1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instruction.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Module.h"
27 #include "llvm/ValueSymbolTable.h"
28 #include "llvm/TypeSymbolTable.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
39 // Make virtual table appear in this compilation unit.
40 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
42 //===----------------------------------------------------------------------===//
44 //===----------------------------------------------------------------------===//
46 static const Module
*getModuleFromVal(const Value
*V
) {
47 if (const Argument
*MA
= dyn_cast
<Argument
>(V
))
48 return MA
->getParent() ? MA
->getParent()->getParent() : 0;
50 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
51 return BB
->getParent() ? BB
->getParent()->getParent() : 0;
53 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
54 const Function
*M
= I
->getParent() ? I
->getParent()->getParent() : 0;
55 return M
? M
->getParent() : 0;
58 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
59 return GV
->getParent();
63 // PrintEscapedString - Print each character of the specified string, escaping
64 // it if it is not printable or if it is an escape char.
65 static void PrintEscapedString(const char *Str
, unsigned Length
,
67 for (unsigned i
= 0; i
!= Length
; ++i
) {
68 unsigned char C
= Str
[i
];
69 if (isprint(C
) && C
!= '\\' && C
!= '"')
72 Out
<< '\\' << hexdigit(C
>> 4) << hexdigit(C
& 0x0F);
76 // PrintEscapedString - Print each character of the specified string, escaping
77 // it if it is not printable or if it is an escape char.
78 static void PrintEscapedString(const std::string
&Str
, raw_ostream
&Out
) {
79 PrintEscapedString(Str
.c_str(), Str
.size(), Out
);
89 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
90 /// prefixed with % (if the string only contains simple characters) or is
91 /// surrounded with ""'s (if it has special chars in it). Print it out.
92 static void PrintLLVMName(raw_ostream
&OS
, const char *NameStr
,
93 unsigned NameLen
, PrefixType Prefix
) {
94 assert(NameStr
&& "Cannot get empty name!");
96 default: assert(0 && "Bad prefix!");
98 case GlobalPrefix
: OS
<< '@'; break;
99 case LabelPrefix
: break;
100 case LocalPrefix
: OS
<< '%'; break;
103 // Scan the name to see if it needs quotes first.
104 bool NeedsQuotes
= isdigit(NameStr
[0]);
106 for (unsigned i
= 0; i
!= NameLen
; ++i
) {
108 if (!isalnum(C
) && C
!= '-' && C
!= '.' && C
!= '_') {
115 // If we didn't need any quotes, just write out the name in one blast.
117 OS
.write(NameStr
, NameLen
);
121 // Okay, we need quotes. Output the quotes and escape any scary characters as
124 PrintEscapedString(NameStr
, NameLen
, OS
);
128 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
129 /// prefixed with % (if the string only contains simple characters) or is
130 /// surrounded with ""'s (if it has special chars in it). Print it out.
131 static void PrintLLVMName(raw_ostream
&OS
, const Value
*V
) {
132 PrintLLVMName(OS
, V
->getNameStart(), V
->getNameLen(),
133 isa
<GlobalValue
>(V
) ? GlobalPrefix
: LocalPrefix
);
136 //===----------------------------------------------------------------------===//
137 // TypePrinting Class: Type printing machinery
138 //===----------------------------------------------------------------------===//
140 static DenseMap
<const Type
*, std::string
> &getTypeNamesMap(void *M
) {
141 return *static_cast<DenseMap
<const Type
*, std::string
>*>(M
);
144 void TypePrinting::clear() {
145 getTypeNamesMap(TypeNames
).clear();
148 bool TypePrinting::hasTypeName(const Type
*Ty
) const {
149 return getTypeNamesMap(TypeNames
).count(Ty
);
152 void TypePrinting::addTypeName(const Type
*Ty
, const std::string
&N
) {
153 getTypeNamesMap(TypeNames
).insert(std::make_pair(Ty
, N
));
157 TypePrinting::TypePrinting() {
158 TypeNames
= new DenseMap
<const Type
*, std::string
>();
161 TypePrinting::~TypePrinting() {
162 delete &getTypeNamesMap(TypeNames
);
165 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
166 /// use of type names or up references to shorten the type name where possible.
167 void TypePrinting::CalcTypeName(const Type
*Ty
,
168 SmallVectorImpl
<const Type
*> &TypeStack
,
169 raw_ostream
&OS
, bool IgnoreTopLevelName
) {
170 // Check to see if the type is named.
171 if (!IgnoreTopLevelName
) {
172 DenseMap
<const Type
*, std::string
> &TM
= getTypeNamesMap(TypeNames
);
173 DenseMap
<const Type
*, std::string
>::iterator I
= TM
.find(Ty
);
180 // Check to see if the Type is already on the stack...
181 unsigned Slot
= 0, CurSize
= TypeStack
.size();
182 while (Slot
< CurSize
&& TypeStack
[Slot
] != Ty
) ++Slot
; // Scan for type
184 // This is another base case for the recursion. In this case, we know
185 // that we have looped back to a type that we have previously visited.
186 // Generate the appropriate upreference to handle this.
187 if (Slot
< CurSize
) {
188 OS
<< '\\' << unsigned(CurSize
-Slot
); // Here's the upreference
192 TypeStack
.push_back(Ty
); // Recursive case: Add us to the stack..
194 switch (Ty
->getTypeID()) {
195 case Type::VoidTyID
: OS
<< "void"; break;
196 case Type::FloatTyID
: OS
<< "float"; break;
197 case Type::DoubleTyID
: OS
<< "double"; break;
198 case Type::X86_FP80TyID
: OS
<< "x86_fp80"; break;
199 case Type::FP128TyID
: OS
<< "fp128"; break;
200 case Type::PPC_FP128TyID
: OS
<< "ppc_fp128"; break;
201 case Type::LabelTyID
: OS
<< "label"; break;
202 case Type::IntegerTyID
:
203 OS
<< 'i' << cast
<IntegerType
>(Ty
)->getBitWidth();
206 case Type::FunctionTyID
: {
207 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
208 CalcTypeName(FTy
->getReturnType(), TypeStack
, OS
);
210 for (FunctionType::param_iterator I
= FTy
->param_begin(),
211 E
= FTy
->param_end(); I
!= E
; ++I
) {
212 if (I
!= FTy
->param_begin())
214 CalcTypeName(*I
, TypeStack
, OS
);
216 if (FTy
->isVarArg()) {
217 if (FTy
->getNumParams()) OS
<< ", ";
223 case Type::StructTyID
: {
224 const StructType
*STy
= cast
<StructType
>(Ty
);
228 for (StructType::element_iterator I
= STy
->element_begin(),
229 E
= STy
->element_end(); I
!= E
; ++I
) {
230 CalcTypeName(*I
, TypeStack
, OS
);
231 if (next(I
) != STy
->element_end())
240 case Type::PointerTyID
: {
241 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
242 CalcTypeName(PTy
->getElementType(), TypeStack
, OS
);
243 if (unsigned AddressSpace
= PTy
->getAddressSpace())
244 OS
<< " addrspace(" << AddressSpace
<< ')';
248 case Type::ArrayTyID
: {
249 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
250 OS
<< '[' << ATy
->getNumElements() << " x ";
251 CalcTypeName(ATy
->getElementType(), TypeStack
, OS
);
255 case Type::VectorTyID
: {
256 const VectorType
*PTy
= cast
<VectorType
>(Ty
);
257 OS
<< "<" << PTy
->getNumElements() << " x ";
258 CalcTypeName(PTy
->getElementType(), TypeStack
, OS
);
262 case Type::OpaqueTyID
:
266 OS
<< "<unrecognized-type>";
270 TypeStack
.pop_back(); // Remove self from stack.
