Update comments.
[llvm/msp430.git] / lib / VMCore / AsmWriter.cpp
blobf007c7645cc017dd1a2e775d5dc929be2ec4259e
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AsmAnnotationWriter.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instruction.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Module.h"
27 #include "llvm/ValueSymbolTable.h"
28 #include "llvm/TypeSymbolTable.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cctype>
37 using namespace llvm;
39 // Make virtual table appear in this compilation unit.
40 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
42 //===----------------------------------------------------------------------===//
43 // Helper Functions
44 //===----------------------------------------------------------------------===//
46 static const Module *getModuleFromVal(const Value *V) {
47 if (const Argument *MA = dyn_cast<Argument>(V))
48 return MA->getParent() ? MA->getParent()->getParent() : 0;
50 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
51 return BB->getParent() ? BB->getParent()->getParent() : 0;
53 if (const Instruction *I = dyn_cast<Instruction>(V)) {
54 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
55 return M ? M->getParent() : 0;
58 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
59 return GV->getParent();
60 return 0;
63 // PrintEscapedString - Print each character of the specified string, escaping
64 // it if it is not printable or if it is an escape char.
65 static void PrintEscapedString(const char *Str, unsigned Length,
66 raw_ostream &Out) {
67 for (unsigned i = 0; i != Length; ++i) {
68 unsigned char C = Str[i];
69 if (isprint(C) && C != '\\' && C != '"')
70 Out << C;
71 else
72 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
76 // PrintEscapedString - Print each character of the specified string, escaping
77 // it if it is not printable or if it is an escape char.
78 static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
79 PrintEscapedString(Str.c_str(), Str.size(), Out);
82 enum PrefixType {
83 GlobalPrefix,
84 LabelPrefix,
85 LocalPrefix,
86 NoPrefix
89 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
90 /// prefixed with % (if the string only contains simple characters) or is
91 /// surrounded with ""'s (if it has special chars in it). Print it out.
92 static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
93 unsigned NameLen, PrefixType Prefix) {
94 assert(NameStr && "Cannot get empty name!");
95 switch (Prefix) {
96 default: assert(0 && "Bad prefix!");
97 case NoPrefix: break;
98 case GlobalPrefix: OS << '@'; break;
99 case LabelPrefix: break;
100 case LocalPrefix: OS << '%'; break;
103 // Scan the name to see if it needs quotes first.
104 bool NeedsQuotes = isdigit(NameStr[0]);
105 if (!NeedsQuotes) {
106 for (unsigned i = 0; i != NameLen; ++i) {
107 char C = NameStr[i];
108 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
109 NeedsQuotes = true;
110 break;
115 // If we didn't need any quotes, just write out the name in one blast.
116 if (!NeedsQuotes) {
117 OS.write(NameStr, NameLen);
118 return;
121 // Okay, we need quotes. Output the quotes and escape any scary characters as
122 // needed.
123 OS << '"';
124 PrintEscapedString(NameStr, NameLen, OS);
125 OS << '"';
128 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
129 /// prefixed with % (if the string only contains simple characters) or is
130 /// surrounded with ""'s (if it has special chars in it). Print it out.
131 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
132 PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
133 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
136 //===----------------------------------------------------------------------===//
137 // TypePrinting Class: Type printing machinery
138 //===----------------------------------------------------------------------===//
140 static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
141 return *static_cast<DenseMap<const Type *, std::string>*>(M);
144 void TypePrinting::clear() {
145 getTypeNamesMap(TypeNames).clear();
148 bool TypePrinting::hasTypeName(const Type *Ty) const {
149 return getTypeNamesMap(TypeNames).count(Ty);
152 void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
153 getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
157 TypePrinting::TypePrinting() {
158 TypeNames = new DenseMap<const Type *, std::string>();
161 TypePrinting::~TypePrinting() {
162 delete &getTypeNamesMap(TypeNames);
165 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
166 /// use of type names or up references to shorten the type name where possible.
167 void TypePrinting::CalcTypeName(const Type *Ty,
168 SmallVectorImpl<const Type *> &TypeStack,
169 raw_ostream &OS, bool IgnoreTopLevelName) {
170 // Check to see if the type is named.
171 if (!IgnoreTopLevelName) {
172 DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
173 DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
174 if (I != TM.end()) {
175 OS << I->second;
176 return;
180 // Check to see if the Type is already on the stack...
181 unsigned Slot = 0, CurSize = TypeStack.size();
182 while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
184 // This is another base case for the recursion. In this case, we know
185 // that we have looped back to a type that we have previously visited.
186 // Generate the appropriate upreference to handle this.
187 if (Slot < CurSize) {
188 OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference
189 return;
192 TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
194 switch (Ty->getTypeID()) {
195 case Type::VoidTyID: OS << "void"; break;
196 case Type::FloatTyID: OS << "float"; break;
197 case Type::DoubleTyID: OS << "double"; break;
198 case Type::X86_FP80TyID: OS << "x86_fp80"; break;
199 case Type::FP128TyID: OS << "fp128"; break;
200 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
201 case Type::LabelTyID: OS << "label"; break;
202 case Type::IntegerTyID:
203 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
204 break;
206 case Type::FunctionTyID: {
207 const FunctionType *FTy = cast<FunctionType>(Ty);
208 CalcTypeName(FTy->getReturnType(), TypeStack, OS);
209 OS << " (";
210 for (FunctionType::param_iterator I = FTy->param_begin(),
211 E = FTy->param_end(); I != E; ++I) {
212 if (I != FTy->param_begin())
213 OS << ", ";
214 CalcTypeName(*I, TypeStack, OS);
216 if (FTy->isVarArg()) {
217 if (FTy->getNumParams()) OS << ", ";
218 OS << "...";
220 OS << ')';
221 break;
223 case Type::StructTyID: {
224 const StructType *STy = cast<StructType>(Ty);
225 if (STy->isPacked())
226 OS << '<';
227 OS << "{ ";
228 for (StructType::element_iterator I = STy->element_begin(),
229 E = STy->element_end(); I != E; ++I) {
230 CalcTypeName(*I, TypeStack, OS);
231 if (next(I) != STy->element_end())
232 OS << ',';
233 OS << ' ';
235 OS << '}';
236 if (STy->isPacked())
237 OS << '>';
238 break;
240 case Type::PointerTyID: {
241 const PointerType *PTy = cast<PointerType>(Ty);
242 CalcTypeName(PTy->getElementType(), TypeStack, OS);
243 if (unsigned AddressSpace = PTy->getAddressSpace())
244 OS << " addrspace(" << AddressSpace << ')';
245 OS << '*';
246 break;
248 case Type::ArrayTyID: {
249 const ArrayType *ATy = cast<ArrayType>(Ty);
250 OS << '[' << ATy->getNumElements() << " x ";
251 CalcTypeName(ATy->getElementType(), TypeStack, OS);
252 OS << ']';
253 break;
255 case Type::VectorTyID: {
256 const VectorType *PTy = cast<VectorType>(Ty);
257 OS << "<" << PTy->getNumElements() << " x ";
258 CalcTypeName(PTy->getElementType(), TypeStack, OS);
259 OS << '>';
260 break;
262 case Type::OpaqueTyID:
263 OS << "opaque";
264 break;
265 default:
266 OS << "<unrecognized-type>";
267 break;
270 TypeStack.pop_back(); // Remove self from stack.
273 /// printTypeInt - The internal guts of printing out a type that has a
274 /// potentially named portion.
