Work around the fact that GNU libstdc++'s debug mode uses RTTI.
[llvm/msp430.git] / lib / CodeGen / MachineInstr.cpp
blobb8c8563eab45d2f5330cbeb01c08f4618c46fafb
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/InlineAsm.h"
17 #include "llvm/Value.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 #include "llvm/Target/TargetMachine.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetInstrDesc.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Analysis/DebugInfo.h"
26 #include "llvm/Support/LeakDetector.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/Streams.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/FoldingSet.h"
31 #include <ostream>
32 using namespace llvm;
34 //===----------------------------------------------------------------------===//
35 // MachineOperand Implementation
36 //===----------------------------------------------------------------------===//
38 /// AddRegOperandToRegInfo - Add this register operand to the specified
39 /// MachineRegisterInfo. If it is null, then the next/prev fields should be
40 /// explicitly nulled out.
41 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
42 assert(isReg() && "Can only add reg operand to use lists");
44 // If the reginfo pointer is null, just explicitly null out or next/prev
45 // pointers, to ensure they are not garbage.
46 if (RegInfo == 0) {
47 Contents.Reg.Prev = 0;
48 Contents.Reg.Next = 0;
49 return;
52 // Otherwise, add this operand to the head of the registers use/def list.
53 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
55 // For SSA values, we prefer to keep the definition at the start of the list.
56 // we do this by skipping over the definition if it is at the head of the
57 // list.
58 if (*Head && (*Head)->isDef())
59 Head = &(*Head)->Contents.Reg.Next;
61 Contents.Reg.Next = *Head;
62 if (Contents.Reg.Next) {
63 assert(getReg() == Contents.Reg.Next->getReg() &&
64 "Different regs on the same list!");
65 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
68 Contents.Reg.Prev = Head;
69 *Head = this;
72 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
73 /// MachineRegisterInfo it is linked with.
74 void MachineOperand::RemoveRegOperandFromRegInfo() {
75 assert(isOnRegUseList() && "Reg operand is not on a use list");
76 // Unlink this from the doubly linked list of operands.
77 MachineOperand *NextOp = Contents.Reg.Next;
78 *Contents.Reg.Prev = NextOp;
79 if (NextOp) {
80 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
81 NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
83 Contents.Reg.Prev = 0;
84 Contents.Reg.Next = 0;
87 void MachineOperand::setReg(unsigned Reg) {
88 if (getReg() == Reg) return; // No change.
90 // Otherwise, we have to change the register. If this operand is embedded
91 // into a machine function, we need to update the old and new register's
92 // use/def lists.
93 if (MachineInstr *MI = getParent())
94 if (MachineBasicBlock *MBB = MI->getParent())
95 if (MachineFunction *MF = MBB->getParent()) {
96 RemoveRegOperandFromRegInfo();
97 Contents.Reg.RegNo = Reg;
98 AddRegOperandToRegInfo(&MF->getRegInfo());
99 return;
102 // Otherwise, just change the register, no problem. :)
103 Contents.Reg.RegNo = Reg;
106 /// ChangeToImmediate - Replace this operand with a new immediate operand of
107 /// the specified value. If an operand is known to be an immediate already,
108 /// the setImm method should be used.
109 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
110 // If this operand is currently a register operand, and if this is in a
111 // function, deregister the operand from the register's use/def list.
112 if (isReg() && getParent() && getParent()->getParent() &&
113 getParent()->getParent()->getParent())
114 RemoveRegOperandFromRegInfo();
116 OpKind = MO_Immediate;
117 Contents.ImmVal = ImmVal;
120 /// ChangeToRegister - Replace this operand with a new register operand of
121 /// the specified value. If an operand is known to be an register already,
122 /// the setReg method should be used.
123 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
124 bool isKill, bool isDead) {
125 // If this operand is already a register operand, use setReg to update the
126 // register's use/def lists.
127 if (isReg()) {
128 assert(!isEarlyClobber());
129 setReg(Reg);
130 } else {
131 // Otherwise, change this to a register and set the reg#.
132 OpKind = MO_Register;
133 Contents.Reg.RegNo = Reg;
135 // If this operand is embedded in a function, add the operand to the
136 // register's use/def list.
137 if (MachineInstr *MI = getParent())
138 if (MachineBasicBlock *MBB = MI->getParent())
139 if (MachineFunction *MF = MBB->getParent())
140 AddRegOperandToRegInfo(&MF->getRegInfo());
143 IsDef = isDef;
144 IsImp = isImp;
145 IsKill = isKill;
146 IsDead = isDead;
147 IsEarlyClobber = false;
148 SubReg = 0;
151 /// isIdenticalTo - Return true if this operand is identical to the specified
152 /// operand.
