Proper handle loading of effective address of stack slot stuff
[llvm/msp430.git] / lib / Target / CppBackend / CPPBackend.cpp
blob6adb73ae259fd4b538bbbcef0eb656fc13a6bf59
1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
13 //===----------------------------------------------------------------------===//
15 #include "CPPTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instruction.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassManager.h"
25 #include "llvm/TypeSymbolTable.h"
26 #include "llvm/Target/TargetMachineRegistry.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Streams.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Config/config.h"
34 #include <algorithm>
35 #include <set>
37 using namespace llvm;
39 static cl::opt<std::string>
40 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
41 cl::value_desc("function name"));
43 enum WhatToGenerate {
44 GenProgram,
45 GenModule,
46 GenContents,
47 GenFunction,
48 GenFunctions,
49 GenInline,
50 GenVariable,
51 GenType
54 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
55 cl::desc("Choose what kind of output to generate"),
56 cl::init(GenProgram),
57 cl::values(
58 clEnumValN(GenProgram, "program", "Generate a complete program"),
59 clEnumValN(GenModule, "module", "Generate a module definition"),
60 clEnumValN(GenContents, "contents", "Generate contents of a module"),
61 clEnumValN(GenFunction, "function", "Generate a function definition"),
62 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
63 clEnumValN(GenInline, "inline", "Generate an inline function"),
64 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
65 clEnumValN(GenType, "type", "Generate a type definition"),
66 clEnumValEnd
70 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
71 cl::desc("Specify the name of the thing to generate"),
72 cl::init("!bad!"));
74 /// CppBackendTargetMachineModule - Note that this is used on hosts
75 /// that cannot link in a library unless there are references into the
76 /// library. In particular, it seems that it is not possible to get
77 /// things to work on Win32 without this. Though it is unused, do not
78 /// remove it.
79 extern "C" int CppBackendTargetMachineModule;
80 int CppBackendTargetMachineModule = 0;
82 // Register the target.
83 static RegisterTarget<CPPTargetMachine> X("cpp", "C++ backend");
85 namespace {
86 typedef std::vector<const Type*> TypeList;
87 typedef std::map<const Type*,std::string> TypeMap;
88 typedef std::map<const Value*,std::string> ValueMap;
89 typedef std::set<std::string> NameSet;
90 typedef std::set<const Type*> TypeSet;
91 typedef std::set<const Value*> ValueSet;
92 typedef std::map<const Value*,std::string> ForwardRefMap;
94 /// CppWriter - This class is the main chunk of code that converts an LLVM
95 /// module to a C++ translation unit.
96 class CppWriter : public ModulePass {
97 raw_ostream &Out;
98 const Module *TheModule;
99 uint64_t uniqueNum;
100 TypeMap TypeNames;
101 ValueMap ValueNames;
102 TypeMap UnresolvedTypes;
103 TypeList TypeStack;
104 NameSet UsedNames;
105 TypeSet DefinedTypes;
106 ValueSet DefinedValues;
107 ForwardRefMap ForwardRefs;
108 bool is_inline;
110 public:
111 static char ID;
112 explicit CppWriter(raw_ostream &o) :
113 ModulePass(&ID), Out(o), uniqueNum(0), is_inline(false) {}
115 virtual const char *getPassName() const { return "C++ backend"; }
117 bool runOnModule(Module &M);
119 void printProgram(const std::string& fname, const std::string& modName );
120 void printModule(const std::string& fname, const std::string& modName );
121 void printContents(const std::string& fname, const std::string& modName );
122 void printFunction(const std::string& fname, const std::string& funcName );
123 void printFunctions();
124 void printInline(const std::string& fname, const std::string& funcName );
125 void printVariable(const std::string& fname, const std::string& varName );
126 void printType(const std::string& fname, const std::string& typeName );
128 void error(const std::string& msg);
130 private:
131 void printLinkageType(GlobalValue::LinkageTypes LT);
132 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
133 void printCallingConv(unsigned cc);
134 void printEscapedString(const std::string& str);
135 void printCFP(const ConstantFP* CFP);
137 std::string getCppName(const Type* val);
138 inline void printCppName(const Type* val);
140 std::string getCppName(const Value* val);
141 inline void printCppName(const Value* val);
143 void printAttributes(const AttrListPtr &PAL, const std::string &name);
144 bool printTypeInternal(const Type* Ty);
145 inline void printType(const Type* Ty);
146 void printTypes(const Module* M);
148 void printConstant(const Constant *CPV);
149 void printConstants(const Module* M);
151 void printVariableUses(const GlobalVariable *GV);
152 void printVariableHead(const GlobalVariable *GV);
153 void printVariableBody(const GlobalVariable *GV);
155 void printFunctionUses(const Function *F);
156 void printFunctionHead(const Function *F);
157 void printFunctionBody(const Function *F);
158 void printInstruction(const Instruction *I, const std::string& bbname);
159 std::string getOpName(Value*);
161 void printModuleBody();
164 static unsigned indent_level = 0;
165 inline raw_ostream& nl(raw_ostream& Out, int delta = 0) {
166 Out << "\n";
167 if (delta >= 0 || indent_level >= unsigned(-delta))
168 indent_level += delta;
169 for (unsigned i = 0; i < indent_level; ++i)
170 Out << " ";
171 return Out;
174 inline void in() { indent_level++; }
175 inline void out() { if (indent_level >0) indent_level--; }
177 inline void
178 sanitize(std::string& str) {
179 for (size_t i = 0; i < str.length(); ++i)
180 if (!isalnum(str[i]) && str[i] != '_')
181 str[i] = '_';
184 inline std::string
185 getTypePrefix(const Type* Ty ) {
186 switch (Ty->getTypeID()) {
187 case Type::VoidTyID: return "void_";
188 case Type::IntegerTyID:
189 return std::string("int") + utostr(cast<IntegerType>(Ty)->getBitWidth()) +
190 "_";
191 case Type::FloatTyID: return "float_";
192 case Type::DoubleTyID: return "double_";
193 case Type::LabelTyID: return "label_";
194 case Type::FunctionTyID: return "func_";
195 case Type::StructTyID: return "struct_";
196 case Type::ArrayTyID: return "array_";
197 case Type::PointerTyID: return "ptr_";
198 case Type::VectorTyID: return "packed_";
199 case Type::OpaqueTyID: return "opaque_";
200 default: return "other_";
202 return "unknown_";
205 // Looks up the type in the symbol table and returns a pointer to its name or
206 // a null pointer if it wasn't found. Note that this isn't the same as the
207 // Mode::getTypeName function which will return an empty string, not a null
208 // pointer if the name is not found.
