Work around the fact that GNU libstdc++'s debug mode uses RTTI.
[llvm/msp430.git] / lib / CodeGen / TargetInstrInfoImpl.cpp
bloba5e1ee43552941887b48cd4699dfc199d8c7e569
1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfoImpl class, it just provides default
11 // implementations of various methods.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Target/TargetInstrInfo.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 using namespace llvm;
23 // commuteInstruction - The default implementation of this method just exchanges
24 // operand 1 and 2.
25 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
26 bool NewMI) const {
27 assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
28 "This only knows how to commute register operands so far");
29 unsigned Reg1 = MI->getOperand(1).getReg();
30 unsigned Reg2 = MI->getOperand(2).getReg();
31 bool Reg1IsKill = MI->getOperand(1).isKill();
32 bool Reg2IsKill = MI->getOperand(2).isKill();
33 bool ChangeReg0 = false;
34 if (MI->getOperand(0).getReg() == Reg1) {
35 // Must be two address instruction!
36 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
37 "Expecting a two-address instruction!");
38 Reg2IsKill = false;
39 ChangeReg0 = true;
42 if (NewMI) {
43 // Create a new instruction.
44 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
45 bool Reg0IsDead = MI->getOperand(0).isDead();
46 MachineFunction &MF = *MI->getParent()->getParent();
47 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
48 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
49 .addReg(Reg2, getKillRegState(Reg2IsKill))
50 .addReg(Reg1, getKillRegState(Reg2IsKill));
53 if (ChangeReg0)
54 MI->getOperand(0).setReg(Reg2);
55 MI->getOperand(2).setReg(Reg1);
56 MI->getOperand(1).setReg(Reg2);
57 MI->getOperand(2).setIsKill(Reg1IsKill);
58 MI->getOperand(1).setIsKill(Reg2IsKill);
59 return MI;
62 /// CommuteChangesDestination - Return true if commuting the specified
63 /// instruction will also changes the destination operand. Also return the
64 /// current operand index of the would be new destination register by
65 /// reference. This can happen when the commutable instruction is also a
66 /// two-address instruction.
67 bool TargetInstrInfoImpl::CommuteChangesDestination(MachineInstr *MI,
68 unsigned &OpIdx) const{
69 assert(MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
70 "This only knows how to commute register operands so far");
71 if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
72 // Must be two address instruction!
73 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
74 "Expecting a two-address instruction!");
75 OpIdx = 2;
76 return true;
78 return false;
82 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
83 const SmallVectorImpl<MachineOperand> &Pred) const {
84 bool MadeChange = false;
85 const TargetInstrDesc &TID = MI->getDesc();
86 if (!TID.isPredicable())
87 return false;
89 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
90 if (TID.OpInfo[i].isPredicate()) {
91 MachineOperand &MO = MI->getOperand(i);
92 if (MO.isReg()) {
93 MO.setReg(Pred[j].getReg());
94 MadeChange = true;
95 } else if (MO.isImm()) {
96 MO.setImm(Pred[j].getImm());
97 MadeChange = true;
98 } else if (MO.isMBB()) {
99 MO.setMBB(Pred[j].getMBB());
100 MadeChange = true;
102 ++j;
105 return MadeChange;
108 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
109 MachineBasicBlock::iterator I,
110 unsigned DestReg,
111 const MachineInstr *Orig) const {
112 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
113 MI->getOperand(0).setReg(DestReg);
114 MBB.insert(I, MI);
117 unsigned
118 TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const {
119 unsigned FnSize = 0;
120 for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
121 MBBI != E; ++MBBI) {
122 const MachineBasicBlock &MBB = *MBBI;
123 for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
124 I != E; ++I)
125 FnSize += GetInstSizeInBytes(I);
127 return FnSize;
130 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
131 /// slot into the specified machine instruction for the specified operand(s).
132 /// If this is possible, a new instruction is returned with the specified
133 /// operand folded, otherwise NULL is returned. The client is responsible for
134 /// removing the old instruction and adding the new one in the instruction
135 /// stream.
136 MachineInstr*
137 TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
138 MachineInstr* MI,
139 const SmallVectorImpl<unsigned> &Ops,
140 int FrameIndex) const {
141 unsigned Flags = 0;
142 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
143 if (MI->getOperand(Ops[i]).isDef())
144 Flags |= MachineMemOperand::MOStore;
145 else
146 Flags |= MachineMemOperand::MOLoad;
148 // Ask the target to do the actual folding.
149 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
150 if (!NewMI) return 0;
152 assert((!(Flags & MachineMemOperand::MOStore) ||
153 NewMI->getDesc().mayStore()) &&
154 "Folded a def to a non-store!");
155 assert((!(Flags & MachineMemOperand::MOLoad) ||
156 NewMI->getDesc().mayLoad()) &&
157 "Folded a use to a non-load!");
158 const MachineFrameInfo &MFI = *MF.getFrameInfo();
159 assert(MFI.getObjectOffset(FrameIndex) != -1);
160 MachineMemOperand MMO(PseudoSourceValue::getFixedStack(FrameIndex),
161 Flags,
162 MFI.getObjectOffset(FrameIndex),
163 MFI.getObjectSize(FrameIndex),
164 MFI.getObjectAlignment(FrameIndex));
165 NewMI->addMemOperand(MF, MMO);
167 return NewMI;
170 /// foldMemoryOperand - Same as the previous version except it allows folding
171 /// of any load and store from / to any address, not just from a specific
172 /// stack slot.
173 MachineInstr*
174 TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
175 MachineInstr* MI,
176 const SmallVectorImpl<unsigned> &Ops,
177 MachineInstr* LoadMI) const {
178 assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
179 #ifndef NDEBUG
180 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
181 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
182 #endif
184 // Ask the target to do the actual folding.
185 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
186 if (!NewMI) return 0;
188 // Copy the memoperands from the load to the folded instruction.
189 for (std::list<MachineMemOperand>::iterator I = LoadMI->memoperands_begin(),
190 E = LoadMI->memoperands_end(); I != E; ++I)
191 NewMI->addMemOperand(MF, *I);
193 return NewMI;