Update comments.
[llvm/msp430.git] / lib / Support / APInt.cpp
blob1cabe0f03e7136044646f70fad34637a7a00dc7a
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <cmath>
23 #include <limits>
24 #include <cstring>
25 #include <cstdlib>
26 using namespace llvm;
28 /// A utility function for allocating memory, checking for allocation failures,
29 /// and ensuring the contents are zeroed.
30 inline static uint64_t* getClearedMemory(unsigned numWords) {
31 uint64_t * result = new uint64_t[numWords];
32 assert(result && "APInt memory allocation fails!");
33 memset(result, 0, numWords * sizeof(uint64_t));
34 return result;
37 /// A utility function for allocating memory and checking for allocation
38 /// failure. The content is not zeroed.
39 inline static uint64_t* getMemory(unsigned numWords) {
40 uint64_t * result = new uint64_t[numWords];
41 assert(result && "APInt memory allocation fails!");
42 return result;
45 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
46 pVal = getClearedMemory(getNumWords());
47 pVal[0] = val;
48 if (isSigned && int64_t(val) < 0)
49 for (unsigned i = 1; i < getNumWords(); ++i)
50 pVal[i] = -1ULL;
53 void APInt::initSlowCase(const APInt& that) {
54 pVal = getMemory(getNumWords());
55 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
59 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
60 : BitWidth(numBits), VAL(0) {
61 assert(BitWidth && "bitwidth too small");
62 assert(bigVal && "Null pointer detected!");
63 if (isSingleWord())
64 VAL = bigVal[0];
65 else {
66 // Get memory, cleared to 0
67 pVal = getClearedMemory(getNumWords());
68 // Calculate the number of words to copy
69 unsigned words = std::min<unsigned>(numWords, getNumWords());
70 // Copy the words from bigVal to pVal
71 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
73 // Make sure unused high bits are cleared
74 clearUnusedBits();
77 APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
78 uint8_t radix)
79 : BitWidth(numbits), VAL(0) {
80 assert(BitWidth && "bitwidth too small");
81 fromString(numbits, StrStart, slen, radix);
84 APInt& APInt::AssignSlowCase(const APInt& RHS) {
85 // Don't do anything for X = X
86 if (this == &RHS)
87 return *this;
89 if (BitWidth == RHS.getBitWidth()) {
90 // assume same bit-width single-word case is already handled
91 assert(!isSingleWord());
92 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
93 return *this;
96 if (isSingleWord()) {
97 // assume case where both are single words is already handled
98 assert(!RHS.isSingleWord());
99 VAL = 0;
100 pVal = getMemory(RHS.getNumWords());
101 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
102 } else if (getNumWords() == RHS.getNumWords())
103 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
104 else if (RHS.isSingleWord()) {
105 delete [] pVal;
106 VAL = RHS.VAL;
107 } else {
108 delete [] pVal;
109 pVal = getMemory(RHS.getNumWords());
110 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
112 BitWidth = RHS.BitWidth;
113 return clearUnusedBits();
116 APInt& APInt::operator=(uint64_t RHS) {
117 if (isSingleWord())
118 VAL = RHS;
119 else {
120 pVal[0] = RHS;
121 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
123 return clearUnusedBits();
126 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
127 void APInt::Profile(FoldingSetNodeID& ID) const {
128 ID.AddInteger(BitWidth);
130 if (isSingleWord()) {
131 ID.AddInteger(VAL);
132 return;
135 unsigned NumWords = getNumWords();
136 for (unsigned i = 0; i < NumWords; ++i)
137 ID.AddInteger(pVal[i]);
140 /// add_1 - This function adds a single "digit" integer, y, to the multiple
141 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
142 /// 1 is returned if there is a carry out, otherwise 0 is returned.
143 /// @returns the carry of the addition.
144 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
145 for (unsigned i = 0; i < len; ++i) {
146 dest[i] = y + x[i];
147 if (dest[i] < y)
148 y = 1; // Carry one to next digit.
149 else {
150 y = 0; // No need to carry so exit early
151 break;
154 return y;
157 /// @brief Prefix increment operator. Increments the APInt by one.
158 APInt& APInt::operator++() {
159 if (isSingleWord())
160 ++VAL;
161 else
162 add_1(pVal, pVal, getNumWords(), 1);
163 return clearUnusedBits();
166 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
167 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
168 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
169 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
170 /// In other words, if y > x then this function returns 1, otherwise 0.
171 /// @returns the borrow out of the subtraction
172 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
173 for (unsigned i = 0; i < len; ++i) {
174 uint64_t X = x[i];
175 x[i] -= y;
176 if (y > X)
177 y = 1; // We have to "borrow 1" from next "digit"
178 else {
179 y = 0; // No need to borrow
180 break; // Remaining digits are unchanged so exit early
183 return bool(y);
186 /// @brief Prefix decrement operator. Decrements the APInt by one.
187 APInt& APInt::operator--() {
188 if (isSingleWord())
189 --VAL;
190 else
191 sub_1(pVal, getNumWords(), 1);
192 return clearUnusedBits();
195 /// add - This function adds the integer array x to the integer array Y and
196 /// places the result in dest.
197 /// @returns the carry out from the addition
198 /// @brief General addition of 64-bit integer arrays
199 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
200 unsigned len) {
201 bool carry = false;
202 for (unsigned i = 0; i< len; ++i) {
203 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
204 dest[i] = x[i] + y[i] + carry;
205 carry = dest[i] < limit || (carry && dest[i] == limit);
207 return carry;
210 /// Adds the RHS APint to this APInt.
211 /// @returns this, after addition of RHS.
212 /// @brief Addition assignment operator.
213 APInt& APInt::operator+=(const APInt& RHS) {
214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215 if (isSingleWord())
216 VAL += RHS.VAL;
217 else {
218 add(pVal, pVal, RHS.pVal, getNumWords());
220 return clearUnusedBits();
223 /// Subtracts the integer array y from the integer array x
224 /// @returns returns the borrow out.
225 /// @brief Generalized subtraction of 64-bit integer arrays.
226 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
227 unsigned len) {
228 bool borrow = false;
229 for (unsigned i = 0; i < len; ++i) {
230 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
231 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
232 dest[i] = x_tmp - y[i];
234 return borrow;
237 /// Subtracts the RHS APInt from this APInt
238 /// @returns this, after subtraction
239 /// @brief Subtraction assignment operator.
240 APInt& APInt::operator-=(const APInt& RHS) {
241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
242 if (isSingleWord())
243 VAL -= RHS.VAL;
244 else
245 sub(pVal, pVal, RHS.pVal, getNumWords());
246 return clearUnusedBits();
249 /// Multiplies an integer array, x by a a uint64_t integer and places the result
250 /// into dest.
251 /// @returns the carry out of the multiplication.
252 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
253 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
254 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
255 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
256 uint64_t carry = 0;
258 // For each digit of x.
259 for (unsigned i = 0; i < len; ++i) {
260 // Split x into high and low words
261 uint64_t lx = x[i] & 0xffffffffULL;
262 uint64_t hx = x[i] >> 32;
263 // hasCarry - A flag to indicate if there is a carry to the next digit.
264 // hasCarry == 0, no carry
265 // hasCarry == 1, has carry
266 // hasCarry == 2, no carry and the calculation result == 0.
267 uint8_t hasCarry = 0;
268 dest[i] = carry + lx * ly;
269 // Determine if the add above introduces carry.
270 hasCarry = (dest[i] < carry) ? 1 : 0;
271 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
272 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
273 // (2^32 - 1) + 2^32 = 2^64.
274 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
276 carry += (lx * hy) & 0xffffffffULL;
277 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
278 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
279 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
281 return carry;
284 /// Multiplies integer array x by integer array y and stores the result into
285 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
286 /// @brief Generalized multiplicate of integer arrays.
287 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
288 unsigned ylen) {
289 dest[xlen] = mul_1(dest, x, xlen, y[0]);
290 for (unsigned i = 1; i < ylen; ++i) {
291 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
292 uint64_t carry = 0, lx = 0, hx = 0;
293 for (unsigned j = 0; j < xlen; ++j) {
294 lx = x[j] & 0xffffffffULL;
295 hx = x[j] >> 32;
296 // hasCarry - A flag to indicate if has carry.
297 // hasCarry == 0, no carry
298 // hasCarry == 1, has carry
299 // hasCarry == 2, no carry and the calculation result == 0.
