1 //===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the DAGTypeLegalizer class. This is a private interface
11 // shared between the code that implements the SelectionDAG::LegalizeTypes
14 //===----------------------------------------------------------------------===//
16 #ifndef SELECTIONDAG_LEGALIZETYPES_H
17 #define SELECTIONDAG_LEGALIZETYPES_H
19 #define DEBUG_TYPE "legalize-types"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
29 //===----------------------------------------------------------------------===//
30 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31 /// on it until only value types the target machine can handle are left. This
32 /// involves promoting small sizes to large sizes or splitting up large values
33 /// into small values.
35 class VISIBILITY_HIDDEN DAGTypeLegalizer
{
39 // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40 // about the state of the node. The enum has all the values.
42 /// ReadyToProcess - All operands have been processed, so this node is ready
46 /// NewNode - This is a new node, not before seen, that was created in the
47 /// process of legalizing some other node.
50 /// Unanalyzed - This node's ID needs to be set to the number of its
51 /// unprocessed operands.
54 /// Processed - This is a node that has already been processed.
57 // 1+ - This is a node which has this many unprocessed operands.
61 Legal
, // The target natively supports this type.
62 PromoteInteger
, // Replace this integer type with a larger one.
63 ExpandInteger
, // Split this integer type into two of half the size.
64 SoftenFloat
, // Convert this float type to a same size integer type.
65 ExpandFloat
, // Split this float type into two of half the size.
66 ScalarizeVector
, // Replace this one-element vector with its element type.
67 SplitVector
, // This vector type should be split into smaller vectors.
68 WidenVector
// This vector type should be widened into a larger vector.
71 /// ValueTypeActions - This is a bitvector that contains two bits for each
72 /// simple value type, where the two bits correspond to the LegalizeAction
73 /// enum from TargetLowering. This can be queried with "getTypeAction(VT)".
74 TargetLowering::ValueTypeActionImpl ValueTypeActions
;
76 /// getTypeAction - Return how we should legalize values of this type.
77 LegalizeAction
getTypeAction(MVT VT
) const {
78 switch (ValueTypeActions
.getTypeAction(VT
)) {
80 assert(false && "Unknown legalize action!");
81 case TargetLowering::Legal
:
83 case TargetLowering::Promote
:
85 // 1) For integers, use a larger integer type (e.g. i8 -> i32).
86 // 2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
88 return PromoteInteger
;
91 case TargetLowering::Expand
:
93 // 1) split scalar in half, 2) convert a float to an integer,
94 // 3) scalarize a single-element vector, 4) split a vector in two.
98 else if (VT
.getSizeInBits() ==
99 TLI
.getTypeToTransformTo(VT
).getSizeInBits())
103 } else if (VT
.getVectorNumElements() == 1) {
104 return ScalarizeVector
;
111 /// isTypeLegal - Return true if this type is legal on this target.
112 bool isTypeLegal(MVT VT
) const {
113 return ValueTypeActions
.getTypeAction(VT
) == TargetLowering::Legal
;
116 /// IgnoreNodeResults - Pretend all of this node's results are legal.
117 /// FIXME: Remove once PR2957 is done.
118 bool IgnoreNodeResults(SDNode
*N
) const {
119 return N
->getOpcode() == ISD::TargetConstant
||
120 IgnoredNodesResultsSet
.count(N
);
123 /// IgnoredNode - Set of nodes whose result don't need to be legal.
124 /// FIXME: Remove once PR2957 is done.
125 DenseSet
<SDNode
*> IgnoredNodesResultsSet
;
127 /// PromotedIntegers - For integer nodes that are below legal width, this map
128 /// indicates what promoted value to use.
129 DenseMap
<SDValue
, SDValue
> PromotedIntegers
;
131 /// ExpandedIntegers - For integer nodes that need to be expanded this map
132 /// indicates which operands are the expanded version of the input.
133 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> > ExpandedIntegers
;
135 /// SoftenedFloats - For floating point nodes converted to integers of
136 /// the same size, this map indicates the converted value to use.
137 DenseMap
<SDValue
, SDValue
> SoftenedFloats
;
139 /// ExpandedFloats - For float nodes that need to be expanded this map
140 /// indicates which operands are the expanded version of the input.
141 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> > ExpandedFloats
;
143 /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
144 /// scalar value of type 'ty' to use.
145 DenseMap
<SDValue
, SDValue
> ScalarizedVectors
;
147 /// SplitVectors - For nodes that need to be split this map indicates
148 /// which operands are the expanded version of the input.
149 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> > SplitVectors
;
151 /// WidenedVectors - For vector nodes that need to be widened, indicates
152 /// the widened value to use.
153 DenseMap
<SDValue
, SDValue
> WidenedVectors
;
155 /// ReplacedValues - For values that have been replaced with another,
156 /// indicates the replacement value to use.