209 inline const std::string*
210 findTypeName(const TypeSymbolTable& ST, const Type* Ty) {
211 TypeSymbolTable::const_iterator TI = ST.begin();
212 TypeSymbolTable::const_iterator TE = ST.end();
213 for (;TI != TE; ++TI)
214 if (TI->second == Ty)
215 return &(TI->first);
216 return 0;
219 void CppWriter::error(const std::string& msg) {
220 cerr << msg << "\n";
221 exit(2);
224 // printCFP - Print a floating point constant .. very carefully :)
225 // This makes sure that conversion to/from floating yields the same binary
226 // result so that we don't lose precision.
227 void CppWriter::printCFP(const ConstantFP *CFP) {
228 bool ignored;
229 APFloat APF = APFloat(CFP->getValueAPF()); // copy
230 if (CFP->getType() == Type::FloatTy)
231 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
232 Out << "ConstantFP::get(";
233 Out << "APFloat(";
234 #if HAVE_PRINTF_A
235 char Buffer[100];
236 sprintf(Buffer, "%A", APF.convertToDouble());
237 if ((!strncmp(Buffer, "0x", 2) ||
238 !strncmp(Buffer, "-0x", 3) ||
239 !strncmp(Buffer, "+0x", 3)) &&
240 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
241 if (CFP->getType() == Type::DoubleTy)
242 Out << "BitsToDouble(" << Buffer << ")";
243 else
244 Out << "BitsToFloat((float)" << Buffer << ")";
245 Out << ")";
246 } else {
247 #endif
248 std::string StrVal = ftostr(CFP->getValueAPF());
250 while (StrVal[0] == ' ')
251 StrVal.erase(StrVal.begin());
253 // Check to make sure that the stringized number is not some string like
254 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
255 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
256 ((StrVal[0] == '-' || StrVal[0] == '+') &&
257 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
258 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
259 if (CFP->getType() == Type::DoubleTy)
260 Out << StrVal;
261 else
262 Out << StrVal << "f";
263 } else if (CFP->getType() == Type::DoubleTy)
264 Out << "BitsToDouble(0x"
265 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
266 << "ULL) /* " << StrVal << " */";
267 else
268 Out << "BitsToFloat(0x"
269 << utohexstr((uint32_t)CFP->getValueAPF().
270 bitcastToAPInt().getZExtValue())
271 << "U) /* " << StrVal << " */";
272 Out << ")";
273 #if HAVE_PRINTF_A
275 #endif
276 Out << ")";
279 void CppWriter::printCallingConv(unsigned cc){
280 // Print the calling convention.
281 switch (cc) {
282 case CallingConv::C: Out << "CallingConv::C"; break;
283 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
284 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
285 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
286 default: Out << cc; break;
290 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
291 switch (LT) {
292 case GlobalValue::InternalLinkage:
293 Out << "GlobalValue::InternalLinkage"; break;
294 case GlobalValue::PrivateLinkage:
295 Out << "GlobalValue::PrivateLinkage"; break;
296 case GlobalValue::AvailableExternallyLinkage:
297 Out << "GlobalValue::AvailableExternallyLinkage "; break;
298 case GlobalValue::LinkOnceAnyLinkage:
299 Out << "GlobalValue::LinkOnceAnyLinkage "; break;
300 case GlobalValue::LinkOnceODRLinkage:
301 Out << "GlobalValue::LinkOnceODRLinkage "; break;
302 case GlobalValue::WeakAnyLinkage:
303 Out << "GlobalValue::WeakAnyLinkage"; break;
304 case GlobalValue::WeakODRLinkage:
305 Out << "GlobalValue::WeakODRLinkage"; break;
306 case GlobalValue::AppendingLinkage:
307 Out << "GlobalValue::AppendingLinkage"; break;
308 case GlobalValue::ExternalLinkage:
309 Out << "GlobalValue::ExternalLinkage"; break;
310 case GlobalValue::DLLImportLinkage:
311 Out << "GlobalValue::DLLImportLinkage"; break;
312 case GlobalValue::DLLExportLinkage:
313 Out << "GlobalValue::DLLExportLinkage"; break;
314 case GlobalValue::ExternalWeakLinkage:
315 Out << "GlobalValue::ExternalWeakLinkage"; break;
316 case GlobalValue::GhostLinkage:
317 Out << "GlobalValue::GhostLinkage"; break;
318 case GlobalValue::CommonLinkage:
319 Out << "GlobalValue::CommonLinkage"; break;
323 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
324 switch (VisType) {
325 default: assert(0 && "Unknown GVar visibility");
326 case GlobalValue::DefaultVisibility:
327 Out << "GlobalValue::DefaultVisibility";
328 break;
329 case GlobalValue::HiddenVisibility:
330 Out << "GlobalValue::HiddenVisibility";
331 break;
332 case GlobalValue::ProtectedVisibility:
333 Out << "GlobalValue::ProtectedVisibility";
334 break;
338 // printEscapedString - Print each character of the specified string, escaping
339 // it if it is not printable or if it is an escape char.
