1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements bottom-up and top-down register pressure reduction list
11 // schedulers, using standard algorithms. The basic approach uses a priority
12 // queue of available nodes to schedule. One at a time, nodes are taken from
13 // the priority queue (thus in priority order), checked for legality to
14 // schedule, and emitted if legal.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "pre-RA-sched"
19 #include "ScheduleDAGSDNodes.h"
20 #include "llvm/CodeGen/SchedulerRegistry.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/ADT/PriorityQueue.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
35 STATISTIC(NumBacktracks
, "Number of times scheduler backtracked");
36 STATISTIC(NumUnfolds
, "Number of nodes unfolded");
37 STATISTIC(NumDups
, "Number of duplicated nodes");
38 STATISTIC(NumPRCopies
, "Number of physical register copies");
40 static RegisterScheduler
41 burrListDAGScheduler("list-burr",
42 "Bottom-up register reduction list scheduling",
43 createBURRListDAGScheduler
);
44 static RegisterScheduler
45 tdrListrDAGScheduler("list-tdrr",
46 "Top-down register reduction list scheduling",
47 createTDRRListDAGScheduler
);
50 //===----------------------------------------------------------------------===//
51 /// ScheduleDAGRRList - The actual register reduction list scheduler
52 /// implementation. This supports both top-down and bottom-up scheduling.
54 class VISIBILITY_HIDDEN ScheduleDAGRRList
: public ScheduleDAGSDNodes
{
56 /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
60 /// AvailableQueue - The priority queue to use for the available SUnits.
61 SchedulingPriorityQueue
*AvailableQueue
;
63 /// LiveRegDefs - A set of physical registers and their definition
64 /// that are "live". These nodes must be scheduled before any other nodes that
65 /// modifies the registers can be scheduled.
67 std::vector
<SUnit
*> LiveRegDefs
;
68 std::vector
<unsigned> LiveRegCycles
;
70 /// Topo - A topological ordering for SUnits which permits fast IsReachable
71 /// and similar queries.
72 ScheduleDAGTopologicalSort Topo
;
75 ScheduleDAGRRList(MachineFunction
&mf
,
77 SchedulingPriorityQueue
*availqueue
)
78 : ScheduleDAGSDNodes(mf
), isBottomUp(isbottomup
),
79 AvailableQueue(availqueue
), Topo(SUnits
) {
82 ~ScheduleDAGRRList() {
83 delete AvailableQueue
;
88 /// IsReachable - Checks if SU is reachable from TargetSU.
89 bool IsReachable(const SUnit
*SU
, const SUnit
*TargetSU
) {
90 return Topo
.IsReachable(SU
, TargetSU
);
93 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
95 bool WillCreateCycle(SUnit
*SU
, SUnit
*TargetSU
) {
96 return Topo
.WillCreateCycle(SU
, TargetSU
);
99 /// AddPred - adds a predecessor edge to SUnit SU.
100 /// This returns true if this is a new predecessor.
101 /// Updates the topological ordering if required.
102 void AddPred(SUnit
*SU
, const SDep
&D
) {
103 Topo
.AddPred(SU
, D
.getSUnit());
107 /// RemovePred - removes a predecessor edge from SUnit SU.
108 /// This returns true if an edge was removed.
109 /// Updates the topological ordering if required.
110 void RemovePred(SUnit
*SU
, const SDep
&D
) {
111 Topo
.RemovePred(SU
, D
.getSUnit());
116 void ReleasePred(SUnit
*SU
, const SDep
*PredEdge
);
117 void ReleasePredecessors(SUnit
*SU
, unsigned CurCycle
);
118 void ReleaseSucc(SUnit
*SU
, const SDep
*SuccEdge
);
119 void ReleaseSuccessors(SUnit
*SU
);
120 void CapturePred(SDep
*PredEdge
);
121 void ScheduleNodeBottomUp(SUnit
*, unsigned);
122 void ScheduleNodeTopDown(SUnit
*, unsigned);
123 void UnscheduleNodeBottomUp(SUnit
*);
124 void BacktrackBottomUp(SUnit
*, unsigned, unsigned&);
125 SUnit
*CopyAndMoveSuccessors(SUnit
*);
126 void InsertCopiesAndMoveSuccs(SUnit
*, unsigned,
127 const TargetRegisterClass
*,
128 const TargetRegisterClass
*,
129 SmallVector
<SUnit
*, 2>&);
130 bool DelayForLiveRegsBottomUp(SUnit
*, SmallVector
<unsigned, 4>&);
131 void ListScheduleTopDown();
132 void ListScheduleBottomUp();
135 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
136 /// Updates the topological ordering if required.
137 SUnit
*CreateNewSUnit(SDNode
*N
) {
138 unsigned NumSUnits
= SUnits
.size();
139 SUnit
*NewNode
= NewSUnit(N
);
140 // Update the topological ordering.
141 if (NewNode
->NodeNum
>= NumSUnits
)
142 Topo
.InitDAGTopologicalSorting();
146 /// CreateClone - Creates a new SUnit from an existing one.
147 /// Updates the topological ordering if required.
148 SUnit
*CreateClone(SUnit
*N
) {
149 unsigned NumSUnits
= SUnits
.size();
150 SUnit
*NewNode
= Clone(N
);
151 // Update the topological ordering.
152 if (NewNode
->NodeNum
>= NumSUnits
)
153 Topo
.InitDAGTopologicalSorting();
157 /// ForceUnitLatencies - Return true, since register-pressure-reducing
158 /// scheduling doesn't need actual latency information.
159 bool ForceUnitLatencies() const { return true; }
161 } // end anonymous namespace
164 /// Schedule - Schedule the DAG using list scheduling.
165 void ScheduleDAGRRList::Schedule() {
166 DOUT
<< "********** List Scheduling **********\n";
169 LiveRegDefs
.resize(TRI
->getNumRegs(), NULL
);
170 LiveRegCycles
.resize(TRI
->getNumRegs(), 0);
172 // Build the scheduling graph.
175 DEBUG(for (unsigned su
= 0, e
= SUnits
.size(); su
!= e
; ++su
)
176 SUnits
[su
].dumpAll(this));
177 Topo
.InitDAGTopologicalSorting();
179 AvailableQueue
->initNodes(SUnits
);
181 // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
183 ListScheduleBottomUp();
185 ListScheduleTopDown();
187 AvailableQueue
->releaseState();
190 //===----------------------------------------------------------------------===//
191 // Bottom-Up Scheduling
192 //===----------------------------------------------------------------------===//
194 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
195 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
196 void ScheduleDAGRRList::ReleasePred(SUnit
*SU
, const SDep
*PredEdge
) {
197 SUnit
*PredSU
= PredEdge
->getSUnit();
198 --PredSU
->NumSuccsLeft
;
201 if (PredSU
->NumSuccsLeft
< 0) {
202 cerr
<< "*** Scheduling failed! ***\n";
204 cerr
<< " has been released too many times!\n";
209 // If all the node's successors are scheduled, this node is ready
210 // to be scheduled. Ignore the special EntrySU node.
