU) {
7162 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
7163 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
7164 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
7165 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
7166 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
7167 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
7168 break;
7172 // If nothing else, we can make a libcall.
7173 Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi);
7174 break;
7176 case ISD::SDIV:
7177 Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi);
7178 break;
7179 case ISD::UDIV:
7180 Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi);
7181 break;
7182 case ISD::SREM:
7183 Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi);
7184 break;
7185 case ISD::UREM:
7186 Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi);
7187 break;
7189 case ISD::FADD:
7190 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32,
7191 RTLIB::ADD_F64,
7192 RTLIB::ADD_F80,
7193 RTLIB::ADD_PPCF128),
7194 Node, false, Hi);
7195 break;
7196 case ISD::FSUB:
7197 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32,
7198 RTLIB::SUB_F64,
7199 RTLIB::SUB_F80,
7200 RTLIB::SUB_PPCF128),
7201 Node, false, Hi);
7202 break;
7203 case ISD::FMUL:
7204 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32,
7205 RTLIB::MUL_F64,
7206 RTLIB::MUL_F80,
7207 RTLIB::MUL_PPCF128),
7208 Node, false, Hi);
7209 break;
7210 case ISD::FDIV:
7211 Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32,
7212 RTLIB::DIV_F64,
7213 RTLIB::DIV_F80,
7214 RTLIB::DIV_PPCF128),
7215 Node, false, Hi);
7216 break;
7217 case ISD::FP_EXTEND: {
7218 if (VT == MVT::ppcf128) {
7219 assert(Node->getOperand(0).getValueType()==MVT::f32 ||
7220 Node->getOperand(0).getValueType()==MVT::f64);
7221 const uint64_t zero = 0;
7222 if (Node->getOperand(0).getValueType()==MVT::f32)
7223 Hi = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Node->getOperand(0));
7224 else
7225 Hi = Node->getOperand(0);
7226 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
7227 break;
7229 RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT);
7230 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!");
7231 Lo = ExpandLibCall(LC, Node, true, Hi);
7232 break;
7234 case ISD::FP_ROUND: {
7235 RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(),
7236 VT);
7237 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!");
7238 Lo = ExpandLibCall(LC, Node, true, Hi);
7239 break;
7241 case ISD::FSQRT:
7242 case ISD::FSIN:
7243 case ISD::FCOS:
7244 case ISD::FLOG:
7245 case ISD::FLOG2:
7246 case ISD::FLOG10:
7247 case ISD::FEXP:
7248 case ISD::FEXP2:
7249 case ISD::FTRUNC:
7250 case ISD::FFLOOR:
7251 case ISD::FCEIL:
7252 case ISD::FRINT:
7253 case ISD::FNEARBYINT:
7254 case ISD::FPOW:
7255 case ISD::FPOWI: {
7256 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7257 switch(Node->getOpcode()) {
7258 case ISD::FSQRT:
7259 LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
7260 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128);
7261 break;
7262 case ISD::FSIN:
7263 LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64,
7264 RTLIB::SIN_F80, RTLIB::SIN_PPCF128);
7265 break;
7266 case ISD::FCOS:
7267 LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64,
7268 RTLIB::COS_F80, RTLIB::COS_PPCF128);
7269 break;
7270 case ISD::FLOG:
7271 LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64,
7272 RTLIB::LOG_F80, RTLIB::LOG_PPCF128);
7273 break;
7274 case ISD::FLOG2:
7275 LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
7276 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128);
7277 break;
7278 case ISD::FLOG10:
7279 LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
7280 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128);
7281 break;
7282 case ISD::FEXP:
7283 LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64,
7284 RTLIB::EXP_F80, RTLIB::EXP_PPCF128);
7285 break;
7286 case ISD::FEXP2:
7287 LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
7288 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128);
7289 break;
7290 case ISD::FTRUNC:
7291 LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
7292 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128);
7293 break;
7294 case ISD::FFLOOR:
7295 LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
7296 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128);
7297 break;
7298 case ISD::FCEIL:
7299 LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
7300 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128);
7301 break;
7302 case ISD::FRINT:
7303 LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64,
7304 RTLIB::RINT_F80, RTLIB::RINT_PPCF128);
7305 break;
7306 case ISD::FNEARBYINT:
7307 LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64,
7308 RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128);
7309 break;
7310 case ISD::FPOW:
7311 LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
7312 RTLIB::POW_PPCF128);
7313 break;
7314 case ISD::FPOWI:
7315 LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80,
7316 RTLIB::POWI_PPCF128);
7317 break;
7318 default: assert(0 && "Unreachable!");
7320 Lo = ExpandLibCall(LC, Node, false, Hi);
7321 break;
7323 case ISD::FABS: {
7324 if (VT == MVT::ppcf128) {
7325 SDValue Tmp;
7326 ExpandOp(Node->getOperand(0), Lo, Tmp);
7327 Hi = DAG.getNode(ISD::FABS, dl, NVT, Tmp);
7328 // lo = hi==fabs(hi) ? lo : -lo;
7329 Lo = DAG.getNode(ISD::SELECT_CC, dl, NVT, Hi, Tmp,
7330 Lo, DAG.getNode(ISD::FNEG, dl, NVT, Lo),
7331 DAG.getCondCode(ISD::SETEQ));
7332 break;
7334 SDValue Mask = (VT == MVT::f64)
7335 ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT)
7336 : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT);
7337 Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask);
7338 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
7339 Lo = DAG.getNode(ISD::AND, dl, NVT, Lo, Mask);
7340 if (getTypeAction(NVT) == Expand)
7341 ExpandOp(Lo, Lo, Hi);
7342 break;
7344 case ISD::FNEG: {
7345 if (VT == MVT::ppcf128) {
7346 ExpandOp(Node->getOperand(0), Lo, Hi);
7347 Lo = DAG.getNode(ISD::FNEG, dl, MVT::f64, Lo);
7348 Hi = DAG.getNode(ISD::FNEG, dl, MVT::f64, Hi);
7349 break;
7351 SDValue Mask = (VT == MVT::f64)
7352 ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT)
7353 : DAG.getConstantFP(BitsToFloat(1U << 31), VT);
7354 Mask = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Mask);
7355 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
7356 Lo = DAG.getNode(ISD::XOR, dl, NVT, Lo, Mask);
7357 if (getTypeAction(NVT) == Expand)
7358 ExpandOp(Lo, Lo, Hi);
7359 break;
7361 case ISD::FCOPYSIGN: {
7362 Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI);
7363 if (getTypeAction(NVT) == Expand)
7364 ExpandOp(Lo, Lo, Hi);
7365 break;
7367 case ISD::SINT_TO_FP:
7368 case ISD::UINT_TO_FP: {
7369 bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP;
7370 MVT SrcVT = Node->getOperand(0).getValueType();
7372 // Promote the operand if needed. Do this before checking for
7373 // ppcf128 so conversions of i16 and i8 work.