340 void CppWriter::printEscapedString(const std::string &Str) {
341 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
342 unsigned char C = Str[i];
343 if (isprint(C) && C != '"' && C != '\\') {
344 Out << C;
345 } else {
346 Out << "\\x"
347 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
348 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
353 std::string CppWriter::getCppName(const Type* Ty) {
354 // First, handle the primitive types .. easy
355 if (Ty->isPrimitiveType() || Ty->isInteger()) {
356 switch (Ty->getTypeID()) {
357 case Type::VoidTyID: return "Type::VoidTy";
358 case Type::IntegerTyID: {
359 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
360 return "IntegerType::get(" + utostr(BitWidth) + ")";
362 case Type::X86_FP80TyID: return "Type::X86_FP80Ty";
363 case Type::FloatTyID: return "Type::FloatTy";
364 case Type::DoubleTyID: return "Type::DoubleTy";
365 case Type::LabelTyID: return "Type::LabelTy";
366 default:
367 error("Invalid primitive type");
368 break;
370 return "Type::VoidTy"; // shouldn't be returned, but make it sensible
373 // Now, see if we've seen the type before and return that
374 TypeMap::iterator I = TypeNames.find(Ty);
375 if (I != TypeNames.end())
376 return I->second;
378 // Okay, let's build a new name for this type. Start with a prefix
379 const char* prefix = 0;
380 switch (Ty->getTypeID()) {
381 case Type::FunctionTyID: prefix = "FuncTy_"; break;
382 case Type::StructTyID: prefix = "StructTy_"; break;
383 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
384 case Type::PointerTyID: prefix = "PointerTy_"; break;
385 case Type::OpaqueTyID: prefix = "OpaqueTy_"; break;
386 case Type::VectorTyID: prefix = "VectorTy_"; break;
387 default: prefix = "OtherTy_"; break; // prevent breakage
390 // See if the type has a name in the symboltable and build accordingly
391 const std::string* tName = findTypeName(TheModule->getTypeSymbolTable(), Ty);
392 std::string name;
393 if (tName)
394 name = std::string(prefix) + *tName;
395 else
396 name = std::string(prefix) + utostr(uniqueNum++);
397 sanitize(name);
399 // Save the name
400 return TypeNames[Ty] = name;
403 void CppWriter::printCppName(const Type* Ty) {
404 printEscapedString(getCppName(Ty));
407 std::string CppWriter::getCppName(const Value* val) {
408 std::string name;
409 ValueMap::iterator I = ValueNames.find(val);
410 if (I != ValueNames.end() && I->first == val)
411 return I->second;
413 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
414 name = std::string("gvar_") +
415 getTypePrefix(GV->getType()->getElementType());
416 } else if (isa<Function>(val)) {
417 name = std::string("func_");
418 } else if (const Constant* C = dyn_cast<Constant>(val)) {
419 name = std::string("const_") + getTypePrefix(C->getType());
420 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
421 if (is_inline) {
422 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
423 Function::const_arg_iterator(Arg)) + 1;
424 name = std::string("arg_") + utostr(argNum);
425 NameSet::iterator NI = UsedNames.find(name);
426 if (NI != UsedNames.end())
427 name += std::string("_") + utostr(uniqueNum++);
428 UsedNames.insert(name);
429 return ValueNames[val] = name;
430 } else {
431 name = getTypePrefix(val->getType());
433 } else {
434 name = getTypePrefix(val->getType());
436 name += (val->hasName() ? val->getName() : utostr(uniqueNum++));
437 sanitize(name);
438 NameSet::iterator NI = UsedNames.find(name);
439 if (NI != UsedNames.end())
440 name += std::string("_") + utostr(uniqueNum++);
441 UsedNames.insert(name);
442 return ValueNames[val] = name;
445 void CppWriter::printCppName(const Value* val) {
446 printEscapedString(getCppName(val));
449 void CppWriter::printAttributes(const AttrListPtr &PAL,
450 const std::string &name) {
451 Out << "AttrListPtr " << name << "_PAL;";
452 nl(Out);
453 if (!PAL.isEmpty()) {
454 Out << '{'; in(); nl(Out);
455 Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
456 Out << "AttributeWithIndex PAWI;"; nl(Out);
457 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
458 unsigned index = PAL.getSlot(i).Index;
459 Attributes attrs = PAL.getSlot(i).Attrs;
460 Out << "PAWI.Index = " << index << "U; PAWI.Attrs = 0 ";
461 #define HANDLE_ATTR(X) \
462 if (attrs & Attribute::X) \
463 Out << " | Attribute::" #X; \
464 attrs &= ~Attribute::X;
466 HANDLE_ATTR(SExt);
467 HANDLE_ATTR(ZExt);
468 HANDLE_ATTR(StructRet);
469 HANDLE_ATTR(InReg);
470 HANDLE_ATTR(NoReturn);
471 HANDLE_ATTR(NoUnwind);
472 HANDLE_ATTR(ByVal);
473 HANDLE_ATTR(NoAlias);
474 HANDLE_ATTR(Nest);
475 HANDLE_ATTR(ReadNone);
476 HANDLE_ATTR(ReadOnly);
477 HANDLE_ATTR(NoCapture);
478 #undef HANDLE_ATTR
479 assert(attrs == 0 && "Unhandled attribute!");
480 Out << ";";
481 nl(Out);
482 Out << "Attrs.push_back(PAWI);";
