Add call frame setup instruction elimination and lowerid for bunch of call-related...
[llvm/msp430.git] / lib / Target / IA64 / IA64ISelDAGToDAG.cpp
blob9800c506ca9eabd297853b0a05b6c75228199093
1 //===---- IA64ISelDAGToDAG.cpp - IA64 pattern matching inst selector ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for IA64,
11 // converting a legalized dag to an IA64 dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "ia64-codegen"
16 #include "IA64.h"
17 #include "IA64TargetMachine.h"
18 #include "IA64ISelLowering.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGISel.h"
23 #include "llvm/Target/TargetOptions.h"
24 #include "llvm/Constants.h"
25 #include "llvm/GlobalValue.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 using namespace llvm;
32 namespace {
33 //===--------------------------------------------------------------------===//
34 /// IA64DAGToDAGISel - IA64 specific code to select IA64 machine
35 /// instructions for SelectionDAG operations.
36 ///
37 class IA64DAGToDAGISel : public SelectionDAGISel {
38 unsigned GlobalBaseReg;
39 public:
40 explicit IA64DAGToDAGISel(IA64TargetMachine &TM)
41 : SelectionDAGISel(TM) {}
43 virtual bool runOnFunction(Function &Fn) {
44 // Make sure we re-emit a set of the global base reg if necessary
45 GlobalBaseReg = 0;
46 return SelectionDAGISel::runOnFunction(Fn);
49 /// getI64Imm - Return a target constant with the specified value, of type
50 /// i64.
51 inline SDValue getI64Imm(uint64_t Imm) {
52 return CurDAG->getTargetConstant(Imm, MVT::i64);
55 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
56 /// base register. Return the virtual register that holds this value.
57 // SDValue getGlobalBaseReg(); TODO: hmm
59 // Select - Convert the specified operand from a target-independent to a
60 // target-specific node if it hasn't already been changed.
61 SDNode *Select(SDValue N);
63 SDNode *SelectIntImmediateExpr(SDValue LHS, SDValue RHS,
64 unsigned OCHi, unsigned OCLo,
65 bool IsArithmetic = false,
66 bool Negate = false);
67 SDNode *SelectBitfieldInsert(SDNode *N);
69 /// SelectCC - Select a comparison of the specified values with the
70 /// specified condition code, returning the CR# of the expression.
71 SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC);
73 /// SelectAddr - Given the specified address, return the two operands for a
74 /// load/store instruction, and return true if it should be an indexed [r+r]
75 /// operation.
76 bool SelectAddr(SDValue Addr, SDValue &Op1, SDValue &Op2);
78 /// InstructionSelect - This callback is invoked by
79 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
80 virtual void InstructionSelect();
82 virtual const char *getPassName() const {
83 return "IA64 (Itanium) DAG->DAG Instruction Selector";
86 // Include the pieces autogenerated from the target description.
87 #include "IA64GenDAGISel.inc"
89 private:
90 SDNode *SelectDIV(SDValue Op);
94 /// InstructionSelect - This callback is invoked by
95 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
96 void IA64DAGToDAGISel::InstructionSelect() {
97 DEBUG(BB->dump());
99 // Select target instructions for the DAG.
100 SelectRoot(*CurDAG);
101 CurDAG->RemoveDeadNodes();
104 SDNode *IA64DAGToDAGISel::SelectDIV(SDValue Op) {
105 SDNode *N = Op.getNode();
106 SDValue Chain = N->getOperand(0);
107 SDValue Tmp1 = N->getOperand(0);
108 SDValue Tmp2 = N->getOperand(1);
109 DebugLoc dl = N->getDebugLoc();
111 bool isFP=false;
113 if(Tmp1.getValueType().isFloatingPoint())
114 isFP=true;
116 bool isModulus=false; // is it a division or a modulus?
117 bool isSigned=false;
119 switch(N->getOpcode()) {
120 case ISD::FDIV:
121 case ISD::SDIV: isModulus=false; isSigned=true; break;
122 case ISD::UDIV: isModulus=false; isSigned=false; break;
123 case ISD::FREM:
124 case ISD::SREM: isModulus=true; isSigned=true; break;
125 case ISD::UREM: isModulus=true; isSigned=false; break;
128 // TODO: check for integer divides by powers of 2 (or other simple patterns?)