7374 if (getTypeAction(SrcVT) == Promote) {
7375 SDValue Tmp = PromoteOp(Node->getOperand(0));
7376 Tmp = isSigned
7377 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Tmp.getValueType(), Tmp,
7378 DAG.getValueType(SrcVT))
7379 : DAG.getZeroExtendInReg(Tmp, dl, SrcVT);
7380 Node = DAG.UpdateNodeOperands(Op, Tmp).getNode();
7381 SrcVT = Node->getOperand(0).getValueType();
7384 if (VT == MVT::ppcf128 && SrcVT == MVT::i32) {
7385 static const uint64_t zero = 0;
7386 if (isSigned) {
7387 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64,
7388 Node->getOperand(0)));
7389 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
7390 } else {
7391 static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 };
7392 Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f64,
7393 Node->getOperand(0)));
7394 Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
7395 Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi);
7396 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32
7397 ExpandOp(DAG.getNode(ISD::SELECT_CC, dl,
7398 MVT::ppcf128, Node->getOperand(0),
7399 DAG.getConstant(0, MVT::i32),
7400 DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi,
7401 DAG.getConstantFP
7402 (APFloat(APInt(128, 2, TwoE32)),
7403 MVT::ppcf128)),
7405 DAG.getCondCode(ISD::SETLT)),
7406 Lo, Hi);
7408 break;
7410 if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) {
7411 // si64->ppcf128 done by libcall, below
7412 static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 };
7413 ExpandOp(DAG.getNode(ISD::SINT_TO_FP, dl, MVT::ppcf128,
7414 Node->getOperand(0)), Lo, Hi);
7415 Hi = DAG.getNode(ISD::BUILD_PAIR, dl, VT, Lo, Hi);
7416 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64
7417 ExpandOp(DAG.getNode(ISD::SELECT_CC, dl, MVT::ppcf128,
7418 Node->getOperand(0),
7419 DAG.getConstant(0, MVT::i64),
7420 DAG.getNode(ISD::FADD, dl, MVT::ppcf128, Hi,
7421 DAG.getConstantFP
7422 (APFloat(APInt(128, 2, TwoE64)),
7423 MVT::ppcf128)),
7425 DAG.getCondCode(ISD::SETLT)),
7426 Lo, Hi);
7427 break;
7430 Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT,
7431 Node->getOperand(0), dl);
7432 if (getTypeAction(Lo.getValueType()) == Expand)
7433 // float to i32 etc. can be 'expanded' to a single node.
7434 ExpandOp(Lo, Lo, Hi);
7435 break;
7439 // Make sure the resultant values have been legalized themselves, unless this
7440 // is a type that requires multi-step expansion.
7441 if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) {
7442 Lo = LegalizeOp(Lo);
7443 if (Hi.getNode())
7444 // Don't legalize the high part if it is expanded to a single node.
7445 Hi = LegalizeOp(Hi);
7448 // Remember in a map if the values will be reused later.
7449 bool isNew =
7450 ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second;
7451 assert(isNew && "Value already expanded?!?");
7452 isNew = isNew;
7455 /// SplitVectorOp - Given an operand of vector type, break it down into
7456 /// two smaller values, still of vector type.
7457 void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo,
7458 SDValue &Hi) {
7459 assert(Op.getValueType().isVector() && "Cannot split non-vector type!");
7460 SDNode *Node = Op.getNode();
7461 DebugLoc dl = Node->getDebugLoc();
7462 unsigned NumElements = Op.getValueType().getVectorNumElements();
7463 assert(NumElements > 1 && "Cannot split a single element vector!");
7465 MVT NewEltVT = Op.getValueType().getVectorElementType();
7467 unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1);
7468 unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
7470 MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
7471 MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
7473 // See if we already split it.
7474 std::map<SDValue, std::pair<SDValue, SDValue> >::iterator I
7475 = SplitNodes.find(Op);
7476 if (I != SplitNodes.end()) {
7477 Lo = I->second.first;
7478 Hi = I->second.second;
7479 return;
7482 switch (Node->getOpcode()) {
7483 default:
7484 #ifndef NDEBUG
7485 Node->dump(&DAG);
7486 #endif
7487 assert(0 && "Unhandled operation in SplitVectorOp!");
7488 case ISD::UNDEF:
7489 Lo = DAG.getUNDEF(NewVT_Lo);
7490 Hi = DAG.getUNDEF(NewVT_Hi);
7491 break;
7492 case ISD::BUILD_PAIR:
7493 Lo = Node->getOperand(0);
7494 Hi = Node->getOperand(1);
7495 break;
7496 case ISD::INSERT_VECTOR_ELT: {
7497 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
7498 SplitVectorOp(Node->getOperand(0), Lo, Hi);
7499 unsigned Index = Idx->getZExtValue();
7500 SDValue ScalarOp = Node->getOperand(1);
7501 if (Index < NewNumElts_Lo)
7502 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Lo, Lo, ScalarOp,
7503 DAG.getIntPtrConstant(Index));
7504 else
7505 Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVT_Hi, Hi, ScalarOp,
7506 DAG.getIntPtrConstant(Index - NewNumElts_Lo));
7507 break;
7509 SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0),
7510 Node->getOperand(1),
7511 Node->getOperand(2), dl);
7512 SplitVectorOp(Tmp, Lo, Hi);
7513 break;
7515 case ISD::VECTOR_SHUFFLE: {
7516 // Build the low part.
7517 SDValue Mask = Node->getOperand(2);
7518 SmallVector<SDValue, 8> Ops;
7519 MVT PtrVT = TLI.getPointerTy();
7521 // Insert all of the elements from the input that are needed. We use
7522 // buildvector of extractelement here because the input vectors will have
7523 // to be legalized, so this makes the code simpler.
7524 for (unsigned i = 0; i != NewNumElts_Lo; ++i) {
7525 SDValue IdxNode = Mask.getOperand(i);
7526 if (IdxNode.getOpcode() == ISD::UNDEF) {
7527 Ops.push_back(DAG.getUNDEF(NewEltVT));
7528 continue;
7530 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue();
7531 SDValue InVec = Node->getOperand(0);
7532 if (Idx >= NumElements) {
7533 InVec = Node->getOperand(1);
7534 Idx -= NumElements;
7536 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec,
7537 DAG.getConstant(Idx, PtrVT)));
7539 Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Lo, &Ops[0], Ops.size());
7540 Ops.clear();
7542 for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) {
7543 SDValue IdxNode = Mask.getOperand(i);
7544 if (IdxNode.getOpcode() == ISD::UNDEF) {
7545 Ops.push_back(DAG.getUNDEF(NewEltVT));
7546 continue;
7548 unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue();
7549 SDValue InVec = Node->getOperand(0);
7550 if (Idx >= NumElements) {
7551 InVec = Node->getOperand(1);
7552 Idx -= NumElements;
7554 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewEltVT, InVec,
7555 DAG.getConstant(Idx, PtrVT)));
7557 Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Hi, &Ops[0], Ops.size());
7558 break;
7560 case ISD::BUILD_VECTOR: {
7561 SmallVector<SDValue, 8> LoOps(Node->op_begin(),
7562 Node->op_begin()+NewNumElts_Lo);
7563 Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Lo, &LoOps[0], LoOps.size());
7565 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumElts_Lo,
7566 Node->op_end());
7567 Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT_Hi, &HiOps[0], HiOps.size());
7568 break;
7570 case ISD::CONCAT_VECTORS: {
7571 // FIXME: Handle non-power-of-two vectors?