211 if (PredSU
->NumSuccsLeft
== 0 && PredSU
!= &EntrySU
) {
212 PredSU
->isAvailable
= true;
213 AvailableQueue
->push(PredSU
);
217 void ScheduleDAGRRList::ReleasePredecessors(SUnit
*SU
, unsigned CurCycle
) {
218 // Bottom up: release predecessors
219 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
221 ReleasePred(SU
, &*I
);
222 if (I
->isAssignedRegDep()) {
223 // This is a physical register dependency and it's impossible or
224 // expensive to copy the register. Make sure nothing that can
225 // clobber the register is scheduled between the predecessor and
227 if (!LiveRegDefs
[I
->getReg()]) {
229 LiveRegDefs
[I
->getReg()] = I
->getSUnit();
230 LiveRegCycles
[I
->getReg()] = CurCycle
;
236 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
237 /// count of its predecessors. If a predecessor pending count is zero, add it to
238 /// the Available queue.
239 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit
*SU
, unsigned CurCycle
) {
240 DOUT
<< "*** Scheduling [" << CurCycle
<< "]: ";
241 DEBUG(SU
->dump(this));
243 assert(CurCycle
>= SU
->getHeight() && "Node scheduled below its height!");
244 SU
->setHeightToAtLeast(CurCycle
);
245 Sequence
.push_back(SU
);
247 ReleasePredecessors(SU
, CurCycle
);
249 // Release all the implicit physical register defs that are live.
250 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
252 if (I
->isAssignedRegDep()) {
253 if (LiveRegCycles
[I
->getReg()] == I
->getSUnit()->getHeight()) {
254 assert(NumLiveRegs
> 0 && "NumLiveRegs is already zero!");
255 assert(LiveRegDefs
[I
->getReg()] == SU
&&
256 "Physical register dependency violated?");
258 LiveRegDefs
[I
->getReg()] = NULL
;
259 LiveRegCycles
[I
->getReg()] = 0;
264 SU
->isScheduled
= true;
265 AvailableQueue
->ScheduledNode(SU
);
268 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
269 /// unscheduled, incrcease the succ left count of its predecessors. Remove
270 /// them from AvailableQueue if necessary.
271 void ScheduleDAGRRList::CapturePred(SDep
*PredEdge
) {
272 SUnit
*PredSU
= PredEdge
->getSUnit();
273 if (PredSU
->isAvailable
) {
274 PredSU
->isAvailable
= false;
275 if (!PredSU
->isPending
)
276 AvailableQueue
->remove(PredSU
);
279 ++PredSU
->NumSuccsLeft
;
282 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
283 /// its predecessor states to reflect the change.
284 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit
*SU
) {
285 DOUT
<< "*** Unscheduling [" << SU
->getHeight() << "]: ";
286 DEBUG(SU
->dump(this));
288 AvailableQueue
->UnscheduledNode(SU
);
290 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
293 if (I
->isAssignedRegDep() && SU
->getHeight() == LiveRegCycles
[I
->getReg()]) {
294 assert(NumLiveRegs
> 0 && "NumLiveRegs is already zero!");
295 assert(LiveRegDefs
[I
->getReg()] == I
->getSUnit() &&
296 "Physical register dependency violated?");
298 LiveRegDefs
[I
->getReg()] = NULL
;
299 LiveRegCycles
[I
->getReg()] = 0;
303 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
305 if (I
->isAssignedRegDep()) {
306 if (!LiveRegDefs
[I
->getReg()]) {
307 LiveRegDefs
[I
->getReg()] = SU
;
310 if (I
->getSUnit()->getHeight() < LiveRegCycles
[I
->getReg()])
311 LiveRegCycles
[I
->getReg()] = I
->getSUnit()->getHeight();
315 SU
->setHeightDirty();
316 SU
->isScheduled
= false;
317 SU
->isAvailable
= true;
318 AvailableQueue
->push(SU
);
321 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
322 /// BTCycle in order to schedule a specific node.
323 void ScheduleDAGRRList::BacktrackBottomUp(SUnit
*SU
, unsigned BtCycle
,
324 unsigned &CurCycle
) {
326 while (CurCycle
> BtCycle
) {
327 OldSU
= Sequence
.back();
329 if (SU
->isSucc(OldSU
))
330 // Don't try to remove SU from AvailableQueue.
331 SU
->isAvailable
= false;
332 UnscheduleNodeBottomUp(OldSU
);
336 assert(!SU
->isSucc(OldSU
) && "Something is wrong!");
341 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
342 /// successors to the newly created node.
343 SUnit
*ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit
*SU
) {
344 if (SU
->getNode()->getFlaggedNode())
347 SDNode
*N
= SU
->getNode();
352 bool TryUnfold
= false;
353 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
354 MVT VT
= N
->getValueType(i
);
357 else if (VT
== MVT::Other
)
360 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
361 const SDValue
&Op
= N
->getOperand(i
);
362 MVT VT
= Op
.getNode()->getValueType(Op
.getResNo());
368 SmallVector
<SDNode
*, 2> NewNodes
;
369 if (!TII
->unfoldMemoryOperand(*DAG
, N
, NewNodes
))
372 DOUT
<< "Unfolding SU # " << SU
->NodeNum
<< "\n";
373 assert(NewNodes
.size() == 2 && "Expected a load folding node!");
376 SDNode
*LoadNode
= NewNodes
[0];
377 unsigned NumVals
= N
->getNumValues();
378 unsigned OldNumVals
= SU
->getNode()->getNumValues();
379 for (unsigned i
= 0; i
!= NumVals
; ++i
)
380 DAG
->ReplaceAllUsesOfValueWith(SDValue(SU
->getNode(), i
), SDValue(N
, i
));
381 DAG
->ReplaceAllUsesOfValueWith(SDValue(SU
->getNode(), OldNumVals
-1),
382 SDValue(LoadNode
, 1));
384 // LoadNode may already exist. This can happen when there is another
385 // load from the same location and producing the same type of value
386 // but it has different alignment or volatileness.
387 bool isNewLoad
= true;
389 if (LoadNode
->getNodeId() != -1) {
390 LoadSU
= &SUnits
[LoadNode
->getNodeId()];
393 LoadSU
= CreateNewSUnit(LoadNode
);
394 LoadNode
->setNodeId(LoadSU
->NodeNum
);
395 ComputeLatency(LoadSU
);
398 SUnit
*NewSU
= CreateNewSUnit(N
);
399 assert(N
->getNodeId() == -1 && "Node already inserted!");
400 N
->setNodeId(NewSU
->NodeNum
);
402 const TargetInstrDesc
&TID
= TII
->get(N
->getMachineOpcode());
403 for (unsigned i
= 0; i
!= TID
.getNumOperands(); ++i
) {
404 if (TID
.getOperandConstraint(i
, TOI::TIED_TO
) != -1) {
405 NewSU
->isTwoAddress
= true;
409 if (TID
.isCommutable())
410 NewSU
->isCommutable
= true;
411 ComputeLatency(NewSU
);
413 // Record all the edges to and from the old SU, by category.
