1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements all of the non-inline methods for the LLVM instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Function.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Support/CallSite.h"
20 #include "llvm/Support/ConstantRange.h"
21 #include "llvm/Support/MathExtras.h"
24 //===----------------------------------------------------------------------===//
26 //===----------------------------------------------------------------------===//
28 #define CALLSITE_DELEGATE_GETTER(METHOD) \
29 Instruction *II(getInstruction()); \
31 ? cast<CallInst>(II)->METHOD \
32 : cast<InvokeInst>(II)->METHOD
34 #define CALLSITE_DELEGATE_SETTER(METHOD) \
35 Instruction *II(getInstruction()); \
37 cast<CallInst>(II)->METHOD; \
39 cast<InvokeInst>(II)->METHOD
41 CallSite::CallSite(Instruction
*C
) {
42 assert((isa
<CallInst
>(C
) || isa
<InvokeInst
>(C
)) && "Not a call!");
44 I
.setInt(isa
<CallInst
>(C
));
46 unsigned CallSite::getCallingConv() const {
47 CALLSITE_DELEGATE_GETTER(getCallingConv());
49 void CallSite::setCallingConv(unsigned CC
) {
50 CALLSITE_DELEGATE_SETTER(setCallingConv(CC
));
52 const AttrListPtr
&CallSite::getAttributes() const {
53 CALLSITE_DELEGATE_GETTER(getAttributes());
55 void CallSite::setAttributes(const AttrListPtr
&PAL
) {
56 CALLSITE_DELEGATE_SETTER(setAttributes(PAL
));
58 bool CallSite::paramHasAttr(uint16_t i
, Attributes attr
) const {
59 CALLSITE_DELEGATE_GETTER(paramHasAttr(i
, attr
));
61 uint16_t CallSite::getParamAlignment(uint16_t i
) const {
62 CALLSITE_DELEGATE_GETTER(getParamAlignment(i
));
64 bool CallSite::doesNotAccessMemory() const {
65 CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
67 void CallSite::setDoesNotAccessMemory(bool doesNotAccessMemory
) {
68 CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory(doesNotAccessMemory
));
70 bool CallSite::onlyReadsMemory() const {
71 CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
73 void CallSite::setOnlyReadsMemory(bool onlyReadsMemory
) {
74 CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory(onlyReadsMemory
));
76 bool CallSite::doesNotReturn() const {
77 CALLSITE_DELEGATE_GETTER(doesNotReturn());
79 void CallSite::setDoesNotReturn(bool doesNotReturn
) {
80 CALLSITE_DELEGATE_SETTER(setDoesNotReturn(doesNotReturn
));
82 bool CallSite::doesNotThrow() const {
83 CALLSITE_DELEGATE_GETTER(doesNotThrow());
85 void CallSite::setDoesNotThrow(bool doesNotThrow
) {
86 CALLSITE_DELEGATE_SETTER(setDoesNotThrow(doesNotThrow
));
89 bool CallSite::hasArgument(const Value
*Arg
) const {
90 for (arg_iterator AI
= this->arg_begin(), E
= this->arg_end(); AI
!= E
; ++AI
)
96 #undef CALLSITE_DELEGATE_GETTER
97 #undef CALLSITE_DELEGATE_SETTER
99 //===----------------------------------------------------------------------===//
100 // TerminatorInst Class
101 //===----------------------------------------------------------------------===//
103 // Out of line virtual method, so the vtable, etc has a home.
104 TerminatorInst::~TerminatorInst() {
107 //===----------------------------------------------------------------------===//
108 // UnaryInstruction Class
109 //===----------------------------------------------------------------------===//
111 // Out of line virtual method, so the vtable, etc has a home.
112 UnaryInstruction::~UnaryInstruction() {
115 //===----------------------------------------------------------------------===//
117 //===----------------------------------------------------------------------===//
119 /// areInvalidOperands - Return a string if the specified operands are invalid
120 /// for a select operation, otherwise return null.
121 const char *SelectInst::areInvalidOperands(Value
*Op0
, Value
*Op1
, Value
*Op2
) {
122 if (Op1
->getType() != Op2
->getType())
123 return "both values to select must have same type";
125 if (const VectorType
*VT
= dyn_cast
<VectorType
>(Op0
->getType())) {
127 if (VT
->getElementType() != Type::Int1Ty
)
128 return "vector select condition element type must be i1";
129 const VectorType
*ET
= dyn_cast
<VectorType
>(Op1
->getType());
131 return "selected values for vector select must be vectors";
132 if (ET
->getNumElements() != VT
->getNumElements())
133 return "vector select requires selected vectors to have "
134 "the same vector length as select condition";
135 } else if (Op0
->getType() != Type::Int1Ty
) {
136 return "select condition must be i1 or <n x i1>";
142 //===----------------------------------------------------------------------===//
144 //===----------------------------------------------------------------------===//
146 PHINode::PHINode(const PHINode
&PN
)
147 : Instruction(PN
.getType(), Instruction::PHI
,
148 allocHungoffUses(PN
.getNumOperands()), PN
.getNumOperands()),
149 ReservedSpace(PN
.getNumOperands()) {
150 Use
*OL
= OperandList
;
151 for (unsigned i
= 0, e
= PN
.getNumOperands(); i
!= e
; i
+=2) {
152 OL
[i
] = PN
.getOperand(i
);
153 OL
[i
+1] = PN
.getOperand(i
+1);
157 PHINode::~PHINode() {
159 dropHungoffUses(OperandList
);
162 // removeIncomingValue - Remove an incoming value. This is useful if a
163 // predecessor basic block is deleted.
164 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
165 unsigned NumOps
= getNumOperands();
166 Use
*OL
= OperandList
;
167 assert(Idx
*2 < NumOps
&& "BB not in PHI node!");
168 Value
*Removed
= OL
[Idx
*2];
170 // Move everything after this operand down.
172 // FIXME: we could just swap with the end of the list, then erase. However,
173 // client might not expect this to happen. The code as it is thrashes the
174 // use/def lists, which is kinda lame.
175 for (unsigned i
= (Idx
+1)*2; i
!= NumOps
; i
+= 2) {
180 // Nuke the last value.
182 OL
[NumOps
-2+1].set(0);
183 NumOperands
= NumOps
-2;
185 // If the PHI node is dead, because it has zero entries, nuke it now.
186 if (NumOps
== 2 && DeletePHIIfEmpty
) {
187 // If anyone is using this PHI, make them use a dummy value instead...
188 replaceAllUsesWith(UndefValue::get(getType()));
194 /// resizeOperands - resize operands - This adjusts the length of the operands
195 /// list according to the following behavior:
196 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
197 /// of operation. This grows the number of ops by 1.5 times.
198 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
199 /// 3. If NumOps == NumOperands, trim the reserved space.
201 void PHINode::resizeOperands(unsigned NumOps
) {
202 unsigned e
= getNumOperands();
205 if (NumOps
< 4) NumOps
= 4; // 4 op PHI nodes are VERY common.
206 } else if (NumOps
*2 > NumOperands
) {
208 if (ReservedSpace
>= NumOps
) return;
209 } else if (NumOps
== NumOperands
) {
210 if (ReservedSpace
== NumOps
) return;
215 ReservedSpace
= NumOps
;
216 Use
*OldOps
= OperandList
;
217 Use
*NewOps
= allocHungoffUses(NumOps
);
218 std::copy(OldOps
, OldOps
+ e
, NewOps
);
219 OperandList
= NewOps
;
220 if (OldOps
) Use::zap(OldOps
, OldOps
+ e
, true);
223 /// hasConstantValue - If the specified PHI node always merges together the same
224 /// value, return the value, otherwise return null.
226 Value
*PHINode::hasConstantValue(bool AllowNonDominatingInstruction
) const {
227 // If the PHI node only has one incoming value, eliminate the PHI node...
228 if (getNumIncomingValues() == 1) {
229 if (getIncomingValue(0) != this) // not X = phi X
230 return getIncomingValue(0);
232 return UndefValue::get(getType()); // Self cycle is dead.
235 // Otherwise if all of the incoming values are the same for the PHI, replace
236 // the PHI node with the incoming value.
239 bool HasUndefInput
= false;
240 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
)
241 if (isa
<UndefValue
>(getIncomingValue(i
))) {
242 HasUndefInput
= true;
243 } else if (getIncomingValue(i
) != this) { // Not the PHI node itself...
244 if (InVal
&& getIncomingValue(i
) != InVal
)
245 return 0; // Not the same, bail out.
247 InVal
= getIncomingValue(i
);
250 // The only case that could cause InVal to be null is if we have a PHI node
251 // that only has entries for itself. In this case, there is no entry into the
252 // loop, so kill the PHI.
254 if (InVal
== 0) InVal
= UndefValue::get(getType());
256 // If we have a PHI node like phi(X, undef, X), where X is defined by some
257 // instruction, we cannot always return X as the result of the PHI node. Only
258 // do this if X is not an instruction (thus it must dominate the PHI block),
259 // or if the client is prepared to deal with this possibility.
260 if (HasUndefInput
&& !AllowNonDominatingInstruction
)
261 if (Instruction
*IV
= dyn_cast
<Instruction
>(InVal
))
262 // If it's in the entry block, it dominates everything.
263 if (IV
->getParent() != &IV
->getParent()->getParent()->getEntryBlock() ||
265 return 0; // Cannot guarantee that InVal dominates this PHINode.
267 // All of the incoming values are the same, return the value now.
272 //===----------------------------------------------------------------------===//
273 // CallInst Implementation
274 //===----------------------------------------------------------------------===//
276 CallInst::~CallInst() {
279 void CallInst::init(Value
*Func
, Value
* const *Params
, unsigned NumParams
) {
280 assert(NumOperands
== NumParams
+1 && "NumOperands not set up?");
281 Use
*OL
= OperandList
;
284 const FunctionType
*FTy
=
285 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
286 FTy
= FTy
; // silence warning.
288 assert((NumParams
== FTy
->getNumParams() ||
289 (FTy
->isVarArg() && NumParams
> FTy
->getNumParams())) &&
290 "Calling a function with bad signature!");
291 for (unsigned i
= 0; i
!= NumParams
; ++i
) {
292 assert((i
>= FTy
->getNumParams() ||
293 FTy
->getParamType(i
) == Params
[i
]->getType()) &&
294 "Calling a function with a bad signature!");
299 void CallInst::init(Value
*Func
, Value
*Actual1
, Value
*Actual2
) {
300 assert(NumOperands
== 3 && "NumOperands not set up?");
301 Use
*OL
= OperandList
;
306 const FunctionType
*FTy
=
307 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
308 FTy
= FTy
; // silence warning.
310 assert((FTy
->getNumParams() == 2 ||
311 (FTy
->isVarArg() && FTy
->getNumParams() < 2)) &&
312 "Calling a function with bad signature");
313 assert((0 >= FTy
->getNumParams() ||
314 FTy
->getParamType(0) == Actual1
->getType()) &&
315 "Calling a function with a bad signature!");
316 assert((1 >= FTy
->getNumParams() ||
317 FTy
->getParamType(1) == Actual2
->getType()) &&
318 "Calling a function with a bad signature!");
321 void CallInst::init(Value
*Func
, Value
*Actual
) {
322 assert(NumOperands
== 2 && "NumOperands not set up?");
323 Use
*OL
= OperandList
;
327 const FunctionType
*FTy
=
328 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
329 FTy
= FTy
; // silence warning.
331 assert((FTy
->getNumParams() == 1 ||
332 (FTy
->isVarArg() && FTy
->getNumParams() == 0)) &&
333 "Calling a function with bad signature");
334 assert((0 == FTy
->getNumParams() ||
335 FTy
->getParamType(0) == Actual
->getType()) &&
336 "Calling a function with a bad signature!");
339 void CallInst::init(Value
*Func
) {
340 assert(NumOperands
== 1 && "NumOperands not set up?");
341 Use
*OL
= OperandList
;
344 const FunctionType
*FTy
=
345 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
346 FTy
= FTy
; // silence warning.