153 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
154 if (getType() != Other.getType()) return false;
156 switch (getType()) {
157 default: assert(0 && "Unrecognized operand type");
158 case MachineOperand::MO_Register:
159 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
160 getSubReg() == Other.getSubReg();
161 case MachineOperand::MO_Immediate:
162 return getImm() == Other.getImm();
163 case MachineOperand::MO_FPImmediate:
164 return getFPImm() == Other.getFPImm();
165 case MachineOperand::MO_MachineBasicBlock:
166 return getMBB() == Other.getMBB();
167 case MachineOperand::MO_FrameIndex:
168 return getIndex() == Other.getIndex();
169 case MachineOperand::MO_ConstantPoolIndex:
170 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
171 case MachineOperand::MO_JumpTableIndex:
172 return getIndex() == Other.getIndex();
173 case MachineOperand::MO_GlobalAddress:
174 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
175 case MachineOperand::MO_ExternalSymbol:
176 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
177 getOffset() == Other.getOffset();
181 /// print - Print the specified machine operand.
183 void MachineOperand::print(std::ostream &OS, const TargetMachine *TM) const {
184 raw_os_ostream RawOS(OS);
185 print(RawOS, TM);
188 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
189 switch (getType()) {
190 case MachineOperand::MO_Register:
191 if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
192 OS << "%reg" << getReg();
193 } else {
194 // If the instruction is embedded into a basic block, we can find the
195 // target info for the instruction.
196 if (TM == 0)
197 if (const MachineInstr *MI = getParent())
198 if (const MachineBasicBlock *MBB = MI->getParent())
199 if (const MachineFunction *MF = MBB->getParent())
200 TM = &MF->getTarget();
202 if (TM)
203 OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
204 else
205 OS << "%mreg" << getReg();
208 if (getSubReg() != 0) {
209 OS << ":" << getSubReg();
212 if (isDef() || isKill() || isDead() || isImplicit() || isEarlyClobber()) {
213 OS << "<";
214 bool NeedComma = false;
215 if (isImplicit()) {
216 if (NeedComma) OS << ",";
217 OS << (isDef() ? "imp-def" : "imp-use");
218 NeedComma = true;
219 } else if (isDef()) {
220 if (NeedComma) OS << ",";
221 if (isEarlyClobber())
222 OS << "earlyclobber,";
223 OS << "def";
224 NeedComma = true;
226 if (isKill() || isDead()) {
227 if (NeedComma) OS << ",";
228 if (isKill()) OS << "kill";
229 if (isDead()) OS << "dead";
231 OS << ">";
233 break;
234 case MachineOperand::MO_Immediate:
235 OS << getImm();
236 break;
237 case MachineOperand::MO_FPImmediate:
238 if (getFPImm()->getType() == Type::FloatTy) {
239 OS << getFPImm()->getValueAPF().convertToFloat();
240 } else {
241 OS << getFPImm()->getValueAPF().convertToDouble();
243 break;
244 case MachineOperand::MO_MachineBasicBlock:
245 OS << "mbb<"
246 << ((Value*)getMBB()->getBasicBlock())->getName()
247 << "," << (void*)getMBB() << ">";
248 break;
249 case MachineOperand::MO_FrameIndex:
250 OS << "<fi#" << getIndex() << ">";
251 break;
252 case MachineOperand::MO_ConstantPoolIndex:
253 OS << "<cp#" << getIndex();
254 if (getOffset()) OS << "+" << getOffset();
255 OS << ">";
256 break;
257 case MachineOperand::MO_JumpTableIndex:
258 OS << "<jt#" << getIndex() << ">";
259 break;
260 case MachineOperand::MO_GlobalAddress:
261 OS << "<ga:" << ((Value*)getGlobal())->getName();
262 if (getOffset()) OS << "+" << getOffset();
263 OS << ">";
264 break;
265 case MachineOperand::MO_ExternalSymbol:
266 OS << "<es:" << getSymbolName();
267 if (getOffset()) OS << "+" << getOffset();
268 OS << ">";
269 break;
270 default:
271 assert(0 && "Unrecognized operand type");
275 //===----------------------------------------------------------------------===//
276 // MachineMemOperand Implementation
277 //===----------------------------------------------------------------------===//
279 MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
280 int64_t o, uint64_t s, unsigned int a)
281 : Offset(o), Size(s), V(v),
282 Flags((f & 7) | ((Log2_32(a) + 1) << 3)) {
283 assert(isPowerOf2_32(a) && "Alignment is not a power of 2!");
284 assert((isLoad() || isStore()) && "Not a load/store!");
287 /// Profile - Gather unique data for the object.
