Update comments.
[llvm/msp430.git] / lib / VMCore / Instructions.cpp
blobfe30271f84450d6646ac787d7d54329990836b01
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Function.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Support/CallSite.h"
20 #include "llvm/Support/ConstantRange.h"
21 #include "llvm/Support/MathExtras.h"
22 using namespace llvm;
24 //===----------------------------------------------------------------------===//
25 // CallSite Class
26 //===----------------------------------------------------------------------===//
28 #define CALLSITE_DELEGATE_GETTER(METHOD) \
29 Instruction *II(getInstruction()); \
30 return isCall() \
31 ? cast<CallInst>(II)->METHOD \
32 : cast<InvokeInst>(II)->METHOD
34 #define CALLSITE_DELEGATE_SETTER(METHOD) \
35 Instruction *II(getInstruction()); \
36 if (isCall()) \
37 cast<CallInst>(II)->METHOD; \
38 else \
39 cast<InvokeInst>(II)->METHOD
41 CallSite::CallSite(Instruction *C) {
42 assert((isa<CallInst>(C) || isa<InvokeInst>(C)) && "Not a call!");
43 I.setPointer(C);
44 I.setInt(isa<CallInst>(C));
46 unsigned CallSite::getCallingConv() const {
47 CALLSITE_DELEGATE_GETTER(getCallingConv());
49 void CallSite::setCallingConv(unsigned CC) {
50 CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
52 const AttrListPtr &CallSite::getAttributes() const {
53 CALLSITE_DELEGATE_GETTER(getAttributes());
55 void CallSite::setAttributes(const AttrListPtr &PAL) {
56 CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
58 bool CallSite::paramHasAttr(uint16_t i, Attributes attr) const {
59 CALLSITE_DELEGATE_GETTER(paramHasAttr(i, attr));
61 uint16_t CallSite::getParamAlignment(uint16_t i) const {
62 CALLSITE_DELEGATE_GETTER(getParamAlignment(i));
64 bool CallSite::doesNotAccessMemory() const {
65 CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
67 void CallSite::setDoesNotAccessMemory(bool doesNotAccessMemory) {
68 CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory(doesNotAccessMemory));
70 bool CallSite::onlyReadsMemory() const {
71 CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
73 void CallSite::setOnlyReadsMemory(bool onlyReadsMemory) {
74 CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory(onlyReadsMemory));
76 bool CallSite::doesNotReturn() const {
77 CALLSITE_DELEGATE_GETTER(doesNotReturn());
79 void CallSite::setDoesNotReturn(bool doesNotReturn) {
80 CALLSITE_DELEGATE_SETTER(setDoesNotReturn(doesNotReturn));
82 bool CallSite::doesNotThrow() const {
83 CALLSITE_DELEGATE_GETTER(doesNotThrow());
85 void CallSite::setDoesNotThrow(bool doesNotThrow) {
86 CALLSITE_DELEGATE_SETTER(setDoesNotThrow(doesNotThrow));
89 bool CallSite::hasArgument(const Value *Arg) const {
90 for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E; ++AI)
91 if (AI->get() == Arg)
92 return true;
93 return false;
96 #undef CALLSITE_DELEGATE_GETTER
97 #undef CALLSITE_DELEGATE_SETTER
99 //===----------------------------------------------------------------------===//
100 // TerminatorInst Class
101 //===----------------------------------------------------------------------===//
103 // Out of line virtual method, so the vtable, etc has a home.
104 TerminatorInst::~TerminatorInst() {
107 //===----------------------------------------------------------------------===//
108 // UnaryInstruction Class
109 //===----------------------------------------------------------------------===//
111 // Out of line virtual method, so the vtable, etc has a home.
112 UnaryInstruction::~UnaryInstruction() {
115 //===----------------------------------------------------------------------===//
116 // SelectInst Class
117 //===----------------------------------------------------------------------===//
119 /// areInvalidOperands - Return a string if the specified operands are invalid
120 /// for a select operation, otherwise return null.
121 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
122 if (Op1->getType() != Op2->getType())
123 return "both values to select must have same type";
125 if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
126 // Vector select.
127 if (VT->getElementType() != Type::Int1Ty)
128 return "vector select condition element type must be i1";
129 const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
130 if (ET == 0)
131 return "selected values for vector select must be vectors";
132 if (ET->getNumElements() != VT->getNumElements())
133 return "vector select requires selected vectors to have "
134 "the same vector length as select condition";
135 } else if (Op0->getType() != Type::Int1Ty) {
136 return "select condition must be i1 or <n x i1>";
138 return 0;
142 //===----------------------------------------------------------------------===//
143 // PHINode Class
144 //===----------------------------------------------------------------------===//
146 PHINode::PHINode(const PHINode &PN)
147 : Instruction(PN.getType(), Instruction::PHI,
148 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
149 ReservedSpace(PN.getNumOperands()) {
150 Use *OL = OperandList;
151 for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
152 OL[i] = PN.getOperand(i);
153 OL[i+1] = PN.getOperand(i+1);
157 PHINode::~PHINode() {
158 if (OperandList)
159 dropHungoffUses(OperandList);
162 // removeIncomingValue - Remove an incoming value. This is useful if a
163 // predecessor basic block is deleted.
164 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
165 unsigned NumOps = getNumOperands();
166 Use *OL = OperandList;
167 assert(Idx*2 < NumOps && "BB not in PHI node!");
168 Value *Removed = OL[Idx*2];
170 // Move everything after this operand down.
172 // FIXME: we could just swap with the end of the list, then erase. However,
173 // client might not expect this to happen. The code as it is thrashes the
174 // use/def lists, which is kinda lame.
175 for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
176 OL[i-2] = OL[i];
177 OL[i-2+1] = OL[i+1];
180 // Nuke the last value.
181 OL[NumOps-2].set(0);
182 OL[NumOps-2+1].set(0);
183 NumOperands = NumOps-2;
185 // If the PHI node is dead, because it has zero entries, nuke it now.
186 if (NumOps == 2 && DeletePHIIfEmpty) {
187 // If anyone is using this PHI, make them use a dummy value instead...
188 replaceAllUsesWith(UndefValue::get(getType()));
189 eraseFromParent();
191 return Removed;
194 /// resizeOperands - resize operands - This adjusts the length of the operands
195 /// list according to the following behavior:
196 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
197 /// of operation. This grows the number of ops by 1.5 times.
198 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
199 /// 3. If NumOps == NumOperands, trim the reserved space.
201 void PHINode::resizeOperands(unsigned NumOps) {
202 unsigned e = getNumOperands();
203 if (NumOps == 0) {
204 NumOps = e*3/2;
205 if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
206 } else if (NumOps*2 > NumOperands) {
207 // No resize needed.
208 if (ReservedSpace >= NumOps) return;
209 } else if (NumOps == NumOperands) {
210 if (ReservedSpace == NumOps) return;
211 } else {
212 return;
215 ReservedSpace = NumOps;
216 Use *OldOps = OperandList;
217 Use *NewOps = allocHungoffUses(NumOps);
218 std::copy(OldOps, OldOps + e, NewOps);
219 OperandList = NewOps;
220 if (OldOps) Use::zap(OldOps, OldOps + e, true);
223 /// hasConstantValue - If the specified PHI node always merges together the same
224 /// value, return the value, otherwise return null.
226 Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
227 // If the PHI node only has one incoming value, eliminate the PHI node...
228 if (getNumIncomingValues() == 1) {
229 if (getIncomingValue(0) != this) // not X = phi X
230 return getIncomingValue(0);
231 else
232 return UndefValue::get(getType()); // Self cycle is dead.
235 // Otherwise if all of the incoming values are the same for the PHI, replace
236 // the PHI node with the incoming value.
238 Value *InVal = 0;
239 bool HasUndefInput = false;
240 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
241 if (isa<UndefValue>(getIncomingValue(i))) {
242 HasUndefInput = true;
243 } else if (getIncomingValue(i) != this) { // Not the PHI node itself...
244 if (InVal && getIncomingValue(i) != InVal)
245 return 0; // Not the same, bail out.
246 else
247 InVal = getIncomingValue(i);
250 // The only case that could cause InVal to be null is if we have a PHI node
251 // that only has entries for itself. In this case, there is no entry into the
252 // loop, so kill the PHI.
254 if (InVal == 0) InVal = UndefValue::get(getType());
256 // If we have a PHI node like phi(X, undef, X), where X is defined by some
257 // instruction, we cannot always return X as the result of the PHI node. Only
258 // do this if X is not an instruction (thus it must dominate the PHI block),
259 // or if the client is prepared to deal with this possibility.
260 if (HasUndefInput && !AllowNonDominatingInstruction)
261 if (Instruction *IV = dyn_cast<Instruction>(InVal))
262 // If it's in the entry block, it dominates everything.
263 if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
264 isa<InvokeInst>(IV))
265 return 0; // Cannot guarantee that InVal dominates this PHINode.
267 // All of the incoming values are the same, return the value now.
268 return InVal;
272 //===----------------------------------------------------------------------===//
273 // CallInst Implementation
274 //===----------------------------------------------------------------------===//
276 CallInst::~CallInst() {
279 void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
280 assert(NumOperands == NumParams+1 && "NumOperands not set up?");
281 Use *OL = OperandList;
282 OL[0] = Func;
284 const FunctionType *FTy =
285 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
286 FTy = FTy; // silence warning.
288 assert((NumParams == FTy->getNumParams() ||
289 (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
290 "Calling a function with bad signature!");
291 for (unsigned i = 0; i != NumParams; ++i) {
292 assert((i >= FTy->getNumParams() ||
293 FTy->getParamType(i) == Params[i]->getType()) &&
294 "Calling a function with a bad signature!");
295 OL[i+1] = Params[i];
299 void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
300 assert(NumOperands == 3 && "NumOperands not set up?");
301 Use *OL = OperandList;
302 OL[0] = Func;
303 OL[1] = Actual1;
304 OL[2] = Actual2;
306 const FunctionType *FTy =
307 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
308 FTy = FTy; // silence warning.
310 assert((FTy->getNumParams() == 2 ||
311 (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
312 "Calling a function with bad signature");
313 assert((0 >= FTy->getNumParams() ||
314 FTy->getParamType(0) == Actual1->getType()) &&
315 "Calling a function with a bad signature!");
316 assert((1 >= FTy->getNumParams() ||
317 FTy->getParamType(1) == Actual2->getType()) &&
318 "Calling a function with a bad signature!");
321 void CallInst::init(Value *Func, Value *Actual) {
322 assert(NumOperands == 2 && "NumOperands not set up?");
