Update comments.
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / ScheduleDAGFast.cpp
blob0c343f988061aa6594f700c7e8671869c767479e
1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a fast scheduler.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "pre-RA-sched"
15 #include "ScheduleDAGSDNodes.h"
16 #include "llvm/CodeGen/SchedulerRegistry.h"
17 #include "llvm/CodeGen/SelectionDAGISel.h"
18 #include "llvm/Target/TargetRegisterInfo.h"
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/CommandLine.h"
27 using namespace llvm;
29 STATISTIC(NumUnfolds, "Number of nodes unfolded");
30 STATISTIC(NumDups, "Number of duplicated nodes");
31 STATISTIC(NumPRCopies, "Number of physical copies");
33 static RegisterScheduler
34 fastDAGScheduler("fast", "Fast suboptimal list scheduling",
35 createFastDAGScheduler);
37 namespace {
38 /// FastPriorityQueue - A degenerate priority queue that considers
39 /// all nodes to have the same priority.
40 ///
41 struct VISIBILITY_HIDDEN FastPriorityQueue {
42 SmallVector<SUnit *, 16> Queue;
44 bool empty() const { return Queue.empty(); }
46 void push(SUnit *U) {
47 Queue.push_back(U);
50 SUnit *pop() {
51 if (empty()) return NULL;
52 SUnit *V = Queue.back();
53 Queue.pop_back();
54 return V;
58 //===----------------------------------------------------------------------===//
59 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
60 ///
61 class VISIBILITY_HIDDEN ScheduleDAGFast : public ScheduleDAGSDNodes {
62 private:
63 /// AvailableQueue - The priority queue to use for the available SUnits.
64 FastPriorityQueue AvailableQueue;
66 /// LiveRegDefs - A set of physical registers and their definition
67 /// that are "live". These nodes must be scheduled before any other nodes that
68 /// modifies the registers can be scheduled.
69 unsigned NumLiveRegs;
70 std::vector<SUnit*> LiveRegDefs;
71 std::vector<unsigned> LiveRegCycles;
73 public:
74 ScheduleDAGFast(MachineFunction &mf)
75 : ScheduleDAGSDNodes(mf) {}
77 void Schedule();
79 /// AddPred - adds a predecessor edge to SUnit SU.
80 /// This returns true if this is a new predecessor.
81 void AddPred(SUnit *SU, const SDep &D) {
82 SU->addPred(D);
85 /// RemovePred - removes a predecessor edge from SUnit SU.
86 /// This returns true if an edge was removed.
87 void RemovePred(SUnit *SU, const SDep &D) {
88 SU->removePred(D);
91 private:
92 void ReleasePred(SUnit *SU, SDep *PredEdge);
93 void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
94 void ScheduleNodeBottomUp(SUnit*, unsigned);
95 SUnit *CopyAndMoveSuccessors(SUnit*);
96 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
97 const TargetRegisterClass*,
98 const TargetRegisterClass*,
99 SmallVector<SUnit*, 2>&);
100 bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
101 void ListScheduleBottomUp();
103 /// ForceUnitLatencies - The fast scheduler doesn't care about real latencies.
104 bool ForceUnitLatencies() const { return true; }
106 } // end anonymous namespace
109 /// Schedule - Schedule the DAG using list scheduling.
110 void ScheduleDAGFast::Schedule() {
111 DOUT << "********** List Scheduling **********\n";
113 NumLiveRegs = 0;
114 LiveRegDefs.resize(TRI->getNumRegs(), NULL);
115 LiveRegCycles.resize(TRI->getNumRegs(), 0);
117 // Build the scheduling graph.
118 BuildSchedGraph();
120 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
121 SUnits[su].dumpAll(this));
123 // Execute the actual scheduling loop.
124 ListScheduleBottomUp();
127 //===----------------------------------------------------------------------===//
128 // Bottom-Up Scheduling
129 //===----------------------------------------------------------------------===//
131 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
132 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
133 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
134 SUnit *PredSU = PredEdge->getSUnit();
135 --PredSU->NumSuccsLeft;
137 #ifndef NDEBUG
138 if (PredSU->NumSuccsLeft < 0) {
139 cerr << "*** Scheduling failed! ***\n";
140 PredSU->dump(this);
141 cerr << " has been released too many times!\n";
142 assert(0);
144 #endif
146 // If all the node's successors are scheduled, this node is ready
147 // to be scheduled. Ignore the special EntrySU node.
148 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
149 PredSU->isAvailable = true;
150 AvailableQueue.push(PredSU);
154 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
155 // Bottom up: release predecessors
156 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
157 I != E; ++I) {
158 ReleasePred(SU, &*I);
159 if (I->isAssignedRegDep()) {
160 // This is a physical register dependency and it's impossible or
161 // expensive to copy the register. Make sure nothing that can
162 // clobber the register is scheduled between the predecessor and
163 // this node.