273 /// printTypeInt - The internal guts of printing out a type that has a
274 /// potentially named portion.
276 void TypePrinting::print(const Type
*Ty
, raw_ostream
&OS
,
277 bool IgnoreTopLevelName
) {
278 // Check to see if the type is named.
279 DenseMap
<const Type
*, std::string
> &TM
= getTypeNamesMap(TypeNames
);
280 if (!IgnoreTopLevelName
) {
281 DenseMap
<const Type
*, std::string
>::iterator I
= TM
.find(Ty
);
288 // Otherwise we have a type that has not been named but is a derived type.
289 // Carefully recurse the type hierarchy to print out any contained symbolic
291 SmallVector
<const Type
*, 16> TypeStack
;
292 std::string TypeName
;
294 raw_string_ostream
TypeOS(TypeName
);
295 CalcTypeName(Ty
, TypeStack
, TypeOS
, IgnoreTopLevelName
);
298 // Cache type name for later use.
299 if (!IgnoreTopLevelName
)
300 TM
.insert(std::make_pair(Ty
, TypeOS
.str()));
305 // To avoid walking constant expressions multiple times and other IR
306 // objects, we keep several helper maps.
307 DenseSet
<const Value
*> VisitedConstants
;
308 DenseSet
<const Type
*> VisitedTypes
;
311 std::vector
<const Type
*> &NumberedTypes
;
313 TypeFinder(TypePrinting
&tp
, std::vector
<const Type
*> &numberedTypes
)
314 : TP(tp
), NumberedTypes(numberedTypes
) {}
316 void Run(const Module
&M
) {
317 // Get types from the type symbol table. This gets opaque types referened
318 // only through derived named types.
319 const TypeSymbolTable
&ST
= M
.getTypeSymbolTable();
320 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), E
= ST
.end();
322 IncorporateType(TI
->second
);
324 // Get types from global variables.
325 for (Module::const_global_iterator I
= M
.global_begin(),
326 E
= M
.global_end(); I
!= E
; ++I
) {
327 IncorporateType(I
->getType());
328 if (I
->hasInitializer())
329 IncorporateValue(I
->getInitializer());
332 // Get types from aliases.
333 for (Module::const_alias_iterator I
= M
.alias_begin(),
334 E
= M
.alias_end(); I
!= E
; ++I
) {
335 IncorporateType(I
->getType());
336 IncorporateValue(I
->getAliasee());
339 // Get types from functions.
340 for (Module::const_iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
; ++FI
) {
341 IncorporateType(FI
->getType());
343 for (Function::const_iterator BB
= FI
->begin(), E
= FI
->end();
345 for (BasicBlock::const_iterator II
= BB
->begin(),
346 E
= BB
->end(); II
!= E
; ++II
) {
347 const Instruction
&I
= *II
;
348 // Incorporate the type of the instruction and all its operands.
349 IncorporateType(I
.getType());
350 for (User::const_op_iterator OI
= I
.op_begin(), OE
= I
.op_end();
352 IncorporateValue(*OI
);
358 void IncorporateType(const Type
*Ty
) {
359 // Check to see if we're already visited this type.
360 if (!VisitedTypes
.insert(Ty
).second
)
363 // If this is a structure or opaque type, add a name for the type.
364 if (((isa
<StructType
>(Ty
) && cast
<StructType
>(Ty
)->getNumElements())
365 || isa
<OpaqueType
>(Ty
)) && !TP
.hasTypeName(Ty
)) {
366 TP
.addTypeName(Ty
, "%"+utostr(unsigned(NumberedTypes
.size())));
367 NumberedTypes
.push_back(Ty
);
370 // Recursively walk all contained types.
371 for (Type::subtype_iterator I
= Ty
->subtype_begin(),
372 E
= Ty
->subtype_end(); I
!= E
; ++I
)
376 /// IncorporateValue - This method is used to walk operand lists finding
377 /// types hiding in constant expressions and other operands that won't be
378 /// walked in other ways. GlobalValues, basic blocks, instructions, and
379 /// inst operands are all explicitly enumerated.
380 void IncorporateValue(const Value
*V
) {
381 if (V
== 0 || !isa
<Constant
>(V
) || isa
<GlobalValue
>(V
)) return;
384 if (!VisitedConstants
.insert(V
).second
)
388 IncorporateType(V
->getType());
390 // Look in operands for types.
391 const Constant
*C
= cast
<Constant
>(V
);
392 for (Constant::const_op_iterator I
= C
->op_begin(),
393 E
= C
->op_end(); I
!= E
;++I
)
394 IncorporateValue(*I
);
397 } // end anonymous namespace
400 /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
401 /// the specified module to the TypePrinter and all numbered types to it and the
402 /// NumberedTypes table.
403 static void AddModuleTypesToPrinter(TypePrinting
&TP
,
404 std::vector
<const Type
*> &NumberedTypes
,
408 // If the module has a symbol table, take all global types and stuff their
409 // names into the TypeNames map.
410 const TypeSymbolTable
&ST
= M
->getTypeSymbolTable();
411 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), E
= ST
.end();
413 const Type
*Ty
= cast
<Type
>(TI
->second
);
415 // As a heuristic, don't insert pointer to primitive types, because
416 // they are used too often to have a single useful name.
417 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
418 const Type
*PETy
= PTy
->getElementType();
419 if ((PETy
->isPrimitiveType() || PETy
->isInteger()) &&
420 !isa
<OpaqueType
>(PETy
))
424 // Likewise don't insert primitives either.
425 if (Ty
->isInteger() || Ty
->isPrimitiveType())
428 // Get the name as a string and insert it into TypeNames.
430 raw_string_ostream
NameOS(NameStr
);
431 PrintLLVMName(NameOS
, TI
->first
.c_str(), TI
->first
.length(), LocalPrefix
);
432 TP
.addTypeName(Ty
, NameOS
.str());
435 // Walk the entire module to find references to unnamed structure and opaque
436 // types. This is required for correctness by opaque types (because multiple
437 // uses of an unnamed opaque type needs to be referred to by the same ID) and
438 // it shrinks complex recursive structure types substantially in some cases.
439 TypeFinder(TP
, NumberedTypes
).Run(*M
);
443 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
444 /// type, iff there is an entry in the modules symbol table for the specified
445 /// type or one of it's component types.
447 void llvm::WriteTypeSymbolic(raw_ostream
&OS
, const Type
*Ty
, const Module
*M
) {
448 TypePrinting Printer
;
449 std::vector
<const Type
*> NumberedTypes
;
450 AddModuleTypesToPrinter(Printer
, NumberedTypes
, M
);
451 Printer
.print(Ty
, OS
);
454 //===----------------------------------------------------------------------===//
455 // SlotTracker Class: Enumerate slot numbers for unnamed values
456 //===----------------------------------------------------------------------===//
460 /// This class provides computation of slot numbers for LLVM Assembly writing.
464 /// ValueMap - A mapping of Values to slot numbers
465 typedef DenseMap
<const Value
*, unsigned> ValueMap
;
468 /// TheModule - The module for which we are holding slot numbers
469 const Module
* TheModule
;
471 /// TheFunction - The function for which we are holding slot numbers
472 const Function
* TheFunction
;
473 bool FunctionProcessed
;
475 /// mMap - The TypePlanes map for the module level data
479 /// fMap - The TypePlanes map for the function level data
484 /// Construct from a module
485 explicit SlotTracker(const Module
*M
);
486 /// Construct from a function, starting out in incorp state.
487 explicit SlotTracker(const Function
*F
);
489 /// Return the slot number of the specified value in it's type
490 /// plane. If something is not in the SlotTracker, return -1.