157 DenseMap
<SDValue
, SDValue
> ReplacedValues
;
159 /// Worklist - This defines a worklist of nodes to process. In order to be
160 /// pushed onto this worklist, all operands of a node must have already been
162 SmallVector
<SDNode
*, 128> Worklist
;
165 explicit DAGTypeLegalizer(SelectionDAG
&dag
)
166 : TLI(dag
.getTargetLoweringInfo()), DAG(dag
),
167 ValueTypeActions(TLI
.getValueTypeActions()) {
168 assert(MVT::LAST_VALUETYPE
<= 32 &&
169 "Too many value types for ValueTypeActions to hold!");
172 /// run - This is the main entry point for the type legalizer. This does a
173 /// top-down traversal of the dag, legalizing types as it goes. Returns
174 /// "true" if it made any changes.
177 void NoteDeletion(SDNode
*Old
, SDNode
*New
) {
180 for (unsigned i
= 0, e
= Old
->getNumValues(); i
!= e
; ++i
)
181 ReplacedValues
[SDValue(Old
, i
)] = SDValue(New
, i
);
185 SDNode
*AnalyzeNewNode(SDNode
*N
);
186 void AnalyzeNewValue(SDValue
&Val
);
187 void ExpungeNode(SDNode
*N
);
188 void PerformExpensiveChecks();
189 void RemapValue(SDValue
&N
);
192 SDValue
BitConvertToInteger(SDValue Op
);
193 SDValue
BitConvertVectorToIntegerVector(SDValue Op
);
194 SDValue
CreateStackStoreLoad(SDValue Op
, MVT DestVT
);
195 bool CustomLowerResults(SDNode
*N
, MVT VT
, bool LegalizeResult
);
196 SDValue
GetVectorElementPointer(SDValue VecPtr
, MVT EltVT
, SDValue Index
);
197 SDValue
JoinIntegers(SDValue Lo
, SDValue Hi
);
198 SDValue
LibCallify(RTLIB::Libcall LC
, SDNode
*N
, bool isSigned
);
199 SDValue
MakeLibCall(RTLIB::Libcall LC
, MVT RetVT
,
200 const SDValue
*Ops
, unsigned NumOps
, bool isSigned
,
202 SDValue
PromoteTargetBoolean(SDValue Bool
, MVT VT
);
203 void ReplaceValueWith(SDValue From
, SDValue To
);
204 void ReplaceValueWithHelper(SDValue From
, SDValue To
);
205 void SetIgnoredNodeResult(SDNode
* N
);
206 void SplitInteger(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
207 void SplitInteger(SDValue Op
, MVT LoVT
, MVT HiVT
,
208 SDValue
&Lo
, SDValue
&Hi
);
210 //===--------------------------------------------------------------------===//
211 // Integer Promotion Support: LegalizeIntegerTypes.cpp
212 //===--------------------------------------------------------------------===//
214 /// GetPromotedInteger - Given a processed operand Op which was promoted to a
215 /// larger integer type, this returns the promoted value. The low bits of the
216 /// promoted value corresponding to the original type are exactly equal to Op.
217 /// The extra bits contain rubbish, so the promoted value may need to be zero-
218 /// or sign-extended from the original type before it is usable (the helpers
219 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
220 /// For example, if Op is an i16 and was promoted to an i32, then this method
221 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
222 /// 16 bits of which contain rubbish.
223 SDValue
GetPromotedInteger(SDValue Op
) {
224 SDValue
&PromotedOp
= PromotedIntegers
[Op
];
225 RemapValue(PromotedOp
);
226 assert(PromotedOp
.getNode() && "Operand wasn't promoted?");
229 void SetPromotedInteger(SDValue Op
, SDValue Result
);
231 /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
233 SDValue
SExtPromotedInteger(SDValue Op
) {
234 MVT OldVT
= Op
.getValueType();
235 DebugLoc dl
= Op
.getDebugLoc();
236 Op
= GetPromotedInteger(Op
);
237 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Op
.getValueType(), Op
,
238 DAG
.getValueType(OldVT
));
241 /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
243 SDValue
ZExtPromotedInteger(SDValue Op
) {
244 MVT OldVT
= Op
.getValueType();
245 DebugLoc dl
= Op
.getDebugLoc();
246 Op
= GetPromotedInteger(Op
);
247 return DAG
.getZeroExtendInReg(Op
, dl
, OldVT
);
250 // Integer Result Promotion.
