Update comments.
[llvm/msp430.git] / lib / Analysis / LoopVR.cpp
blob0a3d06bed7e897ca3aa34badc40bf29fb56d712c
1 //===- LoopVR.cpp - Value Range analysis driven by loop information -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // FIXME: What does this do?
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "loopvr"
15 #include "llvm/Analysis/LoopVR.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
19 #include "llvm/Assembly/Writer.h"
20 #include "llvm/Support/CFG.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
25 char LoopVR::ID = 0;
26 static RegisterPass<LoopVR> X("loopvr", "Loop Value Ranges", false, true);
28 /// getRange - determine the range for a particular SCEV within a given Loop
29 ConstantRange LoopVR::getRange(SCEVHandle S, Loop *L, ScalarEvolution &SE) {
30 SCEVHandle T = SE.getBackedgeTakenCount(L);
31 if (isa<SCEVCouldNotCompute>(T))
32 return ConstantRange(cast<IntegerType>(S->getType())->getBitWidth(), true);
34 T = SE.getTruncateOrZeroExtend(T, S->getType());
35 return getRange(S, T, SE);
38 /// getRange - determine the range for a particular SCEV with a given trip count
39 ConstantRange LoopVR::getRange(SCEVHandle S, SCEVHandle T, ScalarEvolution &SE){
41 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
42 return ConstantRange(C->getValue()->getValue());
44 ConstantRange FullSet(cast<IntegerType>(S->getType())->getBitWidth(), true);
46 // {x,+,y,+,...z}. We detect overflow by checking the size of the set after
47 // summing the upper and lower.
48 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
49 ConstantRange X = getRange(Add->getOperand(0), T, SE);
50 if (X.isFullSet()) return FullSet;
51 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) {
52 ConstantRange Y = getRange(Add->getOperand(i), T, SE);
53 if (Y.isFullSet()) return FullSet;
55 APInt Spread_X = X.getSetSize(), Spread_Y = Y.getSetSize();
56 APInt NewLower = X.getLower() + Y.getLower();
57 APInt NewUpper = X.getUpper() + Y.getUpper() - 1;
58 if (NewLower == NewUpper)
59 return FullSet;
61 X = ConstantRange(NewLower, NewUpper);
62 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
63 return FullSet; // we've wrapped, therefore, full set.
65 return X;
68 // {x,*,y,*,...,z}. In order to detect overflow, we use k*bitwidth where
69 // k is the number of terms being multiplied.
70 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
71 ConstantRange X = getRange(Mul->getOperand(0), T, SE);
72 if (X.isFullSet()) return FullSet;
74 const IntegerType *Ty = IntegerType::get(X.getBitWidth());
75 const IntegerType *ExTy = IntegerType::get(X.getBitWidth() *
76 Mul->getNumOperands());
77 ConstantRange XExt = X.zeroExtend(ExTy->getBitWidth());
79 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) {
80 ConstantRange Y = getRange(Mul->getOperand(i), T, SE);
81 if (Y.isFullSet()) return FullSet;
83 ConstantRange YExt = Y.zeroExtend(ExTy->getBitWidth());
84 XExt = ConstantRange(XExt.getLower() * YExt.getLower(),
85 ((XExt.getUpper()-1) * (YExt.getUpper()-1)) + 1);
87 return XExt.truncate(Ty->getBitWidth());
90 // X smax Y smax ... Z is: range(smax(X_smin, Y_smin, ..., Z_smin),
91 // smax(X_smax, Y_smax, ..., Z_smax))
92 // It doesn't matter if one of the SCEVs has FullSet because we're taking
93 // a maximum of the minimums across all of them.
94 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
95 ConstantRange X = getRange(SMax->getOperand(0), T, SE);
96 if (X.isFullSet()) return FullSet;
98 APInt smin = X.getSignedMin(), smax = X.getSignedMax();
99 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) {
100 ConstantRange Y = getRange(SMax->getOperand(i), T, SE);
101 smin = APIntOps::smax(smin, Y.getSignedMin());
102 smax = APIntOps::smax(smax, Y.getSignedMax());
104 if (smax + 1 == smin) return FullSet;
105 return ConstantRange(smin, smax + 1);
108 // X umax Y umax ... Z is: range(umax(X_umin, Y_umin, ..., Z_umin),
109 // umax(X_umax, Y_umax, ..., Z_umax))
110 // It doesn't matter if one of the SCEVs has FullSet because we're taking
111 // a maximum of the minimums across all of them.
112 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
113 ConstantRange X = getRange(UMax->getOperand(0), T, SE);
114 if (X.isFullSet()) return FullSet;
116 APInt umin = X.getUnsignedMin(), umax = X.getUnsignedMax();
117 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) {
118 ConstantRange Y = getRange(UMax->getOperand(i), T, SE);
119 umin = APIntOps::umax(umin, Y.getUnsignedMin());
120 umax = APIntOps::umax(umax, Y.getUnsignedMax());
122 if (umax + 1 == umin) return FullSet;
123 return ConstantRange(umin, umax + 1);
126 // L udiv R. Luckily, there's only ever 2 sides to a udiv.
127 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
128 ConstantRange L = getRange(UDiv->getLHS(), T, SE);
129 ConstantRange R = getRange(UDiv->getRHS(), T, SE);
130 if (L.isFullSet() && R.isFullSet()) return FullSet;
132 if (R.getUnsignedMax() == 0) {
133 // RHS must be single-element zero. Return an empty set.