483 nl(Out);
485 Out << name << "_PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());";
486 nl(Out);
487 out(); nl(Out);
488 Out << '}'; nl(Out);
492 bool CppWriter::printTypeInternal(const Type* Ty) {
493 // We don't print definitions for primitive types
494 if (Ty->isPrimitiveType() || Ty->isInteger())
495 return false;
497 // If we already defined this type, we don't need to define it again.
498 if (DefinedTypes.find(Ty) != DefinedTypes.end())
499 return false;
501 // Everything below needs the name for the type so get it now.
502 std::string typeName(getCppName(Ty));
504 // Search the type stack for recursion. If we find it, then generate this
505 // as an OpaqueType, but make sure not to do this multiple times because
506 // the type could appear in multiple places on the stack. Once the opaque
507 // definition is issued, it must not be re-issued. Consequently we have to
508 // check the UnresolvedTypes list as well.
509 TypeList::const_iterator TI = std::find(TypeStack.begin(), TypeStack.end(),
510 Ty);
511 if (TI != TypeStack.end()) {
512 TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
513 if (I == UnresolvedTypes.end()) {
514 Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();";
515 nl(Out);
516 UnresolvedTypes[Ty] = typeName;
518 return true;
521 // We're going to print a derived type which, by definition, contains other
522 // types. So, push this one we're printing onto the type stack to assist with
523 // recursive definitions.
524 TypeStack.push_back(Ty);
526 // Print the type definition
527 switch (Ty->getTypeID()) {
528 case Type::FunctionTyID: {
529 const FunctionType* FT = cast<FunctionType>(Ty);
530 Out << "std::vector<const Type*>" << typeName << "_args;";
531 nl(Out);
532 FunctionType::param_iterator PI = FT->param_begin();
533 FunctionType::param_iterator PE = FT->param_end();
534 for (; PI != PE; ++PI) {
535 const Type* argTy = static_cast<const Type*>(*PI);
536 bool isForward = printTypeInternal(argTy);
537 std::string argName(getCppName(argTy));
538 Out << typeName << "_args.push_back(" << argName;
539 if (isForward)
540 Out << "_fwd";
541 Out << ");";
542 nl(Out);
544 bool isForward = printTypeInternal(FT->getReturnType());
545 std::string retTypeName(getCppName(FT->getReturnType()));
546 Out << "FunctionType* " << typeName << " = FunctionType::get(";
547 in(); nl(Out) << "/*Result=*/" << retTypeName;
548 if (isForward)
549 Out << "_fwd";
550 Out << ",";
551 nl(Out) << "/*Params=*/" << typeName << "_args,";
552 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
553 out();
554 nl(Out);
555 break;
557 case Type::StructTyID: {
558 const StructType* ST = cast<StructType>(Ty);
559 Out << "std::vector<const Type*>" << typeName << "_fields;";
560 nl(Out);
561 StructType::element_iterator EI = ST->element_begin();
562 StructType::element_iterator EE = ST->element_end();
563 for (; EI != EE; ++EI) {
564 const Type* fieldTy = static_cast<const Type*>(*EI);
565 bool isForward = printTypeInternal(fieldTy);
566 std::string fieldName(getCppName(fieldTy));
567 Out << typeName << "_fields.push_back(" << fieldName;
568 if (isForward)
569 Out << "_fwd";
570 Out << ");";
571 nl(Out);
573 Out << "StructType* " << typeName << " = StructType::get("
574 << typeName << "_fields, /*isPacked=*/"
575 << (ST->isPacked() ? "true" : "false") << ");";
576 nl(Out);
577 break;
579 case Type::ArrayTyID: {
580 const ArrayType* AT = cast<ArrayType>(Ty);
581 const Type* ET = AT->getElementType();
582 bool isForward = printTypeInternal(ET);
583 std::string elemName(getCppName(ET));
584 Out << "ArrayType* " << typeName << " = ArrayType::get("
585 << elemName << (isForward ? "_fwd" : "")
586 << ", " << utostr(AT->getNumElements()) << ");";
587 nl(Out);
588 break;
590 case Type::PointerTyID: {
591 const PointerType* PT = cast<PointerType>(Ty);
592 const Type* ET = PT->getElementType();
593 bool isForward = printTypeInternal(ET);
594 std::string elemName(getCppName(ET));
595 Out << "PointerType* " << typeName << " = PointerType::get("
596 << elemName << (isForward ? "_fwd" : "")
597 << ", " << utostr(PT->getAddressSpace()) << ");";
598 nl(Out);
599 break;
601 case Type::VectorTyID: {
602 const VectorType* PT = cast<VectorType>(Ty);
603 const Type* ET = PT->getElementType();
604 bool isForward = printTypeInternal(ET);
605 std::string elemName(getCppName(ET));
606 Out << "VectorType* " << typeName << " = VectorType::get("
607 << elemName << (isForward ? "_fwd" : "")
608 << ", " << utostr(PT->getNumElements()) << ");";
609 nl(Out);
610 break;
612 case Type::OpaqueTyID: {
613 Out << "OpaqueType* " << typeName << " = OpaqueType::get();";
614 nl(Out);
615 break;
617 default:
618 error("Invalid TypeID");
621 // If the type had a name, make sure we recreate it.