276 void TypePrinting::print(const Type *Ty, raw_ostream &OS,
277 bool IgnoreTopLevelName) {
278 // Check to see if the type is named.
279 DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
280 if (!IgnoreTopLevelName) {
281 DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
282 if (I != TM.end()) {
283 OS << I->second;
284 return;
288 // Otherwise we have a type that has not been named but is a derived type.
289 // Carefully recurse the type hierarchy to print out any contained symbolic
290 // names.
291 SmallVector<const Type *, 16> TypeStack;
292 std::string TypeName;
294 raw_string_ostream TypeOS(TypeName);
295 CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
296 OS << TypeOS.str();
298 // Cache type name for later use.
299 if (!IgnoreTopLevelName)
300 TM.insert(std::make_pair(Ty, TypeOS.str()));
303 namespace {
304 class TypeFinder {
305 // To avoid walking constant expressions multiple times and other IR
306 // objects, we keep several helper maps.
307 DenseSet<const Value*> VisitedConstants;
308 DenseSet<const Type*> VisitedTypes;
310 TypePrinting &TP;
311 std::vector<const Type*> &NumberedTypes;
312 public:
313 TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
314 : TP(tp), NumberedTypes(numberedTypes) {}
316 void Run(const Module &M) {
317 // Get types from the type symbol table. This gets opaque types referened
318 // only through derived named types.
319 const TypeSymbolTable &ST = M.getTypeSymbolTable();
320 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
321 TI != E; ++TI)
322 IncorporateType(TI->second);
324 // Get types from global variables.
325 for (Module::const_global_iterator I = M.global_begin(),
326 E = M.global_end(); I != E; ++I) {
327 IncorporateType(I->getType());
328 if (I->hasInitializer())
329 IncorporateValue(I->getInitializer());
332 // Get types from aliases.
333 for (Module::const_alias_iterator I = M.alias_begin(),
334 E = M.alias_end(); I != E; ++I) {
335 IncorporateType(I->getType());
336 IncorporateValue(I->getAliasee());
339 // Get types from functions.
340 for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
341 IncorporateType(FI->getType());
343 for (Function::const_iterator BB = FI->begin(), E = FI->end();
344 BB != E;++BB)
345 for (BasicBlock::const_iterator II = BB->begin(),
346 E = BB->end(); II != E; ++II) {
347 const Instruction &I = *II;
348 // Incorporate the type of the instruction and all its operands.
349 IncorporateType(I.getType());
350 for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
351 OI != OE; ++OI)
352 IncorporateValue(*OI);
357 private:
358 void IncorporateType(const Type *Ty) {
359 // Check to see if we're already visited this type.
360 if (!VisitedTypes.insert(Ty).second)
361 return;
363 // If this is a structure or opaque type, add a name for the type.
364 if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
365 || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
366 TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
367 NumberedTypes.push_back(Ty);
370 // Recursively walk all contained types.
371 for (Type::subtype_iterator I = Ty->subtype_begin(),
372 E = Ty->subtype_end(); I != E; ++I)
373 IncorporateType(*I);
376 /// IncorporateValue - This method is used to walk operand lists finding
377 /// types hiding in constant expressions and other operands that won't be
378 /// walked in other ways. GlobalValues, basic blocks, instructions, and
379 /// inst operands are all explicitly enumerated.
380 void IncorporateValue(const Value *V) {
381 if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
383 // Already visited?
384 if (!VisitedConstants.insert(V).second)
385 return;
387 // Check this type.
388 IncorporateType(V->getType());
390 // Look in operands for types.
391 const Constant *C = cast<Constant>(V);
392 for (Constant::const_op_iterator I = C->op_begin(),
393 E = C->op_end(); I != E;++I)
394 IncorporateValue(*I);
397 } // end anonymous namespace
400 /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
401 /// the specified module to the TypePrinter and all numbered types to it and the
402 /// NumberedTypes table.
403 static void AddModuleTypesToPrinter(TypePrinting &TP,
404 std::vector<const Type*> &NumberedTypes,
405 const Module *M) {
406 if (M == 0) return;
408 // If the module has a symbol table, take all global types and stuff their
409 // names into the TypeNames map.
410 const TypeSymbolTable &ST = M->getTypeSymbolTable();
411 for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
412 TI != E; ++TI) {
413 const Type *Ty = cast<Type>(TI->second);
415 // As a heuristic, don't insert pointer to primitive types, because
416 // they are used too often to have a single useful name.
417 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
418 const Type *PETy = PTy->getElementType();
419 if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
420 !isa<OpaqueType>(PETy))
421 continue;
424 // Likewise don't insert primitives either.
425 if (Ty->isInteger() || Ty->isPrimitiveType())
426 continue;
428 // Get the name as a string and insert it into TypeNames.
429 std::string NameStr;
430 raw_string_ostream NameOS(NameStr);
431 PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix);
432 TP.addTypeName(Ty, NameOS.str());
435 // Walk the entire module to find references to unnamed structure and opaque
436 // types. This is required for correctness by opaque types (because multiple
437 // uses of an unnamed opaque type needs to be referred to by the same ID) and
438 // it shrinks complex recursive structure types substantially in some cases.
439 TypeFinder(TP, NumberedTypes).Run(*M);
443 /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
444 /// type, iff there is an entry in the modules symbol table for the specified
445 /// type or one of it's component types.
447 void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
448 TypePrinting Printer;
449 std::vector<const Type*> NumberedTypes;
450 AddModuleTypesToPrinter(Printer, NumberedTypes, M);
451 Printer.print(Ty, OS);
454 //===----------------------------------------------------------------------===//
455 // SlotTracker Class: Enumerate slot numbers for unnamed values
456 //===----------------------------------------------------------------------===//
458 namespace {
460 /// This class provides computation of slot numbers for LLVM Assembly writing.
462 class SlotTracker {
463 public:
464 /// ValueMap - A mapping of Values to slot numbers
465 typedef DenseMap<const Value*, unsigned> ValueMap;
467 private:
468 /// TheModule - The module for which we are holding slot numbers
469 const Module* TheModule;
471 /// TheFunction - The function for which we are holding slot numbers
472 const Function* TheFunction;
473 bool FunctionProcessed;
475 /// mMap - The TypePlanes map for the module level data
476 ValueMap mMap;
477 unsigned mNext;
479 /// fMap - The TypePlanes map for the function level data
480 ValueMap fMap;
481 unsigned fNext;
483 public:
484 /// Construct from a module
485 explicit SlotTracker(const Module *M);
486 /// Construct from a function, starting out in incorp state.