7572 unsigned NewNumSubvectors = Node->getNumOperands() / 2;
7573 if (NewNumSubvectors == 1) {
7574 Lo = Node->getOperand(0);
7575 Hi = Node->getOperand(1);
7576 } else {
7577 SmallVector<SDValue, 8> LoOps(Node->op_begin(),
7578 Node->op_begin()+NewNumSubvectors);
7579 Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Lo,
7580 &LoOps[0], LoOps.size());
7582 SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumSubvectors,
7583 Node->op_end());
7584 Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT_Hi,
7585 &HiOps[0], HiOps.size());
7587 break;
7589 case ISD::EXTRACT_SUBVECTOR: {
7590 SDValue Vec = Op.getOperand(0);
7591 SDValue Idx = Op.getOperand(1);
7592 MVT IdxVT = Idx.getValueType();
7594 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Lo, Vec, Idx);
7595 ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
7596 if (CIdx) {
7597 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec,
7598 DAG.getConstant(CIdx->getZExtValue() + NewNumElts_Lo,
7599 IdxVT));
7600 } else {
7601 Idx = DAG.getNode(ISD::ADD, dl, IdxVT, Idx,
7602 DAG.getConstant(NewNumElts_Lo, IdxVT));
7603 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT_Hi, Vec, Idx);
7605 break;
7607 case ISD::SELECT: {
7608 SDValue Cond = Node->getOperand(0);
7610 SDValue LL, LH, RL, RH;
7611 SplitVectorOp(Node->getOperand(1), LL, LH);
7612 SplitVectorOp(Node->getOperand(2), RL, RH);
7614 if (Cond.getValueType().isVector()) {
7615 // Handle a vector merge.
7616 SDValue CL, CH;
7617 SplitVectorOp(Cond, CL, CH);
7618 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, CL, LL, RL);
7619 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, CH, LH, RH);
7620 } else {
7621 // Handle a simple select with vector operands.
7622 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, Cond, LL, RL);
7623 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, Cond, LH, RH);
7625 break;
7627 case ISD::SELECT_CC: {
7628 SDValue CondLHS = Node->getOperand(0);
7629 SDValue CondRHS = Node->getOperand(1);
7630 SDValue CondCode = Node->getOperand(4);
7632 SDValue LL, LH, RL, RH;
7633 SplitVectorOp(Node->getOperand(2), LL, LH);
7634 SplitVectorOp(Node->getOperand(3), RL, RH);
7636 // Handle a simple select with vector operands.
7637 Lo = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Lo, CondLHS, CondRHS,
7638 LL, RL, CondCode);
7639 Hi = DAG.getNode(ISD::SELECT_CC, dl, NewVT_Hi, CondLHS, CondRHS,
7640 LH, RH, CondCode);
7641 break;
7643 case ISD::VSETCC: {
7644 SDValue LL, LH, RL, RH;
7645 SplitVectorOp(Node->getOperand(0), LL, LH);
7646 SplitVectorOp(Node->getOperand(1), RL, RH);
7647 Lo = DAG.getNode(ISD::VSETCC, dl, NewVT_Lo, LL, RL, Node->getOperand(2));
7648 Hi = DAG.getNode(ISD::VSETCC, dl, NewVT_Hi, LH, RH, Node->getOperand(2));
7649 break;
7651 case ISD::ADD:
7652 case ISD::SUB:
7653 case ISD::MUL:
7654 case ISD::FADD:
7655 case ISD::FSUB:
7656 case ISD::FMUL:
7657 case ISD::SDIV:
7658 case ISD::UDIV:
7659 case ISD::FDIV:
7660 case ISD::FPOW:
7661 case ISD::AND:
7662 case ISD::OR:
7663 case ISD::XOR:
7664 case ISD::UREM:
7665 case ISD::SREM:
7666 case ISD::FREM:
7667 case ISD::SHL:
7668 case ISD::SRA:
7669 case ISD::SRL: {
7670 SDValue LL, LH, RL, RH;
7671 SplitVectorOp(Node->getOperand(0), LL, LH);
7672 SplitVectorOp(Node->getOperand(1), RL, RH);
7674 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, LL, RL);
7675 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, LH, RH);
7676 break;
7678 case ISD::FP_ROUND:
7679 case ISD::FPOWI: {
7680 SDValue L, H;
7681 SplitVectorOp(Node->getOperand(0), L, H);
7683 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L, Node->getOperand(1));
7684 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H, Node->getOperand(1));
7685 break;
7687 case ISD::CTTZ:
7688 case ISD::CTLZ:
7689 case ISD::CTPOP:
7690 case ISD::FNEG:
7691 case ISD::FABS:
7692 case ISD::FSQRT:
7693 case ISD::FSIN:
7694 case ISD::FCOS:
7695 case ISD::FLOG:
7696 case ISD::FLOG2:
7697 case ISD::FLOG10:
7698 case ISD::FEXP:
7699 case ISD::FEXP2:
7700 case ISD::FP_TO_SINT:
7701 case ISD::FP_TO_UINT:
7702 case ISD::SINT_TO_FP:
7703 case ISD::UINT_TO_FP:
7704 case ISD::TRUNCATE:
7705 case ISD::ANY_EXTEND:
7706 case ISD::SIGN_EXTEND:
7707 case ISD::ZERO_EXTEND:
7708 case ISD::FP_EXTEND: {
7709 SDValue L, H;
7710 SplitVectorOp(Node->getOperand(0), L, H);
7712 Lo = DAG.getNode(Node->getOpcode(), dl, NewVT_Lo, L);
7713 Hi = DAG.getNode(Node->getOpcode(), dl, NewVT_Hi, H);
7714 break;
7716 case ISD::CONVERT_RNDSAT: {
7717 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode();
7718 SDValue L, H;
7719 SplitVectorOp(Node->getOperand(0), L, H);
7720 SDValue DTyOpL = DAG.getValueType(NewVT_Lo);
7721 SDValue DTyOpH = DAG.getValueType(NewVT_Hi);
7722 SDValue STyOpL = DAG.getValueType(L.getValueType());
7723 SDValue STyOpH = DAG.getValueType(H.getValueType());
7725 SDValue RndOp = Node->getOperand(3);
7726 SDValue SatOp = Node->getOperand(4);
7728 Lo = DAG.getConvertRndSat(NewVT_Lo, dl, L, DTyOpL, STyOpL,
7729 RndOp, SatOp, CvtCode);
7730 Hi = DAG.getConvertRndSat(NewVT_Hi, dl, H, DTyOpH, STyOpH,
7731 RndOp, SatOp, CvtCode);
7732 break;
7734 case ISD::LOAD: {
7735 LoadSDNode *LD = cast<LoadSDNode>(Node);
7736 SDValue Ch = LD->getChain();
7737 SDValue Ptr = LD->getBasePtr();
7738 ISD::LoadExtType ExtType = LD->getExtensionType();
7739 const Value *SV = LD->getSrcValue();
7740 int SVOffset = LD->getSrcValueOffset();
7741 MVT MemoryVT = LD->getMemoryVT();
7742 unsigned Alignment = LD->getAlignment();
7743 bool isVolatile = LD->isVolatile();
7745 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!");
7746 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7748 MVT MemNewEltVT = MemoryVT.getVectorElementType();
7749 MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo);
7750 MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi);
7752 Lo = DAG.getLoad(ISD::UNINDEXED, dl, ExtType,
7753 NewVT_Lo, Ch, Ptr, Offset,
7754 SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment);
7755 unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8;
7756 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
7757 DAG.getIntPtrConstant(IncrementSize));
7758 SVOffset += IncrementSize;
7759 Alignment = MinAlign(Alignment, IncrementSize);
7760 Hi = DAG.getLoad(ISD::UNINDEXED, dl, ExtType,
7761 NewVT_Hi, Ch, Ptr, Offset,
7762 SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment);
7764 // Build a factor node to remember that this load is independent of the
7765 // other one.