348 assert(FTy
->getNumParams() == 0 && "Calling a function with bad signature");
351 CallInst::CallInst(Value
*Func
, Value
* Actual
, const std::string
&Name
,
352 Instruction
*InsertBefore
)
353 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
354 ->getElementType())->getReturnType(),
356 OperandTraits
<CallInst
>::op_end(this) - 2,
362 CallInst::CallInst(Value
*Func
, Value
* Actual
, const std::string
&Name
,
363 BasicBlock
*InsertAtEnd
)
364 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
365 ->getElementType())->getReturnType(),
367 OperandTraits
<CallInst
>::op_end(this) - 2,
372 CallInst::CallInst(Value
*Func
, const std::string
&Name
,
373 Instruction
*InsertBefore
)
374 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
375 ->getElementType())->getReturnType(),
377 OperandTraits
<CallInst
>::op_end(this) - 1,
383 CallInst::CallInst(Value
*Func
, const std::string
&Name
,
384 BasicBlock
*InsertAtEnd
)
385 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
386 ->getElementType())->getReturnType(),
388 OperandTraits
<CallInst
>::op_end(this) - 1,
394 CallInst::CallInst(const CallInst
&CI
)
395 : Instruction(CI
.getType(), Instruction::Call
,
396 OperandTraits
<CallInst
>::op_end(this) - CI
.getNumOperands(),
397 CI
.getNumOperands()) {
398 setAttributes(CI
.getAttributes());
399 SubclassData
= CI
.SubclassData
;
400 Use
*OL
= OperandList
;
401 Use
*InOL
= CI
.OperandList
;
402 for (unsigned i
= 0, e
= CI
.getNumOperands(); i
!= e
; ++i
)
406 void CallInst::addAttribute(unsigned i
, Attributes attr
) {
407 AttrListPtr PAL
= getAttributes();
408 PAL
= PAL
.addAttr(i
, attr
);
412 void CallInst::removeAttribute(unsigned i
, Attributes attr
) {
413 AttrListPtr PAL
= getAttributes();
414 PAL
= PAL
.removeAttr(i
, attr
);
418 bool CallInst::paramHasAttr(unsigned i
, Attributes attr
) const {
419 if (AttributeList
.paramHasAttr(i
, attr
))
421 if (const Function
*F
= getCalledFunction())
422 return F
->paramHasAttr(i
, attr
);
427 //===----------------------------------------------------------------------===//
428 // InvokeInst Implementation
429 //===----------------------------------------------------------------------===//
431 void InvokeInst::init(Value
*Fn
, BasicBlock
*IfNormal
, BasicBlock
*IfException
,
432 Value
* const *Args
, unsigned NumArgs
) {
433 assert(NumOperands
== 3+NumArgs
&& "NumOperands not set up?");
434 Use
*OL
= OperandList
;
438 const FunctionType
*FTy
=
439 cast
<FunctionType
>(cast
<PointerType
>(Fn
->getType())->getElementType());
440 FTy
= FTy
; // silence warning.
442 assert(((NumArgs
== FTy
->getNumParams()) ||
443 (FTy
->isVarArg() && NumArgs
> FTy
->getNumParams())) &&
444 "Calling a function with bad signature");
446 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; i
++) {
447 assert((i
>= FTy
->getNumParams() ||
448 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
449 "Invoking a function with a bad signature!");
455 InvokeInst::InvokeInst(const InvokeInst
&II
)
456 : TerminatorInst(II
.getType(), Instruction::Invoke
,
457 OperandTraits
<InvokeInst
>::op_end(this)
458 - II
.getNumOperands(),
459 II
.getNumOperands()) {
460 setAttributes(II
.getAttributes());
461 SubclassData
= II
.SubclassData
;
462 Use
*OL
= OperandList
, *InOL
= II
.OperandList
;
463 for (unsigned i
= 0, e
= II
.getNumOperands(); i
!= e
; ++i
)
467 BasicBlock
*InvokeInst::getSuccessorV(unsigned idx
) const {
468 return getSuccessor(idx
);
470 unsigned InvokeInst::getNumSuccessorsV() const {
471 return getNumSuccessors();
473 void InvokeInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
474 return setSuccessor(idx
, B
);
477 bool InvokeInst::paramHasAttr(unsigned i
, Attributes attr
) const {
478 if (AttributeList
.paramHasAttr(i
, attr
))
480 if (const Function
*F
= getCalledFunction())
481 return F
->paramHasAttr(i
, attr
);
485 void InvokeInst::addAttribute(unsigned i
, Attributes attr
) {
486 AttrListPtr PAL
= getAttributes();
487 PAL
= PAL
.addAttr(i
, attr
);
491 void InvokeInst::removeAttribute(unsigned i
, Attributes attr
) {
492 AttrListPtr PAL
= getAttributes();
493 PAL
= PAL
.removeAttr(i
, attr
);
498 //===----------------------------------------------------------------------===//
499 // ReturnInst Implementation
500 //===----------------------------------------------------------------------===//
502 ReturnInst::ReturnInst(const ReturnInst
&RI
)
503 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
504 OperandTraits
<ReturnInst
>::op_end(this) -
506 RI
.getNumOperands()) {
507 if (RI
.getNumOperands())
508 Op
<0>() = RI
.Op
<0>();
511 ReturnInst::ReturnInst(Value
*retVal
, Instruction
*InsertBefore
)
512 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
513 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
518 ReturnInst::ReturnInst(Value
*retVal
, BasicBlock
*InsertAtEnd
)
519 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
520 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
525 ReturnInst::ReturnInst(BasicBlock
*InsertAtEnd
)
526 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
527 OperandTraits
<ReturnInst
>::op_end(this), 0, InsertAtEnd
) {
530 unsigned ReturnInst::getNumSuccessorsV() const {
531 return getNumSuccessors();
534 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
535 /// emit the vtable for the class in this translation unit.
536 void ReturnInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
537 assert(0 && "ReturnInst has no successors!");
540 BasicBlock
*ReturnInst::getSuccessorV(unsigned idx
) const {
541 assert(0 && "ReturnInst has no successors!");
546 ReturnInst::~ReturnInst() {
549 //===----------------------------------------------------------------------===//
550 // UnwindInst Implementation
551 //===----------------------------------------------------------------------===//
553 UnwindInst::UnwindInst(Instruction
*InsertBefore
)
554 : TerminatorInst(Type::VoidTy
, Instruction::Unwind
, 0, 0, InsertBefore
) {
556 UnwindInst::UnwindInst(BasicBlock
*InsertAtEnd
)
557 : TerminatorInst(Type::VoidTy
, Instruction::Unwind
, 0, 0, InsertAtEnd
) {
561 unsigned UnwindInst::getNumSuccessorsV() const {
562 return getNumSuccessors();
565 void UnwindInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
566 assert(0 && "UnwindInst has no successors!");
569 BasicBlock
*UnwindInst::getSuccessorV(unsigned idx
) const {
570 assert(0 && "UnwindInst has no successors!");
575 //===----------------------------------------------------------------------===//
576 // UnreachableInst Implementation
577 //===----------------------------------------------------------------------===//
579 UnreachableInst::UnreachableInst(Instruction
*InsertBefore
)
580 : TerminatorInst(Type::VoidTy
, Instruction::Unreachable
, 0, 0, InsertBefore
) {
582 UnreachableInst::UnreachableInst(BasicBlock
*InsertAtEnd
)
583 : TerminatorInst(Type::VoidTy
, Instruction::Unreachable
, 0, 0, InsertAtEnd
) {
586 unsigned UnreachableInst::getNumSuccessorsV() const {
587 return getNumSuccessors();
590 void UnreachableInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
591 assert(0 && "UnwindInst has no successors!");
594 BasicBlock
*UnreachableInst::getSuccessorV(unsigned idx
) const {
595 assert(0 && "UnwindInst has no successors!");
600 //===----------------------------------------------------------------------===//
601 // BranchInst Implementation
602 //===----------------------------------------------------------------------===//
604 void BranchInst::AssertOK() {
606 assert(getCondition()->getType() == Type::Int1Ty
&&
607 "May only branch on boolean predicates!");
610 BranchInst::BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
)
611 : TerminatorInst(Type::VoidTy
, Instruction::Br
,
612 OperandTraits
<BranchInst
>::op_end(this) - 1,
614 assert(IfTrue
!= 0 && "Branch destination may not be null!");
617 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
618 Instruction
*InsertBefore
)
619 : TerminatorInst(Type::VoidTy
, Instruction::Br
,
620 OperandTraits
<BranchInst
>::op_end(this) - 3,
630 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
)
631 : TerminatorInst(Type::VoidTy
, Instruction::Br
,
632 OperandTraits
<BranchInst
>::op_end(this) - 1,
634 assert(IfTrue
!= 0 && "Branch destination may not be null!");
638 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
639 BasicBlock
*InsertAtEnd
)
640 : TerminatorInst(Type::VoidTy
, Instruction::Br
,
641 OperandTraits
<BranchInst
>::op_end(this) - 3,
652 BranchInst::BranchInst(const BranchInst
&BI
) :
653 TerminatorInst(Type::VoidTy
, Instruction::Br
,
654 OperandTraits
<BranchInst
>::op_end(this) - BI
.getNumOperands(),
655 BI
.getNumOperands()) {
656 Op
<-1>() = BI
.Op
<-1>();
657 if (BI
.getNumOperands() != 1) {
658 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
659 Op
<-3>() = BI
.Op
<-3>();
660 Op
<-2>() = BI
.Op
<-2>();
665 Use
* Use::getPrefix() {
666 PointerIntPair
<Use
**, 2, PrevPtrTag
> &PotentialPrefix(this[-1].Prev
);
667 if (PotentialPrefix
.getOpaqueValue())
670 return reinterpret_cast<Use
*>((char*)&PotentialPrefix
+ 1);
673 BranchInst::~BranchInst() {
674 if (NumOperands
== 1) {
675 if (Use
*Prefix
= OperandList
->getPrefix()) {
678 // mark OperandList to have a special value for scrutiny
679 // by baseclass destructors and operator delete
680 OperandList
= Prefix
;
683 OperandList
= op_begin();
689 BasicBlock
*BranchInst::getSuccessorV(unsigned idx
) const {
690 return getSuccessor(idx
);
692 unsigned BranchInst::getNumSuccessorsV() const {
693 return getNumSuccessors();
695 void BranchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
696 setSuccessor(idx
, B
);
700 //===----------------------------------------------------------------------===//
701 // AllocationInst Implementation
702 //===----------------------------------------------------------------------===//
704 static Value
*getAISize(Value
*Amt
) {
706 Amt
= ConstantInt::get(Type::Int32Ty
, 1);
708 assert(!isa
<BasicBlock
>(Amt
) &&
709 "Passed basic block into allocation size parameter! Use other ctor");
710 assert(Amt
->getType() == Type::Int32Ty
&&
711 "Malloc/Allocation array size is not a 32-bit integer!");
716 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
717 unsigned Align
, const std::string
&Name
,
718 Instruction
*InsertBefore
)
719 : UnaryInstruction(PointerType::getUnqual(Ty
), iTy
, getAISize(ArraySize
),
722 assert(Ty
!= Type::VoidTy
&& "Cannot allocate void!");
726 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
727 unsigned Align
, const std::string
&Name
,
728 BasicBlock
*InsertAtEnd
)
729 : UnaryInstruction(PointerType::getUnqual(Ty
), iTy
, getAISize(ArraySize
),
732 assert(Ty
!= Type::VoidTy
&& "Cannot allocate void!");
736 // Out of line virtual method, so the vtable, etc has a home.