323 Use *OL = OperandList;
324 OL[0] = Func;
325 OL[1] = Actual;
327 const FunctionType *FTy =
328 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
329 FTy = FTy; // silence warning.
331 assert((FTy->getNumParams() == 1 ||
332 (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
333 "Calling a function with bad signature");
334 assert((0 == FTy->getNumParams() ||
335 FTy->getParamType(0) == Actual->getType()) &&
336 "Calling a function with a bad signature!");
339 void CallInst::init(Value *Func) {
340 assert(NumOperands == 1 && "NumOperands not set up?");
341 Use *OL = OperandList;
342 OL[0] = Func;
344 const FunctionType *FTy =
345 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
346 FTy = FTy; // silence warning.
348 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
351 CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
352 Instruction *InsertBefore)
353 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
354 ->getElementType())->getReturnType(),
355 Instruction::Call,
356 OperandTraits<CallInst>::op_end(this) - 2,
357 2, InsertBefore) {
358 init(Func, Actual);
359 setName(Name);
362 CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
363 BasicBlock *InsertAtEnd)
364 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
365 ->getElementType())->getReturnType(),
366 Instruction::Call,
367 OperandTraits<CallInst>::op_end(this) - 2,
368 2, InsertAtEnd) {
369 init(Func, Actual);
370 setName(Name);
372 CallInst::CallInst(Value *Func, const std::string &Name,
373 Instruction *InsertBefore)
374 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
375 ->getElementType())->getReturnType(),
376 Instruction::Call,
377 OperandTraits<CallInst>::op_end(this) - 1,
378 1, InsertBefore) {
379 init(Func);
380 setName(Name);
383 CallInst::CallInst(Value *Func, const std::string &Name,
384 BasicBlock *InsertAtEnd)
385 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
386 ->getElementType())->getReturnType(),
387 Instruction::Call,
388 OperandTraits<CallInst>::op_end(this) - 1,
389 1, InsertAtEnd) {
390 init(Func);
391 setName(Name);
394 CallInst::CallInst(const CallInst &CI)
395 : Instruction(CI.getType(), Instruction::Call,
396 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
397 CI.getNumOperands()) {
398 setAttributes(CI.getAttributes());
399 SubclassData = CI.SubclassData;
400 Use *OL = OperandList;
401 Use *InOL = CI.OperandList;
402 for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
403 OL[i] = InOL[i];
406 void CallInst::addAttribute(unsigned i, Attributes attr) {
407 AttrListPtr PAL = getAttributes();
408 PAL = PAL.addAttr(i, attr);
409 setAttributes(PAL);
412 void CallInst::removeAttribute(unsigned i, Attributes attr) {
413 AttrListPtr PAL = getAttributes();
414 PAL = PAL.removeAttr(i, attr);
415 setAttributes(PAL);
418 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
419 if (AttributeList.paramHasAttr(i, attr))
420 return true;
421 if (const Function *F = getCalledFunction())
422 return F->paramHasAttr(i, attr);
423 return false;
427 //===----------------------------------------------------------------------===//
428 // InvokeInst Implementation
429 //===----------------------------------------------------------------------===//
431 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
432 Value* const *Args, unsigned NumArgs) {
433 assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
434 Use *OL = OperandList;
435 OL[0] = Fn;
436 OL[1] = IfNormal;
437 OL[2] = IfException;
438 const FunctionType *FTy =
439 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
440 FTy = FTy; // silence warning.
442 assert(((NumArgs == FTy->getNumParams()) ||
443 (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
444 "Calling a function with bad signature");
446 for (unsigned i = 0, e = NumArgs; i != e; i++) {
447 assert((i >= FTy->getNumParams() ||
448 FTy->getParamType(i) == Args[i]->getType()) &&
449 "Invoking a function with a bad signature!");
451 OL[i+3] = Args[i];
455 InvokeInst::InvokeInst(const InvokeInst &II)
456 : TerminatorInst(II.getType(), Instruction::Invoke,
457 OperandTraits<InvokeInst>::op_end(this)
458 - II.getNumOperands(),
459 II.getNumOperands()) {
460 setAttributes(II.getAttributes());
461 SubclassData = II.SubclassData;
462 Use *OL = OperandList, *InOL = II.OperandList;
463 for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
464 OL[i] = InOL[i];
467 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
468 return getSuccessor(idx);
470 unsigned InvokeInst::getNumSuccessorsV() const {
471 return getNumSuccessors();
473 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
474 return setSuccessor(idx, B);
477 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
478 if (AttributeList.paramHasAttr(i, attr))
479 return true;
480 if (const Function *F = getCalledFunction())
481 return F->paramHasAttr(i, attr);
482 return false;
485 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
486 AttrListPtr PAL = getAttributes();
487 PAL = PAL.addAttr(i, attr);
488 setAttributes(PAL);
491 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
492 AttrListPtr PAL = getAttributes();
493 PAL = PAL.removeAttr(i, attr);
494 setAttributes(PAL);
498 //===----------------------------------------------------------------------===//
499 // ReturnInst Implementation
500 //===----------------------------------------------------------------------===//
502 ReturnInst::ReturnInst(const ReturnInst &RI)
503 : TerminatorInst(Type::VoidTy, Instruction::Ret,
504 OperandTraits<ReturnInst>::op_end(this) -
505 RI.getNumOperands(),
506 RI.getNumOperands()) {
507 if (RI.getNumOperands())
508 Op<0>() = RI.Op<0>();
511 ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore)
512 : TerminatorInst(Type::VoidTy, Instruction::Ret,
513 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
514 InsertBefore) {
515 if (retVal)
516 Op<0>() = retVal;
518 ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
519 : TerminatorInst(Type::VoidTy, Instruction::Ret,
520 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
521 InsertAtEnd) {
522 if (retVal)
523 Op<0>() = retVal;
525 ReturnInst::ReturnInst(BasicBlock *InsertAtEnd)
526 : TerminatorInst(Type::VoidTy, Instruction::Ret,
527 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
530 unsigned ReturnInst::getNumSuccessorsV() const {
531 return getNumSuccessors();
534 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
535 /// emit the vtable for the class in this translation unit.
536 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
537 assert(0 && "ReturnInst has no successors!");
540 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
541 assert(0 && "ReturnInst has no successors!");
542 abort();
543 return 0;
546 ReturnInst::~ReturnInst() {
549 //===----------------------------------------------------------------------===//
550 // UnwindInst Implementation
551 //===----------------------------------------------------------------------===//
553 UnwindInst::UnwindInst(Instruction *InsertBefore)
554 : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) {
556 UnwindInst::UnwindInst(BasicBlock *InsertAtEnd)
557 : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) {
561 unsigned UnwindInst::getNumSuccessorsV() const {
562 return getNumSuccessors();
565 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
566 assert(0 && "UnwindInst has no successors!");
569 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
570 assert(0 && "UnwindInst has no successors!");
571 abort();
572 return 0;
575 //===----------------------------------------------------------------------===//
576 // UnreachableInst Implementation
577 //===----------------------------------------------------------------------===//
579 UnreachableInst::UnreachableInst(Instruction *InsertBefore)
580 : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) {
582 UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd)
583 : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) {
586 unsigned UnreachableInst::getNumSuccessorsV() const {
587 return getNumSuccessors();
590 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
591 assert(0 && "UnwindInst has no successors!");
594 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
595 assert(0 && "UnwindInst has no successors!");
596 abort();
597 return 0;
600 //===----------------------------------------------------------------------===//
601 // BranchInst Implementation
602 //===----------------------------------------------------------------------===//
604 void BranchInst::AssertOK() {
605 if (isConditional())
606 assert(getCondition()->getType() == Type::Int1Ty &&
607 "May only branch on boolean predicates!");
610 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
611 : TerminatorInst(Type::VoidTy, Instruction::Br,
612 OperandTraits<BranchInst>::op_end(this) - 1,
613 1, InsertBefore) {
614 assert(IfTrue != 0 && "Branch destination may not be null!");
615 Op<-1>() = IfTrue;
617 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
618 Instruction *InsertBefore)
619 : TerminatorInst(Type::VoidTy, Instruction::Br,
620 OperandTraits<BranchInst>::op_end(this) - 3,
621 3, InsertBefore) {
622 Op<-1>() = IfTrue;
623 Op<-2>() = IfFalse;
624 Op<-3>() = Cond;
625 #ifndef NDEBUG
626 AssertOK();
627 #endif
630 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
631 : TerminatorInst(Type::VoidTy, Instruction::Br,
632 OperandTraits<BranchInst>::op_end(this) - 1,
633 1, InsertAtEnd) {
634 assert(IfTrue != 0 && "Branch destination may not be null!");
635 Op<-1>() = IfTrue;
638 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
639 BasicBlock *InsertAtEnd)
640 : TerminatorInst(Type::VoidTy, Instruction::Br,
641 OperandTraits<BranchInst>::op_end(this) - 3,
642 3, InsertAtEnd) {
643 Op<-1>() = IfTrue;
644 Op<-2>() = IfFalse;
645 Op<-3>() = Cond;
646 #ifndef NDEBUG
647 AssertOK();
648 #endif
652 BranchInst::BranchInst(const BranchInst &BI) :
653 TerminatorInst(Type::VoidTy, Instruction::Br,
654 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
655 BI.getNumOperands()) {
656 Op<-1>() = BI.Op<-1>();
657 if (BI.getNumOperands() != 1) {
658 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
659 Op<-3>() = BI.Op<-3>();
660 Op<-2>() = BI.Op<-2>();
665 Use* Use::getPrefix() {
666 PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev);
667 if (PotentialPrefix.getOpaqueValue())
668 return 0;
670 return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1);
673 BranchInst::~BranchInst() {
674 if (NumOperands == 1) {
675 if (Use *Prefix = OperandList->getPrefix()) {
676 Op<-1>() = 0;
678 // mark OperandList to have a special value for scrutiny
679 // by baseclass destructors and operator delete
680 OperandList = Prefix;
681 } else {
682 NumOperands = 3;
683 OperandList = op_begin();
689 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
690 return getSuccessor(idx);
692 unsigned BranchInst::getNumSuccessorsV() const {
693 return getNumSuccessors();
695 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
696 setSuccessor(idx, B);
700 //===----------------------------------------------------------------------===//
701 // AllocationInst Implementation
702 //===----------------------------------------------------------------------===//
704 static Value *getAISize(Value *Amt) {
705 if (!Amt)
706 Amt = ConstantInt::get(Type::Int32Ty, 1);
707 else {
708 assert(!isa<BasicBlock>(Amt) &&
709 "Passed basic block into allocation size parameter! Use other ctor");
710 assert(Amt->getType() == Type::Int32Ty &&
711 "Malloc/Allocation array size is not a 32-bit integer!");
713 return Amt;
716 AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
717 unsigned Align, const std::string &Name,
718 Instruction *InsertBefore)
719 : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize),
720 InsertBefore) {
721 setAlignment(Align);
722 assert(Ty != Type::VoidTy && "Cannot allocate void!");
723 setName(Name);
726 AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
727 unsigned Align, const std::string &Name,
728 BasicBlock *InsertAtEnd)
729 : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize),
730 InsertAtEnd) {
731 setAlignment(Align);
732 assert(Ty != Type::VoidTy && "Cannot allocate void!");
733 setName(Name);
736 // Out of line virtual method, so the vtable, etc has a home.
