1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/DwarfWriter.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/Target/TargetFrameInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Target/TargetSubtarget.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/DerivedTypes.h"
31 #include "llvm/Function.h"
32 #include "llvm/GlobalVariable.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
42 //===----------------------------------------------------------------------===//
43 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44 /// hacks on it until the target machine can handle it. This involves
45 /// eliminating value sizes the machine cannot handle (promoting small sizes to
46 /// large sizes or splitting up large values into small values) as well as
47 /// eliminating operations the machine cannot handle.
49 /// This code also does a small amount of optimization and recognition of idioms
50 /// as part of its processing. For example, if a target does not support a
51 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52 /// will attempt merge setcc and brc instructions into brcc's.
55 class VISIBILITY_HIDDEN SelectionDAGLegalize
{
58 CodeGenOpt::Level OptLevel
;
59 bool TypesNeedLegalizing
;
61 // Libcall insertion helpers.
63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64 /// legalized. We use this to ensure that calls are properly serialized
65 /// against each other, including inserted libcalls.
66 SDValue LastCALLSEQ_END
;
68 /// IsLegalizingCall - This member is used *only* for purposes of providing
69 /// helpful assertions that a libcall isn't created while another call is
70 /// being legalized (which could lead to non-serialized call sequences).
71 bool IsLegalizingCall
;
73 /// IsLegalizingCallArguments - This member is used only for the purpose
74 /// of providing assert to check for LegalizeTypes because legalizing an
75 /// operation might introduce call nodes that might need type legalization.
76 bool IsLegalizingCallArgs
;
79 Legal
, // The target natively supports this operation.
80 Promote
, // This operation should be executed in a larger type.
81 Expand
// Try to expand this to other ops, otherwise use a libcall.
84 /// ValueTypeActions - This is a bitvector that contains two bits for each
85 /// value type, where the two bits correspond to the LegalizeAction enum.
86 /// This can be queried with "getTypeAction(VT)".
87 TargetLowering::ValueTypeActionImpl ValueTypeActions
;
89 /// LegalizedNodes - For nodes that are of legal width, and that have more
90 /// than one use, this map indicates what regularized operand to use. This
91 /// allows us to avoid legalizing the same thing more than once.
92 DenseMap
<SDValue
, SDValue
> LegalizedNodes
;
94 /// PromotedNodes - For nodes that are below legal width, and that have more
95 /// than one use, this map indicates what promoted value to use. This allows
96 /// us to avoid promoting the same thing more than once.
97 DenseMap
<SDValue
, SDValue
> PromotedNodes
;
99 /// ExpandedNodes - For nodes that need to be expanded this map indicates
100 /// which operands are the expanded version of the input. This allows
101 /// us to avoid expanding the same node more than once.
102 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> > ExpandedNodes
;
104 /// SplitNodes - For vector nodes that need to be split, this map indicates
105 /// which operands are the split version of the input. This allows us
106 /// to avoid splitting the same node more than once.
107 std::map
<SDValue
, std::pair
<SDValue
, SDValue
> > SplitNodes
;
109 /// ScalarizedNodes - For nodes that need to be converted from vector types to
110 /// scalar types, this contains the mapping of ones we have already
111 /// processed to the result.
112 std::map
<SDValue
, SDValue
> ScalarizedNodes
;
114 /// WidenNodes - For nodes that need to be widened from one vector type to
115 /// another, this contains the mapping of those that we have already widen.
116 /// This allows us to avoid widening more than once.
117 std::map
<SDValue
, SDValue
> WidenNodes
;
119 void AddLegalizedOperand(SDValue From
, SDValue To
) {
120 LegalizedNodes
.insert(std::make_pair(From
, To
));
121 // If someone requests legalization of the new node, return itself.
123 LegalizedNodes
.insert(std::make_pair(To
, To
));
125 void AddPromotedOperand(SDValue From
, SDValue To
) {
126 bool isNew
= PromotedNodes
.insert(std::make_pair(From
, To
)).second
;
127 assert(isNew
&& "Got into the map somehow?");
129 // If someone requests legalization of the new node, return itself.
130 LegalizedNodes
.insert(std::make_pair(To
, To
));
132 void AddWidenedOperand(SDValue From
, SDValue To
) {
133 bool isNew
= WidenNodes
.insert(std::make_pair(From
, To
)).second
;
134 assert(isNew
&& "Got into the map somehow?");
136 // If someone requests legalization of the new node, return itself.
137 LegalizedNodes
.insert(std::make_pair(To
, To
));
141 explicit SelectionDAGLegalize(SelectionDAG
&DAG
, bool TypesNeedLegalizing
,
142 CodeGenOpt::Level ol
);
144 /// getTypeAction - Return how we should legalize values of this type, either
145 /// it is already legal or we need to expand it into multiple registers of
146 /// smaller integer type, or we need to promote it to a larger type.
147 LegalizeAction
getTypeAction(MVT VT
) const {
148 return (LegalizeAction
)ValueTypeActions
.getTypeAction(VT
);
151 /// isTypeLegal - Return true if this type is legal on this target.
153 bool isTypeLegal(MVT VT
) const {
154 return getTypeAction(VT
) == Legal
;
160 /// HandleOp - Legalize, Promote, or Expand the specified operand as
161 /// appropriate for its type.
162 void HandleOp(SDValue Op
);
164 /// LegalizeOp - We know that the specified value has a legal type.
165 /// Recursively ensure that the operands have legal types, then return the
167 SDValue
LegalizeOp(SDValue O
);
169 /// UnrollVectorOp - We know that the given vector has a legal type, however
170 /// the operation it performs is not legal and is an operation that we have
171 /// no way of lowering. "Unroll" the vector, splitting out the scalars and
172 /// operating on each element individually.
173 SDValue
UnrollVectorOp(SDValue O
);
175 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
176 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
177 /// is necessary to spill the vector being inserted into to memory, perform
178 /// the insert there, and then read the result back.
179 SDValue
PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
,
180 SDValue Idx
, DebugLoc dl
);
182 /// PromoteOp - Given an operation that produces a value in an invalid type,
183 /// promote it to compute the value into a larger type. The produced value
184 /// will have the correct bits for the low portion of the register, but no
185 /// guarantee is made about the top bits: it may be zero, sign-extended, or
187 SDValue
PromoteOp(SDValue O
);
189 /// ExpandOp - Expand the specified SDValue into its two component pieces
190 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this,
191 /// the LegalizedNodes map is filled in for any results that are not expanded,
192 /// the ExpandedNodes map is filled in for any results that are expanded, and
193 /// the Lo/Hi values are returned. This applies to integer types and Vector
195 void ExpandOp(SDValue O
, SDValue
&Lo
, SDValue
&Hi
);
197 /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT
198 /// (e.g., v3i32 to v4i32). The produced value will have the correct value
199 /// for the existing elements but no guarantee is made about the new elements
200 /// at the end of the vector: it may be zero, ones, or garbage. This is useful
201 /// when we have an instruction operating on an illegal vector type and we
202 /// want to widen it to do the computation on a legal wider vector type.
203 SDValue
WidenVectorOp(SDValue Op
, MVT WidenVT
);
205 /// SplitVectorOp - Given an operand of vector type, break it down into
206 /// two smaller values.
207 void SplitVectorOp(SDValue O
, SDValue
&Lo
, SDValue
&Hi
);
209 /// ScalarizeVectorOp - Given an operand of single-element vector type
210 /// (e.g. v1f32), convert it into the equivalent operation that returns a
211 /// scalar (e.g. f32) value.
212 SDValue
ScalarizeVectorOp(SDValue O
);
214 /// Useful 16 element vector type that is used to pass operands for widening.
215 typedef SmallVector
<SDValue
, 16> SDValueVector
;
217 /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if
218 /// the LdChain contains a single load and false if it contains a token
219 /// factor for multiple loads. It takes
220 /// Result: location to return the result
221 /// LdChain: location to return the load chain
222 /// Op: load operation to widen
223 /// NVT: widen vector result type we want for the load
224 bool LoadWidenVectorOp(SDValue
& Result
, SDValue
& LdChain
,
225 SDValue Op
, MVT NVT
);
227 /// Helper genWidenVectorLoads - Helper function to generate a set of
228 /// loads to load a vector with a resulting wider type. It takes
229 /// LdChain: list of chains for the load we have generated
230 /// Chain: incoming chain for the ld vector
231 /// BasePtr: base pointer to load from
232 /// SV: memory disambiguation source value
233 /// SVOffset: memory disambiugation offset
234 /// Alignment: alignment of the memory
235 /// isVolatile: volatile load
236 /// LdWidth: width of memory that we want to load
237 /// ResType: the wider result result type for the resulting loaded vector
238 SDValue
genWidenVectorLoads(SDValueVector
& LdChain
, SDValue Chain
,
239 SDValue BasePtr
, const Value
*SV
,
240 int SVOffset
, unsigned Alignment
,
241 bool isVolatile
, unsigned LdWidth
,
242 MVT ResType
, DebugLoc dl
);
244 /// StoreWidenVectorOp - Stores a widen vector into non widen memory
245 /// location. It takes
246 /// ST: store node that we want to replace
247 /// Chain: incoming store chain
248 /// BasePtr: base address of where we want to store into
249 SDValue
StoreWidenVectorOp(StoreSDNode
*ST
, SDValue Chain
,
252 /// Helper genWidenVectorStores - Helper function to generate a set of
253 /// stores to store a widen vector into non widen memory
255 // StChain: list of chains for the stores we have generated
256 // Chain: incoming chain for the ld vector
257 // BasePtr: base pointer to load from
258 // SV: memory disambiguation source value
259 // SVOffset: memory disambiugation offset
260 // Alignment: alignment of the memory
261 // isVolatile: volatile lod
262 // ValOp: value to store
263 // StWidth: width of memory that we want to store
264 void genWidenVectorStores(SDValueVector
& StChain
, SDValue Chain
,
265 SDValue BasePtr
, const Value
*SV
,
266 int SVOffset
, unsigned Alignment
,
267 bool isVolatile
, SDValue ValOp
,
268 unsigned StWidth
, DebugLoc dl
);
270 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
271 /// performs the same shuffe in terms of order or result bytes, but on a type
272 /// whose vector element type is narrower than the original shuffle type.
273 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
274 SDValue
ShuffleWithNarrowerEltType(MVT NVT
, MVT VT
, DebugLoc dl
,
275 SDValue N1
, SDValue N2
,
276 SmallVectorImpl
<int> &Mask
) const;
278 bool LegalizeAllNodesNotLeadingTo(SDNode
*N
, SDNode
*Dest
,
279 SmallPtrSet
<SDNode
*, 32> &NodesLeadingTo
);
281 void LegalizeSetCCOperands(SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
283 void LegalizeSetCCCondCode(MVT VT
, SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
285 void LegalizeSetCC(MVT VT
, SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
287 LegalizeSetCCOperands(LHS
, RHS
, CC
, dl
);
288 LegalizeSetCCCondCode(VT
, LHS
, RHS
, CC
, dl
);
291 SDValue
ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
, bool isSigned
,
293 SDValue
ExpandIntToFP(bool isSigned
, MVT DestTy
, SDValue Source
, DebugLoc dl
);
295 SDValue
EmitStackConvert(SDValue SrcOp
, MVT SlotVT
, MVT DestVT
, DebugLoc dl
);
296 SDValue
ExpandBUILD_VECTOR(SDNode
*Node
);
297 SDValue
ExpandSCALAR_TO_VECTOR(SDNode
*Node
);
298 SDValue
LegalizeINT_TO_FP(SDValue Result
, bool isSigned
, MVT DestTy
,
299 SDValue Op
, DebugLoc dl
);
300 SDValue
ExpandLegalINT_TO_FP(bool isSigned
, SDValue LegalOp
, MVT DestVT
,
302 SDValue
PromoteLegalINT_TO_FP(SDValue LegalOp
, MVT DestVT
, bool isSigned
,
304 SDValue
PromoteLegalFP_TO_INT(SDValue LegalOp
, MVT DestVT
, bool isSigned
,
307 SDValue
ExpandBSWAP(SDValue Op
, DebugLoc dl
);
308 SDValue
ExpandBitCount(unsigned Opc
, SDValue Op
, DebugLoc dl
);
309 bool ExpandShift(unsigned Opc
, SDValue Op
, SDValue Amt
,
310 SDValue
&Lo
, SDValue
&Hi
, DebugLoc dl
);
311 void ExpandShiftParts(unsigned NodeOp
, SDValue Op
, SDValue Amt
,
312 SDValue
&Lo
, SDValue
&Hi
, DebugLoc dl
);
314 SDValue
ExpandEXTRACT_SUBVECTOR(SDValue Op
);
315 SDValue
ExpandEXTRACT_VECTOR_ELT(SDValue Op
);
319 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
320 /// performs the same shuffe in terms of order or result bytes, but on a type
321 /// whose vector element type is narrower than the original shuffle type.
322 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
324 SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT
, MVT VT
, DebugLoc dl
,
325 SDValue N1
, SDValue N2
,
326 SmallVectorImpl
<int> &Mask
) const {
327 MVT EltVT
= NVT
.getVectorElementType();
328 unsigned NumMaskElts
= VT
.getVectorNumElements();
329 unsigned NumDestElts
= NVT
.getVectorNumElements();
330 unsigned NumEltsGrowth
= NumDestElts
/ NumMaskElts
;
332 assert(NumEltsGrowth
&& "Cannot promote to vector type with fewer elts!");
334 if (NumEltsGrowth
== 1)
335 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, &Mask
[0]);
337 SmallVector
<int, 8> NewMask
;
338 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
340 for (unsigned j
= 0; j
!= NumEltsGrowth
; ++j
) {
342 NewMask
.push_back(-1);
344 NewMask
.push_back(Idx
* NumEltsGrowth
+ j
);
347 assert(NewMask
.size() == NumDestElts
&& "Non-integer NumEltsGrowth?");
348 assert(TLI
.isShuffleMaskLegal(NewMask
, NVT
) && "Shuffle not legal?");
349 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, &NewMask
[0]);
352 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG
&dag
,
353 bool types
, CodeGenOpt::Level ol
)
354 : TLI(dag
.getTargetLoweringInfo()), DAG(dag
), OptLevel(ol
),
355 TypesNeedLegalizing(types
), ValueTypeActions(TLI
.getValueTypeActions()) {
356 assert(MVT::LAST_VALUETYPE
<= 32 &&
357 "Too many value types for ValueTypeActions to hold!");
360 void SelectionDAGLegalize::LegalizeDAG() {
361 LastCALLSEQ_END
= DAG
.getEntryNode();
362 IsLegalizingCall
= false;
363 IsLegalizingCallArgs
= false;
365 // The legalize process is inherently a bottom-up recursive process (users
366 // legalize their uses before themselves). Given infinite stack space, we
367 // could just start legalizing on the root and traverse the whole graph. In
368 // practice however, this causes us to run out of stack space on large basic
369 // blocks. To avoid this problem, compute an ordering of the nodes where each
370 // node is only legalized after all of its operands are legalized.
371 DAG
.AssignTopologicalOrder();
372 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
373 E
= prior(DAG
.allnodes_end()); I
!= next(E
); ++I
)
374 HandleOp(SDValue(I
, 0));
376 // Finally, it's possible the root changed. Get the new root.
377 SDValue OldRoot
= DAG
.getRoot();
378 assert(LegalizedNodes
.count(OldRoot
) && "Root didn't get legalized?");
379 DAG
.setRoot(LegalizedNodes
[OldRoot
]);
381 ExpandedNodes
.clear();
382 LegalizedNodes
.clear();
383 PromotedNodes
.clear();
385 ScalarizedNodes
.clear();
388 // Remove dead nodes now.
389 DAG
.RemoveDeadNodes();
393 /// FindCallEndFromCallStart - Given a chained node that is part of a call
394 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
395 static SDNode
*FindCallEndFromCallStart(SDNode
*Node
) {
396 if (Node
->getOpcode() == ISD::CALLSEQ_END
)
398 if (Node
->use_empty())
399 return 0; // No CallSeqEnd
401 // The chain is usually at the end.
402 SDValue
TheChain(Node
, Node
->getNumValues()-1);
403 if (TheChain
.getValueType() != MVT::Other
) {
404 // Sometimes it's at the beginning.
405 TheChain
= SDValue(Node
, 0);
406 if (TheChain
.getValueType() != MVT::Other
) {
407 // Otherwise, hunt for it.
408 for (unsigned i
= 1, e
= Node
->getNumValues(); i
!= e
; ++i
)
409 if (Node
->getValueType(i
) == MVT::Other
) {
410 TheChain
= SDValue(Node
, i
);
414 // Otherwise, we walked into a node without a chain.
415 if (TheChain
.getValueType() != MVT::Other
)
420 for (SDNode::use_iterator UI
= Node
->use_begin(),
421 E
= Node
->use_end(); UI
!= E
; ++UI
) {
423 // Make sure to only follow users of our token chain.
425 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
)
426 if (User
->getOperand(i
) == TheChain
)
427 if (SDNode
*Result
= FindCallEndFromCallStart(User
))
433 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
434 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
435 static SDNode
*FindCallStartFromCallEnd(SDNode
*Node
) {
436 assert(Node
&& "Didn't find callseq_start for a call??");
437 if (Node
->getOpcode() == ISD::CALLSEQ_START
) return Node
;
439 assert(Node
->getOperand(0).getValueType() == MVT::Other
&&
440 "Node doesn't have a token chain argument!");
441 return FindCallStartFromCallEnd(Node
->getOperand(0).getNode());
444 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
445 /// see if any uses can reach Dest. If no dest operands can get to dest,
446 /// legalize them, legalize ourself, and return false, otherwise, return true.
448 /// Keep track of the nodes we fine that actually do lead to Dest in
449 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
451 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode
*N
, SDNode
*Dest
,
452 SmallPtrSet
<SDNode
*, 32> &NodesLeadingTo
) {
453 if (N
== Dest
) return true; // N certainly leads to Dest :)
455 // If we've already processed this node and it does lead to Dest, there is no
456 // need to reprocess it.
457 if (NodesLeadingTo
.count(N
)) return true;
459 // If the first result of this node has been already legalized, then it cannot
461 switch (getTypeAction(N
->getValueType(0))) {
463 if (LegalizedNodes
.count(SDValue(N
, 0))) return false;
466 if (PromotedNodes
.count(SDValue(N
, 0))) return false;
469 if (ExpandedNodes
.count(SDValue(N
, 0))) return false;
473 // Okay, this node has not already been legalized. Check and legalize all
474 // operands. If none lead to Dest, then we can legalize this node.
475 bool OperandsLeadToDest
= false;
476 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
477 OperandsLeadToDest
|= // If an operand leads to Dest, so do we.
478 LegalizeAllNodesNotLeadingTo(N
->getOperand(i
).getNode(), Dest
, NodesLeadingTo
);
480 if (OperandsLeadToDest
) {
481 NodesLeadingTo
.insert(N
);
485 // Okay, this node looks safe, legalize it and return false.
486 HandleOp(SDValue(N
, 0));
490 /// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as
491 /// appropriate for its type.
492 void SelectionDAGLegalize::HandleOp(SDValue Op
) {
493 MVT VT
= Op
.getValueType();
494 // If the type legalizer was run then we should never see any illegal result
495 // types here except for target constants (the type legalizer does not touch
496 // those) or for build vector used as a mask for a vector shuffle.
497 assert((TypesNeedLegalizing
|| getTypeAction(VT
) == Legal
||
498 IsLegalizingCallArgs
|| Op
.getOpcode() == ISD::TargetConstant
) &&
499 "Illegal type introduced after type legalization?");
500 switch (getTypeAction(VT
)) {
501 default: assert(0 && "Bad type action!");
502 case Legal
: (void)LegalizeOp(Op
); break;
504 if (!VT
.isVector()) {
509 // See if we can widen otherwise use Expand to either scalarize or split
510 MVT WidenVT
= TLI
.getWidenVectorType(VT
);
511 if (WidenVT
!= MVT::Other
) {
512 (void) WidenVectorOp(Op
, WidenVT
);
515 // else fall thru to expand since we can't widen the vector
518 if (!VT
.isVector()) {
519 // If this is an illegal scalar, expand it into its two component
522 if (Op
.getOpcode() == ISD::TargetConstant
)
523 break; // Allow illegal target nodes.
525 } else if (VT
.getVectorNumElements() == 1) {
526 // If this is an illegal single element vector, convert it to a
528 (void)ScalarizeVectorOp(Op
);
530 // This is an illegal multiple element vector.
531 // Split it in half and legalize both parts.
533 SplitVectorOp(Op
, X
, Y
);
539 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
540 /// a load from the constant pool.
541 static SDValue
ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
,
542 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
544 DebugLoc dl
= CFP
->getDebugLoc();
546 // If a FP immediate is precise when represented as a float and if the
547 // target can do an extending load from float to double, we put it into
548 // the constant pool as a float, even if it's is statically typed as a
549 // double. This shrinks FP constants and canonicalizes them for targets where
550 // an FP extending load is the same cost as a normal load (such as on the x87
551 // fp stack or PPC FP unit).
552 MVT VT
= CFP
->getValueType(0);
553 ConstantFP
*LLVMC
= const_cast<ConstantFP
*>(CFP
->getConstantFPValue());
555 assert((VT
== MVT::f64
|| VT
== MVT::f32
) && "Invalid type expansion");
556 return DAG
.getConstant(LLVMC
->getValueAPF().bitcastToAPInt(),
557 (VT
== MVT::f64
) ? MVT::i64
: MVT::i32
);
562 while (SVT
!= MVT::f32
) {
563 SVT
= (MVT::SimpleValueType
)(SVT
.getSimpleVT() - 1);
564 if (CFP
->isValueValidForType(SVT
, CFP
->getValueAPF()) &&
565 // Only do this if the target has a native EXTLOAD instruction from
567 TLI
.isLoadExtLegal(ISD::EXTLOAD
, SVT
) &&
568 TLI
.ShouldShrinkFPConstant(OrigVT
)) {
569 const Type
*SType
= SVT
.getTypeForMVT();
570 LLVMC
= cast
<ConstantFP
>(ConstantExpr::getFPTrunc(LLVMC
, SType
));
576 SDValue CPIdx
= DAG
.getConstantPool(LLVMC
, TLI
.getPointerTy());
577 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
579 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
,
580 OrigVT
, DAG
.getEntryNode(),
581 CPIdx
, PseudoSourceValue::getConstantPool(),
582 0, VT
, false, Alignment
);
583 return DAG
.getLoad(OrigVT
, dl
, DAG
.getEntryNode(), CPIdx
,
584 PseudoSourceValue::getConstantPool(), 0, false, Alignment
);
588 /// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise
591 SDValue
ExpandFCOPYSIGNToBitwiseOps(SDNode
*Node
, MVT NVT
,
593 const TargetLowering
&TLI
) {
594 DebugLoc dl
= Node
->getDebugLoc();
595 MVT VT
= Node
->getValueType(0);
596 MVT SrcVT
= Node
->getOperand(1).getValueType();
597 assert((SrcVT
== MVT::f32
|| SrcVT
== MVT::f64
) &&
598 "fcopysign expansion only supported for f32 and f64");
599 MVT SrcNVT
= (SrcVT
== MVT::f64
) ? MVT::i64
: MVT::i32
;
601 // First get the sign bit of second operand.
602 SDValue Mask1
= (SrcVT
== MVT::f64
)
603 ? DAG
.getConstantFP(BitsToDouble(1ULL << 63), SrcVT
)
604 : DAG
.getConstantFP(BitsToFloat(1U << 31), SrcVT
);
605 Mask1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, SrcNVT
, Mask1
);
606 SDValue SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, SrcNVT
,
607 Node
->getOperand(1));
608 SignBit
= DAG
.getNode(ISD::AND
, dl
, SrcNVT
, SignBit
, Mask1
);
609 // Shift right or sign-extend it if the two operands have different types.
610 int SizeDiff
= SrcNVT
.getSizeInBits() - NVT
.getSizeInBits();
612 SignBit
= DAG
.getNode(ISD::SRL
, dl
, SrcNVT
, SignBit
,
613 DAG
.getConstant(SizeDiff
, TLI
.getShiftAmountTy()));
614 SignBit
= DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, SignBit
);
615 } else if (SizeDiff
< 0) {
616 SignBit
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, SignBit
);
617 SignBit
= DAG
.getNode(ISD::SHL
, dl
, NVT
, SignBit
,
618 DAG
.getConstant(-SizeDiff
, TLI
.getShiftAmountTy()));
621 // Clear the sign bit of first operand.
622 SDValue Mask2
= (VT
== MVT::f64
)
623 ? DAG
.getConstantFP(BitsToDouble(~(1ULL << 63)), VT
)
624 : DAG
.getConstantFP(BitsToFloat(~(1U << 31)), VT
);
625 Mask2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Mask2
);
626 SDValue Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
627 Result
= DAG
.getNode(ISD::AND
, dl
, NVT
, Result
, Mask2
);
629 // Or the value with the sign bit.
630 Result
= DAG
.getNode(ISD::OR
, dl
, NVT
, Result
, SignBit
);
634 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
636 SDValue
ExpandUnalignedStore(StoreSDNode
*ST
, SelectionDAG
&DAG
,
637 const TargetLowering
&TLI
) {
638 SDValue Chain
= ST
->getChain();
639 SDValue Ptr
= ST
->getBasePtr();
640 SDValue Val
= ST
->getValue();
641 MVT VT
= Val
.getValueType();
642 int Alignment
= ST
->getAlignment();
643 int SVOffset
= ST
->getSrcValueOffset();
644 DebugLoc dl
= ST
->getDebugLoc();
645 if (ST
->getMemoryVT().isFloatingPoint() ||
646 ST
->getMemoryVT().isVector()) {
647 MVT intVT
= MVT::getIntegerVT(VT
.getSizeInBits());
648 if (TLI
.isTypeLegal(intVT
)) {
649 // Expand to a bitconvert of the value to the integer type of the
650 // same size, then a (misaligned) int store.
651 // FIXME: Does not handle truncating floating point stores!
652 SDValue Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, intVT
, Val
);
653 return DAG
.getStore(Chain
, dl
, Result
, Ptr
, ST
->getSrcValue(),
654 SVOffset
, ST
->isVolatile(), Alignment
);
656 // Do a (aligned) store to a stack slot, then copy from the stack slot
657 // to the final destination using (unaligned) integer loads and stores.
658 MVT StoredVT
= ST
->getMemoryVT();
660 TLI
.getRegisterType(MVT::getIntegerVT(StoredVT
.getSizeInBits()));
661 unsigned StoredBytes
= StoredVT
.getSizeInBits() / 8;
662 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
663 unsigned NumRegs
= (StoredBytes
+ RegBytes
- 1) / RegBytes
;
665 // Make sure the stack slot is also aligned for the register type.
666 SDValue StackPtr
= DAG
.CreateStackTemporary(StoredVT
, RegVT
);
668 // Perform the original store, only redirected to the stack slot.
669 SDValue Store
= DAG
.getTruncStore(Chain
, dl
,
670 Val
, StackPtr
, NULL
, 0, StoredVT
);
671 SDValue Increment
= DAG
.getConstant(RegBytes
, TLI
.getPointerTy());
672 SmallVector
<SDValue
, 8> Stores
;
675 // Do all but one copies using the full register width.
676 for (unsigned i
= 1; i
< NumRegs
; i
++) {
677 // Load one integer register's worth from the stack slot.
678 SDValue Load
= DAG
.getLoad(RegVT
, dl
, Store
, StackPtr
, NULL
, 0);
679 // Store it to the final location. Remember the store.
680 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, Ptr
,
681 ST
->getSrcValue(), SVOffset
+ Offset
,
683 MinAlign(ST
->getAlignment(), Offset
)));
684 // Increment the pointers.
686 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, StackPtr
.getValueType(), StackPtr
,
688 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
, Increment
);
691 // The last store may be partial. Do a truncating store. On big-endian
692 // machines this requires an extending load from the stack slot to ensure
693 // that the bits are in the right place.
694 MVT MemVT
= MVT::getIntegerVT(8 * (StoredBytes
- Offset
));
696 // Load from the stack slot.
697 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Store
, StackPtr
,
700 Stores
.push_back(DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, Ptr
,
701 ST
->getSrcValue(), SVOffset
+ Offset
,
702 MemVT
, ST
->isVolatile(),
703 MinAlign(ST
->getAlignment(), Offset
)));
704 // The order of the stores doesn't matter - say it with a TokenFactor.
705 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Stores
[0],
709 assert(ST
->getMemoryVT().isInteger() &&
710 !ST
->getMemoryVT().isVector() &&
711 "Unaligned store of unknown type.");
712 // Get the half-size VT
714 (MVT::SimpleValueType
)(ST
->getMemoryVT().getSimpleVT() - 1);
715 int NumBits
= NewStoredVT
.getSizeInBits();
716 int IncrementSize
= NumBits
/ 8;
718 // Divide the stored value in two parts.
719 SDValue ShiftAmount
= DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy());
721 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, VT
, Val
, ShiftAmount
);
723 // Store the two parts
724 SDValue Store1
, Store2
;
725 Store1
= DAG
.getTruncStore(Chain
, dl
, TLI
.isLittleEndian()?Lo
:Hi
, Ptr
,
726 ST
->getSrcValue(), SVOffset
, NewStoredVT
,
727 ST
->isVolatile(), Alignment
);
728 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
729 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
730 Alignment
= MinAlign(Alignment
, IncrementSize
);
731 Store2
= DAG
.getTruncStore(Chain
, dl
, TLI
.isLittleEndian()?Hi
:Lo
, Ptr
,
732 ST
->getSrcValue(), SVOffset
+ IncrementSize
,
733 NewStoredVT
, ST
->isVolatile(), Alignment
);
735 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Store1
, Store2
);
738 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
740 SDValue
ExpandUnalignedLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
,
741 const TargetLowering
&TLI
) {
742 int SVOffset
= LD
->getSrcValueOffset();
743 SDValue Chain
= LD
->getChain();
744 SDValue Ptr
= LD
->getBasePtr();
745 MVT VT
= LD
->getValueType(0);
746 MVT LoadedVT
= LD
->getMemoryVT();
747 DebugLoc dl
= LD
->getDebugLoc();
748 if (VT
.isFloatingPoint() || VT
.isVector()) {
749 MVT intVT
= MVT::getIntegerVT(LoadedVT
.getSizeInBits());
750 if (TLI
.isTypeLegal(intVT
)) {
751 // Expand to a (misaligned) integer load of the same size,
752 // then bitconvert to floating point or vector.
753 SDValue newLoad
= DAG
.getLoad(intVT
, dl
, Chain
, Ptr
, LD
->getSrcValue(),
754 SVOffset
, LD
->isVolatile(),
756 SDValue Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, LoadedVT
, newLoad
);
757 if (VT
.isFloatingPoint() && LoadedVT
!= VT
)
758 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Result
);
760 SDValue Ops
[] = { Result
, Chain
};
761 return DAG
.getMergeValues(Ops
, 2, dl
);
763 // Copy the value to a (aligned) stack slot using (unaligned) integer
764 // loads and stores, then do a (aligned) load from the stack slot.
765 MVT RegVT
= TLI
.getRegisterType(intVT
);
766 unsigned LoadedBytes
= LoadedVT
.getSizeInBits() / 8;
767 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
768 unsigned NumRegs
= (LoadedBytes
+ RegBytes
- 1) / RegBytes
;
770 // Make sure the stack slot is also aligned for the register type.
771 SDValue StackBase
= DAG
.CreateStackTemporary(LoadedVT
, RegVT
);
773 SDValue Increment
= DAG
.getConstant(RegBytes
, TLI
.getPointerTy());
774 SmallVector
<SDValue
, 8> Stores
;
775 SDValue StackPtr
= StackBase
;
778 // Do all but one copies using the full register width.
779 for (unsigned i
= 1; i
< NumRegs
; i
++) {
780 // Load one integer register's worth from the original location.
781 SDValue Load
= DAG
.getLoad(RegVT
, dl
, Chain
, Ptr
, LD
->getSrcValue(),
782 SVOffset
+ Offset
, LD
->isVolatile(),
783 MinAlign(LD
->getAlignment(), Offset
));
784 // Follow the load with a store to the stack slot. Remember the store.
785 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, StackPtr
,
787 // Increment the pointers.
789 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
, Increment
);
790 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, StackPtr
.getValueType(), StackPtr
,
794 // The last copy may be partial. Do an extending load.
795 MVT MemVT
= MVT::getIntegerVT(8 * (LoadedBytes
- Offset
));
796 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Chain
, Ptr
,
797 LD
->getSrcValue(), SVOffset
+ Offset
,
798 MemVT
, LD
->isVolatile(),
799 MinAlign(LD
->getAlignment(), Offset
));
800 // Follow the load with a store to the stack slot. Remember the store.
801 // On big-endian machines this requires a truncating store to ensure
802 // that the bits end up in the right place.
803 Stores
.push_back(DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, StackPtr
,
806 // The order of the stores doesn't matter - say it with a TokenFactor.
807 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Stores
[0],
810 // Finally, perform the original load only redirected to the stack slot.
811 Load
= DAG
.getExtLoad(LD
->getExtensionType(), dl
, VT
, TF
, StackBase
,
814 // Callers expect a MERGE_VALUES node.
815 SDValue Ops
[] = { Load
, TF
};
816 return DAG
.getMergeValues(Ops
, 2, dl
);
819 assert(LoadedVT
.isInteger() && !LoadedVT
.isVector() &&
820 "Unaligned load of unsupported type.");
822 // Compute the new VT that is half the size of the old one. This is an
824 unsigned NumBits
= LoadedVT
.getSizeInBits();
826 NewLoadedVT
= MVT::getIntegerVT(NumBits
/2);
829 unsigned Alignment
= LD
->getAlignment();
830 unsigned IncrementSize
= NumBits
/ 8;
831 ISD::LoadExtType HiExtType
= LD
->getExtensionType();
833 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
834 if (HiExtType
== ISD::NON_EXTLOAD
)
835 HiExtType
= ISD::ZEXTLOAD
;
837 // Load the value in two parts
839 if (TLI
.isLittleEndian()) {
840 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
841 SVOffset
, NewLoadedVT
, LD
->isVolatile(), Alignment
);
842 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
843 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
844 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
845 SVOffset
+ IncrementSize
, NewLoadedVT
, LD
->isVolatile(),
846 MinAlign(Alignment
, IncrementSize
));
848 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
849 SVOffset
, NewLoadedVT
, LD
->isVolatile(), Alignment
);
850 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
851 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
852 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
853 SVOffset
+ IncrementSize
, NewLoadedVT
, LD
->isVolatile(),
854 MinAlign(Alignment
, IncrementSize
));
857 // aggregate the two parts
858 SDValue ShiftAmount
= DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy());
859 SDValue Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, ShiftAmount
);
860 Result
= DAG
.getNode(ISD::OR
, dl
, VT
, Result
, Lo
);
862 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
865 SDValue Ops
[] = { Result
, TF
};
866 return DAG
.getMergeValues(Ops
, 2, dl
);
869 /// UnrollVectorOp - We know that the given vector has a legal type, however
870 /// the operation it performs is not legal and is an operation that we have
871 /// no way of lowering. "Unroll" the vector, splitting out the scalars and
872 /// operating on each element individually.
873 SDValue
SelectionDAGLegalize::UnrollVectorOp(SDValue Op
) {
874 MVT VT
= Op
.getValueType();
875 assert(isTypeLegal(VT
) &&
876 "Caller should expand or promote operands that are not legal!");
877 assert(Op
.getNode()->getNumValues() == 1 &&
878 "Can't unroll a vector with multiple results!");
879 unsigned NE
= VT
.getVectorNumElements();
880 MVT EltVT
= VT
.getVectorElementType();
881 DebugLoc dl
= Op
.getDebugLoc();
883 SmallVector
<SDValue
, 8> Scalars
;
884 SmallVector
<SDValue
, 4> Operands(Op
.getNumOperands());
885 for (unsigned i
= 0; i
!= NE
; ++i
) {
886 for (unsigned j
= 0; j
!= Op
.getNumOperands(); ++j
) {
887 SDValue Operand
= Op
.getOperand(j
);
888 MVT OperandVT
= Operand
.getValueType();
889 if (OperandVT
.isVector()) {
890 // A vector operand; extract a single element.
891 MVT OperandEltVT
= OperandVT
.getVectorElementType();
892 Operands
[j
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
895 DAG
.getConstant(i
, MVT::i32
));
897 // A scalar operand; just use it as is.
898 Operands
[j
] = Operand
;
902 switch (Op
.getOpcode()) {
904 Scalars
.push_back(DAG
.getNode(Op
.getOpcode(), dl
, EltVT
,
905 &Operands
[0], Operands
.size()));
912 Scalars
.push_back(DAG
.getNode(Op
.getOpcode(), dl
, EltVT
, Operands
[0],
913 DAG
.getShiftAmountOperand(Operands
[1])));
918 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &Scalars
[0], Scalars
.size());
921 /// GetFPLibCall - Return the right libcall for the given floating point type.
922 static RTLIB::Libcall
GetFPLibCall(MVT VT
,
923 RTLIB::Libcall Call_F32
,
924 RTLIB::Libcall Call_F64
,
925 RTLIB::Libcall Call_F80
,
926 RTLIB::Libcall Call_PPCF128
) {
928 VT
== MVT::f32
? Call_F32
:
929 VT
== MVT::f64
? Call_F64
:
930 VT
== MVT::f80
? Call_F80
:
931 VT
== MVT::ppcf128
? Call_PPCF128
:
932 RTLIB::UNKNOWN_LIBCALL
;
935 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
936 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
937 /// is necessary to spill the vector being inserted into to memory, perform
938 /// the insert there, and then read the result back.
939 SDValue
SelectionDAGLegalize::
940 PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
, SDValue Idx
,
946 // If the target doesn't support this, we have to spill the input vector
947 // to a temporary stack slot, update the element, then reload it. This is
948 // badness. We could also load the value into a vector register (either
949 // with a "move to register" or "extload into register" instruction, then
950 // permute it into place, if the idx is a constant and if the idx is
951 // supported by the target.
952 MVT VT
= Tmp1
.getValueType();
953 MVT EltVT
= VT
.getVectorElementType();
954 MVT IdxVT
= Tmp3
.getValueType();
955 MVT PtrVT
= TLI
.getPointerTy();
956 SDValue StackPtr
= DAG
.CreateStackTemporary(VT
);
958 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
961 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Tmp1
, StackPtr
,
962 PseudoSourceValue::getFixedStack(SPFI
), 0);
964 // Truncate or zero extend offset to target pointer type.
965 unsigned CastOpc
= IdxVT
.bitsGT(PtrVT
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
966 Tmp3
= DAG
.getNode(CastOpc
, dl
, PtrVT
, Tmp3
);
967 // Add the offset to the index.
968 unsigned EltSize
= EltVT
.getSizeInBits()/8;
969 Tmp3
= DAG
.getNode(ISD::MUL
, dl
, IdxVT
, Tmp3
,DAG
.getConstant(EltSize
, IdxVT
));
970 SDValue StackPtr2
= DAG
.getNode(ISD::ADD
, dl
, IdxVT
, Tmp3
, StackPtr
);
971 // Store the scalar value.
972 Ch
= DAG
.getTruncStore(Ch
, dl
, Tmp2
, StackPtr2
,
973 PseudoSourceValue::getFixedStack(SPFI
), 0, EltVT
);
974 // Load the updated vector.
975 return DAG
.getLoad(VT
, dl
, Ch
, StackPtr
,
976 PseudoSourceValue::getFixedStack(SPFI
), 0);
980 /// LegalizeOp - We know that the specified value has a legal type, and
981 /// that its operands are legal. Now ensure that the operation itself
982 /// is legal, recursively ensuring that the operands' operations remain
984 SDValue
SelectionDAGLegalize::LegalizeOp(SDValue Op
) {
985 if (Op
.getOpcode() == ISD::TargetConstant
) // Allow illegal target nodes.
988 assert(isTypeLegal(Op
.getValueType()) &&
989 "Caller should expand or promote operands that are not legal!");
990 SDNode
*Node
= Op
.getNode();
991 DebugLoc dl
= Node
->getDebugLoc();
993 // If this operation defines any values that cannot be represented in a
994 // register on this target, make sure to expand or promote them.
995 if (Node
->getNumValues() > 1) {
996 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
997 if (getTypeAction(Node
->getValueType(i
)) != Legal
) {
998 HandleOp(Op
.getValue(i
));
999 assert(LegalizedNodes
.count(Op
) &&
1000 "Handling didn't add legal operands!");
1001 return LegalizedNodes
[Op
];
1005 // Note that LegalizeOp may be reentered even from single-use nodes, which
1006 // means that we always must cache transformed nodes.
1007 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
1008 if (I
!= LegalizedNodes
.end()) return I
->second
;
1010 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
;
1011 SDValue Result
= Op
;
1012 bool isCustom
= false;
1014 switch (Node
->getOpcode()) {
1015 case ISD::FrameIndex
:
1016 case ISD::EntryToken
:
1018 case ISD::BasicBlock
:
1019 case ISD::TargetFrameIndex
:
1020 case ISD::TargetJumpTable
:
1021 case ISD::TargetConstant
:
1022 case ISD::TargetConstantFP
:
1023 case ISD::TargetConstantPool
:
1024 case ISD::TargetGlobalAddress
:
1025 case ISD::TargetGlobalTLSAddress
:
1026 case ISD::TargetExternalSymbol
:
1027 case ISD::VALUETYPE
:
1029 case ISD::MEMOPERAND
:
1031 case ISD::ARG_FLAGS
:
1032 // Primitives must all be legal.