7766 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7767 Hi.getValue(1));
7769 // Remember that we legalized the chain.
7770 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF));
7771 break;
7773 case ISD::BIT_CONVERT: {
7774 // We know the result is a vector. The input may be either a vector or a
7775 // scalar value.
7776 SDValue InOp = Node->getOperand(0);
7777 if (!InOp.getValueType().isVector() ||
7778 InOp.getValueType().getVectorNumElements() == 1) {
7779 // The input is a scalar or single-element vector.
7780 // Lower to a store/load so that it can be split.
7781 // FIXME: this could be improved probably.
7782 unsigned LdAlign = TLI.getTargetData()->
7783 getPrefTypeAlignment(Op.getValueType().getTypeForMVT());
7784 SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign);
7785 int FI = cast<FrameIndexSDNode>(Ptr.getNode())->getIndex();
7787 SDValue St = DAG.getStore(DAG.getEntryNode(), dl,
7788 InOp, Ptr,
7789 PseudoSourceValue::getFixedStack(FI), 0);
7790 InOp = DAG.getLoad(Op.getValueType(), dl, St, Ptr,
7791 PseudoSourceValue::getFixedStack(FI), 0);
7793 // Split the vector and convert each of the pieces now.
7794 SplitVectorOp(InOp, Lo, Hi);
7795 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Lo, Lo);
7796 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT_Hi, Hi);
7797 break;
7801 // Remember in a map if the values will be reused later.
7802 bool isNew =
7803 SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second;
7804 assert(isNew && "Value already split?!?");
7805 isNew = isNew;
7809 /// ScalarizeVectorOp - Given an operand of single-element vector type
7810 /// (e.g. v1f32), convert it into the equivalent operation that returns a
7811 /// scalar (e.g. f32) value.
7812 SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) {
7813 assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!");
7814 SDNode *Node = Op.getNode();
7815 DebugLoc dl = Node->getDebugLoc();
7816 MVT NewVT = Op.getValueType().getVectorElementType();
7817 assert(Op.getValueType().getVectorNumElements() == 1);
7819 // See if we already scalarized it.
7820 std::map<SDValue, SDValue>::iterator I = ScalarizedNodes.find(Op);
7821 if (I != ScalarizedNodes.end()) return I->second;
7823 SDValue Result;
7824 switch (Node->getOpcode()) {
7825 default:
7826 #ifndef NDEBUG
7827 Node->dump(&DAG); cerr << "\n";
7828 #endif
7829 assert(0 && "Unknown vector operation in ScalarizeVectorOp!");
7830 case ISD::ADD:
7831 case ISD::FADD:
7832 case ISD::SUB:
7833 case ISD::FSUB:
7834 case ISD::MUL:
7835 case ISD::FMUL:
7836 case ISD::SDIV:
7837 case ISD::UDIV:
7838 case ISD::FDIV:
7839 case ISD::SREM:
7840 case ISD::UREM:
7841 case ISD::FREM:
7842 case ISD::FPOW:
7843 case ISD::AND:
7844 case ISD::OR:
7845 case ISD::XOR:
7846 Result = DAG.getNode(Node->getOpcode(), dl,
7847 NewVT,
7848 ScalarizeVectorOp(Node->getOperand(0)),
7849 ScalarizeVectorOp(Node->getOperand(1)));
7850 break;
7851 case ISD::FNEG:
7852 case ISD::FABS:
7853 case ISD::FSQRT:
7854 case ISD::FSIN:
7855 case ISD::FCOS:
7856 case ISD::FLOG:
7857 case ISD::FLOG2:
7858 case ISD::FLOG10:
7859 case ISD::FEXP:
7860 case ISD::FEXP2:
7861 case ISD::FP_TO_SINT:
7862 case ISD::FP_TO_UINT:
7863 case ISD::SINT_TO_FP:
7864 case ISD::UINT_TO_FP:
7865 case ISD::SIGN_EXTEND:
7866 case ISD::ZERO_EXTEND:
7867 case ISD::ANY_EXTEND:
7868 case ISD::TRUNCATE:
7869 case ISD::FP_EXTEND:
7870 Result = DAG.getNode(Node->getOpcode(), dl,
7871 NewVT,
7872 ScalarizeVectorOp(Node->getOperand(0)));
7873 break;
7874 case ISD::CONVERT_RNDSAT: {
7875 SDValue Op0 = ScalarizeVectorOp(Node->getOperand(0));
7876 Result = DAG.getConvertRndSat(NewVT, dl, Op0,
7877 DAG.getValueType(NewVT),
7878 DAG.getValueType(Op0.getValueType()),
7879 Node->getOperand(3),
7880 Node->getOperand(4),
7881 cast<CvtRndSatSDNode>(Node)->getCvtCode());
7882 break;
7884 case ISD::FPOWI:
7885 case ISD::FP_ROUND:
7886 Result = DAG.getNode(Node->getOpcode(), dl,
7887 NewVT,
7888 ScalarizeVectorOp(Node->getOperand(0)),
7889 Node->getOperand(1));
7890 break;
7891 case ISD::LOAD: {
7892 LoadSDNode *LD = cast<LoadSDNode>(Node);
7893 SDValue Ch = LegalizeOp(LD->getChain()); // Legalize the chain.
7894 SDValue Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer.
7895 ISD::LoadExtType ExtType = LD->getExtensionType();
7896 const Value *SV = LD->getSrcValue();
7897 int SVOffset = LD->getSrcValueOffset();
7898 MVT MemoryVT = LD->getMemoryVT();
7899 unsigned Alignment = LD->getAlignment();
7900 bool isVolatile = LD->isVolatile();
7902 assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!");
7903 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7905 Result = DAG.getLoad(ISD::UNINDEXED, dl, ExtType,
7906 NewVT, Ch, Ptr, Offset, SV, SVOffset,
7907 MemoryVT.getVectorElementType(),
7908 isVolatile, Alignment);
7910 // Remember that we legalized the chain.