414 SmallVector
<SDep
, 4> ChainPreds
;
415 SmallVector
<SDep
, 4> ChainSuccs
;
416 SmallVector
<SDep
, 4> LoadPreds
;
417 SmallVector
<SDep
, 4> NodePreds
;
418 SmallVector
<SDep
, 4> NodeSuccs
;
419 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
422 ChainPreds
.push_back(*I
);
423 else if (I
->getSUnit()->getNode() &&
424 I
->getSUnit()->getNode()->isOperandOf(LoadNode
))
425 LoadPreds
.push_back(*I
);
427 NodePreds
.push_back(*I
);
429 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
432 ChainSuccs
.push_back(*I
);
434 NodeSuccs
.push_back(*I
);
437 // Now assign edges to the newly-created nodes.
438 for (unsigned i
= 0, e
= ChainPreds
.size(); i
!= e
; ++i
) {
439 const SDep
&Pred
= ChainPreds
[i
];
440 RemovePred(SU
, Pred
);
442 AddPred(LoadSU
, Pred
);
444 for (unsigned i
= 0, e
= LoadPreds
.size(); i
!= e
; ++i
) {
445 const SDep
&Pred
= LoadPreds
[i
];
446 RemovePred(SU
, Pred
);
448 AddPred(LoadSU
, Pred
);
450 for (unsigned i
= 0, e
= NodePreds
.size(); i
!= e
; ++i
) {
451 const SDep
&Pred
= NodePreds
[i
];
452 RemovePred(SU
, Pred
);
453 AddPred(NewSU
, Pred
);
455 for (unsigned i
= 0, e
= NodeSuccs
.size(); i
!= e
; ++i
) {
456 SDep D
= NodeSuccs
[i
];
457 SUnit
*SuccDep
= D
.getSUnit();
459 RemovePred(SuccDep
, D
);
463 for (unsigned i
= 0, e
= ChainSuccs
.size(); i
!= e
; ++i
) {
464 SDep D
= ChainSuccs
[i
];
465 SUnit
*SuccDep
= D
.getSUnit();
467 RemovePred(SuccDep
, D
);
474 // Add a data dependency to reflect that NewSU reads the value defined
476 AddPred(NewSU
, SDep(LoadSU
, SDep::Data
, LoadSU
->Latency
));
479 AvailableQueue
->addNode(LoadSU
);
480 AvailableQueue
->addNode(NewSU
);
484 if (NewSU
->NumSuccsLeft
== 0) {
485 NewSU
->isAvailable
= true;
491 DOUT
<< "Duplicating SU # " << SU
->NodeNum
<< "\n";
492 NewSU
= CreateClone(SU
);
494 // New SUnit has the exact same predecessors.
495 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
497 if (!I
->isArtificial())
500 // Only copy scheduled successors. Cut them from old node's successor
501 // list and move them over.
502 SmallVector
<std::pair
<SUnit
*, SDep
>, 4> DelDeps
;
503 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
505 if (I
->isArtificial())
507 SUnit
*SuccSU
= I
->getSUnit();
508 if (SuccSU
->isScheduled
) {
513 DelDeps
.push_back(std::make_pair(SuccSU
, D
));
516 for (unsigned i
= 0, e
= DelDeps
.size(); i
!= e
; ++i
)
517 RemovePred(DelDeps
[i
].first
, DelDeps
[i
].second
);
519 AvailableQueue
->updateNode(SU
);
520 AvailableQueue
->addNode(NewSU
);
526 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
527 /// scheduled successors of the given SUnit to the last copy.
528 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit
*SU
, unsigned Reg
,
529 const TargetRegisterClass
*DestRC
,
530 const TargetRegisterClass
*SrcRC
,
531 SmallVector
<SUnit
*, 2> &Copies
) {
532 SUnit
*CopyFromSU
= CreateNewSUnit(NULL
);
533 CopyFromSU
->CopySrcRC
= SrcRC
;
534 CopyFromSU
->CopyDstRC
= DestRC
;
536 SUnit
*CopyToSU
= CreateNewSUnit(NULL
);
537 CopyToSU
->CopySrcRC
= DestRC
;
538 CopyToSU
->CopyDstRC
= SrcRC
;
540 // Only copy scheduled successors. Cut them from old node's successor
541 // list and move them over.
542 SmallVector
<std::pair
<SUnit
*, SDep
>, 4> DelDeps
;
543 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
545 if (I
->isArtificial())
547 SUnit
*SuccSU
= I
->getSUnit();
548 if (SuccSU
->isScheduled
) {
550 D
.setSUnit(CopyToSU
);
552 DelDeps
.push_back(std::make_pair(SuccSU
, *I
));
555 for (unsigned i
= 0, e
= DelDeps
.size(); i
!= e
; ++i
)
556 RemovePred(DelDeps
[i
].first
, DelDeps
[i
].second
);
558 AddPred(CopyFromSU
, SDep(SU
, SDep::Data
, SU
->Latency
, Reg
));
559 AddPred(CopyToSU
, SDep(CopyFromSU
, SDep::Data
, CopyFromSU
->Latency
, 0));
561 AvailableQueue
->updateNode(SU
);
562 AvailableQueue
->addNode(CopyFromSU
);
563 AvailableQueue
->addNode(CopyToSU
);
564 Copies
.push_back(CopyFromSU
);
565 Copies
.push_back(CopyToSU
);
570 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
571 /// definition of the specified node.
572 /// FIXME: Move to SelectionDAG?
573 static MVT
getPhysicalRegisterVT(SDNode
*N
, unsigned Reg
,
574 const TargetInstrInfo
*TII
) {
575 const TargetInstrDesc
&TID
= TII
->get(N
->getMachineOpcode());
576 assert(TID
.ImplicitDefs
&& "Physical reg def must be in implicit def list!");
577 unsigned NumRes
= TID
.getNumDefs();
578 for (const unsigned *ImpDef
= TID
.getImplicitDefs(); *ImpDef
; ++ImpDef
) {
583 return N
->getValueType(NumRes
);
586 /// CheckForLiveRegDef - Return true and update live register vector if the
587 /// specified register def of the specified SUnit clobbers any "live" registers.
588 static bool CheckForLiveRegDef(SUnit
*SU
, unsigned Reg
,
589 std::vector
<SUnit
*> &LiveRegDefs
,
590 SmallSet
<unsigned, 4> &RegAdded
,
591 SmallVector
<unsigned, 4> &LRegs
,
592 const TargetRegisterInfo
*TRI
) {
594 if (LiveRegDefs
[Reg
] && LiveRegDefs
[Reg
] != SU
) {
595 if (RegAdded
.insert(Reg
)) {
596 LRegs
.push_back(Reg
);
600 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
)
601 if (LiveRegDefs
[*Alias
] && LiveRegDefs
[*Alias
] != SU
) {
602 if (RegAdded
.insert(*Alias
)) {
603 LRegs
.push_back(*Alias
);
610 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
611 /// scheduling of the given node to satisfy live physical register dependencies.
612 /// If the specific node is the last one that's available to schedule, do
613 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
614 bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit
*SU
,
615 SmallVector
<unsigned, 4> &LRegs
){
616 if (NumLiveRegs
== 0)
619 SmallSet
<unsigned, 4> RegAdded
;
620 // If this node would clobber any "live" register, then it's not ready.
621 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
623 if (I
->isAssignedRegDep())
624 CheckForLiveRegDef(I
->getSUnit(), I
->getReg(), LiveRegDefs
,
625 RegAdded
, LRegs
, TRI
);
628 for (SDNode
*Node
= SU
->getNode(); Node
; Node
= Node
->getFlaggedNode()) {
629 if (Node
->getOpcode() == ISD::INLINEASM
) {
630 // Inline asm can clobber physical defs.