1033 assert(TLI
.isOperationLegal(Node
->getOpcode(), Node
->getValueType(0)) &&
1034 "This must be legal!");
1037 if (Node
->getOpcode() >= ISD::BUILTIN_OP_END
) {
1038 // If this is a target node, legalize it by legalizing the operands then
1039 // passing it through.
1040 SmallVector
<SDValue
, 8> Ops
;
1041 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
1042 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
1044 Result
= DAG
.UpdateNodeOperands(Result
.getValue(0), &Ops
[0], Ops
.size());
1046 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
1047 AddLegalizedOperand(Op
.getValue(i
), Result
.getValue(i
));
1048 return Result
.getValue(Op
.getResNo());
1050 // Otherwise this is an unhandled builtin node. splat.
1052 cerr
<< "NODE: "; Node
->dump(&DAG
); cerr
<< "\n";
1054 assert(0 && "Do not know how to legalize this operator!");
1056 case ISD::GLOBAL_OFFSET_TABLE
:
1057 case ISD::GlobalAddress
:
1058 case ISD::GlobalTLSAddress
:
1059 case ISD::ExternalSymbol
:
1060 case ISD::ConstantPool
:
1061 case ISD::JumpTable
: // Nothing to do.
1062 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
1063 default: assert(0 && "This action is not supported yet!");
1064 case TargetLowering::Custom
:
1065 Tmp1
= TLI
.LowerOperation(Op
, DAG
);
1066 if (Tmp1
.getNode()) Result
= Tmp1
;
1067 // FALLTHROUGH if the target doesn't want to lower this op after all.
1068 case TargetLowering::Legal
:
1072 case ISD::FRAMEADDR
:
1073 case ISD::RETURNADDR
:
1074 // The only option for these nodes is to custom lower them. If the target
1075 // does not custom lower them, then return zero.
1076 Tmp1
= TLI
.LowerOperation(Op
, DAG
);
1080 Result
= DAG
.getConstant(0, TLI
.getPointerTy());
1082 case ISD::FRAME_TO_ARGS_OFFSET
: {
1083 MVT VT
= Node
->getValueType(0);
1084 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1085 default: assert(0 && "This action is not supported yet!");
1086 case TargetLowering::Custom
:
1087 Result
= TLI
.LowerOperation(Op
, DAG
);
1088 if (Result
.getNode()) break;
1090 case TargetLowering::Legal
:
1091 Result
= DAG
.getConstant(0, VT
);
1096 case ISD::EXCEPTIONADDR
: {
1097 Tmp1
= LegalizeOp(Node
->getOperand(0));
1098 MVT VT
= Node
->getValueType(0);
1099 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1100 default: assert(0 && "This action is not supported yet!");
1101 case TargetLowering::Expand
: {
1102 unsigned Reg
= TLI
.getExceptionAddressRegister();
1103 Result
= DAG
.getCopyFromReg(Tmp1
, dl
, Reg
, VT
);
1106 case TargetLowering::Custom
:
1107 Result
= TLI
.LowerOperation(Op
, DAG
);
1108 if (Result
.getNode()) break;
1110 case TargetLowering::Legal
: {
1111 SDValue Ops
[] = { DAG
.getConstant(0, VT
), Tmp1
};
1112 Result
= DAG
.getMergeValues(Ops
, 2, dl
);
1117 if (Result
.getNode()->getNumValues() == 1) break;
1119 assert(Result
.getNode()->getNumValues() == 2 &&
1120 "Cannot return more than two values!");
1122 // Since we produced two values, make sure to remember that we
1123 // legalized both of them.
1124 Tmp1
= LegalizeOp(Result
);
1125 Tmp2
= LegalizeOp(Result
.getValue(1));
1126 AddLegalizedOperand(Op
.getValue(0), Tmp1
);
1127 AddLegalizedOperand(Op
.getValue(1), Tmp2
);
1128 return Op
.getResNo() ? Tmp2
: Tmp1
;
1129 case ISD::EHSELECTION
: {
1130 Tmp1
= LegalizeOp(Node
->getOperand(0));
1131 Tmp2
= LegalizeOp(Node
->getOperand(1));
1132 MVT VT
= Node
->getValueType(0);
1133 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1134 default: assert(0 && "This action is not supported yet!");
1135 case TargetLowering::Expand
: {
1136 unsigned Reg
= TLI
.getExceptionSelectorRegister();
1137 Result
= DAG
.getCopyFromReg(Tmp2
, dl
, Reg
, VT
);
1140 case TargetLowering::Custom
:
1141 Result
= TLI
.LowerOperation(Op
, DAG
);
1142 if (Result
.getNode()) break;
1144 case TargetLowering::Legal
: {
1145 SDValue Ops
[] = { DAG
.getConstant(0, VT
), Tmp2
};
1146 Result
= DAG
.getMergeValues(Ops
, 2, dl
);
1151 if (Result
.getNode()->getNumValues() == 1) break;
1153 assert(Result
.getNode()->getNumValues() == 2 &&
1154 "Cannot return more than two values!");
1156 // Since we produced two values, make sure to remember that we
1157 // legalized both of them.
1158 Tmp1
= LegalizeOp(Result
);
1159 Tmp2
= LegalizeOp(Result
.getValue(1));
1160 AddLegalizedOperand(Op
.getValue(0), Tmp1
);
1161 AddLegalizedOperand(Op
.getValue(1), Tmp2
);
1162 return Op
.getResNo() ? Tmp2
: Tmp1
;
1163 case ISD::EH_RETURN
: {
1164 MVT VT
= Node
->getValueType(0);
1165 // The only "good" option for this node is to custom lower it.
1166 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1167 default: assert(0 && "This action is not supported at all!");
1168 case TargetLowering::Custom
:
1169 Result
= TLI
.LowerOperation(Op
, DAG
);
1170 if (Result
.getNode()) break;
1172 case TargetLowering::Legal
:
1173 // Target does not know, how to lower this, lower to noop
1174 Result
= LegalizeOp(Node
->getOperand(0));
1179 case ISD::AssertSext
:
1180 case ISD::AssertZext
:
1181 Tmp1
= LegalizeOp(Node
->getOperand(0));
1182 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
1184 case ISD::MERGE_VALUES
:
1185 // Legalize eliminates MERGE_VALUES nodes.
1186 Result
= Node
->getOperand(Op
.getResNo());
1188 case ISD::CopyFromReg
:
1189 Tmp1
= LegalizeOp(Node
->getOperand(0));
1190 Result
= Op
.getValue(0);
1191 if (Node
->getNumValues() == 2) {
1192 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
1194 assert(Node
->getNumValues() == 3 && "Invalid copyfromreg!");
1195 if (Node
->getNumOperands() == 3) {
1196 Tmp2
= LegalizeOp(Node
->getOperand(2));
1197 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1),Tmp2
);
1199 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
1201 AddLegalizedOperand(Op
.getValue(2), Result
.getValue(2));
1203 // Since CopyFromReg produces two values, make sure to remember that we
1204 // legalized both of them.
1205 AddLegalizedOperand(Op
.getValue(0), Result
);
1206 AddLegalizedOperand(Op
.getValue(1), Result
.getValue(1));
1207 return Result
.getValue(Op
.getResNo());
1209 MVT VT
= Op
.getValueType();
1210 switch (TLI
.getOperationAction(ISD::UNDEF
, VT
)) {
1211 default: assert(0 && "This action is not supported yet!");
1212 case TargetLowering::Expand
:
1214 Result
= DAG
.getConstant(0, VT
);
1215 else if (VT
.isFloatingPoint())
1216 Result
= DAG
.getConstantFP(APFloat(APInt(VT
.getSizeInBits(), 0)),
1219 assert(0 && "Unknown value type!");
1221 case TargetLowering::Legal
:
1227 case ISD::INTRINSIC_W_CHAIN
:
1228 case ISD::INTRINSIC_WO_CHAIN
:
1229 case ISD::INTRINSIC_VOID
: {
1230 SmallVector
<SDValue
, 8> Ops
;
1231 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
1232 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
1233 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1235 // Allow the target to custom lower its intrinsics if it wants to.
1236 if (TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
) ==
1237 TargetLowering::Custom
) {
1238 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1239 if (Tmp3
.getNode()) Result
= Tmp3
;
1242 if (Result
.getNode()->getNumValues() == 1) break;
1244 // Must have return value and chain result.
1245 assert(Result
.getNode()->getNumValues() == 2 &&
1246 "Cannot return more than two values!");
1248 // Since loads produce two values, make sure to remember that we
1249 // legalized both of them.
1250 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1251 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1252 return Result
.getValue(Op
.getResNo());
1255 case ISD::DBG_STOPPOINT
:
1256 assert(Node
->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!");
1257 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the input chain.
1259 switch (TLI
.getOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
)) {
1260 case TargetLowering::Promote
:
1261 default: assert(0 && "This action is not supported yet!");
1262 case TargetLowering::Expand
: {
1263 DwarfWriter
*DW
= DAG
.getDwarfWriter();
1264 bool useDEBUG_LOC
= TLI
.isOperationLegalOrCustom(ISD::DEBUG_LOC
,
1266 bool useLABEL
= TLI
.isOperationLegalOrCustom(ISD::DBG_LABEL
, MVT::Other
);
1268 const DbgStopPointSDNode
*DSP
= cast
<DbgStopPointSDNode
>(Node
);
1269 GlobalVariable
*CU_GV
= cast
<GlobalVariable
>(DSP
->getCompileUnit());
1270 if (DW
&& (useDEBUG_LOC
|| useLABEL
) && !CU_GV
->isDeclaration()) {
1271 DICompileUnit
CU(cast
<GlobalVariable
>(DSP
->getCompileUnit()));
1273 unsigned Line
= DSP
->getLine();
1274 unsigned Col
= DSP
->getColumn();
1276 if (OptLevel
== CodeGenOpt::None
) {
1277 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1278 // won't hurt anything.
1280 SDValue Ops
[] = { Tmp1
, DAG
.getConstant(Line
, MVT::i32
),
1281 DAG
.getConstant(Col
, MVT::i32
),
1282 DAG
.getSrcValue(CU
.getGV()) };
1283 Result
= DAG
.getNode(ISD::DEBUG_LOC
, dl
, MVT::Other
, Ops
, 4);
1285 unsigned ID
= DW
->RecordSourceLine(Line
, Col
, CU
);
1286 Result
= DAG
.getLabel(ISD::DBG_LABEL
, dl
, Tmp1
, ID
);
1289 Result
= Tmp1
; // chain
1292 Result
= Tmp1
; // chain
1296 case TargetLowering::Custom
:
1297 Result
= TLI
.LowerOperation(Op
, DAG
);
1298 if (Result
.getNode())
1300 case TargetLowering::Legal
: {
1301 LegalizeAction Action
= getTypeAction(Node
->getOperand(1).getValueType());
1302 if (Action
== Legal
&& Tmp1
== Node
->getOperand(0))
1305 SmallVector
<SDValue
, 8> Ops
;
1306 Ops
.push_back(Tmp1
);
1307 if (Action
== Legal
) {
1308 Ops
.push_back(Node
->getOperand(1)); // line # must be legal.
1309 Ops
.push_back(Node
->getOperand(2)); // col # must be legal.
1311 // Otherwise promote them.
1312 Ops
.push_back(PromoteOp(Node
->getOperand(1)));
1313 Ops
.push_back(PromoteOp(Node
->getOperand(2)));
1315 Ops
.push_back(Node
->getOperand(3)); // filename must be legal.
1316 Ops
.push_back(Node
->getOperand(4)); // working dir # must be legal.
1317 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1324 assert(Node
->getNumOperands() == 3 && "Invalid DECLARE node!");
1325 switch (TLI
.getOperationAction(ISD::DECLARE
, MVT::Other
)) {
1326 default: assert(0 && "This action is not supported yet!");
1327 case TargetLowering::Legal
:
1328 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1329 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the address.
1330 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the variable.
1331 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
1333 case TargetLowering::Expand
:
1334 Result
= LegalizeOp(Node
->getOperand(0));
1339 case ISD::DEBUG_LOC
:
1340 assert(Node
->getNumOperands() == 4 && "Invalid DEBUG_LOC node!");
1341 switch (TLI
.getOperationAction(ISD::DEBUG_LOC
, MVT::Other
)) {
1342 default: assert(0 && "This action is not supported yet!");
1343 case TargetLowering::Legal
: {
1344 LegalizeAction Action
= getTypeAction(Node
->getOperand(1).getValueType());
1345 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1346 if (Action
== Legal
&& Tmp1
== Node
->getOperand(0))
1348 if (Action
== Legal
) {
1349 Tmp2
= Node
->getOperand(1);
1350 Tmp3
= Node
->getOperand(2);
1351 Tmp4
= Node
->getOperand(3);
1353 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the line #.
1354 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the col #.
1355 Tmp4
= LegalizeOp(Node
->getOperand(3)); // Legalize the source file id.
1357 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
, Tmp4
);
1363 case ISD::DBG_LABEL
:
1365 assert(Node
->getNumOperands() == 1 && "Invalid LABEL node!");
1366 switch (TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
)) {
1367 default: assert(0 && "This action is not supported yet!");
1368 case TargetLowering::Legal
:
1369 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1370 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
1372 case TargetLowering::Expand
:
1373 Result
= LegalizeOp(Node
->getOperand(0));
1379 assert(Node
->getNumOperands() == 4 && "Invalid Prefetch node!");
1380 switch (TLI
.getOperationAction(ISD::PREFETCH
, MVT::Other
)) {
1381 default: assert(0 && "This action is not supported yet!");
1382 case TargetLowering::Legal
:
1383 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1384 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the address.
1385 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the rw specifier.
1386 Tmp4
= LegalizeOp(Node
->getOperand(3)); // Legalize locality specifier.
1387 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
, Tmp4
);
1389 case TargetLowering::Expand
:
1391 Result
= LegalizeOp(Node
->getOperand(0));
1396 case ISD::MEMBARRIER
: {
1397 assert(Node
->getNumOperands() == 6 && "Invalid MemBarrier node!");
1398 switch (TLI
.getOperationAction(ISD::MEMBARRIER
, MVT::Other
)) {
1399 default: assert(0 && "This action is not supported yet!");
1400 case TargetLowering::Legal
: {
1402 Ops
[0] = LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1403 for (int x
= 1; x
< 6; ++x
) {
1404 Ops
[x
] = Node
->getOperand(x
);
1405 if (!isTypeLegal(Ops
[x
].getValueType()))
1406 Ops
[x
] = PromoteOp(Ops
[x
]);
1408 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], 6);
1411 case TargetLowering::Expand
:
1412 //There is no libgcc call for this op
1413 Result
= Node
->getOperand(0); // Noop
1419 case ISD::ATOMIC_CMP_SWAP
: {
1420 unsigned int num_operands
= 4;
1421 assert(Node
->getNumOperands() == num_operands
&& "Invalid Atomic node!");
1423 for (unsigned int x
= 0; x
< num_operands
; ++x
)
1424 Ops
[x
] = LegalizeOp(Node
->getOperand(x
));
1425 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], num_operands
);
1427 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
1428 default: assert(0 && "This action is not supported yet!");
1429 case TargetLowering::Custom
:
1430 Result
= TLI
.LowerOperation(Result
, DAG
);
1432 case TargetLowering::Legal
:
1435 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1436 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1437 return Result
.getValue(Op
.getResNo());
1439 case ISD::ATOMIC_LOAD_ADD
:
1440 case ISD::ATOMIC_LOAD_SUB
:
1441 case ISD::ATOMIC_LOAD_AND
:
1442 case ISD::ATOMIC_LOAD_OR
:
1443 case ISD::ATOMIC_LOAD_XOR
:
1444 case ISD::ATOMIC_LOAD_NAND
:
1445 case ISD::ATOMIC_LOAD_MIN
:
1446 case ISD::ATOMIC_LOAD_MAX
:
1447 case ISD::ATOMIC_LOAD_UMIN
:
1448 case ISD::ATOMIC_LOAD_UMAX
:
1449 case ISD::ATOMIC_SWAP
: {
1450 unsigned int num_operands
= 3;
1451 assert(Node
->getNumOperands() == num_operands
&& "Invalid Atomic node!");
1453 for (unsigned int x
= 0; x
< num_operands
; ++x
)
1454 Ops
[x
] = LegalizeOp(Node
->getOperand(x
));
1455 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], num_operands
);
1457 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
1458 default: assert(0 && "This action is not supported yet!");
1459 case TargetLowering::Custom
:
1460 Result
= TLI
.LowerOperation(Result
, DAG
);
1462 case TargetLowering::Legal
:
1465 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1466 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1467 return Result
.getValue(Op
.getResNo());
1469 case ISD::Constant
: {
1470 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Node
);
1472 TLI
.getOperationAction(ISD::Constant
, CN
->getValueType(0));
1474 // We know we don't need to expand constants here, constants only have one
1475 // value and we check that it is fine above.
1477 if (opAction
== TargetLowering::Custom
) {
1478 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
1484 case ISD::ConstantFP
: {
1485 // Spill FP immediates to the constant pool if the target cannot directly
1486 // codegen them. Targets often have some immediate values that can be
1487 // efficiently generated into an FP register without a load. We explicitly
1488 // leave these constants as ConstantFP nodes for the target to deal with.
1489 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Node
);
1491 switch (TLI
.getOperationAction(ISD::ConstantFP
, CFP
->getValueType(0))) {
1492 default: assert(0 && "This action is not supported yet!");
1493 case TargetLowering::Legal
:
1495 case TargetLowering::Custom
:
1496 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1497 if (Tmp3
.getNode()) {
1502 case TargetLowering::Expand
: {
1503 // Check to see if this FP immediate is already legal.
1504 bool isLegal
= false;
1505 for (TargetLowering::legal_fpimm_iterator I
= TLI
.legal_fpimm_begin(),
1506 E
= TLI
.legal_fpimm_end(); I
!= E
; ++I
) {
1507 if (CFP
->isExactlyValue(*I
)) {
1512 // If this is a legal constant, turn it into a TargetConstantFP node.
1515 Result
= ExpandConstantFP(CFP
, true, DAG
, TLI
);
1520 case ISD::TokenFactor
:
1521 if (Node
->getNumOperands() == 2) {
1522 Tmp1
= LegalizeOp(Node
->getOperand(0));
1523 Tmp2
= LegalizeOp(Node
->getOperand(1));
1524 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1525 } else if (Node
->getNumOperands() == 3) {
1526 Tmp1
= LegalizeOp(Node
->getOperand(0));
1527 Tmp2
= LegalizeOp(Node
->getOperand(1));
1528 Tmp3
= LegalizeOp(Node
->getOperand(2));
1529 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
1531 SmallVector
<SDValue
, 8> Ops
;
1532 // Legalize the operands.
1533 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
1534 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
1535 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1539 case ISD::FORMAL_ARGUMENTS
:
1541 // The only option for this is to custom lower it.
1542 Tmp3
= TLI
.LowerOperation(Result
.getValue(0), DAG
);
1543 assert(Tmp3
.getNode() && "Target didn't custom lower this node!");
1544 // A call within a calling sequence must be legalized to something
1545 // other than the normal CALLSEQ_END. Violating this gets Legalize
1546 // into an infinite loop.
1547 assert ((!IsLegalizingCall
||
1548 Node
->getOpcode() != ISD::CALL
||
1549 Tmp3
.getNode()->getOpcode() != ISD::CALLSEQ_END
) &&
1550 "Nested CALLSEQ_START..CALLSEQ_END not supported.");
1552 // The number of incoming and outgoing values should match; unless the final
1553 // outgoing value is a flag.
1554 assert((Tmp3
.getNode()->getNumValues() == Result
.getNode()->getNumValues() ||
1555 (Tmp3
.getNode()->getNumValues() == Result
.getNode()->getNumValues() + 1 &&
1556 Tmp3
.getNode()->getValueType(Tmp3
.getNode()->getNumValues() - 1) ==
1558 "Lowering call/formal_arguments produced unexpected # results!");
1560 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
1561 // remember that we legalized all of them, so it doesn't get relegalized.
1562 for (unsigned i
= 0, e
= Tmp3
.getNode()->getNumValues(); i
!= e
; ++i
) {
1563 if (Tmp3
.getNode()->getValueType(i
) == MVT::Flag
)
1565 Tmp1
= LegalizeOp(Tmp3
.getValue(i
));
1566 if (Op
.getResNo() == i
)
1568 AddLegalizedOperand(SDValue(Node
, i
), Tmp1
);
1571 case ISD::BUILD_VECTOR
:
1572 switch (TLI
.getOperationAction(ISD::BUILD_VECTOR
, Node
->getValueType(0))) {
1573 default: assert(0 && "This action is not supported yet!");
1574 case TargetLowering::Custom
:
1575 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1576 if (Tmp3
.getNode()) {
1581 case TargetLowering::Expand
:
1582 Result
= ExpandBUILD_VECTOR(Result
.getNode());
1586 case ISD::INSERT_VECTOR_ELT
:
1587 Tmp1
= LegalizeOp(Node
->getOperand(0)); // InVec
1588 Tmp3
= LegalizeOp(Node
->getOperand(2)); // InEltNo
1590 // The type of the value to insert may not be legal, even though the vector
1591 // type is legal. Legalize/Promote accordingly. We do not handle Expand
1593 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
1594 default: assert(0 && "Cannot expand insert element operand");
1595 case Legal
: Tmp2
= LegalizeOp(Node
->getOperand(1)); break;
1596 case Promote
: Tmp2
= PromoteOp(Node
->getOperand(1)); break;
1598 // FIXME: An alternative would be to check to see if the target is not
1599 // going to custom lower this operation, we could bitcast to half elt
1600 // width and perform two inserts at that width, if that is legal.
1601 Tmp2
= Node
->getOperand(1);
1604 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
1606 switch (TLI
.getOperationAction(ISD::INSERT_VECTOR_ELT
,
1607 Node
->getValueType(0))) {
1608 default: assert(0 && "This action is not supported yet!");
1609 case TargetLowering::Legal
:
1611 case TargetLowering::Custom
:
1612 Tmp4
= TLI
.LowerOperation(Result
, DAG
);
1613 if (Tmp4
.getNode()) {
1618 case TargetLowering::Promote
:
1619 // Fall thru for vector case
1620 case TargetLowering::Expand
: {
1621 // If the insert index is a constant, codegen this as a scalar_to_vector,
1622 // then a shuffle that inserts it into the right position in the vector.
1623 if (ConstantSDNode
*InsertPos
= dyn_cast
<ConstantSDNode
>(Tmp3
)) {
1624 // SCALAR_TO_VECTOR requires that the type of the value being inserted
1625 // match the element type of the vector being created, except for
1626 // integers in which case the inserted value can be over width.
1627 MVT EltVT
= Op
.getValueType().getVectorElementType();
1628 if (Tmp2
.getValueType() == EltVT
||
1629 (EltVT
.isInteger() && Tmp2
.getValueType().bitsGE(EltVT
))) {
1630 SDValue ScVec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
1631 Tmp1
.getValueType(), Tmp2
);
1633 unsigned NumElts
= Tmp1
.getValueType().getVectorNumElements();
1634 // We generate a shuffle of InVec and ScVec, so the shuffle mask
1635 // should be 0,1,2,3,4,5... with the appropriate element replaced with
1636 // elt 0 of the RHS.
1637 SmallVector
<int, 8> ShufOps
;
1638 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1639 ShufOps
.push_back(i
!= InsertPos
->getZExtValue() ? i
: NumElts
);
1641 Result
= DAG
.getVectorShuffle(Tmp1
.getValueType(), dl
, Tmp1
, ScVec
,
1643 Result
= LegalizeOp(Result
);
1647 Result
= PerformInsertVectorEltInMemory(Tmp1
, Tmp2
, Tmp3
, dl
);
1652 case ISD::SCALAR_TO_VECTOR
:
1653 if (!TLI
.isTypeLegal(Node
->getOperand(0).getValueType())) {
1654 Result
= LegalizeOp(ExpandSCALAR_TO_VECTOR(Node
));
1658 Tmp1
= LegalizeOp(Node
->getOperand(0)); // InVal
1659 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
1660 switch (TLI
.getOperationAction(ISD::SCALAR_TO_VECTOR
,
1661 Node
->getValueType(0))) {
1662 default: assert(0 && "This action is not supported yet!");
1663 case TargetLowering::Legal
:
1665 case TargetLowering::Custom
:
1666 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1667 if (Tmp3
.getNode()) {
1672 case TargetLowering::Expand
:
1673 Result
= LegalizeOp(ExpandSCALAR_TO_VECTOR(Node
));
1677 case ISD::VECTOR_SHUFFLE
: {
1678 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the input vectors,
1679 Tmp2
= LegalizeOp(Node
->getOperand(1)); // but not the shuffle mask.
1680 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1681 MVT VT
= Result
.getValueType();
1683 // Copy the Mask to a local SmallVector for use with isShuffleMaskLegal.
1684 SmallVector
<int, 8> Mask
;
1685 cast
<ShuffleVectorSDNode
>(Result
)->getMask(Mask
);
1687 // Allow targets to custom lower the SHUFFLEs they support.
1688 switch (TLI
.getOperationAction(ISD::VECTOR_SHUFFLE
, VT
)) {
1689 default: assert(0 && "Unknown operation action!");
1690 case TargetLowering::Legal
:
1691 assert(TLI
.isShuffleMaskLegal(Mask
, VT
) &&
1692 "vector shuffle should not be created if not legal!");
1694 case TargetLowering::Custom
:
1695 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1696 if (Tmp3
.getNode()) {
1701 case TargetLowering::Expand
: {
1702 MVT EltVT
= VT
.getVectorElementType();
1703 unsigned NumElems
= VT
.getVectorNumElements();
1704 SmallVector
<SDValue
, 8> Ops
;
1705 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
1707 Ops
.push_back(DAG
.getUNDEF(EltVT
));
1710 unsigned Idx
= Mask
[i
];
1712 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Tmp1
,
1713 DAG
.getIntPtrConstant(Idx
)));
1715 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Tmp2
,
1716 DAG
.getIntPtrConstant(Idx
- NumElems
)));
1718 Result
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &Ops
[0], Ops
.size());
1721 case TargetLowering::Promote
: {
1722 // Change base type to a different vector type.
1723 MVT OVT
= Node
->getValueType(0);
1724 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
1726 // Cast the two input vectors.
1727 Tmp1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Tmp1
);
1728 Tmp2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Tmp2
);
1730 // Convert the shuffle mask to the right # elements.
1731 Result
= ShuffleWithNarrowerEltType(NVT
, OVT
, dl
, Tmp1
, Tmp2
, Mask
);
1732 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, OVT
, Result
);
1738 case ISD::EXTRACT_VECTOR_ELT
:
1739 Tmp1
= Node
->getOperand(0);
1740 Tmp2
= LegalizeOp(Node
->getOperand(1));
1741 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1742 Result
= ExpandEXTRACT_VECTOR_ELT(Result
);
1745 case ISD::EXTRACT_SUBVECTOR
:
1746 Tmp1
= Node
->getOperand(0);
1747 Tmp2
= LegalizeOp(Node
->getOperand(1));
1748 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1749 Result
= ExpandEXTRACT_SUBVECTOR(Result
);
1752 case ISD::CONCAT_VECTORS
: {
1753 // Legalize the operands.
1754 SmallVector
<SDValue
, 8> Ops
;
1755 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
1756 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
1757 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1759 switch (TLI
.getOperationAction(ISD::CONCAT_VECTORS
,
1760 Node
->getValueType(0))) {
1761 default: assert(0 && "Unknown operation action!");
1762 case TargetLowering::Legal
:
1764 case TargetLowering::Custom
:
1765 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1766 if (Tmp3
.getNode()) {
1771 case TargetLowering::Expand
: {
1772 // Use extract/insert/build vector for now. We might try to be
1773 // more clever later.
1774 MVT PtrVT
= TLI
.getPointerTy();
1775 SmallVector
<SDValue
, 8> Ops
;
1776 unsigned NumOperands
= Node
->getNumOperands();
1777 for (unsigned i
=0; i
< NumOperands
; ++i
) {
1778 SDValue SubOp
= Node
->getOperand(i
);
1779 MVT VVT
= SubOp
.getNode()->getValueType(0);
1780 MVT EltVT
= VVT
.getVectorElementType();
1781 unsigned NumSubElem
= VVT
.getVectorNumElements();
1782 for (unsigned j
=0; j
< NumSubElem
; ++j
) {
1783 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, SubOp
,
1784 DAG
.getConstant(j
, PtrVT
)));
1787 return LegalizeOp(DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
1788 Node
->getValueType(0),
1789 &Ops
[0], Ops
.size()));
1795 case ISD::CALLSEQ_START
: {
1796 SDNode
*CallEnd
= FindCallEndFromCallStart(Node
);
1798 // Recursively Legalize all of the inputs of the call end that do not lead
1799 // to this call start. This ensures that any libcalls that need be inserted
1800 // are inserted *before* the CALLSEQ_START.
1801 IsLegalizingCallArgs
= true;
1802 {SmallPtrSet
<SDNode
*, 32> NodesLeadingTo
;
1803 for (unsigned i
= 0, e
= CallEnd
->getNumOperands(); i
!= e
; ++i
)
1804 LegalizeAllNodesNotLeadingTo(CallEnd
->getOperand(i
).getNode(), Node
,
1807 IsLegalizingCallArgs
= false;
1809 // Now that we legalized all of the inputs (which may have inserted
1810 // libcalls) create the new CALLSEQ_START node.
1811 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1813 // Merge in the last call, to ensure that this call start after the last
1815 if (LastCALLSEQ_END
.getOpcode() != ISD::EntryToken
) {
1816 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1817 Tmp1
, LastCALLSEQ_END
);
1818 Tmp1
= LegalizeOp(Tmp1
);
1821 // Do not try to legalize the target-specific arguments (#1+).
1822 if (Tmp1
!= Node
->getOperand(0)) {
1823 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1825 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1828 // Remember that the CALLSEQ_START is legalized.
1829 AddLegalizedOperand(Op
.getValue(0), Result
);
1830 if (Node
->getNumValues() == 2) // If this has a flag result, remember it.
1831 AddLegalizedOperand(Op
.getValue(1), Result
.getValue(1));
1833 // Now that the callseq_start and all of the non-call nodes above this call
1834 // sequence have been legalized, legalize the call itself. During this
1835 // process, no libcalls can/will be inserted, guaranteeing that no calls
1837 assert(!IsLegalizingCall
&& "Inconsistent sequentialization of calls!");
1838 // Note that we are selecting this call!
1839 LastCALLSEQ_END
= SDValue(CallEnd
, 0);
1840 IsLegalizingCall
= true;
1842 // Legalize the call, starting from the CALLSEQ_END.
1843 LegalizeOp(LastCALLSEQ_END
);
1844 assert(!IsLegalizingCall
&& "CALLSEQ_END should have cleared this!");
1847 case ISD::CALLSEQ_END
:
1848 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1849 // will cause this node to be legalized as well as handling libcalls right.
1850 if (LastCALLSEQ_END
.getNode() != Node
) {
1851 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node
), 0));
1852 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
1853 assert(I
!= LegalizedNodes
.end() &&
1854 "Legalizing the call start should have legalized this node!");
1858 // Otherwise, the call start has been legalized and everything is going
1859 // according to plan. Just legalize ourselves normally here.
1860 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1861 // Do not try to legalize the target-specific arguments (#1+), except for
1862 // an optional flag input.
1863 if (Node
->getOperand(Node
->getNumOperands()-1).getValueType() != MVT::Flag
){
1864 if (Tmp1
!= Node
->getOperand(0)) {
1865 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1867 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1870 Tmp2
= LegalizeOp(Node
->getOperand(Node
->getNumOperands()-1));
1871 if (Tmp1
!= Node
->getOperand(0) ||
1872 Tmp2
!= Node
->getOperand(Node
->getNumOperands()-1)) {
1873 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1876 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1879 assert(IsLegalizingCall
&& "Call sequence imbalance between start/end?");
1880 // This finishes up call legalization.
1881 IsLegalizingCall
= false;
1883 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1884 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1885 if (Node
->getNumValues() == 2)
1886 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1887 return Result
.getValue(Op
.getResNo());
1888 case ISD::DYNAMIC_STACKALLOC
: {
1889 MVT VT
= Node
->getValueType(0);
1890 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1891 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the size.
1892 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the alignment.
1893 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
1895 Tmp1
= Result
.getValue(0);
1896 Tmp2
= Result
.getValue(1);
1897 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1898 default: assert(0 && "This action is not supported yet!");
1899 case TargetLowering::Expand
: {
1900 unsigned SPReg
= TLI
.getStackPointerRegisterToSaveRestore();
1901 assert(SPReg
&& "Target cannot require DYNAMIC_STACKALLOC expansion and"
1902 " not tell us which reg is the stack pointer!");
1903 SDValue Chain
= Tmp1
.getOperand(0);
1905 // Chain the dynamic stack allocation so that it doesn't modify the stack
1906 // pointer when other instructions are using the stack.
1907 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
1909 SDValue Size
= Tmp2
.getOperand(1);
1910 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, SPReg
, VT
);
1911 Chain
= SP
.getValue(1);
1912 unsigned Align
= cast
<ConstantSDNode
>(Tmp3
)->getZExtValue();
1913 unsigned StackAlign
=
1914 TLI
.getTargetMachine().getFrameInfo()->getStackAlignment();
1915 if (Align
> StackAlign
)
1916 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
,
1917 DAG
.getConstant(-(uint64_t)Align
, VT
));
1918 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, SP
, Size
); // Value
1919 Chain
= DAG
.getCopyToReg(Chain
, dl
, SPReg
, Tmp1
); // Output chain
1921 Tmp2
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, true),
1922 DAG
.getIntPtrConstant(0, true), SDValue());
1924 Tmp1
= LegalizeOp(Tmp1
);
1925 Tmp2
= LegalizeOp(Tmp2
);
1928 case TargetLowering::Custom
:
1929 Tmp3
= TLI
.LowerOperation(Tmp1
, DAG
);
1930 if (Tmp3
.getNode()) {
1931 Tmp1
= LegalizeOp(Tmp3
);
1932 Tmp2
= LegalizeOp(Tmp3
.getValue(1));
1935 case TargetLowering::Legal
:
1938 // Since this op produce two values, make sure to remember that we
1939 // legalized both of them.
1940 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
1941 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
1942 return Op
.getResNo() ? Tmp2
: Tmp1
;
1944 case ISD::INLINEASM
: {
1945 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1946 bool Changed
= false;
1947 // Legalize all of the operands of the inline asm, in case they are nodes
1948 // that need to be expanded or something. Note we skip the asm string and
1949 // all of the TargetConstant flags.
1950 SDValue Op
= LegalizeOp(Ops
[0]);
1951 Changed
= Op
!= Ops
[0];
1954 bool HasInFlag
= Ops
.back().getValueType() == MVT::Flag
;
1955 for (unsigned i
= 2, e
= Ops
.size()-HasInFlag
; i
< e
; ) {
1956 unsigned NumVals
= InlineAsm::
1957 getNumOperandRegisters(cast
<ConstantSDNode
>(Ops
[i
])->getZExtValue());
1958 for (++i
; NumVals
; ++i
, --NumVals
) {
1959 SDValue Op
= LegalizeOp(Ops
[i
]);
1968 Op
= LegalizeOp(Ops
.back());
1969 Changed
|= Op
!= Ops
.back();
1974 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1976 // INLINE asm returns a chain and flag, make sure to add both to the map.
1977 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1978 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1979 return Result
.getValue(Op
.getResNo());
1982 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1983 // Ensure that libcalls are emitted before a branch.
1984 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
1985 Tmp1
= LegalizeOp(Tmp1
);
1986 LastCALLSEQ_END
= DAG
.getEntryNode();
1988 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
1991 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1992 // Ensure that libcalls are emitted before a branch.
1993 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
1994 Tmp1
= LegalizeOp(Tmp1
);
1995 LastCALLSEQ_END
= DAG
.getEntryNode();
1997 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
1998 default: assert(0 && "Indirect target must be legal type (pointer)!");
2000 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the condition.
2003 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
2006 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2007 // Ensure that libcalls are emitted before a branch.
2008 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
2009 Tmp1
= LegalizeOp(Tmp1
);
2010 LastCALLSEQ_END
= DAG
.getEntryNode();
2012 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the jumptable node.
2013 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
2015 switch (TLI
.getOperationAction(ISD::BR_JT
, MVT::Other
)) {
2016 default: assert(0 && "This action is not supported yet!");
2017 case TargetLowering::Legal
: break;
2018 case TargetLowering::Custom
:
2019 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2020 if (Tmp1
.getNode()) Result
= Tmp1
;
2022 case TargetLowering::Expand
: {
2023 SDValue Chain
= Result
.getOperand(0);
2024 SDValue Table
= Result
.getOperand(1);
2025 SDValue Index
= Result
.getOperand(2);
2027 MVT PTy
= TLI
.getPointerTy();
2028 MachineFunction
&MF
= DAG
.getMachineFunction();
2029 unsigned EntrySize
= MF
.getJumpTableInfo()->getEntrySize();
2030 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
,
2031 Index
, DAG
.getConstant(EntrySize
, PTy
));
2032 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Index
, Table
);
2034 MVT MemVT
= MVT::getIntegerVT(EntrySize
* 8);
2035 SDValue LD
= DAG
.getExtLoad(ISD::SEXTLOAD
, dl
, PTy
, Chain
, Addr
,
2036 PseudoSourceValue::getJumpTable(), 0, MemVT
);
2038 if (TLI
.getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
2039 // For PIC, the sequence is:
2040 // BRIND(load(Jumptable + index) + RelocBase)
2041 // RelocBase can be JumpTable, GOT or some sort of global base.
2042 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Addr
,
2043 TLI
.getPICJumpTableRelocBase(Table
, DAG
));
2045 Result
= DAG
.getNode(ISD::BRIND
, dl
, MVT::Other
, LD
.getValue(1), Addr
);
2050 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2051 // Ensure that libcalls are emitted before a return.
2052 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
2053 Tmp1
= LegalizeOp(Tmp1
);
2054 LastCALLSEQ_END
= DAG
.getEntryNode();
2056 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
2057 case Expand
: assert(0 && "It's impossible to expand bools");
2059 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the condition.
2062 Tmp2
= PromoteOp(Node
->getOperand(1)); // Promote the condition.
2064 // The top bits of the promoted condition are not necessarily zero, ensure
2065 // that the value is properly zero extended.
2066 unsigned BitWidth
= Tmp2
.getValueSizeInBits();
2067 if (!DAG
.MaskedValueIsZero(Tmp2
,
2068 APInt::getHighBitsSet(BitWidth
, BitWidth
-1)))
2069 Tmp2
= DAG
.getZeroExtendInReg(Tmp2
, dl
, MVT::i1
);
2074 // Basic block destination (Op#2) is always legal.
2075 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
2077 switch (TLI
.getOperationAction(ISD::BRCOND
, MVT::Other
)) {
2078 default: assert(0 && "This action is not supported yet!");
2079 case TargetLowering::Legal
: break;
2080 case TargetLowering::Custom
:
2081 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2082 if (Tmp1
.getNode()) Result
= Tmp1
;
2084 case TargetLowering::Expand
:
2085 // Expand brcond's setcc into its constituent parts and create a BR_CC
2087 if (Tmp2
.getOpcode() == ISD::SETCC
) {
2088 Result
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
,
2089 Tmp1
, Tmp2
.getOperand(2),
2090 Tmp2
.getOperand(0), Tmp2
.getOperand(1),
2091 Node
->getOperand(2));
2093 Result
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
, Tmp1
,
2094 DAG
.getCondCode(ISD::SETNE
), Tmp2
,
2095 DAG
.getConstant(0, Tmp2
.getValueType()),
2096 Node
->getOperand(2));
2102 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2103 // Ensure that libcalls are emitted before a branch.
2104 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
2105 Tmp1
= LegalizeOp(Tmp1
);
2106 Tmp2
= Node
->getOperand(2); // LHS
2107 Tmp3
= Node
->getOperand(3); // RHS
2108 Tmp4
= Node
->getOperand(1); // CC
2110 LegalizeSetCC(TLI
.getSetCCResultType(Tmp2
.getValueType()),
2111 Tmp2
, Tmp3
, Tmp4
, dl
);
2112 LastCALLSEQ_END
= DAG
.getEntryNode();
2114 // If we didn't get both a LHS and RHS back from LegalizeSetCC,
2115 // the LHS is a legal SETCC itself. In this case, we need to compare
2116 // the result against zero to select between true and false values.
2117 if (Tmp3
.getNode() == 0) {
2118 Tmp3
= DAG
.getConstant(0, Tmp2
.getValueType());
2119 Tmp4
= DAG
.getCondCode(ISD::SETNE
);
2122 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp4
, Tmp2
, Tmp3
,
2123 Node
->getOperand(4));
2125 switch (TLI
.getOperationAction(ISD::BR_CC
, Tmp3
.getValueType())) {
2126 default: assert(0 && "Unexpected action for BR_CC!");
2127 case TargetLowering::Legal
: break;
2128 case TargetLowering::Custom
:
2129 Tmp4
= TLI
.LowerOperation(Result
, DAG
);
2130 if (Tmp4
.getNode()) Result
= Tmp4
;
2135 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
2136 Tmp1
= LegalizeOp(LD
->getChain()); // Legalize the chain.
2137 Tmp2
= LegalizeOp(LD
->getBasePtr()); // Legalize the base pointer.