164 if (!LiveRegDefs[I->getReg()]) {
165 ++NumLiveRegs;
166 LiveRegDefs[I->getReg()] = I->getSUnit();
167 LiveRegCycles[I->getReg()] = CurCycle;
173 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
174 /// count of its predecessors. If a predecessor pending count is zero, add it to
175 /// the Available queue.
176 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
177 DOUT << "*** Scheduling [" << CurCycle << "]: ";
178 DEBUG(SU->dump(this));
180 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
181 SU->setHeightToAtLeast(CurCycle);
182 Sequence.push_back(SU);
184 ReleasePredecessors(SU, CurCycle);
186 // Release all the implicit physical register defs that are live.
187 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
188 I != E; ++I) {
189 if (I->isAssignedRegDep()) {
190 if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
191 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
192 assert(LiveRegDefs[I->getReg()] == SU &&
193 "Physical register dependency violated?");
194 --NumLiveRegs;
195 LiveRegDefs[I->getReg()] = NULL;
196 LiveRegCycles[I->getReg()] = 0;
201 SU->isScheduled = true;
204 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
205 /// successors to the newly created node.
206 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
207 if (SU->getNode()->getFlaggedNode())
208 return NULL;
210 SDNode *N = SU->getNode();
211 if (!N)
212 return NULL;
214 SUnit *NewSU;
215 bool TryUnfold = false;
216 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
217 MVT VT = N->getValueType(i);
218 if (VT == MVT::Flag)
219 return NULL;
220 else if (VT == MVT::Other)
221 TryUnfold = true;
223 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
224 const SDValue &Op = N->getOperand(i);
225 MVT VT = Op.getNode()->getValueType(Op.getResNo());
226 if (VT == MVT::Flag)
227 return NULL;
230 if (TryUnfold) {
231 SmallVector<SDNode*, 2> NewNodes;
232 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
233 return NULL;
235 DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
236 assert(NewNodes.size() == 2 && "Expected a load folding node!");
238 N = NewNodes[1];
239 SDNode *LoadNode = NewNodes[0];
240 unsigned NumVals = N->getNumValues();
241 unsigned OldNumVals = SU->getNode()->getNumValues();
242 for (unsigned i = 0; i != NumVals; ++i)
243 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
244 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
245 SDValue(LoadNode, 1));
247 SUnit *NewSU = NewSUnit(N);
248 assert(N->getNodeId() == -1 && "Node already inserted!");
249 N->setNodeId(NewSU->NodeNum);
251 const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
252 for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
253 if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
254 NewSU->isTwoAddress = true;
255 break;
258 if (TID.isCommutable())
259 NewSU->isCommutable = true;
261 // LoadNode may already exist. This can happen when there is another
262 // load from the same location and producing the same type of value
263 // but it has different alignment or volatileness.
264 bool isNewLoad = true;
265 SUnit *LoadSU;
266 if (LoadNode->getNodeId() != -1) {
267 LoadSU = &SUnits[LoadNode->getNodeId()];
268 isNewLoad = false;
269 } else {
270 LoadSU = NewSUnit(LoadNode);
271 LoadNode->setNodeId(LoadSU->NodeNum);
274 SDep ChainPred;
275 SmallVector<SDep, 4> ChainSuccs;
276 SmallVector<SDep, 4> LoadPreds;
277 SmallVector<SDep, 4> NodePreds;
278 SmallVector<SDep, 4> NodeSuccs;
279 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
280 I != E; ++I) {
281 if (I->isCtrl())
282 ChainPred = *I;
283 else if (I->getSUnit()->getNode() &&
284 I->getSUnit()->getNode()->isOperandOf(LoadNode))
285 LoadPreds.push_back(*I);
286 else
287 NodePreds.push_back(*I);
289 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
290 I != E; ++I) {
291 if (I->isCtrl())
292 ChainSuccs.push_back(*I);
293 else
294 NodeSuccs.push_back(*I);
297 if (ChainPred.getSUnit()) {
298 RemovePred(SU, ChainPred);
299 if (isNewLoad)
300 AddPred(LoadSU, ChainPred);
302 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
303 const SDep &Pred = LoadPreds[i];
304 RemovePred(SU, Pred);
305 if (isNewLoad) {
306 AddPred(LoadSU, Pred);
309 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
310 const SDep &Pred = NodePreds[i];
311 RemovePred(SU, Pred);
312 AddPred(NewSU, Pred);
314 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
315 SDep D = NodeSuccs[i];
316 SUnit *SuccDep = D.getSUnit();
317 D.setSUnit(SU);
318 RemovePred(SuccDep, D);
319 D.setSUnit(NewSU);
320 AddPred(SuccDep, D);
322 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
323 SDep D = ChainSuccs[i];
324 SUnit *SuccDep = D.getSUnit();
325 D.setSUnit(SU);
326 RemovePred(SuccDep, D);
327 if (isNewLoad) {
328 D.setSUnit(LoadSU);
329 AddPred(SuccDep, D);
332 if (isNewLoad) {
333 AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
336 ++NumUnfolds;
338 if (NewSU->NumSuccsLeft == 0) {
339 NewSU->isAvailable = true;
340 return NewSU;
342 SU = NewSU;
345 DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
346 NewSU = Clone(SU);
348 // New SUnit has the exact same predecessors.