631 unsigned NumOps
= Node
->getNumOperands();
632 if (Node
->getOperand(NumOps
-1).getValueType() == MVT::Flag
)
633 --NumOps
; // Ignore the flag operand.
635 for (unsigned i
= 2; i
!= NumOps
;) {
637 cast
<ConstantSDNode
>(Node
->getOperand(i
))->getZExtValue();
638 unsigned NumVals
= (Flags
& 0xffff) >> 3;
640 ++i
; // Skip the ID value.
641 if ((Flags
& 7) == 2 || (Flags
& 7) == 6) {
642 // Check for def of register or earlyclobber register.
643 for (; NumVals
; --NumVals
, ++i
) {
644 unsigned Reg
= cast
<RegisterSDNode
>(Node
->getOperand(i
))->getReg();
645 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
646 CheckForLiveRegDef(SU
, Reg
, LiveRegDefs
, RegAdded
, LRegs
, TRI
);
654 if (!Node
->isMachineOpcode())
656 const TargetInstrDesc
&TID
= TII
->get(Node
->getMachineOpcode());
657 if (!TID
.ImplicitDefs
)
659 for (const unsigned *Reg
= TID
.ImplicitDefs
; *Reg
; ++Reg
)
660 CheckForLiveRegDef(SU
, *Reg
, LiveRegDefs
, RegAdded
, LRegs
, TRI
);
662 return !LRegs
.empty();
666 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
668 void ScheduleDAGRRList::ListScheduleBottomUp() {
669 unsigned CurCycle
= 0;
671 // Release any predecessors of the special Exit node.
672 ReleasePredecessors(&ExitSU
, CurCycle
);
674 // Add root to Available queue.
675 if (!SUnits
.empty()) {
676 SUnit
*RootSU
= &SUnits
[DAG
->getRoot().getNode()->getNodeId()];
677 assert(RootSU
->Succs
.empty() && "Graph root shouldn't have successors!");
678 RootSU
->isAvailable
= true;
679 AvailableQueue
->push(RootSU
);
682 // While Available queue is not empty, grab the node with the highest
683 // priority. If it is not ready put it back. Schedule the node.
684 SmallVector
<SUnit
*, 4> NotReady
;
685 DenseMap
<SUnit
*, SmallVector
<unsigned, 4> > LRegsMap
;
686 Sequence
.reserve(SUnits
.size());
687 while (!AvailableQueue
->empty()) {
688 bool Delayed
= false;
690 SUnit
*CurSU
= AvailableQueue
->pop();
692 SmallVector
<unsigned, 4> LRegs
;
693 if (!DelayForLiveRegsBottomUp(CurSU
, LRegs
))
696 LRegsMap
.insert(std::make_pair(CurSU
, LRegs
));
698 CurSU
->isPending
= true; // This SU is not in AvailableQueue right now.
699 NotReady
.push_back(CurSU
);
700 CurSU
= AvailableQueue
->pop();
703 // All candidates are delayed due to live physical reg dependencies.
704 // Try backtracking, code duplication, or inserting cross class copies
706 if (Delayed
&& !CurSU
) {
707 for (unsigned i
= 0, e
= NotReady
.size(); i
!= e
; ++i
) {
708 SUnit
*TrySU
= NotReady
[i
];
709 SmallVector
<unsigned, 4> &LRegs
= LRegsMap
[TrySU
];
711 // Try unscheduling up to the point where it's safe to schedule
713 unsigned LiveCycle
= CurCycle
;
714 for (unsigned j
= 0, ee
= LRegs
.size(); j
!= ee
; ++j
) {
715 unsigned Reg
= LRegs
[j
];
716 unsigned LCycle
= LiveRegCycles
[Reg
];
717 LiveCycle
= std::min(LiveCycle
, LCycle
);
719 SUnit
*OldSU
= Sequence
[LiveCycle
];
720 if (!WillCreateCycle(TrySU
, OldSU
)) {
721 BacktrackBottomUp(TrySU
, LiveCycle
, CurCycle
);
722 // Force the current node to be scheduled before the node that
723 // requires the physical reg dep.
724 if (OldSU
->isAvailable
) {
725 OldSU
->isAvailable
= false;
726 AvailableQueue
->remove(OldSU
);
728 AddPred(TrySU
, SDep(OldSU
, SDep::Order
, /*Latency=*/1,
729 /*Reg=*/0, /*isNormalMemory=*/false,
730 /*isMustAlias=*/false, /*isArtificial=*/true));
731 // If one or more successors has been unscheduled, then the current
732 // node is no longer avaialable. Schedule a successor that's now
733 // available instead.
734 if (!TrySU
->isAvailable
)
735 CurSU
= AvailableQueue
->pop();
738 TrySU
->isPending
= false;
739 NotReady
.erase(NotReady
.begin()+i
);
746 // Can't backtrack. If it's too expensive to copy the value, then try
747 // duplicate the nodes that produces these "too expensive to copy"
748 // values to break the dependency. In case even that doesn't work,
749 // insert cross class copies.
750 // If it's not too expensive, i.e. cost != -1, issue copies.
751 SUnit
*TrySU
= NotReady
[0];
752 SmallVector
<unsigned, 4> &LRegs
= LRegsMap
[TrySU
];
753 assert(LRegs
.size() == 1 && "Can't handle this yet!");
754 unsigned Reg
= LRegs
[0];
755 SUnit
*LRDef
= LiveRegDefs
[Reg
];
756 MVT VT
= getPhysicalRegisterVT(LRDef
->getNode(), Reg
, TII
);
757 const TargetRegisterClass
*RC
=
758 TRI
->getPhysicalRegisterRegClass(Reg
, VT
);
759 const TargetRegisterClass
*DestRC
= TRI
->getCrossCopyRegClass(RC
);
761 // If cross copy register class is null, then it must be possible copy
762 // the value directly. Do not try duplicate the def.
765 NewDef
= CopyAndMoveSuccessors(LRDef
);
769 // Issue copies, these can be expensive cross register class copies.
770 SmallVector
<SUnit
*, 2> Copies
;
771 InsertCopiesAndMoveSuccs(LRDef
, Reg
, DestRC
, RC
, Copies
);
772 DOUT
<< "Adding an edge from SU #" << TrySU
->NodeNum
773 << " to SU #" << Copies
.front()->NodeNum
<< "\n";
774 AddPred(TrySU
, SDep(Copies
.front(), SDep::Order
, /*Latency=*/1,
775 /*Reg=*/0, /*isNormalMemory=*/false,
776 /*isMustAlias=*/false,
777 /*isArtificial=*/true));
778 NewDef
= Copies
.back();
781 DOUT
<< "Adding an edge from SU #" << NewDef
->NodeNum
782 << " to SU #" << TrySU
->NodeNum
<< "\n";
783 LiveRegDefs
[Reg
] = NewDef
;
784 AddPred(NewDef
, SDep(TrySU
, SDep::Order
, /*Latency=*/1,
785 /*Reg=*/0, /*isNormalMemory=*/false,
786 /*isMustAlias=*/false,
787 /*isArtificial=*/true));
788 TrySU
->isAvailable
= false;
792 assert(CurSU
&& "Unable to resolve live physical register dependencies!");
795 // Add the nodes that aren't ready back onto the available list.