251 void PromoteIntegerResult(SDNode
*N
, unsigned ResNo
);
252 SDValue
PromoteIntRes_AssertSext(SDNode
*N
);
253 SDValue
PromoteIntRes_AssertZext(SDNode
*N
);
254 SDValue
PromoteIntRes_Atomic1(AtomicSDNode
*N
);
255 SDValue
PromoteIntRes_Atomic2(AtomicSDNode
*N
);
256 SDValue
PromoteIntRes_BIT_CONVERT(SDNode
*N
);
257 SDValue
PromoteIntRes_BSWAP(SDNode
*N
);
258 SDValue
PromoteIntRes_BUILD_PAIR(SDNode
*N
);
259 SDValue
PromoteIntRes_Constant(SDNode
*N
);
260 SDValue
PromoteIntRes_CONVERT_RNDSAT(SDNode
*N
);
261 SDValue
PromoteIntRes_CTLZ(SDNode
*N
);
262 SDValue
PromoteIntRes_CTPOP(SDNode
*N
);
263 SDValue
PromoteIntRes_CTTZ(SDNode
*N
);
264 SDValue
PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode
*N
);
265 SDValue
PromoteIntRes_FP_TO_XINT(SDNode
*N
);
266 SDValue
PromoteIntRes_INT_EXTEND(SDNode
*N
);
267 SDValue
PromoteIntRes_LOAD(LoadSDNode
*N
);
268 SDValue
PromoteIntRes_Overflow(SDNode
*N
);
269 SDValue
PromoteIntRes_SADDSUBO(SDNode
*N
, unsigned ResNo
);
270 SDValue
PromoteIntRes_SDIV(SDNode
*N
);
271 SDValue
PromoteIntRes_SELECT(SDNode
*N
);
272 SDValue
PromoteIntRes_SELECT_CC(SDNode
*N
);
273 SDValue
PromoteIntRes_SETCC(SDNode
*N
);
274 SDValue
PromoteIntRes_SHL(SDNode
*N
);
275 SDValue
PromoteIntRes_SimpleIntBinOp(SDNode
*N
);
276 SDValue
PromoteIntRes_SIGN_EXTEND_INREG(SDNode
*N
);
277 SDValue
PromoteIntRes_SRA(SDNode
*N
);
278 SDValue
PromoteIntRes_SRL(SDNode
*N
);
279 SDValue
PromoteIntRes_TRUNCATE(SDNode
*N
);
280 SDValue
PromoteIntRes_UADDSUBO(SDNode
*N
, unsigned ResNo
);
281 SDValue
PromoteIntRes_UDIV(SDNode
*N
);
282 SDValue
PromoteIntRes_UNDEF(SDNode
*N
);
283 SDValue
PromoteIntRes_VAARG(SDNode
*N
);
284 SDValue
PromoteIntRes_XMULO(SDNode
*N
, unsigned ResNo
);
286 // Integer Operand Promotion.
287 bool PromoteIntegerOperand(SDNode
*N
, unsigned OperandNo
);
288 SDValue
PromoteIntOp_ANY_EXTEND(SDNode
*N
);
289 SDValue
PromoteIntOp_BIT_CONVERT(SDNode
*N
);
290 SDValue
PromoteIntOp_BUILD_PAIR(SDNode
*N
);
291 SDValue
PromoteIntOp_BR_CC(SDNode
*N
, unsigned OpNo
);
292 SDValue
PromoteIntOp_BRCOND(SDNode
*N
, unsigned OpNo
);
293 SDValue
PromoteIntOp_BUILD_VECTOR(SDNode
*N
);
294 SDValue
PromoteIntOp_CONVERT_RNDSAT(SDNode
*N
);
295 SDValue
PromoteIntOp_INSERT_VECTOR_ELT(SDNode
*N
, unsigned OpNo
);
296 SDValue
PromoteIntOp_MEMBARRIER(SDNode
*N
);
297 SDValue
PromoteIntOp_SCALAR_TO_VECTOR(SDNode
*N
);
298 SDValue
PromoteIntOp_SELECT(SDNode
*N
, unsigned OpNo
);
299 SDValue
PromoteIntOp_SELECT_CC(SDNode
*N
, unsigned OpNo
);
300 SDValue
PromoteIntOp_SETCC(SDNode
*N
, unsigned OpNo
);
301 SDValue
PromoteIntOp_Shift(SDNode
*N
);
302 SDValue
PromoteIntOp_SIGN_EXTEND(SDNode
*N
);
303 SDValue
PromoteIntOp_SINT_TO_FP(SDNode
*N
);
304 SDValue
PromoteIntOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
305 SDValue
PromoteIntOp_TRUNCATE(SDNode
*N
);
306 SDValue
PromoteIntOp_UINT_TO_FP(SDNode
*N
);
307 SDValue
PromoteIntOp_ZERO_EXTEND(SDNode
*N
);
309 void PromoteSetCCOperands(SDValue
&LHS
,SDValue
&RHS
, ISD::CondCode Code
);
311 //===--------------------------------------------------------------------===//
312 // Integer Expansion Support: LegalizeIntegerTypes.cpp
313 //===--------------------------------------------------------------------===//
315 /// GetExpandedInteger - Given a processed operand Op which was expanded into
316 /// two integers of half the size, this returns the two halves. The low bits
317 /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
318 /// For example, if Op is an i64 which was expanded into two i32's, then this
319 /// method returns the two i32's, with Lo being equal to the lower 32 bits of
320 /// Op, and Hi being equal to the upper 32 bits.
