Update comments.
[llvm/msp430.git] / lib / ExecutionEngine / Interpreter / ExternalFunctions.cpp
blob160f1ba9f6c514415485ff52a25d4840ab02bbfd
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains both code to deal with invoking "external" functions, but
11 // also contains code that implements "exported" external functions.
13 // There are currently two mechanisms for handling external functions in the
14 // Interpreter. The first is to implement lle_* wrapper functions that are
15 // specific to well-known library functions which manually translate the
16 // arguments from GenericValues and make the call. If such a wrapper does
17 // not exist, and libffi is available, then the Interpreter will attempt to
18 // invoke the function using libffi, after finding its address.
20 //===----------------------------------------------------------------------===//
22 #include "Interpreter.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Module.h"
25 #include "llvm/Config/config.h" // Detect libffi
26 #include "llvm/Support/Streams.h"
27 #include "llvm/System/DynamicLibrary.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include <csignal>
31 #include <cstdio>
32 #include <map>
33 #include <cmath>
34 #include <cstring>
36 #ifdef HAVE_FFI_CALL
37 #ifdef HAVE_FFI_H
38 #include <ffi.h>
39 #define USE_LIBFFI
40 #elif HAVE_FFI_FFI_H
41 #include <ffi/ffi.h>
42 #define USE_LIBFFI
43 #endif
44 #endif
46 using namespace llvm;
48 typedef GenericValue (*ExFunc)(const FunctionType *,
49 const std::vector<GenericValue> &);
50 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
51 static std::map<std::string, ExFunc> FuncNames;
53 #ifdef USE_LIBFFI
54 typedef void (*RawFunc)(void);
55 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
56 #endif
58 static Interpreter *TheInterpreter;
60 static char getTypeID(const Type *Ty) {
61 switch (Ty->getTypeID()) {
62 case Type::VoidTyID: return 'V';
63 case Type::IntegerTyID:
64 switch (cast<IntegerType>(Ty)->getBitWidth()) {
65 case 1: return 'o';
66 case 8: return 'B';
67 case 16: return 'S';
68 case 32: return 'I';
69 case 64: return 'L';
70 default: return 'N';
72 case Type::FloatTyID: return 'F';
73 case Type::DoubleTyID: return 'D';
74 case Type::PointerTyID: return 'P';
75 case Type::FunctionTyID:return 'M';
76 case Type::StructTyID: return 'T';
77 case Type::ArrayTyID: return 'A';
78 case Type::OpaqueTyID: return 'O';
79 default: return 'U';
83 // Try to find address of external function given a Function object.
84 // Please note, that interpreter doesn't know how to assemble a
85 // real call in general case (this is JIT job), that's why it assumes,
86 // that all external functions has the same (and pretty "general") signature.
87 // The typical example of such functions are "lle_X_" ones.
88 static ExFunc lookupFunction(const Function *F) {
89 // Function not found, look it up... start by figuring out what the
90 // composite function name should be.
91 std::string ExtName = "lle_";
92 const FunctionType *FT = F->getFunctionType();
93 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
94 ExtName += getTypeID(FT->getContainedType(i));
95 ExtName += "_" + F->getName();
97 ExFunc FnPtr = FuncNames[ExtName];
98 if (FnPtr == 0)
99 FnPtr = FuncNames["lle_X_"+F->getName()];
100 if (FnPtr == 0) // Try calling a generic function... if it exists...