796 for (unsigned i
= 0, e
= NotReady
.size(); i
!= e
; ++i
) {
797 NotReady
[i
]->isPending
= false;
798 // May no longer be available due to backtracking.
799 if (NotReady
[i
]->isAvailable
)
800 AvailableQueue
->push(NotReady
[i
]);
805 ScheduleNodeBottomUp(CurSU
, CurCycle
);
809 // Reverse the order if it is bottom up.
810 std::reverse(Sequence
.begin(), Sequence
.end());
813 VerifySchedule(isBottomUp
);
817 //===----------------------------------------------------------------------===//
818 // Top-Down Scheduling
819 //===----------------------------------------------------------------------===//
821 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
822 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
823 void ScheduleDAGRRList::ReleaseSucc(SUnit
*SU
, const SDep
*SuccEdge
) {
824 SUnit
*SuccSU
= SuccEdge
->getSUnit();
825 --SuccSU
->NumPredsLeft
;
828 if (SuccSU
->NumPredsLeft
< 0) {
829 cerr
<< "*** Scheduling failed! ***\n";
831 cerr
<< " has been released too many times!\n";
836 // If all the node's predecessors are scheduled, this node is ready
837 // to be scheduled. Ignore the special ExitSU node.
838 if (SuccSU
->NumPredsLeft
== 0 && SuccSU
!= &ExitSU
) {
839 SuccSU
->isAvailable
= true;
840 AvailableQueue
->push(SuccSU
);
844 void ScheduleDAGRRList::ReleaseSuccessors(SUnit
*SU
) {
845 // Top down: release successors
846 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
848 assert(!I
->isAssignedRegDep() &&
849 "The list-tdrr scheduler doesn't yet support physreg dependencies!");
851 ReleaseSucc(SU
, &*I
);
855 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
856 /// count of its successors. If a successor pending count is zero, add it to
857 /// the Available queue.
858 void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
) {
859 DOUT
<< "*** Scheduling [" << CurCycle
<< "]: ";
860 DEBUG(SU
->dump(this));
862 assert(CurCycle
>= SU
->getDepth() && "Node scheduled above its depth!");
863 SU
->setDepthToAtLeast(CurCycle
);
864 Sequence
.push_back(SU
);
866 ReleaseSuccessors(SU
);
867 SU
->isScheduled
= true;
868 AvailableQueue
->ScheduledNode(SU
);
871 /// ListScheduleTopDown - The main loop of list scheduling for top-down
873 void ScheduleDAGRRList::ListScheduleTopDown() {
874 unsigned CurCycle
= 0;
876 // Release any successors of the special Entry node.
877 ReleaseSuccessors(&EntrySU
);
879 // All leaves to Available queue.
880 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
881 // It is available if it has no predecessors.
882 if (SUnits
[i
].Preds
.empty()) {
883 AvailableQueue
->push(&SUnits
[i
]);
884 SUnits
[i
].isAvailable
= true;
888 // While Available queue is not empty, grab the node with the highest
889 // priority. If it is not ready put it back. Schedule the node.
890 Sequence
.reserve(SUnits
.size());
891 while (!AvailableQueue
->empty()) {
892 SUnit
*CurSU
= AvailableQueue
->pop();
895 ScheduleNodeTopDown(CurSU
, CurCycle
);
900 VerifySchedule(isBottomUp
);
905 //===----------------------------------------------------------------------===//
906 // RegReductionPriorityQueue Implementation
907 //===----------------------------------------------------------------------===//
909 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
910 // to reduce register pressure.
914 class RegReductionPriorityQueue
;
916 /// Sorting functions for the Available queue.
917 struct bu_ls_rr_sort
: public std::binary_function
<SUnit
*, SUnit
*, bool> {
918 RegReductionPriorityQueue
<bu_ls_rr_sort
> *SPQ
;
919 bu_ls_rr_sort(RegReductionPriorityQueue
<bu_ls_rr_sort
> *spq
) : SPQ(spq
) {}
920 bu_ls_rr_sort(const bu_ls_rr_sort
&RHS
) : SPQ(RHS
.SPQ
) {}
922 bool operator()(const SUnit
* left
, const SUnit
* right
) const;
925 struct td_ls_rr_sort
: public std::binary_function
<SUnit
*, SUnit
*, bool> {
926 RegReductionPriorityQueue
<td_ls_rr_sort
> *SPQ
;
927 td_ls_rr_sort(RegReductionPriorityQueue
<td_ls_rr_sort
> *spq
) : SPQ(spq
) {}
928 td_ls_rr_sort(const td_ls_rr_sort
&RHS
) : SPQ(RHS
.SPQ
) {}
930 bool operator()(const SUnit
* left
, const SUnit
* right
) const;
932 } // end anonymous namespace
934 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
935 /// Smaller number is the higher priority.
937 CalcNodeSethiUllmanNumber(const SUnit
*SU
, std::vector
<unsigned> &SUNumbers
) {
938 unsigned &SethiUllmanNumber
= SUNumbers
[SU
->NodeNum
];
939 if (SethiUllmanNumber
!= 0)
940 return SethiUllmanNumber
;
943 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
945 if (I
->isCtrl()) continue; // ignore chain preds
946 SUnit
*PredSU
= I
->getSUnit();
947 unsigned PredSethiUllman
= CalcNodeSethiUllmanNumber(PredSU
, SUNumbers
);
948 if (PredSethiUllman
> SethiUllmanNumber
) {
949 SethiUllmanNumber
= PredSethiUllman
;
951 } else if (PredSethiUllman
== SethiUllmanNumber
)
955 SethiUllmanNumber
+= Extra
;
957 if (SethiUllmanNumber
== 0)
958 SethiUllmanNumber
= 1;
960 return SethiUllmanNumber
;
965 class VISIBILITY_HIDDEN RegReductionPriorityQueue
966 : public SchedulingPriorityQueue
{
967 PriorityQueue
<SUnit
*, std::vector
<SUnit
*>, SF
> Queue
;
968 unsigned currentQueueId
;
971 // SUnits - The SUnits for the current graph.
972 std::vector
<SUnit
> *SUnits
;
974 const TargetInstrInfo
*TII
;
975 const TargetRegisterInfo
*TRI
;
976 ScheduleDAGRRList
*scheduleDAG
;
978 // SethiUllmanNumbers - The SethiUllman number for each node.
979 std::vector
<unsigned> SethiUllmanNumbers
;
982 RegReductionPriorityQueue(const TargetInstrInfo
*tii
,
983 const TargetRegisterInfo
*tri
) :
984 Queue(SF(this)), currentQueueId(0),
985 TII(tii
), TRI(tri
), scheduleDAG(NULL
) {}
987 void initNodes(std::vector
<SUnit
> &sunits
) {
989 // Add pseudo dependency edges for two-address nodes.
990 AddPseudoTwoAddrDeps();
991 // Reroute edges to nodes with multiple uses.
992 PrescheduleNodesWithMultipleUses();
993 // Calculate node priorities.