737 AllocationInst::~AllocationInst() {
740 void AllocationInst::setAlignment(unsigned Align
) {
741 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
742 SubclassData
= Log2_32(Align
) + 1;
743 assert(getAlignment() == Align
&& "Alignment representation error!");
746 bool AllocationInst::isArrayAllocation() const {
747 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(0)))
748 return CI
->getZExtValue() != 1;
752 const Type
*AllocationInst::getAllocatedType() const {
753 return getType()->getElementType();
756 AllocaInst::AllocaInst(const AllocaInst
&AI
)
757 : AllocationInst(AI
.getType()->getElementType(), (Value
*)AI
.getOperand(0),
758 Instruction::Alloca
, AI
.getAlignment()) {
761 /// isStaticAlloca - Return true if this alloca is in the entry block of the
762 /// function and is a constant size. If so, the code generator will fold it
763 /// into the prolog/epilog code, so it is basically free.
764 bool AllocaInst::isStaticAlloca() const {
765 // Must be constant size.
766 if (!isa
<ConstantInt
>(getArraySize())) return false;
768 // Must be in the entry block.
769 const BasicBlock
*Parent
= getParent();
770 return Parent
== &Parent
->getParent()->front();
773 MallocInst::MallocInst(const MallocInst
&MI
)
774 : AllocationInst(MI
.getType()->getElementType(), (Value
*)MI
.getOperand(0),
775 Instruction::Malloc
, MI
.getAlignment()) {
778 //===----------------------------------------------------------------------===//
779 // FreeInst Implementation
780 //===----------------------------------------------------------------------===//
782 void FreeInst::AssertOK() {
783 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
784 "Can not free something of nonpointer type!");
787 FreeInst::FreeInst(Value
*Ptr
, Instruction
*InsertBefore
)
788 : UnaryInstruction(Type::VoidTy
, Free
, Ptr
, InsertBefore
) {
792 FreeInst::FreeInst(Value
*Ptr
, BasicBlock
*InsertAtEnd
)
793 : UnaryInstruction(Type::VoidTy
, Free
, Ptr
, InsertAtEnd
) {
798 //===----------------------------------------------------------------------===//
799 // LoadInst Implementation
800 //===----------------------------------------------------------------------===//
802 void LoadInst::AssertOK() {
803 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
804 "Ptr must have pointer type.");
807 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, Instruction
*InsertBef
)
808 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
809 Load
, Ptr
, InsertBef
) {
816 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, BasicBlock
*InsertAE
)
817 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
818 Load
, Ptr
, InsertAE
) {
825 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
826 Instruction
*InsertBef
)
827 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
828 Load
, Ptr
, InsertBef
) {
829 setVolatile(isVolatile
);
835 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
836 unsigned Align
, Instruction
*InsertBef
)
837 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
838 Load
, Ptr
, InsertBef
) {
839 setVolatile(isVolatile
);
845 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
846 unsigned Align
, BasicBlock
*InsertAE
)
847 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
848 Load
, Ptr
, InsertAE
) {
849 setVolatile(isVolatile
);
855 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
856 BasicBlock
*InsertAE
)
857 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
858 Load
, Ptr
, InsertAE
) {
859 setVolatile(isVolatile
);
867 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, Instruction
*InsertBef
)
868 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
869 Load
, Ptr
, InsertBef
) {
873 if (Name
&& Name
[0]) setName(Name
);
876 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, BasicBlock
*InsertAE
)
877 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
878 Load
, Ptr
, InsertAE
) {
882 if (Name
&& Name
[0]) setName(Name
);
885 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
886 Instruction
*InsertBef
)
887 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
888 Load
, Ptr
, InsertBef
) {
889 setVolatile(isVolatile
);
892 if (Name
&& Name
[0]) setName(Name
);
895 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
896 BasicBlock
*InsertAE
)
897 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
898 Load
, Ptr
, InsertAE
) {
899 setVolatile(isVolatile
);
902 if (Name
&& Name
[0]) setName(Name
);
905 void LoadInst::setAlignment(unsigned Align
) {
906 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
907 SubclassData
= (SubclassData
& 1) | ((Log2_32(Align
)+1)<<1);
910 //===----------------------------------------------------------------------===//
911 // StoreInst Implementation
912 //===----------------------------------------------------------------------===//
914 void StoreInst::AssertOK() {
915 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
916 assert(isa
<PointerType
>(getOperand(1)->getType()) &&
917 "Ptr must have pointer type!");
918 assert(getOperand(0)->getType() ==
919 cast
<PointerType
>(getOperand(1)->getType())->getElementType()
920 && "Ptr must be a pointer to Val type!");
924 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
925 : Instruction(Type::VoidTy
, Store
,
926 OperandTraits
<StoreInst
>::op_begin(this),
927 OperandTraits
<StoreInst
>::operands(this),
936 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
937 : Instruction(Type::VoidTy
, Store
,
938 OperandTraits
<StoreInst
>::op_begin(this),
939 OperandTraits
<StoreInst
>::operands(this),
948 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
949 Instruction
*InsertBefore
)
950 : Instruction(Type::VoidTy
, Store
,
951 OperandTraits
<StoreInst
>::op_begin(this),
952 OperandTraits
<StoreInst
>::operands(this),
956 setVolatile(isVolatile
);
961 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
962 unsigned Align
, Instruction
*InsertBefore
)
963 : Instruction(Type::VoidTy
, Store
,
964 OperandTraits
<StoreInst
>::op_begin(this),
965 OperandTraits
<StoreInst
>::operands(this),
969 setVolatile(isVolatile
);
974 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
975 unsigned Align
, BasicBlock
*InsertAtEnd
)
976 : Instruction(Type::VoidTy
, Store
,
977 OperandTraits
<StoreInst
>::op_begin(this),
978 OperandTraits
<StoreInst
>::operands(this),
982 setVolatile(isVolatile
);
987 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
988 BasicBlock
*InsertAtEnd
)
989 : Instruction(Type::VoidTy
, Store
,
990 OperandTraits
<StoreInst
>::op_begin(this),
991 OperandTraits
<StoreInst
>::operands(this),
995 setVolatile(isVolatile
);
1000 void StoreInst::setAlignment(unsigned Align
) {
1001 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1002 SubclassData
= (SubclassData
& 1) | ((Log2_32(Align
)+1)<<1);
1005 //===----------------------------------------------------------------------===//
1006 // GetElementPtrInst Implementation
1007 //===----------------------------------------------------------------------===//
1009 static unsigned retrieveAddrSpace(const Value
*Val
) {
1010 return cast
<PointerType
>(Val
->getType())->getAddressSpace();
1013 void GetElementPtrInst::init(Value
*Ptr
, Value
* const *Idx
, unsigned NumIdx
,
1014 const std::string
&Name
) {
1015 assert(NumOperands
== 1+NumIdx
&& "NumOperands not initialized?");
1016 Use
*OL
= OperandList
;
1019 for (unsigned i
= 0; i
!= NumIdx
; ++i
)
1025 void GetElementPtrInst::init(Value
*Ptr
, Value
*Idx
, const std::string
&Name
) {
1026 assert(NumOperands
== 2 && "NumOperands not initialized?");
1027 Use
*OL
= OperandList
;
1034 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst
&GEPI
)
1035 : Instruction(GEPI
.getType(), GetElementPtr
,
1036 OperandTraits
<GetElementPtrInst
>::op_end(this)
1037 - GEPI
.getNumOperands(),
1038 GEPI
.getNumOperands()) {
1039 Use
*OL
= OperandList
;
1040 Use
*GEPIOL
= GEPI
.OperandList
;
1041 for (unsigned i
= 0, E
= NumOperands
; i
!= E
; ++i
)
1045 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
1046 const std::string
&Name
, Instruction
*InBe
)
1047 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),Idx
)),
1048 retrieveAddrSpace(Ptr
)),
1050 OperandTraits
<GetElementPtrInst
>::op_end(this) - 2,
1052 init(Ptr
, Idx
, Name
);
1055 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
1056 const std::string
&Name
, BasicBlock
*IAE
)
1057 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),Idx
)),
1058 retrieveAddrSpace(Ptr
)),
1060 OperandTraits
<GetElementPtrInst
>::op_end(this) - 2,
1062 init(Ptr
, Idx
, Name
);
1065 /// getIndexedType - Returns the type of the element that would be accessed with
1066 /// a gep instruction with the specified parameters.
1068 /// The Idxs pointer should point to a continuous piece of memory containing the
1069 /// indices, either as Value* or uint64_t.
1071 /// A null type is returned if the indices are invalid for the specified
1074 template <typename IndexTy
>
1075 static const Type
* getIndexedTypeInternal(const Type
*Ptr
, IndexTy
const *Idxs
,
1077 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
1078 if (!PTy
) return 0; // Type isn't a pointer type!
1079 const Type
*Agg
= PTy
->getElementType();
1081 // Handle the special case of the empty set index set, which is always valid.
1085 // If there is at least one index, the top level type must be sized, otherwise
1086 // it cannot be 'stepped over'. We explicitly allow abstract types (those
1087 // that contain opaque types) under the assumption that it will be resolved to
1088 // a sane type later.
1089 if (!Agg
->isSized() && !Agg
->isAbstract())
1092 unsigned CurIdx
= 1;
1093 for (; CurIdx
!= NumIdx
; ++CurIdx
) {
1094 const CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1095 if (!CT
|| isa
<PointerType
>(CT
)) return 0;
1096 IndexTy Index
= Idxs
[CurIdx
];
1097 if (!CT
->indexValid(Index
)) return 0;
1098 Agg
= CT
->getTypeAtIndex(Index
);
1100 // If the new type forwards to another type, then it is in the middle
1101 // of being refined to another type (and hence, may have dropped all
1102 // references to what it was using before). So, use the new forwarded
1104 if (const Type
*Ty
= Agg
->getForwardedType())
1107 return CurIdx
== NumIdx
? Agg
: 0;
1110 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
1113 return getIndexedTypeInternal(Ptr
, Idxs
, NumIdx
);
1116 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
1117 uint64_t const *Idxs
,
1119 return getIndexedTypeInternal(Ptr
, Idxs
, NumIdx
);
1122 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
, Value
*Idx
) {
1123 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
1124 if (!PTy
) return 0; // Type isn't a pointer type!
1126 // Check the pointer index.
1127 if (!PTy
->indexValid(Idx
)) return 0;
1129 return PTy
->getElementType();
1133 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1134 /// zeros. If so, the result pointer and the first operand have the same
1135 /// value, just potentially different types.
1136 bool GetElementPtrInst::hasAllZeroIndices() const {
1137 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1138 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(i
))) {
1139 if (!CI
->isZero()) return false;
1147 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1148 /// constant integers. If so, the result pointer and the first operand have
1149 /// a constant offset between them.