289 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
290 ID.AddInteger(Offset);
291 ID.AddInteger(Size);
292 ID.AddPointer(V);
293 ID.AddInteger(Flags);
296 //===----------------------------------------------------------------------===//
297 // MachineInstr Implementation
298 //===----------------------------------------------------------------------===//
300 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
301 /// TID NULL and no operands.
302 MachineInstr::MachineInstr()
303 : TID(0), NumImplicitOps(0), Parent(0), debugLoc(DebugLoc::getUnknownLoc()) {
304 // Make sure that we get added to a machine basicblock
305 LeakDetector::addGarbageObject(this);
308 void MachineInstr::addImplicitDefUseOperands() {
309 if (TID->ImplicitDefs)
310 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
311 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
312 if (TID->ImplicitUses)
313 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
314 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
317 /// MachineInstr ctor - This constructor create a MachineInstr and add the
318 /// implicit operands. It reserves space for number of operands specified by
319 /// TargetInstrDesc or the numOperands if it is not zero. (for
320 /// instructions with variable number of operands).
321 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
322 : TID(&tid), NumImplicitOps(0), Parent(0),
323 debugLoc(DebugLoc::getUnknownLoc()) {
324 if (!NoImp && TID->getImplicitDefs())
325 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
326 NumImplicitOps++;
327 if (!NoImp && TID->getImplicitUses())
328 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
329 NumImplicitOps++;
330 Operands.reserve(NumImplicitOps + TID->getNumOperands());
331 if (!NoImp)
332 addImplicitDefUseOperands();
333 // Make sure that we get added to a machine basicblock
334 LeakDetector::addGarbageObject(this);
337 /// MachineInstr ctor - As above, but with a DebugLoc.
338 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
339 bool NoImp)
340 : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
341 if (!NoImp && TID->getImplicitDefs())
342 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
343 NumImplicitOps++;
344 if (!NoImp && TID->getImplicitUses())
345 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
346 NumImplicitOps++;
347 Operands.reserve(NumImplicitOps + TID->getNumOperands());
348 if (!NoImp)
349 addImplicitDefUseOperands();
350 // Make sure that we get added to a machine basicblock
351 LeakDetector::addGarbageObject(this);
354 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
355 /// that the MachineInstr is created and added to the end of the specified
356 /// basic block.
358 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
359 : TID(&tid), NumImplicitOps(0), Parent(0),
360 debugLoc(DebugLoc::getUnknownLoc()) {
361 assert(MBB && "Cannot use inserting ctor with null basic block!");
362 if (TID->ImplicitDefs)
363 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
364 NumImplicitOps++;
365 if (TID->ImplicitUses)
366 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
367 NumImplicitOps++;
368 Operands.reserve(NumImplicitOps + TID->getNumOperands());
369 addImplicitDefUseOperands();
370 // Make sure that we get added to a machine basicblock
371 LeakDetector::addGarbageObject(this);
372 MBB->push_back(this); // Add instruction to end of basic block!
375 /// MachineInstr ctor - As above, but with a DebugLoc.
377 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
378 const TargetInstrDesc &tid)
379 : TID(&tid), NumImplicitOps(0), Parent(0), debugLoc(dl) {
380 assert(MBB && "Cannot use inserting ctor with null basic block!");
381 if (TID->ImplicitDefs)
382 for (const unsigned *ImpDefs = TID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
383 NumImplicitOps++;
384 if (TID->ImplicitUses)
385 for (const unsigned *ImpUses = TID->getImplicitUses(); *ImpUses; ++ImpUses)
386 NumImplicitOps++;
387 Operands.reserve(NumImplicitOps + TID->getNumOperands());
388 addImplicitDefUseOperands();
389 // Make sure that we get added to a machine basicblock
390 LeakDetector::addGarbageObject(this);
391 MBB->push_back(this); // Add instruction to end of basic block!
394 /// MachineInstr ctor - Copies MachineInstr arg exactly
396 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
397 : TID(&MI.getDesc()), NumImplicitOps(0), Parent(0),
398 debugLoc(MI.getDebugLoc()) {
399 Operands.reserve(MI.getNumOperands());
401 // Add operands
402 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
403 addOperand(MI.getOperand(i));
404 NumImplicitOps = MI.NumImplicitOps;
406 // Add memory operands.