2139 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2140 if (ExtType
== ISD::NON_EXTLOAD
) {
2141 MVT VT
= Node
->getValueType(0);
2142 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, LD
->getOffset());
2143 Tmp3
= Result
.getValue(0);
2144 Tmp4
= Result
.getValue(1);
2146 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
2147 default: assert(0 && "This action is not supported yet!");
2148 case TargetLowering::Legal
:
2149 // If this is an unaligned load and the target doesn't support it,
2151 if (!TLI
.allowsUnalignedMemoryAccesses()) {
2152 unsigned ABIAlignment
= TLI
.getTargetData()->
2153 getABITypeAlignment(LD
->getMemoryVT().getTypeForMVT());
2154 if (LD
->getAlignment() < ABIAlignment
){
2155 Result
= ExpandUnalignedLoad(cast
<LoadSDNode
>(Result
.getNode()), DAG
,
2157 Tmp3
= Result
.getOperand(0);
2158 Tmp4
= Result
.getOperand(1);
2159 Tmp3
= LegalizeOp(Tmp3
);
2160 Tmp4
= LegalizeOp(Tmp4
);
2164 case TargetLowering::Custom
:
2165 Tmp1
= TLI
.LowerOperation(Tmp3
, DAG
);
2166 if (Tmp1
.getNode()) {
2167 Tmp3
= LegalizeOp(Tmp1
);
2168 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
2171 case TargetLowering::Promote
: {
2172 // Only promote a load of vector type to another.
2173 assert(VT
.isVector() && "Cannot promote this load!");
2174 // Change base type to a different vector type.
2175 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
2177 Tmp1
= DAG
.getLoad(NVT
, dl
, Tmp1
, Tmp2
, LD
->getSrcValue(),
2178 LD
->getSrcValueOffset(),
2179 LD
->isVolatile(), LD
->getAlignment());
2180 Tmp3
= LegalizeOp(DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Tmp1
));
2181 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
2185 // Since loads produce two values, make sure to remember that we
2186 // legalized both of them.
2187 AddLegalizedOperand(SDValue(Node
, 0), Tmp3
);
2188 AddLegalizedOperand(SDValue(Node
, 1), Tmp4
);
2189 return Op
.getResNo() ? Tmp4
: Tmp3
;
2191 MVT SrcVT
= LD
->getMemoryVT();
2192 unsigned SrcWidth
= SrcVT
.getSizeInBits();
2193 int SVOffset
= LD
->getSrcValueOffset();
2194 unsigned Alignment
= LD
->getAlignment();
2195 bool isVolatile
= LD
->isVolatile();
2197 if (SrcWidth
!= SrcVT
.getStoreSizeInBits() &&
2198 // Some targets pretend to have an i1 loading operation, and actually
2199 // load an i8. This trick is correct for ZEXTLOAD because the top 7
2200 // bits are guaranteed to be zero; it helps the optimizers understand
2201 // that these bits are zero. It is also useful for EXTLOAD, since it
2202 // tells the optimizers that those bits are undefined. It would be
2203 // nice to have an effective generic way of getting these benefits...
2204 // Until such a way is found, don't insist on promoting i1 here.
2205 (SrcVT
!= MVT::i1
||
2206 TLI
.getLoadExtAction(ExtType
, MVT::i1
) == TargetLowering::Promote
)) {
2207 // Promote to a byte-sized load if not loading an integral number of
2208 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2209 unsigned NewWidth
= SrcVT
.getStoreSizeInBits();
2210 MVT NVT
= MVT::getIntegerVT(NewWidth
);
2213 // The extra bits are guaranteed to be zero, since we stored them that
2214 // way. A zext load from NVT thus automatically gives zext from SrcVT.
2216 ISD::LoadExtType NewExtType
=
2217 ExtType
== ISD::ZEXTLOAD
? ISD::ZEXTLOAD
: ISD::EXTLOAD
;
2219 Result
= DAG
.getExtLoad(NewExtType
, dl
, Node
->getValueType(0),
2220 Tmp1
, Tmp2
, LD
->getSrcValue(), SVOffset
,
2221 NVT
, isVolatile
, Alignment
);
2223 Ch
= Result
.getValue(1); // The chain.
2225 if (ExtType
== ISD::SEXTLOAD
)
2226 // Having the top bits zero doesn't help when sign extending.
2227 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
2228 Result
.getValueType(),
2229 Result
, DAG
.getValueType(SrcVT
));
2230 else if (ExtType
== ISD::ZEXTLOAD
|| NVT
== Result
.getValueType())
2231 // All the top bits are guaranteed to be zero - inform the optimizers.
2232 Result
= DAG
.getNode(ISD::AssertZext
, dl
,
2233 Result
.getValueType(), Result
,
2234 DAG
.getValueType(SrcVT
));
2236 Tmp1
= LegalizeOp(Result
);
2237 Tmp2
= LegalizeOp(Ch
);
2238 } else if (SrcWidth
& (SrcWidth
- 1)) {
2239 // If not loading a power-of-2 number of bits, expand as two loads.
2240 assert(SrcVT
.isExtended() && !SrcVT
.isVector() &&
2241 "Unsupported extload!");
2242 unsigned RoundWidth
= 1 << Log2_32(SrcWidth
);
2243 assert(RoundWidth
< SrcWidth
);
2244 unsigned ExtraWidth
= SrcWidth
- RoundWidth
;
2245 assert(ExtraWidth
< RoundWidth
);
2246 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
2247 "Load size not an integral number of bytes!");
2248 MVT RoundVT
= MVT::getIntegerVT(RoundWidth
);
2249 MVT ExtraVT
= MVT::getIntegerVT(ExtraWidth
);
2251 unsigned IncrementSize
;
2253 if (TLI
.isLittleEndian()) {
2254 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
2255 // Load the bottom RoundWidth bits.
2256 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
,
2257 Node
->getValueType(0), Tmp1
, Tmp2
,
2258 LD
->getSrcValue(), SVOffset
, RoundVT
, isVolatile
,
2261 // Load the remaining ExtraWidth bits.
2262 IncrementSize
= RoundWidth
/ 8;
2263 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2264 DAG
.getIntPtrConstant(IncrementSize
));
2265 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Tmp1
, Tmp2
,
2266 LD
->getSrcValue(), SVOffset
+ IncrementSize
,
2267 ExtraVT
, isVolatile
,
2268 MinAlign(Alignment
, IncrementSize
));
2270 // Build a factor node to remember that this load is independent of the
2272 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
2275 // Move the top bits to the right place.
2276 Hi
= DAG
.getNode(ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
2277 DAG
.getConstant(RoundWidth
, TLI
.getShiftAmountTy()));
2279 // Join the hi and lo parts.
2280 Result
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
2282 // Big endian - avoid unaligned loads.
2283 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
2284 // Load the top RoundWidth bits.
2285 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Tmp1
, Tmp2
,
2286 LD
->getSrcValue(), SVOffset
, RoundVT
, isVolatile
,
2289 // Load the remaining ExtraWidth bits.
2290 IncrementSize
= RoundWidth
/ 8;
2291 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2292 DAG
.getIntPtrConstant(IncrementSize
));
2293 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
,
2294 Node
->getValueType(0), Tmp1
, Tmp2
,
2295 LD
->getSrcValue(), SVOffset
+ IncrementSize
,
2296 ExtraVT
, isVolatile
,
2297 MinAlign(Alignment
, IncrementSize
));
2299 // Build a factor node to remember that this load is independent of the
2301 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
2304 // Move the top bits to the right place.
2305 Hi
= DAG
.getNode(ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
2306 DAG
.getConstant(ExtraWidth
, TLI
.getShiftAmountTy()));
2308 // Join the hi and lo parts.
2309 Result
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
2312 Tmp1
= LegalizeOp(Result
);
2313 Tmp2
= LegalizeOp(Ch
);
2315 switch (TLI
.getLoadExtAction(ExtType
, SrcVT
)) {
2316 default: assert(0 && "This action is not supported yet!");
2317 case TargetLowering::Custom
:
2320 case TargetLowering::Legal
:
2321 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, LD
->getOffset());
2322 Tmp1
= Result
.getValue(0);
2323 Tmp2
= Result
.getValue(1);
2326 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
2327 if (Tmp3
.getNode()) {
2328 Tmp1
= LegalizeOp(Tmp3
);
2329 Tmp2
= LegalizeOp(Tmp3
.getValue(1));
2332 // If this is an unaligned load and the target doesn't support it,
2334 if (!TLI
.allowsUnalignedMemoryAccesses()) {
2335 unsigned ABIAlignment
= TLI
.getTargetData()->
2336 getABITypeAlignment(LD
->getMemoryVT().getTypeForMVT());
2337 if (LD
->getAlignment() < ABIAlignment
){
2338 Result
= ExpandUnalignedLoad(cast
<LoadSDNode
>(Result
.getNode()), DAG
,
2340 Tmp1
= Result
.getOperand(0);
2341 Tmp2
= Result
.getOperand(1);
2342 Tmp1
= LegalizeOp(Tmp1
);
2343 Tmp2
= LegalizeOp(Tmp2
);
2348 case TargetLowering::Expand
:
2349 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
2350 if (SrcVT
== MVT::f32
&& Node
->getValueType(0) == MVT::f64
) {
2351 SDValue Load
= DAG
.getLoad(SrcVT
, dl
, Tmp1
, Tmp2
, LD
->getSrcValue(),
2352 LD
->getSrcValueOffset(),
2353 LD
->isVolatile(), LD
->getAlignment());
2354 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
,
2355 Node
->getValueType(0), Load
);
2356 Tmp1
= LegalizeOp(Result
); // Relegalize new nodes.
2357 Tmp2
= LegalizeOp(Load
.getValue(1));
2360 assert(ExtType
!= ISD::EXTLOAD
&&"EXTLOAD should always be supported!");
2361 // Turn the unsupported load into an EXTLOAD followed by an explicit
2362 // zero/sign extend inreg.
2363 Result
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, Node
->getValueType(0),
2364 Tmp1
, Tmp2
, LD
->getSrcValue(),
2365 LD
->getSrcValueOffset(), SrcVT
,
2366 LD
->isVolatile(), LD
->getAlignment());
2368 if (ExtType
== ISD::SEXTLOAD
)
2369 ValRes
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
2370 Result
.getValueType(),
2371 Result
, DAG
.getValueType(SrcVT
));
2373 ValRes
= DAG
.getZeroExtendInReg(Result
, dl
, SrcVT
);
2374 Tmp1
= LegalizeOp(ValRes
); // Relegalize new nodes.
2375 Tmp2
= LegalizeOp(Result
.getValue(1)); // Relegalize new nodes.
2380 // Since loads produce two values, make sure to remember that we legalized
2382 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
2383 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
2384 return Op
.getResNo() ? Tmp2
: Tmp1
;
2387 case ISD::EXTRACT_ELEMENT
: {
2388 MVT OpTy
= Node
->getOperand(0).getValueType();
2389 switch (getTypeAction(OpTy
)) {
2390 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!");
2392 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
2394 Result
= DAG
.getNode(ISD::SRL
, dl
, OpTy
, Node
->getOperand(0),
2395 DAG
.getConstant(OpTy
.getSizeInBits()/2,
2396 TLI
.getShiftAmountTy()));
2397 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), Result
);
2400 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0),
2401 Node
->getOperand(0));
2405 // Get both the low and high parts.
2406 ExpandOp(Node
->getOperand(0), Tmp1
, Tmp2
);
2407 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue())
2408 Result
= Tmp2
; // 1 -> Hi
2410 Result
= Tmp1
; // 0 -> Lo
2416 case ISD::CopyToReg
:
2417 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2419 assert(isTypeLegal(Node
->getOperand(2).getValueType()) &&
2420 "Register type must be legal!");
2421 // Legalize the incoming value (must be a legal type).
2422 Tmp2
= LegalizeOp(Node
->getOperand(2));
2423 if (Node
->getNumValues() == 1) {
2424 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1), Tmp2
);
2426 assert(Node
->getNumValues() == 2 && "Unknown CopyToReg");
2427 if (Node
->getNumOperands() == 4) {
2428 Tmp3
= LegalizeOp(Node
->getOperand(3));
2429 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1), Tmp2
,
2432 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1),Tmp2
);
2435 // Since this produces two values, make sure to remember that we legalized
2437 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
2438 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
2444 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2446 // Ensure that libcalls are emitted before a return.
2447 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
2448 Tmp1
= LegalizeOp(Tmp1
);
2449 LastCALLSEQ_END
= DAG
.getEntryNode();
2451 switch (Node
->getNumOperands()) {
2453 Tmp2
= Node
->getOperand(1);
2454 Tmp3
= Node
->getOperand(2); // Signness
2455 switch (getTypeAction(Tmp2
.getValueType())) {
2457 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, LegalizeOp(Tmp2
), Tmp3
);
2460 if (!Tmp2
.getValueType().isVector()) {
2462 ExpandOp(Tmp2
, Lo
, Hi
);
2464 // Big endian systems want the hi reg first.
2465 if (TLI
.isBigEndian())
2469 Result
= DAG
.getNode(ISD::RET
, dl
, MVT::Other
,
2470 Tmp1
, Lo
, Tmp3
, Hi
, Tmp3
);
2472 Result
= DAG
.getNode(ISD::RET
, dl
, MVT::Other
, Tmp1
, Lo
, Tmp3
);
2473 Result
= LegalizeOp(Result
);
2475 SDNode
*InVal
= Tmp2
.getNode();
2476 int InIx
= Tmp2
.getResNo();
2477 unsigned NumElems
= InVal
->getValueType(InIx
).getVectorNumElements();
2478 MVT EVT
= InVal
->getValueType(InIx
).getVectorElementType();
2480 // Figure out if there is a simple type corresponding to this Vector
2481 // type. If so, convert to the vector type.
2482 MVT TVT
= MVT::getVectorVT(EVT
, NumElems
);
2483 if (TLI
.isTypeLegal(TVT
)) {
2484 // Turn this into a return of the vector type.
2485 Tmp2
= LegalizeOp(Tmp2
);
2486 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
2487 } else if (NumElems
== 1) {
2488 // Turn this into a return of the scalar type.
2489 Tmp2
= ScalarizeVectorOp(Tmp2
);
2490 Tmp2
= LegalizeOp(Tmp2
);
2491 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
2493 // FIXME: Returns of gcc generic vectors smaller than a legal type
2494 // should be returned in integer registers!
2496 // The scalarized value type may not be legal, e.g. it might require
2497 // promotion or expansion. Relegalize the return.
2498 Result
= LegalizeOp(Result
);
2500 // FIXME: Returns of gcc generic vectors larger than a legal vector
2501 // type should be returned by reference!
2503 SplitVectorOp(Tmp2
, Lo
, Hi
);
2504 Result
= DAG
.getNode(ISD::RET
, dl
, MVT::Other
,
2505 Tmp1
, Lo
, Tmp3
, Hi
, Tmp3
);
2506 Result
= LegalizeOp(Result
);
2511 Tmp2
= PromoteOp(Node
->getOperand(1));
2512 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
2513 Result
= LegalizeOp(Result
);
2518 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
2520 default: { // ret <values>
2521 SmallVector
<SDValue
, 8> NewValues
;
2522 NewValues
.push_back(Tmp1
);
2523 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
< e
; i
+= 2)
2524 switch (getTypeAction(Node
->getOperand(i
).getValueType())) {
2526 NewValues
.push_back(LegalizeOp(Node
->getOperand(i
)));
2527 NewValues
.push_back(Node
->getOperand(i
+1));
2531 assert(!Node
->getOperand(i
).getValueType().isExtended() &&
2532 "FIXME: TODO: implement returning non-legal vector types!");
2533 ExpandOp(Node
->getOperand(i
), Lo
, Hi
);
2534 NewValues
.push_back(Lo
);
2535 NewValues
.push_back(Node
->getOperand(i
+1));
2537 NewValues
.push_back(Hi
);
2538 NewValues
.push_back(Node
->getOperand(i
+1));
2543 assert(0 && "Can't promote multiple return value yet!");
2546 if (NewValues
.size() == Node
->getNumOperands())
2547 Result
= DAG
.UpdateNodeOperands(Result
, &NewValues
[0],NewValues
.size());
2549 Result
= DAG
.getNode(ISD::RET
, dl
, MVT::Other
,
2550 &NewValues
[0], NewValues
.size());
2555 if (Result
.getOpcode() == ISD::RET
) {
2556 switch (TLI
.getOperationAction(Result
.getOpcode(), MVT::Other
)) {
2557 default: assert(0 && "This action is not supported yet!");
2558 case TargetLowering::Legal
: break;
2559 case TargetLowering::Custom
:
2560 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2561 if (Tmp1
.getNode()) Result
= Tmp1
;
2567 StoreSDNode
*ST
= cast
<StoreSDNode
>(Node
);
2568 Tmp1
= LegalizeOp(ST
->getChain()); // Legalize the chain.
2569 Tmp2
= LegalizeOp(ST
->getBasePtr()); // Legalize the pointer.
2570 int SVOffset
= ST
->getSrcValueOffset();
2571 unsigned Alignment
= ST
->getAlignment();
2572 bool isVolatile
= ST
->isVolatile();
2574 if (!ST
->isTruncatingStore()) {
2575 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
2576 // FIXME: We shouldn't do this for TargetConstantFP's.
2577 // FIXME: move this to the DAG Combiner! Note that we can't regress due
2578 // to phase ordering between legalized code and the dag combiner. This
2579 // probably means that we need to integrate dag combiner and legalizer
2581 // We generally can't do this one for long doubles.
2582 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(ST
->getValue())) {
2583 if (CFP
->getValueType(0) == MVT::f32
&&
2584 getTypeAction(MVT::i32
) == Legal
) {
2585 Tmp3
= DAG
.getConstant(CFP
->getValueAPF().
2586 bitcastToAPInt().zextOrTrunc(32),
2588 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2589 SVOffset
, isVolatile
, Alignment
);
2591 } else if (CFP
->getValueType(0) == MVT::f64
) {
2592 // If this target supports 64-bit registers, do a single 64-bit store.
2593 if (getTypeAction(MVT::i64
) == Legal
) {
2594 Tmp3
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
2595 zextOrTrunc(64), MVT::i64
);
2596 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2597 SVOffset
, isVolatile
, Alignment
);
2599 } else if (getTypeAction(MVT::i32
) == Legal
&& !ST
->isVolatile()) {
2600 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
2601 // stores. If the target supports neither 32- nor 64-bits, this
2602 // xform is certainly not worth it.
2603 const APInt
&IntVal
=CFP
->getValueAPF().bitcastToAPInt();
2604 SDValue Lo
= DAG
.getConstant(APInt(IntVal
).trunc(32), MVT::i32
);
2605 SDValue Hi
= DAG
.getConstant(IntVal
.lshr(32).trunc(32), MVT::i32
);
2606 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
2608 Lo
= DAG
.getStore(Tmp1
, dl
, Lo
, Tmp2
, ST
->getSrcValue(),
2609 SVOffset
, isVolatile
, Alignment
);
2610 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2611 DAG
.getIntPtrConstant(4));
2612 Hi
= DAG
.getStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(), SVOffset
+4,
2613 isVolatile
, MinAlign(Alignment
, 4U));
2615 Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
2621 switch (getTypeAction(ST
->getMemoryVT())) {
2623 Tmp3
= LegalizeOp(ST
->getValue());
2624 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp3
, Tmp2
,
2627 MVT VT
= Tmp3
.getValueType();
2628 switch (TLI
.getOperationAction(ISD::STORE
, VT
)) {
2629 default: assert(0 && "This action is not supported yet!");
2630 case TargetLowering::Legal
:
2631 // If this is an unaligned store and the target doesn't support it,
2633 if (!TLI
.allowsUnalignedMemoryAccesses()) {
2634 unsigned ABIAlignment
= TLI
.getTargetData()->
2635 getABITypeAlignment(ST
->getMemoryVT().getTypeForMVT());
2636 if (ST
->getAlignment() < ABIAlignment
)
2637 Result
= ExpandUnalignedStore(cast
<StoreSDNode
>(Result
.getNode()), DAG
,
2641 case TargetLowering::Custom
:
2642 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2643 if (Tmp1
.getNode()) Result
= Tmp1
;
2645 case TargetLowering::Promote
:
2646 assert(VT
.isVector() && "Unknown legal promote case!");
2647 Tmp3
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
2648 TLI
.getTypeToPromoteTo(ISD::STORE
, VT
), Tmp3
);
2649 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
,
2650 ST
->getSrcValue(), SVOffset
, isVolatile
,
2657 if (!ST
->getMemoryVT().isVector()) {
2658 // Truncate the value and store the result.
2659 Tmp3
= PromoteOp(ST
->getValue());
2660 Result
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2661 SVOffset
, ST
->getMemoryVT(),
2662 isVolatile
, Alignment
);
2665 // Fall thru to expand for vector
2667 unsigned IncrementSize
= 0;
2670 // If this is a vector type, then we have to calculate the increment as
2671 // the product of the element size in bytes, and the number of elements
2672 // in the high half of the vector.
2673 if (ST
->getValue().getValueType().isVector()) {
2674 SDNode
*InVal
= ST
->getValue().getNode();
2675 int InIx
= ST
->getValue().getResNo();
2676 MVT InVT
= InVal
->getValueType(InIx
);
2677 unsigned NumElems
= InVT
.getVectorNumElements();
2678 MVT EVT
= InVT
.getVectorElementType();
2680 // Figure out if there is a simple type corresponding to this Vector
2681 // type. If so, convert to the vector type.
2682 MVT TVT
= MVT::getVectorVT(EVT
, NumElems
);
2683 if (TLI
.isTypeLegal(TVT
)) {
2684 // Turn this into a normal store of the vector type.
2685 Tmp3
= LegalizeOp(ST
->getValue());
2686 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2687 SVOffset
, isVolatile
, Alignment
);
2688 Result
= LegalizeOp(Result
);
2690 } else if (NumElems
== 1) {
2691 // Turn this into a normal store of the scalar type.
2692 Tmp3
= ScalarizeVectorOp(ST
->getValue());
2693 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2694 SVOffset
, isVolatile
, Alignment
);
2695 // The scalarized value type may not be legal, e.g. it might require
2696 // promotion or expansion. Relegalize the scalar store.
2697 Result
= LegalizeOp(Result
);
2700 // Check if we have widen this node with another value
2701 std::map
<SDValue
, SDValue
>::iterator I
=
2702 WidenNodes
.find(ST
->getValue());
2703 if (I
!= WidenNodes
.end()) {
2704 Result
= StoreWidenVectorOp(ST
, Tmp1
, Tmp2
);
2708 SplitVectorOp(ST
->getValue(), Lo
, Hi
);
2709 IncrementSize
= Lo
.getNode()->getValueType(0).getVectorNumElements() *
2710 EVT
.getSizeInBits()/8;
2714 ExpandOp(ST
->getValue(), Lo
, Hi
);
2715 IncrementSize
= Hi
.getNode() ? Hi
.getValueType().getSizeInBits()/8 : 0;
2717 if (Hi
.getNode() && TLI
.isBigEndian())
2721 Lo
= DAG
.getStore(Tmp1
, dl
, Lo
, Tmp2
, ST
->getSrcValue(),
2722 SVOffset
, isVolatile
, Alignment
);
2724 if (Hi
.getNode() == NULL
) {
2725 // Must be int <-> float one-to-one expansion.
2730 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2731 DAG
.getIntPtrConstant(IncrementSize
));
2732 assert(isTypeLegal(Tmp2
.getValueType()) &&
2733 "Pointers must be legal!");
2734 SVOffset
+= IncrementSize
;
2735 Alignment
= MinAlign(Alignment
, IncrementSize
);
2736 Hi
= DAG
.getStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(),
2737 SVOffset
, isVolatile
, Alignment
);
2738 Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
2743 switch (getTypeAction(ST
->getValue().getValueType())) {
2745 Tmp3
= LegalizeOp(ST
->getValue());
2748 if (!ST
->getValue().getValueType().isVector()) {
2749 // We can promote the value, the truncstore will still take care of it.
2750 Tmp3
= PromoteOp(ST
->getValue());
2753 // Vector case falls through to expand
2755 // Just store the low part. This may become a non-trunc store, so make
2756 // sure to use getTruncStore, not UpdateNodeOperands below.
2757 ExpandOp(ST
->getValue(), Tmp3
, Tmp4
);
2758 return DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2759 SVOffset
, MVT::i8
, isVolatile
, Alignment
);
2762 MVT StVT
= ST
->getMemoryVT();
2763 unsigned StWidth
= StVT
.getSizeInBits();
2765 if (StWidth
!= StVT
.getStoreSizeInBits()) {
2766 // Promote to a byte-sized store with upper bits zero if not
2767 // storing an integral number of bytes. For example, promote
2768 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
2769 MVT NVT
= MVT::getIntegerVT(StVT
.getStoreSizeInBits());
2770 Tmp3
= DAG
.getZeroExtendInReg(Tmp3
, dl
, StVT
);
2771 Result
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2772 SVOffset
, NVT
, isVolatile
, Alignment
);
2773 } else if (StWidth
& (StWidth
- 1)) {
2774 // If not storing a power-of-2 number of bits, expand as two stores.
2775 assert(StVT
.isExtended() && !StVT
.isVector() &&
2776 "Unsupported truncstore!");
2777 unsigned RoundWidth
= 1 << Log2_32(StWidth
);
2778 assert(RoundWidth
< StWidth
);
2779 unsigned ExtraWidth
= StWidth
- RoundWidth
;
2780 assert(ExtraWidth
< RoundWidth
);
2781 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
2782 "Store size not an integral number of bytes!");
2783 MVT RoundVT
= MVT::getIntegerVT(RoundWidth
);
2784 MVT ExtraVT
= MVT::getIntegerVT(ExtraWidth
);
2786 unsigned IncrementSize
;
2788 if (TLI
.isLittleEndian()) {
2789 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
2790 // Store the bottom RoundWidth bits.
2791 Lo
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2793 isVolatile
, Alignment
);
2795 // Store the remaining ExtraWidth bits.
2796 IncrementSize
= RoundWidth
/ 8;
2797 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2798 DAG
.getIntPtrConstant(IncrementSize
));
2799 Hi
= DAG
.getNode(ISD::SRL
, dl
, Tmp3
.getValueType(), Tmp3
,
2800 DAG
.getConstant(RoundWidth
, TLI
.getShiftAmountTy()));
2801 Hi
= DAG
.getTruncStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(),
2802 SVOffset
+ IncrementSize
, ExtraVT
, isVolatile
,
2803 MinAlign(Alignment
, IncrementSize
));
2805 // Big endian - avoid unaligned stores.
2806 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
2807 // Store the top RoundWidth bits.
2808 Hi
= DAG
.getNode(ISD::SRL
, dl
, Tmp3
.getValueType(), Tmp3
,
2809 DAG
.getConstant(ExtraWidth
, TLI
.getShiftAmountTy()));
2810 Hi
= DAG
.getTruncStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(),
2811 SVOffset
, RoundVT
, isVolatile
, Alignment
);
2813 // Store the remaining ExtraWidth bits.
2814 IncrementSize
= RoundWidth
/ 8;
2815 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2816 DAG
.getIntPtrConstant(IncrementSize
));
2817 Lo
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2818 SVOffset
+ IncrementSize
, ExtraVT
, isVolatile
,
2819 MinAlign(Alignment
, IncrementSize
));
2822 // The order of the stores doesn't matter.
2823 Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
2825 if (Tmp1
!= ST
->getChain() || Tmp3
!= ST
->getValue() ||
2826 Tmp2
!= ST
->getBasePtr())
2827 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp3
, Tmp2
,
2830 switch (TLI
.getTruncStoreAction(ST
->getValue().getValueType(), StVT
)) {
2831 default: assert(0 && "This action is not supported yet!");
2832 case TargetLowering::Legal
:
2833 // If this is an unaligned store and the target doesn't support it,
2835 if (!TLI
.allowsUnalignedMemoryAccesses()) {
2836 unsigned ABIAlignment
= TLI
.getTargetData()->
2837 getABITypeAlignment(ST
->getMemoryVT().getTypeForMVT());
2838 if (ST
->getAlignment() < ABIAlignment
)
2839 Result
= ExpandUnalignedStore(cast
<StoreSDNode
>(Result
.getNode()), DAG
,
2843 case TargetLowering::Custom
:
2844 Result
= TLI
.LowerOperation(Result
, DAG
);
2847 // TRUNCSTORE:i16 i32 -> STORE i16
2848 assert(isTypeLegal(StVT
) && "Do not know how to expand this store!");
2849 Tmp3
= DAG
.getNode(ISD::TRUNCATE
, dl
, StVT
, Tmp3
);
2850 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2851 SVOffset
, isVolatile
, Alignment
);
2859 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2860 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
2862 case ISD::STACKSAVE
:
2863 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2864 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
2865 Tmp1
= Result
.getValue(0);
2866 Tmp2
= Result
.getValue(1);
2868 switch (TLI
.getOperationAction(ISD::STACKSAVE
, MVT::Other
)) {
2869 default: assert(0 && "This action is not supported yet!");
2870 case TargetLowering::Legal
: break;
2871 case TargetLowering::Custom
:
2872 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
2873 if (Tmp3
.getNode()) {
2874 Tmp1
= LegalizeOp(Tmp3
);
2875 Tmp2
= LegalizeOp(Tmp3
.getValue(1));
2878 case TargetLowering::Expand
:
2879 // Expand to CopyFromReg if the target set
2880 // StackPointerRegisterToSaveRestore.
2881 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
2882 Tmp1
= DAG
.getCopyFromReg(Result
.getOperand(0), dl
, SP
,
2883 Node
->getValueType(0));
2884 Tmp2
= Tmp1
.getValue(1);
2886 Tmp1
= DAG
.getUNDEF(Node
->getValueType(0));
2887 Tmp2
= Node
->getOperand(0);
2892 // Since stacksave produce two values, make sure to remember that we
2893 // legalized both of them.
2894 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
2895 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
2896 return Op
.getResNo() ? Tmp2
: Tmp1
;
2898 case ISD::STACKRESTORE
:
2899 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2900 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the pointer.
2901 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
2903 switch (TLI
.getOperationAction(ISD::STACKRESTORE
, MVT::Other
)) {
2904 default: assert(0 && "This action is not supported yet!");
2905 case TargetLowering::Legal
: break;
2906 case TargetLowering::Custom
:
2907 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2908 if (Tmp1
.getNode()) Result
= Tmp1
;
2910 case TargetLowering::Expand
:
2911 // Expand to CopyToReg if the target set
2912 // StackPointerRegisterToSaveRestore.
2913 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
2914 Result
= DAG
.getCopyToReg(Tmp1
, dl
, SP
, Tmp2
);
2922 case ISD::READCYCLECOUNTER
:
2923 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain
2924 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
2925 switch (TLI
.getOperationAction(ISD::READCYCLECOUNTER
,
2926 Node
->getValueType(0))) {
2927 default: assert(0 && "This action is not supported yet!");
2928 case TargetLowering::Legal
:
2929 Tmp1
= Result
.getValue(0);
2930 Tmp2
= Result
.getValue(1);
2932 case TargetLowering::Custom
:
2933 Result
= TLI
.LowerOperation(Result
, DAG
);
2934 Tmp1
= LegalizeOp(Result
.getValue(0));
2935 Tmp2
= LegalizeOp(Result
.getValue(1));
2939 // Since rdcc produce two values, make sure to remember that we legalized
2941 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
2942 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
2946 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
2947 case Expand
: assert(0 && "It's impossible to expand bools");
2949 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the condition.
2952 assert(!Node
->getOperand(0).getValueType().isVector() && "not possible");
2953 Tmp1
= PromoteOp(Node
->getOperand(0)); // Promote the condition.
2954 // Make sure the condition is either zero or one.
2955 unsigned BitWidth
= Tmp1
.getValueSizeInBits();
2956 if (!DAG
.MaskedValueIsZero(Tmp1
,
2957 APInt::getHighBitsSet(BitWidth
, BitWidth
-1)))
2958 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, MVT::i1
);
2962 Tmp2
= LegalizeOp(Node
->getOperand(1)); // TrueVal
2963 Tmp3
= LegalizeOp(Node
->getOperand(2)); // FalseVal
2965 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
2967 switch (TLI
.getOperationAction(ISD::SELECT
, Tmp2
.getValueType())) {
2968 default: assert(0 && "This action is not supported yet!");
2969 case TargetLowering::Legal
: break;
2970 case TargetLowering::Custom
: {
2971 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2972 if (Tmp1
.getNode()) Result
= Tmp1
;
2975 case TargetLowering::Expand
:
2976 if (Tmp1
.getOpcode() == ISD::SETCC
) {
2977 Result
= DAG
.getSelectCC(dl
, Tmp1
.getOperand(0), Tmp1
.getOperand(1),
2979 cast
<CondCodeSDNode
>(Tmp1
.getOperand(2))->get());
2981 Result
= DAG
.getSelectCC(dl
, Tmp1
,
2982 DAG
.getConstant(0, Tmp1
.getValueType()),
2983 Tmp2
, Tmp3
, ISD::SETNE
);
2986 case TargetLowering::Promote
: {
2988 TLI
.getTypeToPromoteTo(ISD::SELECT
, Tmp2
.getValueType());
2989 unsigned ExtOp
, TruncOp
;
2990 if (Tmp2
.getValueType().isVector()) {
2991 ExtOp
= ISD::BIT_CONVERT
;
2992 TruncOp
= ISD::BIT_CONVERT
;
2993 } else if (Tmp2
.getValueType().isInteger()) {
2994 ExtOp
= ISD::ANY_EXTEND
;
2995 TruncOp
= ISD::TRUNCATE
;
2997 ExtOp
= ISD::FP_EXTEND
;
2998 TruncOp
= ISD::FP_ROUND
;
3000 // Promote each of the values to the new type.
3001 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Tmp2
);
3002 Tmp3
= DAG
.getNode(ExtOp
, dl
, NVT
, Tmp3
);
3003 // Perform the larger operation, then round down.
3004 Result
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp1
, Tmp2
, Tmp3
);
3005 if (TruncOp
!= ISD::FP_ROUND
)
3006 Result
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Result
);
3008 Result
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Result
,
3009 DAG
.getIntPtrConstant(0));
3014 case ISD::SELECT_CC
: {
3015 Tmp1
= Node
->getOperand(0); // LHS
3016 Tmp2
= Node
->getOperand(1); // RHS
3017 Tmp3
= LegalizeOp(Node
->getOperand(2)); // True
3018 Tmp4
= LegalizeOp(Node
->getOperand(3)); // False
3019 SDValue CC
= Node
->getOperand(4);
3021 LegalizeSetCC(TLI
.getSetCCResultType(Tmp1
.getValueType()),
3022 Tmp1
, Tmp2
, CC
, dl
);
3024 // If we didn't get both a LHS and RHS back from LegalizeSetCC,
3025 // the LHS is a legal SETCC itself. In this case, we need to compare
3026 // the result against zero to select between true and false values.
3027 if (Tmp2
.getNode() == 0) {
3028 Tmp2
= DAG
.getConstant(0, Tmp1
.getValueType());
3029 CC
= DAG
.getCondCode(ISD::SETNE
);
3031 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, CC
);
3033 // Everything is legal, see if we should expand this op or something.
3034 switch (TLI
.getOperationAction(ISD::SELECT_CC
, Tmp3
.getValueType())) {
3035 default: assert(0 && "This action is not supported yet!");
3036 case TargetLowering::Legal
: break;
3037 case TargetLowering::Custom
:
3038 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3039 if (Tmp1
.getNode()) Result
= Tmp1
;
3045 Tmp1
= Node
->getOperand(0);
3046 Tmp2
= Node
->getOperand(1);
3047 Tmp3
= Node
->getOperand(2);
3048 LegalizeSetCC(Node
->getValueType(0), Tmp1
, Tmp2
, Tmp3
, dl
);
3050 // If we had to Expand the SetCC operands into a SELECT node, then it may
3051 // not always be possible to return a true LHS & RHS. In this case, just
3052 // return the value we legalized, returned in the LHS
3053 if (Tmp2
.getNode() == 0) {
3058 switch (TLI
.getOperationAction(ISD::SETCC
, Tmp1
.getValueType())) {
3059 default: assert(0 && "Cannot handle this action for SETCC yet!");
3060 case TargetLowering::Custom
:
3063 case TargetLowering::Legal
:
3064 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
3066 Tmp4
= TLI
.LowerOperation(Result
, DAG
);
3067 if (Tmp4
.getNode()) Result
= Tmp4
;
3070 case TargetLowering::Promote
: {
3071 // First step, figure out the appropriate operation to use.
3072 // Allow SETCC to not be supported for all legal data types
3073 // Mostly this targets FP
3074 MVT NewInTy
= Node
->getOperand(0).getValueType();
3075 MVT OldVT
= NewInTy
; OldVT
= OldVT
;
3077 // Scan for the appropriate larger type to use.
3079 NewInTy
= (MVT::SimpleValueType
)(NewInTy
.getSimpleVT()+1);
3081 assert(NewInTy
.isInteger() == OldVT
.isInteger() &&
3082 "Fell off of the edge of the integer world");
3083 assert(NewInTy
.isFloatingPoint() == OldVT
.isFloatingPoint() &&
3084 "Fell off of the edge of the floating point world");
3086 // If the target supports SETCC of this type, use it.
3087 if (TLI
.isOperationLegalOrCustom(ISD::SETCC
, NewInTy
))
3090 if (NewInTy
.isInteger())
3091 assert(0 && "Cannot promote Legal Integer SETCC yet");
3093 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NewInTy
, Tmp1
);
3094 Tmp2
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NewInTy
, Tmp2
);
3096 Tmp1
= LegalizeOp(Tmp1
);
3097 Tmp2
= LegalizeOp(Tmp2
);
3098 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
3099 Result
= LegalizeOp(Result
);
3102 case TargetLowering::Expand
:
3103 // Expand a setcc node into a select_cc of the same condition, lhs, and
3104 // rhs that selects between const 1 (true) and const 0 (false).
3105 MVT VT
= Node
->getValueType(0);
3106 Result
= DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, Tmp1
, Tmp2
,
3107 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3113 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3114 Tmp2
= LegalizeOp(Node
->getOperand(1)); // RHS
3115 SDValue CC
= Node
->getOperand(2);
3117 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, CC
);
3119 // Everything is legal, see if we should expand this op or something.
3120 switch (TLI
.getOperationAction(ISD::VSETCC
, Tmp1
.getValueType())) {
3121 default: assert(0 && "This action is not supported yet!");
3122 case TargetLowering::Legal
: break;
3123 case TargetLowering::Custom
:
3124 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3125 if (Tmp1
.getNode()) Result
= Tmp1
;
3127 case TargetLowering::Expand
: {
3128 // Unroll into a nasty set of scalar code for now.
3129 MVT VT
= Node
->getValueType(0);
3130 unsigned NumElems
= VT
.getVectorNumElements();
3131 MVT EltVT
= VT
.getVectorElementType();
3132 MVT TmpEltVT
= Tmp1
.getValueType().getVectorElementType();
3133 SmallVector
<SDValue
, 8> Ops(NumElems
);
3134 for (unsigned i
= 0; i
< NumElems
; ++i
) {
3135 SDValue In1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
,
3136 Tmp1
, DAG
.getIntPtrConstant(i
));
3137 Ops
[i
] = DAG
.getNode(ISD::SETCC
, dl
, TLI
.getSetCCResultType(TmpEltVT
),
3138 In1
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
3140 DAG
.getIntPtrConstant(i
)),
3142 Ops
[i
] = DAG
.getNode(ISD::SELECT
, dl
, EltVT
, Ops
[i
],
3143 DAG
.getConstant(APInt::getAllOnesValue
3144 (EltVT
.getSizeInBits()), EltVT
),
3145 DAG
.getConstant(0, EltVT
));
3147 Result
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &Ops
[0], NumElems
);
3154 case ISD::SHL_PARTS
:
3155 case ISD::SRA_PARTS
:
3156 case ISD::SRL_PARTS
: {
3157 SmallVector
<SDValue
, 8> Ops
;
3158 bool Changed
= false;
3159 unsigned N
= Node
->getNumOperands();
3160 for (unsigned i
= 0; i
+ 1 < N
; ++i
) {
3161 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
3162 Changed
|= Ops
.back() != Node
->getOperand(i
);
3164 Ops
.push_back(LegalizeOp(DAG
.getShiftAmountOperand(Node
->getOperand(N
-1))));
3165 Changed
|= Ops
.back() != Node
->getOperand(N
-1);
3167 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
3169 switch (TLI
.getOperationAction(Node
->getOpcode(),
3170 Node
->getValueType(0))) {
3171 default: assert(0 && "This action is not supported yet!");
3172 case TargetLowering::Legal
: break;
3173 case TargetLowering::Custom
:
3174 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3175 if (Tmp1
.getNode()) {
3176 SDValue Tmp2
, RetVal(0, 0);
3177 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
) {
3178 Tmp2
= LegalizeOp(Tmp1
.getValue(i
));
3179 AddLegalizedOperand(SDValue(Node
, i
), Tmp2
);
3180 if (i
== Op
.getResNo())
3183 assert(RetVal
.getNode() && "Illegal result number");
3189 // Since these produce multiple values, make sure to remember that we
3190 // legalized all of them.