487 explicit SlotTracker(const Function *F);
489 /// Return the slot number of the specified value in it's type
490 /// plane. If something is not in the SlotTracker, return -1.
491 int getLocalSlot(const Value *V);
492 int getGlobalSlot(const GlobalValue *V);
494 /// If you'd like to deal with a function instead of just a module, use
495 /// this method to get its data into the SlotTracker.
496 void incorporateFunction(const Function *F) {
497 TheFunction = F;
498 FunctionProcessed = false;
501 /// After calling incorporateFunction, use this method to remove the
502 /// most recently incorporated function from the SlotTracker. This
503 /// will reset the state of the machine back to just the module contents.
504 void purgeFunction();
506 // Implementation Details
507 private:
508 /// This function does the actual initialization.
509 inline void initialize();
511 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
512 void CreateModuleSlot(const GlobalValue *V);
514 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
515 void CreateFunctionSlot(const Value *V);
517 /// Add all of the module level global variables (and their initializers)
518 /// and function declarations, but not the contents of those functions.
519 void processModule();
521 /// Add all of the functions arguments, basic blocks, and instructions
522 void processFunction();
524 SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
525 void operator=(const SlotTracker &); // DO NOT IMPLEMENT
528 } // end anonymous namespace
531 static SlotTracker *createSlotTracker(const Value *V) {
532 if (const Argument *FA = dyn_cast<Argument>(V))
533 return new SlotTracker(FA->getParent());
535 if (const Instruction *I = dyn_cast<Instruction>(V))
536 return new SlotTracker(I->getParent()->getParent());
538 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
539 return new SlotTracker(BB->getParent());
541 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
542 return new SlotTracker(GV->getParent());
544 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
545 return new SlotTracker(GA->getParent());
547 if (const Function *Func = dyn_cast<Function>(V))
548 return new SlotTracker(Func);
550 return 0;
553 #if 0
554 #define ST_DEBUG(X) cerr << X
555 #else
556 #define ST_DEBUG(X)
557 #endif
559 // Module level constructor. Causes the contents of the Module (sans functions)
560 // to be added to the slot table.
561 SlotTracker::SlotTracker(const Module *M)
562 : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
565 // Function level constructor. Causes the contents of the Module and the one
566 // function provided to be added to the slot table.
567 SlotTracker::SlotTracker(const Function *F)
568 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
569 mNext(0), fNext(0) {
572 inline void SlotTracker::initialize() {
573 if (TheModule) {
574 processModule();
575 TheModule = 0; ///< Prevent re-processing next time we're called.
578 if (TheFunction && !FunctionProcessed)
579 processFunction();
582 // Iterate through all the global variables, functions, and global
583 // variable initializers and create slots for them.
584 void SlotTracker::processModule() {
585 ST_DEBUG("begin processModule!\n");
587 // Add all of the unnamed global variables to the value table.
588 for (Module::const_global_iterator I = TheModule->global_begin(),
589 E = TheModule->global_end(); I != E; ++I)
590 if (!I->hasName())
591 CreateModuleSlot(I);
593 // Add all the unnamed functions to the table.
594 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
595 I != E; ++I)
596 if (!I->hasName())
597 CreateModuleSlot(I);
599 ST_DEBUG("end processModule!\n");
603 // Process the arguments, basic blocks, and instructions of a function.
604 void SlotTracker::processFunction() {
605 ST_DEBUG("begin processFunction!\n");
606 fNext = 0;
608 // Add all the function arguments with no names.
609 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
610 AE = TheFunction->arg_end(); AI != AE; ++AI)
611 if (!AI->hasName())
612 CreateFunctionSlot(AI);
614 ST_DEBUG("Inserting Instructions:\n");
616 // Add all of the basic blocks and instructions with no names.
617 for (Function::const_iterator BB = TheFunction->begin(),
618 E = TheFunction->end(); BB != E; ++BB) {
619 if (!BB->hasName())
620 CreateFunctionSlot(BB);
621 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
622 if (I->getType() != Type::VoidTy && !I->hasName())
623 CreateFunctionSlot(I);
626 FunctionProcessed = true;
628 ST_DEBUG("end processFunction!\n");
631 /// Clean up after incorporating a function. This is the only way to get out of
632 /// the function incorporation state that affects get*Slot/Create*Slot. Function
633 /// incorporation state is indicated by TheFunction != 0.
634 void SlotTracker::purgeFunction() {
635 ST_DEBUG("begin purgeFunction!\n");
636 fMap.clear(); // Simply discard the function level map
637 TheFunction = 0;
638 FunctionProcessed = false;
639 ST_DEBUG("end purgeFunction!\n");
642 /// getGlobalSlot - Get the slot number of a global value.
643 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
644 // Check for uninitialized state and do lazy initialization.
645 initialize();
647 // Find the type plane in the module map
648 ValueMap::iterator MI = mMap.find(V);
649 return MI == mMap.end() ? -1 : (int)MI->second;
653 /// getLocalSlot - Get the slot number for a value that is local to a function.
654 int SlotTracker::getLocalSlot(const Value *V) {
655 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
657 // Check for uninitialized state and do lazy initialization.
658 initialize();
660 ValueMap::iterator FI = fMap.find(V);
661 return FI == fMap.end() ? -1 : (int)FI->second;
665 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
666 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
667 assert(V && "Can't insert a null Value into SlotTracker!");
668 assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
669 assert(!V->hasName() && "Doesn't need a slot!");
671 unsigned DestSlot = mNext++;
672 mMap[V] = DestSlot;
674 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
675 DestSlot << " [");
676 // G = Global, F = Function, A = Alias, o = other
677 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
678 (isa<Function>(V) ? 'F' :
679 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
683 /// CreateSlot - Create a new slot for the specified value if it has no name.