130 SDValue TmpPR, TmpPR2;
131 SDValue TmpF1, TmpF2, TmpF3, TmpF4, TmpF5, TmpF6, TmpF7, TmpF8;
132 SDValue TmpF9, TmpF10,TmpF11,TmpF12,TmpF13,TmpF14,TmpF15;
133 SDNode *Result;
135 // we'll need copies of F0 and F1
136 SDValue F0 = CurDAG->getRegister(IA64::F0, MVT::f64);
137 SDValue F1 = CurDAG->getRegister(IA64::F1, MVT::f64);
139 // OK, emit some code:
141 if(!isFP) {
142 // first, load the inputs into FP regs.
143 TmpF1 =
144 SDValue(CurDAG->getTargetNode(IA64::SETFSIG, dl, MVT::f64, Tmp1), 0);
145 Chain = TmpF1.getValue(1);
146 TmpF2 =
147 SDValue(CurDAG->getTargetNode(IA64::SETFSIG, dl, MVT::f64, Tmp2), 0);
148 Chain = TmpF2.getValue(1);
150 // next, convert the inputs to FP
151 if(isSigned) {
152 TmpF3 =
153 SDValue(CurDAG->getTargetNode(IA64::FCVTXF, dl, MVT::f64, TmpF1), 0);
154 Chain = TmpF3.getValue(1);
155 TmpF4 =
156 SDValue(CurDAG->getTargetNode(IA64::FCVTXF, dl, MVT::f64, TmpF2), 0);
157 Chain = TmpF4.getValue(1);
158 } else { // is unsigned
159 TmpF3 =
160 SDValue(CurDAG->getTargetNode(IA64::FCVTXUFS1, dl, MVT::f64, TmpF1),
162 Chain = TmpF3.getValue(1);
163 TmpF4 =
164 SDValue(CurDAG->getTargetNode(IA64::FCVTXUFS1, dl, MVT::f64, TmpF2),
166 Chain = TmpF4.getValue(1);
169 } else { // this is an FP divide/remainder, so we 'leak' some temp
170 // regs and assign TmpF3=Tmp1, TmpF4=Tmp2
171 TmpF3=Tmp1;
172 TmpF4=Tmp2;
175 // we start by computing an approximate reciprocal (good to 9 bits?)
176 // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
177 if(isFP)
178 TmpF5 = SDValue(CurDAG->getTargetNode(IA64::FRCPAS0, dl, MVT::f64,
179 MVT::i1, TmpF3, TmpF4), 0);
180 else
181 TmpF5 = SDValue(CurDAG->getTargetNode(IA64::FRCPAS1, dl, MVT::f64,
182 MVT::i1, TmpF3, TmpF4), 0);
184 TmpPR = TmpF5.getValue(1);
185 Chain = TmpF5.getValue(2);
187 SDValue minusB;
188 if(isModulus) { // for remainders, it'll be handy to have
189 // copies of -input_b
190 minusB = SDValue(CurDAG->getTargetNode(IA64::SUB, dl, MVT::i64,
191 CurDAG->getRegister(IA64::r0, MVT::i64), Tmp2), 0);
192 Chain = minusB.getValue(1);
195 SDValue TmpE0, TmpY1, TmpE1, TmpY2;
197 SDValue OpsE0[] = { TmpF4, TmpF5, F1, TmpPR };
198 TmpE0 = SDValue(CurDAG->getTargetNode(IA64::CFNMAS1, dl, MVT::f64,
199 OpsE0, 4), 0);
200 Chain = TmpE0.getValue(1);
201 SDValue OpsY1[] = { TmpF5, TmpE0, TmpF5, TmpPR };
202 TmpY1 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, dl, MVT::f64,
203 OpsY1, 4), 0);
204 Chain = TmpY1.getValue(1);
205 SDValue OpsE1[] = { TmpE0, TmpE0, F0, TmpPR };
206 TmpE1 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, dl, MVT::f64,
207 OpsE1, 4), 0);
208 Chain = TmpE1.getValue(1);
209 SDValue OpsY2[] = { TmpY1, TmpE1, TmpY1, TmpPR };
210 TmpY2 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, dl, MVT::f64,
211 OpsY2, 4), 0);
212 Chain = TmpY2.getValue(1);
214 if(isFP) { // if this is an FP divide, we finish up here and exit early
215 if(isModulus)
216 assert(0 && "Sorry, try another FORTRAN compiler.");
