1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that Mips uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "mips-lower"
17 #include "MipsISelLowering.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsTargetMachine.h"
20 #include "MipsSubtarget.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/CallingConv.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/Support/Debug.h"
36 const char *MipsTargetLowering::
37 getTargetNodeName(unsigned Opcode
) const
41 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
42 case MipsISD::Hi
: return "MipsISD::Hi";
43 case MipsISD::Lo
: return "MipsISD::Lo";
44 case MipsISD::GPRel
: return "MipsISD::GPRel";
45 case MipsISD::Ret
: return "MipsISD::Ret";
46 case MipsISD::CMov
: return "MipsISD::CMov";
47 case MipsISD::SelectCC
: return "MipsISD::SelectCC";
48 case MipsISD::FPSelectCC
: return "MipsISD::FPSelectCC";
49 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
50 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
51 default : return NULL
;
56 MipsTargetLowering(MipsTargetMachine
&TM
): TargetLowering(TM
)
58 Subtarget
= &TM
.getSubtarget
<MipsSubtarget
>();
60 // Mips does not have i1 type, so use i32 for
61 // setcc operations results (slt, sgt, ...).
62 setBooleanContents(ZeroOrOneBooleanContent
);
64 // JumpTable targets must use GOT when using PIC_
65 setUsesGlobalOffsetTable(true);
67 // Set up the register classes
68 addRegisterClass(MVT::i32
, Mips::CPURegsRegisterClass
);
69 addRegisterClass(MVT::f32
, Mips::FGR32RegisterClass
);
71 // When dealing with single precision only, use libcalls
72 if (!Subtarget
->isSingleFloat())
73 if (!Subtarget
->isFP64bit())
74 addRegisterClass(MVT::f64
, Mips::AFGR64RegisterClass
);
77 addLegalFPImmediate(APFloat(+0.0f
));
79 // Load extented operations for i1 types must be promoted
80 setLoadExtAction(ISD::EXTLOAD
, MVT::i1
, Promote
);
81 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i1
, Promote
);
82 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
84 // Used by legalize types to correctly generate the setcc result.
85 // Without this, every float setcc comes with a AND/OR with the result,
86 // we don't want this, since the fpcmp result goes to a flag register,
87 // which is used implicitly by brcond and select operations.
88 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
90 // Mips Custom Operations
91 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
92 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
93 setOperationAction(ISD::RET
, MVT::Other
, Custom
);
94 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
95 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
96 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
97 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
98 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
99 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
100 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
102 // We custom lower AND/OR to handle the case where the DAG contain 'ands/ors'
103 // with operands comming from setcc fp comparions. This is necessary since
104 // the result from these setcc are in a flag registers (FCR31).
105 setOperationAction(ISD::AND
, MVT::i32
, Custom
);
106 setOperationAction(ISD::OR
, MVT::i32
, Custom
);
108 // Operations not directly supported by Mips.
109 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
110 setOperationAction(ISD::BR_CC
, MVT::Other
, Expand
);
111 setOperationAction(ISD::SELECT_CC
, MVT::Other
, Expand
);
112 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
113 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
114 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
115 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
116 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
117 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
118 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
119 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
120 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
121 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
123 // We don't have line number support yet.
124 setOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
, Expand
);
125 setOperationAction(ISD::DEBUG_LOC
, MVT::Other
, Expand
);
126 setOperationAction(ISD::DBG_LABEL
, MVT::Other
, Expand
);
127 setOperationAction(ISD::EH_LABEL
, MVT::Other
, Expand
);
129 // Use the default for now
130 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
131 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
132 setOperationAction(ISD::MEMBARRIER
, MVT::Other
, Expand
);
134 if (Subtarget
->isSingleFloat())
135 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
137 if (!Subtarget
->hasSEInReg()) {
138 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
139 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
142 if (!Subtarget
->hasBitCount())
143 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
145 if (!Subtarget
->hasSwap())
146 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
148 setStackPointerRegisterToSaveRestore(Mips::SP
);
149 computeRegisterProperties();
153 MVT
MipsTargetLowering::getSetCCResultType(MVT VT
) const {
158 SDValue
MipsTargetLowering::
159 LowerOperation(SDValue Op
, SelectionDAG
&DAG
)
161 switch (Op
.getOpcode())
163 case ISD::AND
: return LowerANDOR(Op
, DAG
);
164 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
165 case ISD::CALL
: return LowerCALL(Op
, DAG
);
166 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
167 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
168 case ISD::FORMAL_ARGUMENTS
: return LowerFORMAL_ARGUMENTS(Op
, DAG
);
169 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
170 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
171 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
172 case ISD::OR
: return LowerANDOR(Op
, DAG
);
173 case ISD::RET
: return LowerRET(Op
, DAG
);
174 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
175 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
180 //===----------------------------------------------------------------------===//
181 // Lower helper functions
182 //===----------------------------------------------------------------------===//
184 // AddLiveIn - This helper function adds the specified physical register to the
185 // MachineFunction as a live in value. It also creates a corresponding
186 // virtual register for it.
188 AddLiveIn(MachineFunction
&MF
, unsigned PReg
, TargetRegisterClass
*RC
)
190 assert(RC
->contains(PReg
) && "Not the correct regclass!");
191 unsigned VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
192 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
196 // A address must be loaded from a small section if its size is less than the
197 // small section size threshold. Data in this section must be addressed using
199 bool MipsTargetLowering::IsInSmallSection(unsigned Size
) {
200 return (Size
> 0 && (Size
<= Subtarget
->getSSectionThreshold()));
203 // Discover if this global address can be placed into small data/bss section.