3191 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
3192 AddLegalizedOperand(SDValue(Node
, i
), Result
.getValue(i
));
3193 return Result
.getValue(Op
.getResNo());
3215 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3216 Tmp2
= LegalizeOp(Node
->getOperand(1)); // RHS
3218 if ((Node
->getOpcode() == ISD::SHL
||
3219 Node
->getOpcode() == ISD::SRL
||
3220 Node
->getOpcode() == ISD::SRA
) &&
3221 !Node
->getValueType(0).isVector())
3222 Tmp2
= DAG
.getShiftAmountOperand(Tmp2
);
3224 switch (getTypeAction(Tmp2
.getValueType())) {
3225 case Expand
: assert(0 && "Not possible");
3227 Tmp2
= LegalizeOp(Tmp2
); // Legalize the RHS.
3230 Tmp2
= PromoteOp(Tmp2
); // Promote the RHS.
3234 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3236 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3237 default: assert(0 && "BinOp legalize operation not supported");
3238 case TargetLowering::Legal
: break;
3239 case TargetLowering::Custom
:
3240 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3241 if (Tmp1
.getNode()) {
3245 // Fall through if the custom lower can't deal with the operation
3246 case TargetLowering::Expand
: {
3247 MVT VT
= Op
.getValueType();
3249 // See if multiply or divide can be lowered using two-result operations.
3250 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3251 if (Node
->getOpcode() == ISD::MUL
) {
3252 // We just need the low half of the multiply; try both the signed
3253 // and unsigned forms. If the target supports both SMUL_LOHI and
3254 // UMUL_LOHI, form a preference by checking which forms of plain
3255 // MULH it supports.
3256 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
);
3257 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
);
3258 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
);
3259 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
);
3260 unsigned OpToUse
= 0;
3261 if (HasSMUL_LOHI
&& !HasMULHS
) {
3262 OpToUse
= ISD::SMUL_LOHI
;
3263 } else if (HasUMUL_LOHI
&& !HasMULHU
) {
3264 OpToUse
= ISD::UMUL_LOHI
;
3265 } else if (HasSMUL_LOHI
) {
3266 OpToUse
= ISD::SMUL_LOHI
;
3267 } else if (HasUMUL_LOHI
) {
3268 OpToUse
= ISD::UMUL_LOHI
;
3271 Result
= SDValue(DAG
.getNode(OpToUse
, dl
, VTs
, Tmp1
, Tmp2
).getNode(),
3276 if (Node
->getOpcode() == ISD::MULHS
&&
3277 TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
)) {
3278 Result
= SDValue(DAG
.getNode(ISD::SMUL_LOHI
, dl
,
3279 VTs
, Tmp1
, Tmp2
).getNode(),
3283 if (Node
->getOpcode() == ISD::MULHU
&&
3284 TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
)) {
3285 Result
= SDValue(DAG
.getNode(ISD::UMUL_LOHI
, dl
,
3286 VTs
, Tmp1
, Tmp2
).getNode(),
3290 if (Node
->getOpcode() == ISD::SDIV
&&
3291 TLI
.isOperationLegalOrCustom(ISD::SDIVREM
, VT
)) {
3292 Result
= SDValue(DAG
.getNode(ISD::SDIVREM
, dl
,
3293 VTs
, Tmp1
, Tmp2
).getNode(),
3297 if (Node
->getOpcode() == ISD::UDIV
&&
3298 TLI
.isOperationLegalOrCustom(ISD::UDIVREM
, VT
)) {
3299 Result
= SDValue(DAG
.getNode(ISD::UDIVREM
, dl
,
3300 VTs
, Tmp1
, Tmp2
).getNode(),
3305 // Check to see if we have a libcall for this operator.
3306 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
3307 bool isSigned
= false;
3308 switch (Node
->getOpcode()) {
3311 if (VT
== MVT::i32
) {
3312 LC
= Node
->getOpcode() == ISD::UDIV
3313 ? RTLIB::UDIV_I32
: RTLIB::SDIV_I32
;
3314 isSigned
= Node
->getOpcode() == ISD::SDIV
;
3319 LC
= RTLIB::MUL_I32
;
3320 else if (VT
== MVT::i64
)
3321 LC
= RTLIB::MUL_I64
;
3324 LC
= GetFPLibCall(VT
, RTLIB::POW_F32
, RTLIB::POW_F64
, RTLIB::POW_F80
,
3325 RTLIB::POW_PPCF128
);
3328 LC
= GetFPLibCall(VT
, RTLIB::DIV_F32
, RTLIB::DIV_F64
, RTLIB::DIV_F80
,
3329 RTLIB::DIV_PPCF128
);
3333 if (LC
!= RTLIB::UNKNOWN_LIBCALL
) {
3335 Result
= ExpandLibCall(LC
, Node
, isSigned
, Dummy
);
3339 assert(Node
->getValueType(0).isVector() &&
3340 "Cannot expand this binary operator!");
3341 // Expand the operation into a bunch of nasty scalar code.
3342 Result
= LegalizeOp(UnrollVectorOp(Op
));
3345 case TargetLowering::Promote
: {
3346 switch (Node
->getOpcode()) {
3347 default: assert(0 && "Do not know how to promote this BinOp!");
3351 MVT OVT
= Node
->getValueType(0);
3352 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
3353 assert(OVT
.isVector() && "Cannot promote this BinOp!");
3354 // Bit convert each of the values to the new type.
3355 Tmp1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Tmp1
);
3356 Tmp2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Tmp2
);
3357 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
3358 // Bit convert the result back the original type.
3359 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, OVT
, Result
);
3367 case ISD::SMUL_LOHI
:
3368 case ISD::UMUL_LOHI
:
3371 // These nodes will only be produced by target-specific lowering, so
3372 // they shouldn't be here if they aren't legal.
3373 assert(TLI
.isOperationLegal(Node
->getOpcode(), Node
->getValueType(0)) &&
3374 "This must be legal!");
3376 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3377 Tmp2
= LegalizeOp(Node
->getOperand(1)); // RHS
3378 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3381 case ISD::FCOPYSIGN
: // FCOPYSIGN does not require LHS/RHS to match type!
3382 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3383 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
3384 case Expand
: assert(0 && "Not possible");
3386 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the RHS.
3389 Tmp2
= PromoteOp(Node
->getOperand(1)); // Promote the RHS.
3393 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3395 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3396 default: assert(0 && "Operation not supported");
3397 case TargetLowering::Custom
:
3398 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3399 if (Tmp1
.getNode()) Result
= Tmp1
;
3401 case TargetLowering::Legal
: break;
3402 case TargetLowering::Expand
: {
3403 // If this target supports fabs/fneg natively and select is cheap,
3404 // do this efficiently.
3405 if (!TLI
.isSelectExpensive() &&
3406 TLI
.getOperationAction(ISD::FABS
, Tmp1
.getValueType()) ==
3407 TargetLowering::Legal
&&
3408 TLI
.getOperationAction(ISD::FNEG
, Tmp1
.getValueType()) ==
3409 TargetLowering::Legal
) {
3410 // Get the sign bit of the RHS.
3412 Tmp2
.getValueType() == MVT::f32
? MVT::i32
: MVT::i64
;
3413 SDValue SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, IVT
, Tmp2
);
3414 SignBit
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(IVT
),
3415 SignBit
, DAG
.getConstant(0, IVT
), ISD::SETLT
);
3416 // Get the absolute value of the result.
3417 SDValue AbsVal
= DAG
.getNode(ISD::FABS
, dl
, Tmp1
.getValueType(), Tmp1
);
3418 // Select between the nabs and abs value based on the sign bit of
3420 Result
= DAG
.getNode(ISD::SELECT
, dl
, AbsVal
.getValueType(), SignBit
,
3421 DAG
.getNode(ISD::FNEG
, dl
, AbsVal
.getValueType(),
3424 Result
= LegalizeOp(Result
);
3428 // Otherwise, do bitwise ops!
3430 Node
->getValueType(0) == MVT::f32
? MVT::i32
: MVT::i64
;
3431 Result
= ExpandFCOPYSIGNToBitwiseOps(Node
, NVT
, DAG
, TLI
);
3432 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Node
->getValueType(0), Result
);
3433 Result
= LegalizeOp(Result
);
3441 Tmp1
= LegalizeOp(Node
->getOperand(0));
3442 Tmp2
= LegalizeOp(Node
->getOperand(1));
3443 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3444 Tmp3
= Result
.getValue(0);
3445 Tmp4
= Result
.getValue(1);
3447 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3448 default: assert(0 && "This action is not supported yet!");
3449 case TargetLowering::Legal
:
3451 case TargetLowering::Custom
:
3452 Tmp1
= TLI
.LowerOperation(Tmp3
, DAG
);
3453 if (Tmp1
.getNode() != NULL
) {
3454 Tmp3
= LegalizeOp(Tmp1
);
3455 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
3459 // Since this produces two values, make sure to remember that we legalized
3461 AddLegalizedOperand(SDValue(Node
, 0), Tmp3
);
3462 AddLegalizedOperand(SDValue(Node
, 1), Tmp4
);
3463 return Op
.getResNo() ? Tmp4
: Tmp3
;
3467 Tmp1
= LegalizeOp(Node
->getOperand(0));
3468 Tmp2
= LegalizeOp(Node
->getOperand(1));
3469 Tmp3
= LegalizeOp(Node
->getOperand(2));
3470 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
3471 Tmp3
= Result
.getValue(0);
3472 Tmp4
= Result
.getValue(1);
3474 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3475 default: assert(0 && "This action is not supported yet!");
3476 case TargetLowering::Legal
:
3478 case TargetLowering::Custom
:
3479 Tmp1
= TLI
.LowerOperation(Tmp3
, DAG
);
3480 if (Tmp1
.getNode() != NULL
) {
3481 Tmp3
= LegalizeOp(Tmp1
);
3482 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
3486 // Since this produces two values, make sure to remember that we legalized
3488 AddLegalizedOperand(SDValue(Node
, 0), Tmp3
);
3489 AddLegalizedOperand(SDValue(Node
, 1), Tmp4
);
3490 return Op
.getResNo() ? Tmp4
: Tmp3
;
3492 case ISD::BUILD_PAIR
: {
3493 MVT PairTy
= Node
->getValueType(0);
3494 // TODO: handle the case where the Lo and Hi operands are not of legal type
3495 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Lo
3496 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Hi
3497 switch (TLI
.getOperationAction(ISD::BUILD_PAIR
, PairTy
)) {
3498 case TargetLowering::Promote
:
3499 case TargetLowering::Custom
:
3500 assert(0 && "Cannot promote/custom this yet!");
3501 case TargetLowering::Legal
:
3502 if (Tmp1
!= Node
->getOperand(0) || Tmp2
!= Node
->getOperand(1))
3503 Result
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, PairTy
, Tmp1
, Tmp2
);
3505 case TargetLowering::Expand
:
3506 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, PairTy
, Tmp1
);
3507 Tmp2
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, PairTy
, Tmp2
);
3508 Tmp2
= DAG
.getNode(ISD::SHL
, dl
, PairTy
, Tmp2
,
3509 DAG
.getConstant(PairTy
.getSizeInBits()/2,
3510 TLI
.getShiftAmountTy()));
3511 Result
= DAG
.getNode(ISD::OR
, dl
, PairTy
, Tmp1
, Tmp2
);
3520 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3521 Tmp2
= LegalizeOp(Node
->getOperand(1)); // RHS
3523 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3524 case TargetLowering::Promote
: assert(0 && "Cannot promote this yet!");
3525 case TargetLowering::Custom
:
3528 case TargetLowering::Legal
:
3529 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3531 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3532 if (Tmp1
.getNode()) Result
= Tmp1
;
3535 case TargetLowering::Expand
: {
3536 unsigned DivOpc
= (Node
->getOpcode() == ISD::UREM
) ? ISD::UDIV
: ISD::SDIV
;
3537 bool isSigned
= DivOpc
== ISD::SDIV
;
3538 MVT VT
= Node
->getValueType(0);
3540 // See if remainder can be lowered using two-result operations.
3541 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3542 if (Node
->getOpcode() == ISD::SREM
&&
3543 TLI
.isOperationLegalOrCustom(ISD::SDIVREM
, VT
)) {
3544 Result
= SDValue(DAG
.getNode(ISD::SDIVREM
, dl
,
3545 VTs
, Tmp1
, Tmp2
).getNode(), 1);
3548 if (Node
->getOpcode() == ISD::UREM
&&
3549 TLI
.isOperationLegalOrCustom(ISD::UDIVREM
, VT
)) {
3550 Result
= SDValue(DAG
.getNode(ISD::UDIVREM
, dl
,
3551 VTs
, Tmp1
, Tmp2
).getNode(), 1);
3555 if (VT
.isInteger()) {
3556 if (TLI
.getOperationAction(DivOpc
, VT
) ==
3557 TargetLowering::Legal
) {
3559 Result
= DAG
.getNode(DivOpc
, dl
, VT
, Tmp1
, Tmp2
);
3560 Result
= DAG
.getNode(ISD::MUL
, dl
, VT
, Result
, Tmp2
);
3561 Result
= DAG
.getNode(ISD::SUB
, dl
, VT
, Tmp1
, Result
);
3562 } else if (VT
.isVector()) {
3563 Result
= LegalizeOp(UnrollVectorOp(Op
));
3565 assert(VT
== MVT::i32
&&
3566 "Cannot expand this binary operator!");
3567 RTLIB::Libcall LC
= Node
->getOpcode() == ISD::UREM
3568 ? RTLIB::UREM_I32
: RTLIB::SREM_I32
;
3570 Result
= ExpandLibCall(LC
, Node
, isSigned
, Dummy
);
3573 assert(VT
.isFloatingPoint() &&
3574 "remainder op must have integer or floating-point type");
3575 if (VT
.isVector()) {
3576 Result
= LegalizeOp(UnrollVectorOp(Op
));
3578 // Floating point mod -> fmod libcall.
3579 RTLIB::Libcall LC
= GetFPLibCall(VT
, RTLIB::REM_F32
, RTLIB::REM_F64
,
3580 RTLIB::REM_F80
, RTLIB::REM_PPCF128
);
3582 Result
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Dummy
);
3590 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
3591 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the pointer.
3593 MVT VT
= Node
->getValueType(0);
3594 switch (TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
)) {
3595 default: assert(0 && "This action is not supported yet!");
3596 case TargetLowering::Custom
:
3599 case TargetLowering::Legal
:
3600 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
3601 Result
= Result
.getValue(0);
3602 Tmp1
= Result
.getValue(1);
3605 Tmp2
= TLI
.LowerOperation(Result
, DAG
);
3606 if (Tmp2
.getNode()) {
3607 Result
= LegalizeOp(Tmp2
);
3608 Tmp1
= LegalizeOp(Tmp2
.getValue(1));
3612 case TargetLowering::Expand
: {
3613 const Value
*V
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
3614 SDValue VAList
= DAG
.getLoad(TLI
.getPointerTy(), dl
, Tmp1
, Tmp2
, V
, 0);
3615 // Increment the pointer, VAList, to the next vaarg
3616 Tmp3
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), VAList
,
3617 DAG
.getConstant(TLI
.getTargetData()->
3618 getTypePaddedSize(VT
.getTypeForMVT()),
3619 TLI
.getPointerTy()));
3620 // Store the incremented VAList to the legalized pointer
3621 Tmp3
= DAG
.getStore(VAList
.getValue(1), dl
, Tmp3
, Tmp2
, V
, 0);
3622 // Load the actual argument out of the pointer VAList
3623 Result
= DAG
.getLoad(VT
, dl
, Tmp3
, VAList
, NULL
, 0);
3624 Tmp1
= LegalizeOp(Result
.getValue(1));
3625 Result
= LegalizeOp(Result
);
3629 // Since VAARG produces two values, make sure to remember that we
3630 // legalized both of them.
3631 AddLegalizedOperand(SDValue(Node
, 0), Result
);
3632 AddLegalizedOperand(SDValue(Node
, 1), Tmp1
);
3633 return Op
.getResNo() ? Tmp1
: Result
;
3637 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
3638 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the dest pointer.
3639 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the source pointer.
3641 switch (TLI
.getOperationAction(ISD::VACOPY
, MVT::Other
)) {
3642 default: assert(0 && "This action is not supported yet!");
3643 case TargetLowering::Custom
:
3646 case TargetLowering::Legal
:
3647 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
,
3648 Node
->getOperand(3), Node
->getOperand(4));
3650 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3651 if (Tmp1
.getNode()) Result
= Tmp1
;
3654 case TargetLowering::Expand
:
3655 // This defaults to loading a pointer from the input and storing it to the
3656 // output, returning the chain.
3657 const Value
*VD
= cast
<SrcValueSDNode
>(Node
->getOperand(3))->getValue();
3658 const Value
*VS
= cast
<SrcValueSDNode
>(Node
->getOperand(4))->getValue();
3659 Tmp4
= DAG
.getLoad(TLI
.getPointerTy(), dl
, Tmp1
, Tmp3
, VS
, 0);
3660 Result
= DAG
.getStore(Tmp4
.getValue(1), dl
, Tmp4
, Tmp2
, VD
, 0);
3666 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
3667 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the pointer.
3669 switch (TLI
.getOperationAction(ISD::VAEND
, MVT::Other
)) {
3670 default: assert(0 && "This action is not supported yet!");
3671 case TargetLowering::Custom
:
3674 case TargetLowering::Legal
:
3675 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
3677 Tmp1
= TLI
.LowerOperation(Tmp1
, DAG
);
3678 if (Tmp1
.getNode()) Result
= Tmp1
;
3681 case TargetLowering::Expand
:
3682 Result
= Tmp1
; // Default to a no-op, return the chain
3688 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
3689 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the pointer.
3691 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
3693 switch (TLI
.getOperationAction(ISD::VASTART
, MVT::Other
)) {
3694 default: assert(0 && "This action is not supported yet!");
3695 case TargetLowering::Legal
: break;
3696 case TargetLowering::Custom
:
3697 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3698 if (Tmp1
.getNode()) Result
= Tmp1
;
3705 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3706 Tmp2
= LegalizeOp(DAG
.getShiftAmountOperand(Node
->getOperand(1))); // RHS
3707 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3708 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3710 assert(0 && "ROTL/ROTR legalize operation not supported");
3712 case TargetLowering::Legal
:
3714 case TargetLowering::Custom
:
3715 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3716 if (Tmp1
.getNode()) Result
= Tmp1
;
3718 case TargetLowering::Promote
:
3719 assert(0 && "Do not know how to promote ROTL/ROTR");
3721 case TargetLowering::Expand
:
3722 assert(0 && "Do not know how to expand ROTL/ROTR");
3728 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Op
3729 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3730 case TargetLowering::Custom
:
3731 assert(0 && "Cannot custom legalize this yet!");
3732 case TargetLowering::Legal
:
3733 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
3735 case TargetLowering::Promote
: {
3736 MVT OVT
= Tmp1
.getValueType();
3737 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
3738 unsigned DiffBits
= NVT
.getSizeInBits() - OVT
.getSizeInBits();
3740 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Tmp1
);
3741 Tmp1
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Tmp1
);
3742 Result
= DAG
.getNode(ISD::SRL
, dl
, NVT
, Tmp1
,
3743 DAG
.getConstant(DiffBits
, TLI
.getShiftAmountTy()));
3746 case TargetLowering::Expand
:
3747 Result
= ExpandBSWAP(Tmp1
, dl
);
3755 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Op
3756 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3757 case TargetLowering::Custom
:
3758 case TargetLowering::Legal
:
3759 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
3760 if (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0)) ==
3761 TargetLowering::Custom
) {
3762 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3763 if (Tmp1
.getNode()) {
3768 case TargetLowering::Promote
: {
3769 MVT OVT
= Tmp1
.getValueType();
3770 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
3772 // Zero extend the argument.
3773 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Tmp1
);
3774 // Perform the larger operation, then subtract if needed.
3775 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, Node
->getValueType(0), Tmp1
);
3776 switch (Node
->getOpcode()) {
3781 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3782 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Tmp1
.getValueType()),
3783 Tmp1
, DAG
.getConstant(NVT
.getSizeInBits(), NVT
),
3785 Result
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp2
,
3786 DAG
.getConstant(OVT
.getSizeInBits(), NVT
), Tmp1
);
3789 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3790 Result
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Tmp1
,
3791 DAG
.getConstant(NVT
.getSizeInBits() -
3792 OVT
.getSizeInBits(), NVT
));
3797 case TargetLowering::Expand
:
3798 Result
= ExpandBitCount(Node
->getOpcode(), Tmp1
, dl
);
3818 case ISD::FNEARBYINT
:
3819 Tmp1
= LegalizeOp(Node
->getOperand(0));
3820 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3821 case TargetLowering::Promote
:
3822 case TargetLowering::Custom
:
3825 case TargetLowering::Legal
:
3826 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
3828 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3829 if (Tmp1
.getNode()) Result
= Tmp1
;
3832 case TargetLowering::Expand
:
3833 switch (Node
->getOpcode()) {
3834 default: assert(0 && "Unreachable!");
3836 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3837 Tmp2
= DAG
.getConstantFP(-0.0, Node
->getValueType(0));
3838 Result
= DAG
.getNode(ISD::FSUB
, dl
, Node
->getValueType(0), Tmp2
, Tmp1
);
3841 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3842 MVT VT
= Node
->getValueType(0);
3843 Tmp2
= DAG
.getConstantFP(0.0, VT
);
3844 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Tmp1
.getValueType()),
3845 Tmp1
, Tmp2
, ISD::SETUGT
);
3846 Tmp3
= DAG
.getNode(ISD::FNEG
, dl
, VT
, Tmp1
);
3847 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, Tmp2
, Tmp1
, Tmp3
);
3862 case ISD::FNEARBYINT
: {
3863 MVT VT
= Node
->getValueType(0);
3865 // Expand unsupported unary vector operators by unrolling them.
3866 if (VT
.isVector()) {
3867 Result
= LegalizeOp(UnrollVectorOp(Op
));
3871 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
3872 switch(Node
->getOpcode()) {
3874 LC
= GetFPLibCall(VT
, RTLIB::SQRT_F32
, RTLIB::SQRT_F64
,
3875 RTLIB::SQRT_F80
, RTLIB::SQRT_PPCF128
);
3878 LC
= GetFPLibCall(VT
, RTLIB::SIN_F32
, RTLIB::SIN_F64
,
3879 RTLIB::SIN_F80
, RTLIB::SIN_PPCF128
);
3882 LC
= GetFPLibCall(VT
, RTLIB::COS_F32
, RTLIB::COS_F64
,
3883 RTLIB::COS_F80
, RTLIB::COS_PPCF128
);
3886 LC
= GetFPLibCall(VT
, RTLIB::LOG_F32
, RTLIB::LOG_F64
,
3887 RTLIB::LOG_F80
, RTLIB::LOG_PPCF128
);
3890 LC
= GetFPLibCall(VT
, RTLIB::LOG2_F32
, RTLIB::LOG2_F64
,
3891 RTLIB::LOG2_F80
, RTLIB::LOG2_PPCF128
);
3894 LC
= GetFPLibCall(VT
, RTLIB::LOG10_F32
, RTLIB::LOG10_F64
,
3895 RTLIB::LOG10_F80
, RTLIB::LOG10_PPCF128
);
3898 LC
= GetFPLibCall(VT
, RTLIB::EXP_F32
, RTLIB::EXP_F64
,
3899 RTLIB::EXP_F80
, RTLIB::EXP_PPCF128
);
3902 LC
= GetFPLibCall(VT
, RTLIB::EXP2_F32
, RTLIB::EXP2_F64
,
3903 RTLIB::EXP2_F80
, RTLIB::EXP2_PPCF128
);
3906 LC
= GetFPLibCall(VT
, RTLIB::TRUNC_F32
, RTLIB::TRUNC_F64
,
3907 RTLIB::TRUNC_F80
, RTLIB::TRUNC_PPCF128
);
3910 LC
= GetFPLibCall(VT
, RTLIB::FLOOR_F32
, RTLIB::FLOOR_F64
,
3911 RTLIB::FLOOR_F80
, RTLIB::FLOOR_PPCF128
);
3914 LC
= GetFPLibCall(VT
, RTLIB::CEIL_F32
, RTLIB::CEIL_F64
,
3915 RTLIB::CEIL_F80
, RTLIB::CEIL_PPCF128
);
3918 LC
= GetFPLibCall(VT
, RTLIB::RINT_F32
, RTLIB::RINT_F64
,
3919 RTLIB::RINT_F80
, RTLIB::RINT_PPCF128
);
3921 case ISD::FNEARBYINT
:
3922 LC
= GetFPLibCall(VT
, RTLIB::NEARBYINT_F32
, RTLIB::NEARBYINT_F64
,
3923 RTLIB::NEARBYINT_F80
, RTLIB::NEARBYINT_PPCF128
);
3926 default: assert(0 && "Unreachable!");
3929 Result
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Dummy
);
3937 MVT VT
= Node
->getValueType(0);
3939 // Expand unsupported unary vector operators by unrolling them.
3940 if (VT
.isVector()) {
3941 Result
= LegalizeOp(UnrollVectorOp(Op
));
3945 // We always lower FPOWI into a libcall. No target support for it yet.
3946 RTLIB::Libcall LC
= GetFPLibCall(VT
, RTLIB::POWI_F32
, RTLIB::POWI_F64
,
3947 RTLIB::POWI_F80
, RTLIB::POWI_PPCF128
);
3949 Result
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Dummy
);
3952 case ISD::BIT_CONVERT
:
3953 if (!isTypeLegal(Node
->getOperand(0).getValueType())) {
3954 Result
= EmitStackConvert(Node
->getOperand(0), Node
->getValueType(0),
3955 Node
->getValueType(0), dl
);
3956 } else if (Op
.getOperand(0).getValueType().isVector()) {
3957 // The input has to be a vector type, we have to either scalarize it, pack
3958 // it, or convert it based on whether the input vector type is legal.
3959 SDNode
*InVal
= Node
->getOperand(0).getNode();
3960 int InIx
= Node
->getOperand(0).getResNo();
3961 unsigned NumElems
= InVal
->getValueType(InIx
).getVectorNumElements();
3962 MVT EVT
= InVal
->getValueType(InIx
).getVectorElementType();
3964 // Figure out if there is a simple type corresponding to this Vector
3965 // type. If so, convert to the vector type.
3966 MVT TVT
= MVT::getVectorVT(EVT
, NumElems
);
3967 if (TLI
.isTypeLegal(TVT
)) {
3968 // Turn this into a bit convert of the vector input.
3969 Tmp1
= LegalizeOp(Node
->getOperand(0));
3970 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Node
->getValueType(0), Tmp1
);
3972 } else if (NumElems
== 1) {
3973 // Turn this into a bit convert of the scalar input.
3974 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Node
->getValueType(0),
3975 ScalarizeVectorOp(Node
->getOperand(0)));
3978 // FIXME: UNIMP! Store then reload
3979 assert(0 && "Cast from unsupported vector type not implemented yet!");
3982 switch (TLI
.getOperationAction(ISD::BIT_CONVERT
,
3983 Node
->getOperand(0).getValueType())) {
3984 default: assert(0 && "Unknown operation action!");
3985 case TargetLowering::Expand
:
3986 Result
= EmitStackConvert(Node
->getOperand(0), Node
->getValueType(0),
3987 Node
->getValueType(0), dl
);
3989 case TargetLowering::Legal
:
3990 Tmp1
= LegalizeOp(Node
->getOperand(0));
3991 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
3996 case ISD::CONVERT_RNDSAT
: {
3997 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(Node
)->getCvtCode();
3999 default: assert(0 && "Unknown cvt code!");
4010 SDValue DTyOp
= Node
->getOperand(1);
4011 SDValue STyOp
= Node
->getOperand(2);
4012 SDValue RndOp
= Node
->getOperand(3);
4013 SDValue SatOp
= Node
->getOperand(4);
4014 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4015 case Expand
: assert(0 && "Shouldn't need to expand other operators here!");
4017 Tmp1
= LegalizeOp(Node
->getOperand(0));
4018 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, DTyOp
, STyOp
,
4020 if (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0)) ==
4021 TargetLowering::Custom
) {
4022 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
4023 if (Tmp1
.getNode()) Result
= Tmp1
;
4027 Result
= PromoteOp(Node
->getOperand(0));
4028 // For FP, make Op1 a i32
4030 Result
= DAG
.getConvertRndSat(Op
.getValueType(), dl
, Result
,
4031 DTyOp
, STyOp
, RndOp
, SatOp
, CvtCode
);
4036 } // end switch CvtCode
4039 // Conversion operators. The source and destination have different types.
4040 case ISD::SINT_TO_FP
:
4041 case ISD::UINT_TO_FP
: {
4042 bool isSigned
= Node
->getOpcode() == ISD::SINT_TO_FP
;
4043 Result
= LegalizeINT_TO_FP(Result
, isSigned
,
4044 Node
->getValueType(0), Node
->getOperand(0), dl
);
4048 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4050 Tmp1
= LegalizeOp(Node
->getOperand(0));
4051 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
4052 default: assert(0 && "Unknown TRUNCATE legalization operation action!");
4053 case TargetLowering::Custom
:
4056 case TargetLowering::Legal
:
4057 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4059 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
4060 if (Tmp1
.getNode()) Result
= Tmp1
;
4063 case TargetLowering::Expand
:
4064 assert(Result
.getValueType().isVector() && "must be vector type");
4065 // Unroll the truncate. We should do better.
4066 Result
= LegalizeOp(UnrollVectorOp(Result
));
4070 ExpandOp(Node
->getOperand(0), Tmp1
, Tmp2
);
4072 // Since the result is legal, we should just be able to truncate the low
4073 // part of the source.
4074 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), Tmp1
);
4077 Result
= PromoteOp(Node
->getOperand(0));
4078 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, Op
.getValueType(), Result
);
4083 case ISD::FP_TO_SINT
:
4084 case ISD::FP_TO_UINT
:
4085 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4087 Tmp1
= LegalizeOp(Node
->getOperand(0));
4089 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))){
4090 default: assert(0 && "Unknown operation action!");
4091 case TargetLowering::Custom
:
4094 case TargetLowering::Legal
:
4095 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4097 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
4098 if (Tmp1
.getNode()) Result
= Tmp1
;
4101 case TargetLowering::Promote
:
4102 Result
= PromoteLegalFP_TO_INT(Tmp1
, Node
->getValueType(0),
4103 Node
->getOpcode() == ISD::FP_TO_SINT
,
4106 case TargetLowering::Expand
:
4107 if (Node
->getOpcode() == ISD::FP_TO_UINT
) {
4108 SDValue True
, False
;
4109 MVT VT
= Node
->getOperand(0).getValueType();
4110 MVT NVT
= Node
->getValueType(0);
4111 const uint64_t zero
[] = {0, 0};
4112 APFloat apf
= APFloat(APInt(VT
.getSizeInBits(), 2, zero
));
4113 APInt x
= APInt::getSignBit(NVT
.getSizeInBits());
4114 (void)apf
.convertFromAPInt(x
, false, APFloat::rmNearestTiesToEven
);
4115 Tmp2
= DAG
.getConstantFP(apf
, VT
);
4116 Tmp3
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(VT
),
4117 Node
->getOperand(0),
4119 True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, NVT
, Node
->getOperand(0));
4120 False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, NVT
,
4121 DAG
.getNode(ISD::FSUB
, dl
, VT
,
4122 Node
->getOperand(0), Tmp2
));
4123 False
= DAG
.getNode(ISD::XOR
, dl
, NVT
, False
,
4124 DAG
.getConstant(x
, NVT
));
4125 Result
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp3
, True
, False
);
4128 assert(0 && "Do not know how to expand FP_TO_SINT yet!");
4134 MVT VT
= Op
.getValueType();
4135 MVT OVT
= Node
->getOperand(0).getValueType();
4136 // Convert ppcf128 to i32
4137 if (OVT
== MVT::ppcf128
&& VT
== MVT::i32
) {
4138 if (Node
->getOpcode() == ISD::FP_TO_SINT
) {
4139 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, MVT::ppcf128
,
4140 Node
->getOperand(0), DAG
.getValueType(MVT::f64
));
4141 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f64
, Result
,
4142 DAG
.getIntPtrConstant(1));
4143 Result
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
, Result
);
4145 const uint64_t TwoE31
[] = {0x41e0000000000000LL
, 0};
4146 APFloat apf
= APFloat(APInt(128, 2, TwoE31
));
4147 Tmp2
= DAG
.getConstantFP(apf
, OVT
);
4148 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
4149 // FIXME: generated code sucks.
4150 Result
= DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, Node
->getOperand(0),
4152 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
4153 DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
,
4154 DAG
.getNode(ISD::FSUB
, dl
, OVT
,
4155 Node
->getOperand(0), Tmp2
)),
4156 DAG
.getConstant(0x80000000, MVT::i32
)),
4157 DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
,
4158 Node
->getOperand(0)),
4159 DAG
.getCondCode(ISD::SETGE
));
4163 // Convert f32 / f64 to i32 / i64 / i128.
4164 RTLIB::Libcall LC
= (Node
->getOpcode() == ISD::FP_TO_SINT
) ?
4165 RTLIB::getFPTOSINT(OVT
, VT
) : RTLIB::getFPTOUINT(OVT
, VT
);
4166 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpectd fp-to-int conversion!");
4168 Result
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Dummy
);
4172 Tmp1
= PromoteOp(Node
->getOperand(0));
4173 Result
= DAG
.UpdateNodeOperands(Result
, LegalizeOp(Tmp1
));
4174 Result
= LegalizeOp(Result
);
4179 case ISD::FP_EXTEND
: {
4180 MVT DstVT
= Op
.getValueType();
4181 MVT SrcVT
= Op
.getOperand(0).getValueType();
4182 if (TLI
.getConvertAction(SrcVT
, DstVT
) == TargetLowering::Expand
) {
4183 // The only other way we can lower this is to turn it into a STORE,
4184 // LOAD pair, targetting a temporary location (a stack slot).
4185 Result
= EmitStackConvert(Node
->getOperand(0), SrcVT
, DstVT
, dl
);
4188 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4189 case Expand
: assert(0 && "Shouldn't need to expand other operators here!");
4191 Tmp1
= LegalizeOp(Node
->getOperand(0));
4192 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4195 Tmp1
= PromoteOp(Node
->getOperand(0));
4196 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, Op
.getValueType(), Tmp1
);
4201 case ISD::FP_ROUND
: {
4202 MVT DstVT
= Op
.getValueType();
4203 MVT SrcVT
= Op
.getOperand(0).getValueType();
4204 if (TLI
.getConvertAction(SrcVT
, DstVT
) == TargetLowering::Expand
) {
4205 if (SrcVT
== MVT::ppcf128
) {
4207 ExpandOp(Node
->getOperand(0), Lo
, Result
);
4208 // Round it the rest of the way (e.g. to f32) if needed.
4209 if (DstVT
!=MVT::f64
)
4210 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
,
4211 DstVT
, Result
, Op
.getOperand(1));
4214 // The only other way we can lower this is to turn it into a STORE,
4215 // LOAD pair, targetting a temporary location (a stack slot).
4216 Result
= EmitStackConvert(Node
->getOperand(0), DstVT
, DstVT
, dl
);
4219 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4220 case Expand
: assert(0 && "Shouldn't need to expand other operators here!");
4222 Tmp1
= LegalizeOp(Node
->getOperand(0));
4223 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
4226 Tmp1
= PromoteOp(Node
->getOperand(0));
4227 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, Op
.getValueType(), Tmp1
,
4228 Node
->getOperand(1));
4233 case ISD::ANY_EXTEND
:
4234 case ISD::ZERO_EXTEND
:
4235 case ISD::SIGN_EXTEND
:
4236 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4237 case Expand
: assert(0 && "Shouldn't need to expand other operators here!");
4239 Tmp1
= LegalizeOp(Node
->getOperand(0));
4240 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4241 if (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0)) ==
4242 TargetLowering::Custom
) {
4243 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
4244 if (Tmp1
.getNode()) Result
= Tmp1
;
4248 switch (Node
->getOpcode()) {
4249 case ISD::ANY_EXTEND
:
4250 Tmp1
= PromoteOp(Node
->getOperand(0));
4251 Result
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), Tmp1
);
4253 case ISD::ZERO_EXTEND
:
4254 Result
= PromoteOp(Node
->getOperand(0));
4255 Result
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), Result
);
4256 Result
= DAG
.getZeroExtendInReg(Result
, dl
,
4257 Node
->getOperand(0).getValueType());
4259 case ISD::SIGN_EXTEND
:
4260 Result
= PromoteOp(Node
->getOperand(0));
4261 Result
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), Result
);
4262 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Result
.getValueType(),
4264 DAG
.getValueType(Node
->getOperand(0).getValueType()));
4269 case ISD::FP_ROUND_INREG
:
4270 case ISD::SIGN_EXTEND_INREG
: {
4271 Tmp1
= LegalizeOp(Node
->getOperand(0));
4272 MVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
4274 // If this operation is not supported, convert it to a shl/shr or load/store
4276 switch (TLI
.getOperationAction(Node
->getOpcode(), ExtraVT
)) {
4277 default: assert(0 && "This action not supported for this op yet!");
4278 case TargetLowering::Legal
:
4279 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
4281 case TargetLowering::Expand
:
4282 // If this is an integer extend and shifts are supported, do that.
4283 if (Node
->getOpcode() == ISD::SIGN_EXTEND_INREG
) {
4284 // NOTE: we could fall back on load/store here too for targets without
4285 // SAR. However, it is doubtful that any exist.
4286 unsigned BitsDiff
= Node
->getValueType(0).getSizeInBits() -
4287 ExtraVT
.getSizeInBits();
4288 SDValue ShiftCst
= DAG
.getConstant(BitsDiff
, TLI
.getShiftAmountTy());
4289 Result
= DAG
.getNode(ISD::SHL
, dl
, Node
->getValueType(0),
4290 Node
->getOperand(0), ShiftCst
);
4291 Result
= DAG
.getNode(ISD::SRA
, dl
, Node
->getValueType(0),
4293 } else if (Node
->getOpcode() == ISD::FP_ROUND_INREG
) {
4294 // The only way we can lower this is to turn it into a TRUNCSTORE,
4295 // EXTLOAD pair, targetting a temporary location (a stack slot).
4297 // NOTE: there is a choice here between constantly creating new stack
4298 // slots and always reusing the same one. We currently always create
4299 // new ones, as reuse may inhibit scheduling.
4300 Result
= EmitStackConvert(Node
->getOperand(0), ExtraVT
,
4301 Node
->getValueType(0), dl
);
4303 assert(0 && "Unknown op");
4309 case ISD::TRAMPOLINE
: {
4311 for (unsigned i
= 0; i
!= 6; ++i
)
4312 Ops
[i
] = LegalizeOp(Node
->getOperand(i
));
4313 Result
= DAG
.UpdateNodeOperands(Result
, Ops
, 6);
4314 // The only option for this node is to custom lower it.
4315 Result
= TLI
.LowerOperation(Result
, DAG
);
4316 assert(Result
.getNode() && "Should always custom lower!");
4318 // Since trampoline produces two values, make sure to remember that we
4319 // legalized both of them.
4320 Tmp1
= LegalizeOp(Result
.getValue(1));
4321 Result
= LegalizeOp(Result
);
4322 AddLegalizedOperand(SDValue(Node
, 0), Result
);
4323 AddLegalizedOperand(SDValue(Node
, 1), Tmp1
);
4324 return Op
.getResNo() ? Tmp1
: Result
;
4326 case ISD::FLT_ROUNDS_
: {
4327 MVT VT
= Node
->getValueType(0);
4328 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4329 default: assert(0 && "This action not supported for this op yet!");
4330 case TargetLowering::Custom
:
4331 Result
= TLI
.LowerOperation(Op
, DAG
);
4332 if (Result
.getNode()) break;
4334 case TargetLowering::Legal
:
4335 // If this operation is not supported, lower it to constant 1
4336 Result
= DAG
.getConstant(1, VT
);
4342 MVT VT
= Node
->getValueType(0);
4343 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4344 default: assert(0 && "This action not supported for this op yet!");
4345 case TargetLowering::Legal
:
4346 Tmp1
= LegalizeOp(Node
->getOperand(0));
4347 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4349 case TargetLowering::Custom
:
4350 Result
= TLI
.LowerOperation(Op
, DAG
);
4351 if (Result
.getNode()) break;
4353 case TargetLowering::Expand
:
4354 // If this operation is not supported, lower it to 'abort()' call
4355 Tmp1
= LegalizeOp(Node
->getOperand(0));
4356 TargetLowering::ArgListTy Args
;
4357 std::pair
<SDValue
, SDValue
> CallResult
=
4358 TLI
.LowerCallTo(Tmp1
, Type::VoidTy
,
4359 false, false, false, false, CallingConv::C
, false,
4360 DAG
.getExternalSymbol("abort", TLI
.getPointerTy()),
4362 Result
= CallResult
.second
;
4370 MVT VT
= Node
->getValueType(0);
4371 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4372 default: assert(0 && "This action not supported for this op yet!");
4373 case TargetLowering::Custom
:
4374 Result
= TLI
.LowerOperation(Op
, DAG
);
4375 if (Result
.getNode()) break;
4377 case TargetLowering::Legal
: {
4378 SDValue LHS
= LegalizeOp(Node
->getOperand(0));
4379 SDValue RHS
= LegalizeOp(Node
->getOperand(1));
4381 SDValue Sum
= DAG
.getNode(Node
->getOpcode() == ISD::SADDO
?
