Update comments.
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / LegalizeTypes.h
blob8c68aef57b89fe45b8a1a12f566aecfdbb269587
1 //===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DAGTypeLegalizer class. This is a private interface
11 // shared between the code that implements the SelectionDAG::LegalizeTypes
12 // method.
14 //===----------------------------------------------------------------------===//
16 #ifndef SELECTIONDAG_LEGALIZETYPES_H
17 #define SELECTIONDAG_LEGALIZETYPES_H
19 #define DEBUG_TYPE "legalize-types"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
27 namespace llvm {
29 //===----------------------------------------------------------------------===//
30 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31 /// on it until only value types the target machine can handle are left. This
32 /// involves promoting small sizes to large sizes or splitting up large values
33 /// into small values.
34 ///
35 class VISIBILITY_HIDDEN DAGTypeLegalizer {
36 TargetLowering &TLI;
37 SelectionDAG &DAG;
38 public:
39 // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40 // about the state of the node. The enum has all the values.
41 enum NodeIdFlags {
42 /// ReadyToProcess - All operands have been processed, so this node is ready
43 /// to be handled.
44 ReadyToProcess = 0,
46 /// NewNode - This is a new node, not before seen, that was created in the
47 /// process of legalizing some other node.
48 NewNode = -1,
50 /// Unanalyzed - This node's ID needs to be set to the number of its
51 /// unprocessed operands.
52 Unanalyzed = -2,
54 /// Processed - This is a node that has already been processed.
55 Processed = -3
57 // 1+ - This is a node which has this many unprocessed operands.
59 private:
60 enum LegalizeAction {
61 Legal, // The target natively supports this type.
62 PromoteInteger, // Replace this integer type with a larger one.
63 ExpandInteger, // Split this integer type into two of half the size.
64 SoftenFloat, // Convert this float type to a same size integer type.
65 ExpandFloat, // Split this float type into two of half the size.
66 ScalarizeVector, // Replace this one-element vector with its element type.
67 SplitVector, // This vector type should be split into smaller vectors.
68 WidenVector // This vector type should be widened into a larger vector.
71 /// ValueTypeActions - This is a bitvector that contains two bits for each
72 /// simple value type, where the two bits correspond to the LegalizeAction
73 /// enum from TargetLowering. This can be queried with "getTypeAction(VT)".
74 TargetLowering::ValueTypeActionImpl ValueTypeActions;
76 /// getTypeAction - Return how we should legalize values of this type.
77 LegalizeAction getTypeAction(MVT VT) const {
78 switch (ValueTypeActions.getTypeAction(VT)) {
79 default:
80 assert(false && "Unknown legalize action!");
81 case TargetLowering::Legal:
82 return Legal;
83 case TargetLowering::Promote:
84 // Promote can mean
85 // 1) For integers, use a larger integer type (e.g. i8 -> i32).
86 // 2) For vectors, use a wider vector type (e.g. v3i32 -> v4i32).
87 if (!VT.isVector())
88 return PromoteInteger;
89 else
90 return WidenVector;
91 case TargetLowering::Expand:
92 // Expand can mean
93 // 1) split scalar in half, 2) convert a float to an integer,
94 // 3) scalarize a single-element vector, 4) split a vector in two.
95 if (!VT.isVector()) {
96 if (VT.isInteger())
97 return ExpandInteger;
98 else if (VT.getSizeInBits() ==
99 TLI.getTypeToTransformTo(VT).getSizeInBits())
100 return SoftenFloat;
101 else
102 return ExpandFloat;
103 } else if (VT.getVectorNumElements() == 1) {
104 return ScalarizeVector;
105 } else {
106 return SplitVector;
111 /// isTypeLegal - Return true if this type is legal on this target.
112 bool isTypeLegal(MVT VT) const {
113 return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
116 /// IgnoreNodeResults - Pretend all of this node's results are legal.
117 /// FIXME: Remove once PR2957 is done.
118 bool IgnoreNodeResults(SDNode *N) const {
119 return N->getOpcode() == ISD::TargetConstant ||
120 IgnoredNodesResultsSet.count(N);
123 /// IgnoredNode - Set of nodes whose result don't need to be legal.
124 /// FIXME: Remove once PR2957 is done.
125 DenseSet<SDNode*> IgnoredNodesResultsSet;
127 /// PromotedIntegers - For integer nodes that are below legal width, this map
128 /// indicates what promoted value to use.