204 bool MipsTargetLowering::IsGlobalInSmallSection(GlobalValue
*GV
)
206 const TargetData
*TD
= getTargetData();
207 const GlobalVariable
*GVA
= dyn_cast
<GlobalVariable
>(GV
);
212 const Type
*Ty
= GV
->getType()->getElementType();
213 unsigned Size
= TD
->getTypePaddedSize(Ty
);
215 // if this is a internal constant string, there is a special
216 // section for it, but not in small data/bss.
217 if (GVA
->hasInitializer() && GV
->hasLocalLinkage()) {
218 Constant
*C
= GVA
->getInitializer();
219 const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(C
);
220 if (CVA
&& CVA
->isCString())
224 return IsInSmallSection(Size
);
227 // Get fp branch code (not opcode) from condition code.
228 static Mips::FPBranchCode
GetFPBranchCodeFromCond(Mips::CondCode CC
) {
229 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
230 return Mips::BRANCH_T
;
232 if (CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
)
233 return Mips::BRANCH_F
;
235 return Mips::BRANCH_INVALID
;
238 static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC
) {
241 assert(0 && "Unknown branch code");
242 case Mips::BRANCH_T
: return Mips::BC1T
;
243 case Mips::BRANCH_F
: return Mips::BC1F
;
244 case Mips::BRANCH_TL
: return Mips::BC1TL
;
245 case Mips::BRANCH_FL
: return Mips::BC1FL
;
249 static Mips::CondCode
FPCondCCodeToFCC(ISD::CondCode CC
) {
251 default: assert(0 && "Unknown fp condition code!");
253 case ISD::SETOEQ
: return Mips::FCOND_EQ
;
254 case ISD::SETUNE
: return Mips::FCOND_OGL
;
256 case ISD::SETOLT
: return Mips::FCOND_OLT
;
258 case ISD::SETOGT
: return Mips::FCOND_OGT
;
260 case ISD::SETOLE
: return Mips::FCOND_OLE
;
262 case ISD::SETOGE
: return Mips::FCOND_OGE
;
263 case ISD::SETULT
: return Mips::FCOND_ULT
;
264 case ISD::SETULE
: return Mips::FCOND_ULE
;
265 case ISD::SETUGT
: return Mips::FCOND_UGT
;
266 case ISD::SETUGE
: return Mips::FCOND_UGE
;
267 case ISD::SETUO
: return Mips::FCOND_UN
;
268 case ISD::SETO
: return Mips::FCOND_OR
;
270 case ISD::SETONE
: return Mips::FCOND_NEQ
;
271 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
276 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
277 MachineBasicBlock
*BB
) const {
278 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
279 bool isFPCmp
= false;
280 DebugLoc dl
= MI
->getDebugLoc();
282 switch (MI
->getOpcode()) {
283 default: assert(false && "Unexpected instr type to insert");
284 case Mips::Select_FCC
:
285 case Mips::Select_FCC_S32
:
286 case Mips::Select_FCC_D32
:
287 isFPCmp
= true; // FALL THROUGH
288 case Mips::Select_CC
:
289 case Mips::Select_CC_S32
:
290 case Mips::Select_CC_D32
: {
291 // To "insert" a SELECT_CC instruction, we actually have to insert the
292 // diamond control-flow pattern. The incoming instruction knows the
293 // destination vreg to set, the condition code register to branch on, the
294 // true/false values to select between, and a branch opcode to use.
295 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
296 MachineFunction::iterator It
= BB
;
303 // bNE r1, r0, copy1MBB
304 // fallthrough --> copy0MBB
305 MachineBasicBlock
*thisMBB
= BB
;
306 MachineFunction
*F
= BB
->getParent();
307 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
308 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
310 // Emit the right instruction according to the type of the operands compared
312 // Find the condiction code present in the setcc operation.
313 Mips::CondCode CC
= (Mips::CondCode
)MI
->getOperand(4).getImm();
314 // Get the branch opcode from the branch code.
315 unsigned Opc
= FPBranchCodeToOpc(GetFPBranchCodeFromCond(CC
));
316 BuildMI(BB
, dl
, TII
->get(Opc
)).addMBB(sinkMBB
);
318 BuildMI(BB
, dl
, TII
->get(Mips::BNE
)).addReg(MI
->getOperand(1).getReg())
319 .addReg(Mips::ZERO
).addMBB(sinkMBB
);
321 F
->insert(It
, copy0MBB
);
322 F
->insert(It
, sinkMBB
);
323 // Update machine-CFG edges by first adding all successors of the current
324 // block to the new block which will contain the Phi node for the select.
325 for(MachineBasicBlock::succ_iterator i
= BB
->succ_begin(),
326 e
= BB
->succ_end(); i
!= e
; ++i
)
327 sinkMBB
->addSuccessor(*i
);
328 // Next, remove all successors of the current block, and add the true
329 // and fallthrough blocks as its successors.