622 const std::string* progTypeName =
623 findTypeName(TheModule->getTypeSymbolTable(),Ty);
624 if (progTypeName) {
625 Out << "mod->addTypeName(\"" << *progTypeName << "\", "
626 << typeName << ");";
627 nl(Out);
630 // Pop us off the type stack
631 TypeStack.pop_back();
633 // Indicate that this type is now defined.
634 DefinedTypes.insert(Ty);
636 // Early resolve as many unresolved types as possible. Search the unresolved
637 // types map for the type we just printed. Now that its definition is complete
638 // we can resolve any previous references to it. This prevents a cascade of
639 // unresolved types.
640 TypeMap::iterator I = UnresolvedTypes.find(Ty);
641 if (I != UnresolvedTypes.end()) {
642 Out << "cast<OpaqueType>(" << I->second
643 << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");";
644 nl(Out);
645 Out << I->second << " = cast<";
646 switch (Ty->getTypeID()) {
647 case Type::FunctionTyID: Out << "FunctionType"; break;
648 case Type::ArrayTyID: Out << "ArrayType"; break;
649 case Type::StructTyID: Out << "StructType"; break;
650 case Type::VectorTyID: Out << "VectorType"; break;
651 case Type::PointerTyID: Out << "PointerType"; break;
652 case Type::OpaqueTyID: Out << "OpaqueType"; break;
653 default: Out << "NoSuchDerivedType"; break;
655 Out << ">(" << I->second << "_fwd.get());";
656 nl(Out); nl(Out);
657 UnresolvedTypes.erase(I);
660 // Finally, separate the type definition from other with a newline.
661 nl(Out);
663 // We weren't a recursive type
664 return false;
667 // Prints a type definition. Returns true if it could not resolve all the
668 // types in the definition but had to use a forward reference.
669 void CppWriter::printType(const Type* Ty) {
670 assert(TypeStack.empty());
671 TypeStack.clear();
672 printTypeInternal(Ty);
673 assert(TypeStack.empty());
676 void CppWriter::printTypes(const Module* M) {
677 // Walk the symbol table and print out all its types
678 const TypeSymbolTable& symtab = M->getTypeSymbolTable();
679 for (TypeSymbolTable::const_iterator TI = symtab.begin(), TE = symtab.end();
680 TI != TE; ++TI) {
682 // For primitive types and types already defined, just add a name
683 TypeMap::const_iterator TNI = TypeNames.find(TI->second);
684 if (TI->second->isInteger() || TI->second->isPrimitiveType() ||
685 TNI != TypeNames.end()) {
686 Out << "mod->addTypeName(\"";
687 printEscapedString(TI->first);
688 Out << "\", " << getCppName(TI->second) << ");";
689 nl(Out);
690 // For everything else, define the type
691 } else {
692 printType(TI->second);
696 // Add all of the global variables to the value table...
697 for (Module::const_global_iterator I = TheModule->global_begin(),
698 E = TheModule->global_end(); I != E; ++I) {
699 if (I->hasInitializer())
700 printType(I->getInitializer()->getType());
701 printType(I->getType());
704 // Add all the functions to the table
705 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
706 FI != FE; ++FI) {
707 printType(FI->getReturnType());
708 printType(FI->getFunctionType());
709 // Add all the function arguments
710 for (Function::const_arg_iterator AI = FI->arg_begin(),
711 AE = FI->arg_end(); AI != AE; ++AI) {
712 printType(AI->getType());
715 // Add all of the basic blocks and instructions
716 for (Function::const_iterator BB = FI->begin(),
717 E = FI->end(); BB != E; ++BB) {
718 printType(BB->getType());
719 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
720 ++I) {
721 printType(I->getType());
722 for (unsigned i = 0; i < I->getNumOperands(); ++i)
723 printType(I->getOperand(i)->getType());
730 // printConstant - Print out a constant pool entry...
731 void CppWriter::printConstant(const Constant *CV) {
732 // First, if the constant is actually a GlobalValue (variable or function)
733 // or its already in the constant list then we've printed it already and we
734 // can just return.