737 AllocationInst::~AllocationInst() {
740 void AllocationInst::setAlignment(unsigned Align) {
741 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
742 SubclassData = Log2_32(Align) + 1;
743 assert(getAlignment() == Align && "Alignment representation error!");
746 bool AllocationInst::isArrayAllocation() const {
747 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
748 return CI->getZExtValue() != 1;
749 return true;
752 const Type *AllocationInst::getAllocatedType() const {
753 return getType()->getElementType();
756 AllocaInst::AllocaInst(const AllocaInst &AI)
757 : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
758 Instruction::Alloca, AI.getAlignment()) {
761 /// isStaticAlloca - Return true if this alloca is in the entry block of the
762 /// function and is a constant size. If so, the code generator will fold it
763 /// into the prolog/epilog code, so it is basically free.
764 bool AllocaInst::isStaticAlloca() const {
765 // Must be constant size.
766 if (!isa<ConstantInt>(getArraySize())) return false;
768 // Must be in the entry block.
769 const BasicBlock *Parent = getParent();
770 return Parent == &Parent->getParent()->front();
773 MallocInst::MallocInst(const MallocInst &MI)
774 : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
775 Instruction::Malloc, MI.getAlignment()) {
778 //===----------------------------------------------------------------------===//
779 // FreeInst Implementation
780 //===----------------------------------------------------------------------===//
782 void FreeInst::AssertOK() {
783 assert(isa<PointerType>(getOperand(0)->getType()) &&
784 "Can not free something of nonpointer type!");
787 FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
788 : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) {
789 AssertOK();
792 FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
793 : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) {
794 AssertOK();
798 //===----------------------------------------------------------------------===//
799 // LoadInst Implementation
800 //===----------------------------------------------------------------------===//
802 void LoadInst::AssertOK() {
803 assert(isa<PointerType>(getOperand(0)->getType()) &&
804 "Ptr must have pointer type.");
807 LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
808 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
809 Load, Ptr, InsertBef) {
810 setVolatile(false);
811 setAlignment(0);
812 AssertOK();
813 setName(Name);
816 LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
817 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
818 Load, Ptr, InsertAE) {
819 setVolatile(false);
820 setAlignment(0);
821 AssertOK();
822 setName(Name);
825 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
826 Instruction *InsertBef)
827 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
828 Load, Ptr, InsertBef) {
829 setVolatile(isVolatile);
830 setAlignment(0);
831 AssertOK();
832 setName(Name);
835 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
836 unsigned Align, Instruction *InsertBef)
837 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
838 Load, Ptr, InsertBef) {
839 setVolatile(isVolatile);
840 setAlignment(Align);
841 AssertOK();
842 setName(Name);
845 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
846 unsigned Align, BasicBlock *InsertAE)
847 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
848 Load, Ptr, InsertAE) {
849 setVolatile(isVolatile);
850 setAlignment(Align);
851 AssertOK();
852 setName(Name);
855 LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
856 BasicBlock *InsertAE)
857 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
858 Load, Ptr, InsertAE) {
859 setVolatile(isVolatile);
860 setAlignment(0);
861 AssertOK();
862 setName(Name);
867 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
868 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
869 Load, Ptr, InsertBef) {
870 setVolatile(false);
871 setAlignment(0);
872 AssertOK();
873 if (Name && Name[0]) setName(Name);
876 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
877 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
878 Load, Ptr, InsertAE) {
879 setVolatile(false);
880 setAlignment(0);
881 AssertOK();
882 if (Name && Name[0]) setName(Name);
885 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
886 Instruction *InsertBef)
887 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
888 Load, Ptr, InsertBef) {
889 setVolatile(isVolatile);
890 setAlignment(0);
891 AssertOK();
892 if (Name && Name[0]) setName(Name);
895 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
896 BasicBlock *InsertAE)
897 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
898 Load, Ptr, InsertAE) {
899 setVolatile(isVolatile);
900 setAlignment(0);
901 AssertOK();
902 if (Name && Name[0]) setName(Name);
905 void LoadInst::setAlignment(unsigned Align) {
906 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
907 SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
910 //===----------------------------------------------------------------------===//
911 // StoreInst Implementation
912 //===----------------------------------------------------------------------===//
914 void StoreInst::AssertOK() {
915 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
916 assert(isa<PointerType>(getOperand(1)->getType()) &&
917 "Ptr must have pointer type!");
918 assert(getOperand(0)->getType() ==
919 cast<PointerType>(getOperand(1)->getType())->getElementType()
920 && "Ptr must be a pointer to Val type!");
924 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
925 : Instruction(Type::VoidTy, Store,
926 OperandTraits<StoreInst>::op_begin(this),
927 OperandTraits<StoreInst>::operands(this),
928 InsertBefore) {
929 Op<0>() = val;
930 Op<1>() = addr;
931 setVolatile(false);
932 setAlignment(0);
933 AssertOK();
936 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
937 : Instruction(Type::VoidTy, Store,
938 OperandTraits<StoreInst>::op_begin(this),
939 OperandTraits<StoreInst>::operands(this),
940 InsertAtEnd) {
941 Op<0>() = val;
942 Op<1>() = addr;
943 setVolatile(false);
944 setAlignment(0);
945 AssertOK();
948 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
949 Instruction *InsertBefore)
950 : Instruction(Type::VoidTy, Store,
951 OperandTraits<StoreInst>::op_begin(this),
952 OperandTraits<StoreInst>::operands(this),
953 InsertBefore) {
954 Op<0>() = val;
955 Op<1>() = addr;
956 setVolatile(isVolatile);
957 setAlignment(0);
958 AssertOK();
961 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
962 unsigned Align, Instruction *InsertBefore)
963 : Instruction(Type::VoidTy, Store,
964 OperandTraits<StoreInst>::op_begin(this),
965 OperandTraits<StoreInst>::operands(this),
966 InsertBefore) {
967 Op<0>() = val;
968 Op<1>() = addr;
969 setVolatile(isVolatile);
970 setAlignment(Align);
971 AssertOK();
974 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
975 unsigned Align, BasicBlock *InsertAtEnd)
976 : Instruction(Type::VoidTy, Store,
977 OperandTraits<StoreInst>::op_begin(this),
978 OperandTraits<StoreInst>::operands(this),
979 InsertAtEnd) {
980 Op<0>() = val;
981 Op<1>() = addr;
982 setVolatile(isVolatile);
983 setAlignment(Align);
984 AssertOK();
987 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
988 BasicBlock *InsertAtEnd)
989 : Instruction(Type::VoidTy, Store,
990 OperandTraits<StoreInst>::op_begin(this),
991 OperandTraits<StoreInst>::operands(this),
992 InsertAtEnd) {
993 Op<0>() = val;
994 Op<1>() = addr;
995 setVolatile(isVolatile);
996 setAlignment(0);
997 AssertOK();
1000 void StoreInst::setAlignment(unsigned Align) {
1001 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1002 SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
1005 //===----------------------------------------------------------------------===//
1006 // GetElementPtrInst Implementation
1007 //===----------------------------------------------------------------------===//
1009 static unsigned retrieveAddrSpace(const Value *Val) {
1010 return cast<PointerType>(Val->getType())->getAddressSpace();
1013 void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1014 const std::string &Name) {
1015 assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1016 Use *OL = OperandList;
1017 OL[0] = Ptr;
1019 for (unsigned i = 0; i != NumIdx; ++i)
1020 OL[i+1] = Idx[i];
1022 setName(Name);
1025 void GetElementPtrInst::init(Value *Ptr, Value *Idx, const std::string &Name) {
1026 assert(NumOperands == 2 && "NumOperands not initialized?");
1027 Use *OL = OperandList;
1028 OL[0] = Ptr;
1029 OL[1] = Idx;
1031 setName(Name);
1034 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1035 : Instruction(GEPI.getType(), GetElementPtr,
1036 OperandTraits<GetElementPtrInst>::op_end(this)
1037 - GEPI.getNumOperands(),
1038 GEPI.getNumOperands()) {
1039 Use *OL = OperandList;
1040 Use *GEPIOL = GEPI.OperandList;
1041 for (unsigned i = 0, E = NumOperands; i != E; ++i)
1042 OL[i] = GEPIOL[i];
1045 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1046 const std::string &Name, Instruction *InBe)
1047 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)),
1048 retrieveAddrSpace(Ptr)),
1049 GetElementPtr,
1050 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1051 2, InBe) {
1052 init(Ptr, Idx, Name);
1055 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1056 const std::string &Name, BasicBlock *IAE)
1057 : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)),
1058 retrieveAddrSpace(Ptr)),
1059 GetElementPtr,
1060 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1061 2, IAE) {
1062 init(Ptr, Idx, Name);
1065 /// getIndexedType - Returns the type of the element that would be accessed with
1066 /// a gep instruction with the specified parameters.
1068 /// The Idxs pointer should point to a continuous piece of memory containing the
1069 /// indices, either as Value* or uint64_t.
1071 /// A null type is returned if the indices are invalid for the specified
1072 /// pointer type.
1074 template <typename IndexTy>
1075 static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1076 unsigned NumIdx) {
1077 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1078 if (!PTy) return 0; // Type isn't a pointer type!
1079 const Type *Agg = PTy->getElementType();
1081 // Handle the special case of the empty set index set, which is always valid.
1082 if (NumIdx == 0)
1083 return Agg;
1085 // If there is at least one index, the top level type must be sized, otherwise
1086 // it cannot be 'stepped over'. We explicitly allow abstract types (those
1087 // that contain opaque types) under the assumption that it will be resolved to
1088 // a sane type later.
1089 if (!Agg->isSized() && !Agg->isAbstract())
1090 return 0;
1092 unsigned CurIdx = 1;
1093 for (; CurIdx != NumIdx; ++CurIdx) {
1094 const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1095 if (!CT || isa<PointerType>(CT)) return 0;
1096 IndexTy Index = Idxs[CurIdx];
1097 if (!CT->indexValid(Index)) return 0;
1098 Agg = CT->getTypeAtIndex(Index);
1100 // If the new type forwards to another type, then it is in the middle
1101 // of being refined to another type (and hence, may have dropped all
1102 // references to what it was using before). So, use the new forwarded
1103 // type.
1104 if (const Type *Ty = Agg->getForwardedType())
1105 Agg = Ty;
1107 return CurIdx == NumIdx ? Agg : 0;
1110 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1111 Value* const *Idxs,
1112 unsigned NumIdx) {
1113 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1116 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1117 uint64_t const *Idxs,
1118 unsigned NumIdx) {
1119 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1122 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1123 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1124 if (!PTy) return 0; // Type isn't a pointer type!
1126 // Check the pointer index.
1127 if (!PTy->indexValid(Idx)) return 0;
1129 return PTy->getElementType();
1133 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1134 /// zeros. If so, the result pointer and the first operand have the same
1135 /// value, just potentially different types.
1136 bool GetElementPtrInst::hasAllZeroIndices() const {
1137 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1138 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1139 if (!CI->isZero()) return false;
1140 } else {
1141 return false;
1144 return true;
1147 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1148 /// constant integers. If so, the result pointer and the first operand have
1149 /// a constant offset between them.