330 while(!BB
->succ_empty())
331 BB
->removeSuccessor(BB
->succ_begin());
332 BB
->addSuccessor(copy0MBB
);
333 BB
->addSuccessor(sinkMBB
);
337 // # fallthrough to sinkMBB
340 // Update machine-CFG edges
341 BB
->addSuccessor(sinkMBB
);
344 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
347 BuildMI(BB
, dl
, TII
->get(Mips::PHI
), MI
->getOperand(0).getReg())
348 .addReg(MI
->getOperand(2).getReg()).addMBB(copy0MBB
)
349 .addReg(MI
->getOperand(3).getReg()).addMBB(thisMBB
);
351 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
357 //===----------------------------------------------------------------------===//
358 // Misc Lower Operation implementation
359 //===----------------------------------------------------------------------===//
361 SDValue
MipsTargetLowering::
362 LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
)
364 SDValue Chain
= Op
.getOperand(0);
365 SDValue Size
= Op
.getOperand(1);
366 DebugLoc dl
= Op
.getDebugLoc();
368 // Get a reference from Mips stack pointer
369 SDValue StackPointer
= DAG
.getCopyFromReg(Chain
, dl
, Mips::SP
, MVT::i32
);
371 // Subtract the dynamic size from the actual stack size to
372 // obtain the new stack size.
373 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, StackPointer
, Size
);
375 // The Sub result contains the new stack start address, so it
376 // must be placed in the stack pointer register.
377 Chain
= DAG
.getCopyToReg(StackPointer
.getValue(1), dl
, Mips::SP
, Sub
);
379 // This node always has two return values: a new stack pointer
381 SDValue Ops
[2] = { Sub
, Chain
};
382 return DAG
.getMergeValues(Ops
, 2, dl
);
385 SDValue
MipsTargetLowering::
386 LowerANDOR(SDValue Op
, SelectionDAG
&DAG
)
388 SDValue LHS
= Op
.getOperand(0);
389 SDValue RHS
= Op
.getOperand(1);
390 DebugLoc dl
= Op
.getDebugLoc();
392 if (LHS
.getOpcode() != MipsISD::FPCmp
|| RHS
.getOpcode() != MipsISD::FPCmp
)
395 SDValue True
= DAG
.getConstant(1, MVT::i32
);
396 SDValue False
= DAG
.getConstant(0, MVT::i32
);
398 SDValue LSEL
= DAG
.getNode(MipsISD::FPSelectCC
, dl
, True
.getValueType(),
399 LHS
, True
, False
, LHS
.getOperand(2));
400 SDValue RSEL
= DAG
.getNode(MipsISD::FPSelectCC
, dl
, True
.getValueType(),
401 RHS
, True
, False
, RHS
.getOperand(2));
403 return DAG
.getNode(Op
.getOpcode(), dl
, MVT::i32
, LSEL
, RSEL
);
406 SDValue
MipsTargetLowering::
407 LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
)
409 // The first operand is the chain, the second is the condition, the third is
410 // the block to branch to if the condition is true.
411 SDValue Chain
= Op
.getOperand(0);
412 SDValue Dest
= Op
.getOperand(2);
413 DebugLoc dl
= Op
.getDebugLoc();
415 if (Op
.getOperand(1).getOpcode() != MipsISD::FPCmp
)
418 SDValue CondRes
= Op
.getOperand(1);
419 SDValue CCNode
= CondRes
.getOperand(2);
421 (Mips::CondCode
)cast
<ConstantSDNode
>(CCNode
)->getZExtValue();
422 SDValue BrCode
= DAG
.getConstant(GetFPBranchCodeFromCond(CC
), MVT::i32
);
424 return DAG
.getNode(MipsISD::FPBrcond
, dl
, Op
.getValueType(), Chain
, BrCode
,
428 SDValue
MipsTargetLowering::
429 LowerSETCC(SDValue Op
, SelectionDAG
&DAG
)
431 // The operands to this are the left and right operands to compare (ops #0,
432 // and #1) and the condition code to compare them with (op #2) as a
434 SDValue LHS
= Op
.getOperand(0);
435 SDValue RHS
= Op
.getOperand(1);
436 DebugLoc dl
= Op
.getDebugLoc();
438 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
440 return DAG
.getNode(MipsISD::FPCmp
, dl
, Op
.getValueType(), LHS
, RHS
,
441 DAG
.getConstant(FPCondCCodeToFCC(CC
), MVT::i32
));
444 SDValue
MipsTargetLowering::
445 LowerSELECT(SDValue Op
, SelectionDAG
&DAG
)
447 SDValue Cond
= Op
.getOperand(0);
448 SDValue True
= Op
.getOperand(1);
449 SDValue False
= Op
.getOperand(2);
450 DebugLoc dl
= Op
.getDebugLoc();
452 // if the incomming condition comes from a integer compare, the select
453 // operation must be SelectCC or a conditional move if the subtarget
455 if (Cond
.getOpcode() != MipsISD::FPCmp
) {
456 if (Subtarget
->hasCondMov() && !True
.getValueType().isFloatingPoint())
458 return DAG
.getNode(MipsISD::SelectCC
, dl
, True
.getValueType(),
462 // if the incomming condition comes from fpcmp, the select
463 // operation must use FPSelectCC.
464 SDValue CCNode
= Cond
.getOperand(2);
465 return DAG
.getNode(MipsISD::FPSelectCC
, dl
, True
.getValueType(),
466 Cond
, True
, False
, CCNode
);
469 SDValue
MipsTargetLowering::
470 LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
)
472 // FIXME there isn't actually debug info here
473 DebugLoc dl
= Op
.getDebugLoc();
474 GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
475 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, MVT::i32
);
477 if (!Subtarget
->hasABICall()) {
478 SDVTList VTs
= DAG
.getVTList(MVT::i32
);
479 SDValue Ops
[] = { GA
};
480 // %gp_rel relocation
481 if (!isa
<Function
>(GV
) && IsGlobalInSmallSection(GV
)) {
482 SDValue GPRelNode
= DAG
.getNode(MipsISD::GPRel
, dl
, VTs
, Ops
, 1);
483 SDValue GOT
= DAG
.getGLOBAL_OFFSET_TABLE(MVT::i32
);
484 return DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, GOT
, GPRelNode
);
486 // %hi/%lo relocation
487 SDValue HiPart
= DAG
.getNode(MipsISD::Hi
, dl
, VTs
, Ops
, 1);
488 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, dl
, MVT::i32
, GA
);
489 return DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, HiPart
, Lo
);
491 } else { // Abicall relocations, TODO: make this cleaner.