684 void SlotTracker::CreateFunctionSlot(const Value *V) {
685 assert(V->getType() != Type::VoidTy && !V->hasName() &&
686 "Doesn't need a slot!");
688 unsigned DestSlot = fNext++;
689 fMap[V] = DestSlot;
691 // G = Global, F = Function, o = other
692 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
693 DestSlot << " [o]\n");
698 //===----------------------------------------------------------------------===//
699 // AsmWriter Implementation
700 //===----------------------------------------------------------------------===//
702 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
703 TypePrinting &TypePrinter,
704 SlotTracker *Machine);
708 static const char *getPredicateText(unsigned predicate) {
709 const char * pred = "unknown";
710 switch (predicate) {
711 case FCmpInst::FCMP_FALSE: pred = "false"; break;
712 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
713 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
714 case FCmpInst::FCMP_OGE: pred = "oge"; break;
715 case FCmpInst::FCMP_OLT: pred = "olt"; break;
716 case FCmpInst::FCMP_OLE: pred = "ole"; break;
717 case FCmpInst::FCMP_ONE: pred = "one"; break;
718 case FCmpInst::FCMP_ORD: pred = "ord"; break;
719 case FCmpInst::FCMP_UNO: pred = "uno"; break;
720 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
721 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
722 case FCmpInst::FCMP_UGE: pred = "uge"; break;
723 case FCmpInst::FCMP_ULT: pred = "ult"; break;
724 case FCmpInst::FCMP_ULE: pred = "ule"; break;
725 case FCmpInst::FCMP_UNE: pred = "une"; break;
726 case FCmpInst::FCMP_TRUE: pred = "true"; break;
727 case ICmpInst::ICMP_EQ: pred = "eq"; break;
728 case ICmpInst::ICMP_NE: pred = "ne"; break;
729 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
730 case ICmpInst::ICMP_SGE: pred = "sge"; break;
731 case ICmpInst::ICMP_SLT: pred = "slt"; break;
732 case ICmpInst::ICMP_SLE: pred = "sle"; break;
733 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
734 case ICmpInst::ICMP_UGE: pred = "uge"; break;
735 case ICmpInst::ICMP_ULT: pred = "ult"; break;
736 case ICmpInst::ICMP_ULE: pred = "ule"; break;
738 return pred;
741 static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
742 TypePrinting &TypePrinter, SlotTracker *Machine) {
743 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
744 if (CI->getType() == Type::Int1Ty) {
745 Out << (CI->getZExtValue() ? "true" : "false");
746 return;
748 Out << CI->getValue();
749 return;
752 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
753 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
754 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
755 // We would like to output the FP constant value in exponential notation,
756 // but we cannot do this if doing so will lose precision. Check here to
757 // make sure that we only output it in exponential format if we can parse
758 // the value back and get the same value.
760 bool ignored;
761 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
762 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
763 CFP->getValueAPF().convertToFloat();
764 std::string StrVal = ftostr(CFP->getValueAPF());
766 // Check to make sure that the stringized number is not some string like
767 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
768 // that the string matches the "[-+]?[0-9]" regex.
770 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
771 ((StrVal[0] == '-' || StrVal[0] == '+') &&
772 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
773 // Reparse stringized version!
774 if (atof(StrVal.c_str()) == Val) {
775 Out << StrVal;
776 return;
779 // Otherwise we could not reparse it to exactly the same value, so we must
780 // output the string in hexadecimal format! Note that loading and storing
781 // floating point types changes the bits of NaNs on some hosts, notably
782 // x86, so we must not use these types.
783 assert(sizeof(double) == sizeof(uint64_t) &&
784 "assuming that double is 64 bits!");
785 char Buffer[40];
786 APFloat apf = CFP->getValueAPF();
787 // Floats are represented in ASCII IR as double, convert.
788 if (!isDouble)
789 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
790 &ignored);
791 Out << "0x" <<
792 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
793 Buffer+40);
794 return;
797 // Some form of long double. These appear as a magic letter identifying
798 // the type, then a fixed number of hex digits.
799 Out << "0x";
800 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
801 Out << 'K';
802 // api needed to prevent premature destruction
803 APInt api = CFP->getValueAPF().bitcastToAPInt();
804 const uint64_t* p = api.getRawData();
805 uint64_t word = p[1];
806 int shiftcount=12;
807 int width = api.getBitWidth();
808 for (int j=0; j<width; j+=4, shiftcount-=4) {
809 unsigned int nibble = (word>>shiftcount) & 15;
810 if (nibble < 10)
811 Out << (unsigned char)(nibble + '0');
812 else
813 Out << (unsigned char)(nibble - 10 + 'A');
814 if (shiftcount == 0 && j+4 < width) {
815 word = *p;
816 shiftcount = 64;
817 if (width-j-4 < 64)
818 shiftcount = width-j-4;
821 return;
822 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
823 Out << 'L';
824 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
825 Out << 'M';
826 else
827 assert(0 && "Unsupported floating point type");
828 // api needed to prevent premature destruction
829 APInt api = CFP->getValueAPF().bitcastToAPInt();
830 const uint64_t* p = api.getRawData();
831 uint64_t word = *p;
832 int shiftcount=60;
833 int width = api.getBitWidth();
834 for (int j=0; j<width; j+=4, shiftcount-=4) {
835 unsigned int nibble = (word>>shiftcount) & 15;
836 if (nibble < 10)
837 Out << (unsigned char)(nibble + '0');
838 else
839 Out << (unsigned char)(nibble - 10 + 'A');
840 if (shiftcount == 0 && j+4 < width) {
841 word = *(++p);
842 shiftcount = 64;
843 if (width-j-4 < 64)
844 shiftcount = width-j-4;
847 return;
850 if (isa<ConstantAggregateZero>(CV)) {
851 Out << "zeroinitializer";
852 return;
855 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
856 // As a special case, print the array as a string if it is an array of
857 // i8 with ConstantInt values.
859 const Type *ETy = CA->getType()->getElementType();
860 if (CA->isString()) {
861 Out << "c\"";
862 PrintEscapedString(CA->getAsString(), Out);
863 Out << '"';
864 } else { // Cannot output in string format...