1150 bool GetElementPtrInst::hasAllConstantIndices() const {
1151 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1152 if (!isa<ConstantInt>(getOperand(i)))
1153 return false;
1155 return true;
1159 //===----------------------------------------------------------------------===//
1160 // ExtractElementInst Implementation
1161 //===----------------------------------------------------------------------===//
1163 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1164 const std::string &Name,
1165 Instruction *InsertBef)
1166 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1167 ExtractElement,
1168 OperandTraits<ExtractElementInst>::op_begin(this),
1169 2, InsertBef) {
1170 assert(isValidOperands(Val, Index) &&
1171 "Invalid extractelement instruction operands!");
1172 Op<0>() = Val;
1173 Op<1>() = Index;
1174 setName(Name);
1177 ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
1178 const std::string &Name,
1179 Instruction *InsertBef)
1180 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1181 ExtractElement,
1182 OperandTraits<ExtractElementInst>::op_begin(this),
1183 2, InsertBef) {
1184 Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1185 assert(isValidOperands(Val, Index) &&
1186 "Invalid extractelement instruction operands!");
1187 Op<0>() = Val;
1188 Op<1>() = Index;
1189 setName(Name);
1193 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1194 const std::string &Name,
1195 BasicBlock *InsertAE)
1196 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1197 ExtractElement,
1198 OperandTraits<ExtractElementInst>::op_begin(this),
1199 2, InsertAE) {
1200 assert(isValidOperands(Val, Index) &&
1201 "Invalid extractelement instruction operands!");
1203 Op<0>() = Val;
1204 Op<1>() = Index;
1205 setName(Name);
1208 ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
1209 const std::string &Name,
1210 BasicBlock *InsertAE)
1211 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1212 ExtractElement,
1213 OperandTraits<ExtractElementInst>::op_begin(this),
1214 2, InsertAE) {
1215 Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1216 assert(isValidOperands(Val, Index) &&
1217 "Invalid extractelement instruction operands!");
1219 Op<0>() = Val;
1220 Op<1>() = Index;
1221 setName(Name);
1225 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1226 if (!isa<VectorType>(Val->getType()) || Index->getType() != Type::Int32Ty)
1227 return false;
1228 return true;
1232 //===----------------------------------------------------------------------===//
1233 // InsertElementInst Implementation
1234 //===----------------------------------------------------------------------===//
1236 InsertElementInst::InsertElementInst(const InsertElementInst &IE)
1237 : Instruction(IE.getType(), InsertElement,
1238 OperandTraits<InsertElementInst>::op_begin(this), 3) {
1239 Op<0>() = IE.Op<0>();
1240 Op<1>() = IE.Op<1>();
1241 Op<2>() = IE.Op<2>();
1243 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1244 const std::string &Name,
1245 Instruction *InsertBef)
1246 : Instruction(Vec->getType(), InsertElement,
1247 OperandTraits<InsertElementInst>::op_begin(this),
1248 3, InsertBef) {
1249 assert(isValidOperands(Vec, Elt, Index) &&
1250 "Invalid insertelement instruction operands!");
1251 Op<0>() = Vec;
1252 Op<1>() = Elt;
1253 Op<2>() = Index;
1254 setName(Name);
1257 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
1258 const std::string &Name,
1259 Instruction *InsertBef)
1260 : Instruction(Vec->getType(), InsertElement,
1261 OperandTraits<InsertElementInst>::op_begin(this),
1262 3, InsertBef) {
1263 Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1264 assert(isValidOperands(Vec, Elt, Index) &&
1265 "Invalid insertelement instruction operands!");
1266 Op<0>() = Vec;
1267 Op<1>() = Elt;
1268 Op<2>() = Index;
1269 setName(Name);
1273 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1274 const std::string &Name,
1275 BasicBlock *InsertAE)
1276 : Instruction(Vec->getType(), InsertElement,
1277 OperandTraits<InsertElementInst>::op_begin(this),
1278 3, InsertAE) {
1279 assert(isValidOperands(Vec, Elt, Index) &&
1280 "Invalid insertelement instruction operands!");
1282 Op<0>() = Vec;
1283 Op<1>() = Elt;
1284 Op<2>() = Index;
1285 setName(Name);
1288 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
1289 const std::string &Name,
1290 BasicBlock *InsertAE)
1291 : Instruction(Vec->getType(), InsertElement,
1292 OperandTraits<InsertElementInst>::op_begin(this),
1293 3, InsertAE) {
1294 Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1295 assert(isValidOperands(Vec, Elt, Index) &&
1296 "Invalid insertelement instruction operands!");
1298 Op<0>() = Vec;
1299 Op<1>() = Elt;
1300 Op<2>() = Index;
1301 setName(Name);
1304 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1305 const Value *Index) {
1306 if (!isa<VectorType>(Vec->getType()))
1307 return false; // First operand of insertelement must be vector type.
1309 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1310 return false;// Second operand of insertelement must be vector element type.
1312 if (Index->getType() != Type::Int32Ty)
1313 return false; // Third operand of insertelement must be uint.
1314 return true;
1318 //===----------------------------------------------------------------------===//
1319 // ShuffleVectorInst Implementation
1320 //===----------------------------------------------------------------------===//
1322 ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV)
1323 : Instruction(SV.getType(), ShuffleVector,
1324 OperandTraits<ShuffleVectorInst>::op_begin(this),
1325 OperandTraits<ShuffleVectorInst>::operands(this)) {
1326 Op<0>() = SV.Op<0>();
1327 Op<1>() = SV.Op<1>();
1328 Op<2>() = SV.Op<2>();
1331 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1332 const std::string &Name,
1333 Instruction *InsertBefore)
1334 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1335 cast<VectorType>(Mask->getType())->getNumElements()),
1336 ShuffleVector,
1337 OperandTraits<ShuffleVectorInst>::op_begin(this),
1338 OperandTraits<ShuffleVectorInst>::operands(this),
1339 InsertBefore) {
1340 assert(isValidOperands(V1, V2, Mask) &&
1341 "Invalid shuffle vector instruction operands!");
1342 Op<0>() = V1;
1343 Op<1>() = V2;
1344 Op<2>() = Mask;
1345 setName(Name);
1348 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1349 const std::string &Name,
1350 BasicBlock *InsertAtEnd)
1351 : Instruction(V1->getType(), ShuffleVector,
1352 OperandTraits<ShuffleVectorInst>::op_begin(this),
1353 OperandTraits<ShuffleVectorInst>::operands(this),
1354 InsertAtEnd) {
1355 assert(isValidOperands(V1, V2, Mask) &&
1356 "Invalid shuffle vector instruction operands!");
1358 Op<0>() = V1;
1359 Op<1>() = V2;
1360 Op<2>() = Mask;
1361 setName(Name);
1364 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1365 const Value *Mask) {
1366 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1367 return false;
1369 const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1370 if (!isa<Constant>(Mask) || MaskTy == 0 ||
1371 MaskTy->getElementType() != Type::Int32Ty)
1372 return false;
1373 return true;
1376 /// getMaskValue - Return the index from the shuffle mask for the specified
1377 /// output result. This is either -1 if the element is undef or a number less
1378 /// than 2*numelements.
1379 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1380 const Constant *Mask = cast<Constant>(getOperand(2));
1381 if (isa<UndefValue>(Mask)) return -1;
1382 if (isa<ConstantAggregateZero>(Mask)) return 0;
1383 const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1384 assert(i < MaskCV->getNumOperands() && "Index out of range");
1386 if (isa<UndefValue>(MaskCV->getOperand(i)))
1387 return -1;
1388 return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1391 //===----------------------------------------------------------------------===//
1392 // InsertValueInst Class
1393 //===----------------------------------------------------------------------===//
1395 void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1396 unsigned NumIdx, const std::string &Name) {
1397 assert(NumOperands == 2 && "NumOperands not initialized?");
1398 Op<0>() = Agg;
1399 Op<1>() = Val;
1401 Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1402 setName(Name);
1405 void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1406 const std::string &Name) {
1407 assert(NumOperands == 2 && "NumOperands not initialized?");
1408 Op<0>() = Agg;
1409 Op<1>() = Val;
1411 Indices.push_back(Idx);
1412 setName(Name);
1415 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1416 : Instruction(IVI.getType(), InsertValue,
1417 OperandTraits<InsertValueInst>::op_begin(this), 2),
1418 Indices(IVI.Indices) {
1419 Op<0>() = IVI.getOperand(0);
1420 Op<1>() = IVI.getOperand(1);
1423 InsertValueInst::InsertValueInst(Value *Agg,
1424 Value *Val,
1425 unsigned Idx,
1426 const std::string &Name,
1427 Instruction *InsertBefore)
1428 : Instruction(Agg->getType(), InsertValue,
1429 OperandTraits<InsertValueInst>::op_begin(this),
1430 2, InsertBefore) {
1431 init(Agg, Val, Idx, Name);
1434 InsertValueInst::InsertValueInst(Value *Agg,
1435 Value *Val,
1436 unsigned Idx,
1437 const std::string &Name,
1438 BasicBlock *InsertAtEnd)
1439 : Instruction(Agg->getType(), InsertValue,
1440 OperandTraits<InsertValueInst>::op_begin(this),
1441 2, InsertAtEnd) {
1442 init(Agg, Val, Idx, Name);
1445 //===----------------------------------------------------------------------===//
1446 // ExtractValueInst Class
1447 //===----------------------------------------------------------------------===//
1449 void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1450 const std::string &Name) {
1451 assert(NumOperands == 1 && "NumOperands not initialized?");
1453 Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1454 setName(Name);
1457 void ExtractValueInst::init(unsigned Idx, const std::string &Name) {
1458 assert(NumOperands == 1 && "NumOperands not initialized?");
1460 Indices.push_back(Idx);
1461 setName(Name);
1464 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1465 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1466 Indices(EVI.Indices) {
1469 // getIndexedType - Returns the type of the element that would be extracted
1470 // with an extractvalue instruction with the specified parameters.
1472 // A null type is returned if the indices are invalid for the specified
1473 // pointer type.
1475 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1476 const unsigned *Idxs,
1477 unsigned NumIdx) {
1478 unsigned CurIdx = 0;
1479 for (; CurIdx != NumIdx; ++CurIdx) {
1480 const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1481 if (!CT || isa<PointerType>(CT) || isa<VectorType>(CT)) return 0;
1482 unsigned Index = Idxs[CurIdx];
1483 if (!CT->indexValid(Index)) return 0;
1484 Agg = CT->getTypeAtIndex(Index);
1486 // If the new type forwards to another type, then it is in the middle
1487 // of being refined to another type (and hence, may have dropped all
1488 // references to what it was using before). So, use the new forwarded
1489 // type.