492 SDValue ResNode
= DAG
.getLoad(MVT::i32
, dl
,
493 DAG
.getEntryNode(), GA
, NULL
, 0);
494 // On functions and global targets not internal linked only
495 // a load from got/GP is necessary for PIC to work.
496 if (!GV
->hasLocalLinkage() || isa
<Function
>(GV
))
498 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, dl
, MVT::i32
, GA
);
499 return DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, ResNode
, Lo
);
502 assert(0 && "Dont know how to handle GlobalAddress");
506 SDValue
MipsTargetLowering::
507 LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
)
509 assert(0 && "TLS not implemented for MIPS.");
510 return SDValue(); // Not reached
513 SDValue
MipsTargetLowering::
514 LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
)
518 // FIXME there isn't actually debug info here
519 DebugLoc dl
= Op
.getDebugLoc();
521 MVT PtrVT
= Op
.getValueType();
522 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
523 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
);
525 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
) {
526 SDVTList VTs
= DAG
.getVTList(MVT::i32
);
527 SDValue Ops
[] = { JTI
};
528 HiPart
= DAG
.getNode(MipsISD::Hi
, dl
, VTs
, Ops
, 1);
529 } else // Emit Load from Global Pointer
530 HiPart
= DAG
.getLoad(MVT::i32
, dl
, DAG
.getEntryNode(), JTI
, NULL
, 0);
532 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, dl
, MVT::i32
, JTI
);
533 ResNode
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, HiPart
, Lo
);
538 SDValue
MipsTargetLowering::
539 LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
)
542 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
543 Constant
*C
= N
->getConstVal();
544 SDValue CP
= DAG
.getTargetConstantPool(C
, MVT::i32
, N
->getAlignment());
545 // FIXME there isn't actually debug info here
546 DebugLoc dl
= Op
.getDebugLoc();
549 // FIXME: we should reference the constant pool using small data sections,
550 // but the asm printer currently doens't support this feature without
551 // hacking it. This feature should come soon so we can uncomment the
553 //if (!Subtarget->hasABICall() &&
554 // IsInSmallSection(getTargetData()->getTypePaddedSize(C->getType()))) {
555 // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
556 // SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
557 // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
558 //} else { // %hi/%lo relocation
559 SDValue HiPart
= DAG
.getNode(MipsISD::Hi
, dl
, MVT::i32
, CP
);
560 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, dl
, MVT::i32
, CP
);
561 ResNode
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, HiPart
, Lo
);
567 //===----------------------------------------------------------------------===//
568 // Calling Convention Implementation
570 // The lower operations present on calling convention works on this order:
571 // LowerCALL (virt regs --> phys regs, virt regs --> stack)
572 // LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
573 // LowerRET (virt regs --> phys regs)
574 // LowerCALL (phys regs --> virt regs)
576 //===----------------------------------------------------------------------===//
578 #include "MipsGenCallingConv.inc"
580 //===----------------------------------------------------------------------===//
581 // TODO: Implement a generic logic using tblgen that can support this.
582 // Mips O32 ABI rules:
584 // i32 - Passed in A0, A1, A2, A3 and stack
585 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
586 // an argument. Otherwise, passed in A1, A2, A3 and stack.
587 // f64 - Only passed in two aliased f32 registers if no int reg has been used
588 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
589 // not used, it must be shadowed. If only A3 is avaiable, shadow it and
591 //===----------------------------------------------------------------------===//
593 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
,
594 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
595 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
597 static const unsigned IntRegsSize
=4, FloatRegsSize
=2;
599 static const unsigned IntRegs
[] = {
600 Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
602 static const unsigned F32Regs
[] = {
605 static const unsigned F64Regs
[] = {
610 unsigned UnallocIntReg
= State
.getFirstUnallocated(IntRegs
, IntRegsSize
);
611 bool IntRegUsed
= (IntRegs
[UnallocIntReg
] != (unsigned (Mips::A0
)));
613 // Promote i8 and i16
614 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
616 if (ArgFlags
.isSExt())
617 LocInfo
= CCValAssign::SExt
;
618 else if (ArgFlags
.isZExt())
619 LocInfo
= CCValAssign::ZExt
;
621 LocInfo
= CCValAssign::AExt
;
624 if (ValVT
== MVT::i32
|| (ValVT
== MVT::f32
&& IntRegUsed
)) {
625 Reg
= State
.AllocateReg(IntRegs
, IntRegsSize
);
630 if (ValVT
.isFloatingPoint() && !IntRegUsed
) {
631 if (ValVT
== MVT::f32
)
632 Reg
= State
.AllocateReg(F32Regs
, FloatRegsSize
);
634 Reg
= State
.AllocateReg(F64Regs
, FloatRegsSize
);
637 if (ValVT
== MVT::f64
&& IntRegUsed
) {
638 if (UnallocIntReg
!= IntRegsSize
) {
639 // If we hit register A3 as the first not allocated, we must
640 // mark it as allocated (shadow) and use the stack instead.