865 Out << '[';
866 if (CA->getNumOperands()) {
867 TypePrinter.print(ETy, Out);
868 Out << ' ';
869 WriteAsOperandInternal(Out, CA->getOperand(0),
870 TypePrinter, Machine);
871 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
872 Out << ", ";
873 TypePrinter.print(ETy, Out);
874 Out << ' ';
875 WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
878 Out << ']';
880 return;
883 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
884 if (CS->getType()->isPacked())
885 Out << '<';
886 Out << '{';
887 unsigned N = CS->getNumOperands();
888 if (N) {
889 Out << ' ';
890 TypePrinter.print(CS->getOperand(0)->getType(), Out);
891 Out << ' ';
893 WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
895 for (unsigned i = 1; i < N; i++) {
896 Out << ", ";
897 TypePrinter.print(CS->getOperand(i)->getType(), Out);
898 Out << ' ';
900 WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
902 Out << ' ';
905 Out << '}';
906 if (CS->getType()->isPacked())
907 Out << '>';
908 return;
911 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
912 const Type *ETy = CP->getType()->getElementType();
913 assert(CP->getNumOperands() > 0 &&
914 "Number of operands for a PackedConst must be > 0");
915 Out << '<';
916 TypePrinter.print(ETy, Out);
917 Out << ' ';
918 WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
919 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
920 Out << ", ";
921 TypePrinter.print(ETy, Out);
922 Out << ' ';
923 WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
925 Out << '>';
926 return;
929 if (isa<ConstantPointerNull>(CV)) {
930 Out << "null";
931 return;
934 if (isa<UndefValue>(CV)) {
935 Out << "undef";
936 return;
939 if (const MDString *S = dyn_cast<MDString>(CV)) {
940 Out << "!\"";
941 PrintEscapedString(S->begin(), S->size(), Out);
942 Out << '"';
943 return;
946 if (const MDNode *N = dyn_cast<MDNode>(CV)) {
947 Out << "!{";
948 for (MDNode::const_op_iterator I = N->op_begin(), E = N->op_end(); I != E;){
949 TypePrinter.print((*I)->getType(), Out);
950 Out << ' ';
951 WriteAsOperandInternal(Out, *I, TypePrinter, Machine);
952 if (++I != E)
953 Out << ", ";
955 Out << "}";
956 return;
959 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
960 Out << CE->getOpcodeName();
961 if (CE->isCompare())
962 Out << ' ' << getPredicateText(CE->getPredicate());
963 Out << " (";
965 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
966 TypePrinter.print((*OI)->getType(), Out);
967 Out << ' ';
968 WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
969 if (OI+1 != CE->op_end())
970 Out << ", ";
973 if (CE->hasIndices()) {
974 const SmallVector<unsigned, 4> &Indices = CE->getIndices();
975 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
976 Out << ", " << Indices[i];
979 if (CE->isCast()) {
980 Out << " to ";
981 TypePrinter.print(CE->getType(), Out);
984 Out << ')';
985 return;
988 Out << "<placeholder or erroneous Constant>";
992 /// WriteAsOperand - Write the name of the specified value out to the specified
993 /// ostream. This can be useful when you just want to print int %reg126, not
994 /// the whole instruction that generated it.
996 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
997 TypePrinting &TypePrinter,
998 SlotTracker *Machine) {
999 if (V->hasName()) {
1000 PrintLLVMName(Out, V);
1001 return;
1004 const Constant *CV = dyn_cast<Constant>(V);
1005 if (CV && !isa<GlobalValue>(CV)) {
1006 WriteConstantInt(Out, CV, TypePrinter, Machine);
1007 return;
1010 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1011 Out << "asm ";
1012 if (IA->hasSideEffects())
1013 Out << "sideeffect ";
1014 Out << '"';
1015 PrintEscapedString(IA->getAsmString(), Out);
1016 Out << "\", \"";
1017 PrintEscapedString(IA->getConstraintString(), Out);
1018 Out << '"';
1019 return;
1022 char Prefix = '%';
1023 int Slot;
1024 if (Machine) {
1025 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1026 Slot = Machine->getGlobalSlot(GV);
1027 Prefix = '@';
1028 } else {
1029 Slot = Machine->getLocalSlot(V);
1031 } else {
1032 Machine = createSlotTracker(V);
1033 if (Machine) {
1034 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1035 Slot = Machine->getGlobalSlot(GV);
1036 Prefix = '@';
1037 } else {
1038 Slot = Machine->getLocalSlot(V);
1040 } else {
1041 Slot = -1;
1043 delete Machine;
1046 if (Slot != -1)
1047 Out << Prefix << Slot;
1048 else
1049 Out << "<badref>";
1052 /// WriteAsOperand - Write the name of the specified value out to the specified
1053 /// ostream. This can be useful when you just want to print int %reg126, not
1054 /// the whole instruction that generated it.
1056 void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
1057 const Module *Context) {
1058 raw_os_ostream OS(Out);
1059 WriteAsOperand(OS, V, PrintType, Context);
1062 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
1063 const Module *Context) {
1064 if (Context == 0) Context = getModuleFromVal(V);
1066 TypePrinting TypePrinter;
1067 std::vector<const Type*> NumberedTypes;
1068 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1069 if (PrintType) {
1070 TypePrinter.print(V->getType(), Out);
1071 Out << ' ';
1074 WriteAsOperandInternal(Out, V, TypePrinter, 0);
1078 namespace {
1080 class AssemblyWriter {
1081 raw_ostream &Out;
1082 SlotTracker &Machine;
1083 const Module *TheModule;
1084 TypePrinting TypePrinter;
1085 AssemblyAnnotationWriter *AnnotationWriter;
1086 std::vector<const Type*> NumberedTypes;
1087 public:
1088 inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
1089 AssemblyAnnotationWriter *AAW)
1090 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1091 AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1094 void write(const Module *M) { printModule(M); }
1096 void write(const GlobalValue *G) {
1097 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1098 printGlobal(GV);
1099 else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1100 printAlias(GA);
1101 else if (const Function *F = dyn_cast<Function>(G))
1102 printFunction(F);
1103 else
1104 assert(0 && "Unknown global");
1107 void write(const BasicBlock *BB) { printBasicBlock(BB); }
1108 void write(const Instruction *I) { printInstruction(*I); }
1110 void writeOperand(const Value *Op, bool PrintType);
1111 void writeParamOperand(const Value *Operand, Attributes Attrs);
1113 const Module* getModule() { return TheModule; }
1115 private:
1116 void printModule(const Module *M);
1117 void printTypeSymbolTable(const TypeSymbolTable &ST);
1118 void printGlobal(const GlobalVariable *GV);
1119 void printAlias(const GlobalAlias *GV);
1120 void printFunction(const Function *F);
1121 void printArgument(const Argument *FA, Attributes Attrs);
1122 void printBasicBlock(const BasicBlock *BB);
1123 void printInstruction(const Instruction &I);
1125 // printInfoComment - Print a little comment after the instruction indicating
1126 // which slot it occupies.
1127 void printInfoComment(const Value &V);
1129 } // end of anonymous namespace
1132 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1133 if (Operand == 0) {
1134 Out << "<null operand!>";
1135 } else {
1136 if (PrintType) {
1137 TypePrinter.print(Operand->getType(), Out);
1138 Out << ' ';
1140 WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1144 void AssemblyWriter::writeParamOperand(const Value *Operand,
1145 Attributes Attrs) {
1146 if (Operand == 0) {
1147 Out << "<null operand!>";
1148 } else {
1149 // Print the type
1150 TypePrinter.print(Operand->getType(), Out);
1151 // Print parameter attributes list
1152 if (Attrs != Attribute::None)
1153 Out << ' ' << Attribute::getAsString(Attrs);
1154 Out << ' ';
1155 // Print the operand
1156 WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1160 void AssemblyWriter::printModule(const Module *M) {
1161 if (!M->getModuleIdentifier().empty() &&
1162 // Don't print the ID if it will start a new line (which would
1163 // require a comment char before it).
1164 M->getModuleIdentifier().find('\n') == std::string::npos)
1165 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1167 if (!M->getDataLayout().empty())
1168 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1169 if (!M->getTargetTriple().empty())
1170 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1172 if (!M->getModuleInlineAsm().empty()) {
1173 // Split the string into lines, to make it easier to read the .ll file.