1490 if (const Type *Ty = Agg->getForwardedType())
1491 Agg = Ty;
1493 return CurIdx == NumIdx ? Agg : 0;
1496 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1497 unsigned Idx) {
1498 return getIndexedType(Agg, &Idx, 1);
1501 //===----------------------------------------------------------------------===//
1502 // BinaryOperator Class
1503 //===----------------------------------------------------------------------===//
1505 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1506 const Type *Ty, const std::string &Name,
1507 Instruction *InsertBefore)
1508 : Instruction(Ty, iType,
1509 OperandTraits<BinaryOperator>::op_begin(this),
1510 OperandTraits<BinaryOperator>::operands(this),
1511 InsertBefore) {
1512 Op<0>() = S1;
1513 Op<1>() = S2;
1514 init(iType);
1515 setName(Name);
1518 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1519 const Type *Ty, const std::string &Name,
1520 BasicBlock *InsertAtEnd)
1521 : Instruction(Ty, iType,
1522 OperandTraits<BinaryOperator>::op_begin(this),
1523 OperandTraits<BinaryOperator>::operands(this),
1524 InsertAtEnd) {
1525 Op<0>() = S1;
1526 Op<1>() = S2;
1527 init(iType);
1528 setName(Name);
1532 void BinaryOperator::init(BinaryOps iType) {
1533 Value *LHS = getOperand(0), *RHS = getOperand(1);
1534 LHS = LHS; RHS = RHS; // Silence warnings.
1535 assert(LHS->getType() == RHS->getType() &&
1536 "Binary operator operand types must match!");
1537 #ifndef NDEBUG
1538 switch (iType) {
1539 case Add: case Sub:
1540 case Mul:
1541 assert(getType() == LHS->getType() &&
1542 "Arithmetic operation should return same type as operands!");
1543 assert((getType()->isInteger() || getType()->isFloatingPoint() ||
1544 isa<VectorType>(getType())) &&
1545 "Tried to create an arithmetic operation on a non-arithmetic type!");
1546 break;
1547 case UDiv:
1548 case SDiv:
1549 assert(getType() == LHS->getType() &&
1550 "Arithmetic operation should return same type as operands!");
1551 assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1552 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1553 "Incorrect operand type (not integer) for S/UDIV");
1554 break;
1555 case FDiv:
1556 assert(getType() == LHS->getType() &&
1557 "Arithmetic operation should return same type as operands!");
1558 assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
1559 cast<VectorType>(getType())->getElementType()->isFloatingPoint()))
1560 && "Incorrect operand type (not floating point) for FDIV");
1561 break;
1562 case URem:
1563 case SRem:
1564 assert(getType() == LHS->getType() &&
1565 "Arithmetic operation should return same type as operands!");
1566 assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1567 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1568 "Incorrect operand type (not integer) for S/UREM");
1569 break;
1570 case FRem:
1571 assert(getType() == LHS->getType() &&
1572 "Arithmetic operation should return same type as operands!");
1573 assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
1574 cast<VectorType>(getType())->getElementType()->isFloatingPoint()))
1575 && "Incorrect operand type (not floating point) for FREM");
1576 break;
1577 case Shl:
1578 case LShr:
1579 case AShr:
1580 assert(getType() == LHS->getType() &&
1581 "Shift operation should return same type as operands!");
1582 assert((getType()->isInteger() ||
1583 (isa<VectorType>(getType()) &&
1584 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1585 "Tried to create a shift operation on a non-integral type!");
1586 break;
1587 case And: case Or:
1588 case Xor:
1589 assert(getType() == LHS->getType() &&
1590 "Logical operation should return same type as operands!");
1591 assert((getType()->isInteger() ||
1592 (isa<VectorType>(getType()) &&
1593 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1594 "Tried to create a logical operation on a non-integral type!");
1595 break;
1596 default:
1597 break;
1599 #endif
1602 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1603 const std::string &Name,
1604 Instruction *InsertBefore) {
1605 assert(S1->getType() == S2->getType() &&
1606 "Cannot create binary operator with two operands of differing type!");
1607 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1610 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1611 const std::string &Name,
1612 BasicBlock *InsertAtEnd) {
1613 BinaryOperator *Res = Create(Op, S1, S2, Name);
1614 InsertAtEnd->getInstList().push_back(Res);
1615 return Res;
1618 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const std::string &Name,
1619 Instruction *InsertBefore) {
1620 Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
1621 return new BinaryOperator(Instruction::Sub,
1622 zero, Op,
1623 Op->getType(), Name, InsertBefore);
1626 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const std::string &Name,
1627 BasicBlock *InsertAtEnd) {
1628 Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
1629 return new BinaryOperator(Instruction::Sub,
1630 zero, Op,
1631 Op->getType(), Name, InsertAtEnd);
1634 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const std::string &Name,
1635 Instruction *InsertBefore) {
1636 Constant *C;
1637 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1638 C = ConstantInt::getAllOnesValue(PTy->getElementType());
1639 C = ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), C));
1640 } else {
1641 C = ConstantInt::getAllOnesValue(Op->getType());
1644 return new BinaryOperator(Instruction::Xor, Op, C,
1645 Op->getType(), Name, InsertBefore);
1648 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const std::string &Name,
1649 BasicBlock *InsertAtEnd) {
1650 Constant *AllOnes;
1651 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1652 // Create a vector of all ones values.
1653 Constant *Elt = ConstantInt::getAllOnesValue(PTy->getElementType());
1654 AllOnes =
1655 ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
1656 } else {
1657 AllOnes = ConstantInt::getAllOnesValue(Op->getType());
1660 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1661 Op->getType(), Name, InsertAtEnd);
1665 // isConstantAllOnes - Helper function for several functions below
1666 static inline bool isConstantAllOnes(const Value *V) {
1667 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1668 return CI->isAllOnesValue();
1669 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1670 return CV->isAllOnesValue();
1671 return false;
1674 bool BinaryOperator::isNeg(const Value *V) {
1675 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1676 if (Bop->getOpcode() == Instruction::Sub)
1677 return Bop->getOperand(0) ==
1678 ConstantExpr::getZeroValueForNegationExpr(Bop->getType());
1679 return false;
1682 bool BinaryOperator::isNot(const Value *V) {
1683 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1684 return (Bop->getOpcode() == Instruction::Xor &&
1685 (isConstantAllOnes(Bop->getOperand(1)) ||
1686 isConstantAllOnes(Bop->getOperand(0))));
1687 return false;
1690 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1691 assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
1692 return cast<BinaryOperator>(BinOp)->getOperand(1);
1695 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1696 return getNegArgument(const_cast<Value*>(BinOp));
1699 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1700 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1701 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1702 Value *Op0 = BO->getOperand(0);
1703 Value *Op1 = BO->getOperand(1);
1704 if (isConstantAllOnes(Op0)) return Op1;
1706 assert(isConstantAllOnes(Op1));
1707 return Op0;
1710 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1711 return getNotArgument(const_cast<Value*>(BinOp));
1715 // swapOperands - Exchange the two operands to this instruction. This
1716 // instruction is safe to use on any binary instruction and does not
1717 // modify the semantics of the instruction. If the instruction is
1718 // order dependent (SetLT f.e.) the opcode is changed.
1720 bool BinaryOperator::swapOperands() {
1721 if (!isCommutative())
1722 return true; // Can't commute operands
1723 Op<0>().swap(Op<1>());
1724 return false;
1727 //===----------------------------------------------------------------------===//
1728 // CastInst Class
1729 //===----------------------------------------------------------------------===//
1731 // Just determine if this cast only deals with integral->integral conversion.
1732 bool CastInst::isIntegerCast() const {
1733 switch (getOpcode()) {
1734 default: return false;
1735 case Instruction::ZExt:
1736 case Instruction::SExt:
1737 case Instruction::Trunc:
1738 return true;
1739 case Instruction::BitCast:
1740 return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1744 bool CastInst::isLosslessCast() const {
1745 // Only BitCast can be lossless, exit fast if we're not BitCast
1746 if (getOpcode() != Instruction::BitCast)
1747 return false;
1749 // Identity cast is always lossless
1750 const Type* SrcTy = getOperand(0)->getType();
1751 const Type* DstTy = getType();
1752 if (SrcTy == DstTy)
1753 return true;
1755 // Pointer to pointer is always lossless.
1756 if (isa<PointerType>(SrcTy))
1757 return isa<PointerType>(DstTy);
1758 return false; // Other types have no identity values
1761 /// This function determines if the CastInst does not require any bits to be
1762 /// changed in order to effect the cast. Essentially, it identifies cases where
1763 /// no code gen is necessary for the cast, hence the name no-op cast. For
1764 /// example, the following are all no-op casts:
1765 /// # bitcast i32* %x to i8*
1766 /// # bitcast <2 x i32> %x to <4 x i16>
1767 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
1768 /// @brief Determine if a cast is a no-op.
1769 bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1770 switch (getOpcode()) {
1771 default:
1772 assert(!"Invalid CastOp");
1773 case Instruction::Trunc:
1774 case Instruction::ZExt:
1775 case Instruction::SExt:
1776 case Instruction::FPTrunc:
1777 case Instruction::FPExt:
1778 case Instruction::UIToFP:
1779 case Instruction::SIToFP:
1780 case Instruction::FPToUI:
1781 case Instruction::FPToSI:
1782 return false; // These always modify bits
1783 case Instruction::BitCast:
1784 return true; // BitCast never modifies bits.
1785 case Instruction::PtrToInt:
1786 return IntPtrTy->getPrimitiveSizeInBits() ==
1787 getType()->getPrimitiveSizeInBits();
1788 case Instruction::IntToPtr:
1789 return IntPtrTy->getPrimitiveSizeInBits() ==
1790 getOperand(0)->getType()->getPrimitiveSizeInBits();
1794 /// This function determines if a pair of casts can be eliminated and what
1795 /// opcode should be used in the elimination. This assumes that there are two
1796 /// instructions like this:
1797 /// * %F = firstOpcode SrcTy %x to MidTy
1798 /// * %S = secondOpcode MidTy %F to DstTy
1799 /// The function returns a resultOpcode so these two casts can be replaced with:
1800 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1801 /// If no such cast is permited, the function returns 0.
1802 unsigned CastInst::isEliminableCastPair(
1803 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1804 const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1806 // Define the 144 possibilities for these two cast instructions. The values
1807 // in this matrix determine what to do in a given situation and select the
1808 // case in the switch below. The rows correspond to firstOp, the columns
1809 // correspond to secondOp. In looking at the table below, keep in mind
1810 // the following cast properties:
1812 // Size Compare Source Destination
1813 // Operator Src ? Size Type Sign Type Sign
1814 // -------- ------------ ------------------- ---------------------
1815 // TRUNC > Integer Any Integral Any
1816 // ZEXT < Integral Unsigned Integer Any
1817 // SEXT < Integral Signed Integer Any
1818 // FPTOUI n/a FloatPt n/a Integral Unsigned
1819 // FPTOSI n/a FloatPt n/a Integral Signed
1820 // UITOFP n/a Integral Unsigned FloatPt n/a
1821 // SITOFP n/a Integral Signed FloatPt n/a
1822 // FPTRUNC > FloatPt n/a FloatPt n/a
1823 // FPEXT < FloatPt n/a FloatPt n/a
1824 // PTRTOINT n/a Pointer n/a Integral Unsigned
1825 // INTTOPTR n/a Integral Unsigned Pointer n/a
1826 // BITCONVERT = FirstClass n/a FirstClass n/a
1828 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1829 // For example, we could merge "fptoui double to uint" + "zext uint to ulong",
1830 // into "fptoui double to ulong", but this loses information about the range
1831 // of the produced value (we no longer know the top-part is all zeros).