491 int getLocalSlot(const Value
*V
);
492 int getGlobalSlot(const GlobalValue
*V
);
494 /// If you'd like to deal with a function instead of just a module, use
495 /// this method to get its data into the SlotTracker.
496 void incorporateFunction(const Function
*F
) {
498 FunctionProcessed
= false;
501 /// After calling incorporateFunction, use this method to remove the
502 /// most recently incorporated function from the SlotTracker. This
503 /// will reset the state of the machine back to just the module contents.
504 void purgeFunction();
506 // Implementation Details
508 /// This function does the actual initialization.
509 inline void initialize();
511 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
512 void CreateModuleSlot(const GlobalValue
*V
);
514 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
515 void CreateFunctionSlot(const Value
*V
);
517 /// Add all of the module level global variables (and their initializers)
518 /// and function declarations, but not the contents of those functions.
519 void processModule();
521 /// Add all of the functions arguments, basic blocks, and instructions
522 void processFunction();
524 SlotTracker(const SlotTracker
&); // DO NOT IMPLEMENT
525 void operator=(const SlotTracker
&); // DO NOT IMPLEMENT
528 } // end anonymous namespace
531 static SlotTracker
*createSlotTracker(const Value
*V
) {
532 if (const Argument
*FA
= dyn_cast
<Argument
>(V
))
533 return new SlotTracker(FA
->getParent());
535 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
536 return new SlotTracker(I
->getParent()->getParent());
538 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
539 return new SlotTracker(BB
->getParent());
541 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
542 return new SlotTracker(GV
->getParent());
544 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
545 return new SlotTracker(GA
->getParent());
547 if (const Function
*Func
= dyn_cast
<Function
>(V
))
548 return new SlotTracker(Func
);
554 #define ST_DEBUG(X) cerr << X
559 // Module level constructor. Causes the contents of the Module (sans functions)
560 // to be added to the slot table.
561 SlotTracker::SlotTracker(const Module
*M
)
562 : TheModule(M
), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
565 // Function level constructor. Causes the contents of the Module and the one
566 // function provided to be added to the slot table.
567 SlotTracker::SlotTracker(const Function
*F
)
568 : TheModule(F
? F
->getParent() : 0), TheFunction(F
), FunctionProcessed(false),
572 inline void SlotTracker::initialize() {
575 TheModule
= 0; ///< Prevent re-processing next time we're called.
578 if (TheFunction
&& !FunctionProcessed
)
582 // Iterate through all the global variables, functions, and global
583 // variable initializers and create slots for them.
584 void SlotTracker::processModule() {
585 ST_DEBUG("begin processModule!\n");
587 // Add all of the unnamed global variables to the value table.
588 for (Module::const_global_iterator I
= TheModule
->global_begin(),
589 E
= TheModule
->global_end(); I
!= E
; ++I
)
593 // Add all the unnamed functions to the table.
594 for (Module::const_iterator I
= TheModule
->begin(), E
= TheModule
->end();
599 ST_DEBUG("end processModule!\n");
603 // Process the arguments, basic blocks, and instructions of a function.
604 void SlotTracker::processFunction() {
605 ST_DEBUG("begin processFunction!\n");
608 // Add all the function arguments with no names.
609 for(Function::const_arg_iterator AI
= TheFunction
->arg_begin(),
610 AE
= TheFunction
->arg_end(); AI
!= AE
; ++AI
)
612 CreateFunctionSlot(AI
);
614 ST_DEBUG("Inserting Instructions:\n");
616 // Add all of the basic blocks and instructions with no names.
617 for (Function::const_iterator BB
= TheFunction
->begin(),
618 E
= TheFunction
->end(); BB
!= E
; ++BB
) {
620 CreateFunctionSlot(BB
);
621 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
622 if (I
->getType() != Type::VoidTy
&& !I
->hasName())
623 CreateFunctionSlot(I
);
626 FunctionProcessed
= true;
628 ST_DEBUG("end processFunction!\n");
631 /// Clean up after incorporating a function. This is the only way to get out of
632 /// the function incorporation state that affects get*Slot/Create*Slot. Function
633 /// incorporation state is indicated by TheFunction != 0.
634 void SlotTracker::purgeFunction() {
635 ST_DEBUG("begin purgeFunction!\n");
636 fMap
.clear(); // Simply discard the function level map
638 FunctionProcessed
= false;
639 ST_DEBUG("end purgeFunction!\n");
642 /// getGlobalSlot - Get the slot number of a global value.
643 int SlotTracker::getGlobalSlot(const GlobalValue
*V
) {
644 // Check for uninitialized state and do lazy initialization.
647 // Find the type plane in the module map
648 ValueMap::iterator MI
= mMap
.find(V
);
649 return MI
== mMap
.end() ? -1 : (int)MI
->second
;
653 /// getLocalSlot - Get the slot number for a value that is local to a function.
654 int SlotTracker::getLocalSlot(const Value
*V
) {
655 assert(!isa
<Constant
>(V
) && "Can't get a constant or global slot with this!");
657 // Check for uninitialized state and do lazy initialization.
660 ValueMap::iterator FI
= fMap
.find(V
);
661 return FI
== fMap
.end() ? -1 : (int)FI
->second
;
665 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
666 void SlotTracker::CreateModuleSlot(const GlobalValue
*V
) {
667 assert(V
&& "Can't insert a null Value into SlotTracker!");
668 assert(V
->getType() != Type::VoidTy
&& "Doesn't need a slot!");
669 assert(!V
->hasName() && "Doesn't need a slot!");
671 unsigned DestSlot
= mNext
++;
674 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
676 // G = Global, F = Function, A = Alias, o = other
677 ST_DEBUG((isa
<GlobalVariable
>(V
) ? 'G' :
678 (isa
<Function
>(V
) ? 'F' :
679 (isa
<GlobalAlias
>(V
) ? 'A' : 'o'))) << "]\n");
683 /// CreateSlot - Create a new slot for the specified value if it has no name.
684 void SlotTracker::CreateFunctionSlot(const Value
*V
) {
685 assert(V
->getType() != Type::VoidTy
&& !V
->hasName() &&
686 "Doesn't need a slot!");
688 unsigned DestSlot
= fNext
++;
691 // G = Global, F = Function, o = other
692 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
693 DestSlot
<< " [o]\n");
698 //===----------------------------------------------------------------------===//
699 // AsmWriter Implementation
700 //===----------------------------------------------------------------------===//
702 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
703 TypePrinting
&TypePrinter
,
704 SlotTracker
*Machine
);
708 static const char *getPredicateText(unsigned predicate
) {
709 const char * pred
= "unknown";
711 case FCmpInst::FCMP_FALSE
: pred
= "false"; break;
712 case FCmpInst::FCMP_OEQ
: pred
= "oeq"; break;
713 case FCmpInst::FCMP_OGT
: pred
= "ogt"; break;
714 case FCmpInst::FCMP_OGE
: pred
= "oge"; break;
715 case FCmpInst::FCMP_OLT
: pred
= "olt"; break;
716 case FCmpInst::FCMP_OLE
: pred
= "ole"; break;
717 case FCmpInst::FCMP_ONE
: pred
= "one"; break;
718 case FCmpInst::FCMP_ORD
: pred
= "ord"; break;
719 case FCmpInst::FCMP_UNO
: pred
= "uno"; break;
720 case FCmpInst::FCMP_UEQ
: pred
= "ueq"; break;
721 case FCmpInst::FCMP_UGT
: pred
= "ugt"; break;
722 case FCmpInst::FCMP_UGE
: pred
= "uge"; break;
723 case FCmpInst::FCMP_ULT
: pred
= "ult"; break;
724 case FCmpInst::FCMP_ULE
: pred
= "ule"; break;
725 case FCmpInst::FCMP_UNE
: pred
= "une"; break;
726 case FCmpInst::FCMP_TRUE
: pred
= "true"; break;
727 case ICmpInst::ICMP_EQ
: pred
= "eq"; break;
728 case ICmpInst::ICMP_NE
: pred
= "ne"; break;
729 case ICmpInst::ICMP_SGT
: pred
= "sgt"; break;
730 case ICmpInst::ICMP_SGE
: pred
= "sge"; break;
731 case ICmpInst::ICMP_SLT
: pred
= "slt"; break;
732 case ICmpInst::ICMP_SLE
: pred
= "sle"; break;
733 case ICmpInst::ICMP_UGT
: pred
= "ugt"; break;
734 case ICmpInst::ICMP_UGE
: pred
= "uge"; break;
735 case ICmpInst::ICMP_ULT
: pred
= "ult"; break;
736 case ICmpInst::ICMP_ULE
: pred
= "ule"; break;
741 static void WriteConstantInt(raw_ostream
&Out
, const Constant
*CV
,
742 TypePrinting
&TypePrinter
, SlotTracker
*Machine
) {
743 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
744 if (CI
->getType() == Type::Int1Ty
) {
745 Out
<< (CI
->getZExtValue() ? "true" : "false");
748 Out
<< CI
->getValue();
752 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
753 if (&CFP
->getValueAPF().getSemantics() == &APFloat::IEEEdouble
||
754 &CFP
->getValueAPF().getSemantics() == &APFloat::IEEEsingle
) {
755 // We would like to output the FP constant value in exponential notation,
756 // but we cannot do this if doing so will lose precision. Check here to
757 // make sure that we only output it in exponential format if we can parse
758 // the value back and get the same value.