4382 ISD::ADD
: ISD::SUB
, dl
, LHS
.getValueType(),
4384 MVT OType
= Node
->getValueType(1);
4386 SDValue Zero
= DAG
.getConstant(0, LHS
.getValueType());
4388 // LHSSign -> LHS >= 0
4389 // RHSSign -> RHS >= 0
4390 // SumSign -> Sum >= 0
4393 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
4395 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
4397 SDValue LHSSign
= DAG
.getSetCC(dl
, OType
, LHS
, Zero
, ISD::SETGE
);
4398 SDValue RHSSign
= DAG
.getSetCC(dl
, OType
, RHS
, Zero
, ISD::SETGE
);
4399 SDValue SignsMatch
= DAG
.getSetCC(dl
, OType
, LHSSign
, RHSSign
,
4400 Node
->getOpcode() == ISD::SADDO
?
4401 ISD::SETEQ
: ISD::SETNE
);
4403 SDValue SumSign
= DAG
.getSetCC(dl
, OType
, Sum
, Zero
, ISD::SETGE
);
4404 SDValue SumSignNE
= DAG
.getSetCC(dl
, OType
, LHSSign
, SumSign
, ISD::SETNE
);
4406 SDValue Cmp
= DAG
.getNode(ISD::AND
, dl
, OType
, SignsMatch
, SumSignNE
);
4408 MVT ValueVTs
[] = { LHS
.getValueType(), OType
};
4409 SDValue Ops
[] = { Sum
, Cmp
};
4411 Result
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4412 DAG
.getVTList(&ValueVTs
[0], 2),
4414 SDNode
*RNode
= Result
.getNode();
4415 DAG
.ReplaceAllUsesWith(Node
, RNode
);
4424 MVT VT
= Node
->getValueType(0);
4425 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4426 default: assert(0 && "This action not supported for this op yet!");
4427 case TargetLowering::Custom
:
4428 Result
= TLI
.LowerOperation(Op
, DAG
);
4429 if (Result
.getNode()) break;
4431 case TargetLowering::Legal
: {
4432 SDValue LHS
= LegalizeOp(Node
->getOperand(0));
4433 SDValue RHS
= LegalizeOp(Node
->getOperand(1));
4435 SDValue Sum
= DAG
.getNode(Node
->getOpcode() == ISD::UADDO
?
4436 ISD::ADD
: ISD::SUB
, dl
, LHS
.getValueType(),
4438 MVT OType
= Node
->getValueType(1);
4439 SDValue Cmp
= DAG
.getSetCC(dl
, OType
, Sum
, LHS
,
4440 Node
->getOpcode () == ISD::UADDO
?
4441 ISD::SETULT
: ISD::SETUGT
);
4443 MVT ValueVTs
[] = { LHS
.getValueType(), OType
};
4444 SDValue Ops
[] = { Sum
, Cmp
};
4446 Result
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4447 DAG
.getVTList(&ValueVTs
[0], 2),
4449 SDNode
*RNode
= Result
.getNode();
4450 DAG
.ReplaceAllUsesWith(Node
, RNode
);
4459 MVT VT
= Node
->getValueType(0);
4460 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4461 default: assert(0 && "This action is not supported at all!");
4462 case TargetLowering::Custom
:
4463 Result
= TLI
.LowerOperation(Op
, DAG
);
4464 if (Result
.getNode()) break;
4466 case TargetLowering::Legal
:
4467 // FIXME: According to Hacker's Delight, this can be implemented in
4468 // target independent lowering, but it would be inefficient, since it
4469 // requires a division + a branch.
4470 assert(0 && "Target independent lowering is not supported for SMULO/UMULO!");
4478 assert(Result
.getValueType() == Op
.getValueType() &&
4479 "Bad legalization!");
4481 // Make sure that the generated code is itself legal.
4483 Result
= LegalizeOp(Result
);
4485 // Note that LegalizeOp may be reentered even from single-use nodes, which
4486 // means that we always must cache transformed nodes.
4487 AddLegalizedOperand(Op
, Result
);
4491 /// PromoteOp - Given an operation that produces a value in an invalid type,
4492 /// promote it to compute the value into a larger type. The produced value will
4493 /// have the correct bits for the low portion of the register, but no guarantee
4494 /// is made about the top bits: it may be zero, sign-extended, or garbage.
4495 SDValue
SelectionDAGLegalize::PromoteOp(SDValue Op
) {
4496 MVT VT
= Op
.getValueType();
4497 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
4498 assert(getTypeAction(VT
) == Promote
&&
4499 "Caller should expand or legalize operands that are not promotable!");
4500 assert(NVT
.bitsGT(VT
) && NVT
.isInteger() == VT
.isInteger() &&
4501 "Cannot promote to smaller type!");
4503 SDValue Tmp1
, Tmp2
, Tmp3
;
4505 SDNode
*Node
= Op
.getNode();
4506 DebugLoc dl
= Node
->getDebugLoc();
4508 DenseMap
<SDValue
, SDValue
>::iterator I
= PromotedNodes
.find(Op
);
4509 if (I
!= PromotedNodes
.end()) return I
->second
;
4511 switch (Node
->getOpcode()) {
4512 case ISD::CopyFromReg
:
4513 assert(0 && "CopyFromReg must be legal!");
4516 cerr
<< "NODE: "; Node
->dump(&DAG
); cerr
<< "\n";
4518 assert(0 && "Do not know how to promote this operator!");
4521 Result
= DAG
.getUNDEF(NVT
);
4525 Result
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, NVT
, Op
);
4527 Result
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Op
);
4528 assert(isa
<ConstantSDNode
>(Result
) && "Didn't constant fold zext?");
4530 case ISD::ConstantFP
:
4531 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Op
);
4532 assert(isa
<ConstantFPSDNode
>(Result
) && "Didn't constant fold fp_extend?");
4536 MVT VT0
= Node
->getOperand(0).getValueType();
4537 assert(isTypeLegal(TLI
.getSetCCResultType(VT0
))
4538 && "SetCC type is not legal??");
4539 Result
= DAG
.getNode(ISD::SETCC
, dl
, TLI
.getSetCCResultType(VT0
),
4540 Node
->getOperand(0), Node
->getOperand(1),
4541 Node
->getOperand(2));
4545 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4547 Result
= LegalizeOp(Node
->getOperand(0));
4548 assert(Result
.getValueType().bitsGE(NVT
) &&
4549 "This truncation doesn't make sense!");
4550 if (Result
.getValueType().bitsGT(NVT
)) // Truncate to NVT instead of VT
4551 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, Result
);
4554 // The truncation is not required, because we don't guarantee anything
4555 // about high bits anyway.
4556 Result
= PromoteOp(Node
->getOperand(0));
4559 ExpandOp(Node
->getOperand(0), Tmp1
, Tmp2
);
4560 // Truncate the low part of the expanded value to the result type
4561 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, Tmp1
);
4564 case ISD::SIGN_EXTEND
:
4565 case ISD::ZERO_EXTEND
:
4566 case ISD::ANY_EXTEND
:
4567 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4568 case Expand
: assert(0 && "BUG: Smaller reg should have been promoted!");
4570 // Input is legal? Just do extend all the way to the larger type.
4571 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Node
->getOperand(0));
4574 // Promote the reg if it's smaller.
4575 Result
= PromoteOp(Node
->getOperand(0));
4576 // The high bits are not guaranteed to be anything. Insert an extend.
4577 if (Node
->getOpcode() == ISD::SIGN_EXTEND
)
4578 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Result
,
4579 DAG
.getValueType(Node
->getOperand(0).getValueType()));
4580 else if (Node
->getOpcode() == ISD::ZERO_EXTEND
)
4581 Result
= DAG
.getZeroExtendInReg(Result
, dl
,
4582 Node
->getOperand(0).getValueType());
4586 case ISD::CONVERT_RNDSAT
: {
4587 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(Node
)->getCvtCode();
4588 assert ((CvtCode
== ISD::CVT_SS
|| CvtCode
== ISD::CVT_SU
||
4589 CvtCode
== ISD::CVT_US
|| CvtCode
== ISD::CVT_UU
||
4590 CvtCode
== ISD::CVT_SF
|| CvtCode
== ISD::CVT_UF
) &&
4591 "can only promote integers");
4592 Result
= DAG
.getConvertRndSat(NVT
, dl
, Node
->getOperand(0),
4593 Node
->getOperand(1), Node
->getOperand(2),
4594 Node
->getOperand(3), Node
->getOperand(4),
4599 case ISD::BIT_CONVERT
:
4600 Result
= EmitStackConvert(Node
->getOperand(0), Node
->getValueType(0),
4601 Node
->getValueType(0), dl
);
4602 Result
= PromoteOp(Result
);
4605 case ISD::FP_EXTEND
:
4606 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
4608 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4609 case Expand
: assert(0 && "BUG: Cannot expand FP regs!");
4610 case Promote
: assert(0 && "Unreachable with 2 FP types!");
4612 if (Node
->getConstantOperandVal(1) == 0) {
4613 // Input is legal? Do an FP_ROUND_INREG.
4614 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Node
->getOperand(0),
4615 DAG
.getValueType(VT
));
4617 // Just remove the truncate, it isn't affecting the value.
4618 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, NVT
, Node
->getOperand(0),
4619 Node
->getOperand(1));
4624 case ISD::SINT_TO_FP
:
4625 case ISD::UINT_TO_FP
:
4626 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4628 // No extra round required here.
4629 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Node
->getOperand(0));
4633 Result
= PromoteOp(Node
->getOperand(0));
4634 if (Node
->getOpcode() == ISD::SINT_TO_FP
)
4635 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Result
.getValueType(),
4637 DAG
.getValueType(Node
->getOperand(0).getValueType()));
4639 Result
= DAG
.getZeroExtendInReg(Result
, dl
,
4640 Node
->getOperand(0).getValueType());
4641 // No extra round required here.
4642 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Result
);
4645 Result
= ExpandIntToFP(Node
->getOpcode() == ISD::SINT_TO_FP
, NVT
,
4646 Node
->getOperand(0), dl
);
4647 // Round if we cannot tolerate excess precision.
4648 if (NoExcessFPPrecision
)
4649 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4650 DAG
.getValueType(VT
));
4655 case ISD::SIGN_EXTEND_INREG
:
4656 Result
= PromoteOp(Node
->getOperand(0));
4657 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Result
,
4658 Node
->getOperand(1));
4660 case ISD::FP_TO_SINT
:
4661 case ISD::FP_TO_UINT
:
4662 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4665 Tmp1
= Node
->getOperand(0);
4668 // The input result is prerounded, so we don't have to do anything
4670 Tmp1
= PromoteOp(Node
->getOperand(0));
4673 // If we're promoting a UINT to a larger size, check to see if the new node
4674 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since
4675 // we can use that instead. This allows us to generate better code for
4676 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
4677 // legal, such as PowerPC.
4678 if (Node
->getOpcode() == ISD::FP_TO_UINT
&&
4679 !TLI
.isOperationLegalOrCustom(ISD::FP_TO_UINT
, NVT
) &&
4680 (TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NVT
) ||
4681 TLI
.getOperationAction(ISD::FP_TO_SINT
, NVT
)==TargetLowering::Custom
)){
4682 Result
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, NVT
, Tmp1
);
4684 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4690 Tmp1
= PromoteOp(Node
->getOperand(0));
4691 assert(Tmp1
.getValueType() == NVT
);
4692 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4693 // NOTE: we do not have to do any extra rounding here for
4694 // NoExcessFPPrecision, because we know the input will have the appropriate
4695 // precision, and these operations don't modify precision at all.
4710 case ISD::FNEARBYINT
:
4711 Tmp1
= PromoteOp(Node
->getOperand(0));
4712 assert(Tmp1
.getValueType() == NVT
);
4713 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4714 if (NoExcessFPPrecision
)
4715 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4716 DAG
.getValueType(VT
));
4721 // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall
4722 // directly as well, which may be better.
4723 Tmp1
= PromoteOp(Node
->getOperand(0));
4724 Tmp2
= Node
->getOperand(1);
4725 if (Node
->getOpcode() == ISD::FPOW
)
4726 Tmp2
= PromoteOp(Tmp2
);
4727 assert(Tmp1
.getValueType() == NVT
);
4728 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4729 if (NoExcessFPPrecision
)
4730 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4731 DAG
.getValueType(VT
));
4735 case ISD::ATOMIC_CMP_SWAP
: {
4736 AtomicSDNode
* AtomNode
= cast
<AtomicSDNode
>(Node
);
4737 Tmp2
= PromoteOp(Node
->getOperand(2));
4738 Tmp3
= PromoteOp(Node
->getOperand(3));
4739 Result
= DAG
.getAtomic(Node
->getOpcode(), dl
, AtomNode
->getMemoryVT(),
4740 AtomNode
->getChain(),
4741 AtomNode
->getBasePtr(), Tmp2
, Tmp3
,
4742 AtomNode
->getSrcValue(),
4743 AtomNode
->getAlignment());
4744 // Remember that we legalized the chain.
4745 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
4748 case ISD::ATOMIC_LOAD_ADD
:
4749 case ISD::ATOMIC_LOAD_SUB
:
4750 case ISD::ATOMIC_LOAD_AND
:
4751 case ISD::ATOMIC_LOAD_OR
:
4752 case ISD::ATOMIC_LOAD_XOR
:
4753 case ISD::ATOMIC_LOAD_NAND
:
4754 case ISD::ATOMIC_LOAD_MIN
:
4755 case ISD::ATOMIC_LOAD_MAX
:
4756 case ISD::ATOMIC_LOAD_UMIN
:
4757 case ISD::ATOMIC_LOAD_UMAX
:
4758 case ISD::ATOMIC_SWAP
: {
4759 AtomicSDNode
* AtomNode
= cast
<AtomicSDNode
>(Node
);
4760 Tmp2
= PromoteOp(Node
->getOperand(2));
4761 Result
= DAG
.getAtomic(Node
->getOpcode(), dl
, AtomNode
->getMemoryVT(),
4762 AtomNode
->getChain(),
4763 AtomNode
->getBasePtr(), Tmp2
,
4764 AtomNode
->getSrcValue(),
4765 AtomNode
->getAlignment());
4766 // Remember that we legalized the chain.
4767 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
4777 // The input may have strange things in the top bits of the registers, but
4778 // these operations don't care. They may have weird bits going out, but
4779 // that too is okay if they are integer operations.
4780 Tmp1
= PromoteOp(Node
->getOperand(0));
4781 Tmp2
= PromoteOp(Node
->getOperand(1));
4782 assert(Tmp1
.getValueType() == NVT
&& Tmp2
.getValueType() == NVT
);
4783 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4788 Tmp1
= PromoteOp(Node
->getOperand(0));
4789 Tmp2
= PromoteOp(Node
->getOperand(1));
4790 assert(Tmp1
.getValueType() == NVT
&& Tmp2
.getValueType() == NVT
);
4791 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4793 // Floating point operations will give excess precision that we may not be
4794 // able to tolerate. If we DO allow excess precision, just leave it,
4795 // otherwise excise it.
4796 // FIXME: Why would we need to round FP ops more than integer ones?
4797 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C))
4798 if (NoExcessFPPrecision
)
4799 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4800 DAG
.getValueType(VT
));
4805 // These operators require that their input be sign extended.
4806 Tmp1
= PromoteOp(Node
->getOperand(0));
4807 Tmp2
= PromoteOp(Node
->getOperand(1));
4808 if (NVT
.isInteger()) {
4809 Tmp1
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp1
,
4810 DAG
.getValueType(VT
));
4811 Tmp2
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp2
,
4812 DAG
.getValueType(VT
));
4814 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4816 // Perform FP_ROUND: this is probably overly pessimistic.
4817 if (NVT
.isFloatingPoint() && NoExcessFPPrecision
)
4818 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4819 DAG
.getValueType(VT
));
4823 case ISD::FCOPYSIGN
:
4824 // These operators require that their input be fp extended.
4825 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4826 case Expand
: assert(0 && "not implemented");
4827 case Legal
: Tmp1
= LegalizeOp(Node
->getOperand(0)); break;
4828 case Promote
: Tmp1
= PromoteOp(Node
->getOperand(0)); break;
4830 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
4831 case Expand
: assert(0 && "not implemented");
4832 case Legal
: Tmp2
= LegalizeOp(Node
->getOperand(1)); break;
4833 case Promote
: Tmp2
= PromoteOp(Node
->getOperand(1)); break;
4835 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4837 // Perform FP_ROUND: this is probably overly pessimistic.
4838 if (NoExcessFPPrecision
&& Node
->getOpcode() != ISD::FCOPYSIGN
)
4839 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4840 DAG
.getValueType(VT
));
4845 // These operators require that their input be zero extended.
4846 Tmp1
= PromoteOp(Node
->getOperand(0));
4847 Tmp2
= PromoteOp(Node
->getOperand(1));
4848 assert(NVT
.isInteger() && "Operators don't apply to FP!");
4849 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, VT
);
4850 Tmp2
= DAG
.getZeroExtendInReg(Tmp2
, dl
, VT
);
4851 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4855 Tmp1
= PromoteOp(Node
->getOperand(0));
4856 Result
= DAG
.getNode(ISD::SHL
, dl
, NVT
, Tmp1
, Node
->getOperand(1));
4859 // The input value must be properly sign extended.
4860 Tmp1
= PromoteOp(Node
->getOperand(0));
4861 Tmp1
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp1
,
4862 DAG
.getValueType(VT
));
4863 Result
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Tmp1
, Node
->getOperand(1));
4866 // The input value must be properly zero extended.
4867 Tmp1
= PromoteOp(Node
->getOperand(0));
4868 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, VT
);
4869 Result
= DAG
.getNode(ISD::SRL
, dl
, NVT
, Tmp1
, Node
->getOperand(1));
4873 Tmp1
= Node
->getOperand(0); // Get the chain.
4874 Tmp2
= Node
->getOperand(1); // Get the pointer.
4875 if (TLI
.getOperationAction(ISD::VAARG
, VT
) == TargetLowering::Custom
) {
4876 Tmp3
= DAG
.getVAArg(VT
, dl
, Tmp1
, Tmp2
, Node
->getOperand(2));
4877 Result
= TLI
.LowerOperation(Tmp3
, DAG
);
4879 const Value
*V
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
4880 SDValue VAList
= DAG
.getLoad(TLI
.getPointerTy(), dl
, Tmp1
, Tmp2
, V
, 0);
4881 // Increment the pointer, VAList, to the next vaarg
4882 Tmp3
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), VAList
,
4883 DAG
.getConstant(VT
.getSizeInBits()/8,
4884 TLI
.getPointerTy()));
4885 // Store the incremented VAList to the legalized pointer
4886 Tmp3
= DAG
.getStore(VAList
.getValue(1), dl
, Tmp3
, Tmp2
, V
, 0);
4887 // Load the actual argument out of the pointer VAList
4888 Result
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NVT
, Tmp3
, VAList
, NULL
, 0, VT
);
4890 // Remember that we legalized the chain.
4891 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
4895 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
4896 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(Node
)
4897 ? ISD::EXTLOAD
: LD
->getExtensionType();
4898 Result
= DAG
.getExtLoad(ExtType
, dl
, NVT
,
4899 LD
->getChain(), LD
->getBasePtr(),
4900 LD
->getSrcValue(), LD
->getSrcValueOffset(),
4903 LD
->getAlignment());
4904 // Remember that we legalized the chain.
4905 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
4909 Tmp2
= PromoteOp(Node
->getOperand(1)); // Legalize the op0
4910 Tmp3
= PromoteOp(Node
->getOperand(2)); // Legalize the op1
4912 MVT VT2
= Tmp2
.getValueType();
4913 assert(VT2
== Tmp3
.getValueType()
4914 && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match");
4915 // Ensure that the resulting node is at least the same size as the operands'
4916 // value types, because we cannot assume that TLI.getSetCCValueType() is
4918 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT2
, Node
->getOperand(0), Tmp2
, Tmp3
);
4921 case ISD::SELECT_CC
:
4922 Tmp2
= PromoteOp(Node
->getOperand(2)); // True
4923 Tmp3
= PromoteOp(Node
->getOperand(3)); // False
4924 Result
= DAG
.getNode(ISD::SELECT_CC
, dl
, NVT
, Node
->getOperand(0),
4925 Node
->getOperand(1), Tmp2
, Tmp3
, Node
->getOperand(4));
4928 Tmp1
= Node
->getOperand(0);
4929 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Tmp1
);
4930 Tmp1
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Tmp1
);
4931 Result
= DAG
.getNode(ISD::SRL
, dl
, NVT
, Tmp1
,
4932 DAG
.getConstant(NVT
.getSizeInBits() -
4934 TLI
.getShiftAmountTy()));
4939 // Zero extend the argument
4940 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4941 // Perform the larger operation, then subtract if needed.
4942 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4943 switch(Node
->getOpcode()) {
4948 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
4949 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Tmp1
.getValueType()), Tmp1
,
4950 DAG
.getConstant(NVT
.getSizeInBits(), NVT
),
4952 Result
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp2
,
4953 DAG
.getConstant(VT
.getSizeInBits(), NVT
), Tmp1
);
4956 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4957 Result
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Tmp1
,
4958 DAG
.getConstant(NVT
.getSizeInBits() -
4959 VT
.getSizeInBits(), NVT
));
4963 case ISD::EXTRACT_SUBVECTOR
:
4964 Result
= PromoteOp(ExpandEXTRACT_SUBVECTOR(Op
));
4966 case ISD::EXTRACT_VECTOR_ELT
:
4967 Result
= PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op
));
4971 assert(Result
.getNode() && "Didn't set a result!");
4973 // Make sure the result is itself legal.
4974 Result
= LegalizeOp(Result
);
4976 // Remember that we promoted this!
4977 AddPromotedOperand(Op
, Result
);
4981 /// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into
4982 /// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic,
4983 /// based on the vector type. The return type of this matches the element type
4984 /// of the vector, which may not be legal for the target.
4985 SDValue
SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op
) {
4986 // We know that operand #0 is the Vec vector. If the index is a constant
4987 // or if the invec is a supported hardware type, we can use it. Otherwise,
4988 // lower to a store then an indexed load.
4989 SDValue Vec
= Op
.getOperand(0);
4990 SDValue Idx
= Op
.getOperand(1);
4991 DebugLoc dl
= Op
.getDebugLoc();
4993 MVT TVT
= Vec
.getValueType();
4994 unsigned NumElems
= TVT
.getVectorNumElements();
4996 switch (TLI
.getOperationAction(ISD::EXTRACT_VECTOR_ELT
, TVT
)) {
4997 default: assert(0 && "This action is not supported yet!");
4998 case TargetLowering::Custom
: {
4999 Vec
= LegalizeOp(Vec
);
5000 Op
= DAG
.UpdateNodeOperands(Op
, Vec
, Idx
);
5001 SDValue Tmp3
= TLI
.LowerOperation(Op
, DAG
);
5006 case TargetLowering::Legal
:
5007 if (isTypeLegal(TVT
)) {
5008 Vec
= LegalizeOp(Vec
);
5009 Op
= DAG
.UpdateNodeOperands(Op
, Vec
, Idx
);
5013 case TargetLowering::Promote
:
5014 assert(TVT
.isVector() && "not vector type");
5015 // fall thru to expand since vectors are by default are promote
5016 case TargetLowering::Expand
:
5020 if (NumElems
== 1) {
5021 // This must be an access of the only element. Return it.
5022 Op
= ScalarizeVectorOp(Vec
);
5023 } else if (!TLI
.isTypeLegal(TVT
) && isa
<ConstantSDNode
>(Idx
)) {
5024 unsigned NumLoElts
= 1 << Log2_32(NumElems
-1);
5025 ConstantSDNode
*CIdx
= cast
<ConstantSDNode
>(Idx
);
5027 SplitVectorOp(Vec
, Lo
, Hi
);
5028 if (CIdx
->getZExtValue() < NumLoElts
) {
5032 Idx
= DAG
.getConstant(CIdx
->getZExtValue() - NumLoElts
,
5033 Idx
.getValueType());
5036 // It's now an extract from the appropriate high or low part. Recurse.
5037 Op
= DAG
.UpdateNodeOperands(Op
, Vec
, Idx
);
5038 Op
= ExpandEXTRACT_VECTOR_ELT(Op
);
5040 // Store the value to a temporary stack slot, then LOAD the scalar
5041 // element back out.
5042 SDValue StackPtr
= DAG
.CreateStackTemporary(Vec
.getValueType());
5043 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
, NULL
, 0);
5045 // Add the offset to the index.
5046 unsigned EltSize
= Op
.getValueType().getSizeInBits()/8;
5047 Idx
= DAG
.getNode(ISD::MUL
, dl
, Idx
.getValueType(), Idx
,
5048 DAG
.getConstant(EltSize
, Idx
.getValueType()));
5050 if (Idx
.getValueType().bitsGT(TLI
.getPointerTy()))
5051 Idx
= DAG
.getNode(ISD::TRUNCATE
, dl
, TLI
.getPointerTy(), Idx
);
5053 Idx
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, TLI
.getPointerTy(), Idx
);
5055 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, Idx
.getValueType(), Idx
, StackPtr
);
5057 Op
= DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, NULL
, 0);
5062 /// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now
5063 /// we assume the operation can be split if it is not already legal.
5064 SDValue
SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op
) {
5065 // We know that operand #0 is the Vec vector. For now we assume the index
5066 // is a constant and that the extracted result is a supported hardware type.
5067 SDValue Vec
= Op
.getOperand(0);
5068 SDValue Idx
= LegalizeOp(Op
.getOperand(1));
5070 unsigned NumElems
= Vec
.getValueType().getVectorNumElements();
5072 if (NumElems
== Op
.getValueType().getVectorNumElements()) {
5073 // This must be an access of the desired vector length. Return it.
5077 ConstantSDNode
*CIdx
= cast
<ConstantSDNode
>(Idx
);
5079 SplitVectorOp(Vec
, Lo
, Hi
);
5080 if (CIdx
->getZExtValue() < NumElems
/2) {
5084 Idx
= DAG
.getConstant(CIdx
->getZExtValue() - NumElems
/2,
5085 Idx
.getValueType());
5088 // It's now an extract from the appropriate high or low part. Recurse.
5089 Op
= DAG
.UpdateNodeOperands(Op
, Vec
, Idx
);
5090 return ExpandEXTRACT_SUBVECTOR(Op
);
5093 /// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC
5094 /// with condition CC on the current target. This usually involves legalizing
5095 /// or promoting the arguments. In the case where LHS and RHS must be expanded,
5096 /// there may be no choice but to create a new SetCC node to represent the
5097 /// legalized value of setcc lhs, rhs. In this case, the value is returned in
5098 /// LHS, and the SDValue returned in RHS has a nil SDNode value.
5099 void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue
&LHS
,
5103 SDValue Tmp1
, Tmp2
, Tmp3
, Result
;
5105 switch (getTypeAction(LHS
.getValueType())) {
5107 Tmp1
= LegalizeOp(LHS
); // LHS
5108 Tmp2
= LegalizeOp(RHS
); // RHS
5111 Tmp1
= PromoteOp(LHS
); // LHS
5112 Tmp2
= PromoteOp(RHS
); // RHS
5114 // If this is an FP compare, the operands have already been extended.
5115 if (LHS
.getValueType().isInteger()) {
5116 MVT VT
= LHS
.getValueType();
5117 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
5119 // Otherwise, we have to insert explicit sign or zero extends. Note
5120 // that we could insert sign extends for ALL conditions, but zero extend
5121 // is cheaper on many machines (an AND instead of two shifts), so prefer
5123 switch (cast
<CondCodeSDNode
>(CC
)->get()) {
5124 default: assert(0 && "Unknown integer comparison!");
5131 // ALL of these operations will work if we either sign or zero extend
5132 // the operands (including the unsigned comparisons!). Zero extend is
5133 // usually a simpler/cheaper operation, so prefer it.
5134 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, VT
);
5135 Tmp2
= DAG
.getZeroExtendInReg(Tmp2
, dl
, VT
);
5141 Tmp1
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp1
,
5142 DAG
.getValueType(VT
));
5143 Tmp2
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp2
,
5144 DAG
.getValueType(VT
));
5145 Tmp1
= LegalizeOp(Tmp1
); // Relegalize new nodes.
5146 Tmp2
= LegalizeOp(Tmp2
); // Relegalize new nodes.
5152 MVT VT
= LHS
.getValueType();
5153 if (VT
== MVT::f32
|| VT
== MVT::f64
) {
5154 // Expand into one or more soft-fp libcall(s).
5155 RTLIB::Libcall LC1
= RTLIB::UNKNOWN_LIBCALL
, LC2
= RTLIB::UNKNOWN_LIBCALL
;
5156 switch (cast
<CondCodeSDNode
>(CC
)->get()) {
5159 LC1
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
: RTLIB::OEQ_F64
;
5163 LC1
= (VT
== MVT::f32
) ? RTLIB::UNE_F32
: RTLIB::UNE_F64
;
5167 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
: RTLIB::OGE_F64
;
5171 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
: RTLIB::OLT_F64
;
5175 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
: RTLIB::OLE_F64
;
5179 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
: RTLIB::OGT_F64
;
5182 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
: RTLIB::UO_F64
;
5185 LC1
= (VT
== MVT::f32
) ? RTLIB::O_F32
: RTLIB::O_F64
;
5188 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
: RTLIB::UO_F64
;
5189 switch (cast
<CondCodeSDNode
>(CC
)->get()) {
5191 // SETONE = SETOLT | SETOGT
5192 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
: RTLIB::OLT_F64
;
5195 LC2
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
: RTLIB::OGT_F64
;
5198 LC2
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
: RTLIB::OGE_F64
;
5201 LC2
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
: RTLIB::OLT_F64
;
5204 LC2
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
: RTLIB::OLE_F64
;
5207 LC2
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
: RTLIB::OEQ_F64
;
5209 default: assert(0 && "Unsupported FP setcc!");
5214 SDValue Ops
[2] = { LHS
, RHS
};
5215 Tmp1
= ExpandLibCall(LC1
, DAG
.getMergeValues(Ops
, 2, dl
).getNode(),
5216 false /*sign irrelevant*/, Dummy
);
5217 Tmp2
= DAG
.getConstant(0, MVT::i32
);
5218 CC
= DAG
.getCondCode(TLI
.getCmpLibcallCC(LC1
));
5219 if (LC2
!= RTLIB::UNKNOWN_LIBCALL
) {
5220 Tmp1
= DAG
.getNode(ISD::SETCC
, dl
,
5221 TLI
.getSetCCResultType(Tmp1
.getValueType()),
5223 LHS
= ExpandLibCall(LC2
, DAG
.getMergeValues(Ops
, 2, dl
).getNode(),
5224 false /*sign irrelevant*/, Dummy
);
5225 Tmp2
= DAG
.getNode(ISD::SETCC
, dl
,
5226 TLI
.getSetCCResultType(LHS
.getValueType()), LHS
,
5227 Tmp2
, DAG
.getCondCode(TLI
.getCmpLibcallCC(LC2
)));
5228 Tmp1
= DAG
.getNode(ISD::OR
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp2
);
5231 LHS
= LegalizeOp(Tmp1
);
5236 SDValue LHSLo
, LHSHi
, RHSLo
, RHSHi
;
5237 ExpandOp(LHS
, LHSLo
, LHSHi
);
5238 ExpandOp(RHS
, RHSLo
, RHSHi
);
5239 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
5241 if (VT
==MVT::ppcf128
) {
5242 // FIXME: This generated code sucks. We want to generate
5243 // FCMPU crN, hi1, hi2
5245 // FCMPU crN, lo1, lo2
5246 // The following can be improved, but not that much.
5247 Tmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
5248 LHSHi
, RHSHi
, ISD::SETOEQ
);
5249 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSLo
.getValueType()),
5250 LHSLo
, RHSLo
, CCCode
);
5251 Tmp3
= DAG
.getNode(ISD::AND
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp2
);
5252 Tmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
5253 LHSHi
, RHSHi
, ISD::SETUNE
);
5254 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
5255 LHSHi
, RHSHi
, CCCode
);
5256 Tmp1
= DAG
.getNode(ISD::AND
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp2
);
5257 Tmp1
= DAG
.getNode(ISD::OR
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp3
);
5266 if (ConstantSDNode
*RHSCST
= dyn_cast
<ConstantSDNode
>(RHSLo
))
5267 if (RHSCST
->isAllOnesValue()) {
5268 // Comparison to -1.
5269 Tmp1
= DAG
.getNode(ISD::AND
, dl
,LHSLo
.getValueType(), LHSLo
, LHSHi
);
5274 Tmp1
= DAG
.getNode(ISD::XOR
, dl
, LHSLo
.getValueType(), LHSLo
, RHSLo
);
5275 Tmp2
= DAG
.getNode(ISD::XOR
, dl
, LHSLo
.getValueType(), LHSHi
, RHSHi
);
5276 Tmp1
= DAG
.getNode(ISD::OR
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp2
);
5277 Tmp2
= DAG
.getConstant(0, Tmp1
.getValueType());
5280 // If this is a comparison of the sign bit, just look at the top part.
5282 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(RHS
))
5283 if ((cast
<CondCodeSDNode
>(CC
)->get() == ISD::SETLT
&&
5284 CST
->isNullValue()) || // X < 0
5285 (cast
<CondCodeSDNode
>(CC
)->get() == ISD::SETGT
&&
5286 CST
->isAllOnesValue())) { // X > -1
5292 // FIXME: This generated code sucks.
5293 ISD::CondCode LowCC
;
5295 default: assert(0 && "Unknown integer setcc!");
5297 case ISD::SETULT
: LowCC
= ISD::SETULT
; break;
5299 case ISD::SETUGT
: LowCC
= ISD::SETUGT
; break;
5301 case ISD::SETULE
: LowCC
= ISD::SETULE
; break;
5303 case ISD::SETUGE
: LowCC
= ISD::SETUGE
; break;
5306 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
5307 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
5308 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
5310 // NOTE: on targets without efficient SELECT of bools, we can always use
5311 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
5312 TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG
, false, true, NULL
);
5313 Tmp1
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSLo
.getValueType()),
5314 LHSLo
, RHSLo
, LowCC
, false, DagCombineInfo
, dl
);
5315 if (!Tmp1
.getNode())
5316 Tmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSLo
.getValueType()),
5317 LHSLo
, RHSLo
, LowCC
);
5318 Tmp2
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSHi
.getValueType()),
5319 LHSHi
, RHSHi
, CCCode
, false, DagCombineInfo
, dl
);
5320 if (!Tmp2
.getNode())
5321 Tmp2
= DAG
.getNode(ISD::SETCC
, dl
,
5322 TLI
.getSetCCResultType(LHSHi
.getValueType()),
5325 ConstantSDNode
*Tmp1C
= dyn_cast
<ConstantSDNode
>(Tmp1
.getNode());
5326 ConstantSDNode
*Tmp2C
= dyn_cast
<ConstantSDNode
>(Tmp2
.getNode());
5327 if ((Tmp1C
&& Tmp1C
->isNullValue()) ||
5328 (Tmp2C
&& Tmp2C
->isNullValue() &&
5329 (CCCode
== ISD::SETLE
|| CCCode
== ISD::SETGE
||
5330 CCCode
== ISD::SETUGE
|| CCCode
== ISD::SETULE
)) ||
5331 (Tmp2C
&& Tmp2C
->getAPIntValue() == 1 &&
5332 (CCCode
== ISD::SETLT
|| CCCode
== ISD::SETGT
||
5333 CCCode
== ISD::SETUGT
|| CCCode
== ISD::SETULT
))) {
5334 // low part is known false, returns high part.
5335 // For LE / GE, if high part is known false, ignore the low part.
5336 // For LT / GT, if high part is known true, ignore the low part.
5340 Result
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSHi
.getValueType()),
5341 LHSHi
, RHSHi
, ISD::SETEQ
, false,
5342 DagCombineInfo
, dl
);
5343 if (!Result
.getNode())
5344 Result
=DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
5345 LHSHi
, RHSHi
, ISD::SETEQ
);
5346 Result
= LegalizeOp(DAG
.getNode(ISD::SELECT
, dl
, Tmp1
.getValueType(),
5347 Result
, Tmp1
, Tmp2
));
5358 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
5359 /// condition code CC on the current target. This routine assumes LHS and rHS
5360 /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
5361 /// illegal condition code into AND / OR of multiple SETCC values.
5362 void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT
,
5363 SDValue
&LHS
, SDValue
&RHS
,
5366 MVT OpVT
= LHS
.getValueType();
5367 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
5368 switch (TLI
.getCondCodeAction(CCCode
, OpVT
)) {
5369 default: assert(0 && "Unknown condition code action!");
5370 case TargetLowering::Legal
:
5373 case TargetLowering::Expand
: {
5374 ISD::CondCode CC1
= ISD::SETCC_INVALID
, CC2
= ISD::SETCC_INVALID
;
5377 default: assert(0 && "Don't know how to expand this condition!"); abort();
5378 case ISD::SETOEQ
: CC1
= ISD::SETEQ
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5379 case ISD::SETOGT
: CC1
= ISD::SETGT
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5380 case ISD::SETOGE
: CC1
= ISD::SETGE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5381 case ISD::SETOLT
: CC1
= ISD::SETLT
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5382 case ISD::SETOLE
: CC1
= ISD::SETLE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5383 case ISD::SETONE
: CC1
= ISD::SETNE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5384 case ISD::SETUEQ
: CC1
= ISD::SETEQ
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5385 case ISD::SETUGT
: CC1
= ISD::SETGT
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5386 case ISD::SETUGE
: CC1
= ISD::SETGE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5387 case ISD::SETULT
: CC1
= ISD::SETLT
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5388 case ISD::SETULE
: CC1
= ISD::SETLE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5389 case ISD::SETUNE
: CC1
= ISD::SETNE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5390 // FIXME: Implement more expansions.
5393 SDValue SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC1
);
5394 SDValue SetCC2
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC2
);
5395 LHS
= DAG
.getNode(Opc
, dl
, VT
, SetCC1
, SetCC2
);
5403 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
5404 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
5405 /// a load from the stack slot to DestVT, extending it if needed.
5406 /// The resultant code need not be legal.
5407 SDValue
SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp
,
5411 // Create the stack frame object.
5413 TLI
.getTargetData()->getPrefTypeAlignment(SrcOp
.getValueType().
5415 SDValue FIPtr
= DAG
.CreateStackTemporary(SlotVT
, SrcAlign
);
5417 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(FIPtr
);
5418 int SPFI
= StackPtrFI
->getIndex();
5419 const Value
*SV
= PseudoSourceValue::getFixedStack(SPFI
);
5421 unsigned SrcSize
= SrcOp
.getValueType().getSizeInBits();
5422 unsigned SlotSize
= SlotVT
.getSizeInBits();
5423 unsigned DestSize
= DestVT
.getSizeInBits();
5424 unsigned DestAlign
=
5425 TLI
.getTargetData()->getPrefTypeAlignment(DestVT
.getTypeForMVT());
5427 // Emit a store to the stack slot. Use a truncstore if the input value is
5428 // later than DestVT.
5431 if (SrcSize
> SlotSize
)
5432 Store
= DAG
.getTruncStore(DAG
.getEntryNode(), dl
, SrcOp
, FIPtr
,
5433 SV
, 0, SlotVT
, false, SrcAlign
);
5435 assert(SrcSize
== SlotSize
&& "Invalid store");
5436 Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, SrcOp
, FIPtr
,
5437 SV
, 0, false, SrcAlign
);
5440 // Result is a load from the stack slot.
5441 if (SlotSize
== DestSize
)
5442 return DAG
.getLoad(DestVT
, dl
, Store
, FIPtr
, SV
, 0, false, DestAlign
);
5444 assert(SlotSize
< DestSize
&& "Unknown extension!");
5445 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
, Store
, FIPtr
, SV
, 0, SlotVT
,
5449 SDValue
SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode
*Node
) {
5450 DebugLoc dl
= Node
->getDebugLoc();
5451 // Create a vector sized/aligned stack slot, store the value to element #0,
5452 // then load the whole vector back out.
5453 SDValue StackPtr
= DAG
.CreateStackTemporary(Node
->getValueType(0));
5455 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(StackPtr
);
5456 int SPFI
= StackPtrFI
->getIndex();
5458 SDValue Ch
= DAG
.getTruncStore(DAG
.getEntryNode(), dl
, Node
->getOperand(0),
5460 PseudoSourceValue::getFixedStack(SPFI
), 0,
5461 Node
->getValueType(0).getVectorElementType());
5462 return DAG
.getLoad(Node
->getValueType(0), dl
, Ch
, StackPtr
,
5463 PseudoSourceValue::getFixedStack(SPFI
), 0);
5467 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
5468 /// support the operation, but do support the resultant vector type.
5469 SDValue
SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode
*Node
) {
5470 unsigned NumElems
= Node
->getNumOperands();
5471 SDValue SplatValue
= Node
->getOperand(0);
5472 DebugLoc dl
= Node
->getDebugLoc();
5473 MVT VT
= Node
->getValueType(0);
5474 MVT OpVT
= SplatValue
.getValueType();
5475 MVT EltVT
= VT
.getVectorElementType();
5477 // If the only non-undef value is the low element, turn this into a
5478 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
5479 bool isOnlyLowElement
= true;
5481 // FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
5482 // and use a bitmask instead of a list of elements.
5483 // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat.