7911 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
7912 break;
7914 case ISD::BUILD_VECTOR:
7915 Result = Node->getOperand(0);
7916 break;
7917 case ISD::INSERT_VECTOR_ELT:
7918 // Returning the inserted scalar element.
7919 Result = Node->getOperand(1);
7920 break;
7921 case ISD::CONCAT_VECTORS:
7922 assert(Node->getOperand(0).getValueType() == NewVT &&
7923 "Concat of non-legal vectors not yet supported!");
7924 Result = Node->getOperand(0);
7925 break;
7926 case ISD::VECTOR_SHUFFLE: {
7927 // Figure out if the scalar is the LHS or RHS and return it.
7928 SDValue EltNum = Node->getOperand(2).getOperand(0);
7929 if (cast<ConstantSDNode>(EltNum)->getZExtValue())
7930 Result = ScalarizeVectorOp(Node->getOperand(1));
7931 else
7932 Result = ScalarizeVectorOp(Node->getOperand(0));
7933 break;
7935 case ISD::EXTRACT_SUBVECTOR:
7936 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT,
7937 Node->getOperand(0), Node->getOperand(1));
7938 break;
7939 case ISD::BIT_CONVERT: {
7940 SDValue Op0 = Op.getOperand(0);
7941 if (Op0.getValueType().getVectorNumElements() == 1)
7942 Op0 = ScalarizeVectorOp(Op0);
7943 Result = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, Op0);
7944 break;
7946 case ISD::SELECT:
7947 Result = DAG.getNode(ISD::SELECT, dl, NewVT, Op.getOperand(0),
7948 ScalarizeVectorOp(Op.getOperand(1)),
7949 ScalarizeVectorOp(Op.getOperand(2)));
7950 break;
7951 case ISD::SELECT_CC:
7952 Result = DAG.getNode(ISD::SELECT_CC, dl, NewVT, Node->getOperand(0),
7953 Node->getOperand(1),
7954 ScalarizeVectorOp(Op.getOperand(2)),
7955 ScalarizeVectorOp(Op.getOperand(3)),
7956 Node->getOperand(4));
7957 break;
7958 case ISD::VSETCC: {
7959 SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0));
7960 SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1));
7961 Result = DAG.getNode(ISD::SETCC, dl,
7962 TLI.getSetCCResultType(Op0.getValueType()),
7963 Op0, Op1, Op.getOperand(2));
7964 Result = DAG.getNode(ISD::SELECT, dl, NewVT, Result,
7965 DAG.getConstant(-1ULL, NewVT),
7966 DAG.getConstant(0ULL, NewVT));
7967 break;
7971 if (TLI.isTypeLegal(NewVT))
7972 Result = LegalizeOp(Result);
7973 bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second;
7974 assert(isNew && "Value already scalarized?");
7975 isNew = isNew;
7976 return Result;
7980 SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) {
7981 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op);
7982 if (I != WidenNodes.end()) return I->second;
7984 MVT VT = Op.getValueType();
7985 assert(VT.isVector() && "Cannot widen non-vector type!");
7987 SDValue Result;
7988 SDNode *Node = Op.getNode();
7989 DebugLoc dl = Node->getDebugLoc();
7990 MVT EVT = VT.getVectorElementType();
7992 unsigned NumElts = VT.getVectorNumElements();
7993 unsigned NewNumElts = WidenVT.getVectorNumElements();
7994 assert(NewNumElts > NumElts && "Cannot widen to smaller type!");
7995 assert(NewNumElts < 17);
7997 // When widen is called, it is assumed that it is more efficient to use a
7998 // wide type. The default action is to widen to operation to a wider legal
7999 // vector type and then do the operation if it is legal by calling LegalizeOp
8000 // again. If there is no vector equivalent, we will unroll the operation, do
8001 // it, and rebuild the vector. If most of the operations are vectorizible to
8002 // the legal type, the resulting code will be more efficient. If this is not
8003 // the case, the resulting code will preform badly as we end up generating
8004 // code to pack/unpack the results. It is the function that calls widen
8005 // that is responsible for seeing this doesn't happen.
8006 switch (Node->getOpcode()) {
8007 default:
8008 #ifndef NDEBUG
8009 Node->dump(&DAG);
8010 #endif
8011 assert(0 && "Unexpected operation in WidenVectorOp!");
8012 break;
8013 case ISD::CopyFromReg:
8014 assert(0 && "CopyFromReg doesn't need widening!");
8015 case ISD::Constant:
8016 case ISD::ConstantFP:
8017 // To build a vector of these elements, clients should call BuildVector
8018 // and with each element instead of creating a node with a vector type
8019 assert(0 && "Unexpected operation in WidenVectorOp!");
8020 case ISD::VAARG:
8021 // Variable Arguments with vector types doesn't make any sense to me
8022 assert(0 && "Unexpected operation in WidenVectorOp!");
8023 break;
8024 case ISD::UNDEF:
8025 Result = DAG.getUNDEF(WidenVT);
8026 break;
8027 case ISD::BUILD_VECTOR: {
8028 // Build a vector with undefined for the new nodes
8029 SDValueVector NewOps(Node->op_begin(), Node->op_end());
8030 for (unsigned i = NumElts; i < NewNumElts; ++i) {
8031 NewOps.push_back(DAG.getUNDEF(EVT));
8033 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT,
8034 &NewOps[0], NewOps.size());
8035 break;
8037 case ISD::INSERT_VECTOR_ELT: {
8038 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
8039 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, WidenVT, Tmp1,
8040 Node->getOperand(1), Node->getOperand(2));
8041 break;
8043 case ISD::VECTOR_SHUFFLE: {
8044 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
8045 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT);
8046 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Node);
8047 SmallVector<int, 8> NewMask;
8048 for (unsigned i = 0; i < NumElts; ++i) {
8049 int Idx = SVOp->getMaskElt(i);
8050 if (Idx < (int)NumElts)
8051 NewMask.push_back(Idx);
8052 else
8053 NewMask.push_back(Idx + NewNumElts - NumElts);
8055 for (unsigned i = NumElts; i < NewNumElts; ++i)
8056 NewMask.push_back(-1);
8058 Result = DAG.getVectorShuffle(WidenVT, dl, Tmp1, Tmp2, &NewMask[0]);
8059 break;
8061 case ISD::LOAD: {
8062 // If the load widen returns true, we can use a single load for the
8063 // vector. Otherwise, it is returning a token factor for multiple
8064 // loads.