761 bool isDouble
= &CFP
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
;
762 double Val
= isDouble
? CFP
->getValueAPF().convertToDouble() :
763 CFP
->getValueAPF().convertToFloat();
764 std::string StrVal
= ftostr(CFP
->getValueAPF());
766 // Check to make sure that the stringized number is not some string like
767 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
768 // that the string matches the "[-+]?[0-9]" regex.
770 if ((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
771 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
772 (StrVal
[1] >= '0' && StrVal
[1] <= '9'))) {
773 // Reparse stringized version!
774 if (atof(StrVal
.c_str()) == Val
) {
779 // Otherwise we could not reparse it to exactly the same value, so we must
780 // output the string in hexadecimal format! Note that loading and storing
781 // floating point types changes the bits of NaNs on some hosts, notably
782 // x86, so we must not use these types.
783 assert(sizeof(double) == sizeof(uint64_t) &&
784 "assuming that double is 64 bits!");
786 APFloat apf
= CFP
->getValueAPF();
787 // Floats are represented in ASCII IR as double, convert.
789 apf
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
,
792 utohex_buffer(uint64_t(apf
.bitcastToAPInt().getZExtValue()),
797 // Some form of long double. These appear as a magic letter identifying
798 // the type, then a fixed number of hex digits.
800 if (&CFP
->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended
) {
802 // api needed to prevent premature destruction
803 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
804 const uint64_t* p
= api
.getRawData();
805 uint64_t word
= p
[1];
807 int width
= api
.getBitWidth();
808 for (int j
=0; j
<width
; j
+=4, shiftcount
-=4) {
809 unsigned int nibble
= (word
>>shiftcount
) & 15;
811 Out
<< (unsigned char)(nibble
+ '0');
813 Out
<< (unsigned char)(nibble
- 10 + 'A');
814 if (shiftcount
== 0 && j
+4 < width
) {
818 shiftcount
= width
-j
-4;
822 } else if (&CFP
->getValueAPF().getSemantics() == &APFloat::IEEEquad
)
824 else if (&CFP
->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble
)
827 assert(0 && "Unsupported floating point type");
828 // api needed to prevent premature destruction
829 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
830 const uint64_t* p
= api
.getRawData();
833 int width
= api
.getBitWidth();
834 for (int j
=0; j
<width
; j
+=4, shiftcount
-=4) {
835 unsigned int nibble
= (word
>>shiftcount
) & 15;
837 Out
<< (unsigned char)(nibble
+ '0');
839 Out
<< (unsigned char)(nibble
- 10 + 'A');
840 if (shiftcount
== 0 && j
+4 < width
) {
844 shiftcount
= width
-j
-4;
850 if (isa
<ConstantAggregateZero
>(CV
)) {
851 Out
<< "zeroinitializer";
855 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
856 // As a special case, print the array as a string if it is an array of
857 // i8 with ConstantInt values.
859 const Type
*ETy
= CA
->getType()->getElementType();
860 if (CA
->isString()) {
862 PrintEscapedString(CA
->getAsString(), Out
);
864 } else { // Cannot output in string format...
866 if (CA
->getNumOperands()) {
867 TypePrinter
.print(ETy
, Out
);
869 WriteAsOperandInternal(Out
, CA
->getOperand(0),
870 TypePrinter
, Machine
);
871 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
873 TypePrinter
.print(ETy
, Out
);
875 WriteAsOperandInternal(Out
, CA
->getOperand(i
), TypePrinter
, Machine
);
883 if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
884 if (CS
->getType()->isPacked())
887 unsigned N
= CS
->getNumOperands();
890 TypePrinter
.print(CS
->getOperand(0)->getType(), Out
);
893 WriteAsOperandInternal(Out
, CS
->getOperand(0), TypePrinter
, Machine
);
895 for (unsigned i
= 1; i
< N
; i
++) {
897 TypePrinter
.print(CS
->getOperand(i
)->getType(), Out
);
900 WriteAsOperandInternal(Out
, CS
->getOperand(i
), TypePrinter
, Machine
);
906 if (CS
->getType()->isPacked())
911 if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
912 const Type
*ETy
= CP
->getType()->getElementType();
913 assert(CP
->getNumOperands() > 0 &&
914 "Number of operands for a PackedConst must be > 0");
916 TypePrinter
.print(ETy
, Out
);
918 WriteAsOperandInternal(Out
, CP
->getOperand(0), TypePrinter
, Machine
);
919 for (unsigned i
= 1, e
= CP
->getNumOperands(); i
!= e
; ++i
) {
921 TypePrinter
.print(ETy
, Out
);
923 WriteAsOperandInternal(Out
, CP
->getOperand(i
), TypePrinter
, Machine
);
929 if (isa
<ConstantPointerNull
>(CV
)) {
934 if (isa
<UndefValue
>(CV
)) {
939 if (const MDString
*S
= dyn_cast
<MDString
>(CV
)) {
941 PrintEscapedString(S
->begin(), S
->size(), Out
);
946 if (const MDNode
*N
= dyn_cast
<MDNode
>(CV
)) {
948 for (MDNode::const_op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
;){
949 TypePrinter
.print((*I
)->getType(), Out
);
951 WriteAsOperandInternal(Out
, *I
, TypePrinter
, Machine
);
959 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
960 Out
<< CE
->getOpcodeName();
962 Out
<< ' ' << getPredicateText(CE
->getPredicate());
965 for (User::const_op_iterator OI
=CE
->op_begin(); OI
!= CE
->op_end(); ++OI
) {
966 TypePrinter
.print((*OI
)->getType(), Out
);
968 WriteAsOperandInternal(Out
, *OI
, TypePrinter
, Machine
);
969 if (OI
+1 != CE
->op_end())
973 if (CE
->hasIndices()) {
974 const SmallVector
<unsigned, 4> &Indices
= CE
->getIndices();
975 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
976 Out
<< ", " << Indices
[i
];
981 TypePrinter
.print(CE
->getType(), Out
);
988 Out
<< "<placeholder or erroneous Constant>";
992 /// WriteAsOperand - Write the name of the specified value out to the specified
993 /// ostream. This can be useful when you just want to print int %reg126, not
994 /// the whole instruction that generated it.