129 DenseMap<SDValue, SDValue> PromotedIntegers;
131 /// ExpandedIntegers - For integer nodes that need to be expanded this map
132 /// indicates which operands are the expanded version of the input.
133 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
135 /// SoftenedFloats - For floating point nodes converted to integers of
136 /// the same size, this map indicates the converted value to use.
137 DenseMap<SDValue, SDValue> SoftenedFloats;
139 /// ExpandedFloats - For float nodes that need to be expanded this map
140 /// indicates which operands are the expanded version of the input.
141 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
143 /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
144 /// scalar value of type 'ty' to use.
145 DenseMap<SDValue, SDValue> ScalarizedVectors;
147 /// SplitVectors - For nodes that need to be split this map indicates
148 /// which operands are the expanded version of the input.
149 DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
151 /// WidenedVectors - For vector nodes that need to be widened, indicates
152 /// the widened value to use.
153 DenseMap<SDValue, SDValue> WidenedVectors;
155 /// ReplacedValues - For values that have been replaced with another,
156 /// indicates the replacement value to use.
157 DenseMap<SDValue, SDValue> ReplacedValues;
159 /// Worklist - This defines a worklist of nodes to process. In order to be
160 /// pushed onto this worklist, all operands of a node must have already been
161 /// processed.
162 SmallVector<SDNode*, 128> Worklist;
164 public:
165 explicit DAGTypeLegalizer(SelectionDAG &dag)
166 : TLI(dag.getTargetLoweringInfo()), DAG(dag),
167 ValueTypeActions(TLI.getValueTypeActions()) {
168 assert(MVT::LAST_VALUETYPE <= 32 &&
169 "Too many value types for ValueTypeActions to hold!");
172 /// run - This is the main entry point for the type legalizer. This does a
173 /// top-down traversal of the dag, legalizing types as it goes. Returns
174 /// "true" if it made any changes.
175 bool run();
177 void NoteDeletion(SDNode *Old, SDNode *New) {
178 ExpungeNode(Old);
179 ExpungeNode(New);
180 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
181 ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
184 private:
185 SDNode *AnalyzeNewNode(SDNode *N);
186 void AnalyzeNewValue(SDValue &Val);
187 void ExpungeNode(SDNode *N);
188 void PerformExpensiveChecks();
189 void RemapValue(SDValue &N);
191 // Common routines.
192 SDValue BitConvertToInteger(SDValue Op);
193 SDValue BitConvertVectorToIntegerVector(SDValue Op);
194 SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
195 bool CustomLowerResults(SDNode *N, MVT VT, bool LegalizeResult);
196 SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index);
197 SDValue JoinIntegers(SDValue Lo, SDValue Hi);
198 SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
199 SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
200 const SDValue *Ops, unsigned NumOps, bool isSigned,
201 DebugLoc dl);
202 SDValue PromoteTargetBoolean(SDValue Bool, MVT VT);
203 void ReplaceValueWith(SDValue From, SDValue To);
204 void ReplaceValueWithHelper(SDValue From, SDValue To);
205 void SetIgnoredNodeResult(SDNode* N);
206 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
207 void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
208 SDValue &Lo, SDValue &Hi);
210 //===--------------------------------------------------------------------===//
211 // Integer Promotion Support: LegalizeIntegerTypes.cpp
212 //===--------------------------------------------------------------------===//
214 /// GetPromotedInteger - Given a processed operand Op which was promoted to a
215 /// larger integer type, this returns the promoted value. The low bits of the
216 /// promoted value corresponding to the original type are exactly equal to Op.
217 /// The extra bits contain rubbish, so the promoted value may need to be zero-
218 /// or sign-extended from the original type before it is usable (the helpers
219 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
220 /// For example, if Op is an i16 and was promoted to an i32, then this method
221 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
222 /// 16 bits of which contain rubbish.
223 SDValue GetPromotedInteger(SDValue Op) {
224 SDValue &PromotedOp = PromotedIntegers[Op];
225 RemapValue(PromotedOp);
226 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
227 return PromotedOp;
229 void SetPromotedInteger(SDValue Op, SDValue Result);
231 /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
232 /// final size.