735 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
736 return;
738 std::string constName(getCppName(CV));
739 std::string typeName(getCppName(CV->getType()));
741 if (isa<GlobalValue>(CV)) {
742 // Skip variables and functions, we emit them elsewhere
743 return;
746 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
747 std::string constValue = CI->getValue().toString(10, true);
748 Out << "ConstantInt* " << constName << " = ConstantInt::get(APInt("
749 << cast<IntegerType>(CI->getType())->getBitWidth() << ", \""
750 << constValue << "\", " << constValue.length() << ", 10));";
751 } else if (isa<ConstantAggregateZero>(CV)) {
752 Out << "ConstantAggregateZero* " << constName
753 << " = ConstantAggregateZero::get(" << typeName << ");";
754 } else if (isa<ConstantPointerNull>(CV)) {
755 Out << "ConstantPointerNull* " << constName
756 << " = ConstantPointerNull::get(" << typeName << ");";
757 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
758 Out << "ConstantFP* " << constName << " = ";
759 printCFP(CFP);
760 Out << ";";
761 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
762 if (CA->isString() && CA->getType()->getElementType() == Type::Int8Ty) {
763 Out << "Constant* " << constName << " = ConstantArray::get(\"";
764 std::string tmp = CA->getAsString();
765 bool nullTerminate = false;
766 if (tmp[tmp.length()-1] == 0) {
767 tmp.erase(tmp.length()-1);
768 nullTerminate = true;
770 printEscapedString(tmp);
771 // Determine if we want null termination or not.
772 if (nullTerminate)
773 Out << "\", true"; // Indicate that the null terminator should be
774 // added.
775 else
776 Out << "\", false";// No null terminator
777 Out << ");";
778 } else {
779 Out << "std::vector<Constant*> " << constName << "_elems;";
780 nl(Out);
781 unsigned N = CA->getNumOperands();
782 for (unsigned i = 0; i < N; ++i) {
783 printConstant(CA->getOperand(i)); // recurse to print operands
784 Out << constName << "_elems.push_back("
785 << getCppName(CA->getOperand(i)) << ");";
786 nl(Out);
788 Out << "Constant* " << constName << " = ConstantArray::get("
789 << typeName << ", " << constName << "_elems);";
791 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
792 Out << "std::vector<Constant*> " << constName << "_fields;";
793 nl(Out);
794 unsigned N = CS->getNumOperands();
795 for (unsigned i = 0; i < N; i++) {
796 printConstant(CS->getOperand(i));
797 Out << constName << "_fields.push_back("
798 << getCppName(CS->getOperand(i)) << ");";
799 nl(Out);
801 Out << "Constant* " << constName << " = ConstantStruct::get("
802 << typeName << ", " << constName << "_fields);";
803 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
804 Out << "std::vector<Constant*> " << constName << "_elems;";
805 nl(Out);
806 unsigned N = CP->getNumOperands();
807 for (unsigned i = 0; i < N; ++i) {
808 printConstant(CP->getOperand(i));
809 Out << constName << "_elems.push_back("
810 << getCppName(CP->getOperand(i)) << ");";
811 nl(Out);
813 Out << "Constant* " << constName << " = ConstantVector::get("
814 << typeName << ", " << constName << "_elems);";
815 } else if (isa<UndefValue>(CV)) {
816 Out << "UndefValue* " << constName << " = UndefValue::get("
817 << typeName << ");";
818 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
819 if (CE->getOpcode() == Instruction::GetElementPtr) {
820 Out << "std::vector<Constant*> " << constName << "_indices;";
821 nl(Out);
822 printConstant(CE->getOperand(0));
823 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
824 printConstant(CE->getOperand(i));
825 Out << constName << "_indices.push_back("
826 << getCppName(CE->getOperand(i)) << ");";
827 nl(Out);
829 Out << "Constant* " << constName
830 << " = ConstantExpr::getGetElementPtr("
831 << getCppName(CE->getOperand(0)) << ", "
832 << "&" << constName << "_indices[0], "
833 << constName << "_indices.size()"
834 << " );";
835 } else if (CE->isCast()) {
836 printConstant(CE->getOperand(0));
837 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
838 switch (CE->getOpcode()) {
839 default: assert(0 && "Invalid cast opcode");
840 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
841 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
842 case Instruction::SExt: Out << "Instruction::SExt"; break;
843 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
844 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
845 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
846 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
847 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
848 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
849 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
850 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
851 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
853 Out << ", " << getCppName(CE->getOperand(0)) << ", "
854 << getCppName(CE->getType()) << ");";
855 } else {
856 unsigned N = CE->getNumOperands();
857 for (unsigned i = 0; i < N; ++i ) {
858 printConstant(CE->getOperand(i));
860 Out << "Constant* " << constName << " = ConstantExpr::";
861 switch (CE->getOpcode()) {
862 case Instruction::Add: Out << "getAdd("; break;
863 case Instruction::Sub: Out << "getSub("; break;
864 case Instruction::Mul: Out << "getMul("; break;
865 case Instruction::UDiv: Out << "getUDiv("; break;
866 case Instruction::SDiv: Out << "getSDiv("; break;
867 case Instruction::FDiv: Out << "getFDiv("; break;
868 case Instruction::URem: Out << "getURem("; break;
869 case Instruction::SRem: Out << "getSRem("; break;
870 case Instruction::FRem: Out << "getFRem("; break;
871 case Instruction::And: Out << "getAnd("; break;
872 case Instruction::Or: Out << "getOr("; break;
873 case Instruction::Xor: Out << "getXor("; break;
874 case Instruction::ICmp:
875 Out << "getICmp(ICmpInst::ICMP_";
876 switch (CE->getPredicate()) {
877 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
878 case ICmpInst::ICMP_NE: Out << "NE"; break;
879 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
880 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
881 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