641 if (IntRegs
[UnallocIntReg
] != (unsigned (Mips::A3
)))
643 for (;UnallocIntReg
< IntRegsSize
; ++UnallocIntReg
)
644 State
.AllocateReg(UnallocIntReg
);
650 unsigned SizeInBytes
= ValVT
.getSizeInBits() >> 3;
651 unsigned Offset
= State
.AllocateStack(SizeInBytes
, SizeInBytes
);
652 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
654 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
656 return false; // CC must always match
659 //===----------------------------------------------------------------------===//
660 // CALL Calling Convention Implementation
661 //===----------------------------------------------------------------------===//
663 /// LowerCALL - functions arguments are copied from virtual regs to
664 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
665 /// TODO: isVarArg, isTailCall.
666 SDValue
MipsTargetLowering::
667 LowerCALL(SDValue Op
, SelectionDAG
&DAG
)
669 MachineFunction
&MF
= DAG
.getMachineFunction();
671 CallSDNode
*TheCall
= cast
<CallSDNode
>(Op
.getNode());
672 SDValue Chain
= TheCall
->getChain();
673 SDValue Callee
= TheCall
->getCallee();
674 bool isVarArg
= TheCall
->isVarArg();
675 unsigned CC
= TheCall
->getCallingConv();
676 DebugLoc dl
= TheCall
->getDebugLoc();
678 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
680 // Analyze operands of the call, assigning locations to each operand.
681 SmallVector
<CCValAssign
, 16> ArgLocs
;
682 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
);
684 // To meet O32 ABI, Mips must always allocate 16 bytes on
685 // the stack (even if less than 4 are used as arguments)
686 if (Subtarget
->isABI_O32()) {
687 int VTsize
= MVT(MVT::i32
).getSizeInBits()/8;
688 MFI
->CreateFixedObject(VTsize
, (VTsize
*3));
689 CCInfo
.AnalyzeCallOperands(TheCall
, CC_MipsO32
);
691 CCInfo
.AnalyzeCallOperands(TheCall
, CC_Mips
);
693 // Get a count of how many bytes are to be pushed on the stack.
694 unsigned NumBytes
= CCInfo
.getNextStackOffset();
695 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
697 // With EABI is it possible to have 16 args on registers.
698 SmallVector
<std::pair
<unsigned, SDValue
>, 16> RegsToPass
;
699 SmallVector
<SDValue
, 8> MemOpChains
;
701 // First/LastArgStackLoc contains the first/last
702 // "at stack" argument location.
703 int LastArgStackLoc
= 0;
704 unsigned FirstStackArgLoc
= (Subtarget
->isABI_EABI() ? 0 : 16);
706 // Walk the register/memloc assignments, inserting copies/loads.
707 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
708 SDValue Arg
= TheCall
->getArg(i
);
709 CCValAssign
&VA
= ArgLocs
[i
];
711 // Promote the value if needed.
712 switch (VA
.getLocInfo()) {
713 default: assert(0 && "Unknown loc info!");
714 case CCValAssign::Full
:
715 if (Subtarget
->isABI_O32() && VA
.isRegLoc()) {
716 if (VA
.getValVT() == MVT::f32
&& VA
.getLocVT() == MVT::i32
)
717 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
, Arg
);
718 if (VA
.getValVT() == MVT::f64
&& VA
.getLocVT() == MVT::i32
) {
719 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
720 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Arg
,
721 DAG
.getConstant(0, getPointerTy()));
722 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Arg
,
723 DAG
.getConstant(1, getPointerTy()));
724 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Lo
));
725 RegsToPass
.push_back(std::make_pair(VA
.getLocReg()+1, Hi
));
730 case CCValAssign::SExt
:
731 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
733 case CCValAssign::ZExt
:
734 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
736 case CCValAssign::AExt
:
737 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
741 // Arguments that can be passed on register must be kept at
744 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
748 // Register can't get to this point...
749 assert(VA
.isMemLoc());
751 // Create the frame index object for this incoming parameter
752 // This guarantees that when allocating Local Area the firsts
753 // 16 bytes which are alwayes reserved won't be overwritten
754 // if O32 ABI is used. For EABI the first address is zero.
755 LastArgStackLoc
= (FirstStackArgLoc
+ VA
.getLocMemOffset());
756 int FI
= MFI
->CreateFixedObject(VA
.getValVT().getSizeInBits()/8,
759 SDValue PtrOff
= DAG
.getFrameIndex(FI
,getPointerTy());
761 // emit ISD::STORE whichs stores the
762 // parameter value to a stack Location
763 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, NULL
, 0));
766 // Transform all store nodes into one single node because all store
767 // nodes are independent of each other.
768 if (!MemOpChains
.empty())
769 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
770 &MemOpChains
[0], MemOpChains
.size());
772 // Build a sequence of copy-to-reg nodes chained together with token
773 // chain and flag operands which copy the outgoing args into registers.
774 // The InFlag in necessary since all emited instructions must be
777 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
778 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
779 RegsToPass
[i
].second
, InFlag
);
780 InFlag
= Chain
.getValue(1);
783 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
784 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
785 // node so that legalize doesn't hack it.
786 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
787 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), getPointerTy());
788 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
789 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), getPointerTy());
791 // MipsJmpLink = #chain, #target_address, #opt_in_flags...
792 // = Chain, Callee, Reg#1, Reg#2, ...
794 // Returns a chain & a flag for retval copy to use.
795 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
796 SmallVector
<SDValue
, 8> Ops
;
797 Ops
.push_back(Chain
);
798 Ops
.push_back(Callee
);
800 // Add argument registers to the end of the list so that they are
801 // known live into the call.