218 SDValue TmpE2, TmpY3, TmpQ0, TmpR0;
220 SDValue OpsE2[] = { TmpE1, TmpE1, F0, TmpPR };
221 TmpE2 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, dl, MVT::f64,
222 OpsE2, 4), 0);
223 Chain = TmpE2.getValue(1);
224 SDValue OpsY3[] = { TmpY2, TmpE2, TmpY2, TmpPR };
225 TmpY3 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, dl, MVT::f64,
226 OpsY3, 4), 0);
227 Chain = TmpY3.getValue(1);
228 SDValue OpsQ0[] = { Tmp1, TmpY3, F0, TmpPR };
229 TmpQ0 =
230 SDValue(CurDAG->getTargetNode(IA64::CFMADS1, dl, // double prec!
231 MVT::f64, OpsQ0, 4), 0);
232 Chain = TmpQ0.getValue(1);
233 SDValue OpsR0[] = { Tmp2, TmpQ0, Tmp1, TmpPR };
234 TmpR0 =
235 SDValue(CurDAG->getTargetNode(IA64::CFNMADS1, dl, // double prec!
236 MVT::f64, OpsR0, 4), 0);
237 Chain = TmpR0.getValue(1);
239 // we want Result to have the same target register as the frcpa, so
240 // we two-address hack it. See the comment "for this to work..." on
241 // page 48 of Intel application note #245415
242 SDValue Ops[] = { TmpF5, TmpY3, TmpR0, TmpQ0, TmpPR };
243 Result = CurDAG->getTargetNode(IA64::TCFMADS0, dl, // d.p. s0 rndg!
244 MVT::f64, Ops, 5);
245 Chain = SDValue(Result, 1);
246 return Result; // XXX: early exit!
247 } else { // this is *not* an FP divide, so there's a bit left to do:
249 SDValue TmpQ2, TmpR2, TmpQ3, TmpQ;
251 SDValue OpsQ2[] = { TmpF3, TmpY2, F0, TmpPR };
252 TmpQ2 = SDValue(CurDAG->getTargetNode(IA64::CFMAS1, dl, MVT::f64,
253 OpsQ2, 4), 0);
254 Chain = TmpQ2.getValue(1);
255 SDValue OpsR2[] = { TmpF4, TmpQ2, TmpF3, TmpPR };
256 TmpR2 = SDValue(CurDAG->getTargetNode(IA64::CFNMAS1, dl, MVT::f64,
257 OpsR2, 4), 0);
258 Chain = TmpR2.getValue(1);
260 // we want TmpQ3 to have the same target register as the frcpa? maybe we
261 // should two-address hack it. See the comment "for this to work..." on page
262 // 48 of Intel application note #245415
263 SDValue OpsQ3[] = { TmpF5, TmpR2, TmpY2, TmpQ2, TmpPR };
264 TmpQ3 = SDValue(CurDAG->getTargetNode(IA64::TCFMAS1, dl, MVT::f64,
265 OpsQ3, 5), 0);
266 Chain = TmpQ3.getValue(1);
268 // STORY: without these two-address instructions (TCFMAS1 and TCFMADS0)
269 // the FPSWA won't be able to help out in the case of large/tiny
270 // arguments. Other fun bugs may also appear, e.g. 0/x = x, not 0.
272 if(isSigned)
273 TmpQ = SDValue(CurDAG->getTargetNode(IA64::FCVTFXTRUNCS1, dl,
274 MVT::f64, TmpQ3), 0);
275 else
276 TmpQ = SDValue(CurDAG->getTargetNode(IA64::FCVTFXUTRUNCS1, dl,
277 MVT::f64, TmpQ3), 0);
279 Chain = TmpQ.getValue(1);
281 if(isModulus) {
282 SDValue FPminusB =
283 SDValue(CurDAG->getTargetNode(IA64::SETFSIG, dl, MVT::f64, minusB),
285 Chain = FPminusB.getValue(1);
286 SDValue Remainder =
287 SDValue(CurDAG->getTargetNode(IA64::XMAL, dl, MVT::f64,
288 TmpQ, FPminusB, TmpF1), 0);
289 Chain = Remainder.getValue(1);
290 Result = CurDAG->getTargetNode(IA64::GETFSIG, dl, MVT::i64, Remainder);
291 Chain = SDValue(Result, 1);
292 } else { // just an integer divide
293 Result = CurDAG->getTargetNode(IA64::GETFSIG, dl, MVT::i64, TmpQ);
294 Chain = SDValue(Result, 1);
297 return Result;
298 } // wasn't an FP divide
301 // Select - Convert the specified operand from a target-independent to a
302 // target-specific node if it hasn't already been changed.