1174 std::string Asm = M->getModuleInlineAsm();
1175 size_t CurPos = 0;
1176 size_t NewLine = Asm.find_first_of('\n', CurPos);
1177 while (NewLine != std::string::npos) {
1178 // We found a newline, print the portion of the asm string from the
1179 // last newline up to this newline.
1180 Out << "module asm \"";
1181 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1182 Out);
1183 Out << "\"\n";
1184 CurPos = NewLine+1;
1185 NewLine = Asm.find_first_of('\n', CurPos);
1187 Out << "module asm \"";
1188 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1189 Out << "\"\n";
1192 // Loop over the dependent libraries and emit them.
1193 Module::lib_iterator LI = M->lib_begin();
1194 Module::lib_iterator LE = M->lib_end();
1195 if (LI != LE) {
1196 Out << "deplibs = [ ";
1197 while (LI != LE) {
1198 Out << '"' << *LI << '"';
1199 ++LI;
1200 if (LI != LE)
1201 Out << ", ";
1203 Out << " ]\n";
1206 // Loop over the symbol table, emitting all id'd types.
1207 printTypeSymbolTable(M->getTypeSymbolTable());
1209 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1210 I != E; ++I)
1211 printGlobal(I);
1213 // Output all aliases.
1214 if (!M->alias_empty()) Out << "\n";
1215 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1216 I != E; ++I)
1217 printAlias(I);
1219 // Output all of the functions.
1220 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1221 printFunction(I);
1224 static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
1225 switch (LT) {
1226 case GlobalValue::PrivateLinkage: Out << "private "; break;
1227 case GlobalValue::InternalLinkage: Out << "internal "; break;
1228 case GlobalValue::AvailableExternallyLinkage:
1229 Out << "available_externally ";
1230 break;
1231 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1232 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1233 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1234 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1235 case GlobalValue::CommonLinkage: Out << "common "; break;
1236 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1237 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1238 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1239 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1240 case GlobalValue::ExternalLinkage: break;
1241 case GlobalValue::GhostLinkage:
1242 Out << "GhostLinkage not allowed in AsmWriter!\n";
1243 abort();
1248 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1249 raw_ostream &Out) {
1250 switch (Vis) {
1251 default: assert(0 && "Invalid visibility style!");
1252 case GlobalValue::DefaultVisibility: break;
1253 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1254 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1258 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1259 if (GV->hasName()) {
1260 PrintLLVMName(Out, GV);
1261 Out << " = ";
1264 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1265 Out << "external ";
1267 PrintLinkage(GV->getLinkage(), Out);
1268 PrintVisibility(GV->getVisibility(), Out);
1270 if (GV->isThreadLocal()) Out << "thread_local ";
1271 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1272 Out << "addrspace(" << AddressSpace << ") ";
1273 Out << (GV->isConstant() ? "constant " : "global ");
1274 TypePrinter.print(GV->getType()->getElementType(), Out);
1276 if (GV->hasInitializer()) {
1277 Out << ' ';
1278 writeOperand(GV->getInitializer(), false);
1281 if (GV->hasSection())
1282 Out << ", section \"" << GV->getSection() << '"';
1283 if (GV->getAlignment())
1284 Out << ", align " << GV->getAlignment();
1286 printInfoComment(*GV);
1287 Out << '\n';
1290 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1291 // Don't crash when dumping partially built GA
1292 if (!GA->hasName())
1293 Out << "<<nameless>> = ";
1294 else {
1295 PrintLLVMName(Out, GA);
1296 Out << " = ";
1298 PrintVisibility(GA->getVisibility(), Out);
1300 Out << "alias ";
1302 PrintLinkage(GA->getLinkage(), Out);
1304 const Constant *Aliasee = GA->getAliasee();
1306 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1307 TypePrinter.print(GV->getType(), Out);
1308 Out << ' ';
1309 PrintLLVMName(Out, GV);
1310 } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1311 TypePrinter.print(F->getFunctionType(), Out);
1312 Out << "* ";
1314 WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1315 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1316 TypePrinter.print(GA->getType(), Out);
1317 Out << ' ';
1318 PrintLLVMName(Out, GA);
1319 } else {
1320 const ConstantExpr *CE = 0;
1321 if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
1322 (CE->getOpcode() == Instruction::BitCast)) {
1323 writeOperand(CE, false);
1324 } else
1325 assert(0 && "Unsupported aliasee");
1328 printInfoComment(*GA);
1329 Out << '\n';
1332 void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1333 // Emit all numbered types.
1334 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1335 Out << "\ttype ";
1337 // Make sure we print out at least one level of the type structure, so
1338 // that we do not get %2 = type %2
1339 TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1340 Out << "\t\t; type %" << i << '\n';
1343 // Print the named types.
1344 for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1345 TI != TE; ++TI) {
1346 Out << '\t';
1347 PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
1348 Out << " = type ";
1350 // Make sure we print out at least one level of the type structure, so
1351 // that we do not get %FILE = type %FILE
1352 TypePrinter.printAtLeastOneLevel(TI->second, Out);
1353 Out << '\n';
1357 /// printFunction - Print all aspects of a function.
1359 void AssemblyWriter::printFunction(const Function *F) {
1360 // Print out the return type and name.
1361 Out << '\n';
1363 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1365 if (F->isDeclaration())
1366 Out << "declare ";
1367 else
1368 Out << "define ";
1370 PrintLinkage(F->getLinkage(), Out);
1371 PrintVisibility(F->getVisibility(), Out);
1373 // Print the calling convention.
1374 switch (F->getCallingConv()) {
1375 case CallingConv::C: break; // default
1376 case CallingConv::Fast: Out << "fastcc "; break;
1377 case CallingConv::Cold: Out << "coldcc "; break;
1378 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1379 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1380 default: Out << "cc" << F->getCallingConv() << " "; break;
1383 const FunctionType *FT = F->getFunctionType();
1384 const AttrListPtr &Attrs = F->getAttributes();
1385 Attributes RetAttrs = Attrs.getRetAttributes();
1386 if (RetAttrs != Attribute::None)
1387 Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1388 TypePrinter.print(F->getReturnType(), Out);
1389 Out << ' ';
1390 WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1391 Out << '(';
1392 Machine.incorporateFunction(F);
1394 // Loop over the arguments, printing them...
1396 unsigned Idx = 1;
1397 if (!F->isDeclaration()) {
1398 // If this isn't a declaration, print the argument names as well.
1399 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1400 I != E; ++I) {
1401 // Insert commas as we go... the first arg doesn't get a comma
1402 if (I != F->arg_begin()) Out << ", ";
1403 printArgument(I, Attrs.getParamAttributes(Idx));
1404 Idx++;
1406 } else {
1407 // Otherwise, print the types from the function type.
1408 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1409 // Insert commas as we go... the first arg doesn't get a comma
1410 if (i) Out << ", ";
1412 // Output type...