407 for (std::list<MachineMemOperand>::const_iterator i = MI.memoperands_begin(),
408 j = MI.memoperands_end(); i != j; ++i)
409 addMemOperand(MF, *i);
411 // Set parent to null.
412 Parent = 0;
414 LeakDetector::addGarbageObject(this);
417 MachineInstr::~MachineInstr() {
418 LeakDetector::removeGarbageObject(this);
419 assert(MemOperands.empty() &&
420 "MachineInstr being deleted with live memoperands!");
421 #ifndef NDEBUG
422 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
423 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
424 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
425 "Reg operand def/use list corrupted");
427 #endif
430 /// getRegInfo - If this instruction is embedded into a MachineFunction,
431 /// return the MachineRegisterInfo object for the current function, otherwise
432 /// return null.
433 MachineRegisterInfo *MachineInstr::getRegInfo() {
434 if (MachineBasicBlock *MBB = getParent())
435 return &MBB->getParent()->getRegInfo();
436 return 0;
439 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
440 /// this instruction from their respective use lists. This requires that the
441 /// operands already be on their use lists.
442 void MachineInstr::RemoveRegOperandsFromUseLists() {
443 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
444 if (Operands[i].isReg())
445 Operands[i].RemoveRegOperandFromRegInfo();
449 /// AddRegOperandsToUseLists - Add all of the register operands in
450 /// this instruction from their respective use lists. This requires that the
451 /// operands not be on their use lists yet.
452 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
453 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
454 if (Operands[i].isReg())
455 Operands[i].AddRegOperandToRegInfo(&RegInfo);
460 /// addOperand - Add the specified operand to the instruction. If it is an
461 /// implicit operand, it is added to the end of the operand list. If it is
462 /// an explicit operand it is added at the end of the explicit operand list
463 /// (before the first implicit operand).
464 void MachineInstr::addOperand(const MachineOperand &Op) {
465 bool isImpReg = Op.isReg() && Op.isImplicit();
466 assert((isImpReg || !OperandsComplete()) &&
467 "Trying to add an operand to a machine instr that is already done!");
469 MachineRegisterInfo *RegInfo = getRegInfo();
471 // If we are adding the operand to the end of the list, our job is simpler.
472 // This is true most of the time, so this is a reasonable optimization.
473 if (isImpReg || NumImplicitOps == 0) {
474 // We can only do this optimization if we know that the operand list won't
475 // reallocate.
476 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
477 Operands.push_back(Op);
479 // Set the parent of the operand.
480 Operands.back().ParentMI = this;
482 // If the operand is a register, update the operand's use list.
483 if (Op.isReg())
484 Operands.back().AddRegOperandToRegInfo(RegInfo);
485 return;
489 // Otherwise, we have to insert a real operand before any implicit ones.
490 unsigned OpNo = Operands.size()-NumImplicitOps;
492 // If this instruction isn't embedded into a function, then we don't need to
493 // update any operand lists.
494 if (RegInfo == 0) {
495 // Simple insertion, no reginfo update needed for other register operands.
496 Operands.insert(Operands.begin()+OpNo, Op);
497 Operands[OpNo].ParentMI = this;
499 // Do explicitly set the reginfo for this operand though, to ensure the
500 // next/prev fields are properly nulled out.
501 if (Operands[OpNo].isReg())
502 Operands[OpNo].AddRegOperandToRegInfo(0);
504 } else if (Operands.size()+1 <= Operands.capacity()) {
505 // Otherwise, we have to remove register operands from their register use
506 // list, add the operand, then add the register operands back to their use
507 // list. This also must handle the case when the operand list reallocates
508 // to somewhere else.
510 // If insertion of this operand won't cause reallocation of the operand
511 // list, just remove the implicit operands, add the operand, then re-add all
512 // the rest of the operands.
513 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
514 assert(Operands[i].isReg() && "Should only be an implicit reg!");
515 Operands[i].RemoveRegOperandFromRegInfo();
518 // Add the operand. If it is a register, add it to the reg list.
519 Operands.insert(Operands.begin()+OpNo, Op);
520 Operands[OpNo].ParentMI = this;
522 if (Operands[OpNo].isReg())
523 Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
525 // Re-add all the implicit ops.