134 return ConstantRange(R.getBitWidth(), false);
137 APInt Lower = L.getUnsignedMin().udiv(R.getUnsignedMax());
139 APInt Upper;
141 if (R.getUnsignedMin() == 0) {
142 // Just because it contains zero, doesn't mean it will also contain one.
143 // Use maximalIntersectWith to get the right behaviour.
144 ConstantRange NotZero(APInt(L.getBitWidth(), 1),
145 APInt::getNullValue(L.getBitWidth()));
146 R = R.maximalIntersectWith(NotZero);
149 // But, the maximal intersection might still include zero. If it does, then
150 // we know it also included one.
151 if (R.contains(APInt::getNullValue(L.getBitWidth())))
152 Upper = L.getUnsignedMax();
153 else
154 Upper = L.getUnsignedMax().udiv(R.getUnsignedMin());
156 return ConstantRange(Lower, Upper);
159 // ConstantRange already implements the cast operators.
161 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
162 T = SE.getTruncateOrZeroExtend(T, ZExt->getOperand()->getType());
163 ConstantRange X = getRange(ZExt->getOperand(), T, SE);
164 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
167 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
168 T = SE.getTruncateOrZeroExtend(T, SExt->getOperand()->getType());
169 ConstantRange X = getRange(SExt->getOperand(), T, SE);
170 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
173 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
174 T = SE.getTruncateOrZeroExtend(T, Trunc->getOperand()->getType());
175 ConstantRange X = getRange(Trunc->getOperand(), T, SE);
176 if (X.isFullSet()) return FullSet;
177 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
180 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
181 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
182 if (!Trip) return FullSet;
184 if (AddRec->isAffine()) {
185 SCEVHandle StartHandle = AddRec->getStart();
186 SCEVHandle StepHandle = AddRec->getOperand(1);
188 const SCEVConstant *Step = dyn_cast<SCEVConstant>(StepHandle);
189 if (!Step) return FullSet;
191 uint32_t ExWidth = 2 * Trip->getValue()->getBitWidth();
192 APInt TripExt = Trip->getValue()->getValue(); TripExt.zext(ExWidth);
193 APInt StepExt = Step->getValue()->getValue(); StepExt.zext(ExWidth);
194 if ((TripExt * StepExt).ugt(APInt::getLowBitsSet(ExWidth, ExWidth >> 1)))
195 return FullSet;
197 SCEVHandle EndHandle = SE.getAddExpr(StartHandle,
198 SE.getMulExpr(T, StepHandle));
199 const SCEVConstant *Start = dyn_cast<SCEVConstant>(StartHandle);
200 const SCEVConstant *End = dyn_cast<SCEVConstant>(EndHandle);
201 if (!Start || !End) return FullSet;
203 const APInt &StartInt = Start->getValue()->getValue();
204 const APInt &EndInt = End->getValue()->getValue();
205 const APInt &StepInt = Step->getValue()->getValue();
207 if (StepInt.isNegative()) {
208 if (EndInt == StartInt + 1) return FullSet;
209 return ConstantRange(EndInt, StartInt + 1);
210 } else {
211 if (StartInt == EndInt + 1) return FullSet;
212 return ConstantRange(StartInt, EndInt + 1);
217 // TODO: non-affine addrec, udiv, SCEVUnknown (narrowed from elsewhere)?
219 return FullSet;
222 bool LoopVR::runOnFunction(Function &F) { Map.clear(); return false; }
224 void LoopVR::print(std::ostream &os, const Module *) const {
225 raw_os_ostream OS(os);
226 for (std::map<Value *, ConstantRange *>::const_iterator I = Map.begin(),
227 E = Map.end(); I != E; ++I) {
228 OS << *I->first << ": " << *I->second << '\n';
232 void LoopVR::releaseMemory() {
233 for (std::map<Value *, ConstantRange *>::iterator I = Map.begin(),
234 E = Map.end(); I != E; ++I) {
235 delete I->second;
238 Map.clear();
241 ConstantRange LoopVR::compute(Value *V) {
242 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
243 return ConstantRange(CI->getValue());
245 Instruction *I = dyn_cast<Instruction>(V);
246 if (!I)
247 return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
249 LoopInfo &LI = getAnalysis<LoopInfo>();
251 Loop *L = LI.getLoopFor(I->getParent());
252 if (!L || L->isLoopInvariant(I))
253 return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
255 ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
257 SCEVHandle S = SE.getSCEV(I);
258 if (isa<SCEVUnknown>(S) || isa<SCEVCouldNotCompute>(S))
259 return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
261 return ConstantRange(getRange(S, L, SE));
264 ConstantRange LoopVR::get(Value *V) {
265 std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
266 if (I == Map.end()) {
267 ConstantRange *CR = new ConstantRange(compute(V));
268 Map[V] = CR;
269 return *CR;
272 return *I->second;
275 void LoopVR::remove(Value *V) {
276 std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
277 if (I != Map.end()) {
278 delete I->second;
279 Map.erase(I);
283 void LoopVR::narrow(Value *V, const ConstantRange &CR) {
284 if (CR.isFullSet()) return;
286 std::map<Value *, ConstantRange *>::iterator I = Map.find(V);
287 if (I == Map.end())
288 Map[V] = new ConstantRange(CR);
289 else
290 Map[V] = new ConstantRange(Map[V]->maximalIntersectWith(CR));