802 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
803 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
804 RegsToPass
[i
].second
.getValueType()));
806 if (InFlag
.getNode())
807 Ops
.push_back(InFlag
);
809 Chain
= DAG
.getNode(MipsISD::JmpLink
, dl
, NodeTys
, &Ops
[0], Ops
.size());
810 InFlag
= Chain
.getValue(1);
812 // Create the CALLSEQ_END node.
813 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
814 DAG
.getIntPtrConstant(0, true), InFlag
);
815 InFlag
= Chain
.getValue(1);
817 // Create a stack location to hold GP when PIC is used. This stack
818 // location is used on function prologue to save GP and also after all
819 // emited CALL's to restore GP.
820 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
821 // Function can have an arbitrary number of calls, so
822 // hold the LastArgStackLoc with the biggest offset.
824 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
825 if (LastArgStackLoc
>= MipsFI
->getGPStackOffset()) {
826 LastArgStackLoc
= (!LastArgStackLoc
) ? (16) : (LastArgStackLoc
+4);
827 // Create the frame index only once. SPOffset here can be anything
828 // (this will be fixed on processFunctionBeforeFrameFinalized)
829 if (MipsFI
->getGPStackOffset() == -1) {
830 FI
= MFI
->CreateFixedObject(4, 0);
833 MipsFI
->setGPStackOffset(LastArgStackLoc
);
837 FI
= MipsFI
->getGPFI();
838 SDValue FIN
= DAG
.getFrameIndex(FI
,getPointerTy());
839 SDValue GPLoad
= DAG
.getLoad(MVT::i32
, dl
, Chain
, FIN
, NULL
, 0);
840 Chain
= GPLoad
.getValue(1);
841 Chain
= DAG
.getCopyToReg(Chain
, dl
, DAG
.getRegister(Mips::GP
, MVT::i32
),
842 GPLoad
, SDValue(0,0));
843 InFlag
= Chain
.getValue(1);
846 // Handle result values, copying them out of physregs into vregs that we
848 return SDValue(LowerCallResult(Chain
, InFlag
, TheCall
, CC
, DAG
), Op
.getResNo());
851 /// LowerCallResult - Lower the result values of an ISD::CALL into the
852 /// appropriate copies out of appropriate physical registers. This assumes that
853 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
854 /// being lowered. Returns a SDNode with the same number of values as the
856 SDNode
*MipsTargetLowering::
857 LowerCallResult(SDValue Chain
, SDValue InFlag
, CallSDNode
*TheCall
,
858 unsigned CallingConv
, SelectionDAG
&DAG
) {
860 bool isVarArg
= TheCall
->isVarArg();
861 DebugLoc dl
= TheCall
->getDebugLoc();
863 // Assign locations to each value returned by this call.
864 SmallVector
<CCValAssign
, 16> RVLocs
;
865 CCState
CCInfo(CallingConv
, isVarArg
, getTargetMachine(), RVLocs
);
867 CCInfo
.AnalyzeCallResult(TheCall
, RetCC_Mips
);
868 SmallVector
<SDValue
, 8> ResultVals
;
870 // Copy all of the result registers out of their specified physreg.
871 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
872 Chain
= DAG
.getCopyFromReg(Chain
, dl
, RVLocs
[i
].getLocReg(),
873 RVLocs
[i
].getValVT(), InFlag
).getValue(1);
874 InFlag
= Chain
.getValue(2);
875 ResultVals
.push_back(Chain
.getValue(0));
878 ResultVals
.push_back(Chain
);
880 // Merge everything together with a MERGE_VALUES node.
881 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, TheCall
->getVTList(),
882 &ResultVals
[0], ResultVals
.size()).getNode();
885 //===----------------------------------------------------------------------===//
886 // FORMAL_ARGUMENTS Calling Convention Implementation
887 //===----------------------------------------------------------------------===//
889 /// LowerFORMAL_ARGUMENTS - transform physical registers into
890 /// virtual registers and generate load operations for
891 /// arguments places on the stack.
893 SDValue
MipsTargetLowering::
894 LowerFORMAL_ARGUMENTS(SDValue Op
, SelectionDAG
&DAG
)
896 SDValue Root
= Op
.getOperand(0);
897 MachineFunction
&MF
= DAG
.getMachineFunction();
898 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
899 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
900 DebugLoc dl
= Op
.getDebugLoc();
902 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() != 0;
903 unsigned CC
= DAG
.getMachineFunction().getFunction()->getCallingConv();
905 unsigned StackReg
= MF
.getTarget().getRegisterInfo()->getFrameRegister(MF
);
907 // GP must be live into PIC and non-PIC call target.
908 AddLiveIn(MF
, Mips::GP
, Mips::CPURegsRegisterClass
);
910 // Assign locations to all of the incoming arguments.
911 SmallVector
<CCValAssign
, 16> ArgLocs
;
912 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
);
914 if (Subtarget
->isABI_O32())
915 CCInfo
.AnalyzeFormalArguments(Op
.getNode(), CC_MipsO32
);
917 CCInfo
.AnalyzeFormalArguments(Op
.getNode(), CC_Mips
);
919 SmallVector
<SDValue
, 16> ArgValues
;
922 unsigned FirstStackArgLoc
= (Subtarget
->isABI_EABI() ? 0 : 16);
924 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
925 CCValAssign
&VA
= ArgLocs
[i
];
927 // Arguments stored on registers
929 MVT RegVT
= VA
.getLocVT();
930 TargetRegisterClass
*RC
= 0;
932 if (RegVT
== MVT::i32
)
933 RC
= Mips::CPURegsRegisterClass
;
934 else if (RegVT
== MVT::f32
)
935 RC
= Mips::FGR32RegisterClass
;
936 else if (RegVT
== MVT::f64
) {
937 if (!Subtarget
->isSingleFloat())
938 RC
= Mips::AFGR64RegisterClass
;
940 assert(0 && "RegVT not supported by FORMAL_ARGUMENTS Lowering");
942 // Transform the arguments stored on
943 // physical registers into virtual ones
944 unsigned Reg
= AddLiveIn(DAG
.getMachineFunction(), VA
.getLocReg(), RC
);
945 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, RegVT
);
947 // If this is an 8 or 16-bit value, it has been passed promoted
948 // to 32 bits. Insert an assert[sz]ext to capture this, then
949 // truncate to the right size.