994 CalculateSethiUllmanNumbers();
997 void addNode(const SUnit
*SU
) {
998 unsigned SUSize
= SethiUllmanNumbers
.size();
999 if (SUnits
->size() > SUSize
)
1000 SethiUllmanNumbers
.resize(SUSize
*2, 0);
1001 CalcNodeSethiUllmanNumber(SU
, SethiUllmanNumbers
);
1004 void updateNode(const SUnit
*SU
) {
1005 SethiUllmanNumbers
[SU
->NodeNum
] = 0;
1006 CalcNodeSethiUllmanNumber(SU
, SethiUllmanNumbers
);
1009 void releaseState() {
1011 SethiUllmanNumbers
.clear();
1014 unsigned getNodePriority(const SUnit
*SU
) const {
1015 assert(SU
->NodeNum
< SethiUllmanNumbers
.size());
1016 unsigned Opc
= SU
->getNode() ? SU
->getNode()->getOpcode() : 0;
1017 if (Opc
== ISD::TokenFactor
|| Opc
== ISD::CopyToReg
)
1018 // CopyToReg should be close to its uses to facilitate coalescing and
1021 if (Opc
== TargetInstrInfo::EXTRACT_SUBREG
||
1022 Opc
== TargetInstrInfo::SUBREG_TO_REG
||
1023 Opc
== TargetInstrInfo::INSERT_SUBREG
)
1024 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1025 // close to their uses to facilitate coalescing.
1027 if (SU
->NumSuccs
== 0 && SU
->NumPreds
!= 0)
1028 // If SU does not have a register use, i.e. it doesn't produce a value
1029 // that would be consumed (e.g. store), then it terminates a chain of
1030 // computation. Give it a large SethiUllman number so it will be
1031 // scheduled right before its predecessors that it doesn't lengthen
1032 // their live ranges.
1034 if (SU
->NumPreds
== 0 && SU
->NumSuccs
!= 0)
1035 // If SU does not have a register def, schedule it close to its uses
1036 // because it does not lengthen any live ranges.
1038 return SethiUllmanNumbers
[SU
->NodeNum
];
1041 unsigned size() const { return Queue
.size(); }
1043 bool empty() const { return Queue
.empty(); }
1045 void push(SUnit
*U
) {
1046 assert(!U
->NodeQueueId
&& "Node in the queue already");
1047 U
->NodeQueueId
= ++currentQueueId
;
1051 void push_all(const std::vector
<SUnit
*> &Nodes
) {
1052 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
)
1057 if (empty()) return NULL
;
1058 SUnit
*V
= Queue
.top();
1064 void remove(SUnit
*SU
) {
1065 assert(!Queue
.empty() && "Queue is empty!");
1066 assert(SU
->NodeQueueId
!= 0 && "Not in queue!");
1067 Queue
.erase_one(SU
);
1068 SU
->NodeQueueId
= 0;
1071 void setScheduleDAG(ScheduleDAGRRList
*scheduleDag
) {
1072 scheduleDAG
= scheduleDag
;
1076 bool canClobber(const SUnit
*SU
, const SUnit
*Op
);
1077 void AddPseudoTwoAddrDeps();
1078 void PrescheduleNodesWithMultipleUses();
1079 void CalculateSethiUllmanNumbers();
1082 typedef RegReductionPriorityQueue
<bu_ls_rr_sort
>
1083 BURegReductionPriorityQueue
;
1085 typedef RegReductionPriorityQueue
<td_ls_rr_sort
>
1086 TDRegReductionPriorityQueue
;
1089 /// closestSucc - Returns the scheduled cycle of the successor which is
1090 /// closest to the current cycle.
1091 static unsigned closestSucc(const SUnit
*SU
) {
1092 unsigned MaxHeight
= 0;
1093 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
1095 if (I
->isCtrl()) continue; // ignore chain succs
1096 unsigned Height
= I
->getSUnit()->getHeight();
1097 // If there are bunch of CopyToRegs stacked up, they should be considered
1098 // to be at the same position.
1099 if (I
->getSUnit()->getNode() &&
1100 I
->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg
)
1101 Height
= closestSucc(I
->getSUnit())+1;
1102 if (Height
> MaxHeight
)
1108 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
1109 /// for scratch registers, i.e. number of data dependencies.
1110 static unsigned calcMaxScratches(const SUnit
*SU
) {
1111 unsigned Scratches
= 0;
1112 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
1114 if (I
->isCtrl()) continue; // ignore chain preds
1121 bool bu_ls_rr_sort::operator()(const SUnit
*left
, const SUnit
*right
) const {
1122 unsigned LPriority
= SPQ
->getNodePriority(left
);
1123 unsigned RPriority
= SPQ
->getNodePriority(right
);
1124 if (LPriority
!= RPriority
)
1125 return LPriority
> RPriority
;
1127 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1132 // and the following instructions are both ready.
1136 // Then schedule t2 = op first.
1143 // This creates more short live intervals.
1144 unsigned LDist
= closestSucc(left
);
1145 unsigned RDist
= closestSucc(right
);
1147 return LDist
< RDist
;
1149 // How many registers becomes live when the node is scheduled.
1150 unsigned LScratch
= calcMaxScratches(left
);
1151 unsigned RScratch
= calcMaxScratches(right
);
1152 if (LScratch
!= RScratch
)
1153 return LScratch
> RScratch
;
1155 if (left
->getHeight() != right
->getHeight())
1156 return left
->getHeight() > right
->getHeight();
1158 if (left
->getDepth() != right
->getDepth())
1159 return left
->getDepth() < right
->getDepth();
1161 assert(left
->NodeQueueId
&& right
->NodeQueueId
&&
1162 "NodeQueueId cannot be zero");
1163 return (left
->NodeQueueId
> right
->NodeQueueId
);
1168 RegReductionPriorityQueue
<SF
>::canClobber(const SUnit
*SU
, const SUnit
*Op
) {
1169 if (SU
->isTwoAddress
) {
1170 unsigned Opc
= SU
->getNode()->getMachineOpcode();
1171 const TargetInstrDesc
&TID
= TII
->get(Opc
);
1172 unsigned NumRes
= TID
.getNumDefs();
1173 unsigned NumOps
= TID
.getNumOperands() - NumRes
;
1174 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
1175 if (TID
.getOperandConstraint(i
+NumRes
, TOI::TIED_TO
) != -1) {
1176 SDNode
*DU
= SU
->getNode()->getOperand(i
).getNode();
1177 if (DU
->getNodeId() != -1 &&
1178 Op
->OrigNode
== &(*SUnits
)[DU
->getNodeId()])
1187 /// hasCopyToRegUse - Return true if SU has a value successor that is a
1189 static bool hasCopyToRegUse(const SUnit
*SU
) {
1190 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
1192 if (I
->isCtrl()) continue;
1193 const SUnit
*SuccSU
= I
->getSUnit();
1194 if (SuccSU
->getNode() && SuccSU
->getNode()->getOpcode() == ISD::CopyToReg
)
1200 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1201 /// physical register defs.