1832 // Further this conversion is often much more expensive for typical hardware,
1833 // and causes issues when building libgcc. We disallow fptosi+sext for the
1834 // same reason.
1835 const unsigned numCastOps =
1836 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1837 static const uint8_t CastResults[numCastOps][numCastOps] = {
1838 // T F F U S F F P I B -+
1839 // R Z S P P I I T P 2 N T |
1840 // U E E 2 2 2 2 R E I T C +- secondOp
1841 // N X X U S F F N X N 2 V |
1842 // C T T I I P P C T T P T -+
1843 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1844 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1845 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1846 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1847 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1848 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1849 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1850 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1851 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1852 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1853 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1854 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1857 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1858 [secondOp-Instruction::CastOpsBegin];
1859 switch (ElimCase) {
1860 case 0:
1861 // categorically disallowed
1862 return 0;
1863 case 1:
1864 // allowed, use first cast's opcode
1865 return firstOp;
1866 case 2:
1867 // allowed, use second cast's opcode
1868 return secondOp;
1869 case 3:
1870 // no-op cast in second op implies firstOp as long as the DestTy
1871 // is integer
1872 if (DstTy->isInteger())
1873 return firstOp;
1874 return 0;
1875 case 4:
1876 // no-op cast in second op implies firstOp as long as the DestTy
1877 // is floating point
1878 if (DstTy->isFloatingPoint())
1879 return firstOp;
1880 return 0;
1881 case 5:
1882 // no-op cast in first op implies secondOp as long as the SrcTy
1883 // is an integer
1884 if (SrcTy->isInteger())
1885 return secondOp;
1886 return 0;
1887 case 6:
1888 // no-op cast in first op implies secondOp as long as the SrcTy
1889 // is a floating point
1890 if (SrcTy->isFloatingPoint())
1891 return secondOp;
1892 return 0;
1893 case 7: {
1894 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1895 unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
1896 unsigned MidSize = MidTy->getPrimitiveSizeInBits();
1897 if (MidSize >= PtrSize)
1898 return Instruction::BitCast;
1899 return 0;
1901 case 8: {
1902 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
1903 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
1904 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
1905 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1906 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1907 if (SrcSize == DstSize)
1908 return Instruction::BitCast;
1909 else if (SrcSize < DstSize)
1910 return firstOp;
1911 return secondOp;
1913 case 9: // zext, sext -> zext, because sext can't sign extend after zext
1914 return Instruction::ZExt;
1915 case 10:
1916 // fpext followed by ftrunc is allowed if the bit size returned to is
1917 // the same as the original, in which case its just a bitcast
1918 if (SrcTy == DstTy)
1919 return Instruction::BitCast;
1920 return 0; // If the types are not the same we can't eliminate it.
1921 case 11:
1922 // bitcast followed by ptrtoint is allowed as long as the bitcast
1923 // is a pointer to pointer cast.
1924 if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
1925 return secondOp;
1926 return 0;
1927 case 12:
1928 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
1929 if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
1930 return firstOp;
1931 return 0;
1932 case 13: {
1933 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1934 unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
1935 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1936 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1937 if (SrcSize <= PtrSize && SrcSize == DstSize)
1938 return Instruction::BitCast;
1939 return 0;
1941 case 99:
1942 // cast combination can't happen (error in input). This is for all cases
1943 // where the MidTy is not the same for the two cast instructions.
1944 assert(!"Invalid Cast Combination");
1945 return 0;
1946 default:
1947 assert(!"Error in CastResults table!!!");
1948 return 0;
1950 return 0;
1953 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
1954 const std::string &Name, Instruction *InsertBefore) {
1955 // Construct and return the appropriate CastInst subclass
1956 switch (op) {
1957 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
1958 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
1959 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
1960 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
1961 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
1962 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
1963 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
1964 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
1965 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
1966 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
1967 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
1968 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
1969 default:
1970 assert(!"Invalid opcode provided");
1972 return 0;
1975 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
1976 const std::string &Name, BasicBlock *InsertAtEnd) {
1977 // Construct and return the appropriate CastInst subclass
1978 switch (op) {
1979 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
1980 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
1981 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
1982 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
1983 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
1984 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
1985 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
1986 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
1987 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
1988 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
1989 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
1990 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
1991 default:
1992 assert(!"Invalid opcode provided");
1994 return 0;
1997 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
1998 const std::string &Name,
1999 Instruction *InsertBefore) {
2000 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
2001 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2002 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2005 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2006 const std::string &Name,
2007 BasicBlock *InsertAtEnd) {
2008 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
2009 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2010 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2013 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2014 const std::string &Name,
2015 Instruction *InsertBefore) {
2016 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
2017 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2018 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2021 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2022 const std::string &Name,
2023 BasicBlock *InsertAtEnd) {
2024 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
2025 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2026 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2029 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2030 const std::string &Name,
2031 Instruction *InsertBefore) {
2032 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
2033 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2034 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2037 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2038 const std::string &Name,
2039 BasicBlock *InsertAtEnd) {
2040 if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
2041 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2042 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2045 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2046 const std::string &Name,
2047 BasicBlock *InsertAtEnd) {
2048 assert(isa<PointerType>(S->getType()) && "Invalid cast");
2049 assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
2050 "Invalid cast");
2052 if (Ty->isInteger())
2053 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2054 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2057 /// @brief Create a BitCast or a PtrToInt cast instruction
2058 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2059 const std::string &Name,
2060 Instruction *InsertBefore) {
2061 assert(isa<PointerType>(S->getType()) && "Invalid cast");
2062 assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
2063 "Invalid cast");
2065 if (Ty->isInteger())
2066 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2067 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2070 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2071 bool isSigned, const std::string &Name,
2072 Instruction *InsertBefore) {
2073 assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
2074 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
2075 unsigned DstBits = Ty->getPrimitiveSizeInBits();
2076 Instruction::CastOps opcode =
2077 (SrcBits == DstBits ? Instruction::BitCast :
2078 (SrcBits > DstBits ? Instruction::Trunc :
2079 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2080 return Create(opcode, C, Ty, Name, InsertBefore);
2083 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2084 bool isSigned, const std::string &Name,
2085 BasicBlock *InsertAtEnd) {
2086 assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
2087 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
2088 unsigned DstBits = Ty->getPrimitiveSizeInBits();
2089 Instruction::CastOps opcode =
2090 (SrcBits == DstBits ? Instruction::BitCast :
2091 (SrcBits > DstBits ? Instruction::Trunc :
2092 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2093 return Create(opcode, C, Ty, Name, InsertAtEnd);
2096 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2097 const std::string &Name,
2098 Instruction *InsertBefore) {
2099 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
2100 "Invalid cast");
2101 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
2102 unsigned DstBits = Ty->getPrimitiveSizeInBits();
2103 Instruction::CastOps opcode =
2104 (SrcBits == DstBits ? Instruction::BitCast :
2105 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2106 return Create(opcode, C, Ty, Name, InsertBefore);
2109 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2110 const std::string &Name,
2111 BasicBlock *InsertAtEnd) {
2112 assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
2113 "Invalid cast");
2114 unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
2115 unsigned DstBits = Ty->getPrimitiveSizeInBits();
2116 Instruction::CastOps opcode =
2117 (SrcBits == DstBits ? Instruction::BitCast :
2118 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2119 return Create(opcode, C, Ty, Name, InsertAtEnd);
2122 // Check whether it is valid to call getCastOpcode for these types.
2123 // This routine must be kept in sync with getCastOpcode.
2124 bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2125 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2126 return false;
2128 if (SrcTy == DestTy)
2129 return true;
2131 // Get the bit sizes, we'll need these
2132 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
2133 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
2135 // Run through the possibilities ...
2136 if (DestTy->isInteger()) { // Casting to integral
2137 if (SrcTy->isInteger()) { // Casting from integral
2138 return true;
2139 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
2140 return true;
2141 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2142 // Casting from vector
2143 return DestBits == PTy->getBitWidth();
2144 } else { // Casting from something else
2145 return isa<PointerType>(SrcTy);
2147 } else if (DestTy->isFloatingPoint()) { // Casting to floating pt
2148 if (SrcTy->isInteger()) { // Casting from integral
2149 return true;
2150 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
2151 return true;
2152 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2153 // Casting from vector
2154 return DestBits == PTy->getBitWidth();
2155 } else { // Casting from something else
2156 return false;
2158 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2159 // Casting to vector
2160 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2161 // Casting from vector
2162 return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
2163 } else { // Casting from something else
2164 return DestPTy->getBitWidth() == SrcBits;
2166 } else if (isa<PointerType>(DestTy)) { // Casting to pointer
2167 if (isa<PointerType>(SrcTy)) { // Casting from pointer
2168 return true;
2169 } else if (SrcTy->isInteger()) { // Casting from integral
2170 return true;
2171 } else { // Casting from something else
2172 return false;
2174 } else { // Casting to something else
2175 return false;
2179 // Provide a way to get a "cast" where the cast opcode is inferred from the
2180 // types and size of the operand. This, basically, is a parallel of the
2181 // logic in the castIsValid function below. This axiom should hold:
2182 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2183 // should not assert in castIsValid. In other words, this produces a "correct"
2184 // casting opcode for the arguments passed to it.
2185 // This routine must be kept in sync with isCastable.
2186 Instruction::CastOps
2187 CastInst::getCastOpcode(
2188 const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2189 // Get the bit sizes, we'll need these
2190 const Type *SrcTy = Src->getType();
2191 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
2192 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
2194 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2195 "Only first class types are castable!");
2197 // Run through the possibilities ...