349 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
350 I != E; ++I)
351 if (!I->isArtificial())
352 AddPred(NewSU, *I);
354 // Only copy scheduled successors. Cut them from old node's successor
355 // list and move them over.
356 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
357 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
358 I != E; ++I) {
359 if (I->isArtificial())
360 continue;
361 SUnit *SuccSU = I->getSUnit();
362 if (SuccSU->isScheduled) {
363 SDep D = *I;
364 D.setSUnit(NewSU);
365 AddPred(SuccSU, D);
366 D.setSUnit(SU);
367 DelDeps.push_back(std::make_pair(SuccSU, D));
370 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
371 RemovePred(DelDeps[i].first, DelDeps[i].second);
373 ++NumDups;
374 return NewSU;
377 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
378 /// scheduled successors of the given SUnit to the last copy.
379 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
380 const TargetRegisterClass *DestRC,
381 const TargetRegisterClass *SrcRC,
382 SmallVector<SUnit*, 2> &Copies) {
383 SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
384 CopyFromSU->CopySrcRC = SrcRC;
385 CopyFromSU->CopyDstRC = DestRC;
387 SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
388 CopyToSU->CopySrcRC = DestRC;
389 CopyToSU->CopyDstRC = SrcRC;
391 // Only copy scheduled successors. Cut them from old node's successor
392 // list and move them over.
393 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
394 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
395 I != E; ++I) {
396 if (I->isArtificial())
397 continue;
398 SUnit *SuccSU = I->getSUnit();
399 if (SuccSU->isScheduled) {
400 SDep D = *I;
401 D.setSUnit(CopyToSU);
402 AddPred(SuccSU, D);
403 DelDeps.push_back(std::make_pair(SuccSU, *I));
406 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
407 RemovePred(DelDeps[i].first, DelDeps[i].second);
410 AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
411 AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
413 Copies.push_back(CopyFromSU);
414 Copies.push_back(CopyToSU);
416 ++NumPRCopies;
419 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
420 /// definition of the specified node.
421 /// FIXME: Move to SelectionDAG?
422 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
423 const TargetInstrInfo *TII) {
424 const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
425 assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
426 unsigned NumRes = TID.getNumDefs();
427 for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
428 if (Reg == *ImpDef)
429 break;
430 ++NumRes;
432 return N->getValueType(NumRes);
435 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
436 /// scheduling of the given node to satisfy live physical register dependencies.
437 /// If the specific node is the last one that's available to schedule, do
438 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
439 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
440 SmallVector<unsigned, 4> &LRegs){
441 if (NumLiveRegs == 0)
442 return false;
444 SmallSet<unsigned, 4> RegAdded;
445 // If this node would clobber any "live" register, then it's not ready.
446 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
447 I != E; ++I) {
448 if (I->isAssignedRegDep()) {
449 unsigned Reg = I->getReg();
450 if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
451 if (RegAdded.insert(Reg))
452 LRegs.push_back(Reg);
454 for (const unsigned *Alias = TRI->getAliasSet(Reg);
455 *Alias; ++Alias)
456 if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
457 if (RegAdded.insert(*Alias))
458 LRegs.push_back(*Alias);
463 for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
464 if (!Node->isMachineOpcode())
465 continue;
466 const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
467 if (!TID.ImplicitDefs)
468 continue;
469 for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
470 if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
471 if (RegAdded.insert(*Reg))
472 LRegs.push_back(*Reg);
474 for (const unsigned *Alias = TRI->getAliasSet(*Reg);
475 *Alias; ++Alias)
476 if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
477 if (RegAdded.insert(*Alias))
478 LRegs.push_back(*Alias);
482 return !LRegs.empty();
486 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
487 /// schedulers.
488 void ScheduleDAGFast::ListScheduleBottomUp() {
489 unsigned CurCycle = 0;
491 // Release any predecessors of the special Exit node.
492 ReleasePredecessors(&ExitSU, CurCycle);
494 // Add root to Available queue.