233 SDValue SExtPromotedInteger(SDValue Op) {
234 MVT OldVT = Op.getValueType();
235 DebugLoc dl = Op.getDebugLoc();
236 Op = GetPromotedInteger(Op);
237 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
238 DAG.getValueType(OldVT));
241 /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
242 /// final size.
243 SDValue ZExtPromotedInteger(SDValue Op) {
244 MVT OldVT = Op.getValueType();
245 DebugLoc dl = Op.getDebugLoc();
246 Op = GetPromotedInteger(Op);
247 return DAG.getZeroExtendInReg(Op, dl, OldVT);
250 // Integer Result Promotion.
251 void PromoteIntegerResult(SDNode *N, unsigned ResNo);
252 SDValue PromoteIntRes_AssertSext(SDNode *N);
253 SDValue PromoteIntRes_AssertZext(SDNode *N);
254 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
255 SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
256 SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
257 SDValue PromoteIntRes_BSWAP(SDNode *N);
258 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
259 SDValue PromoteIntRes_Constant(SDNode *N);
260 SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
261 SDValue PromoteIntRes_CTLZ(SDNode *N);
262 SDValue PromoteIntRes_CTPOP(SDNode *N);
263 SDValue PromoteIntRes_CTTZ(SDNode *N);
264 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
265 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
266 SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
267 SDValue PromoteIntRes_LOAD(LoadSDNode *N);
268 SDValue PromoteIntRes_Overflow(SDNode *N);
269 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
270 SDValue PromoteIntRes_SDIV(SDNode *N);
271 SDValue PromoteIntRes_SELECT(SDNode *N);
272 SDValue PromoteIntRes_SELECT_CC(SDNode *N);
273 SDValue PromoteIntRes_SETCC(SDNode *N);
274 SDValue PromoteIntRes_SHL(SDNode *N);
275 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
276 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
277 SDValue PromoteIntRes_SRA(SDNode *N);
278 SDValue PromoteIntRes_SRL(SDNode *N);
279 SDValue PromoteIntRes_TRUNCATE(SDNode *N);
280 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
281 SDValue PromoteIntRes_UDIV(SDNode *N);
282 SDValue PromoteIntRes_UNDEF(SDNode *N);
283 SDValue PromoteIntRes_VAARG(SDNode *N);
284 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
286 // Integer Operand Promotion.
287 bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
288 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
289 SDValue PromoteIntOp_BIT_CONVERT(SDNode *N);
290 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
291 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
292 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
293 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
294 SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
295 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
296 SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
297 SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
298 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
299 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
300 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
301 SDValue PromoteIntOp_Shift(SDNode *N);
302 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
303 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
304 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
305 SDValue PromoteIntOp_TRUNCATE(SDNode *N);
306 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
307 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
309 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
311 //===--------------------------------------------------------------------===//
312 // Integer Expansion Support: LegalizeIntegerTypes.cpp
313 //===--------------------------------------------------------------------===//
315 /// GetExpandedInteger - Given a processed operand Op which was expanded into
316 /// two integers of half the size, this returns the two halves. The low bits
317 /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
318 /// For example, if Op is an i64 which was expanded into two i32's, then this
319 /// method returns the two i32's, with Lo being equal to the lower 32 bits of
320 /// Op, and Hi being equal to the upper 32 bits.
321 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
322 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
324 // Integer Result Expansion.
325 void ExpandIntegerResult(SDNode *N, unsigned ResNo);
326 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
327 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
328 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
329 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
330 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
331 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
332 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
333 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
334 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
335 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
336 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
337 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
338 void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
339 void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
341 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
342 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
343 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
344 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
345 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
346 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
347 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
348 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
349 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
350 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
351 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
353 void ExpandShiftByConstant(SDNode *N, unsigned Amt,
354 SDValue &Lo, SDValue &Hi);
355 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
356 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
358 // Integer Operand Expansion.
359 bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
360 SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
361 SDValue ExpandIntOp_BR_CC(SDNode *N);
362 SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
363 SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
364 SDValue ExpandIntOp_SELECT_CC(SDNode *N);
365 SDValue ExpandIntOp_SETCC(SDNode *N);
366 SDValue ExpandIntOp_Shift(SDNode *N);
367 SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
368 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
369 SDValue ExpandIntOp_TRUNCATE(SDNode *N);
370 SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
372 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
373 ISD::CondCode &CCCode, DebugLoc dl);
375 //===--------------------------------------------------------------------===//
376 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
377 //===--------------------------------------------------------------------===//
379 /// GetSoftenedFloat - Given a processed operand Op which was converted to an
380 /// integer of the same size, this returns the integer. The integer contains
381 /// exactly the same bits as Op - only the type changed. For example, if Op
382 /// is an f32 which was softened to an i32, then this method returns an i32,
383 /// the bits of which coincide with those of Op.