8065 SDValue TFOp;
8066 if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT))
8067 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1)));
8068 else
8069 AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0)));
8070 break;
8073 case ISD::BIT_CONVERT: {
8074 SDValue Tmp1 = Node->getOperand(0);
8075 // Converts between two different types so we need to determine
8076 // the correct widen type for the input operand.
8077 MVT InVT = Tmp1.getValueType();
8078 unsigned WidenSize = WidenVT.getSizeInBits();
8079 if (InVT.isVector()) {
8080 MVT InEltVT = InVT.getVectorElementType();
8081 unsigned InEltSize = InEltVT.getSizeInBits();
8082 assert(WidenSize % InEltSize == 0 &&
8083 "can not widen bit convert that are not multiple of element type");
8084 MVT NewInWidenVT = MVT::getVectorVT(InEltVT, WidenSize / InEltSize);
8085 Tmp1 = WidenVectorOp(Tmp1, NewInWidenVT);
8086 assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits());
8087 Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Tmp1);
8088 } else {
8089 // If the result size is a multiple of the input size, widen the input
8090 // and then convert.
8091 unsigned InSize = InVT.getSizeInBits();
8092 assert(WidenSize % InSize == 0 &&
8093 "can not widen bit convert that are not multiple of element type");
8094 unsigned NewNumElts = WidenSize / InSize;
8095 SmallVector<SDValue, 16> Ops(NewNumElts);
8096 SDValue UndefVal = DAG.getUNDEF(InVT);
8097 Ops[0] = Tmp1;
8098 for (unsigned i = 1; i < NewNumElts; ++i)
8099 Ops[i] = UndefVal;
8101 MVT NewInVT = MVT::getVectorVT(InVT, NewNumElts);
8102 Result = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, &Ops[0], NewNumElts);
8103 Result = DAG.getNode(ISD::BIT_CONVERT, dl, WidenVT, Result);
8105 break;
8108 case ISD::SINT_TO_FP:
8109 case ISD::UINT_TO_FP:
8110 case ISD::FP_TO_SINT:
8111 case ISD::FP_TO_UINT:
8112 case ISD::FP_ROUND: {
8113 SDValue Tmp1 = Node->getOperand(0);
8114 // Converts between two different types so we need to determine
8115 // the correct widen type for the input operand.
8116 MVT TVT = Tmp1.getValueType();
8117 assert(TVT.isVector() && "can not widen non vector type");
8118 MVT TEVT = TVT.getVectorElementType();
8119 MVT TWidenVT = MVT::getVectorVT(TEVT, NewNumElts);
8120 Tmp1 = WidenVectorOp(Tmp1, TWidenVT);
8121 assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts);
8122 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1);
8123 break;
8126 case ISD::FP_EXTEND:
8127 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
8128 case ISD::TRUNCATE:
8129 case ISD::SIGN_EXTEND:
8130 case ISD::ZERO_EXTEND:
8131 case ISD::ANY_EXTEND:
8132 case ISD::SIGN_EXTEND_INREG:
8133 case ISD::FABS:
8134 case ISD::FNEG:
8135 case ISD::FSQRT:
8136 case ISD::FSIN:
8137 case ISD::FCOS:
8138 case ISD::CTPOP:
8139 case ISD::CTTZ:
8140 case ISD::CTLZ: {
8141 // Unary op widening
8142 SDValue Tmp1;
8143 Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
8144 assert(Tmp1.getValueType() == WidenVT);
8145 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1);
8146 break;
8148 case ISD::CONVERT_RNDSAT: {
8149 SDValue RndOp = Node->getOperand(3);
8150 SDValue SatOp = Node->getOperand(4);
8151 SDValue SrcOp = Node->getOperand(0);
8153 // Converts between two different types so we need to determine
8154 // the correct widen type for the input operand.
8155 MVT SVT = SrcOp.getValueType();
8156 assert(SVT.isVector() && "can not widen non vector type");
8157 MVT SEVT = SVT.getVectorElementType();
8158 MVT SWidenVT = MVT::getVectorVT(SEVT, NewNumElts);
8160 SrcOp = WidenVectorOp(SrcOp, SWidenVT);
8161 assert(SrcOp.getValueType() == WidenVT);
8162 SDValue DTyOp = DAG.getValueType(WidenVT);
8163 SDValue STyOp = DAG.getValueType(SrcOp.getValueType());
8164 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode();
8166 Result = DAG.getConvertRndSat(WidenVT, dl, SrcOp, DTyOp, STyOp,
8167 RndOp, SatOp, CvtCode);
8168 break;
8170 case ISD::FPOW:
8171 case ISD::FPOWI:
8172 case ISD::ADD:
8173 case ISD::SUB:
8174 case ISD::MUL:
8175 case ISD::MULHS:
8176 case ISD::MULHU:
8177 case ISD::AND:
8178 case ISD::OR:
8179 case ISD::XOR:
8180 case ISD::FADD:
8181 case ISD::FSUB:
8182 case ISD::FMUL:
8183 case ISD::SDIV:
8184 case ISD::SREM:
8185 case ISD::FDIV:
8186 case ISD::FREM:
8187 case ISD::FCOPYSIGN:
8188 case ISD::UDIV:
8189 case ISD::UREM:
8190 case ISD::BSWAP: {
8191 // Binary op widening
8192 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
8193 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT);
8194 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT);
8195 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2);
8196 break;
8199 case ISD::SHL:
8200 case ISD::SRA:
8201 case ISD::SRL: {
8202 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
8203 assert(Tmp1.getValueType() == WidenVT);
8204 SDValue ShOp = Node->getOperand(1);
8205 MVT ShVT = ShOp.getValueType();
8206 MVT NewShVT = MVT::getVectorVT(ShVT.getVectorElementType(),
8207 WidenVT.getVectorNumElements());
8208 ShOp = WidenVectorOp(ShOp, NewShVT);
8209 assert(ShOp.getValueType() == NewShVT);
8210 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, ShOp);
8211 break;
8214 case ISD::EXTRACT_VECTOR_ELT: {
8215 SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
8216 assert(Tmp1.getValueType() == WidenVT);
8217 Result = DAG.getNode(Node->getOpcode(), dl, EVT, Tmp1, Node->getOperand(1));
8218 break;
8220 case ISD::CONCAT_VECTORS: {
8221 // We concurrently support only widen on a multiple of the incoming vector.
8222 // We could widen on a multiple of the incoming operand if necessary.
8223 unsigned NumConcat = NewNumElts / NumElts;
8224 assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector");
8225 SDValue UndefVal = DAG.getUNDEF(VT);
8226 SmallVector<SDValue, 8> MOps;
8227 MOps.push_back(Op);
8228 for (unsigned i = 1; i != NumConcat; ++i) {
8229 MOps.push_back(UndefVal);
8231 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
8232 &MOps[0], MOps.size()));
8233 break;
8235 case ISD::EXTRACT_SUBVECTOR: {
8236 SDValue Tmp1 = Node->getOperand(0);
8237 SDValue Idx = Node->getOperand(1);
8238 ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
8239 if (CIdx && CIdx->getZExtValue() == 0) {
8240 // Since we are access the start of the vector, the incoming
8241 // vector type might be the proper.