882 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
883 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
884 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
885 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
886 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
887 default: error("Invalid ICmp Predicate");
889 break;
890 case Instruction::FCmp:
891 Out << "getFCmp(FCmpInst::FCMP_";
892 switch (CE->getPredicate()) {
893 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
894 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
895 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
896 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
897 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
898 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
899 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
900 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
901 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
902 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
903 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
904 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
905 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
906 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
907 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
908 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
909 default: error("Invalid FCmp Predicate");
911 break;
912 case Instruction::Shl: Out << "getShl("; break;
913 case Instruction::LShr: Out << "getLShr("; break;
914 case Instruction::AShr: Out << "getAShr("; break;
915 case Instruction::Select: Out << "getSelect("; break;
916 case Instruction::ExtractElement: Out << "getExtractElement("; break;
917 case Instruction::InsertElement: Out << "getInsertElement("; break;
918 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
919 default:
920 error("Invalid constant expression");
921 break;
923 Out << getCppName(CE->getOperand(0));
924 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
925 Out << ", " << getCppName(CE->getOperand(i));
926 Out << ");";
928 } else {
929 error("Bad Constant");
930 Out << "Constant* " << constName << " = 0; ";
932 nl(Out);
935 void CppWriter::printConstants(const Module* M) {
936 // Traverse all the global variables looking for constant initializers
937 for (Module::const_global_iterator I = TheModule->global_begin(),
938 E = TheModule->global_end(); I != E; ++I)
939 if (I->hasInitializer())
940 printConstant(I->getInitializer());
942 // Traverse the LLVM functions looking for constants
943 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
944 FI != FE; ++FI) {
945 // Add all of the basic blocks and instructions
946 for (Function::const_iterator BB = FI->begin(),
947 E = FI->end(); BB != E; ++BB) {
948 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
949 ++I) {
950 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
951 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
952 printConstant(C);
960 void CppWriter::printVariableUses(const GlobalVariable *GV) {
961 nl(Out) << "// Type Definitions";
962 nl(Out);
963 printType(GV->getType());
964 if (GV->hasInitializer()) {
965 Constant* Init = GV->getInitializer();
966 printType(Init->getType());
967 if (Function* F = dyn_cast<Function>(Init)) {
968 nl(Out)<< "/ Function Declarations"; nl(Out);
969 printFunctionHead(F);
970 } else if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
971 nl(Out) << "// Global Variable Declarations"; nl(Out);
972 printVariableHead(gv);
973 } else {
974 nl(Out) << "// Constant Definitions"; nl(Out);
975 printConstant(gv);
977 if (GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
978 nl(Out) << "// Global Variable Definitions"; nl(Out);
979 printVariableBody(gv);
984 void CppWriter::printVariableHead(const GlobalVariable *GV) {
985 nl(Out) << "GlobalVariable* " << getCppName(GV);
986 if (is_inline) {
987 Out << " = mod->getGlobalVariable(";
988 printEscapedString(GV->getName());
989 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
990 nl(Out) << "if (!" << getCppName(GV) << ") {";
991 in(); nl(Out) << getCppName(GV);
993 Out << " = new GlobalVariable(";
994 nl(Out) << "/*Type=*/";
995 printCppName(GV->getType()->getElementType());
996 Out << ",";
997 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
998 Out << ",";
999 nl(Out) << "/*Linkage=*/";
1000 printLinkageType(GV->getLinkage());
1001 Out << ",";
1002 nl(Out) << "/*Initializer=*/0, ";
1003 if (GV->hasInitializer()) {
1004 Out << "// has initializer, specified below";
1006 nl(Out) << "/*Name=*/\"";
1007 printEscapedString(GV->getName());
1008 Out << "\",";
1009 nl(Out) << "mod);";
1010 nl(Out);
1012 if (GV->hasSection()) {
1013 printCppName(GV);
1014 Out << "->setSection(\"";
1015 printEscapedString(GV->getSection());
1016 Out << "\");";
1017 nl(Out);
1019 if (GV->getAlignment()) {
1020 printCppName(GV);
1021 Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1022 nl(Out);
1024 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1025 printCppName(GV);
1026 Out << "->setVisibility(";
1027 printVisibilityType(GV->getVisibility());
1028 Out << ");";
1029 nl(Out);
1031 if (is_inline) {
1032 out(); Out << "}"; nl(Out);
1036 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1037 if (GV->hasInitializer()) {
1038 printCppName(GV);
1039 Out << "->setInitializer(";
1040 Out << getCppName(GV->getInitializer()) << ");";
1041 nl(Out);
1045 std::string CppWriter::getOpName(Value* V) {
1046 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1047 return getCppName(V);
1049 // See if its alread in the map of forward references, if so just return the
1050 // name we already set up for it
1051 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1052 if (I != ForwardRefs.end())
1053 return I->second;
1055 // This is a new forward reference. Generate a unique name for it
1056 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1058 // Yes, this is a hack. An Argument is the smallest instantiable value that
1059 // we can make as a placeholder for the real value. We'll replace these
1060 // Argument instances later.