526 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
527 assert(Operands[i].isReg() && "Should only be an implicit reg!");
528 Operands[i].AddRegOperandToRegInfo(RegInfo);
530 } else {
531 // Otherwise, we will be reallocating the operand list. Remove all reg
532 // operands from their list, then readd them after the operand list is
533 // reallocated.
534 RemoveRegOperandsFromUseLists();
536 Operands.insert(Operands.begin()+OpNo, Op);
537 Operands[OpNo].ParentMI = this;
539 // Re-add all the operands.
540 AddRegOperandsToUseLists(*RegInfo);
544 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
545 /// fewer operand than it started with.
547 void MachineInstr::RemoveOperand(unsigned OpNo) {
548 assert(OpNo < Operands.size() && "Invalid operand number");
550 // Special case removing the last one.
551 if (OpNo == Operands.size()-1) {
552 // If needed, remove from the reg def/use list.
553 if (Operands.back().isReg() && Operands.back().isOnRegUseList())
554 Operands.back().RemoveRegOperandFromRegInfo();
556 Operands.pop_back();
557 return;
560 // Otherwise, we are removing an interior operand. If we have reginfo to
561 // update, remove all operands that will be shifted down from their reg lists,
562 // move everything down, then re-add them.
563 MachineRegisterInfo *RegInfo = getRegInfo();
564 if (RegInfo) {
565 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
566 if (Operands[i].isReg())
567 Operands[i].RemoveRegOperandFromRegInfo();
571 Operands.erase(Operands.begin()+OpNo);
573 if (RegInfo) {
574 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
575 if (Operands[i].isReg())
576 Operands[i].AddRegOperandToRegInfo(RegInfo);
581 /// addMemOperand - Add a MachineMemOperand to the machine instruction,
582 /// referencing arbitrary storage.
583 void MachineInstr::addMemOperand(MachineFunction &MF,
584 const MachineMemOperand &MO) {
585 MemOperands.push_back(MO);
588 /// clearMemOperands - Erase all of this MachineInstr's MachineMemOperands.
589 void MachineInstr::clearMemOperands(MachineFunction &MF) {
590 MemOperands.clear();
594 /// removeFromParent - This method unlinks 'this' from the containing basic
595 /// block, and returns it, but does not delete it.
596 MachineInstr *MachineInstr::removeFromParent() {
597 assert(getParent() && "Not embedded in a basic block!");
598 getParent()->remove(this);
599 return this;
603 /// eraseFromParent - This method unlinks 'this' from the containing basic
604 /// block, and deletes it.
605 void MachineInstr::eraseFromParent() {
606 assert(getParent() && "Not embedded in a basic block!");
607 getParent()->erase(this);
611 /// OperandComplete - Return true if it's illegal to add a new operand
613 bool MachineInstr::OperandsComplete() const {
614 unsigned short NumOperands = TID->getNumOperands();
615 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
616 return true; // Broken: we have all the operands of this instruction!
617 return false;
620 /// getNumExplicitOperands - Returns the number of non-implicit operands.
622 unsigned MachineInstr::getNumExplicitOperands() const {
623 unsigned NumOperands = TID->getNumOperands();
624 if (!TID->isVariadic())
625 return NumOperands;
627 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
628 const MachineOperand &MO = getOperand(i);
629 if (!MO.isReg() || !MO.isImplicit())
630 NumOperands++;
632 return NumOperands;
636 /// isLabel - Returns true if the MachineInstr represents a label.
638 bool MachineInstr::isLabel() const {
639 return getOpcode() == TargetInstrInfo::DBG_LABEL ||
640 getOpcode() == TargetInstrInfo::EH_LABEL ||
641 getOpcode() == TargetInstrInfo::GC_LABEL;
644 /// isDebugLabel - Returns true if the MachineInstr represents a debug label.
646 bool MachineInstr::isDebugLabel() const {
647 return getOpcode() == TargetInstrInfo::DBG_LABEL;
650 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
651 /// the specific register or -1 if it is not found. It further tightening
652 /// the search criteria to a use that kills the register if isKill is true.
653 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
654 const TargetRegisterInfo *TRI) const {
655 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
656 const MachineOperand &MO = getOperand(i);
657 if (!MO.isReg() || !MO.isUse())
658 continue;
659 unsigned MOReg = MO.getReg();
660 if (!MOReg)
661 continue;
662 if (MOReg == Reg ||
663 (TRI &&
664 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
665 TargetRegisterInfo::isPhysicalRegister(Reg) &&
666 TRI->isSubRegister(MOReg, Reg)))
667 if (!isKill || MO.isKill())
668 return i;
670 return -1;
673 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
674 /// the specified register or -1 if it is not found. If isDead is true, defs
675 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
676 /// also checks if there is a def of a super-register.