2198 if (DestTy->isInteger()) { // Casting to integral
2199 if (SrcTy->isInteger()) { // Casting from integral
2200 if (DestBits < SrcBits)
2201 return Trunc; // int -> smaller int
2202 else if (DestBits > SrcBits) { // its an extension
2203 if (SrcIsSigned)
2204 return SExt; // signed -> SEXT
2205 else
2206 return ZExt; // unsigned -> ZEXT
2207 } else {
2208 return BitCast; // Same size, No-op cast
2210 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
2211 if (DestIsSigned)
2212 return FPToSI; // FP -> sint
2213 else
2214 return FPToUI; // FP -> uint
2215 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2216 assert(DestBits == PTy->getBitWidth() &&
2217 "Casting vector to integer of different width");
2218 PTy = NULL;
2219 return BitCast; // Same size, no-op cast
2220 } else {
2221 assert(isa<PointerType>(SrcTy) &&
2222 "Casting from a value that is not first-class type");
2223 return PtrToInt; // ptr -> int
2225 } else if (DestTy->isFloatingPoint()) { // Casting to floating pt
2226 if (SrcTy->isInteger()) { // Casting from integral
2227 if (SrcIsSigned)
2228 return SIToFP; // sint -> FP
2229 else
2230 return UIToFP; // uint -> FP
2231 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
2232 if (DestBits < SrcBits) {
2233 return FPTrunc; // FP -> smaller FP
2234 } else if (DestBits > SrcBits) {
2235 return FPExt; // FP -> larger FP
2236 } else {
2237 return BitCast; // same size, no-op cast
2239 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2240 assert(DestBits == PTy->getBitWidth() &&
2241 "Casting vector to floating point of different width");
2242 PTy = NULL;
2243 return BitCast; // same size, no-op cast
2244 } else {
2245 assert(0 && "Casting pointer or non-first class to float");
2247 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2248 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2249 assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2250 "Casting vector to vector of different widths");
2251 SrcPTy = NULL;
2252 return BitCast; // vector -> vector
2253 } else if (DestPTy->getBitWidth() == SrcBits) {
2254 return BitCast; // float/int -> vector
2255 } else {
2256 assert(!"Illegal cast to vector (wrong type or size)");
2258 } else if (isa<PointerType>(DestTy)) {
2259 if (isa<PointerType>(SrcTy)) {
2260 return BitCast; // ptr -> ptr
2261 } else if (SrcTy->isInteger()) {
2262 return IntToPtr; // int -> ptr
2263 } else {
2264 assert(!"Casting pointer to other than pointer or int");
2266 } else {
2267 assert(!"Casting to type that is not first-class");
2270 // If we fall through to here we probably hit an assertion cast above
2271 // and assertions are not turned on. Anything we return is an error, so
2272 // BitCast is as good a choice as any.
2273 return BitCast;
2276 //===----------------------------------------------------------------------===//
2277 // CastInst SubClass Constructors
2278 //===----------------------------------------------------------------------===//
2280 /// Check that the construction parameters for a CastInst are correct. This
2281 /// could be broken out into the separate constructors but it is useful to have
2282 /// it in one place and to eliminate the redundant code for getting the sizes
2283 /// of the types involved.
2284 bool
2285 CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2287 // Check for type sanity on the arguments
2288 const Type *SrcTy = S->getType();
2289 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
2290 return false;
2292 // Get the size of the types in bits, we'll need this later
2293 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
2294 unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
2296 // Switch on the opcode provided
2297 switch (op) {
2298 default: return false; // This is an input error
2299 case Instruction::Trunc:
2300 return SrcTy->isIntOrIntVector() &&
2301 DstTy->isIntOrIntVector()&& SrcBitSize > DstBitSize;
2302 case Instruction::ZExt:
2303 return SrcTy->isIntOrIntVector() &&
2304 DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
2305 case Instruction::SExt:
2306 return SrcTy->isIntOrIntVector() &&
2307 DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
2308 case Instruction::FPTrunc:
2309 return SrcTy->isFPOrFPVector() &&
2310 DstTy->isFPOrFPVector() &&
2311 SrcBitSize > DstBitSize;
2312 case Instruction::FPExt:
2313 return SrcTy->isFPOrFPVector() &&
2314 DstTy->isFPOrFPVector() &&
2315 SrcBitSize < DstBitSize;
2316 case Instruction::UIToFP:
2317 case Instruction::SIToFP:
2318 if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2319 if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2320 return SVTy->getElementType()->isIntOrIntVector() &&
2321 DVTy->getElementType()->isFPOrFPVector() &&
2322 SVTy->getNumElements() == DVTy->getNumElements();
2325 return SrcTy->isIntOrIntVector() && DstTy->isFPOrFPVector();
2326 case Instruction::FPToUI:
2327 case Instruction::FPToSI:
2328 if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2329 if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2330 return SVTy->getElementType()->isFPOrFPVector() &&
2331 DVTy->getElementType()->isIntOrIntVector() &&
2332 SVTy->getNumElements() == DVTy->getNumElements();
2335 return SrcTy->isFPOrFPVector() && DstTy->isIntOrIntVector();
2336 case Instruction::PtrToInt:
2337 return isa<PointerType>(SrcTy) && DstTy->isInteger();
2338 case Instruction::IntToPtr:
2339 return SrcTy->isInteger() && isa<PointerType>(DstTy);
2340 case Instruction::BitCast:
2341 // BitCast implies a no-op cast of type only. No bits change.
2342 // However, you can't cast pointers to anything but pointers.
2343 if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
2344 return false;
2346 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2347 // these cases, the cast is okay if the source and destination bit widths
2348 // are identical.
2349 return SrcBitSize == DstBitSize;
2353 TruncInst::TruncInst(
2354 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2355 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2356 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2359 TruncInst::TruncInst(
2360 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2361 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2362 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2365 ZExtInst::ZExtInst(
2366 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2367 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2368 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2371 ZExtInst::ZExtInst(
2372 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2373 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2374 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2376 SExtInst::SExtInst(
2377 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2378 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2379 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2382 SExtInst::SExtInst(
2383 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2384 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2385 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2388 FPTruncInst::FPTruncInst(
2389 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2390 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2391 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2394 FPTruncInst::FPTruncInst(
2395 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2396 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2397 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2400 FPExtInst::FPExtInst(
2401 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2402 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2403 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2406 FPExtInst::FPExtInst(
2407 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2408 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2409 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2412 UIToFPInst::UIToFPInst(
2413 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2414 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2415 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2418 UIToFPInst::UIToFPInst(
2419 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2420 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2421 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2424 SIToFPInst::SIToFPInst(
2425 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2426 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2427 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2430 SIToFPInst::SIToFPInst(
2431 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2432 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2433 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2436 FPToUIInst::FPToUIInst(
2437 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2438 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2439 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2442 FPToUIInst::FPToUIInst(
2443 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2444 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2445 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2448 FPToSIInst::FPToSIInst(
2449 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2450 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2451 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2454 FPToSIInst::FPToSIInst(
2455 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2456 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2457 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2460 PtrToIntInst::PtrToIntInst(
2461 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2462 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2463 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2466 PtrToIntInst::PtrToIntInst(
2467 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2468 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2469 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2472 IntToPtrInst::IntToPtrInst(
2473 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2474 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2475 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2478 IntToPtrInst::IntToPtrInst(
2479 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2480 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2481 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2484 BitCastInst::BitCastInst(
2485 Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2486 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2487 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2490 BitCastInst::BitCastInst(
2491 Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2492 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2493 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2496 //===----------------------------------------------------------------------===//
2497 // CmpInst Classes
2498 //===----------------------------------------------------------------------===//
2500 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2501 Value *LHS, Value *RHS, const std::string &Name,
2502 Instruction *InsertBefore)
2503 : Instruction(ty, op,
2504 OperandTraits<CmpInst>::op_begin(this),
2505 OperandTraits<CmpInst>::operands(this),
2506 InsertBefore) {
2507 Op<0>() = LHS;
2508 Op<1>() = RHS;
2509 SubclassData = predicate;
2510 setName(Name);
2513 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2514 Value *LHS, Value *RHS, const std::string &Name,
2515 BasicBlock *InsertAtEnd)
2516 : Instruction(ty, op,
2517 OperandTraits<CmpInst>::op_begin(this),
2518 OperandTraits<CmpInst>::operands(this),
2519 InsertAtEnd) {
2520 Op<0>() = LHS;
2521 Op<1>() = RHS;
2522 SubclassData = predicate;
2523 setName(Name);
2526 CmpInst *
2527 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2528 const std::string &Name, Instruction *InsertBefore) {
2529 if (Op == Instruction::ICmp) {
2530 return new ICmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
2531 InsertBefore);
2533 if (Op == Instruction::FCmp) {
2534 return new FCmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
2535 InsertBefore);
2537 if (Op == Instruction::VICmp) {
2538 return new VICmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
2539 InsertBefore);
2541 return new VFCmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
2542 InsertBefore);
2545 CmpInst *
2546 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2547 const std::string &Name, BasicBlock *InsertAtEnd) {
2548 if (Op == Instruction::ICmp) {
2549 return new ICmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
2550 InsertAtEnd);
2552 if (Op == Instruction::FCmp) {
2553 return new FCmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
2554 InsertAtEnd);
2556 if (Op == Instruction::VICmp) {
2557 return new VICmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
2558 InsertAtEnd);
2560 return new VFCmpInst(CmpInst::Predicate(predicate), S1, S2, Name,
2561 InsertAtEnd);
2564 void CmpInst::swapOperands() {
2565 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2566 IC->swapOperands();
2567 else
2568 cast<FCmpInst>(this)->swapOperands();
2571 bool CmpInst::isCommutative() {
2572 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2573 return IC->isCommutative();
2574 return cast<FCmpInst>(this)->isCommutative();
2577 bool CmpInst::isEquality() {
2578 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2579 return IC->isEquality();
2580 return cast<FCmpInst>(this)->isEquality();
2584 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2585 switch (pred) {
2586 default: assert(!"Unknown cmp predicate!");
2587 case ICMP_EQ: return ICMP_NE;
2588 case ICMP_NE: return ICMP_EQ;
2589 case ICMP_UGT: return ICMP_ULE;
2590 case ICMP_ULT: return ICMP_UGE;
2591 case ICMP_UGE: return ICMP_ULT;
2592 case ICMP_ULE: return ICMP_UGT;
2593 case ICMP_SGT: return ICMP_SLE;
2594 case ICMP_SLT: return ICMP_SGE;
2595 case ICMP_SGE: return ICMP_SLT;
2596 case ICMP_SLE: return ICMP_SGT;
2598 case FCMP_OEQ: return FCMP_UNE;
2599 case FCMP_ONE: return FCMP_UEQ;
2600 case FCMP_OGT: return FCMP_ULE;
2601 case FCMP_OLT: return FCMP_UGE;
2602 case FCMP_OGE: return FCMP_ULT;
2603 case FCMP_OLE: return FCMP_UGT;
2604 case FCMP_UEQ: return FCMP_ONE;
2605 case FCMP_UNE: return FCMP_OEQ;
2606 case FCMP_UGT: return FCMP_OLE;
2607 case FCMP_ULT: return FCMP_OGE;
2608 case FCMP_UGE: return FCMP_OLT;
2609 case FCMP_ULE: return FCMP_OGT;
2610 case FCMP_ORD: return FCMP_UNO;
2611 case FCMP_UNO: return FCMP_ORD;
2612 case FCMP_TRUE: return FCMP_FALSE;
2613 case FCMP_FALSE: return FCMP_TRUE;
2617 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2618 switch (pred) {
2619 default: assert(! "Unknown icmp predicate!");
2620 case ICMP_EQ: case ICMP_NE:
2621 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2622 return pred;
2623 case ICMP_UGT: return ICMP_SGT;
2624 case ICMP_ULT: return ICMP_SLT;
2625 case ICMP_UGE: return ICMP_SGE;
2626 case ICMP_ULE: return ICMP_SLE;
2630 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2631 switch (pred) {
2632 default: assert(! "Unknown icmp predicate!");
2633 case ICMP_EQ: case ICMP_NE:
2634 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2635 return pred;
2636 case ICMP_SGT: return ICMP_UGT;
2637 case ICMP_SLT: return ICMP_ULT;
2638 case ICMP_SGE: return ICMP_UGE;
2639 case ICMP_SLE: return ICMP_ULE;
2643 bool ICmpInst::isSignedPredicate(Predicate pred) {
2644 switch (pred) {
2645 default: assert(! "Unknown icmp predicate!");
2646 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2647 return true;
2648 case ICMP_EQ: case ICMP_NE: case ICMP_UGT: case ICMP_ULT:
2649 case ICMP_UGE: case ICMP_ULE:
2650 return false;
2654 /// Initialize a set of values that all satisfy the condition with C.