101 FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
102 ("lle_X_"+F->getName()).c_str());
103 if (FnPtr != 0)
104 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
105 return FnPtr;
108 #ifdef USE_LIBFFI
109 static ffi_type *ffiTypeFor(const Type *Ty) {
110 switch (Ty->getTypeID()) {
111 case Type::VoidTyID: return &ffi_type_void;
112 case Type::IntegerTyID:
113 switch (cast<IntegerType>(Ty)->getBitWidth()) {
114 case 8: return &ffi_type_sint8;
115 case 16: return &ffi_type_sint16;
116 case 32: return &ffi_type_sint32;
117 case 64: return &ffi_type_sint64;
119 case Type::FloatTyID: return &ffi_type_float;
120 case Type::DoubleTyID: return &ffi_type_double;
121 case Type::PointerTyID: return &ffi_type_pointer;
122 default: break;
124 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
125 cerr << "Type could not be mapped for use with libffi.\n";
126 abort();
127 return NULL;
130 static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
131 void *ArgDataPtr) {
132 switch (Ty->getTypeID()) {
133 case Type::IntegerTyID:
134 switch (cast<IntegerType>(Ty)->getBitWidth()) {
135 case 8: {
136 int8_t *I8Ptr = (int8_t *) ArgDataPtr;
137 *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
138 return ArgDataPtr;
140 case 16: {
141 int16_t *I16Ptr = (int16_t *) ArgDataPtr;
142 *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
143 return ArgDataPtr;
145 case 32: {
146 int32_t *I32Ptr = (int32_t *) ArgDataPtr;
147 *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
148 return ArgDataPtr;
150 case 64: {
151 int64_t *I64Ptr = (int64_t *) ArgDataPtr;
152 *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
153 return ArgDataPtr;
156 case Type::FloatTyID: {
157 float *FloatPtr = (float *) ArgDataPtr;
158 *FloatPtr = AV.DoubleVal;
159 return ArgDataPtr;
161 case Type::DoubleTyID: {
162 double *DoublePtr = (double *) ArgDataPtr;
163 *DoublePtr = AV.DoubleVal;
164 return ArgDataPtr;
166 case Type::PointerTyID: {
167 void **PtrPtr = (void **) ArgDataPtr;
168 *PtrPtr = GVTOP(AV);
169 return ArgDataPtr;
171 default: break;
173 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
174 cerr << "Type value could not be mapped for use with libffi.\n";
175 abort();
176 return NULL;
179 static bool ffiInvoke(RawFunc Fn, Function *F,
180 const std::vector<GenericValue> &ArgVals,
181 const TargetData *TD, GenericValue &Result) {
182 ffi_cif cif;
183 const FunctionType *FTy = F->getFunctionType();
184 const unsigned NumArgs = F->arg_size();
186 // TODO: We don't have type information about the remaining arguments, because
187 // this information is never passed into ExecutionEngine::runFunction().
188 if (ArgVals.size() > NumArgs && F->isVarArg()) {
189 cerr << "Calling external var arg function '" << F->getName()
190 << "' is not supported by the Interpreter.\n";
191 abort();
194 unsigned ArgBytes = 0;
196 std::vector<ffi_type*> args(NumArgs);
197 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
198 A != E; ++A) {
199 const unsigned ArgNo = A->getArgNo();
200 const Type *ArgTy = FTy->getParamType(ArgNo);
201 args[ArgNo] = ffiTypeFor(ArgTy);
202 ArgBytes += TD->getTypeStoreSize(ArgTy);
205 uint8_t *ArgData = (uint8_t*) alloca(ArgBytes);
206 uint8_t *ArgDataPtr = ArgData;
207 std::vector<void*> values(NumArgs);
208 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
209 A != E; ++A) {
210 const unsigned ArgNo = A->getArgNo();
211 const Type *ArgTy = FTy->getParamType(ArgNo);
212 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
213 ArgDataPtr += TD->getTypeStoreSize(ArgTy);
216 const Type *RetTy = FTy->getReturnType();
217 ffi_type *rtype = ffiTypeFor(RetTy);
219 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
220 void *ret = NULL;
221 if (RetTy->getTypeID() != Type::VoidTyID)
222 ret = alloca(TD->getTypeStoreSize(RetTy));
223 ffi_call(&cif, Fn, ret, &values[0]);
224 switch (RetTy->getTypeID()) {
225 case Type::IntegerTyID:
226 switch (cast<IntegerType>(RetTy)->getBitWidth()) {
227 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break;
228 case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break;
229 case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break;
230 case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break;
232 break;
233 case Type::FloatTyID: Result.FloatVal = *(float *) ret; break;
234 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break;
235 case Type::PointerTyID: Result.PointerVal = *(void **) ret; break;
236 default: break;
238 return true;
241 return false;
243 #endif // USE_LIBFFI
245 GenericValue Interpreter::callExternalFunction(Function *F,
246 const std::vector<GenericValue> &ArgVals) {
247 TheInterpreter = this;
249 // Do a lookup to see if the function is in our cache... this should just be a
250 // deferred annotation!