5484 std::map
<SDValue
, std::vector
<unsigned> > Values
;
5485 Values
[SplatValue
].push_back(0);
5486 bool isConstant
= true;
5487 if (!isa
<ConstantFPSDNode
>(SplatValue
) && !isa
<ConstantSDNode
>(SplatValue
) &&
5488 SplatValue
.getOpcode() != ISD::UNDEF
)
5491 for (unsigned i
= 1; i
< NumElems
; ++i
) {
5492 SDValue V
= Node
->getOperand(i
);
5493 Values
[V
].push_back(i
);
5494 if (V
.getOpcode() != ISD::UNDEF
)
5495 isOnlyLowElement
= false;
5496 if (SplatValue
!= V
)
5497 SplatValue
= SDValue(0, 0);
5499 // If this isn't a constant element or an undef, we can't use a constant
5501 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
) &&
5502 V
.getOpcode() != ISD::UNDEF
)
5506 if (isOnlyLowElement
) {
5507 // If the low element is an undef too, then this whole things is an undef.
5508 if (Node
->getOperand(0).getOpcode() == ISD::UNDEF
)
5509 return DAG
.getUNDEF(VT
);
5510 // Otherwise, turn this into a scalar_to_vector node.
5511 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Node
->getOperand(0));
5514 // If all elements are constants, create a load from the constant pool.
5516 std::vector
<Constant
*> CV
;
5517 for (unsigned i
= 0, e
= NumElems
; i
!= e
; ++i
) {
5518 if (ConstantFPSDNode
*V
=
5519 dyn_cast
<ConstantFPSDNode
>(Node
->getOperand(i
))) {
5520 CV
.push_back(const_cast<ConstantFP
*>(V
->getConstantFPValue()));
5521 } else if (ConstantSDNode
*V
=
5522 dyn_cast
<ConstantSDNode
>(Node
->getOperand(i
))) {
5523 CV
.push_back(const_cast<ConstantInt
*>(V
->getConstantIntValue()));
5525 assert(Node
->getOperand(i
).getOpcode() == ISD::UNDEF
);
5526 const Type
*OpNTy
= OpVT
.getTypeForMVT();
5527 CV
.push_back(UndefValue::get(OpNTy
));
5530 Constant
*CP
= ConstantVector::get(CV
);
5531 SDValue CPIdx
= DAG
.getConstantPool(CP
, TLI
.getPointerTy());
5532 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5533 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5534 PseudoSourceValue::getConstantPool(), 0,
5538 if (SplatValue
.getNode()) { // Splat of one value?
5539 // Build the shuffle constant vector: <0, 0, 0, 0>
5540 SmallVector
<int, 8> ZeroVec(NumElems
, 0);
5542 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
5543 if (TLI
.isShuffleMaskLegal(ZeroVec
, Node
->getValueType(0))) {
5544 // Get the splatted value into the low element of a vector register.
5546 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, SplatValue
);
5548 // Return shuffle(LowValVec, undef, <0,0,0,0>)
5549 return DAG
.getVectorShuffle(VT
, dl
, LowValVec
, DAG
.getUNDEF(VT
),
5554 // If there are only two unique elements, we may be able to turn this into a
5556 if (Values
.size() == 2) {
5557 // Get the two values in deterministic order.
5558 SDValue Val1
= Node
->getOperand(1);
5560 std::map
<SDValue
, std::vector
<unsigned> >::iterator MI
= Values
.begin();
5561 if (MI
->first
!= Val1
)
5564 Val2
= (++MI
)->first
;
5566 // If Val1 is an undef, make sure it ends up as Val2, to ensure that our
5567 // vector shuffle has the undef vector on the RHS.
5568 if (Val1
.getOpcode() == ISD::UNDEF
)
5569 std::swap(Val1
, Val2
);
5571 // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
5572 SmallVector
<int, 8> ShuffleMask(NumElems
, -1);
5574 // Set elements of the shuffle mask for Val1.
5575 std::vector
<unsigned> &Val1Elts
= Values
[Val1
];
5576 for (unsigned i
= 0, e
= Val1Elts
.size(); i
!= e
; ++i
)
5577 ShuffleMask
[Val1Elts
[i
]] = 0;
5579 // Set elements of the shuffle mask for Val2.
5580 std::vector
<unsigned> &Val2Elts
= Values
[Val2
];
5581 for (unsigned i
= 0, e
= Val2Elts
.size(); i
!= e
; ++i
)
5582 if (Val2
.getOpcode() != ISD::UNDEF
)
5583 ShuffleMask
[Val2Elts
[i
]] = NumElems
;
5585 // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
5586 if (TLI
.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR
, VT
) &&
5587 TLI
.isShuffleMaskLegal(ShuffleMask
, VT
)) {
5588 Val1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Val1
);
5589 Val2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Val2
);
5590 return DAG
.getVectorShuffle(VT
, dl
, Val1
, Val2
, &ShuffleMask
[0]);
5594 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently
5595 // aligned object on the stack, store each element into it, then load
5596 // the result as a vector.
5597 // Create the stack frame object.
5598 SDValue FIPtr
= DAG
.CreateStackTemporary(VT
);
5599 int FI
= cast
<FrameIndexSDNode
>(FIPtr
.getNode())->getIndex();
5600 const Value
*SV
= PseudoSourceValue::getFixedStack(FI
);
5602 // Emit a store of each element to the stack slot.
5603 SmallVector
<SDValue
, 8> Stores
;
5604 unsigned TypeByteSize
= OpVT
.getSizeInBits() / 8;
5605 // Store (in the right endianness) the elements to memory.
5606 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
5607 // Ignore undef elements.
5608 if (Node
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
5610 unsigned Offset
= TypeByteSize
*i
;
5612 SDValue Idx
= DAG
.getConstant(Offset
, FIPtr
.getValueType());
5613 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
, Idx
);
5615 Stores
.push_back(DAG
.getStore(DAG
.getEntryNode(), dl
, Node
->getOperand(i
),
5620 if (!Stores
.empty()) // Not all undef elements?
5621 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5622 &Stores
[0], Stores
.size());
5624 StoreChain
= DAG
.getEntryNode();
5626 // Result is a load from the stack slot.
5627 return DAG
.getLoad(VT
, dl
, StoreChain
, FIPtr
, SV
, 0);
5630 void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp
,
5631 SDValue Op
, SDValue Amt
,
5632 SDValue
&Lo
, SDValue
&Hi
,
5634 // Expand the subcomponents.
5636 ExpandOp(Op
, LHSL
, LHSH
);
5638 SDValue Ops
[] = { LHSL
, LHSH
, Amt
};
5639 MVT VT
= LHSL
.getValueType();
5640 Lo
= DAG
.getNode(NodeOp
, dl
, DAG
.getVTList(VT
, VT
), Ops
, 3);
5641 Hi
= Lo
.getValue(1);
5645 /// ExpandShift - Try to find a clever way to expand this shift operation out to
5646 /// smaller elements. If we can't find a way that is more efficient than a
5647 /// libcall on this target, return false. Otherwise, return true with the
5648 /// low-parts expanded into Lo and Hi.
5649 bool SelectionDAGLegalize::ExpandShift(unsigned Opc
, SDValue Op
, SDValue Amt
,
5650 SDValue
&Lo
, SDValue
&Hi
,
5652 assert((Opc
== ISD::SHL
|| Opc
== ISD::SRA
|| Opc
== ISD::SRL
) &&
5653 "This is not a shift!");
5655 MVT NVT
= TLI
.getTypeToTransformTo(Op
.getValueType());
5656 SDValue ShAmt
= LegalizeOp(Amt
);
5657 MVT ShTy
= ShAmt
.getValueType();
5658 unsigned ShBits
= ShTy
.getSizeInBits();
5659 unsigned VTBits
= Op
.getValueType().getSizeInBits();
5660 unsigned NVTBits
= NVT
.getSizeInBits();
5662 // Handle the case when Amt is an immediate.
5663 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Amt
.getNode())) {
5664 unsigned Cst
= CN
->getZExtValue();
5665 // Expand the incoming operand to be shifted, so that we have its parts
5667 ExpandOp(Op
, InL
, InH
);
5671 Lo
= DAG
.getConstant(0, NVT
);
5672 Hi
= DAG
.getConstant(0, NVT
);
5673 } else if (Cst
> NVTBits
) {
5674 Lo
= DAG
.getConstant(0, NVT
);
5675 Hi
= DAG
.getNode(ISD::SHL
, dl
,
5676 NVT
, InL
, DAG
.getConstant(Cst
-NVTBits
, ShTy
));
5677 } else if (Cst
== NVTBits
) {
5678 Lo
= DAG
.getConstant(0, NVT
);
5681 Lo
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, DAG
.getConstant(Cst
, ShTy
));
5682 Hi
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5683 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, DAG
.getConstant(Cst
, ShTy
)),
5684 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
,
5685 DAG
.getConstant(NVTBits
-Cst
, ShTy
)));
5690 Lo
= DAG
.getConstant(0, NVT
);
5691 Hi
= DAG
.getConstant(0, NVT
);
5692 } else if (Cst
> NVTBits
) {
5693 Lo
= DAG
.getNode(ISD::SRL
, dl
, NVT
,
5694 InH
, DAG
.getConstant(Cst
-NVTBits
, ShTy
));
5695 Hi
= DAG
.getConstant(0, NVT
);
5696 } else if (Cst
== NVTBits
) {
5698 Hi
= DAG
.getConstant(0, NVT
);
5700 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5701 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, DAG
.getConstant(Cst
, ShTy
)),
5702 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
,
5703 DAG
.getConstant(NVTBits
-Cst
, ShTy
)));
5704 Hi
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, DAG
.getConstant(Cst
, ShTy
));
5709 Hi
= Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
5710 DAG
.getConstant(NVTBits
-1, ShTy
));
5711 } else if (Cst
> NVTBits
) {
5712 Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
5713 DAG
.getConstant(Cst
-NVTBits
, ShTy
));
5714 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
5715 DAG
.getConstant(NVTBits
-1, ShTy
));
5716 } else if (Cst
== NVTBits
) {
5718 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
5719 DAG
.getConstant(NVTBits
-1, ShTy
));
5721 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5722 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, DAG
.getConstant(Cst
, ShTy
)),
5723 DAG
.getNode(ISD::SHL
, dl
,
5724 NVT
, InH
, DAG
.getConstant(NVTBits
-Cst
, ShTy
)));
5725 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, DAG
.getConstant(Cst
, ShTy
));
5731 // Okay, the shift amount isn't constant. However, if we can tell that it is
5732 // >= 32 or < 32, we can still simplify it, without knowing the actual value.
5733 APInt Mask
= APInt::getHighBitsSet(ShBits
, ShBits
- Log2_32(NVTBits
));
5734 APInt KnownZero
, KnownOne
;
5735 DAG
.ComputeMaskedBits(Amt
, Mask
, KnownZero
, KnownOne
);
5737 // If we know that if any of the high bits of the shift amount are one, then
5738 // we can do this as a couple of simple shifts.
5739 if (KnownOne
.intersects(Mask
)) {
5740 // Mask out the high bit, which we know is set.
5741 Amt
= DAG
.getNode(ISD::AND
, dl
, Amt
.getValueType(), Amt
,
5742 DAG
.getConstant(~Mask
, Amt
.getValueType()));
5744 // Expand the incoming operand to be shifted, so that we have its parts
5746 ExpandOp(Op
, InL
, InH
);
5749 Lo
= DAG
.getConstant(0, NVT
); // Low part is zero.
5750 Hi
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, Amt
); // High part from Lo part.
5753 Hi
= DAG
.getConstant(0, NVT
); // Hi part is zero.
5754 Lo
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, Amt
); // Lo part from Hi part.
5757 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, // Sign extend high part.
5758 DAG
.getConstant(NVTBits
-1, Amt
.getValueType()));
5759 Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, Amt
); // Lo part from Hi part.
5764 // If we know that the high bits of the shift amount are all zero, then we can
5765 // do this as a couple of simple shifts.
5766 if ((KnownZero
& Mask
) == Mask
) {
5768 SDValue Amt2
= DAG
.getNode(ISD::SUB
, dl
, Amt
.getValueType(),
5769 DAG
.getConstant(NVTBits
, Amt
.getValueType()),
5772 // Expand the incoming operand to be shifted, so that we have its parts
5774 ExpandOp(Op
, InL
, InH
);
5777 Lo
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, Amt
);
5778 Hi
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5779 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt
),
5780 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt2
));
5783 Hi
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, Amt
);
5784 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5785 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt
),
5786 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt2
));
5789 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, Amt
);
5790 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5791 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt
),
5792 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt2
));
5801 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
5802 // does not fit into a register, return the lo part and set the hi part to the
5803 // by-reg argument. If it does fit into a single register, return the result
5804 // and leave the Hi part unset.
5805 SDValue
SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
,
5806 bool isSigned
, SDValue
&Hi
) {
5807 assert(!IsLegalizingCall
&& "Cannot overlap legalization of calls!");
5808 // The input chain to this libcall is the entry node of the function.
5809 // Legalizing the call will automatically add the previous call to the
5811 SDValue InChain
= DAG
.getEntryNode();
5813 TargetLowering::ArgListTy Args
;
5814 TargetLowering::ArgListEntry Entry
;
5815 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
5816 MVT ArgVT
= Node
->getOperand(i
).getValueType();
5817 const Type
*ArgTy
= ArgVT
.getTypeForMVT();
5818 Entry
.Node
= Node
->getOperand(i
); Entry
.Ty
= ArgTy
;
5819 Entry
.isSExt
= isSigned
;
5820 Entry
.isZExt
= !isSigned
;
5821 Args
.push_back(Entry
);
5823 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
5824 TLI
.getPointerTy());
5826 // Splice the libcall in wherever FindInputOutputChains tells us to.
5827 const Type
*RetTy
= Node
->getValueType(0).getTypeForMVT();
5828 std::pair
<SDValue
, SDValue
> CallInfo
=
5829 TLI
.LowerCallTo(InChain
, RetTy
, isSigned
, !isSigned
, false, false,
5830 CallingConv::C
, false, Callee
, Args
, DAG
,
5831 Node
->getDebugLoc());
5833 // Legalize the call sequence, starting with the chain. This will advance
5834 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
5835 // was added by LowerCallTo (guaranteeing proper serialization of calls).
5836 LegalizeOp(CallInfo
.second
);
5838 switch (getTypeAction(CallInfo
.first
.getValueType())) {
5839 default: assert(0 && "Unknown thing");
5841 Result
= CallInfo
.first
;
5844 ExpandOp(CallInfo
.first
, Result
, Hi
);
5850 /// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation.
5852 SDValue
SelectionDAGLegalize::
5853 LegalizeINT_TO_FP(SDValue Result
, bool isSigned
, MVT DestTy
, SDValue Op
,
5855 bool isCustom
= false;
5857 switch (getTypeAction(Op
.getValueType())) {
5859 switch (TLI
.getOperationAction(isSigned
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
5860 Op
.getValueType())) {
5861 default: assert(0 && "Unknown operation action!");
5862 case TargetLowering::Custom
:
5865 case TargetLowering::Legal
:
5866 Tmp1
= LegalizeOp(Op
);
5867 if (Result
.getNode())
5868 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
5870 Result
= DAG
.getNode(isSigned
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
, dl
,
5873 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
5874 if (Tmp1
.getNode()) Result
= Tmp1
;
5877 case TargetLowering::Expand
:
5878 Result
= ExpandLegalINT_TO_FP(isSigned
, LegalizeOp(Op
), DestTy
, dl
);
5880 case TargetLowering::Promote
:
5881 Result
= PromoteLegalINT_TO_FP(LegalizeOp(Op
), DestTy
, isSigned
, dl
);
5886 Result
= ExpandIntToFP(isSigned
, DestTy
, Op
, dl
) ;
5889 Tmp1
= PromoteOp(Op
);
5891 Tmp1
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Tmp1
.getValueType(),
5892 Tmp1
, DAG
.getValueType(Op
.getValueType()));
5894 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, Op
.getValueType());
5896 if (Result
.getNode())
5897 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
5899 Result
= DAG
.getNode(isSigned
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
, dl
,
5901 Result
= LegalizeOp(Result
); // The 'op' is not necessarily legal!
5907 /// ExpandIntToFP - Expand a [US]INT_TO_FP operation.
5909 SDValue
SelectionDAGLegalize::
5910 ExpandIntToFP(bool isSigned
, MVT DestTy
, SDValue Source
, DebugLoc dl
) {
5911 MVT SourceVT
= Source
.getValueType();
5912 bool ExpandSource
= getTypeAction(SourceVT
) == Expand
;
5914 // Expand unsupported int-to-fp vector casts by unrolling them.
5915 if (DestTy
.isVector()) {
5917 return LegalizeOp(UnrollVectorOp(Source
));
5918 MVT DestEltTy
= DestTy
.getVectorElementType();
5919 if (DestTy
.getVectorNumElements() == 1) {
5920 SDValue Scalar
= ScalarizeVectorOp(Source
);
5921 SDValue Result
= LegalizeINT_TO_FP(SDValue(), isSigned
,
5922 DestEltTy
, Scalar
, dl
);
5923 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, DestTy
, Result
);
5926 SplitVectorOp(Source
, Lo
, Hi
);
5927 MVT SplitDestTy
= MVT::getVectorVT(DestEltTy
,
5928 DestTy
.getVectorNumElements() / 2);
5929 SDValue LoResult
= LegalizeINT_TO_FP(SDValue(), isSigned
, SplitDestTy
,
5931 SDValue HiResult
= LegalizeINT_TO_FP(SDValue(), isSigned
, SplitDestTy
,
5933 return LegalizeOp(DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestTy
, LoResult
,
5937 // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc.
5938 if (!isSigned
&& SourceVT
!= MVT::i32
) {
5939 // The integer value loaded will be incorrectly if the 'sign bit' of the
5940 // incoming integer is set. To handle this, we dynamically test to see if
5941 // it is set, and, if so, add a fudge factor.
5945 ExpandOp(Source
, Lo
, Hi
);
5946 Source
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, SourceVT
, Lo
, Hi
);
5948 // The comparison for the sign bit will use the entire operand.
5952 // Check to see if the target has a custom way to lower this. If so, use
5953 // it. (Note we've already expanded the operand in this case.)
5954 switch (TLI
.getOperationAction(ISD::UINT_TO_FP
, SourceVT
)) {
5955 default: assert(0 && "This action not implemented for this operation!");
5956 case TargetLowering::Legal
:
5957 case TargetLowering::Expand
:
5958 break; // This case is handled below.
5959 case TargetLowering::Custom
: {
5960 SDValue NV
= TLI
.LowerOperation(DAG
.getNode(ISD::UINT_TO_FP
, dl
, DestTy
,
5963 return LegalizeOp(NV
);
5964 break; // The target decided this was legal after all
5968 // If this is unsigned, and not supported, first perform the conversion to
5969 // signed, then adjust the result if the sign bit is set.
5970 SDValue SignedConv
= ExpandIntToFP(true, DestTy
, Source
, dl
);
5972 SDValue SignSet
= DAG
.getSetCC(dl
,
5973 TLI
.getSetCCResultType(Hi
.getValueType()),
5974 Hi
, DAG
.getConstant(0, Hi
.getValueType()),
5976 SDValue Zero
= DAG
.getIntPtrConstant(0), Four
= DAG
.getIntPtrConstant(4);
5977 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, dl
, Zero
.getValueType(),
5978 SignSet
, Four
, Zero
);
5979 uint64_t FF
= 0x5f800000ULL
;
5980 if (TLI
.isLittleEndian()) FF
<<= 32;
5981 Constant
*FudgeFactor
= ConstantInt::get(Type::Int64Ty
, FF
);
5983 SDValue CPIdx
= DAG
.getConstantPool(FudgeFactor
, TLI
.getPointerTy());
5984 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5985 CPIdx
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), CPIdx
, CstOffset
);
5986 Alignment
= std::min(Alignment
, 4u);
5988 if (DestTy
== MVT::f32
)
5989 FudgeInReg
= DAG
.getLoad(MVT::f32
, dl
, DAG
.getEntryNode(), CPIdx
,
5990 PseudoSourceValue::getConstantPool(), 0,
5992 else if (DestTy
.bitsGT(MVT::f32
))
5993 // FIXME: Avoid the extend by construction the right constantpool?
5994 FudgeInReg
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestTy
, DAG
.getEntryNode(),
5996 PseudoSourceValue::getConstantPool(), 0,
5997 MVT::f32
, false, Alignment
);
5999 assert(0 && "Unexpected conversion");
6001 MVT SCVT
= SignedConv
.getValueType();
6002 if (SCVT
!= DestTy
) {
6003 // Destination type needs to be expanded as well. The FADD now we are
6004 // constructing will be expanded into a libcall.
6005 if (SCVT
.getSizeInBits() != DestTy
.getSizeInBits()) {
6006 assert(SCVT
.getSizeInBits() * 2 == DestTy
.getSizeInBits());
6007 SignedConv
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, DestTy
,
6008 SignedConv
, SignedConv
.getValue(1));
6010 SignedConv
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, DestTy
, SignedConv
);
6012 return DAG
.getNode(ISD::FADD
, dl
, DestTy
, SignedConv
, FudgeInReg
);
6015 // Check to see if the target has a custom way to lower this. If so, use it.
6016 switch (TLI
.getOperationAction(ISD::SINT_TO_FP
, SourceVT
)) {
6017 default: assert(0 && "This action not implemented for this operation!");
6018 case TargetLowering::Legal
:
6019 case TargetLowering::Expand
:
6020 break; // This case is handled below.
6021 case TargetLowering::Custom
: {
6022 SDValue NV
= TLI
.LowerOperation(DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestTy
,
6025 return LegalizeOp(NV
);
6026 break; // The target decided this was legal after all
6030 // Expand the source, then glue it back together for the call. We must expand
6031 // the source in case it is shared (this pass of legalize must traverse it).
6033 SDValue SrcLo
, SrcHi
;
6034 ExpandOp(Source
, SrcLo
, SrcHi
);
6035 Source
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, SourceVT
, SrcLo
, SrcHi
);
6038 RTLIB::Libcall LC
= isSigned
?
6039 RTLIB::getSINTTOFP(SourceVT
, DestTy
) :
6040 RTLIB::getUINTTOFP(SourceVT
, DestTy
);
6041 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unknown int value type");
6043 Source
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestTy
, Source
);
6045 SDValue Result
= ExpandLibCall(LC
, Source
.getNode(), isSigned
, HiPart
);
6046 if (Result
.getValueType() != DestTy
&& HiPart
.getNode())
6047 Result
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, DestTy
, Result
, HiPart
);
6051 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
6052 /// INT_TO_FP operation of the specified operand when the target requests that
6053 /// we expand it. At this point, we know that the result and operand types are
6054 /// legal for the target.
6055 SDValue
SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned
,
6059 if (Op0
.getValueType() == MVT::i32
) {
6060 // simple 32-bit [signed|unsigned] integer to float/double expansion
6062 // Get the stack frame index of a 8 byte buffer.
6063 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::f64
);
6065 // word offset constant for Hi/Lo address computation
6066 SDValue WordOff
= DAG
.getConstant(sizeof(int), TLI
.getPointerTy());
6067 // set up Hi and Lo (into buffer) address based on endian
6068 SDValue Hi
= StackSlot
;
6069 SDValue Lo
= DAG
.getNode(ISD::ADD
, dl
,
6070 TLI
.getPointerTy(), StackSlot
, WordOff
);
6071 if (TLI
.isLittleEndian())
6074 // if signed map to unsigned space
6077 // constant used to invert sign bit (signed to unsigned mapping)
6078 SDValue SignBit
= DAG
.getConstant(0x80000000u
, MVT::i32
);
6079 Op0Mapped
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Op0
, SignBit
);
6083 // store the lo of the constructed double - based on integer input
6084 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
,
6085 Op0Mapped
, Lo
, NULL
, 0);
6086 // initial hi portion of constructed double
6087 SDValue InitialHi
= DAG
.getConstant(0x43300000u
, MVT::i32
);
6088 // store the hi of the constructed double - biased exponent
6089 SDValue Store2
=DAG
.getStore(Store1
, dl
, InitialHi
, Hi
, NULL
, 0);
6090 // load the constructed double
6091 SDValue Load
= DAG
.getLoad(MVT::f64
, dl
, Store2
, StackSlot
, NULL
, 0);
6092 // FP constant to bias correct the final result
6093 SDValue Bias
= DAG
.getConstantFP(isSigned
?
6094 BitsToDouble(0x4330000080000000ULL
) :
6095 BitsToDouble(0x4330000000000000ULL
),
6097 // subtract the bias
6098 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Load
, Bias
);
6101 // handle final rounding
6102 if (DestVT
== MVT::f64
) {
6105 } else if (DestVT
.bitsLT(MVT::f64
)) {
6106 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
6107 DAG
.getIntPtrConstant(0));
6108 } else if (DestVT
.bitsGT(MVT::f64
)) {
6109 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
6113 assert(!isSigned
&& "Legalize cannot Expand SINT_TO_FP for i64 yet");
6114 SDValue Tmp1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestVT
, Op0
);
6116 SDValue SignSet
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Op0
.getValueType()),
6117 Op0
, DAG
.getConstant(0, Op0
.getValueType()),
6119 SDValue Zero
= DAG
.getIntPtrConstant(0), Four
= DAG
.getIntPtrConstant(4);
6120 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, dl
, Zero
.getValueType(),
6121 SignSet
, Four
, Zero
);
6123 // If the sign bit of the integer is set, the large number will be treated
6124 // as a negative number. To counteract this, the dynamic code adds an
6125 // offset depending on the data type.
6127 switch (Op0
.getValueType().getSimpleVT()) {
6128 default: assert(0 && "Unsupported integer type!");
6129 case MVT::i8
: FF
= 0x43800000ULL
; break; // 2^8 (as a float)
6130 case MVT::i16
: FF
= 0x47800000ULL
; break; // 2^16 (as a float)
6131 case MVT::i32
: FF
= 0x4F800000ULL
; break; // 2^32 (as a float)
6132 case MVT::i64
: FF
= 0x5F800000ULL
; break; // 2^64 (as a float)
6134 if (TLI
.isLittleEndian()) FF
<<= 32;
6135 Constant
*FudgeFactor
= ConstantInt::get(Type::Int64Ty
, FF
);
6137 SDValue CPIdx
= DAG
.getConstantPool(FudgeFactor
, TLI
.getPointerTy());
6138 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
6139 CPIdx
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), CPIdx
, CstOffset
);
6140 Alignment
= std::min(Alignment
, 4u);
6142 if (DestVT
== MVT::f32
)
6143 FudgeInReg
= DAG
.getLoad(MVT::f32
, dl
, DAG
.getEntryNode(), CPIdx
,
6144 PseudoSourceValue::getConstantPool(), 0,
6148 LegalizeOp(DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
,
6149 DAG
.getEntryNode(), CPIdx
,
6150 PseudoSourceValue::getConstantPool(), 0,
6151 MVT::f32
, false, Alignment
));
6154 return DAG
.getNode(ISD::FADD
, dl
, DestVT
, Tmp1
, FudgeInReg
);
6157 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
6158 /// *INT_TO_FP operation of the specified operand when the target requests that
6159 /// we promote it. At this point, we know that the result and operand types are
6160 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
6161 /// operation that takes a larger input.
6162 SDValue
SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp
,
6166 // First step, figure out the appropriate *INT_TO_FP operation to use.
6167 MVT NewInTy
= LegalOp
.getValueType();
6169 unsigned OpToUse
= 0;
6171 // Scan for the appropriate larger type to use.
6173 NewInTy
= (MVT::SimpleValueType
)(NewInTy
.getSimpleVT()+1);
6174 assert(NewInTy
.isInteger() && "Ran out of possibilities!");
6176 // If the target supports SINT_TO_FP of this type, use it.
6177 switch (TLI
.getOperationAction(ISD::SINT_TO_FP
, NewInTy
)) {
6179 case TargetLowering::Legal
:
6180 if (!TLI
.isTypeLegal(NewInTy
))
6181 break; // Can't use this datatype.
6183 case TargetLowering::Custom
:
6184 OpToUse
= ISD::SINT_TO_FP
;
6188 if (isSigned
) continue;
6190 // If the target supports UINT_TO_FP of this type, use it.
6191 switch (TLI
.getOperationAction(ISD::UINT_TO_FP
, NewInTy
)) {
6193 case TargetLowering::Legal
:
6194 if (!TLI
.isTypeLegal(NewInTy
))
6195 break; // Can't use this datatype.
6197 case TargetLowering::Custom
:
6198 OpToUse
= ISD::UINT_TO_FP
;
6203 // Otherwise, try a larger type.
6206 // Okay, we found the operation and type to use. Zero extend our input to the
6207 // desired type then run the operation on it.
6208 return DAG
.getNode(OpToUse
, dl
, DestVT
,
6209 DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
6210 dl
, NewInTy
, LegalOp
));
6213 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
6214 /// FP_TO_*INT operation of the specified operand when the target requests that
6215 /// we promote it. At this point, we know that the result and operand types are
6216 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
6217 /// operation that returns a larger result.
6218 SDValue
SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp
,
6222 // First step, figure out the appropriate FP_TO*INT operation to use.
6223 MVT NewOutTy
= DestVT
;
6225 unsigned OpToUse
= 0;
6227 // Scan for the appropriate larger type to use.
6229 NewOutTy
= (MVT::SimpleValueType
)(NewOutTy
.getSimpleVT()+1);
6230 assert(NewOutTy
.isInteger() && "Ran out of possibilities!");
6232 // If the target supports FP_TO_SINT returning this type, use it.
6233 switch (TLI
.getOperationAction(ISD::FP_TO_SINT
, NewOutTy
)) {
6235 case TargetLowering::Legal
:
6236 if (!TLI
.isTypeLegal(NewOutTy
))
6237 break; // Can't use this datatype.
6239 case TargetLowering::Custom
:
6240 OpToUse
= ISD::FP_TO_SINT
;
6245 // If the target supports FP_TO_UINT of this type, use it.
6246 switch (TLI
.getOperationAction(ISD::FP_TO_UINT
, NewOutTy
)) {
6248 case TargetLowering::Legal
:
6249 if (!TLI
.isTypeLegal(NewOutTy
))
6250 break; // Can't use this datatype.
6252 case TargetLowering::Custom
:
6253 OpToUse
= ISD::FP_TO_UINT
;
6258 // Otherwise, try a larger type.
6262 // Okay, we found the operation and type to use.
6263 SDValue Operation
= DAG
.getNode(OpToUse
, dl
, NewOutTy
, LegalOp
);
6265 // If the operation produces an invalid type, it must be custom lowered. Use
6266 // the target lowering hooks to expand it. Just keep the low part of the
6267 // expanded operation, we know that we're truncating anyway.
6268 if (getTypeAction(NewOutTy
) == Expand
) {
6269 SmallVector
<SDValue
, 2> Results
;
6270 TLI
.ReplaceNodeResults(Operation
.getNode(), Results
, DAG
);
6271 assert(Results
.size() == 1 && "Incorrect FP_TO_XINT lowering!");
6272 Operation
= Results
[0];
6275 // Truncate the result of the extended FP_TO_*INT operation to the desired
6277 return DAG
.getNode(ISD::TRUNCATE
, dl
, DestVT
, Operation
);
6280 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
6282 SDValue
SelectionDAGLegalize::ExpandBSWAP(SDValue Op
, DebugLoc dl
) {
6283 MVT VT
= Op
.getValueType();
6284 MVT SHVT
= TLI
.getShiftAmountTy();
6285 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
, Tmp5
, Tmp6
, Tmp7
, Tmp8
;
6286 switch (VT
.getSimpleVT()) {
6287 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
6289 Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6290 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6291 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
6293 Tmp4
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
6294 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6295 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6296 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
6297 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
, DAG
.getConstant(0xFF0000, VT
));
6298 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(0xFF00, VT
));
6299 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
6300 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
6301 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
6303 Tmp8
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(56, SHVT
));
6304 Tmp7
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(40, SHVT
));
6305 Tmp6
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
6306 Tmp5
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6307 Tmp4
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6308 Tmp3
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
6309 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(40, SHVT
));
6310 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(56, SHVT
));
6311 Tmp7
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp7
, DAG
.getConstant(255ULL<<48, VT
));
6312 Tmp6
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp6
, DAG
.getConstant(255ULL<<40, VT
));
6313 Tmp5
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp5
, DAG
.getConstant(255ULL<<32, VT
));
6314 Tmp4
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp4
, DAG
.getConstant(255ULL<<24, VT
));
6315 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
, DAG
.getConstant(255ULL<<16, VT
));
6316 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(255ULL<<8 , VT
));
6317 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp7
);
6318 Tmp6
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp6
, Tmp5
);
6319 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
6320 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
6321 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp6
);
6322 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
6323 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp4
);
6327 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
6329 SDValue
SelectionDAGLegalize::ExpandBitCount(unsigned Opc
, SDValue Op
,
6332 default: assert(0 && "Cannot expand this yet!");
6334 static const uint64_t mask
[6] = {
6335 0x5555555555555555ULL
, 0x3333333333333333ULL
,
6336 0x0F0F0F0F0F0F0F0FULL
, 0x00FF00FF00FF00FFULL
,
6337 0x0000FFFF0000FFFFULL
, 0x00000000FFFFFFFFULL
6339 MVT VT
= Op
.getValueType();
6340 MVT ShVT
= TLI
.getShiftAmountTy();
6341 unsigned len
= VT
.getSizeInBits();
6342 for (unsigned i
= 0; (1U << i
) <= (len
/ 2); ++i
) {
6343 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
6344 unsigned EltSize
= VT
.isVector() ?
6345 VT
.getVectorElementType().getSizeInBits() : len
;
6346 SDValue Tmp2
= DAG
.getConstant(APInt(EltSize
, mask
[i
]), VT
);
6347 SDValue Tmp3
= DAG
.getConstant(1ULL << i
, ShVT
);
6348 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
,
6349 DAG
.getNode(ISD::AND
, dl
, VT
, Op
, Tmp2
),
6350 DAG
.getNode(ISD::AND
, dl
, VT
,
6351 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp3
),
6357 // for now, we do this:
6358 // x = x | (x >> 1);
6359 // x = x | (x >> 2);
6361 // x = x | (x >>16);
6362 // x = x | (x >>32); // for 64-bit input
6363 // return popcount(~x);
6365 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
6366 MVT VT
= Op
.getValueType();
6367 MVT ShVT
= TLI
.getShiftAmountTy();
6368 unsigned len
= VT
.getSizeInBits();
6369 for (unsigned i
= 0; (1U << i
) <= (len
/ 2); ++i
) {
6370 SDValue Tmp3
= DAG
.getConstant(1ULL << i
, ShVT
);
6371 Op
= DAG
.getNode(ISD::OR
, dl
, VT
, Op
,
6372 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp3
));
6374 Op
= DAG
.getNOT(dl
, Op
, VT
);
6375 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Op
);
6378 // for now, we use: { return popcount(~x & (x - 1)); }
6379 // unless the target has ctlz but not ctpop, in which case we use:
6380 // { return 32 - nlz(~x & (x-1)); }
6381 // see also http://www.hackersdelight.org/HDcode/ntz.cc
6382 MVT VT
= Op
.getValueType();
6383 SDValue Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
,
6384 DAG
.getNOT(dl
, Op
, VT
),
6385 DAG
.getNode(ISD::SUB
, dl
, VT
, Op
,
6386 DAG
.getConstant(1, VT
)));
6387 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6388 if (!TLI
.isOperationLegalOrCustom(ISD::CTPOP
, VT
) &&
6389 TLI
.isOperationLegalOrCustom(ISD::CTLZ
, VT
))
6390 return DAG
.getNode(ISD::SUB
, dl
, VT
,
6391 DAG
.getConstant(VT
.getSizeInBits(), VT
),
6392 DAG
.getNode(ISD::CTLZ
, dl
, VT
, Tmp3
));
6393 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Tmp3
);
6398 /// ExpandOp - Expand the specified SDValue into its two component pieces
6399 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the
6400 /// LegalizedNodes map is filled in for any results that are not expanded, the
6401 /// ExpandedNodes map is filled in for any results that are expanded, and the
6402 /// Lo/Hi values are returned.
6403 void SelectionDAGLegalize::ExpandOp(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
){
6404 MVT VT
= Op
.getValueType();
6405 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
6406 SDNode
*Node
= Op
.getNode();
6407 DebugLoc dl
= Node
->getDebugLoc();
6408 assert(getTypeAction(VT
) == Expand
&& "Not an expanded type!");
6409 assert(((NVT
.isInteger() && NVT
.bitsLT(VT
)) || VT
.isFloatingPoint() ||
6410 VT
.isVector()) && "Cannot expand to FP value or to larger int value!");
6412 // See if we already expanded it.
6413 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> >::iterator I
6414 = ExpandedNodes
.find(Op
);
6415 if (I
!= ExpandedNodes
.end()) {
6416 Lo
= I
->second
.first
;
6417 Hi
= I
->second
.second
;
6421 switch (Node
->getOpcode()) {
6422 case ISD::CopyFromReg
:
6423 assert(0 && "CopyFromReg must be legal!");
6424 case ISD::FP_ROUND_INREG
:
6425 if (VT
== MVT::ppcf128
&&
6426 TLI
.getOperationAction(ISD::FP_ROUND_INREG
, VT
) ==
6427 TargetLowering::Custom
) {
6428 SDValue SrcLo
, SrcHi
, Src
;
6429 ExpandOp(Op
.getOperand(0), SrcLo
, SrcHi
);
6430 Src
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, SrcLo
, SrcHi
);
6432 TLI
.LowerOperation(DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, VT
, Src
,
6433 Op
.getOperand(1)), DAG
);
6434 assert(Result
.getNode()->getOpcode() == ISD::BUILD_PAIR
);
6435 Lo
= Result
.getNode()->getOperand(0);
6436 Hi
= Result
.getNode()->getOperand(1);
6442 cerr
<< "NODE: "; Node
->dump(&DAG
); cerr
<< "\n";
6444 assert(0 && "Do not know how to expand this operator!");
6446 case ISD::EXTRACT_ELEMENT
:
6447 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6448 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue())
6449 return ExpandOp(Hi
, Lo
, Hi
);
6450 return ExpandOp(Lo
, Lo
, Hi
);
6451 case ISD::EXTRACT_VECTOR_ELT
:
6452 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types.
6453 Lo
= ExpandEXTRACT_VECTOR_ELT(Op
);
6454 return ExpandOp(Lo
, Lo
, Hi
);
6456 Lo
= DAG
.getUNDEF(NVT
);
6457 Hi
= DAG
.getUNDEF(NVT
);
6459 case ISD::Constant
: {
6460 unsigned NVTBits
= NVT
.getSizeInBits();
6461 const APInt
&Cst
= cast
<ConstantSDNode
>(Node
)->getAPIntValue();
6462 Lo
= DAG
.getConstant(APInt(Cst
).trunc(NVTBits
), NVT
);
6463 Hi
= DAG
.getConstant(Cst
.lshr(NVTBits
).trunc(NVTBits
), NVT
);
6466 case ISD::ConstantFP
: {
6467 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Node
);
6468 if (CFP
->getValueType(0) == MVT::ppcf128
) {
6469 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
6470 Lo
= DAG
.getConstantFP(APFloat(APInt(64, 1, &api
.getRawData()[1])),
6472 Hi
= DAG
.getConstantFP(APFloat(APInt(64, 1, &api
.getRawData()[0])),
6476 Lo
= ExpandConstantFP(CFP
, false, DAG
, TLI
);
6477 if (getTypeAction(Lo
.getValueType()) == Expand
)
6478 ExpandOp(Lo
, Lo
, Hi
);
6481 case ISD::BUILD_PAIR
:
6482 // Return the operands.
6483 Lo
= Node
->getOperand(0);
6484 Hi
= Node
->getOperand(1);
6487 case ISD::MERGE_VALUES
:
6488 if (Node
->getNumValues() == 1) {
6489 ExpandOp(Op
.getOperand(0), Lo
, Hi
);
6492 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y)
6493 assert(Op
.getResNo() == 0 && Node
->getNumValues() == 2 &&
6494 Op
.getValue(1).getValueType() == MVT::Other
&&
6495 "unhandled MERGE_VALUES");
6496 ExpandOp(Op
.getOperand(0), Lo
, Hi
);
6497 // Remember that we legalized the chain.
6498 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Op
.getOperand(1)));
6501 case ISD::SIGN_EXTEND_INREG
:
6502 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6503 // sext_inreg the low part if needed.
6504 Lo
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Lo
, Node
->getOperand(1));
6506 // The high part gets the sign extension from the lo-part. This handles
6507 // things like sextinreg V:i64 from i8.
6508 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
6509 DAG
.getConstant(NVT
.getSizeInBits()-1,
6510 TLI
.getShiftAmountTy()));
6514 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6515 SDValue TempLo
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Hi
);
6516 Hi
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Lo
);
6522 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6523 Lo
= DAG
.getNode(ISD::ADD
, dl
, NVT
, // ctpop(HL) -> ctpop(H)+ctpop(L)
6524 DAG
.getNode(ISD::CTPOP
, dl
, NVT
, Lo
),
6525 DAG
.getNode(ISD::CTPOP
, dl
, NVT
, Hi
));
6526 Hi
= DAG
.getConstant(0, NVT
);
6530 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32)
6531 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6532 SDValue BitsC
= DAG
.getConstant(NVT
.getSizeInBits(), NVT
);
6533 SDValue HLZ
= DAG
.getNode(ISD::CTLZ
, dl
, NVT
, Hi
);
6534 SDValue TopNotZero
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
), HLZ
,
6536 SDValue LowPart
= DAG
.getNode(ISD::CTLZ
, dl
, NVT
, Lo
);
6537 LowPart
= DAG
.getNode(ISD::ADD
, dl
, NVT
, LowPart
, BitsC
);
6539 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, TopNotZero
, HLZ
, LowPart
);
6540 Hi
= DAG
.getConstant(0, NVT
);
6545 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32)
6546 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6547 SDValue BitsC
= DAG
.getConstant(NVT
.getSizeInBits(), NVT
);
6548 SDValue LTZ
= DAG
.getNode(ISD::CTTZ
, dl
, NVT
, Lo
);
6549 SDValue BotNotZero
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
), LTZ
,
6551 SDValue HiPart
= DAG
.getNode(ISD::CTTZ
, dl
, NVT
, Hi
);
6552 HiPart
= DAG
.getNode(ISD::ADD
, dl
, NVT
, HiPart
, BitsC
);
6554 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, BotNotZero
, LTZ
, HiPart
);
6555 Hi
= DAG
.getConstant(0, NVT
);
6560 SDValue Ch
= Node
->getOperand(0); // Legalize the chain.