1202 static bool canClobberPhysRegDefs(const SUnit
*SuccSU
, const SUnit
*SU
,
1203 const TargetInstrInfo
*TII
,
1204 const TargetRegisterInfo
*TRI
) {
1205 SDNode
*N
= SuccSU
->getNode();
1206 unsigned NumDefs
= TII
->get(N
->getMachineOpcode()).getNumDefs();
1207 const unsigned *ImpDefs
= TII
->get(N
->getMachineOpcode()).getImplicitDefs();
1208 assert(ImpDefs
&& "Caller should check hasPhysRegDefs");
1209 for (const SDNode
*SUNode
= SU
->getNode(); SUNode
;
1210 SUNode
= SUNode
->getFlaggedNode()) {
1211 if (!SUNode
->isMachineOpcode())
1213 const unsigned *SUImpDefs
=
1214 TII
->get(SUNode
->getMachineOpcode()).getImplicitDefs();
1217 for (unsigned i
= NumDefs
, e
= N
->getNumValues(); i
!= e
; ++i
) {
1218 MVT VT
= N
->getValueType(i
);
1219 if (VT
== MVT::Flag
|| VT
== MVT::Other
)
1221 if (!N
->hasAnyUseOfValue(i
))
1223 unsigned Reg
= ImpDefs
[i
- NumDefs
];
1224 for (;*SUImpDefs
; ++SUImpDefs
) {
1225 unsigned SUReg
= *SUImpDefs
;
1226 if (TRI
->regsOverlap(Reg
, SUReg
))
1234 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
1235 /// are not handled well by the general register pressure reduction
1236 /// heuristics. When presented with code like this:
1245 /// the heuristics tend to push the store up, but since the
1246 /// operand of the store has another use (U), this would increase
1247 /// the length of that other use (the U->N edge).
1249 /// This function transforms code like the above to route U's
1250 /// dependence through the store when possible, like this:
1261 /// This results in the store being scheduled immediately
1262 /// after N, which shortens the U->N live range, reducing
1263 /// register pressure.
1266 void RegReductionPriorityQueue
<SF
>::PrescheduleNodesWithMultipleUses() {
1267 // Visit all the nodes in topological order, working top-down.
1268 for (unsigned i
= 0, e
= SUnits
->size(); i
!= e
; ++i
) {
1269 SUnit
*SU
= &(*SUnits
)[i
];
1270 // For now, only look at nodes with no data successors, such as stores.
1271 // These are especially important, due to the heuristics in
1272 // getNodePriority for nodes with no data successors.
1273 if (SU
->NumSuccs
!= 0)
1275 // For now, only look at nodes with exactly one data predecessor.
1276 if (SU
->NumPreds
!= 1)
1278 // Avoid prescheduling copies to virtual registers, which don't behave
1279 // like other nodes from the perspective of scheduling heuristics.
1280 if (SDNode
*N
= SU
->getNode())
1281 if (N
->getOpcode() == ISD::CopyToReg
&&
1282 TargetRegisterInfo::isVirtualRegister
1283 (cast
<RegisterSDNode
>(N
->getOperand(1))->getReg()))
1286 // Locate the single data predecessor.
1288 for (SUnit::const_pred_iterator II
= SU
->Preds
.begin(),
1289 EE
= SU
->Preds
.end(); II
!= EE
; ++II
)
1290 if (!II
->isCtrl()) {
1291 PredSU
= II
->getSUnit();
1296 // Don't rewrite edges that carry physregs, because that requires additional
1297 // support infrastructure.
1298 if (PredSU
->hasPhysRegDefs
)
1300 // Short-circuit the case where SU is PredSU's only data successor.
1301 if (PredSU
->NumSuccs
== 1)
1303 // Avoid prescheduling to copies from virtual registers, which don't behave
1304 // like other nodes from the perspective of scheduling // heuristics.
1305 if (SDNode
*N
= SU
->getNode())
1306 if (N
->getOpcode() == ISD::CopyFromReg
&&
1307 TargetRegisterInfo::isVirtualRegister
1308 (cast
<RegisterSDNode
>(N
->getOperand(1))->getReg()))
1311 // Perform checks on the successors of PredSU.
1312 for (SUnit::const_succ_iterator II
= PredSU
->Succs
.begin(),
1313 EE
= PredSU
->Succs
.end(); II
!= EE
; ++II
) {
1314 SUnit
*PredSuccSU
= II
->getSUnit();
1315 if (PredSuccSU
== SU
) continue;
1316 // If PredSU has another successor with no data successors, for
1317 // now don't attempt to choose either over the other.
1318 if (PredSuccSU
->NumSuccs
== 0)
1319 goto outer_loop_continue
;
1320 // Don't break physical register dependencies.
1321 if (SU
->hasPhysRegClobbers
&& PredSuccSU
->hasPhysRegDefs
)
1322 if (canClobberPhysRegDefs(PredSuccSU
, SU
, TII
, TRI
))
1323 goto outer_loop_continue
;
1324 // Don't introduce graph cycles.
1325 if (scheduleDAG
->IsReachable(SU
, PredSuccSU
))
1326 goto outer_loop_continue
;
1329 // Ok, the transformation is safe and the heuristics suggest it is
1330 // profitable. Update the graph.
1331 DOUT
<< "Prescheduling SU # " << SU
->NodeNum
1332 << " next to PredSU # " << PredSU
->NodeNum
1333 << " to guide scheduling in the presence of multiple uses\n";
1334 for (unsigned i
= 0; i
!= PredSU
->Succs
.size(); ++i
) {
1335 SDep Edge
= PredSU
->Succs
[i
];
1336 assert(!Edge
.isAssignedRegDep());
1337 SUnit
*SuccSU
= Edge
.getSUnit();
1339 Edge
.setSUnit(PredSU
);
1340 scheduleDAG
->RemovePred(SuccSU
, Edge
);
1341 scheduleDAG
->AddPred(SU
, Edge
);
1343 scheduleDAG
->AddPred(SuccSU
, Edge
);
1347 outer_loop_continue
:;
1351 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1352 /// it as a def&use operand. Add a pseudo control edge from it to the other
1353 /// node (if it won't create a cycle) so the two-address one will be scheduled
1354 /// first (lower in the schedule). If both nodes are two-address, favor the
1355 /// one that has a CopyToReg use (more likely to be a loop induction update).
1356 /// If both are two-address, but one is commutable while the other is not
1357 /// commutable, favor the one that's not commutable.
1359 void RegReductionPriorityQueue
<SF
>::AddPseudoTwoAddrDeps() {
1360 for (unsigned i
= 0, e
= SUnits
->size(); i
!= e
; ++i
) {
1361 SUnit
*SU
= &(*SUnits
)[i
];
1362 if (!SU
->isTwoAddress
)
1365 SDNode
*Node
= SU
->getNode();
1366 if (!Node
|| !Node
->isMachineOpcode() || SU
->getNode()->getFlaggedNode())
1369 unsigned Opc
= Node
->getMachineOpcode();
1370 const TargetInstrDesc
&TID
= TII
->get(Opc
);
1371 unsigned NumRes
= TID
.getNumDefs();
1372 unsigned NumOps
= TID
.getNumOperands() - NumRes
;
1373 for (unsigned j
= 0; j
!= NumOps
; ++j
) {
1374 if (TID
.getOperandConstraint(j
+NumRes
, TOI::TIED_TO
) == -1)
1376 SDNode
*DU
= SU
->getNode()->getOperand(j
).getNode();
1377 if (DU
->getNodeId() == -1)
1379 const SUnit
*DUSU
= &(*SUnits
)[DU
->getNodeId()];
1380 if (!DUSU
) continue;
1381 for (SUnit::const_succ_iterator I
= DUSU
->Succs
.begin(),
1382 E
= DUSU
->Succs
.end(); I
!= E
; ++I
) {
1383 if (I
->isCtrl()) continue;
1384 SUnit
*SuccSU
= I
->getSUnit();
1387 // Be conservative. Ignore if nodes aren't at roughly the same
1388 // depth and height.