996 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
997 TypePrinting
&TypePrinter
,
998 SlotTracker
*Machine
) {
1000 PrintLLVMName(Out
, V
);
1004 const Constant
*CV
= dyn_cast
<Constant
>(V
);
1005 if (CV
&& !isa
<GlobalValue
>(CV
)) {
1006 WriteConstantInt(Out
, CV
, TypePrinter
, Machine
);
1010 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
1012 if (IA
->hasSideEffects())
1013 Out
<< "sideeffect ";
1015 PrintEscapedString(IA
->getAsmString(), Out
);
1017 PrintEscapedString(IA
->getConstraintString(), Out
);
1025 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1026 Slot
= Machine
->getGlobalSlot(GV
);
1029 Slot
= Machine
->getLocalSlot(V
);
1032 Machine
= createSlotTracker(V
);
1034 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1035 Slot
= Machine
->getGlobalSlot(GV
);
1038 Slot
= Machine
->getLocalSlot(V
);
1047 Out
<< Prefix
<< Slot
;
1052 /// WriteAsOperand - Write the name of the specified value out to the specified
1053 /// ostream. This can be useful when you just want to print int %reg126, not
1054 /// the whole instruction that generated it.
1056 void llvm::WriteAsOperand(std::ostream
&Out
, const Value
*V
, bool PrintType
,
1057 const Module
*Context
) {
1058 raw_os_ostream
OS(Out
);
1059 WriteAsOperand(OS
, V
, PrintType
, Context
);
1062 void llvm::WriteAsOperand(raw_ostream
&Out
, const Value
*V
, bool PrintType
,
1063 const Module
*Context
) {
1064 if (Context
== 0) Context
= getModuleFromVal(V
);
1066 TypePrinting TypePrinter
;
1067 std::vector
<const Type
*> NumberedTypes
;
1068 AddModuleTypesToPrinter(TypePrinter
, NumberedTypes
, Context
);
1070 TypePrinter
.print(V
->getType(), Out
);
1074 WriteAsOperandInternal(Out
, V
, TypePrinter
, 0);
1080 class AssemblyWriter
{
1082 SlotTracker
&Machine
;
1083 const Module
*TheModule
;
1084 TypePrinting TypePrinter
;
1085 AssemblyAnnotationWriter
*AnnotationWriter
;
1086 std::vector
<const Type
*> NumberedTypes
;
1088 inline AssemblyWriter(raw_ostream
&o
, SlotTracker
&Mac
, const Module
*M
,
1089 AssemblyAnnotationWriter
*AAW
)
1090 : Out(o
), Machine(Mac
), TheModule(M
), AnnotationWriter(AAW
) {
1091 AddModuleTypesToPrinter(TypePrinter
, NumberedTypes
, M
);
1094 void write(const Module
*M
) { printModule(M
); }
1096 void write(const GlobalValue
*G
) {
1097 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
))
1099 else if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(G
))
1101 else if (const Function
*F
= dyn_cast
<Function
>(G
))
1104 assert(0 && "Unknown global");
1107 void write(const BasicBlock
*BB
) { printBasicBlock(BB
); }
1108 void write(const Instruction
*I
) { printInstruction(*I
); }
1110 void writeOperand(const Value
*Op
, bool PrintType
);
1111 void writeParamOperand(const Value
*Operand
, Attributes Attrs
);
1113 const Module
* getModule() { return TheModule
; }
1116 void printModule(const Module
*M
);
1117 void printTypeSymbolTable(const TypeSymbolTable
&ST
);
1118 void printGlobal(const GlobalVariable
*GV
);
1119 void printAlias(const GlobalAlias
*GV
);
1120 void printFunction(const Function
*F
);
1121 void printArgument(const Argument
*FA
, Attributes Attrs
);
1122 void printBasicBlock(const BasicBlock
*BB
);
1123 void printInstruction(const Instruction
&I
);
1125 // printInfoComment - Print a little comment after the instruction indicating
1126 // which slot it occupies.
1127 void printInfoComment(const Value
&V
);
1129 } // end of anonymous namespace
1132 void AssemblyWriter::writeOperand(const Value
*Operand
, bool PrintType
) {
1134 Out
<< "<null operand!>";
1137 TypePrinter
.print(Operand
->getType(), Out
);
1140 WriteAsOperandInternal(Out
, Operand
, TypePrinter
, &Machine
);
1144 void AssemblyWriter::writeParamOperand(const Value
*Operand
,
1147 Out
<< "<null operand!>";
1150 TypePrinter
.print(Operand
->getType(), Out
);
1151 // Print parameter attributes list
1152 if (Attrs
!= Attribute::None
)
1153 Out
<< ' ' << Attribute::getAsString(Attrs
);
1155 // Print the operand
1156 WriteAsOperandInternal(Out
, Operand
, TypePrinter
, &Machine
);
1160 void AssemblyWriter::printModule(const Module
*M
) {
1161 if (!M
->getModuleIdentifier().empty() &&
1162 // Don't print the ID if it will start a new line (which would
1163 // require a comment char before it).
1164 M
->getModuleIdentifier().find('\n') == std::string::npos
)
1165 Out
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
1167 if (!M
->getDataLayout().empty())
1168 Out
<< "target datalayout = \"" << M
->getDataLayout() << "\"\n";
1169 if (!M
->getTargetTriple().empty())
1170 Out
<< "target triple = \"" << M
->getTargetTriple() << "\"\n";
1172 if (!M
->getModuleInlineAsm().empty()) {
1173 // Split the string into lines, to make it easier to read the .ll file.
1174 std::string Asm
= M
->getModuleInlineAsm();
1176 size_t NewLine
= Asm
.find_first_of('\n', CurPos
);
1177 while (NewLine
!= std::string::npos
) {
1178 // We found a newline, print the portion of the asm string from the
1179 // last newline up to this newline.
1180 Out
<< "module asm \"";
1181 PrintEscapedString(std::string(Asm
.begin()+CurPos
, Asm
.begin()+NewLine
),
1185 NewLine
= Asm
.find_first_of('\n', CurPos
);
1187 Out
<< "module asm \"";
1188 PrintEscapedString(std::string(Asm
.begin()+CurPos
, Asm
.end()), Out
);
1192 // Loop over the dependent libraries and emit them.
1193 Module::lib_iterator LI
= M
->lib_begin();
1194 Module::lib_iterator LE
= M
->lib_end();
1196 Out
<< "deplibs = [ ";
1198 Out
<< '"' << *LI
<< '"';
1206 // Loop over the symbol table, emitting all id'd types.
1207 printTypeSymbolTable(M
->getTypeSymbolTable());
1209 for (Module::const_global_iterator I
= M
->global_begin(), E
= M
->global_end();
1213 // Output all aliases.
1214 if (!M
->alias_empty()) Out
<< "\n";
1215 for (Module::const_alias_iterator I
= M
->alias_begin(), E
= M
->alias_end();
1219 // Output all of the functions.