950 if (VA
.getLocInfo() != CCValAssign::Full
) {
952 if (VA
.getLocInfo() == CCValAssign::SExt
)
953 Opcode
= ISD::AssertSext
;
954 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
955 Opcode
= ISD::AssertZext
;
957 ArgValue
= DAG
.getNode(Opcode
, dl
, RegVT
, ArgValue
,
958 DAG
.getValueType(VA
.getValVT()));
959 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
962 // Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
963 if (Subtarget
->isABI_O32()) {
964 if (RegVT
== MVT::i32
&& VA
.getValVT() == MVT::f32
)
965 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, ArgValue
);
966 if (RegVT
== MVT::i32
&& VA
.getValVT() == MVT::f64
) {
967 unsigned Reg2
= AddLiveIn(DAG
.getMachineFunction(),
968 VA
.getLocReg()+1, RC
);
969 SDValue ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg2
, RegVT
);
970 SDValue Hi
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, ArgValue
);
971 SDValue Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, ArgValue2
);
972 ArgValue
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::f64
, Lo
, Hi
);
976 ArgValues
.push_back(ArgValue
);
978 // To meet ABI, when VARARGS are passed on registers, the registers
979 // must have their values written to the caller stack frame.
980 if ((isVarArg
) && (Subtarget
->isABI_O32())) {
981 if (StackPtr
.getNode() == 0)
982 StackPtr
= DAG
.getRegister(StackReg
, getPointerTy());
984 // The stack pointer offset is relative to the caller stack frame.
985 // Since the real stack size is unknown here, a negative SPOffset
986 // is used so there's a way to adjust these offsets when the stack
987 // size get known (on EliminateFrameIndex). A dummy SPOffset is
988 // used instead of a direct negative address (which is recorded to
989 // be used on emitPrologue) to avoid mis-calc of the first stack
990 // offset on PEI::calculateFrameObjectOffsets.
991 // Arguments are always 32-bit.
992 int FI
= MFI
->CreateFixedObject(4, 0);
993 MipsFI
->recordStoreVarArgsFI(FI
, -(4+(i
*4)));
994 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy());
996 // emit ISD::STORE whichs stores the
997 // parameter value to a stack Location
998 ArgValues
.push_back(DAG
.getStore(Root
, dl
, ArgValue
, PtrOff
, NULL
, 0));
1001 } else { // VA.isRegLoc()
1004 assert(VA
.isMemLoc());
1006 // The stack pointer offset is relative to the caller stack frame.
1007 // Since the real stack size is unknown here, a negative SPOffset
1008 // is used so there's a way to adjust these offsets when the stack
1009 // size get known (on EliminateFrameIndex). A dummy SPOffset is
1010 // used instead of a direct negative address (which is recorded to
1011 // be used on emitPrologue) to avoid mis-calc of the first stack
1012 // offset on PEI::calculateFrameObjectOffsets.
1013 // Arguments are always 32-bit.
1014 unsigned ArgSize
= VA
.getLocVT().getSizeInBits()/8;
1015 int FI
= MFI
->CreateFixedObject(ArgSize
, 0);
1016 MipsFI
->recordLoadArgsFI(FI
, -(ArgSize
+
1017 (FirstStackArgLoc
+ VA
.getLocMemOffset())));
1019 // Create load nodes to retrieve arguments from the stack
1020 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1021 ArgValues
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Root
, FIN
, NULL
, 0));
1025 // The mips ABIs for returning structs by value requires that we copy
1026 // the sret argument into $v0 for the return. Save the argument into
1027 // a virtual register so that we can access it from the return points.
1028 if (DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1029 unsigned Reg
= MipsFI
->getSRetReturnReg();
1031 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32
));
1032 MipsFI
->setSRetReturnReg(Reg
);
1034 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, ArgValues
[0]);
1035 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Root
);
1038 ArgValues
.push_back(Root
);
1040 // Return the new list of results.
1041 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Op
.getNode()->getVTList(),
1042 &ArgValues
[0], ArgValues
.size()).getValue(Op
.getResNo());
1045 //===----------------------------------------------------------------------===//
1046 // Return Value Calling Convention Implementation
1047 //===----------------------------------------------------------------------===//
1049 SDValue
MipsTargetLowering::
1050 LowerRET(SDValue Op
, SelectionDAG
&DAG
)
1052 // CCValAssign - represent the assignment of
1053 // the return value to a location
1054 SmallVector
<CCValAssign
, 16> RVLocs
;
1055 unsigned CC
= DAG
.getMachineFunction().getFunction()->getCallingConv();
1056 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
1057 DebugLoc dl
= Op
.getDebugLoc();
1059 // CCState - Info about the registers and stack slot.
1060 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), RVLocs
);
1062 // Analize return values of ISD::RET
1063 CCInfo
.AnalyzeReturn(Op
.getNode(), RetCC_Mips
);
1065 // If this is the first return lowered for this function, add
1066 // the regs to the liveout set for the function.