384 SDValue GetSoftenedFloat(SDValue Op) {
385 SDValue &SoftenedOp = SoftenedFloats[Op];
386 RemapValue(SoftenedOp);
387 assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
388 return SoftenedOp;
390 void SetSoftenedFloat(SDValue Op, SDValue Result);
392 // Result Float to Integer Conversion.
393 void SoftenFloatResult(SDNode *N, unsigned OpNo);
394 SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
395 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
396 SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
397 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
398 SDValue SoftenFloatRes_FABS(SDNode *N);
399 SDValue SoftenFloatRes_FADD(SDNode *N);
400 SDValue SoftenFloatRes_FCEIL(SDNode *N);
401 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
402 SDValue SoftenFloatRes_FCOS(SDNode *N);
403 SDValue SoftenFloatRes_FDIV(SDNode *N);
404 SDValue SoftenFloatRes_FEXP(SDNode *N);
405 SDValue SoftenFloatRes_FEXP2(SDNode *N);
406 SDValue SoftenFloatRes_FFLOOR(SDNode *N);
407 SDValue SoftenFloatRes_FLOG(SDNode *N);
408 SDValue SoftenFloatRes_FLOG2(SDNode *N);
409 SDValue SoftenFloatRes_FLOG10(SDNode *N);
410 SDValue SoftenFloatRes_FMUL(SDNode *N);
411 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
412 SDValue SoftenFloatRes_FNEG(SDNode *N);
413 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
414 SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
415 SDValue SoftenFloatRes_FPOW(SDNode *N);
416 SDValue SoftenFloatRes_FPOWI(SDNode *N);
417 SDValue SoftenFloatRes_FREM(SDNode *N);
418 SDValue SoftenFloatRes_FRINT(SDNode *N);
419 SDValue SoftenFloatRes_FSIN(SDNode *N);
420 SDValue SoftenFloatRes_FSQRT(SDNode *N);
421 SDValue SoftenFloatRes_FSUB(SDNode *N);
422 SDValue SoftenFloatRes_FTRUNC(SDNode *N);
423 SDValue SoftenFloatRes_LOAD(SDNode *N);
424 SDValue SoftenFloatRes_SELECT(SDNode *N);
425 SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
426 SDValue SoftenFloatRes_UNDEF(SDNode *N);
427 SDValue SoftenFloatRes_VAARG(SDNode *N);
428 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
430 // Operand Float to Integer Conversion.
431 bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
432 SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
433 SDValue SoftenFloatOp_BR_CC(SDNode *N);
434 SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
435 SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
436 SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
437 SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
438 SDValue SoftenFloatOp_SETCC(SDNode *N);
439 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
441 void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
442 ISD::CondCode &CCCode, DebugLoc dl);
444 //===--------------------------------------------------------------------===//
445 // Float Expansion Support: LegalizeFloatTypes.cpp
446 //===--------------------------------------------------------------------===//
448 /// GetExpandedFloat - Given a processed operand Op which was expanded into
449 /// two floating point values of half the size, this returns the two halves.
450 /// The low bits of Op are exactly equal to the bits of Lo; the high bits
451 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
452 /// into two f64's, then this method returns the two f64's, with Lo being
453 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
454 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
455 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
457 // Float Result Expansion.
458 void ExpandFloatResult(SDNode *N, unsigned ResNo);
459 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
460 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
461 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
462 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
463 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
464 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
465 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
466 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
467 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
468 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
469 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
470 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
471 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
472 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
473 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
474 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
475 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
476 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
477 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
478 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
479 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
480 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
481 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
482 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
483 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
485 // Float Operand Expansion.