677 int MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead,
678 const TargetRegisterInfo *TRI) const {
679 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
680 const MachineOperand &MO = getOperand(i);
681 if (!MO.isReg() || !MO.isDef())
682 continue;
683 unsigned MOReg = MO.getReg();
684 if (MOReg == Reg ||
685 (TRI &&
686 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
687 TargetRegisterInfo::isPhysicalRegister(Reg) &&
688 TRI->isSubRegister(MOReg, Reg)))
689 if (!isDead || MO.isDead())
690 return i;
692 return -1;
695 /// findFirstPredOperandIdx() - Find the index of the first operand in the
696 /// operand list that is used to represent the predicate. It returns -1 if
697 /// none is found.
698 int MachineInstr::findFirstPredOperandIdx() const {
699 const TargetInstrDesc &TID = getDesc();
700 if (TID.isPredicable()) {
701 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
702 if (TID.OpInfo[i].isPredicate())
703 return i;
706 return -1;
709 /// isRegTiedToUseOperand - Given the index of a register def operand,
710 /// check if the register def is tied to a source operand, due to either
711 /// two-address elimination or inline assembly constraints. Returns the
712 /// first tied use operand index by reference is UseOpIdx is not null.
713 bool MachineInstr::
714 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
715 if (getOpcode() == TargetInstrInfo::INLINEASM) {
716 assert(DefOpIdx >= 2);
717 const MachineOperand &MO = getOperand(DefOpIdx);
718 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
719 return false;
720 // Determine the actual operand no corresponding to this index.
721 unsigned DefNo = 0;
722 for (unsigned i = 1, e = getNumOperands(); i < e; ) {
723 const MachineOperand &FMO = getOperand(i);
724 assert(FMO.isImm());
725 // Skip over this def.
726 i += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
727 if (i > DefOpIdx)
728 break;
729 ++DefNo;
731 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
732 const MachineOperand &FMO = getOperand(i);
733 if (!FMO.isImm())
734 continue;
735 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
736 continue;
737 unsigned Idx;
738 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
739 Idx == DefNo) {
740 if (UseOpIdx)
741 *UseOpIdx = (unsigned)i + 1;
742 return true;
747 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
748 const TargetInstrDesc &TID = getDesc();
749 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
750 const MachineOperand &MO = getOperand(i);
751 if (MO.isReg() && MO.isUse() &&
752 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
753 if (UseOpIdx)
754 *UseOpIdx = (unsigned)i;
755 return true;
758 return false;
761 /// isRegTiedToDefOperand - Return true if the operand of the specified index
762 /// is a register use and it is tied to an def operand. It also returns the def
763 /// operand index by reference.
764 bool MachineInstr::
765 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
766 if (getOpcode() == TargetInstrInfo::INLINEASM) {
767 const MachineOperand &MO = getOperand(UseOpIdx);
768 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
769 return false;
770 assert(UseOpIdx > 0);
771 const MachineOperand &UFMO = getOperand(UseOpIdx-1);
772 if (!UFMO.isImm())
773 return false; // Must be physreg uses.
774 unsigned DefNo;
775 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
776 if (!DefOpIdx)
777 return true;
779 unsigned DefIdx = 1;
780 // Remember to adjust the index. First operand is asm string, then there
781 // is a flag for each.
782 while (DefNo) {
783 const MachineOperand &FMO = getOperand(DefIdx);
784 assert(FMO.isImm());
785 // Skip over this def.
786 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
787 --DefNo;
789 *DefOpIdx = DefIdx+1;
790 return true;
792 return false;
795 const TargetInstrDesc &TID = getDesc();
796 if (UseOpIdx >= TID.getNumOperands())
797 return false;
798 const MachineOperand &MO = getOperand(UseOpIdx);
799 if (!MO.isReg() || !MO.isUse())
800 return false;
801 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
802 if (DefIdx == -1)
803 return false;
804 if (DefOpIdx)
805 *DefOpIdx = (unsigned)DefIdx;
806 return true;
809 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
811 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
812 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
813 const MachineOperand &MO = MI->getOperand(i);
814 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
815 continue;
816 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
817 MachineOperand &MOp = getOperand(j);
818 if (!MOp.isIdenticalTo(MO))
819 continue;
820 if (MO.isKill())
821 MOp.setIsKill();
822 else
823 MOp.setIsDead();
824 break;
829 /// copyPredicates - Copies predicate operand(s) from MI.