300 uint8_t hasCarry = 0;
301 uint64_t resul = carry + lx * ly;
302 hasCarry = (resul < carry) ? 1 : 0;
303 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
304 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
306 carry += (lx * hy) & 0xffffffffULL;
307 resul = (carry << 32) | (resul & 0xffffffffULL);
308 dest[i+j] += resul;
309 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
310 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
311 ((lx * hy) >> 32) + hx * hy;
313 dest[i+xlen] = carry;
317 APInt& APInt::operator*=(const APInt& RHS) {
318 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
319 if (isSingleWord()) {
320 VAL *= RHS.VAL;
321 clearUnusedBits();
322 return *this;
325 // Get some bit facts about LHS and check for zero
326 unsigned lhsBits = getActiveBits();
327 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
328 if (!lhsWords)
329 // 0 * X ===> 0
330 return *this;
332 // Get some bit facts about RHS and check for zero
333 unsigned rhsBits = RHS.getActiveBits();
334 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
335 if (!rhsWords) {
336 // X * 0 ===> 0
337 clear();
338 return *this;
341 // Allocate space for the result
342 unsigned destWords = rhsWords + lhsWords;
343 uint64_t *dest = getMemory(destWords);
345 // Perform the long multiply
346 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
348 // Copy result back into *this
349 clear();
350 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
351 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
353 // delete dest array and return
354 delete[] dest;
355 return *this;
358 APInt& APInt::operator&=(const APInt& RHS) {
359 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
360 if (isSingleWord()) {
361 VAL &= RHS.VAL;
362 return *this;
364 unsigned numWords = getNumWords();
365 for (unsigned i = 0; i < numWords; ++i)
366 pVal[i] &= RHS.pVal[i];
367 return *this;
370 APInt& APInt::operator|=(const APInt& RHS) {
371 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
372 if (isSingleWord()) {
373 VAL |= RHS.VAL;
374 return *this;
376 unsigned numWords = getNumWords();
377 for (unsigned i = 0; i < numWords; ++i)
378 pVal[i] |= RHS.pVal[i];
379 return *this;
382 APInt& APInt::operator^=(const APInt& RHS) {
383 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
384 if (isSingleWord()) {
385 VAL ^= RHS.VAL;
386 this->clearUnusedBits();
387 return *this;
389 unsigned numWords = getNumWords();
390 for (unsigned i = 0; i < numWords; ++i)
391 pVal[i] ^= RHS.pVal[i];
392 return clearUnusedBits();
395 APInt APInt::AndSlowCase(const APInt& RHS) const {
396 unsigned numWords = getNumWords();
397 uint64_t* val = getMemory(numWords);
398 for (unsigned i = 0; i < numWords; ++i)
399 val[i] = pVal[i] & RHS.pVal[i];
400 return APInt(val, getBitWidth());
403 APInt APInt::OrSlowCase(const APInt& RHS) const {
404 unsigned numWords = getNumWords();
405 uint64_t *val = getMemory(numWords);
406 for (unsigned i = 0; i < numWords; ++i)
407 val[i] = pVal[i] | RHS.pVal[i];
408 return APInt(val, getBitWidth());
411 APInt APInt::XorSlowCase(const APInt& RHS) const {
412 unsigned numWords = getNumWords();
413 uint64_t *val = getMemory(numWords);
414 for (unsigned i = 0; i < numWords; ++i)
415 val[i] = pVal[i] ^ RHS.pVal[i];
417 // 0^0==1 so clear the high bits in case they got set.
418 return APInt(val, getBitWidth()).clearUnusedBits();
421 bool APInt::operator !() const {
422 if (isSingleWord())
423 return !VAL;
425 for (unsigned i = 0; i < getNumWords(); ++i)
426 if (pVal[i])
427 return false;
428 return true;
431 APInt APInt::operator*(const APInt& RHS) const {
432 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
433 if (isSingleWord())
434 return APInt(BitWidth, VAL * RHS.VAL);
435 APInt Result(*this);
436 Result *= RHS;
437 return Result.clearUnusedBits();
440 APInt APInt::operator+(const APInt& RHS) const {
441 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
442 if (isSingleWord())
443 return APInt(BitWidth, VAL + RHS.VAL);
444 APInt Result(BitWidth, 0);
445 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
446 return Result.clearUnusedBits();
449 APInt APInt::operator-(const APInt& RHS) const {
450 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
451 if (isSingleWord())
452 return APInt(BitWidth, VAL - RHS.VAL);
453 APInt Result(BitWidth, 0);
454 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
455 return Result.clearUnusedBits();
458 bool APInt::operator[](unsigned bitPosition) const {
459 return (maskBit(bitPosition) &
460 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
463 bool APInt::EqualSlowCase(const APInt& RHS) const {
464 // Get some facts about the number of bits used in the two operands.
465 unsigned n1 = getActiveBits();
466 unsigned n2 = RHS.getActiveBits();
468 // If the number of bits isn't the same, they aren't equal
469 if (n1 != n2)
470 return false;
472 // If the number of bits fits in a word, we only need to compare the low word.
473 if (n1 <= APINT_BITS_PER_WORD)
474 return pVal[0] == RHS.pVal[0];
476 // Otherwise, compare everything
477 for (int i = whichWord(n1 - 1); i >= 0; --i)
478 if (pVal[i] != RHS.pVal[i])
479 return false;
480 return true;
483 bool APInt::EqualSlowCase(uint64_t Val) const {
484 unsigned n = getActiveBits();
485 if (n <= APINT_BITS_PER_WORD)
486 return pVal[0] == Val;
487 else
488 return false;
491 bool APInt::ult(const APInt& RHS) const {
492 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
493 if (isSingleWord())
494 return VAL < RHS.VAL;
496 // Get active bit length of both operands
497 unsigned n1 = getActiveBits();
498 unsigned n2 = RHS.getActiveBits();
500 // If magnitude of LHS is less than RHS, return true.
501 if (n1 < n2)
502 return true;
504 // If magnitude of RHS is greather than LHS, return false.
505 if (n2 < n1)
506 return false;
508 // If they bot fit in a word, just compare the low order word
509 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
510 return pVal[0] < RHS.pVal[0];
512 // Otherwise, compare all words
513 unsigned topWord = whichWord(std::max(n1,n2)-1);
514 for (int i = topWord; i >= 0; --i) {
515 if (pVal[i] > RHS.pVal[i])
516 return false;
517 if (pVal[i] < RHS.pVal[i])
518 return true;
520 return false;
523 bool APInt::slt(const APInt& RHS) const {
524 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
525 if (isSingleWord()) {
526 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
527 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
528 return lhsSext < rhsSext;
531 APInt lhs(*this);
532 APInt rhs(RHS);
533 bool lhsNeg = isNegative();
534 bool rhsNeg = rhs.isNegative();
535 if (lhsNeg) {
536 // Sign bit is set so perform two's complement to make it positive
537 lhs.flip();
538 lhs++;
540 if (rhsNeg) {
541 // Sign bit is set so perform two's complement to make it positive
542 rhs.flip();
543 rhs++;
546 // Now we have unsigned values to compare so do the comparison if necessary
547 // based on the negativeness of the values.
548 if (lhsNeg)
549 if (rhsNeg)
550 return lhs.ugt(rhs);
551 else
552 return true;
553 else if (rhsNeg)
554 return false;
555 else
556 return lhs.ult(rhs);
559 APInt& APInt::set(unsigned bitPosition) {
560 if (isSingleWord())
561 VAL |= maskBit(bitPosition);
562 else
563 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
564 return *this;
567 /// Set the given bit to 0 whose position is given as "bitPosition".
568 /// @brief Set a given bit to 0.
569 APInt& APInt::clear(unsigned bitPosition) {
570 if (isSingleWord())
571 VAL &= ~maskBit(bitPosition);
572 else
573 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
574 return *this;
577 /// @brief Toggle every bit to its opposite value.
579 /// Toggle a given bit to its opposite value whose position is given
580 /// as "bitPosition".
581 /// @brief Toggles a given bit to its opposite value.
582 APInt& APInt::flip(unsigned bitPosition) {
583 assert(bitPosition < BitWidth && "Out of the bit-width range!");
584 if ((*this)[bitPosition]) clear(bitPosition);
585 else set(bitPosition);
586 return *this;
589 unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
590 assert(str != 0 && "Invalid value string");
591 assert(slen > 0 && "Invalid string length");
593 // Each computation below needs to know if its negative
594 unsigned isNegative = str[0] == '-';
595 if (isNegative) {
596 slen--;
597 str++;
599 // For radixes of power-of-two values, the bits required is accurately and
600 // easily computed
601 if (radix == 2)
602 return slen + isNegative;
603 if (radix == 8)
604 return slen * 3 + isNegative;
605 if (radix == 16)
606 return slen * 4 + isNegative;
608 // Otherwise it must be radix == 10, the hard case
609 assert(radix == 10 && "Invalid radix");
611 // This is grossly inefficient but accurate. We could probably do something
612 // with a computation of roughly slen*64/20 and then adjust by the value of
613 // the first few digits. But, I'm not sure how accurate that could be.
615 // Compute a sufficient number of bits that is always large enough but might
616 // be too large. This avoids the assertion in the constructor.
617 unsigned sufficient = slen*64/18;
619 // Convert to the actual binary value.
620 APInt tmp(sufficient, str, slen, radix);
622 // Compute how many bits are required.
623 return isNegative + tmp.logBase2() + 1;
626 // From http://www.burtleburtle.net, byBob Jenkins.
627 // When targeting x86, both GCC and LLVM seem to recognize this as a
628 // rotate instruction.
629 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
631 // From http://www.burtleburtle.net, by Bob Jenkins.
632 #define mix(a,b,c) \
634 a -= c; a ^= rot(c, 4); c += b; \
635 b -= a; b ^= rot(a, 6); a += c; \
636 c -= b; c ^= rot(b, 8); b += a; \
637 a -= c; a ^= rot(c,16); c += b; \
638 b -= a; b ^= rot(a,19); a += c; \
639 c -= b; c ^= rot(b, 4); b += a; \
642 // From http://www.burtleburtle.net, by Bob Jenkins.
643 #define final(a,b,c) \
645 c ^= b; c -= rot(b,14); \
646 a ^= c; a -= rot(c,11); \
647 b ^= a; b -= rot(a,25); \
648 c ^= b; c -= rot(b,16); \
649 a ^= c; a -= rot(c,4); \
650 b ^= a; b -= rot(a,14); \
651 c ^= b; c -= rot(b,24); \
654 // hashword() was adapted from http://www.burtleburtle.net, by Bob
655 // Jenkins. k is a pointer to an array of uint32_t values; length is
656 // the length of the key, in 32-bit chunks. This version only handles
657 // keys that are a multiple of 32 bits in size.
658 static inline uint32_t hashword(const uint64_t *k64, size_t length)
660 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
661 uint32_t a,b,c;
663 /* Set up the internal state */
664 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
666 /*------------------------------------------------- handle most of the key */
667 while (length > 3)
669 a += k[0];
670 b += k[1];
671 c += k[2];
672 mix(a,b,c);
673 length -= 3;
674 k += 3;
677 /*------------------------------------------- handle the last 3 uint32_t's */
678 switch(length) /* all the case statements fall through */
680 case 3 : c+=k[2];
681 case 2 : b+=k[1];
682 case 1 : a+=k[0];
683 final(a,b,c);
684 case 0: /* case 0: nothing left to add */
685 break;
687 /*------------------------------------------------------ report the result */
688 return c;
691 // hashword8() was adapted from http://www.burtleburtle.net, by Bob
692 // Jenkins. This computes a 32-bit hash from one 64-bit word. When
693 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
694 // function into about 35 instructions when inlined.