251 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
252 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
253 : FI->second)
254 return Fn(F->getFunctionType(), ArgVals);
256 #ifdef USE_LIBFFI
257 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
258 RawFunc RawFn;
259 if (RF == RawFunctions->end()) {
260 RawFn = (RawFunc)(intptr_t)
261 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
262 if (RawFn != 0)
263 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
264 } else {
265 RawFn = RF->second;
268 GenericValue Result;
269 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
270 return Result;
271 #endif // USE_LIBFFI
273 cerr << "Tried to execute an unknown external function: "
274 << F->getType()->getDescription() << " " << F->getName() << "\n";
275 if (F->getName() != "__main")
276 abort();
277 return GenericValue();
281 //===----------------------------------------------------------------------===//
282 // Functions "exported" to the running application...
284 extern "C" { // Don't add C++ manglings to llvm mangling :)
286 // void atexit(Function*)
287 GenericValue lle_X_atexit(const FunctionType *FT,
288 const std::vector<GenericValue> &Args) {
289 assert(Args.size() == 1);
290 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
291 GenericValue GV;
292 GV.IntVal = 0;
293 return GV;
296 // void exit(int)
297 GenericValue lle_X_exit(const FunctionType *FT,
298 const std::vector<GenericValue> &Args) {
299 TheInterpreter->exitCalled(Args[0]);
300 return GenericValue();
303 // void abort(void)
304 GenericValue lle_X_abort(const FunctionType *FT,
305 const std::vector<GenericValue> &Args) {
306 raise (SIGABRT);
307 return GenericValue();
310 // int sprintf(char *, const char *, ...) - a very rough implementation to make
311 // output useful.
312 GenericValue lle_X_sprintf(const FunctionType *FT,
313 const std::vector<GenericValue> &Args) {
314 char *OutputBuffer = (char *)GVTOP(Args[0]);
315 const char *FmtStr = (const char *)GVTOP(Args[1]);
316 unsigned ArgNo = 2;
318 // printf should return # chars printed. This is completely incorrect, but
319 // close enough for now.
320 GenericValue GV;
321 GV.IntVal = APInt(32, strlen(FmtStr));
322 while (1) {
323 switch (*FmtStr) {
324 case 0: return GV; // Null terminator...
325 default: // Normal nonspecial character
326 sprintf(OutputBuffer++, "%c", *FmtStr++);
327 break;
328 case '\\': { // Handle escape codes
329 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
330 FmtStr += 2; OutputBuffer += 2;
331 break;
333 case '%': { // Handle format specifiers
334 char FmtBuf[100] = "", Buffer[1000] = "";
335 char *FB = FmtBuf;
336 *FB++ = *FmtStr++;
337 char Last = *FB++ = *FmtStr++;
338 unsigned HowLong = 0;
339 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
340 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
341 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
342 Last != 'p' && Last != 's' && Last != '%') {
343 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
344 Last = *FB++ = *FmtStr++;
346 *FB = 0;
348 switch (Last) {
349 case '%':
350 strcpy(Buffer, "%"); break;
351 case 'c':
352 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
353 break;
354 case 'd': case 'i':
355 case 'u': case 'o':
356 case 'x': case 'X':
357 if (HowLong >= 1) {
358 if (HowLong == 1 &&
359 TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
360 sizeof(long) < sizeof(int64_t)) {
361 // Make sure we use %lld with a 64 bit argument because we might be
362 // compiling LLI on a 32 bit compiler.
363 unsigned Size = strlen(FmtBuf);
364 FmtBuf[Size] = FmtBuf[Size-1];
365 FmtBuf[Size+1] = 0;
366 FmtBuf[Size-1] = 'l';
368 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
369 } else
370 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
371 break;
372 case 'e': case 'E': case 'g': case 'G': case 'f':
373 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
374 case 'p':
375 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
376 case 's':
377 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
378 default: cerr << "<unknown printf code '" << *FmtStr << "'!>";
379 ArgNo++; break;
381 strcpy(OutputBuffer, Buffer);
382 OutputBuffer += strlen(Buffer);
384 break;
387 return GV;
390 // int printf(const char *, ...) - a very rough implementation to make output
391 // useful.