1389 if (SuccSU
->getHeight() < SU
->getHeight() &&
1390 (SU
->getHeight() - SuccSU
->getHeight()) > 1)
1392 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
1393 // constrains whatever is using the copy, instead of the copy
1394 // itself. In the case that the copy is coalesced, this
1395 // preserves the intent of the pseudo two-address heurietics.
1396 while (SuccSU
->Succs
.size() == 1 &&
1397 SuccSU
->getNode()->isMachineOpcode() &&
1398 SuccSU
->getNode()->getMachineOpcode() ==
1399 TargetInstrInfo::COPY_TO_REGCLASS
)
1400 SuccSU
= SuccSU
->Succs
.front().getSUnit();
1401 // Don't constrain non-instruction nodes.
1402 if (!SuccSU
->getNode() || !SuccSU
->getNode()->isMachineOpcode())
1404 // Don't constrain nodes with physical register defs if the
1405 // predecessor can clobber them.
1406 if (SuccSU
->hasPhysRegDefs
&& SU
->hasPhysRegClobbers
) {
1407 if (canClobberPhysRegDefs(SuccSU
, SU
, TII
, TRI
))
1410 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
1411 // these may be coalesced away. We want them close to their uses.
1412 unsigned SuccOpc
= SuccSU
->getNode()->getMachineOpcode();
1413 if (SuccOpc
== TargetInstrInfo::EXTRACT_SUBREG
||
1414 SuccOpc
== TargetInstrInfo::INSERT_SUBREG
||
1415 SuccOpc
== TargetInstrInfo::SUBREG_TO_REG
)
1417 if ((!canClobber(SuccSU
, DUSU
) ||
1418 (hasCopyToRegUse(SU
) && !hasCopyToRegUse(SuccSU
)) ||
1419 (!SU
->isCommutable
&& SuccSU
->isCommutable
)) &&
1420 !scheduleDAG
->IsReachable(SuccSU
, SU
)) {
1421 DOUT
<< "Adding a pseudo-two-addr edge from SU # " << SU
->NodeNum
1422 << " to SU #" << SuccSU
->NodeNum
<< "\n";
1423 scheduleDAG
->AddPred(SU
, SDep(SuccSU
, SDep::Order
, /*Latency=*/0,
1424 /*Reg=*/0, /*isNormalMemory=*/false,
1425 /*isMustAlias=*/false,
1426 /*isArtificial=*/true));
1433 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1434 /// scheduling units.
1436 void RegReductionPriorityQueue
<SF
>::CalculateSethiUllmanNumbers() {
1437 SethiUllmanNumbers
.assign(SUnits
->size(), 0);
1439 for (unsigned i
= 0, e
= SUnits
->size(); i
!= e
; ++i
)
1440 CalcNodeSethiUllmanNumber(&(*SUnits
)[i
], SethiUllmanNumbers
);
1443 /// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1444 /// predecessors of the successors of the SUnit SU. Stop when the provided
1445 /// limit is exceeded.
1446 static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit
*SU
,
1449 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
1451 const SUnit
*SuccSU
= I
->getSUnit();
1452 for (SUnit::const_pred_iterator II
= SuccSU
->Preds
.begin(),
1453 EE
= SuccSU
->Preds
.end(); II
!= EE
; ++II
) {
1454 SUnit
*PredSU
= II
->getSUnit();
1455 if (!PredSU
->isScheduled
)
1465 bool td_ls_rr_sort::operator()(const SUnit
*left
, const SUnit
*right
) const {
1466 unsigned LPriority
= SPQ
->getNodePriority(left
);
1467 unsigned RPriority
= SPQ
->getNodePriority(right
);
1468 bool LIsTarget
= left
->getNode() && left
->getNode()->isMachineOpcode();
1469 bool RIsTarget
= right
->getNode() && right
->getNode()->isMachineOpcode();
1470 bool LIsFloater
= LIsTarget
&& left
->NumPreds
== 0;
1471 bool RIsFloater
= RIsTarget
&& right
->NumPreds
== 0;
1472 unsigned LBonus
= (LimitedSumOfUnscheduledPredsOfSuccs(left
,1) == 1) ? 2 : 0;
1473 unsigned RBonus
= (LimitedSumOfUnscheduledPredsOfSuccs(right
,1) == 1) ? 2 : 0;
1475 if (left
->NumSuccs
== 0 && right
->NumSuccs
!= 0)
1477 else if (left
->NumSuccs
!= 0 && right
->NumSuccs
== 0)
1484 if (left
->NumSuccs
== 1)
1486 if (right
->NumSuccs
== 1)
1489 if (LPriority
+LBonus
!= RPriority
+RBonus
)
1490 return LPriority
+LBonus
< RPriority
+RBonus
;
1492 if (left
->getDepth() != right
->getDepth())
1493 return left
->getDepth() < right
->getDepth();
1495 if (left
->NumSuccsLeft
!= right
->NumSuccsLeft
)
1496 return left
->NumSuccsLeft
> right
->NumSuccsLeft
;
1498 assert(left
->NodeQueueId
&& right
->NodeQueueId
&&
1499 "NodeQueueId cannot be zero");
1500 return (left
->NodeQueueId
> right
->NodeQueueId
);
1503 //===----------------------------------------------------------------------===//
1504 // Public Constructor Functions
1505 //===----------------------------------------------------------------------===//
1507 llvm::ScheduleDAGSDNodes
*
1508 llvm::createBURRListDAGScheduler(SelectionDAGISel
*IS
, CodeGenOpt::Level
) {
1509 const TargetMachine
&TM
= IS
->TM
;
1510 const TargetInstrInfo
*TII
= TM
.getInstrInfo();
1511 const TargetRegisterInfo
*TRI
= TM
.getRegisterInfo();
1513 BURegReductionPriorityQueue
*PQ
= new BURegReductionPriorityQueue(TII
, TRI
);
1515 ScheduleDAGRRList
*SD
=
1516 new ScheduleDAGRRList(*IS
->MF
, true, PQ
);
1517 PQ
->setScheduleDAG(SD
);
1521 llvm::ScheduleDAGSDNodes
*
1522 llvm::createTDRRListDAGScheduler(SelectionDAGISel
*IS
, CodeGenOpt::Level
) {
1523 const TargetMachine
&TM
= IS
->TM
;
1524 const TargetInstrInfo
*TII
= TM
.getInstrInfo();
1525 const TargetRegisterInfo
*TRI
= TM
.getRegisterInfo();
1527 TDRegReductionPriorityQueue
*PQ
= new TDRegReductionPriorityQueue(TII
, TRI
);
1529 ScheduleDAGRRList
*SD
=
1530 new ScheduleDAGRRList(*IS
->MF
, false, PQ
);
1531 PQ
->setScheduleDAG(SD
);