695 static inline uint32_t hashword8(const uint64_t k64)
697 uint32_t a,b,c;
698 a = b = c = 0xdeadbeef + 4;
699 b += k64 >> 32;
700 a += k64 & 0xffffffff;
701 final(a,b,c);
702 return c;
704 #undef final
705 #undef mix
706 #undef rot
708 uint64_t APInt::getHashValue() const {
709 uint64_t hash;
710 if (isSingleWord())
711 hash = hashword8(VAL);
712 else
713 hash = hashword(pVal, getNumWords()*2);
714 return hash;
717 /// HiBits - This function returns the high "numBits" bits of this APInt.
718 APInt APInt::getHiBits(unsigned numBits) const {
719 return APIntOps::lshr(*this, BitWidth - numBits);
722 /// LoBits - This function returns the low "numBits" bits of this APInt.
723 APInt APInt::getLoBits(unsigned numBits) const {
724 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
725 BitWidth - numBits);
728 bool APInt::isPowerOf2() const {
729 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
732 unsigned APInt::countLeadingZerosSlowCase() const {
733 unsigned Count = 0;
734 for (unsigned i = getNumWords(); i > 0u; --i) {
735 if (pVal[i-1] == 0)
736 Count += APINT_BITS_PER_WORD;
737 else {
738 Count += CountLeadingZeros_64(pVal[i-1]);
739 break;
742 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
743 if (remainder)
744 Count -= APINT_BITS_PER_WORD - remainder;
745 return std::min(Count, BitWidth);
748 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
749 unsigned Count = 0;
750 if (skip)
751 V <<= skip;
752 while (V && (V & (1ULL << 63))) {
753 Count++;
754 V <<= 1;
756 return Count;
759 unsigned APInt::countLeadingOnes() const {
760 if (isSingleWord())
761 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
763 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
764 unsigned shift;
765 if (!highWordBits) {
766 highWordBits = APINT_BITS_PER_WORD;
767 shift = 0;
768 } else {
769 shift = APINT_BITS_PER_WORD - highWordBits;
771 int i = getNumWords() - 1;
772 unsigned Count = countLeadingOnes_64(pVal[i], shift);
773 if (Count == highWordBits) {
774 for (i--; i >= 0; --i) {
775 if (pVal[i] == -1ULL)
776 Count += APINT_BITS_PER_WORD;
777 else {
778 Count += countLeadingOnes_64(pVal[i], 0);
779 break;
783 return Count;
786 unsigned APInt::countTrailingZeros() const {
787 if (isSingleWord())
788 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
789 unsigned Count = 0;
790 unsigned i = 0;
791 for (; i < getNumWords() && pVal[i] == 0; ++i)
792 Count += APINT_BITS_PER_WORD;
793 if (i < getNumWords())
794 Count += CountTrailingZeros_64(pVal[i]);
795 return std::min(Count, BitWidth);
798 unsigned APInt::countTrailingOnesSlowCase() const {
799 unsigned Count = 0;
800 unsigned i = 0;
801 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
802 Count += APINT_BITS_PER_WORD;
803 if (i < getNumWords())
804 Count += CountTrailingOnes_64(pVal[i]);
805 return std::min(Count, BitWidth);
808 unsigned APInt::countPopulationSlowCase() const {
809 unsigned Count = 0;
810 for (unsigned i = 0; i < getNumWords(); ++i)
811 Count += CountPopulation_64(pVal[i]);
812 return Count;
815 APInt APInt::byteSwap() const {
816 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
817 if (BitWidth == 16)
818 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
819 else if (BitWidth == 32)
820 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
821 else if (BitWidth == 48) {
822 unsigned Tmp1 = unsigned(VAL >> 16);
823 Tmp1 = ByteSwap_32(Tmp1);
824 uint16_t Tmp2 = uint16_t(VAL);
825 Tmp2 = ByteSwap_16(Tmp2);
826 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
827 } else if (BitWidth == 64)
828 return APInt(BitWidth, ByteSwap_64(VAL));
829 else {
830 APInt Result(BitWidth, 0);
831 char *pByte = (char*)Result.pVal;
832 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
833 char Tmp = pByte[i];
834 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
835 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
837 return Result;
841 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
842 const APInt& API2) {
843 APInt A = API1, B = API2;
844 while (!!B) {
845 APInt T = B;
846 B = APIntOps::urem(A, B);
847 A = T;
849 return A;
852 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
853 union {
854 double D;
855 uint64_t I;
856 } T;
857 T.D = Double;
859 // Get the sign bit from the highest order bit
860 bool isNeg = T.I >> 63;
862 // Get the 11-bit exponent and adjust for the 1023 bit bias
863 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
865 // If the exponent is negative, the value is < 0 so just return 0.
866 if (exp < 0)
867 return APInt(width, 0u);
869 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
870 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
872 // If the exponent doesn't shift all bits out of the mantissa
873 if (exp < 52)
874 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
875 APInt(width, mantissa >> (52 - exp));
877 // If the client didn't provide enough bits for us to shift the mantissa into
878 // then the result is undefined, just return 0
879 if (width <= exp - 52)
880 return APInt(width, 0);
882 // Otherwise, we have to shift the mantissa bits up to the right location
883 APInt Tmp(width, mantissa);
884 Tmp = Tmp.shl((unsigned)exp - 52);
885 return isNeg ? -Tmp : Tmp;
888 /// RoundToDouble - This function convert this APInt to a double.
889 /// The layout for double is as following (IEEE Standard 754):
890 /// --------------------------------------
891 /// | Sign Exponent Fraction Bias |
892 /// |-------------------------------------- |
893 /// | 1[63] 11[62-52] 52[51-00] 1023 |
894 /// --------------------------------------
895 double APInt::roundToDouble(bool isSigned) const {
897 // Handle the simple case where the value is contained in one uint64_t.
898 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
899 if (isSigned) {
900 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
901 return double(sext);
902 } else
903 return double(VAL);
906 // Determine if the value is negative.
907 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
909 // Construct the absolute value if we're negative.
910 APInt Tmp(isNeg ? -(*this) : (*this));
912 // Figure out how many bits we're using.
913 unsigned n = Tmp.getActiveBits();
915 // The exponent (without bias normalization) is just the number of bits
916 // we are using. Note that the sign bit is gone since we constructed the
917 // absolute value.
918 uint64_t exp = n;
920 // Return infinity for exponent overflow
921 if (exp > 1023) {
922 if (!isSigned || !isNeg)
923 return std::numeric_limits<double>::infinity();
924 else
925 return -std::numeric_limits<double>::infinity();
927 exp += 1023; // Increment for 1023 bias
929 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
930 // extract the high 52 bits from the correct words in pVal.
931 uint64_t mantissa;
932 unsigned hiWord = whichWord(n-1);
933 if (hiWord == 0) {
934 mantissa = Tmp.pVal[0];
935 if (n > 52)
936 mantissa >>= n - 52; // shift down, we want the top 52 bits.
937 } else {
938 assert(hiWord > 0 && "huh?");
939 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
940 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
941 mantissa = hibits | lobits;
944 // The leading bit of mantissa is implicit, so get rid of it.
945 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
946 union {
947 double D;
948 uint64_t I;
949 } T;
950 T.I = sign | (exp << 52) | mantissa;
951 return T.D;
954 // Truncate to new width.
955 APInt &APInt::trunc(unsigned width) {
956 assert(width < BitWidth && "Invalid APInt Truncate request");
957 assert(width && "Can't truncate to 0 bits");
958 unsigned wordsBefore = getNumWords();
959 BitWidth = width;
960 unsigned wordsAfter = getNumWords();
961 if (wordsBefore != wordsAfter) {
962 if (wordsAfter == 1) {
963 uint64_t *tmp = pVal;
964 VAL = pVal[0];
965 delete [] tmp;
966 } else {
967 uint64_t *newVal = getClearedMemory(wordsAfter);
968 for (unsigned i = 0; i < wordsAfter; ++i)
969 newVal[i] = pVal[i];
970 delete [] pVal;
971 pVal = newVal;
974 return clearUnusedBits();
977 // Sign extend to a new width.
978 APInt &APInt::sext(unsigned width) {
979 assert(width > BitWidth && "Invalid APInt SignExtend request");
980 // If the sign bit isn't set, this is the same as zext.
981 if (!isNegative()) {
982 zext(width);
983 return *this;
986 // The sign bit is set. First, get some facts
987 unsigned wordsBefore = getNumWords();
988 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
989 BitWidth = width;
990 unsigned wordsAfter = getNumWords();
992 // Mask the high order word appropriately
993 if (wordsBefore == wordsAfter) {
994 unsigned newWordBits = width % APINT_BITS_PER_WORD;
995 // The extension is contained to the wordsBefore-1th word.
996 uint64_t mask = ~0ULL;
997 if (newWordBits)
998 mask >>= APINT_BITS_PER_WORD - newWordBits;
999 mask <<= wordBits;
1000 if (wordsBefore == 1)
1001 VAL |= mask;
1002 else
1003 pVal[wordsBefore-1] |= mask;
1004 return clearUnusedBits();
1007 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1008 uint64_t *newVal = getMemory(wordsAfter);
1009 if (wordsBefore == 1)
1010 newVal[0] = VAL | mask;
1011 else {
1012 for (unsigned i = 0; i < wordsBefore; ++i)
1013 newVal[i] = pVal[i];
1014 newVal[wordsBefore-1] |= mask;
1016 for (unsigned i = wordsBefore; i < wordsAfter; i++)
1017 newVal[i] = -1ULL;
1018 if (wordsBefore != 1)
1019 delete [] pVal;
1020 pVal = newVal;
1021 return clearUnusedBits();
1024 // Zero extend to a new width.