1220 for (Module::const_iterator I
= M
->begin(), E
= M
->end(); I
!= E
; ++I
)
1224 static void PrintLinkage(GlobalValue::LinkageTypes LT
, raw_ostream
&Out
) {
1226 case GlobalValue::PrivateLinkage
: Out
<< "private "; break;
1227 case GlobalValue::InternalLinkage
: Out
<< "internal "; break;
1228 case GlobalValue::AvailableExternallyLinkage
:
1229 Out
<< "available_externally ";
1231 case GlobalValue::LinkOnceAnyLinkage
: Out
<< "linkonce "; break;
1232 case GlobalValue::LinkOnceODRLinkage
: Out
<< "linkonce_odr "; break;
1233 case GlobalValue::WeakAnyLinkage
: Out
<< "weak "; break;
1234 case GlobalValue::WeakODRLinkage
: Out
<< "weak_odr "; break;
1235 case GlobalValue::CommonLinkage
: Out
<< "common "; break;
1236 case GlobalValue::AppendingLinkage
: Out
<< "appending "; break;
1237 case GlobalValue::DLLImportLinkage
: Out
<< "dllimport "; break;
1238 case GlobalValue::DLLExportLinkage
: Out
<< "dllexport "; break;
1239 case GlobalValue::ExternalWeakLinkage
: Out
<< "extern_weak "; break;
1240 case GlobalValue::ExternalLinkage
: break;
1241 case GlobalValue::GhostLinkage
:
1242 Out
<< "GhostLinkage not allowed in AsmWriter!\n";
1248 static void PrintVisibility(GlobalValue::VisibilityTypes Vis
,
1251 default: assert(0 && "Invalid visibility style!");
1252 case GlobalValue::DefaultVisibility
: break;
1253 case GlobalValue::HiddenVisibility
: Out
<< "hidden "; break;
1254 case GlobalValue::ProtectedVisibility
: Out
<< "protected "; break;
1258 void AssemblyWriter::printGlobal(const GlobalVariable
*GV
) {
1259 if (GV
->hasName()) {
1260 PrintLLVMName(Out
, GV
);
1264 if (!GV
->hasInitializer() && GV
->hasExternalLinkage())
1267 PrintLinkage(GV
->getLinkage(), Out
);
1268 PrintVisibility(GV
->getVisibility(), Out
);
1270 if (GV
->isThreadLocal()) Out
<< "thread_local ";
1271 if (unsigned AddressSpace
= GV
->getType()->getAddressSpace())
1272 Out
<< "addrspace(" << AddressSpace
<< ") ";
1273 Out
<< (GV
->isConstant() ? "constant " : "global ");
1274 TypePrinter
.print(GV
->getType()->getElementType(), Out
);
1276 if (GV
->hasInitializer()) {
1278 writeOperand(GV
->getInitializer(), false);
1281 if (GV
->hasSection())
1282 Out
<< ", section \"" << GV
->getSection() << '"';
1283 if (GV
->getAlignment())
1284 Out
<< ", align " << GV
->getAlignment();
1286 printInfoComment(*GV
);
1290 void AssemblyWriter::printAlias(const GlobalAlias
*GA
) {
1291 // Don't crash when dumping partially built GA
1293 Out
<< "<<nameless>> = ";
1295 PrintLLVMName(Out
, GA
);
1298 PrintVisibility(GA
->getVisibility(), Out
);
1302 PrintLinkage(GA
->getLinkage(), Out
);
1304 const Constant
*Aliasee
= GA
->getAliasee();
1306 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Aliasee
)) {
1307 TypePrinter
.print(GV
->getType(), Out
);
1309 PrintLLVMName(Out
, GV
);
1310 } else if (const Function
*F
= dyn_cast
<Function
>(Aliasee
)) {
1311 TypePrinter
.print(F
->getFunctionType(), Out
);
1314 WriteAsOperandInternal(Out
, F
, TypePrinter
, &Machine
);
1315 } else if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(Aliasee
)) {
1316 TypePrinter
.print(GA
->getType(), Out
);
1318 PrintLLVMName(Out
, GA
);
1320 const ConstantExpr
*CE
= 0;
1321 if ((CE
= dyn_cast
<ConstantExpr
>(Aliasee
)) &&
1322 (CE
->getOpcode() == Instruction::BitCast
)) {
1323 writeOperand(CE
, false);
1325 assert(0 && "Unsupported aliasee");
1328 printInfoComment(*GA
);
1332 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable
&ST
) {
1333 // Emit all numbered types.
1334 for (unsigned i
= 0, e
= NumberedTypes
.size(); i
!= e
; ++i
) {
1337 // Make sure we print out at least one level of the type structure, so
1338 // that we do not get %2 = type %2
1339 TypePrinter
.printAtLeastOneLevel(NumberedTypes
[i
], Out
);
1340 Out
<< "\t\t; type %" << i
<< '\n';
1343 // Print the named types.
1344 for (TypeSymbolTable::const_iterator TI
= ST
.begin(), TE
= ST
.end();
1347 PrintLLVMName(Out
, &TI
->first
[0], TI
->first
.size(), LocalPrefix
);
1350 // Make sure we print out at least one level of the type structure, so
1351 // that we do not get %FILE = type %FILE
1352 TypePrinter
.printAtLeastOneLevel(TI
->second
, Out
);
1357 /// printFunction - Print all aspects of a function.
1359 void AssemblyWriter::printFunction(const Function
*F
) {
1360 // Print out the return type and name.
1363 if (AnnotationWriter
) AnnotationWriter
->emitFunctionAnnot(F
, Out
);
1365 if (F
->isDeclaration())
1370 PrintLinkage(F
->getLinkage(), Out
);
1371 PrintVisibility(F
->getVisibility(), Out
);
1373 // Print the calling convention.
1374 switch (F
->getCallingConv()) {
1375 case CallingConv::C
: break; // default
1376 case CallingConv::Fast
: Out
<< "fastcc "; break;
1377 case CallingConv::Cold
: Out
<< "coldcc "; break;
1378 case CallingConv::X86_StdCall
: Out
<< "x86_stdcallcc "; break;
1379 case CallingConv::X86_FastCall
: Out
<< "x86_fastcallcc "; break;
1380 default: Out
<< "cc" << F
->getCallingConv() << " "; break;
1383 const FunctionType
*FT
= F
->getFunctionType();
1384 const AttrListPtr
&Attrs
= F
->getAttributes();
1385 Attributes RetAttrs
= Attrs
.getRetAttributes();
1386 if (RetAttrs
!= Attribute::None
)
1387 Out
<< Attribute::getAsString(Attrs
.getRetAttributes()) << ' ';
1388 TypePrinter
.print(F
->getReturnType(), Out
);
1390 WriteAsOperandInternal(Out
, F
, TypePrinter
, &Machine
);
1392 Machine
.incorporateFunction(F
);
1394 // Loop over the arguments, printing them...
1397 if (!F
->isDeclaration()) {
1398 // If this isn't a declaration, print the argument names as well.
1399 for (Function::const_arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
1401 // Insert commas as we go... the first arg doesn't get a comma
1402 if (I
!= F
->arg_begin()) Out
<< ", ";
1403 printArgument(I
, Attrs
.getParamAttributes(Idx
));
1407 // Otherwise, print the types from the function type.
1408 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
1409 // Insert commas as we go... the first arg doesn't get a comma
1413 TypePrinter
.print(FT
->getParamType(i
), Out
);
1415 Attributes ArgAttrs
= Attrs
.getParamAttributes(i
+1);
1416 if (ArgAttrs
!= Attribute::None
)
1417 Out
<< ' ' << Attribute::getAsString(ArgAttrs
);
1421 // Finish printing arguments...
1422 if (FT
->isVarArg()) {
1423 if (FT
->getNumParams()) Out
<< ", ";
1424 Out
<< "..."; // Output varargs portion of signature!