495 if (!SUnits.empty()) {
496 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
497 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
498 RootSU->isAvailable = true;
499 AvailableQueue.push(RootSU);
502 // While Available queue is not empty, grab the node with the highest
503 // priority. If it is not ready put it back. Schedule the node.
504 SmallVector<SUnit*, 4> NotReady;
505 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
506 Sequence.reserve(SUnits.size());
507 while (!AvailableQueue.empty()) {
508 bool Delayed = false;
509 LRegsMap.clear();
510 SUnit *CurSU = AvailableQueue.pop();
511 while (CurSU) {
512 SmallVector<unsigned, 4> LRegs;
513 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
514 break;
515 Delayed = true;
516 LRegsMap.insert(std::make_pair(CurSU, LRegs));
518 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
519 NotReady.push_back(CurSU);
520 CurSU = AvailableQueue.pop();
523 // All candidates are delayed due to live physical reg dependencies.
524 // Try code duplication or inserting cross class copies
525 // to resolve it.
526 if (Delayed && !CurSU) {
527 if (!CurSU) {
528 // Try duplicating the nodes that produces these
529 // "expensive to copy" values to break the dependency. In case even
530 // that doesn't work, insert cross class copies.
531 SUnit *TrySU = NotReady[0];
532 SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
533 assert(LRegs.size() == 1 && "Can't handle this yet!");
534 unsigned Reg = LRegs[0];
535 SUnit *LRDef = LiveRegDefs[Reg];
536 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
537 const TargetRegisterClass *RC =
538 TRI->getPhysicalRegisterRegClass(Reg, VT);
539 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
541 // If cross copy register class is null, then it must be possible copy
542 // the value directly. Do not try duplicate the def.
543 SUnit *NewDef = 0;
544 if (DestRC)
545 NewDef = CopyAndMoveSuccessors(LRDef);
546 else
547 DestRC = RC;
548 if (!NewDef) {
549 // Issue copies, these can be expensive cross register class copies.
550 SmallVector<SUnit*, 2> Copies;
551 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
552 DOUT << "Adding an edge from SU # " << TrySU->NodeNum
553 << " to SU #" << Copies.front()->NodeNum << "\n";
554 AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
555 /*Reg=*/0, /*isNormalMemory=*/false,
556 /*isMustAlias=*/false, /*isArtificial=*/true));
557 NewDef = Copies.back();
560 DOUT << "Adding an edge from SU # " << NewDef->NodeNum
561 << " to SU #" << TrySU->NodeNum << "\n";
562 LiveRegDefs[Reg] = NewDef;
563 AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
564 /*Reg=*/0, /*isNormalMemory=*/false,
565 /*isMustAlias=*/false, /*isArtificial=*/true));
566 TrySU->isAvailable = false;
567 CurSU = NewDef;
570 if (!CurSU) {
571 assert(false && "Unable to resolve live physical register dependencies!");
572 abort();
576 // Add the nodes that aren't ready back onto the available list.
577 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
578 NotReady[i]->isPending = false;
579 // May no longer be available due to backtracking.
580 if (NotReady[i]->isAvailable)
581 AvailableQueue.push(NotReady[i]);
583 NotReady.clear();
585 if (CurSU)
586 ScheduleNodeBottomUp(CurSU, CurCycle);
587 ++CurCycle;
590 // Reverse the order if it is bottom up.
591 std::reverse(Sequence.begin(), Sequence.end());
594 #ifndef NDEBUG
595 // Verify that all SUnits were scheduled.
596 bool AnyNotSched = false;
597 unsigned DeadNodes = 0;
598 unsigned Noops = 0;
599 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
600 if (!SUnits[i].isScheduled) {
601 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
602 ++DeadNodes;
603 continue;
605 if (!AnyNotSched)
606 cerr << "*** List scheduling failed! ***\n";
607 SUnits[i].dump(this);
608 cerr << "has not been scheduled!\n";
609 AnyNotSched = true;
611 if (SUnits[i].NumSuccsLeft != 0) {
612 if (!AnyNotSched)
613 cerr << "*** List scheduling failed! ***\n";
614 SUnits[i].dump(this);
615 cerr << "has successors left!\n";
616 AnyNotSched = true;
619 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
620 if (!Sequence[i])
621 ++Noops;
622 assert(!AnyNotSched);
623 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
624 "The number of nodes scheduled doesn't match the expected number!");
625 #endif
628 //===----------------------------------------------------------------------===//
629 // Public Constructor Functions
630 //===----------------------------------------------------------------------===//
632 llvm::ScheduleDAGSDNodes *
633 llvm::createFastDAGScheduler(SelectionDAGISel *IS, bool) {
634 return new ScheduleDAGFast(*IS->MF);