1025 APInt &APInt::zext(unsigned width) {
1026 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1027 unsigned wordsBefore = getNumWords();
1028 BitWidth = width;
1029 unsigned wordsAfter = getNumWords();
1030 if (wordsBefore != wordsAfter) {
1031 uint64_t *newVal = getClearedMemory(wordsAfter);
1032 if (wordsBefore == 1)
1033 newVal[0] = VAL;
1034 else
1035 for (unsigned i = 0; i < wordsBefore; ++i)
1036 newVal[i] = pVal[i];
1037 if (wordsBefore != 1)
1038 delete [] pVal;
1039 pVal = newVal;
1041 return *this;
1044 APInt &APInt::zextOrTrunc(unsigned width) {
1045 if (BitWidth < width)
1046 return zext(width);
1047 if (BitWidth > width)
1048 return trunc(width);
1049 return *this;
1052 APInt &APInt::sextOrTrunc(unsigned width) {
1053 if (BitWidth < width)
1054 return sext(width);
1055 if (BitWidth > width)
1056 return trunc(width);
1057 return *this;
1060 /// Arithmetic right-shift this APInt by shiftAmt.
1061 /// @brief Arithmetic right-shift function.
1062 APInt APInt::ashr(const APInt &shiftAmt) const {
1063 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1066 /// Arithmetic right-shift this APInt by shiftAmt.
1067 /// @brief Arithmetic right-shift function.
1068 APInt APInt::ashr(unsigned shiftAmt) const {
1069 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1070 // Handle a degenerate case
1071 if (shiftAmt == 0)
1072 return *this;
1074 // Handle single word shifts with built-in ashr
1075 if (isSingleWord()) {
1076 if (shiftAmt == BitWidth)
1077 return APInt(BitWidth, 0); // undefined
1078 else {
1079 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1080 return APInt(BitWidth,
1081 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1085 // If all the bits were shifted out, the result is, technically, undefined.
1086 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1087 // issues in the algorithm below.
1088 if (shiftAmt == BitWidth) {
1089 if (isNegative())
1090 return APInt(BitWidth, -1ULL, true);
1091 else
1092 return APInt(BitWidth, 0);
1095 // Create some space for the result.
1096 uint64_t * val = new uint64_t[getNumWords()];
1098 // Compute some values needed by the following shift algorithms
1099 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1100 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1101 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1102 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1103 if (bitsInWord == 0)
1104 bitsInWord = APINT_BITS_PER_WORD;
1106 // If we are shifting whole words, just move whole words
1107 if (wordShift == 0) {
1108 // Move the words containing significant bits
1109 for (unsigned i = 0; i <= breakWord; ++i)
1110 val[i] = pVal[i+offset]; // move whole word
1112 // Adjust the top significant word for sign bit fill, if negative
1113 if (isNegative())
1114 if (bitsInWord < APINT_BITS_PER_WORD)
1115 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1116 } else {
1117 // Shift the low order words
1118 for (unsigned i = 0; i < breakWord; ++i) {
1119 // This combines the shifted corresponding word with the low bits from
1120 // the next word (shifted into this word's high bits).
1121 val[i] = (pVal[i+offset] >> wordShift) |
1122 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1125 // Shift the break word. In this case there are no bits from the next word
1126 // to include in this word.
1127 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1129 // Deal with sign extenstion in the break word, and possibly the word before
1130 // it.
1131 if (isNegative()) {
1132 if (wordShift > bitsInWord) {
1133 if (breakWord > 0)
1134 val[breakWord-1] |=
1135 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1136 val[breakWord] |= ~0ULL;
1137 } else
1138 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1142 // Remaining words are 0 or -1, just assign them.
1143 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1144 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1145 val[i] = fillValue;
1146 return APInt(val, BitWidth).clearUnusedBits();
1149 /// Logical right-shift this APInt by shiftAmt.
1150 /// @brief Logical right-shift function.
1151 APInt APInt::lshr(const APInt &shiftAmt) const {
1152 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1155 /// Logical right-shift this APInt by shiftAmt.
1156 /// @brief Logical right-shift function.
1157 APInt APInt::lshr(unsigned shiftAmt) const {
1158 if (isSingleWord()) {
1159 if (shiftAmt == BitWidth)
1160 return APInt(BitWidth, 0);
1161 else
1162 return APInt(BitWidth, this->VAL >> shiftAmt);
1165 // If all the bits were shifted out, the result is 0. This avoids issues
1166 // with shifting by the size of the integer type, which produces undefined
1167 // results. We define these "undefined results" to always be 0.
1168 if (shiftAmt == BitWidth)
1169 return APInt(BitWidth, 0);
1171 // If none of the bits are shifted out, the result is *this. This avoids
1172 // issues with shifting by the size of the integer type, which produces
1173 // undefined results in the code below. This is also an optimization.
1174 if (shiftAmt == 0)
1175 return *this;
1177 // Create some space for the result.
1178 uint64_t * val = new uint64_t[getNumWords()];
1180 // If we are shifting less than a word, compute the shift with a simple carry
1181 if (shiftAmt < APINT_BITS_PER_WORD) {
1182 uint64_t carry = 0;
1183 for (int i = getNumWords()-1; i >= 0; --i) {
1184 val[i] = (pVal[i] >> shiftAmt) | carry;
1185 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1187 return APInt(val, BitWidth).clearUnusedBits();
1190 // Compute some values needed by the remaining shift algorithms
1191 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1192 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1194 // If we are shifting whole words, just move whole words
1195 if (wordShift == 0) {
1196 for (unsigned i = 0; i < getNumWords() - offset; ++i)
1197 val[i] = pVal[i+offset];
1198 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1199 val[i] = 0;
1200 return APInt(val,BitWidth).clearUnusedBits();
1203 // Shift the low order words
1204 unsigned breakWord = getNumWords() - offset -1;
1205 for (unsigned i = 0; i < breakWord; ++i)
1206 val[i] = (pVal[i+offset] >> wordShift) |
1207 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1208 // Shift the break word.
1209 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1211 // Remaining words are 0
1212 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1213 val[i] = 0;
1214 return APInt(val, BitWidth).clearUnusedBits();
1217 /// Left-shift this APInt by shiftAmt.
1218 /// @brief Left-shift function.
1219 APInt APInt::shl(const APInt &shiftAmt) const {
1220 // It's undefined behavior in C to shift by BitWidth or greater.
1221 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1224 APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1225 // If all the bits were shifted out, the result is 0. This avoids issues
1226 // with shifting by the size of the integer type, which produces undefined
1227 // results. We define these "undefined results" to always be 0.
1228 if (shiftAmt == BitWidth)
1229 return APInt(BitWidth, 0);
1231 // If none of the bits are shifted out, the result is *this. This avoids a
1232 // lshr by the words size in the loop below which can produce incorrect
1233 // results. It also avoids the expensive computation below for a common case.
1234 if (shiftAmt == 0)
1235 return *this;
1237 // Create some space for the result.
1238 uint64_t * val = new uint64_t[getNumWords()];
1240 // If we are shifting less than a word, do it the easy way
1241 if (shiftAmt < APINT_BITS_PER_WORD) {
1242 uint64_t carry = 0;
1243 for (unsigned i = 0; i < getNumWords(); i++) {
1244 val[i] = pVal[i] << shiftAmt | carry;
1245 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1247 return APInt(val, BitWidth).clearUnusedBits();
1250 // Compute some values needed by the remaining shift algorithms
1251 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1252 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1254 // If we are shifting whole words, just move whole words
1255 if (wordShift == 0) {
1256 for (unsigned i = 0; i < offset; i++)
1257 val[i] = 0;
1258 for (unsigned i = offset; i < getNumWords(); i++)
1259 val[i] = pVal[i-offset];
1260 return APInt(val,BitWidth).clearUnusedBits();
1263 // Copy whole words from this to Result.
1264 unsigned i = getNumWords() - 1;
1265 for (; i > offset; --i)
1266 val[i] = pVal[i-offset] << wordShift |
1267 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1268 val[offset] = pVal[0] << wordShift;
1269 for (i = 0; i < offset; ++i)
1270 val[i] = 0;
1271 return APInt(val, BitWidth).clearUnusedBits();
1274 APInt APInt::rotl(const APInt &rotateAmt) const {
1275 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1278 APInt APInt::rotl(unsigned rotateAmt) const {
1279 if (rotateAmt == 0)
1280 return *this;
1281 // Don't get too fancy, just use existing shift/or facilities
1282 APInt hi(*this);
1283 APInt lo(*this);
1284 hi.shl(rotateAmt);
1285 lo.lshr(BitWidth - rotateAmt);
1286 return hi | lo;
1289 APInt APInt::rotr(const APInt &rotateAmt) const {
1290 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1293 APInt APInt::rotr(unsigned rotateAmt) const {
1294 if (rotateAmt == 0)
1295 return *this;
1296 // Don't get too fancy, just use existing shift/or facilities
1297 APInt hi(*this);
1298 APInt lo(*this);
1299 lo.lshr(rotateAmt);
1300 hi.shl(BitWidth - rotateAmt);
1301 return hi | lo;
1304 // Square Root - this method computes and returns the square root of "this".
1305 // Three mechanisms are used for computation. For small values (<= 5 bits),
1306 // a table lookup is done. This gets some performance for common cases. For
1307 // values using less than 52 bits, the value is converted to double and then
1308 // the libc sqrt function is called. The result is rounded and then converted
1309 // back to a uint64_t which is then used to construct the result. Finally,
1310 // the Babylonian method for computing square roots is used.
1311 APInt APInt::sqrt() const {
1313 // Determine the magnitude of the value.
1314 unsigned magnitude = getActiveBits();
1316 // Use a fast table for some small values. This also gets rid of some
1317 // rounding errors in libc sqrt for small values.