1150 bool GetElementPtrInst::hasAllConstantIndices() const {
1151 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1152 if (!isa
<ConstantInt
>(getOperand(i
)))
1159 //===----------------------------------------------------------------------===//
1160 // ExtractElementInst Implementation
1161 //===----------------------------------------------------------------------===//
1163 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1164 const std::string
&Name
,
1165 Instruction
*InsertBef
)
1166 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1168 OperandTraits
<ExtractElementInst
>::op_begin(this),
1170 assert(isValidOperands(Val
, Index
) &&
1171 "Invalid extractelement instruction operands!");
1177 ExtractElementInst::ExtractElementInst(Value
*Val
, unsigned IndexV
,
1178 const std::string
&Name
,
1179 Instruction
*InsertBef
)
1180 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1182 OperandTraits
<ExtractElementInst
>::op_begin(this),
1184 Constant
*Index
= ConstantInt::get(Type::Int32Ty
, IndexV
);
1185 assert(isValidOperands(Val
, Index
) &&
1186 "Invalid extractelement instruction operands!");
1193 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1194 const std::string
&Name
,
1195 BasicBlock
*InsertAE
)
1196 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1198 OperandTraits
<ExtractElementInst
>::op_begin(this),
1200 assert(isValidOperands(Val
, Index
) &&
1201 "Invalid extractelement instruction operands!");
1208 ExtractElementInst::ExtractElementInst(Value
*Val
, unsigned IndexV
,
1209 const std::string
&Name
,
1210 BasicBlock
*InsertAE
)
1211 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1213 OperandTraits
<ExtractElementInst
>::op_begin(this),
1215 Constant
*Index
= ConstantInt::get(Type::Int32Ty
, IndexV
);
1216 assert(isValidOperands(Val
, Index
) &&
1217 "Invalid extractelement instruction operands!");
1225 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
1226 if (!isa
<VectorType
>(Val
->getType()) || Index
->getType() != Type::Int32Ty
)
1232 //===----------------------------------------------------------------------===//
1233 // InsertElementInst Implementation
1234 //===----------------------------------------------------------------------===//
1236 InsertElementInst::InsertElementInst(const InsertElementInst
&IE
)
1237 : Instruction(IE
.getType(), InsertElement
,
1238 OperandTraits
<InsertElementInst
>::op_begin(this), 3) {
1239 Op
<0>() = IE
.Op
<0>();
1240 Op
<1>() = IE
.Op
<1>();
1241 Op
<2>() = IE
.Op
<2>();
1243 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1244 const std::string
&Name
,
1245 Instruction
*InsertBef
)
1246 : Instruction(Vec
->getType(), InsertElement
,
1247 OperandTraits
<InsertElementInst
>::op_begin(this),
1249 assert(isValidOperands(Vec
, Elt
, Index
) &&
1250 "Invalid insertelement instruction operands!");
1257 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, unsigned IndexV
,
1258 const std::string
&Name
,
1259 Instruction
*InsertBef
)
1260 : Instruction(Vec
->getType(), InsertElement
,
1261 OperandTraits
<InsertElementInst
>::op_begin(this),
1263 Constant
*Index
= ConstantInt::get(Type::Int32Ty
, IndexV
);
1264 assert(isValidOperands(Vec
, Elt
, Index
) &&
1265 "Invalid insertelement instruction operands!");
1273 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1274 const std::string
&Name
,
1275 BasicBlock
*InsertAE
)
1276 : Instruction(Vec
->getType(), InsertElement
,
1277 OperandTraits
<InsertElementInst
>::op_begin(this),
1279 assert(isValidOperands(Vec
, Elt
, Index
) &&
1280 "Invalid insertelement instruction operands!");
1288 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, unsigned IndexV
,
1289 const std::string
&Name
,
1290 BasicBlock
*InsertAE
)
1291 : Instruction(Vec
->getType(), InsertElement
,
1292 OperandTraits
<InsertElementInst
>::op_begin(this),
1294 Constant
*Index
= ConstantInt::get(Type::Int32Ty
, IndexV
);
1295 assert(isValidOperands(Vec
, Elt
, Index
) &&
1296 "Invalid insertelement instruction operands!");
1304 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
1305 const Value
*Index
) {
1306 if (!isa
<VectorType
>(Vec
->getType()))
1307 return false; // First operand of insertelement must be vector type.
1309 if (Elt
->getType() != cast
<VectorType
>(Vec
->getType())->getElementType())
1310 return false;// Second operand of insertelement must be vector element type.
1312 if (Index
->getType() != Type::Int32Ty
)
1313 return false; // Third operand of insertelement must be uint.
1318 //===----------------------------------------------------------------------===//
1319 // ShuffleVectorInst Implementation
1320 //===----------------------------------------------------------------------===//
1322 ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst
&SV
)
1323 : Instruction(SV
.getType(), ShuffleVector
,
1324 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1325 OperandTraits
<ShuffleVectorInst
>::operands(this)) {
1326 Op
<0>() = SV
.Op
<0>();
1327 Op
<1>() = SV
.Op
<1>();
1328 Op
<2>() = SV
.Op
<2>();
1331 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1332 const std::string
&Name
,
1333 Instruction
*InsertBefore
)
1334 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1335 cast
<VectorType
>(Mask
->getType())->getNumElements()),
1337 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1338 OperandTraits
<ShuffleVectorInst
>::operands(this),
1340 assert(isValidOperands(V1
, V2
, Mask
) &&
1341 "Invalid shuffle vector instruction operands!");
1348 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1349 const std::string
&Name
,
1350 BasicBlock
*InsertAtEnd
)
1351 : Instruction(V1
->getType(), ShuffleVector
,
1352 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1353 OperandTraits
<ShuffleVectorInst
>::operands(this),
1355 assert(isValidOperands(V1
, V2
, Mask
) &&
1356 "Invalid shuffle vector instruction operands!");
1364 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
1365 const Value
*Mask
) {
1366 if (!isa
<VectorType
>(V1
->getType()) || V1
->getType() != V2
->getType())
1369 const VectorType
*MaskTy
= dyn_cast
<VectorType
>(Mask
->getType());
1370 if (!isa
<Constant
>(Mask
) || MaskTy
== 0 ||
1371 MaskTy
->getElementType() != Type::Int32Ty
)
1376 /// getMaskValue - Return the index from the shuffle mask for the specified
1377 /// output result. This is either -1 if the element is undef or a number less
1378 /// than 2*numelements.
1379 int ShuffleVectorInst::getMaskValue(unsigned i
) const {
1380 const Constant
*Mask
= cast
<Constant
>(getOperand(2));
1381 if (isa
<UndefValue
>(Mask
)) return -1;
1382 if (isa
<ConstantAggregateZero
>(Mask
)) return 0;
1383 const ConstantVector
*MaskCV
= cast
<ConstantVector
>(Mask
);
1384 assert(i
< MaskCV
->getNumOperands() && "Index out of range");
1386 if (isa
<UndefValue
>(MaskCV
->getOperand(i
)))
1388 return cast
<ConstantInt
>(MaskCV
->getOperand(i
))->getZExtValue();
1391 //===----------------------------------------------------------------------===//
1392 // InsertValueInst Class
1393 //===----------------------------------------------------------------------===//
1395 void InsertValueInst::init(Value
*Agg
, Value
*Val
, const unsigned *Idx
,
1396 unsigned NumIdx
, const std::string
&Name
) {
1397 assert(NumOperands
== 2 && "NumOperands not initialized?");
1401 Indices
.insert(Indices
.end(), Idx
, Idx
+ NumIdx
);
1405 void InsertValueInst::init(Value
*Agg
, Value
*Val
, unsigned Idx
,
1406 const std::string
&Name
) {
1407 assert(NumOperands
== 2 && "NumOperands not initialized?");
1411 Indices
.push_back(Idx
);
1415 InsertValueInst::InsertValueInst(const InsertValueInst
&IVI
)
1416 : Instruction(IVI
.getType(), InsertValue
,
1417 OperandTraits
<InsertValueInst
>::op_begin(this), 2),
1418 Indices(IVI
.Indices
) {
1419 Op
<0>() = IVI
.getOperand(0);
1420 Op
<1>() = IVI
.getOperand(1);
1423 InsertValueInst::InsertValueInst(Value
*Agg
,
1426 const std::string
&Name
,
1427 Instruction
*InsertBefore
)
1428 : Instruction(Agg
->getType(), InsertValue
,
1429 OperandTraits
<InsertValueInst
>::op_begin(this),
1431 init(Agg
, Val
, Idx
, Name
);
1434 InsertValueInst::InsertValueInst(Value
*Agg
,
1437 const std::string
&Name
,
1438 BasicBlock
*InsertAtEnd
)
1439 : Instruction(Agg
->getType(), InsertValue
,
1440 OperandTraits
<InsertValueInst
>::op_begin(this),
1442 init(Agg
, Val
, Idx
, Name
);
1445 //===----------------------------------------------------------------------===//
1446 // ExtractValueInst Class
1447 //===----------------------------------------------------------------------===//
1449 void ExtractValueInst::init(const unsigned *Idx
, unsigned NumIdx
,
1450 const std::string
&Name
) {
1451 assert(NumOperands
== 1 && "NumOperands not initialized?");
1453 Indices
.insert(Indices
.end(), Idx
, Idx
+ NumIdx
);
1457 void ExtractValueInst::init(unsigned Idx
, const std::string
&Name
) {
1458 assert(NumOperands
== 1 && "NumOperands not initialized?");
1460 Indices
.push_back(Idx
);
1464 ExtractValueInst::ExtractValueInst(const ExtractValueInst
&EVI
)
1465 : UnaryInstruction(EVI
.getType(), ExtractValue
, EVI
.getOperand(0)),
1466 Indices(EVI
.Indices
) {
1469 // getIndexedType - Returns the type of the element that would be extracted
1470 // with an extractvalue instruction with the specified parameters.
1472 // A null type is returned if the indices are invalid for the specified
1475 const Type
* ExtractValueInst::getIndexedType(const Type
*Agg
,
1476 const unsigned *Idxs
,
1478 unsigned CurIdx
= 0;
1479 for (; CurIdx
!= NumIdx
; ++CurIdx
) {
1480 const CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1481 if (!CT
|| isa
<PointerType
>(CT
) || isa
<VectorType
>(CT
)) return 0;
1482 unsigned Index
= Idxs
[CurIdx
];
1483 if (!CT
->indexValid(Index
)) return 0;
1484 Agg
= CT
->getTypeAtIndex(Index
);
1486 // If the new type forwards to another type, then it is in the middle
1487 // of being refined to another type (and hence, may have dropped all
1488 // references to what it was using before). So, use the new forwarded
1490 if (const Type
*Ty
= Agg
->getForwardedType())
1493 return CurIdx
== NumIdx
? Agg
: 0;
1496 const Type
* ExtractValueInst::getIndexedType(const Type
*Agg
,
1498 return getIndexedType(Agg
, &Idx
, 1);
1501 //===----------------------------------------------------------------------===//
1502 // BinaryOperator Class
1503 //===----------------------------------------------------------------------===//
1505 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1506 const Type
*Ty
, const std::string
&Name
,
1507 Instruction
*InsertBefore
)
1508 : Instruction(Ty
, iType
,
1509 OperandTraits
<BinaryOperator
>::op_begin(this),
1510 OperandTraits
<BinaryOperator
>::operands(this),
1518 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1519 const Type
*Ty
, const std::string
&Name
,
1520 BasicBlock
*InsertAtEnd
)
1521 : Instruction(Ty
, iType
,
1522 OperandTraits
<BinaryOperator
>::op_begin(this),
1523 OperandTraits
<BinaryOperator
>::operands(this),
1532 void BinaryOperator::init(BinaryOps iType
) {
1533 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
1534 LHS
= LHS
; RHS
= RHS
; // Silence warnings.