392 GenericValue lle_X_printf(const FunctionType *FT,
393 const std::vector<GenericValue> &Args) {
394 char Buffer[10000];
395 std::vector<GenericValue> NewArgs;
396 NewArgs.push_back(PTOGV((void*)&Buffer[0]));
397 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
398 GenericValue GV = lle_X_sprintf(FT, NewArgs);
399 cout << Buffer;
400 return GV;
403 static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
404 void *Arg2, void *Arg3, void *Arg4, void *Arg5,
405 void *Arg6, void *Arg7, void *Arg8) {
406 void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
408 // Loop over the format string, munging read values as appropriate (performs
409 // byteswaps as necessary).
410 unsigned ArgNo = 0;
411 while (*Fmt) {
412 if (*Fmt++ == '%') {
413 // Read any flag characters that may be present...
414 bool Suppress = false;
415 bool Half = false;
416 bool Long = false;
417 bool LongLong = false; // long long or long double
419 while (1) {
420 switch (*Fmt++) {
421 case '*': Suppress = true; break;
422 case 'a': /*Allocate = true;*/ break; // We don't need to track this
423 case 'h': Half = true; break;
424 case 'l': Long = true; break;
425 case 'q':
426 case 'L': LongLong = true; break;
427 default:
428 if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs
429 goto Out;
432 Out:
434 // Read the conversion character
435 if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
436 unsigned Size = 0;
437 const Type *Ty = 0;
439 switch (Fmt[-1]) {
440 case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
441 case 'd':
442 if (Long || LongLong) {
443 Size = 8; Ty = Type::Int64Ty;
444 } else if (Half) {
445 Size = 4; Ty = Type::Int16Ty;
446 } else {
447 Size = 4; Ty = Type::Int32Ty;
449 break;
451 case 'e': case 'g': case 'E':
452 case 'f':
453 if (Long || LongLong) {
454 Size = 8; Ty = Type::DoubleTy;
455 } else {
456 Size = 4; Ty = Type::FloatTy;
458 break;
460 case 's': case 'c': case '[': // No byteswap needed
461 Size = 1;
462 Ty = Type::Int8Ty;
463 break;
465 default: break;
468 if (Size) {
469 GenericValue GV;
470 void *Arg = Args[ArgNo++];
471 memcpy(&GV, Arg, Size);
472 TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
479 // int sscanf(const char *format, ...);
480 GenericValue lle_X_sscanf(const FunctionType *FT,
481 const std::vector<GenericValue> &args) {
482 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
484 char *Args[10];
485 for (unsigned i = 0; i < args.size(); ++i)
486 Args[i] = (char*)GVTOP(args[i]);
488 GenericValue GV;
489 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
490 Args[5], Args[6], Args[7], Args[8], Args[9]));
491 ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
492 Args[5], Args[6], Args[7], Args[8], Args[9], 0);
493 return GV;
496 // int scanf(const char *format, ...);
497 GenericValue lle_X_scanf(const FunctionType *FT,
498 const std::vector<GenericValue> &args) {
499 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
501 char *Args[10];
502 for (unsigned i = 0; i < args.size(); ++i)
503 Args[i] = (char*)GVTOP(args[i]);
505 GenericValue GV;
506 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
507 Args[5], Args[6], Args[7], Args[8], Args[9]));
508 ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
509 Args[5], Args[6], Args[7], Args[8], Args[9]);
510 return GV;
513 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
514 // output useful.
515 GenericValue lle_X_fprintf(const FunctionType *FT,
516 const std::vector<GenericValue> &Args) {
517 assert(Args.size() >= 2);
518 char Buffer[10000];
519 std::vector<GenericValue> NewArgs;
520 NewArgs.push_back(PTOGV(Buffer));
521 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
522 GenericValue GV = lle_X_sprintf(FT, NewArgs);
524 fputs(Buffer, (FILE *) GVTOP(Args[0]));
525 return GV;
528 } // End extern "C"
531 void Interpreter::initializeExternalFunctions() {
532 FuncNames["lle_X_atexit"] = lle_X_atexit;
533 FuncNames["lle_X_exit"] = lle_X_exit;
534 FuncNames["lle_X_abort"] = lle_X_abort;
536 FuncNames["lle_X_printf"] = lle_X_printf;
537 FuncNames["lle_X_sprintf"] = lle_X_sprintf;
538 FuncNames["lle_X_sscanf"] = lle_X_sscanf;
539 FuncNames["lle_X_scanf"] = lle_X_scanf;
540 FuncNames["lle_X_fprintf"] = lle_X_fprintf;