1318 if (magnitude <= 5) {
1319 static const uint8_t results[32] = {
1320 /* 0 */ 0,
1321 /* 1- 2 */ 1, 1,
1322 /* 3- 6 */ 2, 2, 2, 2,
1323 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1324 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1325 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1326 /* 31 */ 6
1328 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1331 // If the magnitude of the value fits in less than 52 bits (the precision of
1332 // an IEEE double precision floating point value), then we can use the
1333 // libc sqrt function which will probably use a hardware sqrt computation.
1334 // This should be faster than the algorithm below.
1335 if (magnitude < 52) {
1336 #ifdef _MSC_VER
1337 // Amazingly, VC++ doesn't have round().
1338 return APInt(BitWidth,
1339 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1340 #else
1341 return APInt(BitWidth,
1342 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1343 #endif
1346 // Okay, all the short cuts are exhausted. We must compute it. The following
1347 // is a classical Babylonian method for computing the square root. This code
1348 // was adapted to APINt from a wikipedia article on such computations.
1349 // See http://www.wikipedia.org/ and go to the page named
1350 // Calculate_an_integer_square_root.
1351 unsigned nbits = BitWidth, i = 4;
1352 APInt testy(BitWidth, 16);
1353 APInt x_old(BitWidth, 1);
1354 APInt x_new(BitWidth, 0);
1355 APInt two(BitWidth, 2);
1357 // Select a good starting value using binary logarithms.
1358 for (;; i += 2, testy = testy.shl(2))
1359 if (i >= nbits || this->ule(testy)) {
1360 x_old = x_old.shl(i / 2);
1361 break;
1364 // Use the Babylonian method to arrive at the integer square root:
1365 for (;;) {
1366 x_new = (this->udiv(x_old) + x_old).udiv(two);
1367 if (x_old.ule(x_new))
1368 break;
1369 x_old = x_new;
1372 // Make sure we return the closest approximation
1373 // NOTE: The rounding calculation below is correct. It will produce an
1374 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1375 // determined to be a rounding issue with pari/gp as it begins to use a
1376 // floating point representation after 192 bits. There are no discrepancies
1377 // between this algorithm and pari/gp for bit widths < 192 bits.
1378 APInt square(x_old * x_old);
1379 APInt nextSquare((x_old + 1) * (x_old +1));
1380 if (this->ult(square))
1381 return x_old;
1382 else if (this->ule(nextSquare)) {
1383 APInt midpoint((nextSquare - square).udiv(two));
1384 APInt offset(*this - square);
1385 if (offset.ult(midpoint))
1386 return x_old;
1387 else
1388 return x_old + 1;
1389 } else
1390 assert(0 && "Error in APInt::sqrt computation");
1391 return x_old + 1;
1394 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1395 /// iterative extended Euclidean algorithm is used to solve for this value,
1396 /// however we simplify it to speed up calculating only the inverse, and take
1397 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1398 /// (potentially large) APInts around.
1399 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1400 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1402 // Using the properties listed at the following web page (accessed 06/21/08):
1403 // http://www.numbertheory.org/php/euclid.html
1404 // (especially the properties numbered 3, 4 and 9) it can be proved that
1405 // BitWidth bits suffice for all the computations in the algorithm implemented
1406 // below. More precisely, this number of bits suffice if the multiplicative
1407 // inverse exists, but may not suffice for the general extended Euclidean
1408 // algorithm.
1410 APInt r[2] = { modulo, *this };
1411 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1412 APInt q(BitWidth, 0);
1414 unsigned i;
1415 for (i = 0; r[i^1] != 0; i ^= 1) {
1416 // An overview of the math without the confusing bit-flipping:
1417 // q = r[i-2] / r[i-1]
1418 // r[i] = r[i-2] % r[i-1]
1419 // t[i] = t[i-2] - t[i-1] * q
1420 udivrem(r[i], r[i^1], q, r[i]);
1421 t[i] -= t[i^1] * q;
1424 // If this APInt and the modulo are not coprime, there is no multiplicative
1425 // inverse, so return 0. We check this by looking at the next-to-last
1426 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1427 // algorithm.
1428 if (r[i] != 1)
1429 return APInt(BitWidth, 0);
1431 // The next-to-last t is the multiplicative inverse. However, we are
1432 // interested in a positive inverse. Calcuate a positive one from a negative
1433 // one if necessary. A simple addition of the modulo suffices because
1434 // abs(t[i]) is known to be less than *this/2 (see the link above).
1435 return t[i].isNegative() ? t[i] + modulo : t[i];
1438 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1439 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1440 /// variables here have the same names as in the algorithm. Comments explain
1441 /// the algorithm and any deviation from it.
1442 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1443 unsigned m, unsigned n) {
1444 assert(u && "Must provide dividend");
1445 assert(v && "Must provide divisor");
1446 assert(q && "Must provide quotient");
1447 assert(u != v && u != q && v != q && "Must us different memory");
1448 assert(n>1 && "n must be > 1");
1450 // Knuth uses the value b as the base of the number system. In our case b
1451 // is 2^31 so we just set it to -1u.
1452 uint64_t b = uint64_t(1) << 32;
1454 #if 0
1455 DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1456 DEBUG(cerr << "KnuthDiv: original:");
1457 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1458 DEBUG(cerr << " by");
1459 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1460 DEBUG(cerr << '\n');
1461 #endif
1462 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1463 // u and v by d. Note that we have taken Knuth's advice here to use a power
1464 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1465 // 2 allows us to shift instead of multiply and it is easy to determine the
1466 // shift amount from the leading zeros. We are basically normalizing the u
1467 // and v so that its high bits are shifted to the top of v's range without
1468 // overflow. Note that this can require an extra word in u so that u must
1469 // be of length m+n+1.
1470 unsigned shift = CountLeadingZeros_32(v[n-1]);
1471 unsigned v_carry = 0;
1472 unsigned u_carry = 0;
1473 if (shift) {
1474 for (unsigned i = 0; i < m+n; ++i) {
1475 unsigned u_tmp = u[i] >> (32 - shift);
1476 u[i] = (u[i] << shift) | u_carry;
1477 u_carry = u_tmp;
1479 for (unsigned i = 0; i < n; ++i) {
1480 unsigned v_tmp = v[i] >> (32 - shift);
1481 v[i] = (v[i] << shift) | v_carry;
1482 v_carry = v_tmp;
1485 u[m+n] = u_carry;
1486 #if 0
1487 DEBUG(cerr << "KnuthDiv: normal:");
1488 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1489 DEBUG(cerr << " by");
1490 DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1491 DEBUG(cerr << '\n');
1492 #endif
1494 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1495 int j = m;
1496 do {
1497 DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1498 // D3. [Calculate q'.].
1499 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1500 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1501 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1502 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1503 // on v[n-2] determines at high speed most of the cases in which the trial
1504 // value qp is one too large, and it eliminates all cases where qp is two
1505 // too large.
1506 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1507 DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1508 uint64_t qp = dividend / v[n-1];
1509 uint64_t rp = dividend % v[n-1];
1510 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1511 qp--;
1512 rp += v[n-1];
1513 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1514 qp--;
1516 DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1518 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1519 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1520 // consists of a simple multiplication by a one-place number, combined with
1521 // a subtraction.
1522 bool isNeg = false;
1523 for (unsigned i = 0; i < n; ++i) {
1524 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1525 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1526 bool borrow = subtrahend > u_tmp;
1527 DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1528 << ", subtrahend == " << subtrahend
1529 << ", borrow = " << borrow << '\n');
1531 uint64_t result = u_tmp - subtrahend;
1532 unsigned k = j + i;
1533 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1534 u[k++] = (unsigned)(result >> 32); // subtract high word
1535 while (borrow && k <= m+n) { // deal with borrow to the left
1536 borrow = u[k] == 0;
1537 u[k]--;
1538 k++;
1540 isNeg |= borrow;
1541 DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1542 u[j+i+1] << '\n');
1544 DEBUG(cerr << "KnuthDiv: after subtraction:");
1545 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1546 DEBUG(cerr << '\n');
1547 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1548 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1549 // true value plus b**(n+1), namely as the b's complement of
1550 // the true value, and a "borrow" to the left should be remembered.
1552 if (isNeg) {
1553 bool carry = true; // true because b's complement is "complement + 1"
1554 for (unsigned i = 0; i <= m+n; ++i) {
1555 u[i] = ~u[i] + carry; // b's complement
1556 carry = carry && u[i] == 0;
1559 DEBUG(cerr << "KnuthDiv: after complement:");
1560 DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1561 DEBUG(cerr << '\n');
1563 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1564 // negative, go to step D6; otherwise go on to step D7.
1565 q[j] = (unsigned)qp;
1566 if (isNeg) {
1567 // D6. [Add back]. The probability that this step is necessary is very
1568 // small, on the order of only 2/b. Make sure that test data accounts for
1569 // this possibility. Decrease q[j] by 1
1570 q[j]--;
1571 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1572 // A carry will occur to the left of u[j+n], and it should be ignored
1573 // since it cancels with the borrow that occurred in D4.
1574 bool carry = false;
1575 for (unsigned i = 0; i < n; i++) {
1576 unsigned limit = std::min(u[j+i],v[i]);
1577 u[j+i] += v[i] + carry;
1578 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1580 u[j+n] += carry;
1582 DEBUG(cerr << "KnuthDiv: after correction:");
1583 DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1584 DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1586 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1587 } while (--j >= 0);
1589 DEBUG(cerr << "KnuthDiv: quotient:");
1590 DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1591 DEBUG(cerr << '\n');
1593 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1594 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1595 // compute the remainder (urem uses this).