2656 ConstantRange
2657 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2658 APInt Lower(C);
2659 APInt Upper(C);
2660 uint32_t BitWidth = C.getBitWidth();
2661 switch (pred) {
2662 default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
2663 case ICmpInst::ICMP_EQ: Upper++; break;
2664 case ICmpInst::ICMP_NE: Lower++; break;
2665 case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
2666 case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
2667 case ICmpInst::ICMP_UGT:
2668 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2669 break;
2670 case ICmpInst::ICMP_SGT:
2671 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2672 break;
2673 case ICmpInst::ICMP_ULE:
2674 Lower = APInt::getMinValue(BitWidth); Upper++;
2675 break;
2676 case ICmpInst::ICMP_SLE:
2677 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2678 break;
2679 case ICmpInst::ICMP_UGE:
2680 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2681 break;
2682 case ICmpInst::ICMP_SGE:
2683 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2684 break;
2686 return ConstantRange(Lower, Upper);
2689 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2690 switch (pred) {
2691 default: assert(!"Unknown cmp predicate!");
2692 case ICMP_EQ: case ICMP_NE:
2693 return pred;
2694 case ICMP_SGT: return ICMP_SLT;
2695 case ICMP_SLT: return ICMP_SGT;
2696 case ICMP_SGE: return ICMP_SLE;
2697 case ICMP_SLE: return ICMP_SGE;
2698 case ICMP_UGT: return ICMP_ULT;
2699 case ICMP_ULT: return ICMP_UGT;
2700 case ICMP_UGE: return ICMP_ULE;
2701 case ICMP_ULE: return ICMP_UGE;
2703 case FCMP_FALSE: case FCMP_TRUE:
2704 case FCMP_OEQ: case FCMP_ONE:
2705 case FCMP_UEQ: case FCMP_UNE:
2706 case FCMP_ORD: case FCMP_UNO:
2707 return pred;
2708 case FCMP_OGT: return FCMP_OLT;
2709 case FCMP_OLT: return FCMP_OGT;
2710 case FCMP_OGE: return FCMP_OLE;
2711 case FCMP_OLE: return FCMP_OGE;
2712 case FCMP_UGT: return FCMP_ULT;
2713 case FCMP_ULT: return FCMP_UGT;
2714 case FCMP_UGE: return FCMP_ULE;
2715 case FCMP_ULE: return FCMP_UGE;
2719 bool CmpInst::isUnsigned(unsigned short predicate) {
2720 switch (predicate) {
2721 default: return false;
2722 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2723 case ICmpInst::ICMP_UGE: return true;
2727 bool CmpInst::isSigned(unsigned short predicate){
2728 switch (predicate) {
2729 default: return false;
2730 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2731 case ICmpInst::ICMP_SGE: return true;
2735 bool CmpInst::isOrdered(unsigned short predicate) {
2736 switch (predicate) {
2737 default: return false;
2738 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2739 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2740 case FCmpInst::FCMP_ORD: return true;
2744 bool CmpInst::isUnordered(unsigned short predicate) {
2745 switch (predicate) {
2746 default: return false;
2747 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2748 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2749 case FCmpInst::FCMP_UNO: return true;
2753 //===----------------------------------------------------------------------===//
2754 // SwitchInst Implementation
2755 //===----------------------------------------------------------------------===//
2757 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
2758 assert(Value && Default);
2759 ReservedSpace = 2+NumCases*2;
2760 NumOperands = 2;
2761 OperandList = allocHungoffUses(ReservedSpace);
2763 OperandList[0] = Value;
2764 OperandList[1] = Default;
2767 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2768 /// switch on and a default destination. The number of additional cases can
2769 /// be specified here to make memory allocation more efficient. This
2770 /// constructor can also autoinsert before another instruction.
2771 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2772 Instruction *InsertBefore)
2773 : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) {
2774 init(Value, Default, NumCases);
2777 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2778 /// switch on and a default destination. The number of additional cases can
2779 /// be specified here to make memory allocation more efficient. This
2780 /// constructor also autoinserts at the end of the specified BasicBlock.
2781 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2782 BasicBlock *InsertAtEnd)
2783 : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) {
2784 init(Value, Default, NumCases);
2787 SwitchInst::SwitchInst(const SwitchInst &SI)
2788 : TerminatorInst(Type::VoidTy, Instruction::Switch,
2789 allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
2790 Use *OL = OperandList, *InOL = SI.OperandList;
2791 for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
2792 OL[i] = InOL[i];
2793 OL[i+1] = InOL[i+1];
2797 SwitchInst::~SwitchInst() {
2798 dropHungoffUses(OperandList);
2802 /// addCase - Add an entry to the switch instruction...
2804 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2805 unsigned OpNo = NumOperands;
2806 if (OpNo+2 > ReservedSpace)
2807 resizeOperands(0); // Get more space!
2808 // Initialize some new operands.
2809 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2810 NumOperands = OpNo+2;
2811 OperandList[OpNo] = OnVal;
2812 OperandList[OpNo+1] = Dest;
2815 /// removeCase - This method removes the specified successor from the switch
2816 /// instruction. Note that this cannot be used to remove the default
2817 /// destination (successor #0).
2819 void SwitchInst::removeCase(unsigned idx) {
2820 assert(idx != 0 && "Cannot remove the default case!");
2821 assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
2823 unsigned NumOps = getNumOperands();
2824 Use *OL = OperandList;
2826 // Move everything after this operand down.
2828 // FIXME: we could just swap with the end of the list, then erase. However,
2829 // client might not expect this to happen. The code as it is thrashes the
2830 // use/def lists, which is kinda lame.
2831 for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
2832 OL[i-2] = OL[i];
2833 OL[i-2+1] = OL[i+1];
2836 // Nuke the last value.
2837 OL[NumOps-2].set(0);
2838 OL[NumOps-2+1].set(0);
2839 NumOperands = NumOps-2;
2842 /// resizeOperands - resize operands - This adjusts the length of the operands
2843 /// list according to the following behavior:
2844 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
2845 /// of operation. This grows the number of ops by 3 times.
2846 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
2847 /// 3. If NumOps == NumOperands, trim the reserved space.
2849 void SwitchInst::resizeOperands(unsigned NumOps) {
2850 unsigned e = getNumOperands();
2851 if (NumOps == 0) {
2852 NumOps = e*3;
2853 } else if (NumOps*2 > NumOperands) {
2854 // No resize needed.
2855 if (ReservedSpace >= NumOps) return;
2856 } else if (NumOps == NumOperands) {
2857 if (ReservedSpace == NumOps) return;
2858 } else {
2859 return;
2862 ReservedSpace = NumOps;
2863 Use *NewOps = allocHungoffUses(NumOps);
2864 Use *OldOps = OperandList;
2865 for (unsigned i = 0; i != e; ++i) {
2866 NewOps[i] = OldOps[i];
2868 OperandList = NewOps;
2869 if (OldOps) Use::zap(OldOps, OldOps + e, true);
2873 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
2874 return getSuccessor(idx);
2876 unsigned SwitchInst::getNumSuccessorsV() const {
2877 return getNumSuccessors();
2879 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
2880 setSuccessor(idx, B);
2883 // Define these methods here so vtables don't get emitted into every translation
2884 // unit that uses these classes.
2886 GetElementPtrInst *GetElementPtrInst::clone() const {
2887 return new(getNumOperands()) GetElementPtrInst(*this);
2890 BinaryOperator *BinaryOperator::clone() const {
2891 return Create(getOpcode(), Op<0>(), Op<1>());
2894 FCmpInst* FCmpInst::clone() const {
2895 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
2897 ICmpInst* ICmpInst::clone() const {
2898 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
2901 VFCmpInst* VFCmpInst::clone() const {
2902 return new VFCmpInst(getPredicate(), Op<0>(), Op<1>());
2904 VICmpInst* VICmpInst::clone() const {
2905 return new VICmpInst(getPredicate(), Op<0>(), Op<1>());
2908 ExtractValueInst *ExtractValueInst::clone() const {
2909 return new ExtractValueInst(*this);
2911 InsertValueInst *InsertValueInst::clone() const {
2912 return new InsertValueInst(*this);
2916 MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
2917 AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
2918 FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
2919 LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
2920 StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
2921 CastInst *TruncInst::clone() const { return new TruncInst(*this); }
2922 CastInst *ZExtInst::clone() const { return new ZExtInst(*this); }
2923 CastInst *SExtInst::clone() const { return new SExtInst(*this); }
2924 CastInst *FPTruncInst::clone() const { return new FPTruncInst(*this); }
2925 CastInst *FPExtInst::clone() const { return new FPExtInst(*this); }
2926 CastInst *UIToFPInst::clone() const { return new UIToFPInst(*this); }
2927 CastInst *SIToFPInst::clone() const { return new SIToFPInst(*this); }
2928 CastInst *FPToUIInst::clone() const { return new FPToUIInst(*this); }
2929 CastInst *FPToSIInst::clone() const { return new FPToSIInst(*this); }
2930 CastInst *PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
2931 CastInst *IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
2932 CastInst *BitCastInst::clone() const { return new BitCastInst(*this); }
2933 CallInst *CallInst::clone() const {
2934 return new(getNumOperands()) CallInst(*this);
2936 SelectInst *SelectInst::clone() const {
2937 return new(getNumOperands()) SelectInst(*this);
2939 VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
2941 ExtractElementInst *ExtractElementInst::clone() const {
2942 return new ExtractElementInst(*this);
2944 InsertElementInst *InsertElementInst::clone() const {
2945 return InsertElementInst::Create(*this);
2947 ShuffleVectorInst *ShuffleVectorInst::clone() const {
2948 return new ShuffleVectorInst(*this);
2950 PHINode *PHINode::clone() const { return new PHINode(*this); }
2951 ReturnInst *ReturnInst::clone() const {
2952 return new(getNumOperands()) ReturnInst(*this);
2954 BranchInst *BranchInst::clone() const {
2955 unsigned Ops(getNumOperands());
2956 return new(Ops, Ops == 1) BranchInst(*this);
2958 SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
2959 InvokeInst *InvokeInst::clone() const {
2960 return new(getNumOperands()) InvokeInst(*this);
2962 UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
2963 UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}