303 SDNode *IA64DAGToDAGISel::Select(SDValue Op) {
304 SDNode *N = Op.getNode();
305 if (N->isMachineOpcode())
306 return NULL; // Already selected.
307 DebugLoc dl = Op.getDebugLoc();
309 switch (N->getOpcode()) {
310 default: break;
312 case IA64ISD::BRCALL: { // XXX: this is also a hack!
313 SDValue Chain = N->getOperand(0);
314 SDValue InFlag; // Null incoming flag value.
316 if(N->getNumOperands()==3) { // we have an incoming chain, callee and flag
317 InFlag = N->getOperand(2);
320 unsigned CallOpcode;
321 SDValue CallOperand;
323 // if we can call directly, do so
324 if (GlobalAddressSDNode *GASD =
325 dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
326 CallOpcode = IA64::BRCALL_IPREL_GA;
327 CallOperand = CurDAG->getTargetGlobalAddress(GASD->getGlobal(), MVT::i64);
328 } else if (isa<ExternalSymbolSDNode>(N->getOperand(1))) {
329 // FIXME: we currently NEED this case for correctness, to avoid
330 // "non-pic code with imm reloc.n against dynamic symbol" errors
331 CallOpcode = IA64::BRCALL_IPREL_ES;
332 CallOperand = N->getOperand(1);
333 } else {
334 // otherwise we need to load the function descriptor,
335 // load the branch target (function)'s entry point and GP,
336 // branch (call) then restore the GP
337 SDValue FnDescriptor = N->getOperand(1);
339 // load the branch target's entry point [mem] and
340 // GP value [mem+8]
341 SDValue targetEntryPoint=
342 SDValue(CurDAG->getTargetNode(IA64::LD8, dl, MVT::i64, MVT::Other,
343 FnDescriptor, CurDAG->getEntryNode()), 0);
344 Chain = targetEntryPoint.getValue(1);
345 SDValue targetGPAddr=
346 SDValue(CurDAG->getTargetNode(IA64::ADDS, dl, MVT::i64,
347 FnDescriptor,
348 CurDAG->getConstant(8, MVT::i64)), 0);
349 Chain = targetGPAddr.getValue(1);
350 SDValue targetGP =
351 SDValue(CurDAG->getTargetNode(IA64::LD8, dl, MVT::i64,MVT::Other,
352 targetGPAddr, CurDAG->getEntryNode()), 0);
353 Chain = targetGP.getValue(1);
355 Chain = CurDAG->getCopyToReg(Chain, dl, IA64::r1, targetGP, InFlag);
356 InFlag = Chain.getValue(1);
357 Chain = CurDAG->getCopyToReg(Chain, dl, IA64::B6,
358 targetEntryPoint, InFlag); // FLAG these?
359 InFlag = Chain.getValue(1);
361 CallOperand = CurDAG->getRegister(IA64::B6, MVT::i64);
362 CallOpcode = IA64::BRCALL_INDIRECT;
365 // Finally, once everything is setup, emit the call itself
366 if (InFlag.getNode())
367 Chain = SDValue(CurDAG->getTargetNode(CallOpcode, dl, MVT::Other,
368 MVT::Flag, CallOperand, InFlag), 0);
369 else // there might be no arguments
370 Chain = SDValue(CurDAG->getTargetNode(CallOpcode, dl, MVT::Other,
371 MVT::Flag, CallOperand, Chain), 0);
372 InFlag = Chain.getValue(1);
374 std::vector<SDValue> CallResults;
376 CallResults.push_back(Chain);
377 CallResults.push_back(InFlag);
379 for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
380 ReplaceUses(Op.getValue(i), CallResults[i]);
381 return NULL;
384 case IA64ISD::GETFD: {
385 SDValue Input = N->getOperand(0);
386 return CurDAG->getTargetNode(IA64::GETFD, dl, MVT::i64, Input);
389 case ISD::FDIV:
390 case ISD::SDIV:
391 case ISD::UDIV:
392 case ISD::SREM:
393 case ISD::UREM:
394 return SelectDIV(Op);