1596 if (r) {
1597 // The value d is expressed by the "shift" value above since we avoided
1598 // multiplication by d by using a shift left. So, all we have to do is
1599 // shift right here. In order to mak
1600 if (shift) {
1601 unsigned carry = 0;
1602 DEBUG(cerr << "KnuthDiv: remainder:");
1603 for (int i = n-1; i >= 0; i--) {
1604 r[i] = (u[i] >> shift) | carry;
1605 carry = u[i] << (32 - shift);
1606 DEBUG(cerr << " " << r[i]);
1608 } else {
1609 for (int i = n-1; i >= 0; i--) {
1610 r[i] = u[i];
1611 DEBUG(cerr << " " << r[i]);
1614 DEBUG(cerr << '\n');
1616 #if 0
1617 DEBUG(cerr << std::setbase(10) << '\n');
1618 #endif
1621 void APInt::divide(const APInt LHS, unsigned lhsWords,
1622 const APInt &RHS, unsigned rhsWords,
1623 APInt *Quotient, APInt *Remainder)
1625 assert(lhsWords >= rhsWords && "Fractional result");
1627 // First, compose the values into an array of 32-bit words instead of
1628 // 64-bit words. This is a necessity of both the "short division" algorithm
1629 // and the the Knuth "classical algorithm" which requires there to be native
1630 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1631 // can't use 64-bit operands here because we don't have native results of
1632 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1633 // work on large-endian machines.
1634 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1635 unsigned n = rhsWords * 2;
1636 unsigned m = (lhsWords * 2) - n;
1638 // Allocate space for the temporary values we need either on the stack, if
1639 // it will fit, or on the heap if it won't.
1640 unsigned SPACE[128];
1641 unsigned *U = 0;
1642 unsigned *V = 0;
1643 unsigned *Q = 0;
1644 unsigned *R = 0;
1645 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1646 U = &SPACE[0];
1647 V = &SPACE[m+n+1];
1648 Q = &SPACE[(m+n+1) + n];
1649 if (Remainder)
1650 R = &SPACE[(m+n+1) + n + (m+n)];
1651 } else {
1652 U = new unsigned[m + n + 1];
1653 V = new unsigned[n];
1654 Q = new unsigned[m+n];
1655 if (Remainder)
1656 R = new unsigned[n];
1659 // Initialize the dividend
1660 memset(U, 0, (m+n+1)*sizeof(unsigned));
1661 for (unsigned i = 0; i < lhsWords; ++i) {
1662 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1663 U[i * 2] = (unsigned)(tmp & mask);
1664 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1666 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1668 // Initialize the divisor
1669 memset(V, 0, (n)*sizeof(unsigned));
1670 for (unsigned i = 0; i < rhsWords; ++i) {
1671 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1672 V[i * 2] = (unsigned)(tmp & mask);
1673 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1676 // initialize the quotient and remainder
1677 memset(Q, 0, (m+n) * sizeof(unsigned));
1678 if (Remainder)
1679 memset(R, 0, n * sizeof(unsigned));
1681 // Now, adjust m and n for the Knuth division. n is the number of words in
1682 // the divisor. m is the number of words by which the dividend exceeds the
1683 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1684 // contain any zero words or the Knuth algorithm fails.
1685 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1686 n--;
1687 m++;
1689 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1690 m--;
1692 // If we're left with only a single word for the divisor, Knuth doesn't work
1693 // so we implement the short division algorithm here. This is much simpler
1694 // and faster because we are certain that we can divide a 64-bit quantity
1695 // by a 32-bit quantity at hardware speed and short division is simply a
1696 // series of such operations. This is just like doing short division but we
1697 // are using base 2^32 instead of base 10.
1698 assert(n != 0 && "Divide by zero?");
1699 if (n == 1) {
1700 unsigned divisor = V[0];
1701 unsigned remainder = 0;
1702 for (int i = m+n-1; i >= 0; i--) {
1703 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1704 if (partial_dividend == 0) {
1705 Q[i] = 0;
1706 remainder = 0;
1707 } else if (partial_dividend < divisor) {
1708 Q[i] = 0;
1709 remainder = (unsigned)partial_dividend;
1710 } else if (partial_dividend == divisor) {
1711 Q[i] = 1;
1712 remainder = 0;
1713 } else {
1714 Q[i] = (unsigned)(partial_dividend / divisor);
1715 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1718 if (R)
1719 R[0] = remainder;
1720 } else {
1721 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1722 // case n > 1.
1723 KnuthDiv(U, V, Q, R, m, n);
1726 // If the caller wants the quotient
1727 if (Quotient) {
1728 // Set up the Quotient value's memory.
1729 if (Quotient->BitWidth != LHS.BitWidth) {
1730 if (Quotient->isSingleWord())
1731 Quotient->VAL = 0;
1732 else
1733 delete [] Quotient->pVal;
1734 Quotient->BitWidth = LHS.BitWidth;
1735 if (!Quotient->isSingleWord())
1736 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1737 } else
1738 Quotient->clear();
1740 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1741 // order words.
1742 if (lhsWords == 1) {
1743 uint64_t tmp =
1744 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1745 if (Quotient->isSingleWord())
1746 Quotient->VAL = tmp;
1747 else
1748 Quotient->pVal[0] = tmp;
1749 } else {
1750 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1751 for (unsigned i = 0; i < lhsWords; ++i)
1752 Quotient->pVal[i] =
1753 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1757 // If the caller wants the remainder
1758 if (Remainder) {
1759 // Set up the Remainder value's memory.
1760 if (Remainder->BitWidth != RHS.BitWidth) {
1761 if (Remainder->isSingleWord())
1762 Remainder->VAL = 0;
1763 else
1764 delete [] Remainder->pVal;
1765 Remainder->BitWidth = RHS.BitWidth;
1766 if (!Remainder->isSingleWord())
1767 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1768 } else
1769 Remainder->clear();
1771 // The remainder is in R. Reconstitute the remainder into Remainder's low
1772 // order words.
1773 if (rhsWords == 1) {
1774 uint64_t tmp =
1775 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1776 if (Remainder->isSingleWord())
1777 Remainder->VAL = tmp;
1778 else
1779 Remainder->pVal[0] = tmp;
1780 } else {
1781 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1782 for (unsigned i = 0; i < rhsWords; ++i)
1783 Remainder->pVal[i] =
1784 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1788 // Clean up the memory we allocated.
1789 if (U != &SPACE[0]) {
1790 delete [] U;
1791 delete [] V;
1792 delete [] Q;
1793 delete [] R;
1797 APInt APInt::udiv(const APInt& RHS) const {
1798 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1800 // First, deal with the easy case
1801 if (isSingleWord()) {
1802 assert(RHS.VAL != 0 && "Divide by zero?");
1803 return APInt(BitWidth, VAL / RHS.VAL);
1806 // Get some facts about the LHS and RHS number of bits and words
1807 unsigned rhsBits = RHS.getActiveBits();
1808 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1809 assert(rhsWords && "Divided by zero???");
1810 unsigned lhsBits = this->getActiveBits();
1811 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1813 // Deal with some degenerate cases
1814 if (!lhsWords)
1815 // 0 / X ===> 0
1816 return APInt(BitWidth, 0);
1817 else if (lhsWords < rhsWords || this->ult(RHS)) {
1818 // X / Y ===> 0, iff X < Y
1819 return APInt(BitWidth, 0);
1820 } else if (*this == RHS) {
1821 // X / X ===> 1
1822 return APInt(BitWidth, 1);
1823 } else if (lhsWords == 1 && rhsWords == 1) {
1824 // All high words are zero, just use native divide
1825 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1828 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1829 APInt Quotient(1,0); // to hold result.
1830 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1831 return Quotient;
1834 APInt APInt::urem(const APInt& RHS) const {
1835 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1836 if (isSingleWord()) {
1837 assert(RHS.VAL != 0 && "Remainder by zero?");
1838 return APInt(BitWidth, VAL % RHS.VAL);
1841 // Get some facts about the LHS
1842 unsigned lhsBits = getActiveBits();
1843 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1845 // Get some facts about the RHS
1846 unsigned rhsBits = RHS.getActiveBits();
1847 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1848 assert(rhsWords && "Performing remainder operation by zero ???");
1850 // Check the degenerate cases
1851 if (lhsWords == 0) {
1852 // 0 % Y ===> 0
1853 return APInt(BitWidth, 0);
1854 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1855 // X % Y ===> X, iff X < Y
1856 return *this;
1857 } else if (*this == RHS) {
1858 // X % X == 0;
1859 return APInt(BitWidth, 0);
1860 } else if (lhsWords == 1) {
1861 // All high words are zero, just use native remainder
1862 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1865 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1866 APInt Remainder(1,0);
1867 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1868 return Remainder;
1871 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1872 APInt &Quotient, APInt &Remainder) {
1873 // Get some size facts about the dividend and divisor
1874 unsigned lhsBits = LHS.getActiveBits();
1875 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1876 unsigned rhsBits = RHS.getActiveBits();
1877 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1879 // Check the degenerate cases
1880 if (lhsWords == 0) {
1881 Quotient = 0; // 0 / Y ===> 0
1882 Remainder = 0; // 0 % Y ===> 0
1883 return;
1886 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1887 Quotient = 0; // X / Y ===> 0, iff X < Y
1888 Remainder = LHS; // X % Y ===> X, iff X < Y
1889 return;
1892 if (LHS == RHS) {
1893 Quotient = 1; // X / X ===> 1
1894 Remainder = 0; // X % X ===> 0;
1895 return;
1898 if (lhsWords == 1 && rhsWords == 1) {
1899 // There is only one word to consider so use the native versions.
1900 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1901 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1902 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1903 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
1904 return;
1907 // Okay, lets do it the long way
1908 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1911 void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
1912 uint8_t radix) {
1913 // Check our assumptions here
1914 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1915 "Radix should be 2, 8, 10, or 16!");
1916 assert(str && "String is null?");
1917 bool isNeg = str[0] == '-';
1918 if (isNeg)
1919 str++, slen--;
1920 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
1921 assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
1922 assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
1923 assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
1925 // Allocate memory
1926 if (!isSingleWord())
1927 pVal = getClearedMemory(getNumWords());
1929 // Figure out if we can shift instead of multiply
1930 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1932 // Set up an APInt for the digit to add outside the loop so we don't
1933 // constantly construct/destruct it.