6561 SDValue Ptr
= Node
->getOperand(1); // Legalize the pointer.
6562 Lo
= DAG
.getVAArg(NVT
, dl
, Ch
, Ptr
, Node
->getOperand(2));
6563 Hi
= DAG
.getVAArg(NVT
, dl
, Lo
.getValue(1), Ptr
, Node
->getOperand(2));
6565 // Remember that we legalized the chain.
6566 Hi
= LegalizeOp(Hi
);
6567 AddLegalizedOperand(Op
.getValue(1), Hi
.getValue(1));
6568 if (TLI
.isBigEndian())
6574 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
6575 SDValue Ch
= LD
->getChain(); // Legalize the chain.
6576 SDValue Ptr
= LD
->getBasePtr(); // Legalize the pointer.
6577 ISD::LoadExtType ExtType
= LD
->getExtensionType();
6578 const Value
*SV
= LD
->getSrcValue();
6579 int SVOffset
= LD
->getSrcValueOffset();
6580 unsigned Alignment
= LD
->getAlignment();
6581 bool isVolatile
= LD
->isVolatile();
6583 if (ExtType
== ISD::NON_EXTLOAD
) {
6584 Lo
= DAG
.getLoad(NVT
, dl
, Ch
, Ptr
, SV
, SVOffset
,
6585 isVolatile
, Alignment
);
6586 if (VT
== MVT::f32
|| VT
== MVT::f64
) {
6587 // f32->i32 or f64->i64 one to one expansion.
6588 // Remember that we legalized the chain.
6589 AddLegalizedOperand(SDValue(Node
, 1), LegalizeOp(Lo
.getValue(1)));
6590 // Recursively expand the new load.
6591 if (getTypeAction(NVT
) == Expand
)
6592 ExpandOp(Lo
, Lo
, Hi
);
6596 // Increment the pointer to the other half.
6597 unsigned IncrementSize
= Lo
.getValueType().getSizeInBits()/8;
6598 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
6599 DAG
.getIntPtrConstant(IncrementSize
));
6600 SVOffset
+= IncrementSize
;
6601 Alignment
= MinAlign(Alignment
, IncrementSize
);
6602 Hi
= DAG
.getLoad(NVT
, dl
, Ch
, Ptr
, SV
, SVOffset
,
6603 isVolatile
, Alignment
);
6605 // Build a factor node to remember that this load is independent of the
6607 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
6610 // Remember that we legalized the chain.
6611 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(TF
));
6612 if (TLI
.isBigEndian())
6615 MVT EVT
= LD
->getMemoryVT();
6617 if ((VT
== MVT::f64
&& EVT
== MVT::f32
) ||
6618 (VT
== MVT::ppcf128
&& (EVT
==MVT::f64
|| EVT
==MVT::f32
))) {
6619 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
6620 SDValue Load
= DAG
.getLoad(EVT
, dl
, Ch
, Ptr
, SV
,
6621 SVOffset
, isVolatile
, Alignment
);
6622 // Remember that we legalized the chain.
6623 AddLegalizedOperand(SDValue(Node
, 1), LegalizeOp(Load
.getValue(1)));
6624 ExpandOp(DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Load
), Lo
, Hi
);
6629 Lo
= DAG
.getLoad(NVT
, dl
, Ch
, Ptr
, SV
,
6630 SVOffset
, isVolatile
, Alignment
);
6632 Lo
= DAG
.getExtLoad(ExtType
, dl
, NVT
, Ch
, Ptr
, SV
,
6633 SVOffset
, EVT
, isVolatile
,
6636 // Remember that we legalized the chain.
6637 AddLegalizedOperand(SDValue(Node
, 1), LegalizeOp(Lo
.getValue(1)));
6639 if (ExtType
== ISD::SEXTLOAD
) {
6640 // The high part is obtained by SRA'ing all but one of the bits of the
6642 unsigned LoSize
= Lo
.getValueType().getSizeInBits();
6643 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
6644 DAG
.getConstant(LoSize
-1, TLI
.getShiftAmountTy()));
6645 } else if (ExtType
== ISD::ZEXTLOAD
) {
6646 // The high part is just a zero.
6647 Hi
= DAG
.getConstant(0, NVT
);
6648 } else /* if (ExtType == ISD::EXTLOAD) */ {
6649 // The high part is undefined.
6650 Hi
= DAG
.getUNDEF(NVT
);
6657 case ISD::XOR
: { // Simple logical operators -> two trivial pieces.
6658 SDValue LL
, LH
, RL
, RH
;
6659 ExpandOp(Node
->getOperand(0), LL
, LH
);
6660 ExpandOp(Node
->getOperand(1), RL
, RH
);
6661 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, LL
, RL
);
6662 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, LH
, RH
);
6666 SDValue LL
, LH
, RL
, RH
;
6667 ExpandOp(Node
->getOperand(1), LL
, LH
);
6668 ExpandOp(Node
->getOperand(2), RL
, RH
);
6669 if (getTypeAction(NVT
) == Expand
)
6670 NVT
= TLI
.getTypeToExpandTo(NVT
);
6671 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Node
->getOperand(0), LL
, RL
);
6673 Hi
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Node
->getOperand(0), LH
, RH
);
6676 case ISD::SELECT_CC
: {
6677 SDValue TL
, TH
, FL
, FH
;
6678 ExpandOp(Node
->getOperand(2), TL
, TH
);
6679 ExpandOp(Node
->getOperand(3), FL
, FH
);
6680 if (getTypeAction(NVT
) == Expand
)
6681 NVT
= TLI
.getTypeToExpandTo(NVT
);
6682 Lo
= DAG
.getNode(ISD::SELECT_CC
, dl
, NVT
, Node
->getOperand(0),
6683 Node
->getOperand(1), TL
, FL
, Node
->getOperand(4));
6685 Hi
= DAG
.getNode(ISD::SELECT_CC
, dl
, NVT
, Node
->getOperand(0),
6686 Node
->getOperand(1), TH
, FH
, Node
->getOperand(4));
6689 case ISD::ANY_EXTEND
:
6690 // The low part is any extension of the input (which degenerates to a copy).
6691 Lo
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, NVT
, Node
->getOperand(0));
6692 // The high part is undefined.
6693 Hi
= DAG
.getUNDEF(NVT
);
6695 case ISD::SIGN_EXTEND
: {
6696 // The low part is just a sign extension of the input (which degenerates to
6698 Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, NVT
, Node
->getOperand(0));
6700 // The high part is obtained by SRA'ing all but one of the bits of the lo
6702 unsigned LoSize
= Lo
.getValueType().getSizeInBits();
6703 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
6704 DAG
.getConstant(LoSize
-1, TLI
.getShiftAmountTy()));
6707 case ISD::ZERO_EXTEND
:
6708 // The low part is just a zero extension of the input (which degenerates to
6710 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
6712 // The high part is just a zero.
6713 Hi
= DAG
.getConstant(0, NVT
);
6716 case ISD::TRUNCATE
: {
6717 // The input value must be larger than this value. Expand *it*.
6719 ExpandOp(Node
->getOperand(0), NewLo
, Hi
);
6721 // The low part is now either the right size, or it is closer. If not the
6722 // right size, make an illegal truncate so we recursively expand it.
6723 if (NewLo
.getValueType() != Node
->getValueType(0))
6724 NewLo
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), NewLo
);
6725 ExpandOp(NewLo
, Lo
, Hi
);
6729 case ISD::BIT_CONVERT
: {
6731 if (TLI
.getOperationAction(ISD::BIT_CONVERT
, VT
) == TargetLowering::Custom
){
6732 // If the target wants to, allow it to lower this itself.
6733 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
6734 case Expand
: assert(0 && "cannot expand FP!");
6735 case Legal
: Tmp
= LegalizeOp(Node
->getOperand(0)); break;
6736 case Promote
: Tmp
= PromoteOp (Node
->getOperand(0)); break;
6738 Tmp
= TLI
.LowerOperation(DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Tmp
), DAG
);
6741 // f32 / f64 must be expanded to i32 / i64.
6742 if (VT
== MVT::f32
|| VT
== MVT::f64
) {
6743 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
6744 if (getTypeAction(NVT
) == Expand
)
6745 ExpandOp(Lo
, Lo
, Hi
);
6749 // If source operand will be expanded to the same type as VT, i.e.
6750 // i64 <- f64, i32 <- f32, expand the source operand instead.
6751 MVT VT0
= Node
->getOperand(0).getValueType();
6752 if (getTypeAction(VT0
) == Expand
&& TLI
.getTypeToTransformTo(VT0
) == VT
) {
6753 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6757 // Turn this into a load/store pair by default.
6758 if (Tmp
.getNode() == 0)
6759 Tmp
= EmitStackConvert(Node
->getOperand(0), VT
, VT
, dl
);
6761 ExpandOp(Tmp
, Lo
, Hi
);
6765 case ISD::READCYCLECOUNTER
: {
6766 assert(TLI
.getOperationAction(ISD::READCYCLECOUNTER
, VT
) ==
6767 TargetLowering::Custom
&&
6768 "Must custom expand ReadCycleCounter");
6769 SDValue Tmp
= TLI
.LowerOperation(Op
, DAG
);
6770 assert(Tmp
.getNode() && "Node must be custom expanded!");
6771 ExpandOp(Tmp
.getValue(0), Lo
, Hi
);
6772 AddLegalizedOperand(SDValue(Node
, 1), // Remember we legalized the chain.
6773 LegalizeOp(Tmp
.getValue(1)));
6777 case ISD::ATOMIC_CMP_SWAP
: {
6778 // This operation does not need a loop.
6779 SDValue Tmp
= TLI
.LowerOperation(Op
, DAG
);
6780 assert(Tmp
.getNode() && "Node must be custom expanded!");
6781 ExpandOp(Tmp
.getValue(0), Lo
, Hi
);
6782 AddLegalizedOperand(SDValue(Node
, 1), // Remember we legalized the chain.
6783 LegalizeOp(Tmp
.getValue(1)));
6787 case ISD::ATOMIC_LOAD_ADD
:
6788 case ISD::ATOMIC_LOAD_SUB
:
6789 case ISD::ATOMIC_LOAD_AND
:
6790 case ISD::ATOMIC_LOAD_OR
:
6791 case ISD::ATOMIC_LOAD_XOR
:
6792 case ISD::ATOMIC_LOAD_NAND
:
6793 case ISD::ATOMIC_SWAP
: {
6794 // These operations require a loop to be generated. We can't do that yet,
6795 // so substitute a target-dependent pseudo and expand that later.
6796 SDValue In2Lo
, In2Hi
, In2
;
6797 ExpandOp(Op
.getOperand(2), In2Lo
, In2Hi
);
6798 In2
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, In2Lo
, In2Hi
);
6799 AtomicSDNode
* Anode
= cast
<AtomicSDNode
>(Node
);
6801 DAG
.getAtomic(Op
.getOpcode(), dl
, Anode
->getMemoryVT(),
6802 Op
.getOperand(0), Op
.getOperand(1), In2
,
6803 Anode
->getSrcValue(), Anode
->getAlignment());
6804 SDValue Result
= TLI
.LowerOperation(Replace
, DAG
);
6805 ExpandOp(Result
.getValue(0), Lo
, Hi
);
6806 // Remember that we legalized the chain.
6807 AddLegalizedOperand(SDValue(Node
, 1), LegalizeOp(Result
.getValue(1)));
6811 // These operators cannot be expanded directly, emit them as calls to
6812 // library functions.
6813 case ISD::FP_TO_SINT
: {
6814 if (TLI
.getOperationAction(ISD::FP_TO_SINT
, VT
) == TargetLowering::Custom
) {
6816 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
6817 case Expand
: assert(0 && "cannot expand FP!");
6818 case Legal
: Op
= LegalizeOp(Node
->getOperand(0)); break;
6819 case Promote
: Op
= PromoteOp (Node
->getOperand(0)); break;
6822 Op
= TLI
.LowerOperation(DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
, Op
), DAG
);
6824 // Now that the custom expander is done, expand the result, which is still
6827 ExpandOp(Op
, Lo
, Hi
);
6832 RTLIB::Libcall LC
= RTLIB::getFPTOSINT(Node
->getOperand(0).getValueType(),
6834 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected uint-to-fp conversion!");
6835 Lo
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Hi
);
6839 case ISD::FP_TO_UINT
: {
6840 if (TLI
.getOperationAction(ISD::FP_TO_UINT
, VT
) == TargetLowering::Custom
) {
6842 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
6843 case Expand
: assert(0 && "cannot expand FP!");
6844 case Legal
: Op
= LegalizeOp(Node
->getOperand(0)); break;
6845 case Promote
: Op
= PromoteOp (Node
->getOperand(0)); break;
6848 Op
= TLI
.LowerOperation(DAG
.getNode(ISD::FP_TO_UINT
, dl
, VT
, Op
), DAG
);
6850 // Now that the custom expander is done, expand the result.
6852 ExpandOp(Op
, Lo
, Hi
);
6857 RTLIB::Libcall LC
= RTLIB::getFPTOUINT(Node
->getOperand(0).getValueType(),
6859 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected fp-to-uint conversion!");
6860 Lo
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Hi
);
6865 // If the target wants custom lowering, do so.
6866 SDValue ShiftAmt
= LegalizeOp(Node
->getOperand(1));
6867 if (TLI
.getOperationAction(ISD::SHL
, VT
) == TargetLowering::Custom
) {
6868 SDValue Op
= DAG
.getNode(ISD::SHL
, dl
, VT
, Node
->getOperand(0), ShiftAmt
);
6869 Op
= TLI
.LowerOperation(Op
, DAG
);
6871 // Now that the custom expander is done, expand the result, which is
6873 ExpandOp(Op
, Lo
, Hi
);
6878 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit
6879 // this X << 1 as X+X.
6880 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(ShiftAmt
)) {
6881 if (ShAmt
->getAPIntValue() == 1 &&
6882 TLI
.isOperationLegalOrCustom(ISD::ADDC
, NVT
) &&
6883 TLI
.isOperationLegalOrCustom(ISD::ADDE
, NVT
)) {
6884 SDValue LoOps
[2], HiOps
[3];
6885 ExpandOp(Node
->getOperand(0), LoOps
[0], HiOps
[0]);
6886 SDVTList VTList
= DAG
.getVTList(LoOps
[0].getValueType(), MVT::Flag
);
6887 LoOps
[1] = LoOps
[0];
6888 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
6890 HiOps
[1] = HiOps
[0];
6891 HiOps
[2] = Lo
.getValue(1);
6892 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
6897 // If we can emit an efficient shift operation, do so now.
6898 if (ExpandShift(ISD::SHL
, Node
->getOperand(0), ShiftAmt
, Lo
, Hi
, dl
))
6901 // If this target supports SHL_PARTS, use it.
6902 TargetLowering::LegalizeAction Action
=
6903 TLI
.getOperationAction(ISD::SHL_PARTS
, NVT
);
6904 if ((Action
== TargetLowering::Legal
&& TLI
.isTypeLegal(NVT
)) ||
6905 Action
== TargetLowering::Custom
) {
6906 ExpandShiftParts(ISD::SHL_PARTS
, Node
->getOperand(0),
6907 ShiftAmt
, Lo
, Hi
, dl
);
6911 // Otherwise, emit a libcall.
6912 Lo
= ExpandLibCall(RTLIB::SHL_I64
, Node
, false/*left shift=unsigned*/, Hi
);
6917 // If the target wants custom lowering, do so.
6918 SDValue ShiftAmt
= LegalizeOp(Node
->getOperand(1));
6919 if (TLI
.getOperationAction(ISD::SRA
, VT
) == TargetLowering::Custom
) {
6920 SDValue Op
= DAG
.getNode(ISD::SRA
, dl
, VT
, Node
->getOperand(0), ShiftAmt
);
6921 Op
= TLI
.LowerOperation(Op
, DAG
);
6923 // Now that the custom expander is done, expand the result, which is
6925 ExpandOp(Op
, Lo
, Hi
);
6930 // If we can emit an efficient shift operation, do so now.
6931 if (ExpandShift(ISD::SRA
, Node
->getOperand(0), ShiftAmt
, Lo
, Hi
, dl
))
6934 // If this target supports SRA_PARTS, use it.
6935 TargetLowering::LegalizeAction Action
=
6936 TLI
.getOperationAction(ISD::SRA_PARTS
, NVT
);
6937 if ((Action
== TargetLowering::Legal
&& TLI
.isTypeLegal(NVT
)) ||
6938 Action
== TargetLowering::Custom
) {
6939 ExpandShiftParts(ISD::SRA_PARTS
, Node
->getOperand(0),
6940 ShiftAmt
, Lo
, Hi
, dl
);
6944 // Otherwise, emit a libcall.
6945 Lo
= ExpandLibCall(RTLIB::SRA_I64
, Node
, true/*ashr is signed*/, Hi
);
6950 // If the target wants custom lowering, do so.
6951 SDValue ShiftAmt
= LegalizeOp(Node
->getOperand(1));
6952 if (TLI
.getOperationAction(ISD::SRL
, VT
) == TargetLowering::Custom
) {
6953 SDValue Op
= DAG
.getNode(ISD::SRL
, dl
, VT
, Node
->getOperand(0), ShiftAmt
);
6954 Op
= TLI
.LowerOperation(Op
, DAG
);
6956 // Now that the custom expander is done, expand the result, which is
6958 ExpandOp(Op
, Lo
, Hi
);
6963 // If we can emit an efficient shift operation, do so now.
6964 if (ExpandShift(ISD::SRL
, Node
->getOperand(0), ShiftAmt
, Lo
, Hi
, dl
))
6967 // If this target supports SRL_PARTS, use it.
6968 TargetLowering::LegalizeAction Action
=
6969 TLI
.getOperationAction(ISD::SRL_PARTS
, NVT
);
6970 if ((Action
== TargetLowering::Legal
&& TLI
.isTypeLegal(NVT
)) ||
6971 Action
== TargetLowering::Custom
) {
6972 ExpandShiftParts(ISD::SRL_PARTS
,
6973 Node
->getOperand(0), ShiftAmt
, Lo
, Hi
, dl
);
6977 // Otherwise, emit a libcall.
6978 Lo
= ExpandLibCall(RTLIB::SRL_I64
, Node
, false/*lshr is unsigned*/, Hi
);
6984 // If the target wants to custom expand this, let them.
6985 if (TLI
.getOperationAction(Node
->getOpcode(), VT
) ==
6986 TargetLowering::Custom
) {
6987 SDValue Result
= TLI
.LowerOperation(Op
, DAG
);
6988 if (Result
.getNode()) {
6989 ExpandOp(Result
, Lo
, Hi
);
6993 // Expand the subcomponents.
6994 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
6995 ExpandOp(Node
->getOperand(0), LHSL
, LHSH
);
6996 ExpandOp(Node
->getOperand(1), RHSL
, RHSH
);
6997 SDValue LoOps
[2], HiOps
[3];
7003 //cascaded check to see if any smaller size has a a carry flag.
7004 unsigned OpV
= Node
->getOpcode() == ISD::ADD
? ISD::ADDC
: ISD::SUBC
;
7005 bool hasCarry
= false;
7006 for (unsigned BitSize
= NVT
.getSizeInBits(); BitSize
!= 0; BitSize
/= 2) {
7007 MVT AVT
= MVT::getIntegerVT(BitSize
);
7008 if (TLI
.isOperationLegalOrCustom(OpV
, AVT
)) {
7015 SDVTList VTList
= DAG
.getVTList(LHSL
.getValueType(), MVT::Flag
);
7016 if (Node
->getOpcode() == ISD::ADD
) {
7017 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
7018 HiOps
[2] = Lo
.getValue(1);
7019 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
7021 Lo
= DAG
.getNode(ISD::SUBC
, dl
, VTList
, LoOps
, 2);
7022 HiOps
[2] = Lo
.getValue(1);
7023 Hi
= DAG
.getNode(ISD::SUBE
, dl
, VTList
, HiOps
, 3);
7027 if (Node
->getOpcode() == ISD::ADD
) {
7028 Lo
= DAG
.getNode(ISD::ADD
, dl
, NVT
, LoOps
, 2);
7029 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, HiOps
, 2);
7030 SDValue Cmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
),
7031 Lo
, LoOps
[0], ISD::SETULT
);
7032 SDValue Carry1
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp1
,
7033 DAG
.getConstant(1, NVT
),
7034 DAG
.getConstant(0, NVT
));
7035 SDValue Cmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
),
7036 Lo
, LoOps
[1], ISD::SETULT
);
7037 SDValue Carry2
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp2
,
7038 DAG
.getConstant(1, NVT
),
7040 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, Carry2
);
7042 Lo
= DAG
.getNode(ISD::SUB
, dl
, NVT
, LoOps
, 2);
7043 Hi
= DAG
.getNode(ISD::SUB
, dl
, NVT
, HiOps
, 2);
7044 SDValue Cmp
= DAG
.getSetCC(dl
, NVT
, LoOps
[0], LoOps
[1], ISD::SETULT
);
7045 SDValue Borrow
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
,
7046 DAG
.getConstant(1, NVT
),
7047 DAG
.getConstant(0, NVT
));
7048 Hi
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Hi
, Borrow
);
7056 // Expand the subcomponents.
7057 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
7058 ExpandOp(Node
->getOperand(0), LHSL
, LHSH
);
7059 ExpandOp(Node
->getOperand(1), RHSL
, RHSH
);
7060 SDVTList VTList
= DAG
.getVTList(LHSL
.getValueType(), MVT::Flag
);
7061 SDValue LoOps
[2] = { LHSL
, RHSL
};
7062 SDValue HiOps
[3] = { LHSH
, RHSH
};
7064 if (Node
->getOpcode() == ISD::ADDC
) {
7065 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
7066 HiOps
[2] = Lo
.getValue(1);
7067 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
7069 Lo
= DAG
.getNode(ISD::SUBC
, dl
, VTList
, LoOps
, 2);
7070 HiOps
[2] = Lo
.getValue(1);
7071 Hi
= DAG
.getNode(ISD::SUBE
, dl
, VTList
, HiOps
, 3);
7073 // Remember that we legalized the flag.
7074 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Hi
.getValue(1)));
7079 // Expand the subcomponents.
7080 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
7081 ExpandOp(Node
->getOperand(0), LHSL
, LHSH
);
7082 ExpandOp(Node
->getOperand(1), RHSL
, RHSH
);
7083 SDVTList VTList
= DAG
.getVTList(LHSL
.getValueType(), MVT::Flag
);
7084 SDValue LoOps
[3] = { LHSL
, RHSL
, Node
->getOperand(2) };
7085 SDValue HiOps
[3] = { LHSH
, RHSH
};
7087 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, VTList
, LoOps
, 3);
7088 HiOps
[2] = Lo
.getValue(1);
7089 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, VTList
, HiOps
, 3);
7091 // Remember that we legalized the flag.
7092 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Hi
.getValue(1)));
7096 // If the target wants to custom expand this, let them.
7097 if (TLI
.getOperationAction(ISD::MUL
, VT
) == TargetLowering::Custom
) {
7098 SDValue New
= TLI
.LowerOperation(Op
, DAG
);
7099 if (New
.getNode()) {
7100 ExpandOp(New
, Lo
, Hi
);
7105 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, NVT
);
7106 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, NVT
);
7107 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, NVT
);
7108 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, NVT
);
7109 if (HasMULHU
|| HasMULHS
|| HasUMUL_LOHI
|| HasSMUL_LOHI
) {
7110 SDValue LL
, LH
, RL
, RH
;
7111 ExpandOp(Node
->getOperand(0), LL
, LH
);
7112 ExpandOp(Node
->getOperand(1), RL
, RH
);
7113 unsigned OuterBitSize
= Op
.getValueSizeInBits();
7114 unsigned InnerBitSize
= RH
.getValueSizeInBits();
7115 unsigned LHSSB
= DAG
.ComputeNumSignBits(Op
.getOperand(0));
7116 unsigned RHSSB
= DAG
.ComputeNumSignBits(Op
.getOperand(1));
7117 APInt HighMask
= APInt::getHighBitsSet(OuterBitSize
, InnerBitSize
);
7118 if (DAG
.MaskedValueIsZero(Node
->getOperand(0), HighMask
) &&
7119 DAG
.MaskedValueIsZero(Node
->getOperand(1), HighMask
)) {
7120 // The inputs are both zero-extended.
7122 // We can emit a umul_lohi.
7123 Lo
= DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(NVT
, NVT
), LL
, RL
);
7124 Hi
= SDValue(Lo
.getNode(), 1);
7128 // We can emit a mulhu+mul.
7129 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
7130 Hi
= DAG
.getNode(ISD::MULHU
, dl
, NVT
, LL
, RL
);
7134 if (LHSSB
> InnerBitSize
&& RHSSB
> InnerBitSize
) {
7135 // The input values are both sign-extended.
7137 // We can emit a smul_lohi.
7138 Lo
= DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(NVT
, NVT
), LL
, RL
);
7139 Hi
= SDValue(Lo
.getNode(), 1);
7143 // We can emit a mulhs+mul.
7144 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
7145 Hi
= DAG
.getNode(ISD::MULHS
, dl
, NVT
, LL
, RL
);
7150 // Lo,Hi = umul LHS, RHS.
7151 SDValue UMulLOHI
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
7152 DAG
.getVTList(NVT
, NVT
), LL
, RL
);
7154 Hi
= UMulLOHI
.getValue(1);
7155 RH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RH
);
7156 LH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LH
, RL
);
7157 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, RH
);
7158 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, LH
);
7162 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
7163 Hi
= DAG
.getNode(ISD::MULHU
, dl
, NVT
, LL
, RL
);
7164 RH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RH
);
7165 LH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LH
, RL
);
7166 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, RH
);
7167 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, LH
);
7172 // If nothing else, we can make a libcall.
7173 Lo
= ExpandLibCall(RTLIB::MUL_I64
, Node
, false/*sign irrelevant*/, Hi
);
7177 Lo
= ExpandLibCall(RTLIB::SDIV_I64
, Node
, true, Hi
);
7180 Lo
= ExpandLibCall(RTLIB::UDIV_I64
, Node
, true, Hi
);
7183 Lo
= ExpandLibCall(RTLIB::SREM_I64
, Node
, true, Hi
);
7186 Lo
= ExpandLibCall(RTLIB::UREM_I64
, Node
, true, Hi
);
7190 Lo
= ExpandLibCall(GetFPLibCall(VT
, RTLIB::ADD_F32
,
7193 RTLIB::ADD_PPCF128
),
7197 Lo
= ExpandLibCall(GetFPLibCall(VT
, RTLIB::SUB_F32
,
7200 RTLIB::SUB_PPCF128
),
7204 Lo
= ExpandLibCall(GetFPLibCall(VT
, RTLIB::MUL_F32
,
7207 RTLIB::MUL_PPCF128
),
7211 Lo
= ExpandLibCall(GetFPLibCall(VT
, RTLIB::DIV_F32
,
7214 RTLIB::DIV_PPCF128
),
7217 case ISD::FP_EXTEND
: {
7218 if (VT
== MVT::ppcf128
) {
7219 assert(Node
->getOperand(0).getValueType()==MVT::f32
||
7220 Node
->getOperand(0).getValueType()==MVT::f64
);
7221 const uint64_t zero
= 0;
7222 if (Node
->getOperand(0).getValueType()==MVT::f32
)
7223 Hi
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Node
->getOperand(0));
7225 Hi
= Node
->getOperand(0);
7226 Lo
= DAG
.getConstantFP(APFloat(APInt(64, 1, &zero
)), MVT::f64
);
7229 RTLIB::Libcall LC
= RTLIB::getFPEXT(Node
->getOperand(0).getValueType(), VT
);
7230 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported FP_EXTEND!");
7231 Lo
= ExpandLibCall(LC
, Node
, true, Hi
);
7234 case ISD::FP_ROUND
: {
7235 RTLIB::Libcall LC
= RTLIB::getFPROUND(Node
->getOperand(0).getValueType(),
7237 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported FP_ROUND!");
7238 Lo
= ExpandLibCall(LC
, Node
, true, Hi
);
7253 case ISD::FNEARBYINT
:
7256 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
7257 switch(Node
->getOpcode()) {
7259 LC
= GetFPLibCall(VT
, RTLIB::SQRT_F32
, RTLIB::SQRT_F64
,
7260 RTLIB::SQRT_F80
, RTLIB::SQRT_PPCF128
);
7263 LC
= GetFPLibCall(VT
, RTLIB::SIN_F32
, RTLIB::SIN_F64
,
7264 RTLIB::SIN_F80
, RTLIB::SIN_PPCF128
);
7267 LC
= GetFPLibCall(VT
, RTLIB::COS_F32
, RTLIB::COS_F64
,
7268 RTLIB::COS_F80
, RTLIB::COS_PPCF128
);
7271 LC
= GetFPLibCall(VT
, RTLIB::LOG_F32
, RTLIB::LOG_F64
,
7272 RTLIB::LOG_F80
, RTLIB::LOG_PPCF128
);
7275 LC
= GetFPLibCall(VT
, RTLIB::LOG2_F32
, RTLIB::LOG2_F64
,
7276 RTLIB::LOG2_F80
, RTLIB::LOG2_PPCF128
);
7279 LC
= GetFPLibCall(VT
, RTLIB::LOG10_F32
, RTLIB::LOG10_F64
,
7280 RTLIB::LOG10_F80
, RTLIB::LOG10_PPCF128
);
7283 LC
= GetFPLibCall(VT
, RTLIB::EXP_F32
, RTLIB::EXP_F64
,
7284 RTLIB::EXP_F80
, RTLIB::EXP_PPCF128
);
7287 LC
= GetFPLibCall(VT
, RTLIB::EXP2_F32
, RTLIB::EXP2_F64
,
7288 RTLIB::EXP2_F80
, RTLIB::EXP2_PPCF128
);
7291 LC
= GetFPLibCall(VT
, RTLIB::TRUNC_F32
, RTLIB::TRUNC_F64
,
7292 RTLIB::TRUNC_F80
, RTLIB::TRUNC_PPCF128
);
7295 LC
= GetFPLibCall(VT
, RTLIB::FLOOR_F32
, RTLIB::FLOOR_F64
,
7296 RTLIB::FLOOR_F80
, RTLIB::FLOOR_PPCF128
);
7299 LC
= GetFPLibCall(VT
, RTLIB::CEIL_F32
, RTLIB::CEIL_F64
,
7300 RTLIB::CEIL_F80
, RTLIB::CEIL_PPCF128
);
7303 LC
= GetFPLibCall(VT
, RTLIB::RINT_F32
, RTLIB::RINT_F64
,
7304 RTLIB::RINT_F80
, RTLIB::RINT_PPCF128
);
7306 case ISD::FNEARBYINT
:
7307 LC
= GetFPLibCall(VT
, RTLIB::NEARBYINT_F32
, RTLIB::NEARBYINT_F64
,
7308 RTLIB::NEARBYINT_F80
, RTLIB::NEARBYINT_PPCF128
);
7311 LC
= GetFPLibCall(VT
, RTLIB::POW_F32
, RTLIB::POW_F64
, RTLIB::POW_F80
,
7312 RTLIB::POW_PPCF128
);
7315 LC
= GetFPLibCall(VT
, RTLIB::POWI_F32
, RTLIB::POWI_F64
, RTLIB::POWI_F80
,
7316 RTLIB::POWI_PPCF128
);
7318 default: assert(0 && "Unreachable!");
7320 Lo
= ExpandLibCall(LC
, Node
, false, Hi
);
7324 if (VT
== MVT::ppcf128
) {
7326 ExpandOp(Node
->getOperand(0), Lo
, Tmp
);
7327 Hi
= DAG
.getNode(ISD::FABS
, dl
, NVT
, Tmp
);
7328 // lo = hi==fabs(hi) ? lo : -lo;
7329 Lo
= DAG
.getNode(ISD::SELECT_CC
, dl
, NVT
, Hi
, Tmp
,
7330 Lo
, DAG
.getNode(ISD::FNEG
, dl
, NVT
, Lo
),
7331 DAG
.getCondCode(ISD::SETEQ
));
7334 SDValue Mask
= (VT
== MVT::f64
)
7335 ? DAG
.getConstantFP(BitsToDouble(~(1ULL << 63)), VT
)
7336 : DAG
.getConstantFP(BitsToFloat(~(1U << 31)), VT
);
7337 Mask
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Mask
);
7338 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
7339 Lo
= DAG
.getNode(ISD::AND
, dl
, NVT
, Lo
, Mask
);
7340 if (getTypeAction(NVT
) == Expand
)
7341 ExpandOp(Lo
, Lo
, Hi
);
7345 if (VT
== MVT::ppcf128
) {
7346 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
7347 Lo
= DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, Lo
);
7348 Hi
= DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, Hi
);
7351 SDValue Mask
= (VT
== MVT::f64
)
7352 ? DAG
.getConstantFP(BitsToDouble(1ULL << 63), VT
)
7353 : DAG
.getConstantFP(BitsToFloat(1U << 31), VT
);
7354 Mask
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Mask
);
7355 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
7356 Lo
= DAG
.getNode(ISD::XOR
, dl
, NVT
, Lo
, Mask
);
7357 if (getTypeAction(NVT
) == Expand
)
7358 ExpandOp(Lo
, Lo
, Hi
);
7361 case ISD::FCOPYSIGN
: {
7362 Lo
= ExpandFCOPYSIGNToBitwiseOps(Node
, NVT
, DAG
, TLI
);
7363 if (getTypeAction(NVT
) == Expand
)
7364 ExpandOp(Lo
, Lo
, Hi
);
7367 case ISD::SINT_TO_FP
:
7368 case ISD::UINT_TO_FP
: {
7369 bool isSigned
= Node
->getOpcode() == ISD::SINT_TO_FP
;
7370 MVT SrcVT
= Node
->getOperand(0).getValueType();
7372 // Promote the operand if needed. Do this before checking for
7373 // ppcf128 so conversions of i16 and i8 work.
7374 if (getTypeAction(SrcVT
) == Promote
) {
7375 SDValue Tmp
= PromoteOp(Node
->getOperand(0));
7377 ? DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Tmp
.getValueType(), Tmp
,
7378 DAG
.getValueType(SrcVT
))
7379 : DAG
.getZeroExtendInReg(Tmp
, dl
, SrcVT
);
7380 Node
= DAG
.UpdateNodeOperands(Op
, Tmp
).getNode();
7381 SrcVT
= Node
->getOperand(0).getValueType();
7384 if (VT
== MVT::ppcf128
&& SrcVT
== MVT::i32
) {
7385 static const uint64_t zero
= 0;
7387 Hi
= LegalizeOp(DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f64
,
7388 Node
->getOperand(0)));
7389 Lo
= DAG
.getConstantFP(APFloat(APInt(64, 1, &zero
)), MVT::f64
);
7391 static const uint64_t TwoE32
[] = { 0x41f0000000000000LL
, 0 };
7392 Hi
= LegalizeOp(DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f64
,
7393 Node
->getOperand(0)));
7394 Lo
= DAG
.getConstantFP(APFloat(APInt(64, 1, &zero
)), MVT::f64
);
7395 Hi
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, Lo
, Hi
);
7396 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32
7397 ExpandOp(DAG
.getNode(ISD::SELECT_CC
, dl
,
7398 MVT::ppcf128
, Node
->getOperand(0),
7399 DAG
.getConstant(0, MVT::i32
),
7400 DAG
.getNode(ISD::FADD
, dl
, MVT::ppcf128
, Hi
,
7402 (APFloat(APInt(128, 2, TwoE32
)),
7405 DAG
.getCondCode(ISD::SETLT
)),
7410 if (VT
== MVT::ppcf128
&& SrcVT
== MVT::i64
&& !isSigned
) {
7411 // si64->ppcf128 done by libcall, below
7412 static const uint64_t TwoE64
[] = { 0x43f0000000000000LL
, 0 };
7413 ExpandOp(DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::ppcf128
,
7414 Node
->getOperand(0)), Lo
, Hi
);
7415 Hi
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, Lo
, Hi
);
7416 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64
7417 ExpandOp(DAG
.getNode(ISD::SELECT_CC
, dl
, MVT::ppcf128
,
7418 Node
->getOperand(0),
7419 DAG
.getConstant(0, MVT::i64
),
7420 DAG
.getNode(ISD::FADD
, dl
, MVT::ppcf128
, Hi
,
7422 (APFloat(APInt(128, 2, TwoE64
)),
7425 DAG
.getCondCode(ISD::SETLT
)),
7430 Lo
= ExpandIntToFP(Node
->getOpcode() == ISD::SINT_TO_FP
, VT
,
7431 Node
->getOperand(0), dl
);
7432 if (getTypeAction(Lo
.getValueType()) == Expand
)
7433 // float to i32 etc. can be 'expanded' to a single node.
7434 ExpandOp(Lo
, Lo
, Hi
);
7439 // Make sure the resultant values have been legalized themselves, unless this
7440 // is a type that requires multi-step expansion.
7441 if (getTypeAction(NVT
) != Expand
&& NVT
!= MVT::isVoid
) {
7442 Lo
= LegalizeOp(Lo
);
7444 // Don't legalize the high part if it is expanded to a single node.
7445 Hi
= LegalizeOp(Hi
);
7448 // Remember in a map if the values will be reused later.
7450 ExpandedNodes
.insert(std::make_pair(Op
, std::make_pair(Lo
, Hi
))).second
;
7451 assert(isNew
&& "Value already expanded?!?");
7455 /// SplitVectorOp - Given an operand of vector type, break it down into
7456 /// two smaller values, still of vector type.
7457 void SelectionDAGLegalize::SplitVectorOp(SDValue Op
, SDValue
&Lo
,
7459 assert(Op
.getValueType().isVector() && "Cannot split non-vector type!");
7460 SDNode
*Node
= Op
.getNode();
7461 DebugLoc dl
= Node
->getDebugLoc();
7462 unsigned NumElements
= Op
.getValueType().getVectorNumElements();
7463 assert(NumElements
> 1 && "Cannot split a single element vector!");
7465 MVT NewEltVT
= Op
.getValueType().getVectorElementType();
7467 unsigned NewNumElts_Lo
= 1 << Log2_32(NumElements
-1);
7468 unsigned NewNumElts_Hi
= NumElements
- NewNumElts_Lo
;
7470 MVT NewVT_Lo
= MVT::getVectorVT(NewEltVT
, NewNumElts_Lo
);
7471 MVT NewVT_Hi
= MVT::getVectorVT(NewEltVT
, NewNumElts_Hi
);
7473 // See if we already split it.
7474 std::map
<SDValue
, std::pair
<SDValue
, SDValue
> >::iterator I
7475 = SplitNodes
.find(Op
);
7476 if (I
!= SplitNodes
.end()) {
7477 Lo
= I
->second
.first
;
7478 Hi
= I
->second
.second
;
7482 switch (Node
->getOpcode()) {
7487 assert(0 && "Unhandled operation in SplitVectorOp!");
7489 Lo
= DAG
.getUNDEF(NewVT_Lo
);
7490 Hi
= DAG
.getUNDEF(NewVT_Hi
);
7492 case ISD::BUILD_PAIR
:
7493 Lo
= Node
->getOperand(0);
7494 Hi
= Node
->getOperand(1);
7496 case ISD::INSERT_VECTOR_ELT
: {
7497 if (ConstantSDNode
*Idx
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(2))) {
7498 SplitVectorOp(Node
->getOperand(0), Lo
, Hi
);
7499 unsigned Index
= Idx
->getZExtValue();
7500 SDValue ScalarOp
= Node
->getOperand(1);
7501 if (Index
< NewNumElts_Lo
)
7502 Lo
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, NewVT_Lo
, Lo
, ScalarOp
,
7503 DAG
.getIntPtrConstant(Index
));
7505 Hi
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, NewVT_Hi
, Hi
, ScalarOp
,
7506 DAG
.getIntPtrConstant(Index
- NewNumElts_Lo
));
7509 SDValue Tmp
= PerformInsertVectorEltInMemory(Node
->getOperand(0),
7510 Node
->getOperand(1),
7511 Node
->getOperand(2), dl
);
7512 SplitVectorOp(Tmp
, Lo
, Hi
);
7515 case ISD::VECTOR_SHUFFLE
: {
7516 // Build the low part.
7517 SDValue Mask
= Node
->getOperand(2);
7518 SmallVector
<SDValue
, 8> Ops
;
7519 MVT PtrVT
= TLI
.getPointerTy();
7521 // Insert all of the elements from the input that are needed. We use
7522 // buildvector of extractelement here because the input vectors will have
7523 // to be legalized, so this makes the code simpler.