1427 Attributes FnAttrs
= Attrs
.getFnAttributes();
1428 if (FnAttrs
!= Attribute::None
)
1429 Out
<< ' ' << Attribute::getAsString(Attrs
.getFnAttributes());
1430 if (F
->hasSection())
1431 Out
<< " section \"" << F
->getSection() << '"';
1432 if (F
->getAlignment())
1433 Out
<< " align " << F
->getAlignment();
1435 Out
<< " gc \"" << F
->getGC() << '"';
1436 if (F
->isDeclaration()) {
1441 // Output all of its basic blocks... for the function
1442 for (Function::const_iterator I
= F
->begin(), E
= F
->end(); I
!= E
; ++I
)
1448 Machine
.purgeFunction();
1451 /// printArgument - This member is called for every argument that is passed into
1452 /// the function. Simply print it out
1454 void AssemblyWriter::printArgument(const Argument
*Arg
,
1457 TypePrinter
.print(Arg
->getType(), Out
);
1459 // Output parameter attributes list
1460 if (Attrs
!= Attribute::None
)
1461 Out
<< ' ' << Attribute::getAsString(Attrs
);
1463 // Output name, if available...
1464 if (Arg
->hasName()) {
1466 PrintLLVMName(Out
, Arg
);
1470 /// printBasicBlock - This member is called for each basic block in a method.
1472 void AssemblyWriter::printBasicBlock(const BasicBlock
*BB
) {
1473 if (BB
->hasName()) { // Print out the label if it exists...
1475 PrintLLVMName(Out
, BB
->getNameStart(), BB
->getNameLen(), LabelPrefix
);
1477 } else if (!BB
->use_empty()) { // Don't print block # of no uses...
1478 Out
<< "\n; <label>:";
1479 int Slot
= Machine
.getLocalSlot(BB
);
1486 if (BB
->getParent() == 0)
1487 Out
<< "\t\t; Error: Block without parent!";
1488 else if (BB
!= &BB
->getParent()->getEntryBlock()) { // Not the entry block?
1489 // Output predecessors for the block...
1491 pred_const_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
1494 Out
<< " No predecessors!";
1497 writeOperand(*PI
, false);
1498 for (++PI
; PI
!= PE
; ++PI
) {
1500 writeOperand(*PI
, false);
1507 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockStartAnnot(BB
, Out
);
1509 // Output all of the instructions in the basic block...
1510 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
1511 printInstruction(*I
);
1513 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockEndAnnot(BB
, Out
);
1517 /// printInfoComment - Print a little comment after the instruction indicating
1518 /// which slot it occupies.
1520 void AssemblyWriter::printInfoComment(const Value
&V
) {
1521 if (V
.getType() != Type::VoidTy
) {
1523 TypePrinter
.print(V
.getType(), Out
);
1526 if (!V
.hasName() && !isa
<Instruction
>(V
)) {
1528 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(&V
))
1529 SlotNum
= Machine
.getGlobalSlot(GV
);
1531 SlotNum
= Machine
.getLocalSlot(&V
);
1535 Out
<< ':' << SlotNum
; // Print out the def slot taken.
1537 Out
<< " [#uses=" << V
.getNumUses() << ']'; // Output # uses
1541 // This member is called for each Instruction in a function..
1542 void AssemblyWriter::printInstruction(const Instruction
&I
) {
1543 if (AnnotationWriter
) AnnotationWriter
->emitInstructionAnnot(&I
, Out
);
1547 // Print out name if it exists...
1549 PrintLLVMName(Out
, &I
);
1551 } else if (I
.getType() != Type::VoidTy
) {
1552 // Print out the def slot taken.
1553 int SlotNum
= Machine
.getLocalSlot(&I
);
1555 Out
<< "<badref> = ";
1557 Out
<< '%' << SlotNum
<< " = ";
1560 // If this is a volatile load or store, print out the volatile marker.
1561 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isVolatile()) ||
1562 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isVolatile())) {
1564 } else if (isa
<CallInst
>(I
) && cast
<CallInst
>(I
).isTailCall()) {
1565 // If this is a call, check if it's a tail call.
1569 // Print out the opcode...
1570 Out
<< I
.getOpcodeName();
1572 // Print out the compare instruction predicates
1573 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1574 Out
<< ' ' << getPredicateText(CI
->getPredicate());
1576 // Print out the type of the operands...
1577 const Value
*Operand
= I
.getNumOperands() ? I
.getOperand(0) : 0;
1579 // Special case conditional branches to swizzle the condition out to the front
1580 if (isa
<BranchInst
>(I
) && cast
<BranchInst
>(I
).isConditional()) {
1581 BranchInst
&BI(cast
<BranchInst
>(I
));
1583 writeOperand(BI
.getCondition(), true);
1585 writeOperand(BI
.getSuccessor(0), true);
1587 writeOperand(BI
.getSuccessor(1), true);
1589 } else if (isa
<SwitchInst
>(I
)) {
1590 // Special case switch statement to get formatting nice and correct...
1592 writeOperand(Operand
, true);
1594 writeOperand(I
.getOperand(1), true);
1597 for (unsigned op
= 2, Eop
= I
.getNumOperands(); op
< Eop
; op
+= 2) {
1599 writeOperand(I
.getOperand(op
), true);
1601 writeOperand(I
.getOperand(op
+1), true);
1604 } else if (isa
<PHINode
>(I
)) {
1606 TypePrinter
.print(I
.getType(), Out
);
1609 for (unsigned op
= 0, Eop
= I
.getNumOperands(); op
< Eop
; op
+= 2) {
1610 if (op
) Out
<< ", ";
1612 writeOperand(I
.getOperand(op
), false); Out
<< ", ";
1613 writeOperand(I
.getOperand(op
+1), false); Out
<< " ]";
1615 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(&I
)) {
1617 writeOperand(I
.getOperand(0), true);
1618 for (const unsigned *i
= EVI
->idx_begin(), *e
= EVI
->idx_end(); i
!= e
; ++i
)
1620 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(&I
)) {
1622 writeOperand(I
.getOperand(0), true); Out
<< ", ";
1623 writeOperand(I
.getOperand(1), true);
1624 for (const unsigned *i
= IVI
->idx_begin(), *e
= IVI
->idx_end(); i
!= e
; ++i
)
1626 } else if (isa
<ReturnInst
>(I
) && !Operand
) {
1628 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
1629 // Print the calling convention being used.
1630 switch (CI
->getCallingConv()) {
1631 case CallingConv::C
: break; // default
1632 case CallingConv::Fast
: Out
<< " fastcc"; break;
1633 case CallingConv::Cold
: Out
<< " coldcc"; break;
1634 case CallingConv::X86_StdCall
: Out
<< " x86_stdcallcc"; break;
1635 case CallingConv::X86_FastCall
: Out
<< " x86_fastcallcc"; break;
1636 default: Out
<< " cc" << CI
->getCallingConv(); break;
1639 const PointerType
*PTy
= cast
<PointerType
>(Operand
->getType());
1640 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1641 const Type
*RetTy
= FTy
->getReturnType();
1642 const AttrListPtr
&PAL
= CI
->getAttributes();
1644 if (PAL
.getRetAttributes() != Attribute::None
)
1645 Out
<< ' ' << Attribute::getAsString(PAL
.getRetAttributes());
1647 // If possible, print out the short form of the call instruction. We can
1648 // only do this if the first argument is a pointer to a nonvararg function,
1649 // and if the return type is not a pointer to a function.
1652 if (!FTy
->isVarArg() &&
1653 (!isa
<PointerType
>(RetTy
) ||
1654 !isa
<FunctionType
>(cast
<PointerType
>(RetTy
)->getElementType()))) {
1655 TypePrinter
.print(RetTy
, Out
);
1657 writeOperand(Operand
, false);
1659 writeOperand(Operand
, true);
1662 for (unsigned op
= 1, Eop
= I
.getNumOperands(); op
< Eop
; ++op
) {
1665 writeParamOperand(I
.getOperand(op
), PAL
.getParamAttributes(op
));
1668 if (PAL
.getFnAttributes() != Attribute::None
)
1669 Out
<< ' ' << Attribute::getAsString(PAL
.getFnAttributes());
1670 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
1671 const PointerType
*PTy
= cast
<PointerType
>(Operand
->getType());
1672 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1673 const Type
*RetTy
= FTy
->getReturnType();
1674 const AttrListPtr
&PAL
= II
->getAttributes();
1676 // Print the calling convention being used.