1413 TypePrinter.print(FT->getParamType(i), Out);
1415 Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1416 if (ArgAttrs != Attribute::None)
1417 Out << ' ' << Attribute::getAsString(ArgAttrs);
1421 // Finish printing arguments...
1422 if (FT->isVarArg()) {
1423 if (FT->getNumParams()) Out << ", ";
1424 Out << "..."; // Output varargs portion of signature!
1426 Out << ')';
1427 Attributes FnAttrs = Attrs.getFnAttributes();
1428 if (FnAttrs != Attribute::None)
1429 Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1430 if (F->hasSection())
1431 Out << " section \"" << F->getSection() << '"';
1432 if (F->getAlignment())
1433 Out << " align " << F->getAlignment();
1434 if (F->hasGC())
1435 Out << " gc \"" << F->getGC() << '"';
1436 if (F->isDeclaration()) {
1437 Out << "\n";
1438 } else {
1439 Out << " {";
1441 // Output all of its basic blocks... for the function
1442 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1443 printBasicBlock(I);
1445 Out << "}\n";
1448 Machine.purgeFunction();
1451 /// printArgument - This member is called for every argument that is passed into
1452 /// the function. Simply print it out
1454 void AssemblyWriter::printArgument(const Argument *Arg,
1455 Attributes Attrs) {
1456 // Output type...
1457 TypePrinter.print(Arg->getType(), Out);
1459 // Output parameter attributes list
1460 if (Attrs != Attribute::None)
1461 Out << ' ' << Attribute::getAsString(Attrs);
1463 // Output name, if available...
1464 if (Arg->hasName()) {
1465 Out << ' ';
1466 PrintLLVMName(Out, Arg);
1470 /// printBasicBlock - This member is called for each basic block in a method.
1472 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1473 if (BB->hasName()) { // Print out the label if it exists...
1474 Out << "\n";
1475 PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
1476 Out << ':';
1477 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1478 Out << "\n; <label>:";
1479 int Slot = Machine.getLocalSlot(BB);
1480 if (Slot != -1)
1481 Out << Slot;
1482 else
1483 Out << "<badref>";
1486 if (BB->getParent() == 0)
1487 Out << "\t\t; Error: Block without parent!";
1488 else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1489 // Output predecessors for the block...
1490 Out << "\t\t;";
1491 pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1493 if (PI == PE) {
1494 Out << " No predecessors!";
1495 } else {
1496 Out << " preds = ";
1497 writeOperand(*PI, false);
1498 for (++PI; PI != PE; ++PI) {
1499 Out << ", ";
1500 writeOperand(*PI, false);
1505 Out << "\n";
1507 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1509 // Output all of the instructions in the basic block...
1510 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1511 printInstruction(*I);
1513 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1517 /// printInfoComment - Print a little comment after the instruction indicating
1518 /// which slot it occupies.
1520 void AssemblyWriter::printInfoComment(const Value &V) {
1521 if (V.getType() != Type::VoidTy) {
1522 Out << "\t\t; <";
1523 TypePrinter.print(V.getType(), Out);
1524 Out << '>';
1526 if (!V.hasName() && !isa<Instruction>(V)) {
1527 int SlotNum;
1528 if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1529 SlotNum = Machine.getGlobalSlot(GV);
1530 else
1531 SlotNum = Machine.getLocalSlot(&V);
1532 if (SlotNum == -1)
1533 Out << ":<badref>";
1534 else
1535 Out << ':' << SlotNum; // Print out the def slot taken.
1537 Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
1541 // This member is called for each Instruction in a function..
1542 void AssemblyWriter::printInstruction(const Instruction &I) {
1543 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1545 Out << '\t';
1547 // Print out name if it exists...
1548 if (I.hasName()) {
1549 PrintLLVMName(Out, &I);
1550 Out << " = ";
1551 } else if (I.getType() != Type::VoidTy) {
1552 // Print out the def slot taken.
1553 int SlotNum = Machine.getLocalSlot(&I);
1554 if (SlotNum == -1)
1555 Out << "<badref> = ";
1556 else
1557 Out << '%' << SlotNum << " = ";
1560 // If this is a volatile load or store, print out the volatile marker.
1561 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1562 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1563 Out << "volatile ";
1564 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1565 // If this is a call, check if it's a tail call.
1566 Out << "tail ";
1569 // Print out the opcode...
1570 Out << I.getOpcodeName();
1572 // Print out the compare instruction predicates
1573 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1574 Out << ' ' << getPredicateText(CI->getPredicate());
1576 // Print out the type of the operands...
1577 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1579 // Special case conditional branches to swizzle the condition out to the front
1580 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1581 BranchInst &BI(cast<BranchInst>(I));
1582 Out << ' ';
1583 writeOperand(BI.getCondition(), true);
1584 Out << ", ";
1585 writeOperand(BI.getSuccessor(0), true);
1586 Out << ", ";
1587 writeOperand(BI.getSuccessor(1), true);
1589 } else if (isa<SwitchInst>(I)) {
1590 // Special case switch statement to get formatting nice and correct...
1591 Out << ' ';
1592 writeOperand(Operand , true);
1593 Out << ", ";
1594 writeOperand(I.getOperand(1), true);
1595 Out << " [";
1597 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1598 Out << "\n\t\t";
1599 writeOperand(I.getOperand(op ), true);
1600 Out << ", ";
1601 writeOperand(I.getOperand(op+1), true);
1603 Out << "\n\t]";
1604 } else if (isa<PHINode>(I)) {
1605 Out << ' ';
1606 TypePrinter.print(I.getType(), Out);
1607 Out << ' ';
1609 for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1610 if (op) Out << ", ";
1611 Out << "[ ";
1612 writeOperand(I.getOperand(op ), false); Out << ", ";
1613 writeOperand(I.getOperand(op+1), false); Out << " ]";
1615 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1616 Out << ' ';
1617 writeOperand(I.getOperand(0), true);
1618 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1619 Out << ", " << *i;
1620 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1621 Out << ' ';
1622 writeOperand(I.getOperand(0), true); Out << ", ";
1623 writeOperand(I.getOperand(1), true);
1624 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1625 Out << ", " << *i;
1626 } else if (isa<ReturnInst>(I) && !Operand) {
1627 Out << " void";
1628 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1629 // Print the calling convention being used.
1630 switch (CI->getCallingConv()) {
1631 case CallingConv::C: break; // default
1632 case CallingConv::Fast: Out << " fastcc"; break;
1633 case CallingConv::Cold: Out << " coldcc"; break;
1634 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1635 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1636 default: Out << " cc" << CI->getCallingConv(); break;
1639 const PointerType *PTy = cast<PointerType>(Operand->getType());
1640 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1641 const Type *RetTy = FTy->getReturnType();
1642 const AttrListPtr &PAL = CI->getAttributes();
1644 if (PAL.getRetAttributes() != Attribute::None)
1645 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1647 // If possible, print out the short form of the call instruction. We can
1648 // only do this if the first argument is a pointer to a nonvararg function,
1649 // and if the return type is not a pointer to a function.