8242 MVT Tmp1VT = Tmp1.getValueType();
8243 if (Tmp1VT == WidenVT)
8244 return Tmp1;
8245 else {
8246 unsigned Tmp1VTNumElts = Tmp1VT.getVectorNumElements();
8247 if (Tmp1VTNumElts < NewNumElts)
8248 Result = WidenVectorOp(Tmp1, WidenVT);
8249 else
8250 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, Tmp1, Idx);
8252 } else if (NewNumElts % NumElts == 0) {
8253 // Widen the extracted subvector.
8254 unsigned NumConcat = NewNumElts / NumElts;
8255 SDValue UndefVal = DAG.getUNDEF(VT);
8256 SmallVector<SDValue, 8> MOps;
8257 MOps.push_back(Op);
8258 for (unsigned i = 1; i != NumConcat; ++i) {
8259 MOps.push_back(UndefVal);
8261 Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
8262 &MOps[0], MOps.size()));
8263 } else {
8264 assert(0 && "can not widen extract subvector");
8265 // This could be implemented using insert and build vector but I would
8266 // like to see when this happens.
8268 break;
8271 case ISD::SELECT: {
8272 // Determine new condition widen type and widen
8273 SDValue Cond1 = Node->getOperand(0);
8274 MVT CondVT = Cond1.getValueType();
8275 assert(CondVT.isVector() && "can not widen non vector type");
8276 MVT CondEVT = CondVT.getVectorElementType();
8277 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts);
8278 Cond1 = WidenVectorOp(Cond1, CondWidenVT);
8279 assert(Cond1.getValueType() == CondWidenVT && "Condition not widen");
8281 SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT);
8282 SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT);
8283 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT);
8284 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Tmp1, Tmp2);
8285 break;
8288 case ISD::SELECT_CC: {
8289 // Determine new condition widen type and widen
8290 SDValue Cond1 = Node->getOperand(0);
8291 SDValue Cond2 = Node->getOperand(1);
8292 MVT CondVT = Cond1.getValueType();
8293 assert(CondVT.isVector() && "can not widen non vector type");
8294 assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs");
8295 MVT CondEVT = CondVT.getVectorElementType();
8296 MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts);
8297 Cond1 = WidenVectorOp(Cond1, CondWidenVT);
8298 Cond2 = WidenVectorOp(Cond2, CondWidenVT);
8299 assert(Cond1.getValueType() == CondWidenVT &&
8300 Cond2.getValueType() == CondWidenVT && "condition not widen");
8302 SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT);
8303 SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT);
8304 assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT &&
8305 "operands not widen");
8306 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Cond1, Cond2, Tmp1,
8307 Tmp2, Node->getOperand(4));
8308 break;
8310 case ISD::VSETCC: {
8311 // Determine widen for the operand
8312 SDValue Tmp1 = Node->getOperand(0);
8313 MVT TmpVT = Tmp1.getValueType();
8314 assert(TmpVT.isVector() && "can not widen non vector type");
8315 MVT TmpEVT = TmpVT.getVectorElementType();
8316 MVT TmpWidenVT = MVT::getVectorVT(TmpEVT, NewNumElts);
8317 Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT);
8318 SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT);
8319 Result = DAG.getNode(Node->getOpcode(), dl, WidenVT, Tmp1, Tmp2,
8320 Node->getOperand(2));
8321 break;
8323 case ISD::ATOMIC_CMP_SWAP:
8324 case ISD::ATOMIC_LOAD_ADD:
8325 case ISD::ATOMIC_LOAD_SUB:
8326 case ISD::ATOMIC_LOAD_AND:
8327 case ISD::ATOMIC_LOAD_OR:
8328 case ISD::ATOMIC_LOAD_XOR:
8329 case ISD::ATOMIC_LOAD_NAND:
8330 case ISD::ATOMIC_LOAD_MIN:
8331 case ISD::ATOMIC_LOAD_MAX:
8332 case ISD::ATOMIC_LOAD_UMIN:
8333 case ISD::ATOMIC_LOAD_UMAX:
8334 case ISD::ATOMIC_SWAP: {
8335 // For now, we assume that using vectors for these operations don't make
8336 // much sense so we just split it. We return an empty result
8337 SDValue X, Y;
8338 SplitVectorOp(Op, X, Y);
8339 return Result;
8340 break;
8343 } // end switch (Node->getOpcode())
8345 assert(Result.getNode() && "Didn't set a result!");
8346 if (Result != Op)
8347 Result = LegalizeOp(Result);
8349 AddWidenedOperand(Op, Result);
8350 return Result;
8353 // Utility function to find a legal vector type and its associated element
8354 // type from a preferred width and whose vector type must be the same size
8355 // as the VVT.
8356 // TLI: Target lowering used to determine legal types
8357 // Width: Preferred width of element type
8358 // VVT: Vector value type whose size we must match.
8359 // Returns VecEVT and EVT - the vector type and its associated element type
8360 static void FindWidenVecType(const TargetLowering &TLI, unsigned Width, MVT VVT,
8361 MVT& EVT, MVT& VecEVT) {
8362 // We start with the preferred width, make it a power of 2 and see if
8363 // we can find a vector type of that width. If not, we reduce it by
8364 // another power of 2. If we have widen the type, a vector of bytes should
8365 // always be legal.
8366 assert(TLI.isTypeLegal(VVT));
8367 unsigned EWidth = Width + 1;
8368 do {
8369 assert(EWidth > 0);
8370 EWidth = (1 << Log2_32(EWidth-1));
8371 EVT = MVT::getIntegerVT(EWidth);
8372 unsigned NumEVT = VVT.getSizeInBits()/EWidth;
8373 VecEVT = MVT::getVectorVT(EVT, NumEVT);
8374 } while (!TLI.isTypeLegal(VecEVT) ||
8375 VVT.getSizeInBits() != VecEVT.getSizeInBits());
8378 SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain,
8379 SDValue Chain,
8380 SDValue BasePtr,
8381 const Value *SV,
8382 int SVOffset,
8383 unsigned Alignment,
8384 bool isVolatile,
8385 unsigned LdWidth,
8386 MVT ResType,
8387 DebugLoc dl) {
8388 // We assume that we have good rules to handle loading power of two loads so
8389 // we break down the operations to power of 2 loads. The strategy is to
8390 // load the largest power of 2 that we can easily transform to a legal vector
8391 // and then insert into that vector, and the cast the result into the legal
8392 // vector that we want. This avoids unnecessary stack converts.
8393 // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
8394 // the load is nonvolatile, we an use a wider load for the value.