321 void GetExpandedInteger(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
322 void SetExpandedInteger(SDValue Op
, SDValue Lo
, SDValue Hi
);
324 // Integer Result Expansion.
325 void ExpandIntegerResult(SDNode
*N
, unsigned ResNo
);
326 void ExpandIntRes_ANY_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
327 void ExpandIntRes_AssertSext (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
328 void ExpandIntRes_AssertZext (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
329 void ExpandIntRes_Constant (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
330 void ExpandIntRes_CTLZ (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
331 void ExpandIntRes_CTPOP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
332 void ExpandIntRes_CTTZ (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
333 void ExpandIntRes_LOAD (LoadSDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
334 void ExpandIntRes_SIGN_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
335 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
336 void ExpandIntRes_TRUNCATE (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
337 void ExpandIntRes_ZERO_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
338 void ExpandIntRes_FP_TO_SINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
339 void ExpandIntRes_FP_TO_UINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
341 void ExpandIntRes_Logical (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
342 void ExpandIntRes_ADDSUB (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
343 void ExpandIntRes_ADDSUBC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
344 void ExpandIntRes_ADDSUBE (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
345 void ExpandIntRes_BSWAP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
346 void ExpandIntRes_MUL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
347 void ExpandIntRes_SDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
348 void ExpandIntRes_SREM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
349 void ExpandIntRes_UDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
350 void ExpandIntRes_UREM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
351 void ExpandIntRes_Shift (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
353 void ExpandShiftByConstant(SDNode
*N
, unsigned Amt
,
354 SDValue
&Lo
, SDValue
&Hi
);
355 bool ExpandShiftWithKnownAmountBit(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
356 bool ExpandShiftWithUnknownAmountBit(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
358 // Integer Operand Expansion.
359 bool ExpandIntegerOperand(SDNode
*N
, unsigned OperandNo
);
360 SDValue
ExpandIntOp_BIT_CONVERT(SDNode
*N
);
361 SDValue
ExpandIntOp_BR_CC(SDNode
*N
);
362 SDValue
ExpandIntOp_BUILD_VECTOR(SDNode
*N
);
363 SDValue
ExpandIntOp_EXTRACT_ELEMENT(SDNode
*N
);
364 SDValue
ExpandIntOp_SELECT_CC(SDNode
*N
);
365 SDValue
ExpandIntOp_SETCC(SDNode
*N
);
366 SDValue
ExpandIntOp_Shift(SDNode
*N
);
367 SDValue
ExpandIntOp_SINT_TO_FP(SDNode
*N
);
368 SDValue
ExpandIntOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
369 SDValue
ExpandIntOp_TRUNCATE(SDNode
*N
);
370 SDValue
ExpandIntOp_UINT_TO_FP(SDNode
*N
);
372 void IntegerExpandSetCCOperands(SDValue
&NewLHS
, SDValue
&NewRHS
,
373 ISD::CondCode
&CCCode
, DebugLoc dl
);
375 //===--------------------------------------------------------------------===//
376 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
377 //===--------------------------------------------------------------------===//
379 /// GetSoftenedFloat - Given a processed operand Op which was converted to an
380 /// integer of the same size, this returns the integer. The integer contains
381 /// exactly the same bits as Op - only the type changed. For example, if Op
382 /// is an f32 which was softened to an i32, then this method returns an i32,
383 /// the bits of which coincide with those of Op.
384 SDValue
GetSoftenedFloat(SDValue Op
) {
385 SDValue
&SoftenedOp
= SoftenedFloats
[Op
];
386 RemapValue(SoftenedOp
);
387 assert(SoftenedOp
.getNode() && "Operand wasn't converted to integer?");
390 void SetSoftenedFloat(SDValue Op
, SDValue Result
);
392 // Result Float to Integer Conversion.