1934 APInt apdigit(getBitWidth(), 0);
1935 APInt apradix(getBitWidth(), radix);
1937 // Enter digit traversal loop
1938 for (unsigned i = 0; i < slen; i++) {
1939 // Get a digit
1940 unsigned digit = 0;
1941 char cdigit = str[i];
1942 if (radix == 16) {
1943 if (!isxdigit(cdigit))
1944 assert(0 && "Invalid hex digit in string");
1945 if (isdigit(cdigit))
1946 digit = cdigit - '0';
1947 else if (cdigit >= 'a')
1948 digit = cdigit - 'a' + 10;
1949 else if (cdigit >= 'A')
1950 digit = cdigit - 'A' + 10;
1951 else
1952 assert(0 && "huh? we shouldn't get here");
1953 } else if (isdigit(cdigit)) {
1954 digit = cdigit - '0';
1955 assert((radix == 10 ||
1956 (radix == 8 && digit != 8 && digit != 9) ||
1957 (radix == 2 && (digit == 0 || digit == 1))) &&
1958 "Invalid digit in string for given radix");
1959 } else {
1960 assert(0 && "Invalid character in digit string");
1963 // Shift or multiply the value by the radix
1964 if (shift)
1965 *this <<= shift;
1966 else
1967 *this *= apradix;
1969 // Add in the digit we just interpreted
1970 if (apdigit.isSingleWord())
1971 apdigit.VAL = digit;
1972 else
1973 apdigit.pVal[0] = digit;
1974 *this += apdigit;
1976 // If its negative, put it in two's complement form
1977 if (isNeg) {
1978 (*this)--;
1979 this->flip();
1983 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
1984 bool Signed) const {
1985 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
1986 "Radix should be 2, 8, 10, or 16!");
1988 // First, check for a zero value and just short circuit the logic below.
1989 if (*this == 0) {
1990 Str.push_back('0');
1991 return;
1994 static const char Digits[] = "0123456789ABCDEF";
1996 if (isSingleWord()) {
1997 char Buffer[65];
1998 char *BufPtr = Buffer+65;
2000 uint64_t N;
2001 if (Signed) {
2002 int64_t I = getSExtValue();
2003 if (I < 0) {
2004 Str.push_back('-');
2005 I = -I;
2007 N = I;
2008 } else {
2009 N = getZExtValue();
2012 while (N) {
2013 *--BufPtr = Digits[N % Radix];
2014 N /= Radix;
2016 Str.append(BufPtr, Buffer+65);
2017 return;
2020 APInt Tmp(*this);
2022 if (Signed && isNegative()) {
2023 // They want to print the signed version and it is a negative value
2024 // Flip the bits and add one to turn it into the equivalent positive
2025 // value and put a '-' in the result.
2026 Tmp.flip();
2027 Tmp++;
2028 Str.push_back('-');
2031 // We insert the digits backward, then reverse them to get the right order.
2032 unsigned StartDig = Str.size();
2034 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2035 // because the number of bits per digit (1, 3 and 4 respectively) divides
2036 // equaly. We just shift until the value is zero.
2037 if (Radix != 10) {
2038 // Just shift tmp right for each digit width until it becomes zero
2039 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2040 unsigned MaskAmt = Radix - 1;
2042 while (Tmp != 0) {
2043 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2044 Str.push_back(Digits[Digit]);
2045 Tmp = Tmp.lshr(ShiftAmt);
2047 } else {
2048 APInt divisor(4, 10);
2049 while (Tmp != 0) {
2050 APInt APdigit(1, 0);
2051 APInt tmp2(Tmp.getBitWidth(), 0);
2052 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2053 &APdigit);
2054 unsigned Digit = (unsigned)APdigit.getZExtValue();
2055 assert(Digit < Radix && "divide failed");
2056 Str.push_back(Digits[Digit]);
2057 Tmp = tmp2;
2061 // Reverse the digits before returning.
2062 std::reverse(Str.begin()+StartDig, Str.end());
2065 /// toString - This returns the APInt as a std::string. Note that this is an
2066 /// inefficient method. It is better to pass in a SmallVector/SmallString
2067 /// to the methods above.
2068 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2069 SmallString<40> S;
2070 toString(S, Radix, Signed);
2071 return S.c_str();
2075 void APInt::dump() const {
2076 SmallString<40> S, U;
2077 this->toStringUnsigned(U);
2078 this->toStringSigned(S);
2079 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2082 void APInt::print(raw_ostream &OS, bool isSigned) const {
2083 SmallString<40> S;
2084 this->toString(S, 10, isSigned);
2085 OS << S.c_str();
2088 // This implements a variety of operations on a representation of
2089 // arbitrary precision, two's-complement, bignum integer values.
2091 /* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2092 and unrestricting assumption. */
2093 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2094 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2096 /* Some handy functions local to this file. */
2097 namespace {
2099 /* Returns the integer part with the least significant BITS set.
2100 BITS cannot be zero. */
2101 static inline integerPart
2102 lowBitMask(unsigned int bits)
2104 assert (bits != 0 && bits <= integerPartWidth);
2106 return ~(integerPart) 0 >> (integerPartWidth - bits);
2109 /* Returns the value of the lower half of PART. */
2110 static inline integerPart
2111 lowHalf(integerPart part)
2113 return part & lowBitMask(integerPartWidth / 2);
2116 /* Returns the value of the upper half of PART. */
2117 static inline integerPart
2118 highHalf(integerPart part)
2120 return part >> (integerPartWidth / 2);
2123 /* Returns the bit number of the most significant set bit of a part.
2124 If the input number has no bits set -1U is returned. */
2125 static unsigned int
2126 partMSB(integerPart value)
2128 unsigned int n, msb;
2130 if (value == 0)
2131 return -1U;
2133 n = integerPartWidth / 2;
2135 msb = 0;
2136 do {
2137 if (value >> n) {
2138 value >>= n;
2139 msb += n;
2142 n >>= 1;
2143 } while (n);
2145 return msb;
2148 /* Returns the bit number of the least significant set bit of a
2149 part. If the input number has no bits set -1U is returned. */
2150 static unsigned int
2151 partLSB(integerPart value)
2153 unsigned int n, lsb;
2155 if (value == 0)
2156 return -1U;
2158 lsb = integerPartWidth - 1;
2159 n = integerPartWidth / 2;
2161 do {
2162 if (value << n) {
2163 value <<= n;
2164 lsb -= n;
2167 n >>= 1;
2168 } while (n);
2170 return lsb;
2174 /* Sets the least significant part of a bignum to the input value, and
2175 zeroes out higher parts. */
2176 void
2177 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2179 unsigned int i;
2181 assert (parts > 0);
2183 dst[0] = part;
2184 for(i = 1; i < parts; i++)
2185 dst[i] = 0;
2188 /* Assign one bignum to another. */
2189 void
2190 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2192 unsigned int i;
2194 for(i = 0; i < parts; i++)
2195 dst[i] = src[i];
2198 /* Returns true if a bignum is zero, false otherwise. */
2199 bool
2200 APInt::tcIsZero(const integerPart *src, unsigned int parts)
2202 unsigned int i;
2204 for(i = 0; i < parts; i++)
2205 if (src[i])
2206 return false;
2208 return true;
2211 /* Extract the given bit of a bignum; returns 0 or 1. */
2213 APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2215 return(parts[bit / integerPartWidth]
2216 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2219 /* Set the given bit of a bignum. */
2220 void
2221 APInt::tcSetBit(integerPart *parts, unsigned int bit)
2223 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2226 /* Returns the bit number of the least significant set bit of a
2227 number. If the input number has no bits set -1U is returned. */
2228 unsigned int
2229 APInt::tcLSB(const integerPart *parts, unsigned int n)
2231 unsigned int i, lsb;
2233 for(i = 0; i < n; i++) {
2234 if (parts[i] != 0) {
2235 lsb = partLSB(parts[i]);
2237 return lsb + i * integerPartWidth;
2241 return -1U;
2244 /* Returns the bit number of the most significant set bit of a number.
2245 If the input number has no bits set -1U is returned. */
2246 unsigned int
2247 APInt::tcMSB(const integerPart *parts, unsigned int n)
2249 unsigned int msb;
2251 do {
2252 --n;
2254 if (parts[n] != 0) {
2255 msb = partMSB(parts[n]);
2257 return msb + n * integerPartWidth;
2259 } while (n);
2261 return -1U;
2264 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2265 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2266 the least significant bit of DST. All high bits above srcBITS in
2267 DST are zero-filled. */
2268 void
2269 APInt::tcExtract(integerPart *dst, unsigned int dstCount, const integerPart *src,
2270 unsigned int srcBits, unsigned int srcLSB)
2272 unsigned int firstSrcPart, dstParts, shift, n;
2274 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2275 assert (dstParts <= dstCount);
2277 firstSrcPart = srcLSB / integerPartWidth;
2278 tcAssign (dst, src + firstSrcPart, dstParts);
2280 shift = srcLSB % integerPartWidth;
2281 tcShiftRight (dst, dstParts, shift);
2283 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2284 in DST. If this is less that srcBits, append the rest, else
2285 clear the high bits. */
2286 n = dstParts * integerPartWidth - shift;
2287 if (n < srcBits) {
2288 integerPart mask = lowBitMask (srcBits - n);
2289 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2290 << n % integerPartWidth);
2291 } else if (n > srcBits) {
2292 if (srcBits % integerPartWidth)
2293 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2296 /* Clear high parts. */
2297 while (dstParts < dstCount)
2298 dst[dstParts++] = 0;
2301 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2302 integerPart
2303 APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2304 integerPart c, unsigned int parts)
2306 unsigned int i;
2308 assert(c <= 1);
2310 for(i = 0; i < parts; i++) {
2311 integerPart l;
2313 l = dst[i];
2314 if (c) {
2315 dst[i] += rhs[i] + 1;
2316 c = (dst[i] <= l);
2317 } else {
2318 dst[i] += rhs[i];
2319 c = (dst[i] < l);
2323 return c;
2326 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2327 integerPart
2328 APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2329 integerPart c, unsigned int parts)
2331 unsigned int i;
2333 assert(c <= 1);
2335 for(i = 0; i < parts; i++) {
2336 integerPart l;
2338 l = dst[i];
2339 if (c) {
2340 dst[i] -= rhs[i] + 1;
2341 c = (dst[i] >= l);
2342 } else {
2343 dst[i] -= rhs[i];
2344 c = (dst[i] > l);
2348 return c;
2351 /* Negate a bignum in-place. */
2352 void
2353 APInt::tcNegate(integerPart *dst, unsigned int parts)
2355 tcComplement(dst, parts);
2356 tcIncrement(dst, parts);
2359 /* DST += SRC * MULTIPLIER + CARRY if add is true
2360 DST = SRC * MULTIPLIER + CARRY if add is false
2362 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2363 they must start at the same point, i.e. DST == SRC.