396 case ISD::TargetConstantFP: {
397 SDValue Chain = CurDAG->getEntryNode(); // this is a constant, so..
399 SDValue V;
400 ConstantFPSDNode* N2 = cast<ConstantFPSDNode>(N);
401 if (N2->getValueAPF().isPosZero()) {
402 V = CurDAG->getCopyFromReg(Chain, dl, IA64::F0, MVT::f64);
403 } else if (N2->isExactlyValue(N2->getValueType(0) == MVT::f32 ?
404 APFloat(+1.0f) : APFloat(+1.0))) {
405 V = CurDAG->getCopyFromReg(Chain, dl, IA64::F1, MVT::f64);
406 } else
407 assert(0 && "Unexpected FP constant!");
409 ReplaceUses(SDValue(N, 0), V);
410 return 0;
413 case ISD::FrameIndex: { // TODO: reduce creepyness
414 int FI = cast<FrameIndexSDNode>(N)->getIndex();
415 if (N->hasOneUse())
416 return CurDAG->SelectNodeTo(N, IA64::MOV, MVT::i64,
417 CurDAG->getTargetFrameIndex(FI, MVT::i64));
418 else
419 return CurDAG->getTargetNode(IA64::MOV, dl, MVT::i64,
420 CurDAG->getTargetFrameIndex(FI, MVT::i64));
423 case ISD::ConstantPool: { // TODO: nuke the constant pool
424 // (ia64 doesn't need one)
425 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
426 Constant *C = CP->getConstVal();
427 SDValue CPI = CurDAG->getTargetConstantPool(C, MVT::i64,
428 CP->getAlignment());
429 return CurDAG->getTargetNode(IA64::ADDL_GA, dl, MVT::i64, // ?
430 CurDAG->getRegister(IA64::r1, MVT::i64), CPI);
433 case ISD::GlobalAddress: {
434 GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
435 SDValue GA = CurDAG->getTargetGlobalAddress(GV, MVT::i64);
436 SDValue Tmp =
437 SDValue(CurDAG->getTargetNode(IA64::ADDL_GA, dl, MVT::i64,
438 CurDAG->getRegister(IA64::r1,
439 MVT::i64), GA), 0);
440 return CurDAG->getTargetNode(IA64::LD8, dl, MVT::i64, MVT::Other, Tmp,
441 CurDAG->getEntryNode());
444 /* XXX
445 case ISD::ExternalSymbol: {
446 SDValue EA = CurDAG->getTargetExternalSymbol(
447 cast<ExternalSymbolSDNode>(N)->getSymbol(),
448 MVT::i64);
449 SDValue Tmp = CurDAG->getTargetNode(IA64::ADDL_EA, dl, MVT::i64,
450 CurDAG->getRegister(IA64::r1,
451 MVT::i64),
452 EA);
453 return CurDAG->getTargetNode(IA64::LD8, dl, MVT::i64, Tmp);
457 case ISD::LOAD: { // FIXME: load -1, not 1, for bools?
458 LoadSDNode *LD = cast<LoadSDNode>(N);
459 SDValue Chain = LD->getChain();
460 SDValue Address = LD->getBasePtr();
462 MVT TypeBeingLoaded = LD->getMemoryVT();
463 unsigned Opc;
464 switch (TypeBeingLoaded.getSimpleVT()) {
465 default:
466 #ifndef NDEBUG
467 N->dump(CurDAG);
468 #endif
469 assert(0 && "Cannot load this type!");
470 case MVT::i1: { // this is a bool
471 Opc = IA64::LD1; // first we load a byte, then compare for != 0
472 if(N->getValueType(0) == MVT::i1) { // XXX: early exit!