1535 assert(LHS
->getType() == RHS
->getType() &&
1536 "Binary operator operand types must match!");
1541 assert(getType() == LHS
->getType() &&
1542 "Arithmetic operation should return same type as operands!");
1543 assert((getType()->isInteger() || getType()->isFloatingPoint() ||
1544 isa
<VectorType
>(getType())) &&
1545 "Tried to create an arithmetic operation on a non-arithmetic type!");
1549 assert(getType() == LHS
->getType() &&
1550 "Arithmetic operation should return same type as operands!");
1551 assert((getType()->isInteger() || (isa
<VectorType
>(getType()) &&
1552 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1553 "Incorrect operand type (not integer) for S/UDIV");
1556 assert(getType() == LHS
->getType() &&
1557 "Arithmetic operation should return same type as operands!");
1558 assert((getType()->isFloatingPoint() || (isa
<VectorType
>(getType()) &&
1559 cast
<VectorType
>(getType())->getElementType()->isFloatingPoint()))
1560 && "Incorrect operand type (not floating point) for FDIV");
1564 assert(getType() == LHS
->getType() &&
1565 "Arithmetic operation should return same type as operands!");
1566 assert((getType()->isInteger() || (isa
<VectorType
>(getType()) &&
1567 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1568 "Incorrect operand type (not integer) for S/UREM");
1571 assert(getType() == LHS
->getType() &&
1572 "Arithmetic operation should return same type as operands!");
1573 assert((getType()->isFloatingPoint() || (isa
<VectorType
>(getType()) &&
1574 cast
<VectorType
>(getType())->getElementType()->isFloatingPoint()))
1575 && "Incorrect operand type (not floating point) for FREM");
1580 assert(getType() == LHS
->getType() &&
1581 "Shift operation should return same type as operands!");
1582 assert((getType()->isInteger() ||
1583 (isa
<VectorType
>(getType()) &&
1584 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1585 "Tried to create a shift operation on a non-integral type!");
1589 assert(getType() == LHS
->getType() &&
1590 "Logical operation should return same type as operands!");
1591 assert((getType()->isInteger() ||
1592 (isa
<VectorType
>(getType()) &&
1593 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1594 "Tried to create a logical operation on a non-integral type!");
1602 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1603 const std::string
&Name
,
1604 Instruction
*InsertBefore
) {
1605 assert(S1
->getType() == S2
->getType() &&
1606 "Cannot create binary operator with two operands of differing type!");
1607 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
1610 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1611 const std::string
&Name
,
1612 BasicBlock
*InsertAtEnd
) {
1613 BinaryOperator
*Res
= Create(Op
, S1
, S2
, Name
);
1614 InsertAtEnd
->getInstList().push_back(Res
);
1618 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const std::string
&Name
,
1619 Instruction
*InsertBefore
) {
1620 Value
*zero
= ConstantExpr::getZeroValueForNegationExpr(Op
->getType());
1621 return new BinaryOperator(Instruction::Sub
,
1623 Op
->getType(), Name
, InsertBefore
);
1626 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const std::string
&Name
,
1627 BasicBlock
*InsertAtEnd
) {
1628 Value
*zero
= ConstantExpr::getZeroValueForNegationExpr(Op
->getType());
1629 return new BinaryOperator(Instruction::Sub
,
1631 Op
->getType(), Name
, InsertAtEnd
);
1634 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const std::string
&Name
,
1635 Instruction
*InsertBefore
) {
1637 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Op
->getType())) {
1638 C
= ConstantInt::getAllOnesValue(PTy
->getElementType());
1639 C
= ConstantVector::get(std::vector
<Constant
*>(PTy
->getNumElements(), C
));
1641 C
= ConstantInt::getAllOnesValue(Op
->getType());
1644 return new BinaryOperator(Instruction::Xor
, Op
, C
,
1645 Op
->getType(), Name
, InsertBefore
);
1648 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const std::string
&Name
,
1649 BasicBlock
*InsertAtEnd
) {
1651 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Op
->getType())) {
1652 // Create a vector of all ones values.
1653 Constant
*Elt
= ConstantInt::getAllOnesValue(PTy
->getElementType());
1655 ConstantVector::get(std::vector
<Constant
*>(PTy
->getNumElements(), Elt
));
1657 AllOnes
= ConstantInt::getAllOnesValue(Op
->getType());
1660 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
1661 Op
->getType(), Name
, InsertAtEnd
);
1665 // isConstantAllOnes - Helper function for several functions below
1666 static inline bool isConstantAllOnes(const Value
*V
) {
1667 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
1668 return CI
->isAllOnesValue();
1669 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
1670 return CV
->isAllOnesValue();
1674 bool BinaryOperator::isNeg(const Value
*V
) {
1675 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1676 if (Bop
->getOpcode() == Instruction::Sub
)
1677 return Bop
->getOperand(0) ==
1678 ConstantExpr::getZeroValueForNegationExpr(Bop
->getType());
1682 bool BinaryOperator::isNot(const Value
*V
) {
1683 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1684 return (Bop
->getOpcode() == Instruction::Xor
&&
1685 (isConstantAllOnes(Bop
->getOperand(1)) ||
1686 isConstantAllOnes(Bop
->getOperand(0))));
1690 Value
*BinaryOperator::getNegArgument(Value
*BinOp
) {
1691 assert(isNeg(BinOp
) && "getNegArgument from non-'neg' instruction!");
1692 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
1695 const Value
*BinaryOperator::getNegArgument(const Value
*BinOp
) {
1696 return getNegArgument(const_cast<Value
*>(BinOp
));
1699 Value
*BinaryOperator::getNotArgument(Value
*BinOp
) {
1700 assert(isNot(BinOp
) && "getNotArgument on non-'not' instruction!");
1701 BinaryOperator
*BO
= cast
<BinaryOperator
>(BinOp
);
1702 Value
*Op0
= BO
->getOperand(0);
1703 Value
*Op1
= BO
->getOperand(1);
1704 if (isConstantAllOnes(Op0
)) return Op1
;
1706 assert(isConstantAllOnes(Op1
));
1710 const Value
*BinaryOperator::getNotArgument(const Value
*BinOp
) {
1711 return getNotArgument(const_cast<Value
*>(BinOp
));
1715 // swapOperands - Exchange the two operands to this instruction. This
1716 // instruction is safe to use on any binary instruction and does not
1717 // modify the semantics of the instruction. If the instruction is
1718 // order dependent (SetLT f.e.) the opcode is changed.
1720 bool BinaryOperator::swapOperands() {
1721 if (!isCommutative())
1722 return true; // Can't commute operands
1723 Op
<0>().swap(Op
<1>());
1727 //===----------------------------------------------------------------------===//
1729 //===----------------------------------------------------------------------===//
1731 // Just determine if this cast only deals with integral->integral conversion.
1732 bool CastInst::isIntegerCast() const {
1733 switch (getOpcode()) {
1734 default: return false;
1735 case Instruction::ZExt
:
1736 case Instruction::SExt
:
1737 case Instruction::Trunc
:
1739 case Instruction::BitCast
:
1740 return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1744 bool CastInst::isLosslessCast() const {
1745 // Only BitCast can be lossless, exit fast if we're not BitCast
1746 if (getOpcode() != Instruction::BitCast
)
1749 // Identity cast is always lossless
1750 const Type
* SrcTy
= getOperand(0)->getType();
1751 const Type
* DstTy
= getType();
1755 // Pointer to pointer is always lossless.
1756 if (isa
<PointerType
>(SrcTy
))
1757 return isa
<PointerType
>(DstTy
);
1758 return false; // Other types have no identity values
1761 /// This function determines if the CastInst does not require any bits to be
1762 /// changed in order to effect the cast. Essentially, it identifies cases where
1763 /// no code gen is necessary for the cast, hence the name no-op cast. For
1764 /// example, the following are all no-op casts:
1765 /// # bitcast i32* %x to i8*
1766 /// # bitcast <2 x i32> %x to <4 x i16>
1767 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
1768 /// @brief Determine if a cast is a no-op.
1769 bool CastInst::isNoopCast(const Type
*IntPtrTy
) const {
1770 switch (getOpcode()) {
1772 assert(!"Invalid CastOp");
1773 case Instruction::Trunc
:
1774 case Instruction::ZExt
:
1775 case Instruction::SExt
:
1776 case Instruction::FPTrunc
:
1777 case Instruction::FPExt
:
1778 case Instruction::UIToFP
:
1779 case Instruction::SIToFP
:
1780 case Instruction::FPToUI
:
1781 case Instruction::FPToSI
:
1782 return false; // These always modify bits
1783 case Instruction::BitCast
:
1784 return true; // BitCast never modifies bits.
1785 case Instruction::PtrToInt
:
1786 return IntPtrTy
->getPrimitiveSizeInBits() ==
1787 getType()->getPrimitiveSizeInBits();
1788 case Instruction::IntToPtr
:
1789 return IntPtrTy
->getPrimitiveSizeInBits() ==
1790 getOperand(0)->getType()->getPrimitiveSizeInBits();
1794 /// This function determines if a pair of casts can be eliminated and what
1795 /// opcode should be used in the elimination. This assumes that there are two
1796 /// instructions like this:
1797 /// * %F = firstOpcode SrcTy %x to MidTy
1798 /// * %S = secondOpcode MidTy %F to DstTy
1799 /// The function returns a resultOpcode so these two casts can be replaced with:
1800 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1801 /// If no such cast is permited, the function returns 0.
1802 unsigned CastInst::isEliminableCastPair(
1803 Instruction::CastOps firstOp
, Instruction::CastOps secondOp
,
1804 const Type
*SrcTy
, const Type
*MidTy
, const Type
*DstTy
, const Type
*IntPtrTy
)
1806 // Define the 144 possibilities for these two cast instructions. The values
1807 // in this matrix determine what to do in a given situation and select the
1808 // case in the switch below. The rows correspond to firstOp, the columns
1809 // correspond to secondOp. In looking at the table below, keep in mind
1810 // the following cast properties:
1812 // Size Compare Source Destination
1813 // Operator Src ? Size Type Sign Type Sign
1814 // -------- ------------ ------------------- ---------------------
1815 // TRUNC > Integer Any Integral Any
1816 // ZEXT < Integral Unsigned Integer Any
1817 // SEXT < Integral Signed Integer Any
1818 // FPTOUI n/a FloatPt n/a Integral Unsigned
1819 // FPTOSI n/a FloatPt n/a Integral Signed
1820 // UITOFP n/a Integral Unsigned FloatPt n/a
1821 // SITOFP n/a Integral Signed FloatPt n/a
1822 // FPTRUNC > FloatPt n/a FloatPt n/a
1823 // FPEXT < FloatPt n/a FloatPt n/a
1824 // PTRTOINT n/a Pointer n/a Integral Unsigned
1825 // INTTOPTR n/a Integral Unsigned Pointer n/a
1826 // BITCONVERT = FirstClass n/a FirstClass n/a
1828 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1829 // For example, we could merge "fptoui double to uint" + "zext uint to ulong",
1830 // into "fptoui double to ulong", but this loses information about the range
1831 // of the produced value (we no longer know the top-part is all zeros).
1832 // Further this conversion is often much more expensive for typical hardware,
1833 // and causes issues when building libgcc. We disallow fptosi+sext for the
1835 const unsigned numCastOps
=
1836 Instruction::CastOpsEnd
- Instruction::CastOpsBegin
;
1837 static const uint8_t CastResults
[numCastOps
][numCastOps
] = {
1838 // T F F U S F F P I B -+
1839 // R Z S P P I I T P 2 N T |
1840 // U E E 2 2 2 2 R E I T C +- secondOp
1841 // N X X U S F F N X N 2 V |
1842 // C T T I I P P C T T P T -+
1843 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1844 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1845 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1846 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1847 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1848 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1849 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1850 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1851 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1852 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1853 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1854 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1857 int ElimCase
= CastResults
[firstOp
-Instruction::CastOpsBegin
]
1858 [secondOp
-Instruction::CastOpsBegin
];
1861 // categorically disallowed
1864 // allowed, use first cast's opcode
1867 // allowed, use second cast's opcode
1870 // no-op cast in second op implies firstOp as long as the DestTy
1872 if (DstTy
->isInteger())
1876 // no-op cast in second op implies firstOp as long as the DestTy
1877 // is floating point
1878 if (DstTy
->isFloatingPoint())
1882 // no-op cast in first op implies secondOp as long as the SrcTy
1884 if (SrcTy
->isInteger())
1888 // no-op cast in first op implies secondOp as long as the SrcTy
1889 // is a floating point
1890 if (SrcTy
->isFloatingPoint())
1894 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1895 unsigned PtrSize
= IntPtrTy
->getPrimitiveSizeInBits();
1896 unsigned MidSize
= MidTy
->getPrimitiveSizeInBits();
1897 if (MidSize
>= PtrSize
)
1898 return Instruction::BitCast
;
1902 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
1903 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
1904 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
1905 unsigned SrcSize
= SrcTy
->getPrimitiveSizeInBits();
1906 unsigned DstSize
= DstTy
->getPrimitiveSizeInBits();
1907 if (SrcSize
== DstSize
)
1908 return Instruction::BitCast
;
1909 else if (SrcSize
< DstSize
)
1913 case 9: // zext, sext -> zext, because sext can't sign extend after zext
1914 return Instruction::ZExt
;
1916 // fpext followed by ftrunc is allowed if the bit size returned to is
1917 // the same as the original, in which case its just a bitcast
1919 return Instruction::BitCast
;
1920 return 0; // If the types are not the same we can't eliminate it.
1922 // bitcast followed by ptrtoint is allowed as long as the bitcast
1923 // is a pointer to pointer cast.