393 void SoftenFloatResult(SDNode
*N
, unsigned OpNo
);
394 SDValue
SoftenFloatRes_BIT_CONVERT(SDNode
*N
);
395 SDValue
SoftenFloatRes_BUILD_PAIR(SDNode
*N
);
396 SDValue
SoftenFloatRes_ConstantFP(ConstantFPSDNode
*N
);
397 SDValue
SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode
*N
);
398 SDValue
SoftenFloatRes_FABS(SDNode
*N
);
399 SDValue
SoftenFloatRes_FADD(SDNode
*N
);
400 SDValue
SoftenFloatRes_FCEIL(SDNode
*N
);
401 SDValue
SoftenFloatRes_FCOPYSIGN(SDNode
*N
);
402 SDValue
SoftenFloatRes_FCOS(SDNode
*N
);
403 SDValue
SoftenFloatRes_FDIV(SDNode
*N
);
404 SDValue
SoftenFloatRes_FEXP(SDNode
*N
);
405 SDValue
SoftenFloatRes_FEXP2(SDNode
*N
);
406 SDValue
SoftenFloatRes_FFLOOR(SDNode
*N
);
407 SDValue
SoftenFloatRes_FLOG(SDNode
*N
);
408 SDValue
SoftenFloatRes_FLOG2(SDNode
*N
);
409 SDValue
SoftenFloatRes_FLOG10(SDNode
*N
);
410 SDValue
SoftenFloatRes_FMUL(SDNode
*N
);
411 SDValue
SoftenFloatRes_FNEARBYINT(SDNode
*N
);
412 SDValue
SoftenFloatRes_FNEG(SDNode
*N
);
413 SDValue
SoftenFloatRes_FP_EXTEND(SDNode
*N
);
414 SDValue
SoftenFloatRes_FP_ROUND(SDNode
*N
);
415 SDValue
SoftenFloatRes_FPOW(SDNode
*N
);
416 SDValue
SoftenFloatRes_FPOWI(SDNode
*N
);
417 SDValue
SoftenFloatRes_FREM(SDNode
*N
);
418 SDValue
SoftenFloatRes_FRINT(SDNode
*N
);
419 SDValue
SoftenFloatRes_FSIN(SDNode
*N
);
420 SDValue
SoftenFloatRes_FSQRT(SDNode
*N
);
421 SDValue
SoftenFloatRes_FSUB(SDNode
*N
);
422 SDValue
SoftenFloatRes_FTRUNC(SDNode
*N
);
423 SDValue
SoftenFloatRes_LOAD(SDNode
*N
);
424 SDValue
SoftenFloatRes_SELECT(SDNode
*N
);
425 SDValue
SoftenFloatRes_SELECT_CC(SDNode
*N
);
426 SDValue
SoftenFloatRes_UNDEF(SDNode
*N
);
427 SDValue
SoftenFloatRes_VAARG(SDNode
*N
);
428 SDValue
SoftenFloatRes_XINT_TO_FP(SDNode
*N
);
430 // Operand Float to Integer Conversion.
431 bool SoftenFloatOperand(SDNode
*N
, unsigned OpNo
);
432 SDValue
SoftenFloatOp_BIT_CONVERT(SDNode
*N
);
433 SDValue
SoftenFloatOp_BR_CC(SDNode
*N
);
434 SDValue
SoftenFloatOp_FP_ROUND(SDNode
*N
);
435 SDValue
SoftenFloatOp_FP_TO_SINT(SDNode
*N
);
436 SDValue
SoftenFloatOp_FP_TO_UINT(SDNode
*N
);
437 SDValue
SoftenFloatOp_SELECT_CC(SDNode
*N
);
438 SDValue
SoftenFloatOp_SETCC(SDNode
*N
);
439 SDValue
SoftenFloatOp_STORE(SDNode
*N
, unsigned OpNo
);
441 void SoftenSetCCOperands(SDValue
&NewLHS
, SDValue
&NewRHS
,
442 ISD::CondCode
&CCCode
, DebugLoc dl
);
444 //===--------------------------------------------------------------------===//
445 // Float Expansion Support: LegalizeFloatTypes.cpp
446 //===--------------------------------------------------------------------===//
448 /// GetExpandedFloat - Given a processed operand Op which was expanded into
449 /// two floating point values of half the size, this returns the two halves.
450 /// The low bits of Op are exactly equal to the bits of Lo; the high bits
451 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
452 /// into two f64's, then this method returns the two f64's, with Lo being
453 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
454 void GetExpandedFloat(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
455 void SetExpandedFloat(SDValue Op
, SDValue Lo
, SDValue Hi
);
457 // Float Result Expansion.