473 return CurDAG->SelectNodeTo(N, IA64::CMPNE, MVT::i1, MVT::Other,
474 SDValue(CurDAG->getTargetNode(Opc, dl,
475 MVT::i64,
476 Address), 0),
477 CurDAG->getRegister(IA64::r0, MVT::i64),
478 Chain);
480 /* otherwise, we want to load a bool into something bigger: LD1
481 will do that for us, so we just fall through */
483 case MVT::i8: Opc = IA64::LD1; break;
484 case MVT::i16: Opc = IA64::LD2; break;
485 case MVT::i32: Opc = IA64::LD4; break;
486 case MVT::i64: Opc = IA64::LD8; break;
488 case MVT::f32: Opc = IA64::LDF4; break;
489 case MVT::f64: Opc = IA64::LDF8; break;
492 // TODO: comment this
493 return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other,
494 Address, Chain);
497 case ISD::STORE: {
498 StoreSDNode *ST = cast<StoreSDNode>(N);
499 SDValue Address = ST->getBasePtr();
500 SDValue Chain = ST->getChain();
502 unsigned Opc;
503 if (ISD::isNON_TRUNCStore(N)) {
504 switch (N->getOperand(1).getValueType().getSimpleVT()) {
505 default: assert(0 && "unknown type in store");
506 case MVT::i1: { // this is a bool
507 Opc = IA64::ST1; // we store either 0 or 1 as a byte
508 // first load zero!
509 SDValue Initial = CurDAG->getCopyFromReg(Chain, dl, IA64::r0, MVT::i64);
510 Chain = Initial.getValue(1);
511 // then load 1 into the same reg iff the predicate to store is 1
512 SDValue Tmp = ST->getValue();
513 Tmp =
514 SDValue(CurDAG->getTargetNode(IA64::TPCADDS, dl, MVT::i64, Initial,
515 CurDAG->getTargetConstant(1,
516 MVT::i64),
517 Tmp), 0);
518 return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Address, Tmp, Chain);
520 case MVT::i64: Opc = IA64::ST8; break;
521 case MVT::f64: Opc = IA64::STF8; break;
523 } else { // Truncating store
524 switch(ST->getMemoryVT().getSimpleVT()) {
525 default: assert(0 && "unknown type in truncstore");
526 case MVT::i8: Opc = IA64::ST1; break;
527 case MVT::i16: Opc = IA64::ST2; break;
528 case MVT::i32: Opc = IA64::ST4; break;
529 case MVT::f32: Opc = IA64::STF4; break;
533 SDValue N1 = N->getOperand(1);
534 SDValue N2 = N->getOperand(2);
535 return CurDAG->SelectNodeTo(N, Opc, MVT::Other, N2, N1, Chain);
538 case ISD::BRCOND: {
539 SDValue Chain = N->getOperand(0);
540 SDValue CC = N->getOperand(1);
541 MachineBasicBlock *Dest =
542 cast<BasicBlockSDNode>(N->getOperand(2))->getBasicBlock();
543 //FIXME - we do NOT need long branches all the time
544 return CurDAG->SelectNodeTo(N, IA64::BRLCOND_NOTCALL, MVT::Other, CC,
545 CurDAG->getBasicBlock(Dest), Chain);
548 case ISD::CALLSEQ_START:
549 case ISD::CALLSEQ_END: {
550 int64_t Amt = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
551 unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ?
552 IA64::ADJUSTCALLSTACKDOWN : IA64::ADJUSTCALLSTACKUP;
553 SDValue N0 = N->getOperand(0);
554 return CurDAG->SelectNodeTo(N, Opc, MVT::Other, getI64Imm(Amt), N0);
557 case ISD::BR:
558 // FIXME: we don't need long branches all the time!
559 SDValue N0 = N->getOperand(0);
560 return CurDAG->SelectNodeTo(N, IA64::BRL_NOTCALL, MVT::Other,
561 N->getOperand(1), N0);
564 return SelectCode(Op);
568 /// createIA64DAGToDAGInstructionSelector - This pass converts a legalized DAG
569 /// into an IA64-specific DAG, ready for instruction scheduling.
571 FunctionPass
572 *llvm::createIA64DAGToDAGInstructionSelector(IA64TargetMachine &TM) {
573 return new IA64DAGToDAGISel(TM);