1677 switch (II
->getCallingConv()) {
1678 case CallingConv::C
: break; // default
1679 case CallingConv::Fast
: Out
<< " fastcc"; break;
1680 case CallingConv::Cold
: Out
<< " coldcc"; break;
1681 case CallingConv::X86_StdCall
: Out
<< " x86_stdcallcc"; break;
1682 case CallingConv::X86_FastCall
: Out
<< " x86_fastcallcc"; break;
1683 default: Out
<< " cc" << II
->getCallingConv(); break;
1686 if (PAL
.getRetAttributes() != Attribute::None
)
1687 Out
<< ' ' << Attribute::getAsString(PAL
.getRetAttributes());
1689 // If possible, print out the short form of the invoke instruction. We can
1690 // only do this if the first argument is a pointer to a nonvararg function,
1691 // and if the return type is not a pointer to a function.
1694 if (!FTy
->isVarArg() &&
1695 (!isa
<PointerType
>(RetTy
) ||
1696 !isa
<FunctionType
>(cast
<PointerType
>(RetTy
)->getElementType()))) {
1697 TypePrinter
.print(RetTy
, Out
);
1699 writeOperand(Operand
, false);
1701 writeOperand(Operand
, true);
1704 for (unsigned op
= 3, Eop
= I
.getNumOperands(); op
< Eop
; ++op
) {
1707 writeParamOperand(I
.getOperand(op
), PAL
.getParamAttributes(op
-2));
1711 if (PAL
.getFnAttributes() != Attribute::None
)
1712 Out
<< ' ' << Attribute::getAsString(PAL
.getFnAttributes());
1714 Out
<< "\n\t\t\tto ";
1715 writeOperand(II
->getNormalDest(), true);
1717 writeOperand(II
->getUnwindDest(), true);
1719 } else if (const AllocationInst
*AI
= dyn_cast
<AllocationInst
>(&I
)) {
1721 TypePrinter
.print(AI
->getType()->getElementType(), Out
);
1722 if (AI
->isArrayAllocation()) {
1724 writeOperand(AI
->getArraySize(), true);
1726 if (AI
->getAlignment()) {
1727 Out
<< ", align " << AI
->getAlignment();
1729 } else if (isa
<CastInst
>(I
)) {
1732 writeOperand(Operand
, true); // Work with broken code
1735 TypePrinter
.print(I
.getType(), Out
);
1736 } else if (isa
<VAArgInst
>(I
)) {
1739 writeOperand(Operand
, true); // Work with broken code
1742 TypePrinter
.print(I
.getType(), Out
);
1743 } else if (Operand
) { // Print the normal way.
1745 // PrintAllTypes - Instructions who have operands of all the same type
1746 // omit the type from all but the first operand. If the instruction has
1747 // different type operands (for example br), then they are all printed.
1748 bool PrintAllTypes
= false;
1749 const Type
*TheType
= Operand
->getType();
1751 // Select, Store and ShuffleVector always print all types.
1752 if (isa
<SelectInst
>(I
) || isa
<StoreInst
>(I
) || isa
<ShuffleVectorInst
>(I
)
1753 || isa
<ReturnInst
>(I
)) {
1754 PrintAllTypes
= true;
1756 for (unsigned i
= 1, E
= I
.getNumOperands(); i
!= E
; ++i
) {
1757 Operand
= I
.getOperand(i
);
1758 // note that Operand shouldn't be null, but the test helps make dump()
1759 // more tolerant of malformed IR
1760 if (Operand
&& Operand
->getType() != TheType
) {
1761 PrintAllTypes
= true; // We have differing types! Print them all!
1767 if (!PrintAllTypes
) {
1769 TypePrinter
.print(TheType
, Out
);
1773 for (unsigned i
= 0, E
= I
.getNumOperands(); i
!= E
; ++i
) {
1775 writeOperand(I
.getOperand(i
), PrintAllTypes
);
1779 // Print post operand alignment for load/store
1780 if (isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).getAlignment()) {
1781 Out
<< ", align " << cast
<LoadInst
>(I
).getAlignment();
1782 } else if (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).getAlignment()) {
1783 Out
<< ", align " << cast
<StoreInst
>(I
).getAlignment();
1786 printInfoComment(I
);
1791 //===----------------------------------------------------------------------===//
1792 // External Interface declarations
1793 //===----------------------------------------------------------------------===//
1795 void Module::print(std::ostream
&o
, AssemblyAnnotationWriter
*AAW
) const {
1796 raw_os_ostream
OS(o
);
1799 void Module::print(raw_ostream
&OS
, AssemblyAnnotationWriter
*AAW
) const {
1800 SlotTracker
SlotTable(this);
1801 AssemblyWriter
W(OS
, SlotTable
, this, AAW
);
1805 void Type::print(std::ostream
&o
) const {
1806 raw_os_ostream
OS(o
);
1810 void Type::print(raw_ostream
&OS
) const {
1812 OS
<< "<null Type>";
1815 TypePrinting().print(this, OS
);
1818 void Value::print(raw_ostream
&OS
, AssemblyAnnotationWriter
*AAW
) const {
1820 OS
<< "printing a <null> value\n";
1824 if (const Instruction
*I
= dyn_cast
<Instruction
>(this)) {
1825 const Function
*F
= I
->getParent() ? I
->getParent()->getParent() : 0;
1826 SlotTracker
SlotTable(F
);
1827 AssemblyWriter
W(OS
, SlotTable
, F
? F
->getParent() : 0, AAW
);
1829 } else if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this)) {
1830 SlotTracker
SlotTable(BB
->getParent());
1831 AssemblyWriter
W(OS
, SlotTable
,
1832 BB
->getParent() ? BB
->getParent()->getParent() : 0, AAW
);
1834 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
1835 SlotTracker
SlotTable(GV
->getParent());
1836 AssemblyWriter
W(OS
, SlotTable
, GV
->getParent(), AAW
);
1838 } else if (const Constant
*C
= dyn_cast
<Constant
>(this)) {
1839 TypePrinting TypePrinter
;
1840 TypePrinter
.print(C
->getType(), OS
);
1842 WriteConstantInt(OS
, C
, TypePrinter
, 0);
1843 } else if (const Argument
*A
= dyn_cast
<Argument
>(this)) {
1844 WriteAsOperand(OS
, this, true,
1845 A
->getParent() ? A
->getParent()->getParent() : 0);
1846 } else if (isa
<InlineAsm
>(this)) {
1847 WriteAsOperand(OS
, this, true, 0);
1849 assert(0 && "Unknown value to print out!");
1853 void Value::print(std::ostream
&O
, AssemblyAnnotationWriter
*AAW
) const {
1854 raw_os_ostream
OS(O
);
1858 // Value::dump - allow easy printing of Values from the debugger.
1859 void Value::dump() const { print(errs()); errs() << '\n'; }
1861 // Type::dump - allow easy printing of Types from the debugger.
1862 // This one uses type names from the given context module
1863 void Type::dump(const Module
*Context
) const {
1864 WriteTypeSymbolic(errs(), this, Context
);
1868 // Type::dump - allow easy printing of Types from the debugger.
1869 void Type::dump() const { dump(0); }
1871 // Module::dump() - Allow printing of Modules from the debugger.
1872 void Module::dump() const { print(errs(), 0); }