486 bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
487 SDValue ExpandFloatOp_BR_CC(SDNode *N);
488 SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
489 SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
490 SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
491 SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
492 SDValue ExpandFloatOp_SETCC(SDNode *N);
493 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
495 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
496 ISD::CondCode &CCCode, DebugLoc dl);
498 //===--------------------------------------------------------------------===//
499 // Scalarization Support: LegalizeVectorTypes.cpp
500 //===--------------------------------------------------------------------===//
502 /// GetScalarizedVector - Given a processed one-element vector Op which was
503 /// scalarized to its element type, this returns the element. For example,
504 /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
505 SDValue GetScalarizedVector(SDValue Op) {
506 SDValue &ScalarizedOp = ScalarizedVectors[Op];
507 RemapValue(ScalarizedOp);
508 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
509 return ScalarizedOp;
511 void SetScalarizedVector(SDValue Op, SDValue Result);
513 // Vector Result Scalarization: <1 x ty> -> ty.
514 void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
515 SDValue ScalarizeVecRes_BinOp(SDNode *N);
516 SDValue ScalarizeVecRes_ShiftOp(SDNode *N);
517 SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
519 SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
520 SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
521 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
522 SDValue ScalarizeVecRes_FPOWI(SDNode *N);
523 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
524 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
525 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
526 SDValue ScalarizeVecRes_SELECT(SDNode *N);
527 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
528 SDValue ScalarizeVecRes_UNDEF(SDNode *N);
529 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
530 SDValue ScalarizeVecRes_VSETCC(SDNode *N);
532 // Vector Operand Scalarization: <1 x ty> -> ty.
533 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
534 SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
535 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
536 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
537 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
539 //===--------------------------------------------------------------------===//
540 // Vector Splitting Support: LegalizeVectorTypes.cpp
541 //===--------------------------------------------------------------------===//
543 /// GetSplitVector - Given a processed vector Op which was split into smaller
544 /// vectors, this method returns the smaller vectors. The first elements of
545 /// Op coincide with the elements of Lo; the remaining elements of Op coincide
546 /// with the elements of Hi: Op is what you would get by concatenating Lo and
547 /// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then
548 /// this method returns the two v4i32's, with Lo corresponding to the first 4
549 /// elements of Op, and Hi to the last 4 elements.
550 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
551 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
553 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
554 void SplitVectorResult(SDNode *N, unsigned OpNo);
555 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
556 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
558 void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
559 void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
560 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
561 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
562 void SplitVecRes_CONVERT_RNDSAT(SDNode *N, SDValue &Lo, SDValue &Hi);
563 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
564 void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
565 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
566 void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
567 void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
568 void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
569 void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi);
570 void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
572 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
573 bool SplitVectorOperand(SDNode *N, unsigned OpNo);
574 SDValue SplitVecOp_UnaryOp(SDNode *N);
576 SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
577 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
578 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
579 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
580 SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
582 //===--------------------------------------------------------------------===//
583 // Vector Widening Support: LegalizeVectorTypes.cpp
584 //===--------------------------------------------------------------------===//
586 /// GetWidenedVector - Given a processed vector Op which was widened into a
587 /// larger vector, this method returns the larger vector. The elements of
588 /// the returned vector consist of the elements of Op followed by elements
589 /// containing rubbish. For example, if Op is a v2i32 that was widened to a
590 /// v4i32, then this method returns a v4i32 for which the first two elements
591 /// are the same as those of Op, while the last two elements contain rubbish.
592 SDValue GetWidenedVector(SDValue Op) {
593 SDValue &WidenedOp = WidenedVectors[Op];
594 RemapValue(WidenedOp);
595 assert(WidenedOp.getNode() && "Operand wasn't widened?");
596 return WidenedOp;
598 void SetWidenedVector(SDValue Op, SDValue Result);
600 // Widen Vector Result Promotion.
601 void WidenVectorResult(SDNode *N, unsigned ResNo);
602 SDValue WidenVecRes_BIT_CONVERT(SDNode* N);
603 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
604 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
605 SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
606 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
607 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
608 SDValue WidenVecRes_LOAD(SDNode* N);
609 SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
610 SDValue WidenVecRes_SELECT(SDNode* N);
611 SDValue WidenVecRes_SELECT_CC(SDNode* N);
612 SDValue WidenVecRes_UNDEF(SDNode *N);
613 SDValue WidenVecRes_VECTOR_SHUFFLE(SDNode *N);
614 SDValue WidenVecRes_VSETCC(SDNode* N);
616 SDValue WidenVecRes_Binary(SDNode *N);
617 SDValue WidenVecRes_Convert(SDNode *N);
618 SDValue WidenVecRes_Shift(SDNode *N);
619 SDValue WidenVecRes_Unary(SDNode *N);
621 // Widen Vector Operand.