830 void MachineInstr::copyPredicates(const MachineInstr *MI) {
831 const TargetInstrDesc &TID = MI->getDesc();
832 if (!TID.isPredicable())
833 return;
834 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
835 if (TID.OpInfo[i].isPredicate()) {
836 // Predicated operands must be last operands.
837 addOperand(MI->getOperand(i));
842 /// isSafeToMove - Return true if it is safe to move this instruction. If
843 /// SawStore is set to true, it means that there is a store (or call) between
844 /// the instruction's location and its intended destination.
845 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
846 bool &SawStore) const {
847 // Ignore stuff that we obviously can't move.
848 if (TID->mayStore() || TID->isCall()) {
849 SawStore = true;
850 return false;
852 if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
853 return false;
855 // See if this instruction does a load. If so, we have to guarantee that the
856 // loaded value doesn't change between the load and the its intended
857 // destination. The check for isInvariantLoad gives the targe the chance to
858 // classify the load as always returning a constant, e.g. a constant pool
859 // load.
860 if (TID->mayLoad() && !TII->isInvariantLoad(this))
861 // Otherwise, this is a real load. If there is a store between the load and
862 // end of block, or if the laod is volatile, we can't move it.
863 return !SawStore && !hasVolatileMemoryRef();
865 return true;
868 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
869 /// instruction which defined the specified register instead of copying it.
870 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
871 unsigned DstReg) const {
872 bool SawStore = false;
873 if (!getDesc().isRematerializable() ||
874 !TII->isTriviallyReMaterializable(this) ||
875 !isSafeToMove(TII, SawStore))
876 return false;
877 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
878 const MachineOperand &MO = getOperand(i);
879 if (!MO.isReg())
880 continue;
881 // FIXME: For now, do not remat any instruction with register operands.
882 // Later on, we can loosen the restriction is the register operands have
883 // not been modified between the def and use. Note, this is different from
884 // MachineSink because the code is no longer in two-address form (at least
885 // partially).
886 if (MO.isUse())
887 return false;
888 else if (!MO.isDead() && MO.getReg() != DstReg)
889 return false;
891 return true;
894 /// hasVolatileMemoryRef - Return true if this instruction may have a
895 /// volatile memory reference, or if the information describing the
896 /// memory reference is not available. Return false if it is known to
897 /// have no volatile memory references.
898 bool MachineInstr::hasVolatileMemoryRef() const {
899 // An instruction known never to access memory won't have a volatile access.
900 if (!TID->mayStore() &&
901 !TID->mayLoad() &&
902 !TID->isCall() &&
903 !TID->hasUnmodeledSideEffects())
904 return false;
906 // Otherwise, if the instruction has no memory reference information,
907 // conservatively assume it wasn't preserved.
908 if (memoperands_empty())
909 return true;
911 // Check the memory reference information for volatile references.
912 for (std::list<MachineMemOperand>::const_iterator I = memoperands_begin(),
913 E = memoperands_end(); I != E; ++I)
914 if (I->isVolatile())
915 return true;
917 return false;
920 void MachineInstr::dump() const {
921 cerr << " " << *this;
924 void MachineInstr::print(std::ostream &OS, const TargetMachine *TM) const {
925 raw_os_ostream RawOS(OS);
926 print(RawOS, TM);
929 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
930 // Specialize printing if op#0 is definition
931 unsigned StartOp = 0;
932 if (getNumOperands() && getOperand(0).isReg() && getOperand(0).isDef()) {
933 getOperand(0).print(OS, TM);
934 OS << " = ";
935 ++StartOp; // Don't print this operand again!