1924 if (isa
<PointerType
>(SrcTy
) && isa
<PointerType
>(MidTy
))
1928 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
1929 if (isa
<PointerType
>(MidTy
) && isa
<PointerType
>(DstTy
))
1933 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1934 unsigned PtrSize
= IntPtrTy
->getPrimitiveSizeInBits();
1935 unsigned SrcSize
= SrcTy
->getPrimitiveSizeInBits();
1936 unsigned DstSize
= DstTy
->getPrimitiveSizeInBits();
1937 if (SrcSize
<= PtrSize
&& SrcSize
== DstSize
)
1938 return Instruction::BitCast
;
1942 // cast combination can't happen (error in input). This is for all cases
1943 // where the MidTy is not the same for the two cast instructions.
1944 assert(!"Invalid Cast Combination");
1947 assert(!"Error in CastResults table!!!");
1953 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, const Type
*Ty
,
1954 const std::string
&Name
, Instruction
*InsertBefore
) {
1955 // Construct and return the appropriate CastInst subclass
1957 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertBefore
);
1958 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertBefore
);
1959 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertBefore
);
1960 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertBefore
);
1961 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertBefore
);
1962 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertBefore
);
1963 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertBefore
);
1964 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertBefore
);
1965 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertBefore
);
1966 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertBefore
);
1967 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertBefore
);
1968 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertBefore
);
1970 assert(!"Invalid opcode provided");
1975 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, const Type
*Ty
,
1976 const std::string
&Name
, BasicBlock
*InsertAtEnd
) {
1977 // Construct and return the appropriate CastInst subclass
1979 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertAtEnd
);
1980 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertAtEnd
);
1981 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertAtEnd
);
1982 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertAtEnd
);
1983 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertAtEnd
);
1984 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
1985 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
1986 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertAtEnd
);
1987 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertAtEnd
);
1988 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertAtEnd
);
1989 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertAtEnd
);
1990 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertAtEnd
);
1992 assert(!"Invalid opcode provided");
1997 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, const Type
*Ty
,
1998 const std::string
&Name
,
1999 Instruction
*InsertBefore
) {
2000 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
2001 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2002 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertBefore
);
2005 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, const Type
*Ty
,
2006 const std::string
&Name
,
2007 BasicBlock
*InsertAtEnd
) {
2008 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
2009 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2010 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertAtEnd
);
2013 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, const Type
*Ty
,
2014 const std::string
&Name
,
2015 Instruction
*InsertBefore
) {
2016 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
2017 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2018 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertBefore
);
2021 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, const Type
*Ty
,
2022 const std::string
&Name
,
2023 BasicBlock
*InsertAtEnd
) {
2024 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
2025 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2026 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertAtEnd
);
2029 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, const Type
*Ty
,
2030 const std::string
&Name
,
2031 Instruction
*InsertBefore
) {
2032 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
2033 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2034 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertBefore
);
2037 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, const Type
*Ty
,
2038 const std::string
&Name
,
2039 BasicBlock
*InsertAtEnd
) {
2040 if (S
->getType()->getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits())
2041 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2042 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertAtEnd
);
2045 CastInst
*CastInst::CreatePointerCast(Value
*S
, const Type
*Ty
,
2046 const std::string
&Name
,
2047 BasicBlock
*InsertAtEnd
) {
2048 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
2049 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2052 if (Ty
->isInteger())
2053 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertAtEnd
);
2054 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2057 /// @brief Create a BitCast or a PtrToInt cast instruction
2058 CastInst
*CastInst::CreatePointerCast(Value
*S
, const Type
*Ty
,
2059 const std::string
&Name
,
2060 Instruction
*InsertBefore
) {
2061 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
2062 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2065 if (Ty
->isInteger())
2066 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2067 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2070 CastInst
*CastInst::CreateIntegerCast(Value
*C
, const Type
*Ty
,
2071 bool isSigned
, const std::string
&Name
,
2072 Instruction
*InsertBefore
) {
2073 assert(C
->getType()->isInteger() && Ty
->isInteger() && "Invalid cast");
2074 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
2075 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
2076 Instruction::CastOps opcode
=
2077 (SrcBits
== DstBits
? Instruction::BitCast
:
2078 (SrcBits
> DstBits
? Instruction::Trunc
:
2079 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2080 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2083 CastInst
*CastInst::CreateIntegerCast(Value
*C
, const Type
*Ty
,
2084 bool isSigned
, const std::string
&Name
,
2085 BasicBlock
*InsertAtEnd
) {
2086 assert(C
->getType()->isInteger() && Ty
->isInteger() && "Invalid cast");
2087 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
2088 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
2089 Instruction::CastOps opcode
=
2090 (SrcBits
== DstBits
? Instruction::BitCast
:
2091 (SrcBits
> DstBits
? Instruction::Trunc
:
2092 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2093 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2096 CastInst
*CastInst::CreateFPCast(Value
*C
, const Type
*Ty
,
2097 const std::string
&Name
,
2098 Instruction
*InsertBefore
) {
2099 assert(C
->getType()->isFloatingPoint() && Ty
->isFloatingPoint() &&
2101 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
2102 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
2103 Instruction::CastOps opcode
=
2104 (SrcBits
== DstBits
? Instruction::BitCast
:
2105 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2106 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2109 CastInst
*CastInst::CreateFPCast(Value
*C
, const Type
*Ty
,
2110 const std::string
&Name
,
2111 BasicBlock
*InsertAtEnd
) {
2112 assert(C
->getType()->isFloatingPoint() && Ty
->isFloatingPoint() &&
2114 unsigned SrcBits
= C
->getType()->getPrimitiveSizeInBits();
2115 unsigned DstBits
= Ty
->getPrimitiveSizeInBits();
2116 Instruction::CastOps opcode
=
2117 (SrcBits
== DstBits
? Instruction::BitCast
:
2118 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2119 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2122 // Check whether it is valid to call getCastOpcode for these types.
2123 // This routine must be kept in sync with getCastOpcode.
2124 bool CastInst::isCastable(const Type
*SrcTy
, const Type
*DestTy
) {
2125 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
2128 if (SrcTy
== DestTy
)
2131 // Get the bit sizes, we'll need these
2132 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr/vector
2133 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr/vector
2135 // Run through the possibilities ...
2136 if (DestTy
->isInteger()) { // Casting to integral
2137 if (SrcTy
->isInteger()) { // Casting from integral
2139 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2141 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2142 // Casting from vector
2143 return DestBits
== PTy
->getBitWidth();
2144 } else { // Casting from something else
2145 return isa
<PointerType
>(SrcTy
);
2147 } else if (DestTy
->isFloatingPoint()) { // Casting to floating pt
2148 if (SrcTy
->isInteger()) { // Casting from integral
2150 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2152 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2153 // Casting from vector
2154 return DestBits
== PTy
->getBitWidth();
2155 } else { // Casting from something else
2158 } else if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
2159 // Casting to vector
2160 if (const VectorType
*SrcPTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2161 // Casting from vector
2162 return DestPTy
->getBitWidth() == SrcPTy
->getBitWidth();
2163 } else { // Casting from something else
2164 return DestPTy
->getBitWidth() == SrcBits
;
2166 } else if (isa
<PointerType
>(DestTy
)) { // Casting to pointer
2167 if (isa
<PointerType
>(SrcTy
)) { // Casting from pointer
2169 } else if (SrcTy
->isInteger()) { // Casting from integral
2171 } else { // Casting from something else
2174 } else { // Casting to something else
2179 // Provide a way to get a "cast" where the cast opcode is inferred from the
2180 // types and size of the operand. This, basically, is a parallel of the
2181 // logic in the castIsValid function below. This axiom should hold:
2182 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2183 // should not assert in castIsValid. In other words, this produces a "correct"
2184 // casting opcode for the arguments passed to it.
2185 // This routine must be kept in sync with isCastable.
2186 Instruction::CastOps
2187 CastInst::getCastOpcode(
2188 const Value
*Src
, bool SrcIsSigned
, const Type
*DestTy
, bool DestIsSigned
) {
2189 // Get the bit sizes, we'll need these
2190 const Type
*SrcTy
= Src
->getType();
2191 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr/vector
2192 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr/vector
2194 assert(SrcTy
->isFirstClassType() && DestTy
->isFirstClassType() &&
2195 "Only first class types are castable!");
2197 // Run through the possibilities ...
2198 if (DestTy
->isInteger()) { // Casting to integral
2199 if (SrcTy
->isInteger()) { // Casting from integral
2200 if (DestBits
< SrcBits
)
2201 return Trunc
; // int -> smaller int
2202 else if (DestBits
> SrcBits
) { // its an extension
2204 return SExt
; // signed -> SEXT
2206 return ZExt
; // unsigned -> ZEXT
2208 return BitCast
; // Same size, No-op cast
2210 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2212 return FPToSI
; // FP -> sint
2214 return FPToUI
; // FP -> uint
2215 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2216 assert(DestBits
== PTy
->getBitWidth() &&
2217 "Casting vector to integer of different width");
2219 return BitCast
; // Same size, no-op cast
2221 assert(isa
<PointerType
>(SrcTy
) &&
2222 "Casting from a value that is not first-class type");
2223 return PtrToInt
; // ptr -> int
2225 } else if (DestTy
->isFloatingPoint()) { // Casting to floating pt
2226 if (SrcTy
->isInteger()) { // Casting from integral
2228 return SIToFP
; // sint -> FP
2230 return UIToFP
; // uint -> FP
2231 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2232 if (DestBits
< SrcBits
) {
2233 return FPTrunc
; // FP -> smaller FP
2234 } else if (DestBits
> SrcBits
) {
2235 return FPExt
; // FP -> larger FP
2237 return BitCast
; // same size, no-op cast
2239 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2240 assert(DestBits
== PTy
->getBitWidth() &&
2241 "Casting vector to floating point of different width");
2243 return BitCast
; // same size, no-op cast
2245 assert(0 && "Casting pointer or non-first class to float");
2247 } else if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
2248 if (const VectorType
*SrcPTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2249 assert(DestPTy
->getBitWidth() == SrcPTy
->getBitWidth() &&
2250 "Casting vector to vector of different widths");
2252 return BitCast
; // vector -> vector
2253 } else if (DestPTy
->getBitWidth() == SrcBits
) {
2254 return BitCast
; // float/int -> vector
2256 assert(!"Illegal cast to vector (wrong type or size)");
2258 } else if (isa
<PointerType
>(DestTy
)) {
2259 if (isa
<PointerType
>(SrcTy
)) {
2260 return BitCast
; // ptr -> ptr
2261 } else if (SrcTy
->isInteger()) {
2262 return IntToPtr
; // int -> ptr
2264 assert(!"Casting pointer to other than pointer or int");
2267 assert(!"Casting to type that is not first-class");
2270 // If we fall through to here we probably hit an assertion cast above
2271 // and assertions are not turned on. Anything we return is an error, so
2272 // BitCast is as good a choice as any.
2276 //===----------------------------------------------------------------------===//
2277 // CastInst SubClass Constructors
2278 //===----------------------------------------------------------------------===//
2280 /// Check that the construction parameters for a CastInst are correct. This
2281 /// could be broken out into the separate constructors but it is useful to have
2282 /// it in one place and to eliminate the redundant code for getting the sizes
2283 /// of the types involved.