1651 Out << ' ';
1652 if (!FTy->isVarArg() &&
1653 (!isa<PointerType>(RetTy) ||
1654 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1655 TypePrinter.print(RetTy, Out);
1656 Out << ' ';
1657 writeOperand(Operand, false);
1658 } else {
1659 writeOperand(Operand, true);
1661 Out << '(';
1662 for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1663 if (op > 1)
1664 Out << ", ";
1665 writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1667 Out << ')';
1668 if (PAL.getFnAttributes() != Attribute::None)
1669 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1670 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1671 const PointerType *PTy = cast<PointerType>(Operand->getType());
1672 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1673 const Type *RetTy = FTy->getReturnType();
1674 const AttrListPtr &PAL = II->getAttributes();
1676 // Print the calling convention being used.
1677 switch (II->getCallingConv()) {
1678 case CallingConv::C: break; // default
1679 case CallingConv::Fast: Out << " fastcc"; break;
1680 case CallingConv::Cold: Out << " coldcc"; break;
1681 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1682 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1683 default: Out << " cc" << II->getCallingConv(); break;
1686 if (PAL.getRetAttributes() != Attribute::None)
1687 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1689 // If possible, print out the short form of the invoke instruction. We can
1690 // only do this if the first argument is a pointer to a nonvararg function,
1691 // and if the return type is not a pointer to a function.
1693 Out << ' ';
1694 if (!FTy->isVarArg() &&
1695 (!isa<PointerType>(RetTy) ||
1696 !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1697 TypePrinter.print(RetTy, Out);
1698 Out << ' ';
1699 writeOperand(Operand, false);
1700 } else {
1701 writeOperand(Operand, true);
1703 Out << '(';
1704 for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1705 if (op > 3)
1706 Out << ", ";
1707 writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1710 Out << ')';
1711 if (PAL.getFnAttributes() != Attribute::None)
1712 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1714 Out << "\n\t\t\tto ";
1715 writeOperand(II->getNormalDest(), true);
1716 Out << " unwind ";
1717 writeOperand(II->getUnwindDest(), true);
1719 } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1720 Out << ' ';
1721 TypePrinter.print(AI->getType()->getElementType(), Out);
1722 if (AI->isArrayAllocation()) {
1723 Out << ", ";
1724 writeOperand(AI->getArraySize(), true);
1726 if (AI->getAlignment()) {
1727 Out << ", align " << AI->getAlignment();
1729 } else if (isa<CastInst>(I)) {
1730 if (Operand) {
1731 Out << ' ';
1732 writeOperand(Operand, true); // Work with broken code
1734 Out << " to ";
1735 TypePrinter.print(I.getType(), Out);
1736 } else if (isa<VAArgInst>(I)) {
1737 if (Operand) {
1738 Out << ' ';
1739 writeOperand(Operand, true); // Work with broken code
1741 Out << ", ";
1742 TypePrinter.print(I.getType(), Out);
1743 } else if (Operand) { // Print the normal way.
1745 // PrintAllTypes - Instructions who have operands of all the same type
1746 // omit the type from all but the first operand. If the instruction has
1747 // different type operands (for example br), then they are all printed.
1748 bool PrintAllTypes = false;
1749 const Type *TheType = Operand->getType();
1751 // Select, Store and ShuffleVector always print all types.
1752 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1753 || isa<ReturnInst>(I)) {
1754 PrintAllTypes = true;
1755 } else {
1756 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1757 Operand = I.getOperand(i);
1758 // note that Operand shouldn't be null, but the test helps make dump()
1759 // more tolerant of malformed IR
1760 if (Operand && Operand->getType() != TheType) {
1761 PrintAllTypes = true; // We have differing types! Print them all!
1762 break;
1767 if (!PrintAllTypes) {
1768 Out << ' ';
1769 TypePrinter.print(TheType, Out);
1772 Out << ' ';
1773 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1774 if (i) Out << ", ";
1775 writeOperand(I.getOperand(i), PrintAllTypes);
1779 // Print post operand alignment for load/store
1780 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1781 Out << ", align " << cast<LoadInst>(I).getAlignment();
1782 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1783 Out << ", align " << cast<StoreInst>(I).getAlignment();
1786 printInfoComment(I);
1787 Out << '\n';
1791 //===----------------------------------------------------------------------===//
1792 // External Interface declarations
1793 //===----------------------------------------------------------------------===//
1795 void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1796 raw_os_ostream OS(o);
1797 print(OS, AAW);
1799 void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1800 SlotTracker SlotTable(this);
1801 AssemblyWriter W(OS, SlotTable, this, AAW);
1802 W.write(this);
1805 void Type::print(std::ostream &o) const {
1806 raw_os_ostream OS(o);
1807 print(OS);
1810 void Type::print(raw_ostream &OS) const {
1811 if (this == 0) {
1812 OS << "<null Type>";
1813 return;
1815 TypePrinting().print(this, OS);
1818 void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1819 if (this == 0) {
1820 OS << "printing a <null> value\n";
1821 return;
1824 if (const Instruction *I = dyn_cast<Instruction>(this)) {
1825 const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
1826 SlotTracker SlotTable(F);
1827 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
1828 W.write(I);
1829 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
1830 SlotTracker SlotTable(BB->getParent());
1831 AssemblyWriter W(OS, SlotTable,
1832 BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
1833 W.write(BB);
1834 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
1835 SlotTracker SlotTable(GV->getParent());
1836 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
1837 W.write(GV);
1838 } else if (const Constant *C = dyn_cast<Constant>(this)) {
1839 TypePrinting TypePrinter;
1840 TypePrinter.print(C->getType(), OS);
1841 OS << ' ';
1842 WriteConstantInt(OS, C, TypePrinter, 0);
1843 } else if (const Argument *A = dyn_cast<Argument>(this)) {
1844 WriteAsOperand(OS, this, true,
1845 A->getParent() ? A->getParent()->getParent() : 0);
1846 } else if (isa<InlineAsm>(this)) {
1847 WriteAsOperand(OS, this, true, 0);
1848 } else {
1849 assert(0 && "Unknown value to print out!");
1853 void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
1854 raw_os_ostream OS(O);
1855 print(OS, AAW);
1858 // Value::dump - allow easy printing of Values from the debugger.
1859 void Value::dump() const { print(errs()); errs() << '\n'; }
1861 // Type::dump - allow easy printing of Types from the debugger.
1862 // This one uses type names from the given context module
1863 void Type::dump(const Module *Context) const {
1864 WriteTypeSymbolic(errs(), this, Context);
1865 errs() << '\n';
1868 // Type::dump - allow easy printing of Types from the debugger.
1869 void Type::dump() const { dump(0); }
1871 // Module::dump() - Allow printing of Modules from the debugger.
1872 void Module::dump() const { print(errs(), 0); }