938 OS << getDesc().getName();
940 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
941 if (i != StartOp)
942 OS << ",";
943 OS << " ";
944 getOperand(i).print(OS, TM);
947 if (!memoperands_empty()) {
948 OS << ", Mem:";
949 for (std::list<MachineMemOperand>::const_iterator i = memoperands_begin(),
950 e = memoperands_end(); i != e; ++i) {
951 const MachineMemOperand &MRO = *i;
952 const Value *V = MRO.getValue();
954 assert((MRO.isLoad() || MRO.isStore()) &&
955 "SV has to be a load, store or both.");
957 if (MRO.isVolatile())
958 OS << "Volatile ";
960 if (MRO.isLoad())
961 OS << "LD";
962 if (MRO.isStore())
963 OS << "ST";
965 OS << "(" << MRO.getSize() << "," << MRO.getAlignment() << ") [";
967 if (!V)
968 OS << "<unknown>";
969 else if (!V->getName().empty())
970 OS << V->getName();
971 else if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
972 PSV->print(OS);
973 } else
974 OS << V;
976 OS << " + " << MRO.getOffset() << "]";
980 if (!debugLoc.isUnknown()) {
981 const MachineFunction *MF = getParent()->getParent();
982 DebugLocTuple DLT = MF->getDebugLocTuple(debugLoc);
983 DICompileUnit CU(DLT.CompileUnit);
984 std::string Dir, Fn;
985 OS << " [dbg: "
986 << CU.getDirectory(Dir) << '/' << CU.getFilename(Fn) << ","
987 << DLT.Line << ","
988 << DLT.Col << "]";
991 OS << "\n";
994 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
995 const TargetRegisterInfo *RegInfo,
996 bool AddIfNotFound) {
997 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
998 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
999 bool Found = false;
1000 SmallVector<unsigned,4> DeadOps;
1001 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1002 MachineOperand &MO = getOperand(i);
1003 if (!MO.isReg() || !MO.isUse())
1004 continue;
1005 unsigned Reg = MO.getReg();
1006 if (!Reg)
1007 continue;
1009 if (Reg == IncomingReg) {
1010 if (!Found) {
1011 if (MO.isKill())
1012 // The register is already marked kill.
1013 return true;
1014 MO.setIsKill();
1015 Found = true;
1017 } else if (hasAliases && MO.isKill() &&
1018 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1019 // A super-register kill already exists.
1020 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1021 return true;
1022 if (RegInfo->isSubRegister(IncomingReg, Reg))
1023 DeadOps.push_back(i);
1027 // Trim unneeded kill operands.
1028 while (!DeadOps.empty()) {
1029 unsigned OpIdx = DeadOps.back();
1030 if (getOperand(OpIdx).isImplicit())
1031 RemoveOperand(OpIdx);
1032 else
1033 getOperand(OpIdx).setIsKill(false);
1034 DeadOps.pop_back();
1037 // If not found, this means an alias of one of the operands is killed. Add a
1038 // new implicit operand if required.
1039 if (!Found && AddIfNotFound) {
1040 addOperand(MachineOperand::CreateReg(IncomingReg,
1041 false /*IsDef*/,
1042 true /*IsImp*/,
1043 true /*IsKill*/));
1044 return true;
1046 return Found;
1049 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1050 const TargetRegisterInfo *RegInfo,
1051 bool AddIfNotFound) {
1052 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1053 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1054 bool Found = false;
1055 SmallVector<unsigned,4> DeadOps;
1056 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1057 MachineOperand &MO = getOperand(i);
1058 if (!MO.isReg() || !MO.isDef())
1059 continue;
1060 unsigned Reg = MO.getReg();
1061 if (!Reg)
1062 continue;
1064 if (Reg == IncomingReg) {
1065 if (!Found) {
1066 if (MO.isDead())
1067 // The register is already marked dead.
1068 return true;
1069 MO.setIsDead();
1070 Found = true;
1072 } else if (hasAliases && MO.isDead() &&
1073 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1074 // There exists a super-register that's marked dead.
1075 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1076 return true;
1077 if (RegInfo->getSubRegisters(IncomingReg) &&
1078 RegInfo->getSuperRegisters(Reg) &&
1079 RegInfo->isSubRegister(IncomingReg, Reg))
1080 DeadOps.push_back(i);
1084 // Trim unneeded dead operands.
1085 while (!DeadOps.empty()) {
1086 unsigned OpIdx = DeadOps.back();
1087 if (getOperand(OpIdx).isImplicit())
1088 RemoveOperand(OpIdx);
1089 else
1090 getOperand(OpIdx).setIsDead(false);
1091 DeadOps.pop_back();
1094 // If not found, this means an alias of one of the operands is dead. Add a
1095 // new implicit operand if required.
1096 if (!Found && AddIfNotFound) {
1097 addOperand(MachineOperand::CreateReg(IncomingReg,
1098 true /*IsDef*/,
1099 true /*IsImp*/,
1100 false /*IsKill*/,
1101 true /*IsDead*/));
1102 return true;
1104 return Found;