622 bool WidenVectorOperand(SDNode *N, unsigned ResNo);
623 SDValue WidenVecOp_BIT_CONVERT(SDNode *N);
624 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
625 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
626 SDValue WidenVecOp_STORE(SDNode* N);
628 SDValue WidenVecOp_Convert(SDNode *N);
630 //===--------------------------------------------------------------------===//
631 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
632 //===--------------------------------------------------------------------===//
634 /// Helper genWidenVectorLoads - Helper function to generate a set of
635 /// loads to load a vector with a resulting wider type. It takes
636 /// ExtType: Extension type
637 /// LdChain: list of chains for the load we have generated.
638 /// Chain: incoming chain for the ld vector.
639 /// BasePtr: base pointer to load from.
640 /// SV: memory disambiguation source value.
641 /// SVOffset: memory disambiugation offset.
642 /// Alignment: alignment of the memory.
643 /// isVolatile: volatile load.
644 /// LdWidth: width of memory that we want to load.
645 /// ResType: the wider result result type for the resulting vector.
646 /// dl: DebugLoc to be applied to new nodes
647 SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain, SDValue Chain,
648 SDValue BasePtr, const Value *SV,
649 int SVOffset, unsigned Alignment,
650 bool isVolatile, unsigned LdWidth,
651 MVT ResType, DebugLoc dl);
653 /// Helper genWidenVectorStores - Helper function to generate a set of
654 /// stores to store a widen vector into non widen memory
655 /// It takes
656 /// StChain: list of chains for the stores we have generated
657 /// Chain: incoming chain for the ld vector
658 /// BasePtr: base pointer to load from
659 /// SV: memory disambiguation source value
660 /// SVOffset: memory disambiugation offset
661 /// Alignment: alignment of the memory
662 /// isVolatile: volatile lod
663 /// ValOp: value to store
664 /// StWidth: width of memory that we want to store
665 /// dl: DebugLoc to be applied to new nodes
666 void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, SDValue Chain,
667 SDValue BasePtr, const Value *SV,
668 int SVOffset, unsigned Alignment,
669 bool isVolatile, SDValue ValOp,
670 unsigned StWidth, DebugLoc dl);
672 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
673 /// input vector must have the same element type as NVT.
674 SDValue ModifyToType(SDValue InOp, MVT WidenVT);
677 //===--------------------------------------------------------------------===//
678 // Generic Splitting: LegalizeTypesGeneric.cpp
679 //===--------------------------------------------------------------------===//
681 // Legalization methods which only use that the illegal type is split into two
682 // not necessarily identical types. As such they can be used for splitting
683 // vectors and expanding integers and floats.
685 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
686 if (Op.getValueType().isVector())
687 GetSplitVector(Op, Lo, Hi);
688 else if (Op.getValueType().isInteger())
689 GetExpandedInteger(Op, Lo, Hi);
690 else
691 GetExpandedFloat(Op, Lo, Hi);
694 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
695 /// which is split (or expanded) into two not necessarily identical pieces.
696 void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
698 // Generic Result Splitting.
699 void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
700 void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi);
701 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
702 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
704 //===--------------------------------------------------------------------===//
705 // Generic Expansion: LegalizeTypesGeneric.cpp
706 //===--------------------------------------------------------------------===//
708 // Legalization methods which only use that the illegal type is split into two
709 // identical types of half the size, and that the Lo/Hi part is stored first
710 // in memory on little/big-endian machines, followed by the Hi/Lo part. As
711 // such they can be used for expanding integers and floats.
713 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
714 if (Op.getValueType().isInteger())
715 GetExpandedInteger(Op, Lo, Hi);
716 else
717 GetExpandedFloat(Op, Lo, Hi);
720 // Generic Result Expansion.
721 void ExpandRes_BIT_CONVERT (SDNode *N, SDValue &Lo, SDValue &Hi);
722 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
723 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
724 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
725 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
726 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
728 // Generic Operand Expansion.
729 SDValue ExpandOp_BIT_CONVERT (SDNode *N);
730 SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
731 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
732 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
733 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
734 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
737 } // end namespace llvm.
739 #endif