2285 CastInst::castIsValid(Instruction::CastOps op
, Value
*S
, const Type
*DstTy
) {
2287 // Check for type sanity on the arguments
2288 const Type
*SrcTy
= S
->getType();
2289 if (!SrcTy
->isFirstClassType() || !DstTy
->isFirstClassType())
2292 // Get the size of the types in bits, we'll need this later
2293 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
2294 unsigned DstBitSize
= DstTy
->getPrimitiveSizeInBits();
2296 // Switch on the opcode provided
2298 default: return false; // This is an input error
2299 case Instruction::Trunc
:
2300 return SrcTy
->isIntOrIntVector() &&
2301 DstTy
->isIntOrIntVector()&& SrcBitSize
> DstBitSize
;
2302 case Instruction::ZExt
:
2303 return SrcTy
->isIntOrIntVector() &&
2304 DstTy
->isIntOrIntVector()&& SrcBitSize
< DstBitSize
;
2305 case Instruction::SExt
:
2306 return SrcTy
->isIntOrIntVector() &&
2307 DstTy
->isIntOrIntVector()&& SrcBitSize
< DstBitSize
;
2308 case Instruction::FPTrunc
:
2309 return SrcTy
->isFPOrFPVector() &&
2310 DstTy
->isFPOrFPVector() &&
2311 SrcBitSize
> DstBitSize
;
2312 case Instruction::FPExt
:
2313 return SrcTy
->isFPOrFPVector() &&
2314 DstTy
->isFPOrFPVector() &&
2315 SrcBitSize
< DstBitSize
;
2316 case Instruction::UIToFP
:
2317 case Instruction::SIToFP
:
2318 if (const VectorType
*SVTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2319 if (const VectorType
*DVTy
= dyn_cast
<VectorType
>(DstTy
)) {
2320 return SVTy
->getElementType()->isIntOrIntVector() &&
2321 DVTy
->getElementType()->isFPOrFPVector() &&
2322 SVTy
->getNumElements() == DVTy
->getNumElements();
2325 return SrcTy
->isIntOrIntVector() && DstTy
->isFPOrFPVector();
2326 case Instruction::FPToUI
:
2327 case Instruction::FPToSI
:
2328 if (const VectorType
*SVTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2329 if (const VectorType
*DVTy
= dyn_cast
<VectorType
>(DstTy
)) {
2330 return SVTy
->getElementType()->isFPOrFPVector() &&
2331 DVTy
->getElementType()->isIntOrIntVector() &&
2332 SVTy
->getNumElements() == DVTy
->getNumElements();
2335 return SrcTy
->isFPOrFPVector() && DstTy
->isIntOrIntVector();
2336 case Instruction::PtrToInt
:
2337 return isa
<PointerType
>(SrcTy
) && DstTy
->isInteger();
2338 case Instruction::IntToPtr
:
2339 return SrcTy
->isInteger() && isa
<PointerType
>(DstTy
);
2340 case Instruction::BitCast
:
2341 // BitCast implies a no-op cast of type only. No bits change.
2342 // However, you can't cast pointers to anything but pointers.
2343 if (isa
<PointerType
>(SrcTy
) != isa
<PointerType
>(DstTy
))
2346 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2347 // these cases, the cast is okay if the source and destination bit widths
2349 return SrcBitSize
== DstBitSize
;
2353 TruncInst::TruncInst(
2354 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2355 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertBefore
) {
2356 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
2359 TruncInst::TruncInst(
2360 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2361 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertAtEnd
) {
2362 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
2366 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2367 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertBefore
) {
2368 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
2372 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2373 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertAtEnd
) {
2374 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
2377 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2378 ) : CastInst(Ty
, SExt
, S
, Name
, InsertBefore
) {
2379 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
2383 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2384 ) : CastInst(Ty
, SExt
, S
, Name
, InsertAtEnd
) {
2385 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
2388 FPTruncInst::FPTruncInst(
2389 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2390 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertBefore
) {
2391 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
2394 FPTruncInst::FPTruncInst(
2395 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2396 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertAtEnd
) {
2397 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
2400 FPExtInst::FPExtInst(
2401 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2402 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertBefore
) {
2403 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
2406 FPExtInst::FPExtInst(
2407 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2408 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertAtEnd
) {
2409 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
2412 UIToFPInst::UIToFPInst(
2413 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2414 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertBefore
) {
2415 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
2418 UIToFPInst::UIToFPInst(
2419 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2420 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertAtEnd
) {
2421 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
2424 SIToFPInst::SIToFPInst(
2425 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2426 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertBefore
) {
2427 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
2430 SIToFPInst::SIToFPInst(
2431 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2432 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertAtEnd
) {
2433 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
2436 FPToUIInst::FPToUIInst(
2437 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2438 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertBefore
) {
2439 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
2442 FPToUIInst::FPToUIInst(
2443 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2444 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertAtEnd
) {
2445 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
2448 FPToSIInst::FPToSIInst(
2449 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2450 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertBefore
) {
2451 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
2454 FPToSIInst::FPToSIInst(
2455 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2456 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertAtEnd
) {
2457 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
2460 PtrToIntInst::PtrToIntInst(
2461 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2462 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertBefore
) {
2463 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
2466 PtrToIntInst::PtrToIntInst(
2467 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2468 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertAtEnd
) {
2469 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
2472 IntToPtrInst::IntToPtrInst(
2473 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2474 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertBefore
) {
2475 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
2478 IntToPtrInst::IntToPtrInst(
2479 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2480 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertAtEnd
) {
2481 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
2484 BitCastInst::BitCastInst(
2485 Value
*S
, const Type
*Ty
, const std::string
&Name
, Instruction
*InsertBefore
2486 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertBefore
) {
2487 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
2490 BitCastInst::BitCastInst(
2491 Value
*S
, const Type
*Ty
, const std::string
&Name
, BasicBlock
*InsertAtEnd
2492 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertAtEnd
) {
2493 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
2496 //===----------------------------------------------------------------------===//
2498 //===----------------------------------------------------------------------===//
2500 CmpInst::CmpInst(const Type
*ty
, OtherOps op
, unsigned short predicate
,
2501 Value
*LHS
, Value
*RHS
, const std::string
&Name
,
2502 Instruction
*InsertBefore
)
2503 : Instruction(ty
, op
,
2504 OperandTraits
<CmpInst
>::op_begin(this),
2505 OperandTraits
<CmpInst
>::operands(this),
2509 SubclassData
= predicate
;
2513 CmpInst::CmpInst(const Type
*ty
, OtherOps op
, unsigned short predicate
,
2514 Value
*LHS
, Value
*RHS
, const std::string
&Name
,
2515 BasicBlock
*InsertAtEnd
)
2516 : Instruction(ty
, op
,
2517 OperandTraits
<CmpInst
>::op_begin(this),
2518 OperandTraits
<CmpInst
>::operands(this),
2522 SubclassData
= predicate
;
2527 CmpInst::Create(OtherOps Op
, unsigned short predicate
, Value
*S1
, Value
*S2
,
2528 const std::string
&Name
, Instruction
*InsertBefore
) {
2529 if (Op
== Instruction::ICmp
) {
2530 return new ICmpInst(CmpInst::Predicate(predicate
), S1
, S2
, Name
,
2533 if (Op
== Instruction::FCmp
) {
2534 return new FCmpInst(CmpInst::Predicate(predicate
), S1
, S2
, Name
,
2537 if (Op
== Instruction::VICmp
) {
2538 return new VICmpInst(CmpInst::Predicate(predicate
), S1
, S2
, Name
,
2541 return new VFCmpInst(CmpInst::Predicate(predicate
), S1
, S2
, Name
,
2546 CmpInst::Create(OtherOps Op
, unsigned short predicate
, Value
*S1
, Value
*S2
,
2547 const std::string
&Name
, BasicBlock
*InsertAtEnd
) {
2548 if (Op
== Instruction::ICmp
) {
2549 return new ICmpInst(CmpInst::Predicate(predicate
), S1
, S2
, Name
,
2552 if (Op
== Instruction::FCmp
) {
2553 return new FCmpInst(CmpInst::Predicate(predicate
), S1
, S2
, Name
,
2556 if (Op
== Instruction::VICmp
) {
2557 return new VICmpInst(CmpInst::Predicate(predicate
), S1
, S2
, Name
,
2560 return new VFCmpInst(CmpInst::Predicate(predicate
), S1
, S2
, Name
,
2564 void CmpInst::swapOperands() {
2565 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2568 cast
<FCmpInst
>(this)->swapOperands();
2571 bool CmpInst::isCommutative() {
2572 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2573 return IC
->isCommutative();
2574 return cast
<FCmpInst
>(this)->isCommutative();
2577 bool CmpInst::isEquality() {
2578 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2579 return IC
->isEquality();
2580 return cast
<FCmpInst
>(this)->isEquality();
2584 CmpInst::Predicate
CmpInst::getInversePredicate(Predicate pred
) {
2586 default: assert(!"Unknown cmp predicate!");
2587 case ICMP_EQ
: return ICMP_NE
;
2588 case ICMP_NE
: return ICMP_EQ
;
2589 case ICMP_UGT
: return ICMP_ULE
;
2590 case ICMP_ULT
: return ICMP_UGE
;
2591 case ICMP_UGE
: return ICMP_ULT
;
2592 case ICMP_ULE
: return ICMP_UGT
;
2593 case ICMP_SGT
: return ICMP_SLE
;
2594 case ICMP_SLT
: return ICMP_SGE
;
2595 case ICMP_SGE
: return ICMP_SLT
;
2596 case ICMP_SLE
: return ICMP_SGT
;
2598 case FCMP_OEQ
: return FCMP_UNE
;
2599 case FCMP_ONE
: return FCMP_UEQ
;
2600 case FCMP_OGT
: return FCMP_ULE
;
2601 case FCMP_OLT
: return FCMP_UGE
;
2602 case FCMP_OGE
: return FCMP_ULT
;
2603 case FCMP_OLE
: return FCMP_UGT
;
2604 case FCMP_UEQ
: return FCMP_ONE
;
2605 case FCMP_UNE
: return FCMP_OEQ
;
2606 case FCMP_UGT
: return FCMP_OLE
;
2607 case FCMP_ULT
: return FCMP_OGE
;
2608 case FCMP_UGE
: return FCMP_OLT
;
2609 case FCMP_ULE
: return FCMP_OGT
;
2610 case FCMP_ORD
: return FCMP_UNO
;
2611 case FCMP_UNO
: return FCMP_ORD
;
2612 case FCMP_TRUE
: return FCMP_FALSE
;
2613 case FCMP_FALSE
: return FCMP_TRUE
;
2617 ICmpInst::Predicate
ICmpInst::getSignedPredicate(Predicate pred
) {
2619 default: assert(! "Unknown icmp predicate!");
2620 case ICMP_EQ
: case ICMP_NE
:
2621 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
2623 case ICMP_UGT
: return ICMP_SGT
;
2624 case ICMP_ULT
: return ICMP_SLT
;
2625 case ICMP_UGE
: return ICMP_SGE
;
2626 case ICMP_ULE
: return ICMP_SLE
;
2630 ICmpInst::Predicate
ICmpInst::getUnsignedPredicate(Predicate pred
) {
2632 default: assert(! "Unknown icmp predicate!");
2633 case ICMP_EQ
: case ICMP_NE
:
2634 case ICMP_UGT
: case ICMP_ULT
: case ICMP_UGE
: case ICMP_ULE
:
2636 case ICMP_SGT
: return ICMP_UGT
;
2637 case ICMP_SLT
: return ICMP_ULT
;
2638 case ICMP_SGE
: return ICMP_UGE
;
2639 case ICMP_SLE
: return ICMP_ULE
;
2643 bool ICmpInst::isSignedPredicate(Predicate pred
) {
2645 default: assert(! "Unknown icmp predicate!");
2646 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
2648 case ICMP_EQ
: case ICMP_NE
: case ICMP_UGT
: case ICMP_ULT
:
2649 case ICMP_UGE
: case ICMP_ULE
:
2654 /// Initialize a set of values that all satisfy the condition with C.