8395 // Find a vector length we can load a large chunk
8396 MVT EVT, VecEVT;
8397 unsigned EVTWidth;
8398 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT);
8399 EVTWidth = EVT.getSizeInBits();
8401 SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV, SVOffset,
8402 isVolatile, Alignment);
8403 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecEVT, LdOp);
8404 LdChain.push_back(LdOp.getValue(1));
8406 // Check if we can load the element with one instruction
8407 if (LdWidth == EVTWidth) {
8408 return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
8411 // The vector element order is endianness dependent.
8412 unsigned Idx = 1;
8413 LdWidth -= EVTWidth;
8414 unsigned Offset = 0;
8416 while (LdWidth > 0) {
8417 unsigned Increment = EVTWidth / 8;
8418 Offset += Increment;
8419 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8420 DAG.getIntPtrConstant(Increment));
8422 if (LdWidth < EVTWidth) {
8423 // Our current type we are using is too large, use a smaller size by
8424 // using a smaller power of 2
8425 unsigned oEVTWidth = EVTWidth;
8426 FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT);
8427 EVTWidth = EVT.getSizeInBits();
8428 // Readjust position and vector position based on new load type
8429 Idx = Idx * (oEVTWidth/EVTWidth);
8430 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp);
8433 SDValue LdOp = DAG.getLoad(EVT, dl, Chain, BasePtr, SV,
8434 SVOffset+Offset, isVolatile,
8435 MinAlign(Alignment, Offset));
8436 LdChain.push_back(LdOp.getValue(1));
8437 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecEVT, VecOp, LdOp,
8438 DAG.getIntPtrConstant(Idx++));
8440 LdWidth -= EVTWidth;
8443 return DAG.getNode(ISD::BIT_CONVERT, dl, ResType, VecOp);
8446 bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result,
8447 SDValue& TFOp,
8448 SDValue Op,
8449 MVT NVT) {
8450 // TODO: Add support for ConcatVec and the ability to load many vector
8451 // types (e.g., v4i8). This will not work when a vector register
8452 // to memory mapping is strange (e.g., vector elements are not
8453 // stored in some sequential order).
8455 // It must be true that the widen vector type is bigger than where
8456 // we need to load from.
8457 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
8458 MVT LdVT = LD->getMemoryVT();
8459 DebugLoc dl = LD->getDebugLoc();
8460 assert(LdVT.isVector() && NVT.isVector());
8461 assert(LdVT.getVectorElementType() == NVT.getVectorElementType());
8463 // Load information
8464 SDValue Chain = LD->getChain();
8465 SDValue BasePtr = LD->getBasePtr();
8466 int SVOffset = LD->getSrcValueOffset();
8467 unsigned Alignment = LD->getAlignment();
8468 bool isVolatile = LD->isVolatile();
8469 const Value *SV = LD->getSrcValue();
8470 unsigned int LdWidth = LdVT.getSizeInBits();
8472 // Load value as a large register
8473 SDValueVector LdChain;
8474 Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
8475 Alignment, isVolatile, LdWidth, NVT, dl);
8477 if (LdChain.size() == 1) {
8478 TFOp = LdChain[0];
8479 return true;
8481 else {
8482 TFOp=DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8483 &LdChain[0], LdChain.size());
8484 return false;
8489 void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain,
8490 SDValue Chain,
8491 SDValue BasePtr,
8492 const Value *SV,
8493 int SVOffset,
8494 unsigned Alignment,
8495 bool isVolatile,
8496 SDValue ValOp,
8497 unsigned StWidth,
8498 DebugLoc dl) {
8499 // Breaks the stores into a series of power of 2 width stores. For any
8500 // width, we convert the vector to the vector of element size that we
8501 // want to store. This avoids requiring a stack convert.
8503 // Find a width of the element type we can store with
8504 MVT VVT = ValOp.getValueType();
8505 MVT EVT, VecEVT;
8506 unsigned EVTWidth;
8507 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT);
8508 EVTWidth = EVT.getSizeInBits();
8510 SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, ValOp);
8511 SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp,
8512 DAG.getIntPtrConstant(0));
8513 SDValue StOp = DAG.getStore(Chain, dl, EOp, BasePtr, SV, SVOffset,
8514 isVolatile, Alignment);
8515 StChain.push_back(StOp);
8517 // Check if we are done
8518 if (StWidth == EVTWidth) {
8519 return;
8522 unsigned Idx = 1;
8523 StWidth -= EVTWidth;
8524 unsigned Offset = 0;
8526 while (StWidth > 0) {
8527 unsigned Increment = EVTWidth / 8;
8528 Offset += Increment;
8529 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
8530 DAG.getIntPtrConstant(Increment));
8532 if (StWidth < EVTWidth) {
8533 // Our current type we are using is too large, use a smaller size by
8534 // using a smaller power of 2
8535 unsigned oEVTWidth = EVTWidth;
8536 FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT);
8537 EVTWidth = EVT.getSizeInBits();
8538 // Readjust position and vector position based on new load type
8539 Idx = Idx * (oEVTWidth/EVTWidth);
8540 VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, VecEVT, VecOp);
8543 EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EVT, VecOp,
8544 DAG.getIntPtrConstant(Idx++));
8545 StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, SV,
8546 SVOffset + Offset, isVolatile,
8547 MinAlign(Alignment, Offset)));
8548 StWidth -= EVTWidth;
8553 SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST,
8554 SDValue Chain,
8555 SDValue BasePtr) {
8556 // TODO: It might be cleaner if we can use SplitVector and have more legal
8557 // vector types that can be stored into memory (e.g., v4xi8 can
8558 // be stored as a word). This will not work when a vector register
8559 // to memory mapping is strange (e.g., vector elements are not
8560 // stored in some sequential order).
8562 MVT StVT = ST->getMemoryVT();
8563 SDValue ValOp = ST->getValue();
8564 DebugLoc dl = ST->getDebugLoc();
8566 // Check if we have widen this node with another value
8567 std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp);
8568 if (I != WidenNodes.end())
8569 ValOp = I->second;
8571 MVT VVT = ValOp.getValueType();
8573 // It must be true that we the widen vector type is bigger than where
8574 // we need to store.
8575 assert(StVT.isVector() && VVT.isVector());
8576 assert(StVT.bitsLT(VVT));
8577 assert(StVT.getVectorElementType() == VVT.getVectorElementType());
8579 // Store value
8580 SDValueVector StChain;
8581 genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(),
8582 ST->getSrcValueOffset(), ST->getAlignment(),
8583 ST->isVolatile(), ValOp, StVT.getSizeInBits(), dl);
8584 if (StChain.size() == 1)
8585 return StChain[0];
8586 else
8587 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8588 &StChain[0], StChain.size());
8592 // SelectionDAG::Legalize - This is the entry point for the file.
8594 void SelectionDAG::Legalize(bool TypesNeedLegalizing,
8595 CodeGenOpt::Level OptLevel) {
8596 /// run - This is the main entry point to this class.
8598 SelectionDAGLegalize(*this, TypesNeedLegalizing, OptLevel).LegalizeDAG();