1067 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
1068 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
1069 if (RVLocs
[i
].isRegLoc())
1070 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
1073 // The chain is always operand #0
1074 SDValue Chain
= Op
.getOperand(0);
1077 // Copy the result values into the output registers.
1078 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1079 CCValAssign
&VA
= RVLocs
[i
];
1080 assert(VA
.isRegLoc() && "Can only return in registers!");
1082 // ISD::RET => ret chain, (regnum1,val1), ...
1083 // So i*2+1 index only the regnums
1084 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
1085 Op
.getOperand(i
*2+1), Flag
);
1087 // guarantee that all emitted copies are
1088 // stuck together, avoiding something bad
1089 Flag
= Chain
.getValue(1);
1092 // The mips ABIs for returning structs by value requires that we copy
1093 // the sret argument into $v0 for the return. We saved the argument into
1094 // a virtual register in the entry block, so now we copy the value out
1096 if (DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1097 MachineFunction
&MF
= DAG
.getMachineFunction();
1098 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
1099 unsigned Reg
= MipsFI
->getSRetReturnReg();
1102 assert(0 && "sret virtual register not created in the entry block");
1103 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy());
1105 Chain
= DAG
.getCopyToReg(Chain
, dl
, Mips::V0
, Val
, Flag
);
1106 Flag
= Chain
.getValue(1);
1109 // Return on Mips is always a "jr $ra"
1111 return DAG
.getNode(MipsISD::Ret
, dl
, MVT::Other
,
1112 Chain
, DAG
.getRegister(Mips::RA
, MVT::i32
), Flag
);
1114 return DAG
.getNode(MipsISD::Ret
, dl
, MVT::Other
,
1115 Chain
, DAG
.getRegister(Mips::RA
, MVT::i32
));
1118 //===----------------------------------------------------------------------===//
1119 // Mips Inline Assembly Support
1120 //===----------------------------------------------------------------------===//
1122 /// getConstraintType - Given a constraint letter, return the type of
1123 /// constraint it is for this target.
1124 MipsTargetLowering::ConstraintType
MipsTargetLowering::
1125 getConstraintType(const std::string
&Constraint
) const
1127 // Mips specific constrainy
1128 // GCC config/mips/constraints.md
1130 // 'd' : An address register. Equivalent to r
1131 // unless generating MIPS16 code.
1132 // 'y' : Equivalent to r; retained for
1133 // backwards compatibility.
1134 // 'f' : Floating Point registers.
1135 if (Constraint
.size() == 1) {
1136 switch (Constraint
[0]) {
1141 return C_RegisterClass
;
1145 return TargetLowering::getConstraintType(Constraint
);
1148 /// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
1149 /// return a list of registers that can be used to satisfy the constraint.
1150 /// This should only be used for C_RegisterClass constraints.
1151 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
1152 getRegForInlineAsmConstraint(const std::string
&Constraint
, MVT VT
) const
1154 if (Constraint
.size() == 1) {
1155 switch (Constraint
[0]) {
1157 return std::make_pair(0U, Mips::CPURegsRegisterClass
);
1160 return std::make_pair(0U, Mips::FGR32RegisterClass
);
1162 if ((!Subtarget
->isSingleFloat()) && (!Subtarget
->isFP64bit()))
1163 return std::make_pair(0U, Mips::AFGR64RegisterClass
);
1166 return TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
1169 /// Given a register class constraint, like 'r', if this corresponds directly
1170 /// to an LLVM register class, return a register of 0 and the register class
1172 std::vector
<unsigned> MipsTargetLowering::
1173 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
1176 if (Constraint
.size() != 1)
1177 return std::vector
<unsigned>();
1179 switch (Constraint
[0]) {
1182 // GCC Mips Constraint Letters
1185 return make_vector
<unsigned>(Mips::T0
, Mips::T1
, Mips::T2
, Mips::T3
,
1186 Mips::T4
, Mips::T5
, Mips::T6
, Mips::T7
, Mips::S0
, Mips::S1
,
1187 Mips::S2
, Mips::S3
, Mips::S4
, Mips::S5
, Mips::S6
, Mips::S7
,
1191 if (VT
== MVT::f32
) {
1192 if (Subtarget
->isSingleFloat())
1193 return make_vector
<unsigned>(Mips::F2
, Mips::F3
, Mips::F4
, Mips::F5
,
1194 Mips::F6
, Mips::F7
, Mips::F8
, Mips::F9
, Mips::F10
, Mips::F11
,
1195 Mips::F20
, Mips::F21
, Mips::F22
, Mips::F23
, Mips::F24
,
1196 Mips::F25
, Mips::F26
, Mips::F27
, Mips::F28
, Mips::F29
,
1197 Mips::F30
, Mips::F31
, 0);
1199 return make_vector
<unsigned>(Mips::F2
, Mips::F4
, Mips::F6
, Mips::F8
,
1200 Mips::F10
, Mips::F20
, Mips::F22
, Mips::F24
, Mips::F26
,
1201 Mips::F28
, Mips::F30
, 0);
1205 if ((!Subtarget
->isSingleFloat()) && (!Subtarget
->isFP64bit()))
1206 return make_vector
<unsigned>(Mips::D1
, Mips::D2
, Mips::D3
, Mips::D4
,
1207 Mips::D5
, Mips::D10
, Mips::D11
, Mips::D12
, Mips::D13
,
1208 Mips::D14
, Mips::D15
, 0);
1210 return std::vector
<unsigned>();
1214 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
1215 // The Mips target isn't yet aware of offsets.