458 void ExpandFloatResult(SDNode
*N
, unsigned ResNo
);
459 void ExpandFloatRes_ConstantFP(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
460 void ExpandFloatRes_FABS (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
461 void ExpandFloatRes_FADD (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
462 void ExpandFloatRes_FCEIL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
463 void ExpandFloatRes_FCOS (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
464 void ExpandFloatRes_FDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
465 void ExpandFloatRes_FEXP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
466 void ExpandFloatRes_FEXP2 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
467 void ExpandFloatRes_FFLOOR (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
468 void ExpandFloatRes_FLOG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
469 void ExpandFloatRes_FLOG2 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
470 void ExpandFloatRes_FLOG10 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
471 void ExpandFloatRes_FMUL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
472 void ExpandFloatRes_FNEARBYINT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
473 void ExpandFloatRes_FNEG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
474 void ExpandFloatRes_FP_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
475 void ExpandFloatRes_FPOW (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
476 void ExpandFloatRes_FPOWI (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
477 void ExpandFloatRes_FRINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
478 void ExpandFloatRes_FSIN (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
479 void ExpandFloatRes_FSQRT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
480 void ExpandFloatRes_FSUB (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
481 void ExpandFloatRes_FTRUNC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
482 void ExpandFloatRes_LOAD (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
483 void ExpandFloatRes_XINT_TO_FP(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
485 // Float Operand Expansion.
486 bool ExpandFloatOperand(SDNode
*N
, unsigned OperandNo
);
487 SDValue
ExpandFloatOp_BR_CC(SDNode
*N
);
488 SDValue
ExpandFloatOp_FP_ROUND(SDNode
*N
);
489 SDValue
ExpandFloatOp_FP_TO_SINT(SDNode
*N
);
490 SDValue
ExpandFloatOp_FP_TO_UINT(SDNode
*N
);
491 SDValue
ExpandFloatOp_SELECT_CC(SDNode
*N
);
492 SDValue
ExpandFloatOp_SETCC(SDNode
*N
);
493 SDValue
ExpandFloatOp_STORE(SDNode
*N
, unsigned OpNo
);
495 void FloatExpandSetCCOperands(SDValue
&NewLHS
, SDValue
&NewRHS
,
496 ISD::CondCode
&CCCode
, DebugLoc dl
);
498 //===--------------------------------------------------------------------===//
499 // Scalarization Support: LegalizeVectorTypes.cpp
500 //===--------------------------------------------------------------------===//
502 /// GetScalarizedVector - Given a processed one-element vector Op which was
503 /// scalarized to its element type, this returns the element. For example,
504 /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
505 SDValue
GetScalarizedVector(SDValue Op
) {
506 SDValue
&ScalarizedOp
= ScalarizedVectors
[Op
];
507 RemapValue(ScalarizedOp
);
508 assert(ScalarizedOp
.getNode() && "Operand wasn't scalarized?");
511 void SetScalarizedVector(SDValue Op
, SDValue Result
);
513 // Vector Result Scalarization: <1 x ty> -> ty.
514 void ScalarizeVectorResult(SDNode
*N
, unsigned OpNo
);
515 SDValue
ScalarizeVecRes_BinOp(SDNode
*N
);
516 SDValue
ScalarizeVecRes_ShiftOp(SDNode
*N
);
517 SDValue
ScalarizeVecRes_UnaryOp(SDNode
*N
);
519 SDValue
ScalarizeVecRes_BIT_CONVERT(SDNode
*N
);
520 SDValue
ScalarizeVecRes_CONVERT_RNDSAT(SDNode
*N
);
521 SDValue
ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode
*N
);
522 SDValue
ScalarizeVecRes_FPOWI(SDNode
*N
);
523 SDValue
ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode
*N
);
524 SDValue
ScalarizeVecRes_LOAD(LoadSDNode
*N
);
525 SDValue
ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode
*N
);
526 SDValue
ScalarizeVecRes_SELECT(SDNode
*N
);
527 SDValue
ScalarizeVecRes_SELECT_CC(SDNode
*N
);
528 SDValue
ScalarizeVecRes_UNDEF(SDNode
*N
);
529 SDValue
ScalarizeVecRes_VECTOR_SHUFFLE(SDNode
*N
);
530 SDValue
ScalarizeVecRes_VSETCC(SDNode
*N
);
532 // Vector Operand Scalarization: <1 x ty> -> ty.
533 bool ScalarizeVectorOperand(SDNode
*N
, unsigned OpNo
);
534 SDValue
ScalarizeVecOp_BIT_CONVERT(SDNode
*N
);
535 SDValue
ScalarizeVecOp_CONCAT_VECTORS(SDNode
*N
);
536 SDValue
ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
537 SDValue
ScalarizeVecOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
539 //===--------------------------------------------------------------------===//
540 // Vector Splitting Support: LegalizeVectorTypes.cpp
541 //===--------------------------------------------------------------------===//
543 /// GetSplitVector - Given a processed vector Op which was split into smaller
544 /// vectors, this method returns the smaller vectors. The first elements of
545 /// Op coincide with the elements of Lo; the remaining elements of Op coincide
546 /// with the elements of Hi: Op is what you would get by concatenating Lo and
547 /// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then
548 /// this method returns the two v4i32's, with Lo corresponding to the first 4
549 /// elements of Op, and Hi to the last 4 elements.