2365 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2366 returned. Otherwise DST is filled with the least significant
2367 DSTPARTS parts of the result, and if all of the omitted higher
2368 parts were zero return zero, otherwise overflow occurred and
2369 return one. */
2371 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2372 integerPart multiplier, integerPart carry,
2373 unsigned int srcParts, unsigned int dstParts,
2374 bool add)
2376 unsigned int i, n;
2378 /* Otherwise our writes of DST kill our later reads of SRC. */
2379 assert(dst <= src || dst >= src + srcParts);
2380 assert(dstParts <= srcParts + 1);
2382 /* N loops; minimum of dstParts and srcParts. */
2383 n = dstParts < srcParts ? dstParts: srcParts;
2385 for(i = 0; i < n; i++) {
2386 integerPart low, mid, high, srcPart;
2388 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2390 This cannot overflow, because
2392 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2394 which is less than n^2. */
2396 srcPart = src[i];
2398 if (multiplier == 0 || srcPart == 0) {
2399 low = carry;
2400 high = 0;
2401 } else {
2402 low = lowHalf(srcPart) * lowHalf(multiplier);
2403 high = highHalf(srcPart) * highHalf(multiplier);
2405 mid = lowHalf(srcPart) * highHalf(multiplier);
2406 high += highHalf(mid);
2407 mid <<= integerPartWidth / 2;
2408 if (low + mid < low)
2409 high++;
2410 low += mid;
2412 mid = highHalf(srcPart) * lowHalf(multiplier);
2413 high += highHalf(mid);
2414 mid <<= integerPartWidth / 2;
2415 if (low + mid < low)
2416 high++;
2417 low += mid;
2419 /* Now add carry. */
2420 if (low + carry < low)
2421 high++;
2422 low += carry;
2425 if (add) {
2426 /* And now DST[i], and store the new low part there. */
2427 if (low + dst[i] < low)
2428 high++;
2429 dst[i] += low;
2430 } else
2431 dst[i] = low;
2433 carry = high;
2436 if (i < dstParts) {
2437 /* Full multiplication, there is no overflow. */
2438 assert(i + 1 == dstParts);
2439 dst[i] = carry;
2440 return 0;
2441 } else {
2442 /* We overflowed if there is carry. */
2443 if (carry)
2444 return 1;
2446 /* We would overflow if any significant unwritten parts would be
2447 non-zero. This is true if any remaining src parts are non-zero
2448 and the multiplier is non-zero. */
2449 if (multiplier)
2450 for(; i < srcParts; i++)
2451 if (src[i])
2452 return 1;
2454 /* We fitted in the narrow destination. */
2455 return 0;
2459 /* DST = LHS * RHS, where DST has the same width as the operands and
2460 is filled with the least significant parts of the result. Returns
2461 one if overflow occurred, otherwise zero. DST must be disjoint
2462 from both operands. */
2464 APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2465 const integerPart *rhs, unsigned int parts)
2467 unsigned int i;
2468 int overflow;
2470 assert(dst != lhs && dst != rhs);
2472 overflow = 0;
2473 tcSet(dst, 0, parts);
2475 for(i = 0; i < parts; i++)
2476 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2477 parts - i, true);
2479 return overflow;
2482 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2483 operands. No overflow occurs. DST must be disjoint from both
2484 operands. Returns the number of parts required to hold the
2485 result. */
2486 unsigned int
2487 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2488 const integerPart *rhs, unsigned int lhsParts,
2489 unsigned int rhsParts)
2491 /* Put the narrower number on the LHS for less loops below. */
2492 if (lhsParts > rhsParts) {
2493 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2494 } else {
2495 unsigned int n;
2497 assert(dst != lhs && dst != rhs);
2499 tcSet(dst, 0, rhsParts);
2501 for(n = 0; n < lhsParts; n++)
2502 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2504 n = lhsParts + rhsParts;
2506 return n - (dst[n - 1] == 0);
2510 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2511 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2512 set REMAINDER to the remainder, return zero. i.e.
2514 OLD_LHS = RHS * LHS + REMAINDER
2516 SCRATCH is a bignum of the same size as the operands and result for
2517 use by the routine; its contents need not be initialized and are
2518 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2521 APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2522 integerPart *remainder, integerPart *srhs,
2523 unsigned int parts)
2525 unsigned int n, shiftCount;
2526 integerPart mask;
2528 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2530 shiftCount = tcMSB(rhs, parts) + 1;
2531 if (shiftCount == 0)
2532 return true;
2534 shiftCount = parts * integerPartWidth - shiftCount;
2535 n = shiftCount / integerPartWidth;
2536 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2538 tcAssign(srhs, rhs, parts);
2539 tcShiftLeft(srhs, parts, shiftCount);
2540 tcAssign(remainder, lhs, parts);
2541 tcSet(lhs, 0, parts);
2543 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2544 the total. */
2545 for(;;) {
2546 int compare;
2548 compare = tcCompare(remainder, srhs, parts);
2549 if (compare >= 0) {
2550 tcSubtract(remainder, srhs, 0, parts);
2551 lhs[n] |= mask;
2554 if (shiftCount == 0)
2555 break;
2556 shiftCount--;
2557 tcShiftRight(srhs, parts, 1);
2558 if ((mask >>= 1) == 0)
2559 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2562 return false;
2565 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2566 There are no restrictions on COUNT. */
2567 void
2568 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2570 if (count) {
2571 unsigned int jump, shift;
2573 /* Jump is the inter-part jump; shift is is intra-part shift. */
2574 jump = count / integerPartWidth;
2575 shift = count % integerPartWidth;
2577 while (parts > jump) {
2578 integerPart part;
2580 parts--;
2582 /* dst[i] comes from the two parts src[i - jump] and, if we have
2583 an intra-part shift, src[i - jump - 1]. */
2584 part = dst[parts - jump];
2585 if (shift) {
2586 part <<= shift;
2587 if (parts >= jump + 1)
2588 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2591 dst[parts] = part;
2594 while (parts > 0)
2595 dst[--parts] = 0;
2599 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2600 zero. There are no restrictions on COUNT. */
2601 void
2602 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2604 if (count) {
2605 unsigned int i, jump, shift;
2607 /* Jump is the inter-part jump; shift is is intra-part shift. */
2608 jump = count / integerPartWidth;
2609 shift = count % integerPartWidth;
2611 /* Perform the shift. This leaves the most significant COUNT bits
2612 of the result at zero. */
2613 for(i = 0; i < parts; i++) {
2614 integerPart part;
2616 if (i + jump >= parts) {
2617 part = 0;
2618 } else {
2619 part = dst[i + jump];
2620 if (shift) {
2621 part >>= shift;
2622 if (i + jump + 1 < parts)
2623 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2627 dst[i] = part;
2632 /* Bitwise and of two bignums. */
2633 void
2634 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2636 unsigned int i;
2638 for(i = 0; i < parts; i++)
2639 dst[i] &= rhs[i];
2642 /* Bitwise inclusive or of two bignums. */
2643 void
2644 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2646 unsigned int i;
2648 for(i = 0; i < parts; i++)
2649 dst[i] |= rhs[i];
2652 /* Bitwise exclusive or of two bignums. */
2653 void
2654 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2656 unsigned int i;
2658 for(i = 0; i < parts; i++)
2659 dst[i] ^= rhs[i];
2662 /* Complement a bignum in-place. */
2663 void
2664 APInt::tcComplement(integerPart *dst, unsigned int parts)
2666 unsigned int i;
2668 for(i = 0; i < parts; i++)
2669 dst[i] = ~dst[i];
2672 /* Comparison (unsigned) of two bignums. */
2674 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2675 unsigned int parts)
2677 while (parts) {
2678 parts--;
2679 if (lhs[parts] == rhs[parts])
2680 continue;
2682 if (lhs[parts] > rhs[parts])
2683 return 1;
2684 else
2685 return -1;
2688 return 0;
2691 /* Increment a bignum in-place, return the carry flag. */
2692 integerPart
2693 APInt::tcIncrement(integerPart *dst, unsigned int parts)
2695 unsigned int i;
2697 for(i = 0; i < parts; i++)
2698 if (++dst[i] != 0)
2699 break;
2701 return i == parts;
2704 /* Set the least significant BITS bits of a bignum, clear the
2705 rest. */
2706 void
2707 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2708 unsigned int bits)
2710 unsigned int i;
2712 i = 0;
2713 while (bits > integerPartWidth) {
2714 dst[i++] = ~(integerPart) 0;
2715 bits -= integerPartWidth;
2718 if (bits)
2719 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2721 while (i < parts)
2722 dst[i++] = 0;