7524 for (unsigned i
= 0; i
!= NewNumElts_Lo
; ++i
) {
7525 SDValue IdxNode
= Mask
.getOperand(i
);
7526 if (IdxNode
.getOpcode() == ISD::UNDEF
) {
7527 Ops
.push_back(DAG
.getUNDEF(NewEltVT
));
7530 unsigned Idx
= cast
<ConstantSDNode
>(IdxNode
)->getZExtValue();
7531 SDValue InVec
= Node
->getOperand(0);
7532 if (Idx
>= NumElements
) {
7533 InVec
= Node
->getOperand(1);
7536 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewEltVT
, InVec
,
7537 DAG
.getConstant(Idx
, PtrVT
)));
7539 Lo
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewVT_Lo
, &Ops
[0], Ops
.size());
7542 for (unsigned i
= NewNumElts_Lo
; i
!= NumElements
; ++i
) {
7543 SDValue IdxNode
= Mask
.getOperand(i
);
7544 if (IdxNode
.getOpcode() == ISD::UNDEF
) {
7545 Ops
.push_back(DAG
.getUNDEF(NewEltVT
));
7548 unsigned Idx
= cast
<ConstantSDNode
>(IdxNode
)->getZExtValue();
7549 SDValue InVec
= Node
->getOperand(0);
7550 if (Idx
>= NumElements
) {
7551 InVec
= Node
->getOperand(1);
7554 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewEltVT
, InVec
,
7555 DAG
.getConstant(Idx
, PtrVT
)));
7557 Hi
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewVT_Hi
, &Ops
[0], Ops
.size());
7560 case ISD::BUILD_VECTOR
: {
7561 SmallVector
<SDValue
, 8> LoOps(Node
->op_begin(),
7562 Node
->op_begin()+NewNumElts_Lo
);
7563 Lo
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewVT_Lo
, &LoOps
[0], LoOps
.size());
7565 SmallVector
<SDValue
, 8> HiOps(Node
->op_begin()+NewNumElts_Lo
,
7567 Hi
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewVT_Hi
, &HiOps
[0], HiOps
.size());
7570 case ISD::CONCAT_VECTORS
: {
7571 // FIXME: Handle non-power-of-two vectors?
7572 unsigned NewNumSubvectors
= Node
->getNumOperands() / 2;
7573 if (NewNumSubvectors
== 1) {
7574 Lo
= Node
->getOperand(0);
7575 Hi
= Node
->getOperand(1);
7577 SmallVector
<SDValue
, 8> LoOps(Node
->op_begin(),
7578 Node
->op_begin()+NewNumSubvectors
);
7579 Lo
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, NewVT_Lo
,
7580 &LoOps
[0], LoOps
.size());
7582 SmallVector
<SDValue
, 8> HiOps(Node
->op_begin()+NewNumSubvectors
,
7584 Hi
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, NewVT_Hi
,
7585 &HiOps
[0], HiOps
.size());
7589 case ISD::EXTRACT_SUBVECTOR
: {
7590 SDValue Vec
= Op
.getOperand(0);
7591 SDValue Idx
= Op
.getOperand(1);
7592 MVT IdxVT
= Idx
.getValueType();
7594 Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NewVT_Lo
, Vec
, Idx
);
7595 ConstantSDNode
*CIdx
= dyn_cast
<ConstantSDNode
>(Idx
);
7597 Hi
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NewVT_Hi
, Vec
,
7598 DAG
.getConstant(CIdx
->getZExtValue() + NewNumElts_Lo
,
7601 Idx
= DAG
.getNode(ISD::ADD
, dl
, IdxVT
, Idx
,
7602 DAG
.getConstant(NewNumElts_Lo
, IdxVT
));
7603 Hi
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NewVT_Hi
, Vec
, Idx
);
7608 SDValue Cond
= Node
->getOperand(0);
7610 SDValue LL
, LH
, RL
, RH
;
7611 SplitVectorOp(Node
->getOperand(1), LL
, LH
);
7612 SplitVectorOp(Node
->getOperand(2), RL
, RH
);
7614 if (Cond
.getValueType().isVector()) {
7615 // Handle a vector merge.
7617 SplitVectorOp(Cond
, CL
, CH
);
7618 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, CL
, LL
, RL
);
7619 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, CH
, LH
, RH
);
7621 // Handle a simple select with vector operands.
7622 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, Cond
, LL
, RL
);
7623 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, Cond
, LH
, RH
);
7627 case ISD::SELECT_CC
: {
7628 SDValue CondLHS
= Node
->getOperand(0);
7629 SDValue CondRHS
= Node
->getOperand(1);
7630 SDValue CondCode
= Node
->getOperand(4);
7632 SDValue LL
, LH
, RL
, RH
;
7633 SplitVectorOp(Node
->getOperand(2), LL
, LH
);
7634 SplitVectorOp(Node
->getOperand(3), RL
, RH
);
7636 // Handle a simple select with vector operands.
7637 Lo
= DAG
.getNode(ISD::SELECT_CC
, dl
, NewVT_Lo
, CondLHS
, CondRHS
,
7639 Hi
= DAG
.getNode(ISD::SELECT_CC
, dl
, NewVT_Hi
, CondLHS
, CondRHS
,
7644 SDValue LL
, LH
, RL
, RH
;
7645 SplitVectorOp(Node
->getOperand(0), LL
, LH
);
7646 SplitVectorOp(Node
->getOperand(1), RL
, RH
);
7647 Lo
= DAG
.getNode(ISD::VSETCC
, dl
, NewVT_Lo
, LL
, RL
, Node
->getOperand(2));
7648 Hi
= DAG
.getNode(ISD::VSETCC
, dl
, NewVT_Hi
, LH
, RH
, Node
->getOperand(2));
7670 SDValue LL
, LH
, RL
, RH
;
7671 SplitVectorOp(Node
->getOperand(0), LL
, LH
);
7672 SplitVectorOp(Node
->getOperand(1), RL
, RH
);
7674 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, LL
, RL
);
7675 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, LH
, RH
);
7681 SplitVectorOp(Node
->getOperand(0), L
, H
);
7683 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, L
, Node
->getOperand(1));
7684 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, H
, Node
->getOperand(1));
7700 case ISD::FP_TO_SINT
:
7701 case ISD::FP_TO_UINT
:
7702 case ISD::SINT_TO_FP
:
7703 case ISD::UINT_TO_FP
:
7705 case ISD::ANY_EXTEND
:
7706 case ISD::SIGN_EXTEND
:
7707 case ISD::ZERO_EXTEND
:
7708 case ISD::FP_EXTEND
: {
7710 SplitVectorOp(Node
->getOperand(0), L
, H
);
7712 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, L
);
7713 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, H
);
7716 case ISD::CONVERT_RNDSAT
: {
7717 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(Node
)->getCvtCode();
7719 SplitVectorOp(Node
->getOperand(0), L
, H
);
7720 SDValue DTyOpL
= DAG
.getValueType(NewVT_Lo
);
7721 SDValue DTyOpH
= DAG
.getValueType(NewVT_Hi
);
7722 SDValue STyOpL
= DAG
.getValueType(L
.getValueType());
7723 SDValue STyOpH
= DAG
.getValueType(H
.getValueType());
7725 SDValue RndOp
= Node
->getOperand(3);
7726 SDValue SatOp
= Node
->getOperand(4);
7728 Lo
= DAG
.getConvertRndSat(NewVT_Lo
, dl
, L
, DTyOpL
, STyOpL
,
7729 RndOp
, SatOp
, CvtCode
);
7730 Hi
= DAG
.getConvertRndSat(NewVT_Hi
, dl
, H
, DTyOpH
, STyOpH
,
7731 RndOp
, SatOp
, CvtCode
);
7735 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
7736 SDValue Ch
= LD
->getChain();
7737 SDValue Ptr
= LD
->getBasePtr();
7738 ISD::LoadExtType ExtType
= LD
->getExtensionType();
7739 const Value
*SV
= LD
->getSrcValue();
7740 int SVOffset
= LD
->getSrcValueOffset();
7741 MVT MemoryVT
= LD
->getMemoryVT();
7742 unsigned Alignment
= LD
->getAlignment();
7743 bool isVolatile
= LD
->isVolatile();
7745 assert(LD
->isUnindexed() && "Indexed vector loads are not supported yet!");
7746 SDValue Offset
= DAG
.getUNDEF(Ptr
.getValueType());
7748 MVT MemNewEltVT
= MemoryVT
.getVectorElementType();
7749 MVT MemNewVT_Lo
= MVT::getVectorVT(MemNewEltVT
, NewNumElts_Lo
);
7750 MVT MemNewVT_Hi
= MVT::getVectorVT(MemNewEltVT
, NewNumElts_Hi
);
7752 Lo
= DAG
.getLoad(ISD::UNINDEXED
, dl
, ExtType
,
7753 NewVT_Lo
, Ch
, Ptr
, Offset
,
7754 SV
, SVOffset
, MemNewVT_Lo
, isVolatile
, Alignment
);
7755 unsigned IncrementSize
= NewNumElts_Lo
* MemNewEltVT
.getSizeInBits()/8;
7756 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
7757 DAG
.getIntPtrConstant(IncrementSize
));
7758 SVOffset
+= IncrementSize
;
7759 Alignment
= MinAlign(Alignment
, IncrementSize
);
7760 Hi
= DAG
.getLoad(ISD::UNINDEXED
, dl
, ExtType
,
7761 NewVT_Hi
, Ch
, Ptr
, Offset
,
7762 SV
, SVOffset
, MemNewVT_Hi
, isVolatile
, Alignment
);
7764 // Build a factor node to remember that this load is independent of the
7766 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
7769 // Remember that we legalized the chain.
7770 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(TF
));
7773 case ISD::BIT_CONVERT
: {
7774 // We know the result is a vector. The input may be either a vector or a
7776 SDValue InOp
= Node
->getOperand(0);
7777 if (!InOp
.getValueType().isVector() ||
7778 InOp
.getValueType().getVectorNumElements() == 1) {
7779 // The input is a scalar or single-element vector.
7780 // Lower to a store/load so that it can be split.
7781 // FIXME: this could be improved probably.
7782 unsigned LdAlign
= TLI
.getTargetData()->
7783 getPrefTypeAlignment(Op
.getValueType().getTypeForMVT());
7784 SDValue Ptr
= DAG
.CreateStackTemporary(InOp
.getValueType(), LdAlign
);
7785 int FI
= cast
<FrameIndexSDNode
>(Ptr
.getNode())->getIndex();
7787 SDValue St
= DAG
.getStore(DAG
.getEntryNode(), dl
,
7789 PseudoSourceValue::getFixedStack(FI
), 0);
7790 InOp
= DAG
.getLoad(Op
.getValueType(), dl
, St
, Ptr
,
7791 PseudoSourceValue::getFixedStack(FI
), 0);
7793 // Split the vector and convert each of the pieces now.
7794 SplitVectorOp(InOp
, Lo
, Hi
);
7795 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT_Lo
, Lo
);
7796 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT_Hi
, Hi
);
7801 // Remember in a map if the values will be reused later.
7803 SplitNodes
.insert(std::make_pair(Op
, std::make_pair(Lo
, Hi
))).second
;
7804 assert(isNew
&& "Value already split?!?");
7809 /// ScalarizeVectorOp - Given an operand of single-element vector type
7810 /// (e.g. v1f32), convert it into the equivalent operation that returns a
7811 /// scalar (e.g. f32) value.
7812 SDValue
SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op
) {
7813 assert(Op
.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!");
7814 SDNode
*Node
= Op
.getNode();
7815 DebugLoc dl
= Node
->getDebugLoc();
7816 MVT NewVT
= Op
.getValueType().getVectorElementType();
7817 assert(Op
.getValueType().getVectorNumElements() == 1);
7819 // See if we already scalarized it.
7820 std::map
<SDValue
, SDValue
>::iterator I
= ScalarizedNodes
.find(Op
);
7821 if (I
!= ScalarizedNodes
.end()) return I
->second
;
7824 switch (Node
->getOpcode()) {
7827 Node
->dump(&DAG
); cerr
<< "\n";
7829 assert(0 && "Unknown vector operation in ScalarizeVectorOp!");
7846 Result
= DAG
.getNode(Node
->getOpcode(), dl
,
7848 ScalarizeVectorOp(Node
->getOperand(0)),
7849 ScalarizeVectorOp(Node
->getOperand(1)));
7861 case ISD::FP_TO_SINT
:
7862 case ISD::FP_TO_UINT
:
7863 case ISD::SINT_TO_FP
:
7864 case ISD::UINT_TO_FP
:
7865 case ISD::SIGN_EXTEND
:
7866 case ISD::ZERO_EXTEND
:
7867 case ISD::ANY_EXTEND
:
7869 case ISD::FP_EXTEND
:
7870 Result
= DAG
.getNode(Node
->getOpcode(), dl
,
7872 ScalarizeVectorOp(Node
->getOperand(0)));
7874 case ISD::CONVERT_RNDSAT
: {
7875 SDValue Op0
= ScalarizeVectorOp(Node
->getOperand(0));
7876 Result
= DAG
.getConvertRndSat(NewVT
, dl
, Op0
,
7877 DAG
.getValueType(NewVT
),
7878 DAG
.getValueType(Op0
.getValueType()),
7879 Node
->getOperand(3),
7880 Node
->getOperand(4),
7881 cast
<CvtRndSatSDNode
>(Node
)->getCvtCode());
7886 Result
= DAG
.getNode(Node
->getOpcode(), dl
,
7888 ScalarizeVectorOp(Node
->getOperand(0)),
7889 Node
->getOperand(1));
7892 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
7893 SDValue Ch
= LegalizeOp(LD
->getChain()); // Legalize the chain.
7894 SDValue Ptr
= LegalizeOp(LD
->getBasePtr()); // Legalize the pointer.
7895 ISD::LoadExtType ExtType
= LD
->getExtensionType();
7896 const Value
*SV
= LD
->getSrcValue();
7897 int SVOffset
= LD
->getSrcValueOffset();
7898 MVT MemoryVT
= LD
->getMemoryVT();
7899 unsigned Alignment
= LD
->getAlignment();
7900 bool isVolatile
= LD
->isVolatile();
7902 assert(LD
->isUnindexed() && "Indexed vector loads are not supported yet!");
7903 SDValue Offset
= DAG
.getUNDEF(Ptr
.getValueType());
7905 Result
= DAG
.getLoad(ISD::UNINDEXED
, dl
, ExtType
,
7906 NewVT
, Ch
, Ptr
, Offset
, SV
, SVOffset
,
7907 MemoryVT
.getVectorElementType(),
7908 isVolatile
, Alignment
);
7910 // Remember that we legalized the chain.
7911 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
7914 case ISD::BUILD_VECTOR
:
7915 Result
= Node
->getOperand(0);
7917 case ISD::INSERT_VECTOR_ELT
:
7918 // Returning the inserted scalar element.
7919 Result
= Node
->getOperand(1);
7921 case ISD::CONCAT_VECTORS
:
7922 assert(Node
->getOperand(0).getValueType() == NewVT
&&
7923 "Concat of non-legal vectors not yet supported!");
7924 Result
= Node
->getOperand(0);
7926 case ISD::VECTOR_SHUFFLE
: {
7927 // Figure out if the scalar is the LHS or RHS and return it.
7928 SDValue EltNum
= Node
->getOperand(2).getOperand(0);
7929 if (cast
<ConstantSDNode
>(EltNum
)->getZExtValue())
7930 Result
= ScalarizeVectorOp(Node
->getOperand(1));
7932 Result
= ScalarizeVectorOp(Node
->getOperand(0));
7935 case ISD::EXTRACT_SUBVECTOR
:
7936 Result
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewVT
,
7937 Node
->getOperand(0), Node
->getOperand(1));
7939 case ISD::BIT_CONVERT
: {
7940 SDValue Op0
= Op
.getOperand(0);
7941 if (Op0
.getValueType().getVectorNumElements() == 1)
7942 Op0
= ScalarizeVectorOp(Op0
);
7943 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, Op0
);
7947 Result
= DAG
.getNode(ISD::SELECT
, dl
, NewVT
, Op
.getOperand(0),
7948 ScalarizeVectorOp(Op
.getOperand(1)),
7949 ScalarizeVectorOp(Op
.getOperand(2)));
7951 case ISD::SELECT_CC
:
7952 Result
= DAG
.getNode(ISD::SELECT_CC
, dl
, NewVT
, Node
->getOperand(0),
7953 Node
->getOperand(1),
7954 ScalarizeVectorOp(Op
.getOperand(2)),
7955 ScalarizeVectorOp(Op
.getOperand(3)),
7956 Node
->getOperand(4));
7959 SDValue Op0
= ScalarizeVectorOp(Op
.getOperand(0));
7960 SDValue Op1
= ScalarizeVectorOp(Op
.getOperand(1));
7961 Result
= DAG
.getNode(ISD::SETCC
, dl
,
7962 TLI
.getSetCCResultType(Op0
.getValueType()),
7963 Op0
, Op1
, Op
.getOperand(2));
7964 Result
= DAG
.getNode(ISD::SELECT
, dl
, NewVT
, Result
,
7965 DAG
.getConstant(-1ULL, NewVT
),
7966 DAG
.getConstant(0ULL, NewVT
));
7971 if (TLI
.isTypeLegal(NewVT
))
7972 Result
= LegalizeOp(Result
);
7973 bool isNew
= ScalarizedNodes
.insert(std::make_pair(Op
, Result
)).second
;
7974 assert(isNew
&& "Value already scalarized?");
7980 SDValue
SelectionDAGLegalize::WidenVectorOp(SDValue Op
, MVT WidenVT
) {
7981 std::map
<SDValue
, SDValue
>::iterator I
= WidenNodes
.find(Op
);
7982 if (I
!= WidenNodes
.end()) return I
->second
;
7984 MVT VT
= Op
.getValueType();
7985 assert(VT
.isVector() && "Cannot widen non-vector type!");
7988 SDNode
*Node
= Op
.getNode();
7989 DebugLoc dl
= Node
->getDebugLoc();
7990 MVT EVT
= VT
.getVectorElementType();
7992 unsigned NumElts
= VT
.getVectorNumElements();
7993 unsigned NewNumElts
= WidenVT
.getVectorNumElements();
7994 assert(NewNumElts
> NumElts
&& "Cannot widen to smaller type!");
7995 assert(NewNumElts
< 17);
7997 // When widen is called, it is assumed that it is more efficient to use a
7998 // wide type. The default action is to widen to operation to a wider legal
7999 // vector type and then do the operation if it is legal by calling LegalizeOp
8000 // again. If there is no vector equivalent, we will unroll the operation, do
8001 // it, and rebuild the vector. If most of the operations are vectorizible to
8002 // the legal type, the resulting code will be more efficient. If this is not
8003 // the case, the resulting code will preform badly as we end up generating
8004 // code to pack/unpack the results. It is the function that calls widen
8005 // that is responsible for seeing this doesn't happen.
8006 switch (Node
->getOpcode()) {
8011 assert(0 && "Unexpected operation in WidenVectorOp!");
8013 case ISD::CopyFromReg
:
8014 assert(0 && "CopyFromReg doesn't need widening!");
8016 case ISD::ConstantFP
:
8017 // To build a vector of these elements, clients should call BuildVector
8018 // and with each element instead of creating a node with a vector type
8019 assert(0 && "Unexpected operation in WidenVectorOp!");
8021 // Variable Arguments with vector types doesn't make any sense to me
8022 assert(0 && "Unexpected operation in WidenVectorOp!");
8025 Result
= DAG
.getUNDEF(WidenVT
);
8027 case ISD::BUILD_VECTOR
: {
8028 // Build a vector with undefined for the new nodes
8029 SDValueVector
NewOps(Node
->op_begin(), Node
->op_end());
8030 for (unsigned i
= NumElts
; i
< NewNumElts
; ++i
) {
8031 NewOps
.push_back(DAG
.getUNDEF(EVT
));
8033 Result
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, WidenVT
,
8034 &NewOps
[0], NewOps
.size());
8037 case ISD::INSERT_VECTOR_ELT
: {
8038 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8039 Result
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, WidenVT
, Tmp1
,
8040 Node
->getOperand(1), Node
->getOperand(2));
8043 case ISD::VECTOR_SHUFFLE
: {
8044 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8045 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(1), WidenVT
);
8046 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Node
);
8047 SmallVector
<int, 8> NewMask
;
8048 for (unsigned i
= 0; i
< NumElts
; ++i
) {
8049 int Idx
= SVOp
->getMaskElt(i
);
8050 if (Idx
< (int)NumElts
)
8051 NewMask
.push_back(Idx
);
8053 NewMask
.push_back(Idx
+ NewNumElts
- NumElts
);
8055 for (unsigned i
= NumElts
; i
< NewNumElts
; ++i
)
8056 NewMask
.push_back(-1);
8058 Result
= DAG
.getVectorShuffle(WidenVT
, dl
, Tmp1
, Tmp2
, &NewMask
[0]);
8062 // If the load widen returns true, we can use a single load for the
8063 // vector. Otherwise, it is returning a token factor for multiple
8066 if (LoadWidenVectorOp(Result
, TFOp
, Op
, WidenVT
))
8067 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(TFOp
.getValue(1)));
8069 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(TFOp
.getValue(0)));
8073 case ISD::BIT_CONVERT
: {
8074 SDValue Tmp1
= Node
->getOperand(0);
8075 // Converts between two different types so we need to determine
8076 // the correct widen type for the input operand.
8077 MVT InVT
= Tmp1
.getValueType();
8078 unsigned WidenSize
= WidenVT
.getSizeInBits();
8079 if (InVT
.isVector()) {
8080 MVT InEltVT
= InVT
.getVectorElementType();
8081 unsigned InEltSize
= InEltVT
.getSizeInBits();
8082 assert(WidenSize
% InEltSize
== 0 &&
8083 "can not widen bit convert that are not multiple of element type");
8084 MVT NewInWidenVT
= MVT::getVectorVT(InEltVT
, WidenSize
/ InEltSize
);
8085 Tmp1
= WidenVectorOp(Tmp1
, NewInWidenVT
);
8086 assert(Tmp1
.getValueType().getSizeInBits() == WidenVT
.getSizeInBits());
8087 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, WidenVT
, Tmp1
);
8089 // If the result size is a multiple of the input size, widen the input
8090 // and then convert.
8091 unsigned InSize
= InVT
.getSizeInBits();
8092 assert(WidenSize
% InSize
== 0 &&
8093 "can not widen bit convert that are not multiple of element type");
8094 unsigned NewNumElts
= WidenSize
/ InSize
;
8095 SmallVector
<SDValue
, 16> Ops(NewNumElts
);
8096 SDValue UndefVal
= DAG
.getUNDEF(InVT
);
8098 for (unsigned i
= 1; i
< NewNumElts
; ++i
)
8101 MVT NewInVT
= MVT::getVectorVT(InVT
, NewNumElts
);
8102 Result
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewInVT
, &Ops
[0], NewNumElts
);
8103 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, WidenVT
, Result
);
8108 case ISD::SINT_TO_FP
:
8109 case ISD::UINT_TO_FP
:
8110 case ISD::FP_TO_SINT
:
8111 case ISD::FP_TO_UINT
:
8112 case ISD::FP_ROUND
: {
8113 SDValue Tmp1
= Node
->getOperand(0);
8114 // Converts between two different types so we need to determine
8115 // the correct widen type for the input operand.
8116 MVT TVT
= Tmp1
.getValueType();
8117 assert(TVT
.isVector() && "can not widen non vector type");
8118 MVT TEVT
= TVT
.getVectorElementType();
8119 MVT TWidenVT
= MVT::getVectorVT(TEVT
, NewNumElts
);
8120 Tmp1
= WidenVectorOp(Tmp1
, TWidenVT
);
8121 assert(Tmp1
.getValueType().getVectorNumElements() == NewNumElts
);
8122 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
);
8126 case ISD::FP_EXTEND
:
8127 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
8129 case ISD::SIGN_EXTEND
:
8130 case ISD::ZERO_EXTEND
:
8131 case ISD::ANY_EXTEND
:
8132 case ISD::SIGN_EXTEND_INREG
:
8141 // Unary op widening
8143 Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8144 assert(Tmp1
.getValueType() == WidenVT
);
8145 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
);
8148 case ISD::CONVERT_RNDSAT
: {
8149 SDValue RndOp
= Node
->getOperand(3);
8150 SDValue SatOp
= Node
->getOperand(4);
8151 SDValue SrcOp
= Node
->getOperand(0);
8153 // Converts between two different types so we need to determine
8154 // the correct widen type for the input operand.
8155 MVT SVT
= SrcOp
.getValueType();
8156 assert(SVT
.isVector() && "can not widen non vector type");
8157 MVT SEVT
= SVT
.getVectorElementType();
8158 MVT SWidenVT
= MVT::getVectorVT(SEVT
, NewNumElts
);
8160 SrcOp
= WidenVectorOp(SrcOp
, SWidenVT
);
8161 assert(SrcOp
.getValueType() == WidenVT
);
8162 SDValue DTyOp
= DAG
.getValueType(WidenVT
);
8163 SDValue STyOp
= DAG
.getValueType(SrcOp
.getValueType());
8164 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(Node
)->getCvtCode();
8166 Result
= DAG
.getConvertRndSat(WidenVT
, dl
, SrcOp
, DTyOp
, STyOp
,
8167 RndOp
, SatOp
, CvtCode
);
8187 case ISD::FCOPYSIGN
:
8191 // Binary op widening
8192 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8193 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(1), WidenVT
);
8194 assert(Tmp1
.getValueType() == WidenVT
&& Tmp2
.getValueType() == WidenVT
);
8195 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
, Tmp2
);
8202 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8203 assert(Tmp1
.getValueType() == WidenVT
);
8204 SDValue ShOp
= Node
->getOperand(1);
8205 MVT ShVT
= ShOp
.getValueType();
8206 MVT NewShVT
= MVT::getVectorVT(ShVT
.getVectorElementType(),
8207 WidenVT
.getVectorNumElements());
8208 ShOp
= WidenVectorOp(ShOp
, NewShVT
);
8209 assert(ShOp
.getValueType() == NewShVT
);
8210 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
, ShOp
);
8214 case ISD::EXTRACT_VECTOR_ELT
: {
8215 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8216 assert(Tmp1
.getValueType() == WidenVT
);
8217 Result
= DAG
.getNode(Node
->getOpcode(), dl
, EVT
, Tmp1
, Node
->getOperand(1));
8220 case ISD::CONCAT_VECTORS
: {
8221 // We concurrently support only widen on a multiple of the incoming vector.
8222 // We could widen on a multiple of the incoming operand if necessary.
8223 unsigned NumConcat
= NewNumElts
/ NumElts
;
8224 assert(NewNumElts
% NumElts
== 0 && "Can widen only a multiple of vector");
8225 SDValue UndefVal
= DAG
.getUNDEF(VT
);
8226 SmallVector
<SDValue
, 8> MOps
;
8228 for (unsigned i
= 1; i
!= NumConcat
; ++i
) {
8229 MOps
.push_back(UndefVal
);
8231 Result
= LegalizeOp(DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, WidenVT
,
8232 &MOps
[0], MOps
.size()));
8235 case ISD::EXTRACT_SUBVECTOR
: {
8236 SDValue Tmp1
= Node
->getOperand(0);
8237 SDValue Idx
= Node
->getOperand(1);
8238 ConstantSDNode
*CIdx
= dyn_cast
<ConstantSDNode
>(Idx
);
8239 if (CIdx
&& CIdx
->getZExtValue() == 0) {
8240 // Since we are access the start of the vector, the incoming
8241 // vector type might be the proper.
8242 MVT Tmp1VT
= Tmp1
.getValueType();
8243 if (Tmp1VT
== WidenVT
)
8246 unsigned Tmp1VTNumElts
= Tmp1VT
.getVectorNumElements();
8247 if (Tmp1VTNumElts
< NewNumElts
)
8248 Result
= WidenVectorOp(Tmp1
, WidenVT
);
8250 Result
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, WidenVT
, Tmp1
, Idx
);
8252 } else if (NewNumElts
% NumElts
== 0) {
8253 // Widen the extracted subvector.
8254 unsigned NumConcat
= NewNumElts
/ NumElts
;
8255 SDValue UndefVal
= DAG
.getUNDEF(VT
);
8256 SmallVector
<SDValue
, 8> MOps
;
8258 for (unsigned i
= 1; i
!= NumConcat
; ++i
) {
8259 MOps
.push_back(UndefVal
);
8261 Result
= LegalizeOp(DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, WidenVT
,
8262 &MOps
[0], MOps
.size()));
8264 assert(0 && "can not widen extract subvector");
8265 // This could be implemented using insert and build vector but I would
8266 // like to see when this happens.
8272 // Determine new condition widen type and widen
8273 SDValue Cond1
= Node
->getOperand(0);
8274 MVT CondVT
= Cond1
.getValueType();
8275 assert(CondVT
.isVector() && "can not widen non vector type");
8276 MVT CondEVT
= CondVT
.getVectorElementType();
8277 MVT CondWidenVT
= MVT::getVectorVT(CondEVT
, NewNumElts
);
8278 Cond1
= WidenVectorOp(Cond1
, CondWidenVT
);
8279 assert(Cond1
.getValueType() == CondWidenVT
&& "Condition not widen");
8281 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(1), WidenVT
);
8282 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(2), WidenVT
);
8283 assert(Tmp1
.getValueType() == WidenVT
&& Tmp2
.getValueType() == WidenVT
);
8284 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Cond1
, Tmp1
, Tmp2
);
8288 case ISD::SELECT_CC
: {
8289 // Determine new condition widen type and widen
8290 SDValue Cond1
= Node
->getOperand(0);
8291 SDValue Cond2
= Node
->getOperand(1);
8292 MVT CondVT
= Cond1
.getValueType();
8293 assert(CondVT
.isVector() && "can not widen non vector type");
8294 assert(CondVT
== Cond2
.getValueType() && "mismatch lhs/rhs");
8295 MVT CondEVT
= CondVT
.getVectorElementType();
8296 MVT CondWidenVT
= MVT::getVectorVT(CondEVT
, NewNumElts
);
8297 Cond1
= WidenVectorOp(Cond1
, CondWidenVT
);
8298 Cond2
= WidenVectorOp(Cond2
, CondWidenVT
);
8299 assert(Cond1
.getValueType() == CondWidenVT
&&
8300 Cond2
.getValueType() == CondWidenVT
&& "condition not widen");
8302 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(2), WidenVT
);
8303 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(3), WidenVT
);
8304 assert(Tmp1
.getValueType() == WidenVT
&& Tmp2
.getValueType() == WidenVT
&&
8305 "operands not widen");
8306 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Cond1
, Cond2
, Tmp1
,
8307 Tmp2
, Node
->getOperand(4));
8311 // Determine widen for the operand
8312 SDValue Tmp1
= Node
->getOperand(0);
8313 MVT TmpVT
= Tmp1
.getValueType();
8314 assert(TmpVT
.isVector() && "can not widen non vector type");
8315 MVT TmpEVT
= TmpVT
.getVectorElementType();
8316 MVT TmpWidenVT
= MVT::getVectorVT(TmpEVT
, NewNumElts
);
8317 Tmp1
= WidenVectorOp(Tmp1
, TmpWidenVT
);
8318 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(1), TmpWidenVT
);
8319 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
, Tmp2
,
8320 Node
->getOperand(2));
8323 case ISD::ATOMIC_CMP_SWAP
:
8324 case ISD::ATOMIC_LOAD_ADD
:
8325 case ISD::ATOMIC_LOAD_SUB
:
8326 case ISD::ATOMIC_LOAD_AND
:
8327 case ISD::ATOMIC_LOAD_OR
:
8328 case ISD::ATOMIC_LOAD_XOR
:
8329 case ISD::ATOMIC_LOAD_NAND
:
8330 case ISD::ATOMIC_LOAD_MIN
:
8331 case ISD::ATOMIC_LOAD_MAX
:
8332 case ISD::ATOMIC_LOAD_UMIN
:
8333 case ISD::ATOMIC_LOAD_UMAX
:
8334 case ISD::ATOMIC_SWAP
: {
8335 // For now, we assume that using vectors for these operations don't make
8336 // much sense so we just split it. We return an empty result
8338 SplitVectorOp(Op
, X
, Y
);
8343 } // end switch (Node->getOpcode())
8345 assert(Result
.getNode() && "Didn't set a result!");
8347 Result
= LegalizeOp(Result
);
8349 AddWidenedOperand(Op
, Result
);
8353 // Utility function to find a legal vector type and its associated element
8354 // type from a preferred width and whose vector type must be the same size
8356 // TLI: Target lowering used to determine legal types
8357 // Width: Preferred width of element type
8358 // VVT: Vector value type whose size we must match.
8359 // Returns VecEVT and EVT - the vector type and its associated element type
8360 static void FindWidenVecType(const TargetLowering
&TLI
, unsigned Width
, MVT VVT
,
8361 MVT
& EVT
, MVT
& VecEVT
) {
8362 // We start with the preferred width, make it a power of 2 and see if
8363 // we can find a vector type of that width. If not, we reduce it by
8364 // another power of 2. If we have widen the type, a vector of bytes should
8366 assert(TLI
.isTypeLegal(VVT
));
8367 unsigned EWidth
= Width
+ 1;
8370 EWidth
= (1 << Log2_32(EWidth
-1));
8371 EVT
= MVT::getIntegerVT(EWidth
);
8372 unsigned NumEVT
= VVT
.getSizeInBits()/EWidth
;
8373 VecEVT
= MVT::getVectorVT(EVT
, NumEVT
);
8374 } while (!TLI
.isTypeLegal(VecEVT
) ||
8375 VVT
.getSizeInBits() != VecEVT
.getSizeInBits());
8378 SDValue
SelectionDAGLegalize::genWidenVectorLoads(SDValueVector
& LdChain
,
8388 // We assume that we have good rules to handle loading power of two loads so
8389 // we break down the operations to power of 2 loads. The strategy is to
8390 // load the largest power of 2 that we can easily transform to a legal vector
8391 // and then insert into that vector, and the cast the result into the legal
8392 // vector that we want. This avoids unnecessary stack converts.
8393 // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
8394 // the load is nonvolatile, we an use a wider load for the value.
8395 // Find a vector length we can load a large chunk
8398 FindWidenVecType(TLI
, LdWidth
, ResType
, EVT
, VecEVT
);
8399 EVTWidth
= EVT
.getSizeInBits();
8401 SDValue LdOp
= DAG
.getLoad(EVT
, dl
, Chain
, BasePtr
, SV
, SVOffset
,
8402 isVolatile
, Alignment
);
8403 SDValue VecOp
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecEVT
, LdOp
);
8404 LdChain
.push_back(LdOp
.getValue(1));
8406 // Check if we can load the element with one instruction
8407 if (LdWidth
== EVTWidth
) {
8408 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ResType
, VecOp
);
8411 // The vector element order is endianness dependent.
8413 LdWidth
-= EVTWidth
;
8414 unsigned Offset
= 0;
8416 while (LdWidth
> 0) {
8417 unsigned Increment
= EVTWidth
/ 8;
8418 Offset
+= Increment
;
8419 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
8420 DAG
.getIntPtrConstant(Increment
));
8422 if (LdWidth
< EVTWidth
) {
8423 // Our current type we are using is too large, use a smaller size by
8424 // using a smaller power of 2
8425 unsigned oEVTWidth
= EVTWidth
;
8426 FindWidenVecType(TLI
, LdWidth
, ResType
, EVT
, VecEVT
);
8427 EVTWidth
= EVT
.getSizeInBits();
8428 // Readjust position and vector position based on new load type
8429 Idx
= Idx
* (oEVTWidth
/EVTWidth
);
8430 VecOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VecEVT
, VecOp
);
8433 SDValue LdOp
= DAG
.getLoad(EVT
, dl
, Chain
, BasePtr
, SV
,
8434 SVOffset
+Offset
, isVolatile
,
8435 MinAlign(Alignment
, Offset
));
8436 LdChain
.push_back(LdOp
.getValue(1));
8437 VecOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecEVT
, VecOp
, LdOp
,
8438 DAG
.getIntPtrConstant(Idx
++));
8440 LdWidth
-= EVTWidth
;
8443 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ResType
, VecOp
);
8446 bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue
& Result
,
8450 // TODO: Add support for ConcatVec and the ability to load many vector
8451 // types (e.g., v4i8). This will not work when a vector register
8452 // to memory mapping is strange (e.g., vector elements are not
8453 // stored in some sequential order).
8455 // It must be true that the widen vector type is bigger than where
8456 // we need to load from.
8457 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
8458 MVT LdVT
= LD
->getMemoryVT();
8459 DebugLoc dl
= LD
->getDebugLoc();
8460 assert(LdVT
.isVector() && NVT
.isVector());
8461 assert(LdVT
.getVectorElementType() == NVT
.getVectorElementType());
8464 SDValue Chain
= LD
->getChain();
8465 SDValue BasePtr
= LD
->getBasePtr();
8466 int SVOffset
= LD
->getSrcValueOffset();
8467 unsigned Alignment
= LD
->getAlignment();
8468 bool isVolatile
= LD
->isVolatile();
8469 const Value
*SV
= LD
->getSrcValue();
8470 unsigned int LdWidth
= LdVT
.getSizeInBits();
8472 // Load value as a large register
8473 SDValueVector LdChain
;
8474 Result
= genWidenVectorLoads(LdChain
, Chain
, BasePtr
, SV
, SVOffset
,
8475 Alignment
, isVolatile
, LdWidth
, NVT
, dl
);
8477 if (LdChain
.size() == 1) {
8482 TFOp
=DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
8483 &LdChain
[0], LdChain
.size());
8489 void SelectionDAGLegalize::genWidenVectorStores(SDValueVector
& StChain
,
8499 // Breaks the stores into a series of power of 2 width stores. For any
8500 // width, we convert the vector to the vector of element size that we
8501 // want to store. This avoids requiring a stack convert.
8503 // Find a width of the element type we can store with
8504 MVT VVT
= ValOp
.getValueType();
8507 FindWidenVecType(TLI
, StWidth
, VVT
, EVT
, VecEVT
);
8508 EVTWidth
= EVT
.getSizeInBits();
8510 SDValue VecOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VecEVT
, ValOp
);
8511 SDValue EOp
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EVT
, VecOp
,
8512 DAG
.getIntPtrConstant(0));
8513 SDValue StOp
= DAG
.getStore(Chain
, dl
, EOp
, BasePtr
, SV
, SVOffset
,
8514 isVolatile
, Alignment
);
8515 StChain
.push_back(StOp
);
8517 // Check if we are done
8518 if (StWidth
== EVTWidth
) {
8523 StWidth
-= EVTWidth
;
8524 unsigned Offset
= 0;
8526 while (StWidth
> 0) {
8527 unsigned Increment
= EVTWidth
/ 8;
8528 Offset
+= Increment
;
8529 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
8530 DAG
.getIntPtrConstant(Increment
));
8532 if (StWidth
< EVTWidth
) {
8533 // Our current type we are using is too large, use a smaller size by
8534 // using a smaller power of 2
8535 unsigned oEVTWidth
= EVTWidth
;
8536 FindWidenVecType(TLI
, StWidth
, VVT
, EVT
, VecEVT
);
8537 EVTWidth
= EVT
.getSizeInBits();
8538 // Readjust position and vector position based on new load type
8539 Idx
= Idx
* (oEVTWidth
/EVTWidth
);
8540 VecOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VecEVT
, VecOp
);
8543 EOp
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EVT
, VecOp
,
8544 DAG
.getIntPtrConstant(Idx
++));
8545 StChain
.push_back(DAG
.getStore(Chain
, dl
, EOp
, BasePtr
, SV
,
8546 SVOffset
+ Offset
, isVolatile
,
8547 MinAlign(Alignment
, Offset
)));
8548 StWidth
-= EVTWidth
;
8553 SDValue
SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode
*ST
,
8556 // TODO: It might be cleaner if we can use SplitVector and have more legal
8557 // vector types that can be stored into memory (e.g., v4xi8 can
8558 // be stored as a word). This will not work when a vector register
8559 // to memory mapping is strange (e.g., vector elements are not
8560 // stored in some sequential order).
8562 MVT StVT
= ST
->getMemoryVT();
8563 SDValue ValOp
= ST
->getValue();
8564 DebugLoc dl
= ST
->getDebugLoc();
8566 // Check if we have widen this node with another value
8567 std::map
<SDValue
, SDValue
>::iterator I
= WidenNodes
.find(ValOp
);
8568 if (I
!= WidenNodes
.end())
8571 MVT VVT
= ValOp
.getValueType();
8573 // It must be true that we the widen vector type is bigger than where
8574 // we need to store.
8575 assert(StVT
.isVector() && VVT
.isVector());
8576 assert(StVT
.bitsLT(VVT
));
8577 assert(StVT
.getVectorElementType() == VVT
.getVectorElementType());
8580 SDValueVector StChain
;
8581 genWidenVectorStores(StChain
, Chain
, BasePtr
, ST
->getSrcValue(),
8582 ST
->getSrcValueOffset(), ST
->getAlignment(),
8583 ST
->isVolatile(), ValOp
, StVT
.getSizeInBits(), dl
);
8584 if (StChain
.size() == 1)
8587 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
8588 &StChain
[0], StChain
.size());
8592 // SelectionDAG::Legalize - This is the entry point for the file.
8594 void SelectionDAG::Legalize(bool TypesNeedLegalizing
,
8595 CodeGenOpt::Level OptLevel
) {
8596 /// run - This is the main entry point to this class.
8598 SelectionDAGLegalize(*this, TypesNeedLegalizing
, OptLevel
).LegalizeDAG();