550 void GetSplitVector(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
551 void SetSplitVector(SDValue Op
, SDValue Lo
, SDValue Hi
);
553 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
554 void SplitVectorResult(SDNode
*N
, unsigned OpNo
);
555 void SplitVecRes_BinOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
556 void SplitVecRes_UnaryOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
558 void SplitVecRes_BIT_CONVERT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
559 void SplitVecRes_BUILD_PAIR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
560 void SplitVecRes_BUILD_VECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
561 void SplitVecRes_CONCAT_VECTORS(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
562 void SplitVecRes_CONVERT_RNDSAT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
563 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
564 void SplitVecRes_FPOWI(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
565 void SplitVecRes_INSERT_VECTOR_ELT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
566 void SplitVecRes_LOAD(LoadSDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
567 void SplitVecRes_SCALAR_TO_VECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
568 void SplitVecRes_UNDEF(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
569 void SplitVecRes_VECTOR_SHUFFLE(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
570 void SplitVecRes_VSETCC(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
572 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
573 bool SplitVectorOperand(SDNode
*N
, unsigned OpNo
);
574 SDValue
SplitVecOp_UnaryOp(SDNode
*N
);
576 SDValue
SplitVecOp_BIT_CONVERT(SDNode
*N
);
577 SDValue
SplitVecOp_EXTRACT_SUBVECTOR(SDNode
*N
);
578 SDValue
SplitVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
579 SDValue
SplitVecOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
580 SDValue
SplitVecOp_VECTOR_SHUFFLE(SDNode
*N
, unsigned OpNo
);
582 //===--------------------------------------------------------------------===//
583 // Vector Widening Support: LegalizeVectorTypes.cpp
584 //===--------------------------------------------------------------------===//
586 /// GetWidenedVector - Given a processed vector Op which was widened into a
587 /// larger vector, this method returns the larger vector. The elements of
588 /// the returned vector consist of the elements of Op followed by elements
589 /// containing rubbish. For example, if Op is a v2i32 that was widened to a
590 /// v4i32, then this method returns a v4i32 for which the first two elements
591 /// are the same as those of Op, while the last two elements contain rubbish.
592 SDValue
GetWidenedVector(SDValue Op
) {
593 SDValue
&WidenedOp
= WidenedVectors
[Op
];
594 RemapValue(WidenedOp
);
595 assert(WidenedOp
.getNode() && "Operand wasn't widened?");
598 void SetWidenedVector(SDValue Op
, SDValue Result
);
600 // Widen Vector Result Promotion.
601 void WidenVectorResult(SDNode
*N
, unsigned ResNo
);
602 SDValue
WidenVecRes_BIT_CONVERT(SDNode
* N
);
603 SDValue
WidenVecRes_BUILD_VECTOR(SDNode
* N
);
604 SDValue
WidenVecRes_CONCAT_VECTORS(SDNode
* N
);
605 SDValue
WidenVecRes_CONVERT_RNDSAT(SDNode
* N
);
606 SDValue
WidenVecRes_EXTRACT_SUBVECTOR(SDNode
* N
);
607 SDValue
WidenVecRes_INSERT_VECTOR_ELT(SDNode
* N
);
608 SDValue
WidenVecRes_LOAD(SDNode
* N
);
609 SDValue
WidenVecRes_SCALAR_TO_VECTOR(SDNode
* N
);
610 SDValue
WidenVecRes_SELECT(SDNode
* N
);
611 SDValue
WidenVecRes_SELECT_CC(SDNode
* N
);
612 SDValue
WidenVecRes_UNDEF(SDNode
*N
);
613 SDValue
WidenVecRes_VECTOR_SHUFFLE(SDNode
*N
);
614 SDValue
WidenVecRes_VSETCC(SDNode
* N
);
616 SDValue
WidenVecRes_Binary(SDNode
*N
);
617 SDValue
WidenVecRes_Convert(SDNode
*N
);
618 SDValue
WidenVecRes_Shift(SDNode
*N
);
619 SDValue
WidenVecRes_Unary(SDNode
*N
);
621 // Widen Vector Operand.
622 bool WidenVectorOperand(SDNode
*N
, unsigned ResNo
);
623 SDValue
WidenVecOp_BIT_CONVERT(SDNode
*N
);
624 SDValue
WidenVecOp_CONCAT_VECTORS(SDNode
*N
);
625 SDValue
WidenVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
626 SDValue
WidenVecOp_STORE(SDNode
* N
);
628 SDValue
WidenVecOp_Convert(SDNode
*N
);
630 //===--------------------------------------------------------------------===//
631 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
632 //===--------------------------------------------------------------------===//
634 /// Helper genWidenVectorLoads - Helper function to generate a set of
635 /// loads to load a vector with a resulting wider type. It takes
636 /// ExtType: Extension type
637 /// LdChain: list of chains for the load we have generated.