2657 ICmpInst::makeConstantRange(Predicate pred
, const APInt
&C
) {
2660 uint32_t BitWidth
= C
.getBitWidth();
2662 default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
2663 case ICmpInst::ICMP_EQ
: Upper
++; break;
2664 case ICmpInst::ICMP_NE
: Lower
++; break;
2665 case ICmpInst::ICMP_ULT
: Lower
= APInt::getMinValue(BitWidth
); break;
2666 case ICmpInst::ICMP_SLT
: Lower
= APInt::getSignedMinValue(BitWidth
); break;
2667 case ICmpInst::ICMP_UGT
:
2668 Lower
++; Upper
= APInt::getMinValue(BitWidth
); // Min = Next(Max)
2670 case ICmpInst::ICMP_SGT
:
2671 Lower
++; Upper
= APInt::getSignedMinValue(BitWidth
); // Min = Next(Max)
2673 case ICmpInst::ICMP_ULE
:
2674 Lower
= APInt::getMinValue(BitWidth
); Upper
++;
2676 case ICmpInst::ICMP_SLE
:
2677 Lower
= APInt::getSignedMinValue(BitWidth
); Upper
++;
2679 case ICmpInst::ICMP_UGE
:
2680 Upper
= APInt::getMinValue(BitWidth
); // Min = Next(Max)
2682 case ICmpInst::ICMP_SGE
:
2683 Upper
= APInt::getSignedMinValue(BitWidth
); // Min = Next(Max)
2686 return ConstantRange(Lower
, Upper
);
2689 CmpInst::Predicate
CmpInst::getSwappedPredicate(Predicate pred
) {
2691 default: assert(!"Unknown cmp predicate!");
2692 case ICMP_EQ
: case ICMP_NE
:
2694 case ICMP_SGT
: return ICMP_SLT
;
2695 case ICMP_SLT
: return ICMP_SGT
;
2696 case ICMP_SGE
: return ICMP_SLE
;
2697 case ICMP_SLE
: return ICMP_SGE
;
2698 case ICMP_UGT
: return ICMP_ULT
;
2699 case ICMP_ULT
: return ICMP_UGT
;
2700 case ICMP_UGE
: return ICMP_ULE
;
2701 case ICMP_ULE
: return ICMP_UGE
;
2703 case FCMP_FALSE
: case FCMP_TRUE
:
2704 case FCMP_OEQ
: case FCMP_ONE
:
2705 case FCMP_UEQ
: case FCMP_UNE
:
2706 case FCMP_ORD
: case FCMP_UNO
:
2708 case FCMP_OGT
: return FCMP_OLT
;
2709 case FCMP_OLT
: return FCMP_OGT
;
2710 case FCMP_OGE
: return FCMP_OLE
;
2711 case FCMP_OLE
: return FCMP_OGE
;
2712 case FCMP_UGT
: return FCMP_ULT
;
2713 case FCMP_ULT
: return FCMP_UGT
;
2714 case FCMP_UGE
: return FCMP_ULE
;
2715 case FCMP_ULE
: return FCMP_UGE
;
2719 bool CmpInst::isUnsigned(unsigned short predicate
) {
2720 switch (predicate
) {
2721 default: return false;
2722 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
: case ICmpInst::ICMP_UGT
:
2723 case ICmpInst::ICMP_UGE
: return true;
2727 bool CmpInst::isSigned(unsigned short predicate
){
2728 switch (predicate
) {
2729 default: return false;
2730 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_SLE
: case ICmpInst::ICMP_SGT
:
2731 case ICmpInst::ICMP_SGE
: return true;
2735 bool CmpInst::isOrdered(unsigned short predicate
) {
2736 switch (predicate
) {
2737 default: return false;
2738 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_OGT
:
2739 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLE
:
2740 case FCmpInst::FCMP_ORD
: return true;
2744 bool CmpInst::isUnordered(unsigned short predicate
) {
2745 switch (predicate
) {
2746 default: return false;
2747 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UNE
: case FCmpInst::FCMP_UGT
:
2748 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_UGE
: case FCmpInst::FCMP_ULE
:
2749 case FCmpInst::FCMP_UNO
: return true;
2753 //===----------------------------------------------------------------------===//
2754 // SwitchInst Implementation
2755 //===----------------------------------------------------------------------===//
2757 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
) {
2758 assert(Value
&& Default
);
2759 ReservedSpace
= 2+NumCases
*2;
2761 OperandList
= allocHungoffUses(ReservedSpace
);
2763 OperandList
[0] = Value
;
2764 OperandList
[1] = Default
;
2767 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2768 /// switch on and a default destination. The number of additional cases can
2769 /// be specified here to make memory allocation more efficient. This
2770 /// constructor can also autoinsert before another instruction.
2771 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
2772 Instruction
*InsertBefore
)
2773 : TerminatorInst(Type::VoidTy
, Instruction::Switch
, 0, 0, InsertBefore
) {
2774 init(Value
, Default
, NumCases
);
2777 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2778 /// switch on and a default destination. The number of additional cases can
2779 /// be specified here to make memory allocation more efficient. This
2780 /// constructor also autoinserts at the end of the specified BasicBlock.
2781 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
2782 BasicBlock
*InsertAtEnd
)
2783 : TerminatorInst(Type::VoidTy
, Instruction::Switch
, 0, 0, InsertAtEnd
) {
2784 init(Value
, Default
, NumCases
);
2787 SwitchInst::SwitchInst(const SwitchInst
&SI
)
2788 : TerminatorInst(Type::VoidTy
, Instruction::Switch
,
2789 allocHungoffUses(SI
.getNumOperands()), SI
.getNumOperands()) {
2790 Use
*OL
= OperandList
, *InOL
= SI
.OperandList
;
2791 for (unsigned i
= 0, E
= SI
.getNumOperands(); i
!= E
; i
+=2) {
2793 OL
[i
+1] = InOL
[i
+1];
2797 SwitchInst::~SwitchInst() {
2798 dropHungoffUses(OperandList
);
2802 /// addCase - Add an entry to the switch instruction...
2804 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
2805 unsigned OpNo
= NumOperands
;
2806 if (OpNo
+2 > ReservedSpace
)
2807 resizeOperands(0); // Get more space!
2808 // Initialize some new operands.
2809 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
2810 NumOperands
= OpNo
+2;
2811 OperandList
[OpNo
] = OnVal
;
2812 OperandList
[OpNo
+1] = Dest
;
2815 /// removeCase - This method removes the specified successor from the switch
2816 /// instruction. Note that this cannot be used to remove the default
2817 /// destination (successor #0).
2819 void SwitchInst::removeCase(unsigned idx
) {
2820 assert(idx
!= 0 && "Cannot remove the default case!");
2821 assert(idx
*2 < getNumOperands() && "Successor index out of range!!!");
2823 unsigned NumOps
= getNumOperands();
2824 Use
*OL
= OperandList
;
2826 // Move everything after this operand down.
2828 // FIXME: we could just swap with the end of the list, then erase. However,
2829 // client might not expect this to happen. The code as it is thrashes the
2830 // use/def lists, which is kinda lame.
2831 for (unsigned i
= (idx
+1)*2; i
!= NumOps
; i
+= 2) {
2833 OL
[i
-2+1] = OL
[i
+1];
2836 // Nuke the last value.
2837 OL
[NumOps
-2].set(0);
2838 OL
[NumOps
-2+1].set(0);
2839 NumOperands
= NumOps
-2;
2842 /// resizeOperands - resize operands - This adjusts the length of the operands
2843 /// list according to the following behavior:
2844 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
2845 /// of operation. This grows the number of ops by 3 times.
2846 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
2847 /// 3. If NumOps == NumOperands, trim the reserved space.
2849 void SwitchInst::resizeOperands(unsigned NumOps
) {
2850 unsigned e
= getNumOperands();
2853 } else if (NumOps
*2 > NumOperands
) {
2854 // No resize needed.
2855 if (ReservedSpace
>= NumOps
) return;
2856 } else if (NumOps
== NumOperands
) {
2857 if (ReservedSpace
== NumOps
) return;
2862 ReservedSpace
= NumOps
;
2863 Use
*NewOps
= allocHungoffUses(NumOps
);
2864 Use
*OldOps
= OperandList
;
2865 for (unsigned i
= 0; i
!= e
; ++i
) {
2866 NewOps
[i
] = OldOps
[i
];
2868 OperandList
= NewOps
;
2869 if (OldOps
) Use::zap(OldOps
, OldOps
+ e
, true);
2873 BasicBlock
*SwitchInst::getSuccessorV(unsigned idx
) const {
2874 return getSuccessor(idx
);
2876 unsigned SwitchInst::getNumSuccessorsV() const {
2877 return getNumSuccessors();
2879 void SwitchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
2880 setSuccessor(idx
, B
);
2883 // Define these methods here so vtables don't get emitted into every translation
2884 // unit that uses these classes.
2886 GetElementPtrInst
*GetElementPtrInst::clone() const {
2887 return new(getNumOperands()) GetElementPtrInst(*this);
2890 BinaryOperator
*BinaryOperator::clone() const {
2891 return Create(getOpcode(), Op
<0>(), Op
<1>());
2894 FCmpInst
* FCmpInst::clone() const {
2895 return new FCmpInst(getPredicate(), Op
<0>(), Op
<1>());
2897 ICmpInst
* ICmpInst::clone() const {
2898 return new ICmpInst(getPredicate(), Op
<0>(), Op
<1>());
2901 VFCmpInst
* VFCmpInst::clone() const {
2902 return new VFCmpInst(getPredicate(), Op
<0>(), Op
<1>());
2904 VICmpInst
* VICmpInst::clone() const {
2905 return new VICmpInst(getPredicate(), Op
<0>(), Op
<1>());
2908 ExtractValueInst
*ExtractValueInst::clone() const {
2909 return new ExtractValueInst(*this);
2911 InsertValueInst
*InsertValueInst::clone() const {
2912 return new InsertValueInst(*this);
2916 MallocInst
*MallocInst::clone() const { return new MallocInst(*this); }
2917 AllocaInst
*AllocaInst::clone() const { return new AllocaInst(*this); }
2918 FreeInst
*FreeInst::clone() const { return new FreeInst(getOperand(0)); }
2919 LoadInst
*LoadInst::clone() const { return new LoadInst(*this); }
2920 StoreInst
*StoreInst::clone() const { return new StoreInst(*this); }
2921 CastInst
*TruncInst::clone() const { return new TruncInst(*this); }
2922 CastInst
*ZExtInst::clone() const { return new ZExtInst(*this); }
2923 CastInst
*SExtInst::clone() const { return new SExtInst(*this); }
2924 CastInst
*FPTruncInst::clone() const { return new FPTruncInst(*this); }
2925 CastInst
*FPExtInst::clone() const { return new FPExtInst(*this); }
2926 CastInst
*UIToFPInst::clone() const { return new UIToFPInst(*this); }
2927 CastInst
*SIToFPInst::clone() const { return new SIToFPInst(*this); }
2928 CastInst
*FPToUIInst::clone() const { return new FPToUIInst(*this); }
2929 CastInst
*FPToSIInst::clone() const { return new FPToSIInst(*this); }
2930 CastInst
*PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
2931 CastInst
*IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
2932 CastInst
*BitCastInst::clone() const { return new BitCastInst(*this); }
2933 CallInst
*CallInst::clone() const {
2934 return new(getNumOperands()) CallInst(*this);
2936 SelectInst
*SelectInst::clone() const {
2937 return new(getNumOperands()) SelectInst(*this);
2939 VAArgInst
*VAArgInst::clone() const { return new VAArgInst(*this); }
2941 ExtractElementInst
*ExtractElementInst::clone() const {
2942 return new ExtractElementInst(*this);
2944 InsertElementInst
*InsertElementInst::clone() const {
2945 return InsertElementInst::Create(*this);
2947 ShuffleVectorInst
*ShuffleVectorInst::clone() const {
2948 return new ShuffleVectorInst(*this);
2950 PHINode
*PHINode::clone() const { return new PHINode(*this); }
2951 ReturnInst
*ReturnInst::clone() const {
2952 return new(getNumOperands()) ReturnInst(*this);
2954 BranchInst
*BranchInst::clone() const {
2955 unsigned Ops(getNumOperands());
2956 return new(Ops
, Ops
== 1) BranchInst(*this);
2958 SwitchInst
*SwitchInst::clone() const { return new SwitchInst(*this); }
2959 InvokeInst
*InvokeInst::clone() const {
2960 return new(getNumOperands()) InvokeInst(*this);
2962 UnwindInst
*UnwindInst::clone() const { return new UnwindInst(); }
2963 UnreachableInst
*UnreachableInst::clone() const { return new UnreachableInst();}