638 /// Chain: incoming chain for the ld vector.
639 /// BasePtr: base pointer to load from.
640 /// SV: memory disambiguation source value.
641 /// SVOffset: memory disambiugation offset.
642 /// Alignment: alignment of the memory.
643 /// isVolatile: volatile load.
644 /// LdWidth: width of memory that we want to load.
645 /// ResType: the wider result result type for the resulting vector.
646 /// dl: DebugLoc to be applied to new nodes
647 SDValue
GenWidenVectorLoads(SmallVector
<SDValue
, 16>& LdChain
, SDValue Chain
,
648 SDValue BasePtr
, const Value
*SV
,
649 int SVOffset
, unsigned Alignment
,
650 bool isVolatile
, unsigned LdWidth
,
651 MVT ResType
, DebugLoc dl
);
653 /// Helper genWidenVectorStores - Helper function to generate a set of
654 /// stores to store a widen vector into non widen memory
656 /// StChain: list of chains for the stores we have generated
657 /// Chain: incoming chain for the ld vector
658 /// BasePtr: base pointer to load from
659 /// SV: memory disambiguation source value
660 /// SVOffset: memory disambiugation offset
661 /// Alignment: alignment of the memory
662 /// isVolatile: volatile lod
663 /// ValOp: value to store
664 /// StWidth: width of memory that we want to store
665 /// dl: DebugLoc to be applied to new nodes
666 void GenWidenVectorStores(SmallVector
<SDValue
, 16>& StChain
, SDValue Chain
,
667 SDValue BasePtr
, const Value
*SV
,
668 int SVOffset
, unsigned Alignment
,
669 bool isVolatile
, SDValue ValOp
,
670 unsigned StWidth
, DebugLoc dl
);
672 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
673 /// input vector must have the same element type as NVT.
674 SDValue
ModifyToType(SDValue InOp
, MVT WidenVT
);
677 //===--------------------------------------------------------------------===//
678 // Generic Splitting: LegalizeTypesGeneric.cpp
679 //===--------------------------------------------------------------------===//
681 // Legalization methods which only use that the illegal type is split into two
682 // not necessarily identical types. As such they can be used for splitting
683 // vectors and expanding integers and floats.
685 void GetSplitOp(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
) {
686 if (Op
.getValueType().isVector())
687 GetSplitVector(Op
, Lo
, Hi
);
688 else if (Op
.getValueType().isInteger())
689 GetExpandedInteger(Op
, Lo
, Hi
);
691 GetExpandedFloat(Op
, Lo
, Hi
);
694 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
695 /// which is split (or expanded) into two not necessarily identical pieces.
696 void GetSplitDestVTs(MVT InVT
, MVT
&LoVT
, MVT
&HiVT
);
698 // Generic Result Splitting.
699 void SplitRes_MERGE_VALUES(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
700 void SplitRes_SELECT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
701 void SplitRes_SELECT_CC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
702 void SplitRes_UNDEF (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
704 //===--------------------------------------------------------------------===//
705 // Generic Expansion: LegalizeTypesGeneric.cpp
706 //===--------------------------------------------------------------------===//
708 // Legalization methods which only use that the illegal type is split into two
709 // identical types of half the size, and that the Lo/Hi part is stored first
710 // in memory on little/big-endian machines, followed by the Hi/Lo part. As
711 // such they can be used for expanding integers and floats.
713 void GetExpandedOp(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
) {
714 if (Op
.getValueType().isInteger())
715 GetExpandedInteger(Op
, Lo
, Hi
);
717 GetExpandedFloat(Op
, Lo
, Hi
);
720 // Generic Result Expansion.
721 void ExpandRes_BIT_CONVERT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
722 void ExpandRes_BUILD_PAIR (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
723 void ExpandRes_EXTRACT_ELEMENT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
724 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
725 void ExpandRes_NormalLoad (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
726 void ExpandRes_VAARG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
728 // Generic Operand Expansion.
729 SDValue
ExpandOp_BIT_CONVERT (SDNode
*N
);
730 SDValue
ExpandOp_BUILD_VECTOR (SDNode
*N
);
731 SDValue
ExpandOp_EXTRACT_ELEMENT (SDNode
*N
);
732 SDValue
ExpandOp_INSERT_VECTOR_ELT(SDNode
*N
);
733 SDValue
ExpandOp_SCALAR_TO_VECTOR (SDNode
*N
);
734 SDValue
ExpandOp_NormalStore (SDNode
*N
, unsigned OpNo
);
737 } // end namespace llvm.