1061 Out << "Argument* " << result << " = new Argument("
1062 << getCppName(V->getType()) << ");";
1063 nl(Out);
1064 ForwardRefs[V] = result;
1065 return result;
1068 // printInstruction - This member is called for each Instruction in a function.
1069 void CppWriter::printInstruction(const Instruction *I,
1070 const std::string& bbname) {
1071 std::string iName(getCppName(I));
1073 // Before we emit this instruction, we need to take care of generating any
1074 // forward references. So, we get the names of all the operands in advance
1075 std::string* opNames = new std::string[I->getNumOperands()];
1076 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1077 opNames[i] = getOpName(I->getOperand(i));
1080 switch (I->getOpcode()) {
1081 default:
1082 error("Invalid instruction");
1083 break;
1085 case Instruction::Ret: {
1086 const ReturnInst* ret = cast<ReturnInst>(I);
1087 Out << "ReturnInst::Create("
1088 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1089 break;
1091 case Instruction::Br: {
1092 const BranchInst* br = cast<BranchInst>(I);
1093 Out << "BranchInst::Create(" ;
1094 if (br->getNumOperands() == 3 ) {
1095 Out << opNames[0] << ", "
1096 << opNames[1] << ", "
1097 << opNames[2] << ", ";
1099 } else if (br->getNumOperands() == 1) {
1100 Out << opNames[0] << ", ";
1101 } else {
1102 error("Branch with 2 operands?");
1104 Out << bbname << ");";
1105 break;
1107 case Instruction::Switch: {
1108 const SwitchInst* sw = cast<SwitchInst>(I);
1109 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1110 << opNames[0] << ", "
1111 << opNames[1] << ", "
1112 << sw->getNumCases() << ", " << bbname << ");";
1113 nl(Out);
1114 for (unsigned i = 2; i < sw->getNumOperands(); i += 2 ) {
1115 Out << iName << "->addCase("
1116 << opNames[i] << ", "
1117 << opNames[i+1] << ");";
1118 nl(Out);
1120 break;
1122 case Instruction::Invoke: {
1123 const InvokeInst* inv = cast<InvokeInst>(I);
1124 Out << "std::vector<Value*> " << iName << "_params;";
1125 nl(Out);
1126 for (unsigned i = 3; i < inv->getNumOperands(); ++i) {
1127 Out << iName << "_params.push_back("
1128 << opNames[i] << ");";
1129 nl(Out);
1131 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1132 << opNames[0] << ", "
1133 << opNames[1] << ", "
1134 << opNames[2] << ", "
1135 << iName << "_params.begin(), " << iName << "_params.end(), \"";
1136 printEscapedString(inv->getName());
1137 Out << "\", " << bbname << ");";
1138 nl(Out) << iName << "->setCallingConv(";
1139 printCallingConv(inv->getCallingConv());
1140 Out << ");";
1141 printAttributes(inv->getAttributes(), iName);
1142 Out << iName << "->setAttributes(" << iName << "_PAL);";
1143 nl(Out);
1144 break;
1146 case Instruction::Unwind: {
1147 Out << "new UnwindInst("
1148 << bbname << ");";
1149 break;
1151 case Instruction::Unreachable:{
1152 Out << "new UnreachableInst("
1153 << bbname << ");";
1154 break;
1156 case Instruction::Add:
1157 case Instruction::Sub:
1158 case Instruction::Mul:
1159 case Instruction::UDiv:
1160 case Instruction::SDiv:
1161 case Instruction::FDiv:
1162 case Instruction::URem:
1163 case Instruction::SRem:
1164 case Instruction::FRem:
1165 case Instruction::And:
1166 case Instruction::Or:
1167 case Instruction::Xor:
1168 case Instruction::Shl:
1169 case Instruction::LShr:
1170 case Instruction::AShr:{
1171 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1172 switch (I->getOpcode()) {
1173 case Instruction::Add: Out << "Instruction::Add"; break;
1174 case Instruction::Sub: Out << "Instruction::Sub"; break;
1175 case Instruction::Mul: Out << "Instruction::Mul"; break;
1176 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1177 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1178 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1179 case Instruction::URem:Out << "Instruction::URem"; break;
1180 case Instruction::SRem:Out << "Instruction::SRem"; break;
1181 case Instruction::FRem:Out << "Instruction::FRem"; break;
1182 case Instruction::And: Out << "Instruction::And"; break;
1183 case Instruction::Or: Out << "Instruction::Or"; break;
1184 case Instruction::Xor: Out << "Instruction::Xor"; break;
1185 case Instruction::Shl: Out << "Instruction::Shl"; break;
1186 case Instruction::LShr:Out << "Instruction::LShr"; break;
1187 case Instruction::AShr:Out << "Instruction::AShr"; break;
1188 default: Out << "Instruction::BadOpCode"; break;
1190 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1191 printEscapedString(I->getName());
1192 Out << "\", " << bbname << ");";
1193 break;
1195 case Instruction::FCmp: {
1196 Out << "FCmpInst* " << iName << " = new FCmpInst(";
1197 switch (cast<FCmpInst>(I)->getPredicate()) {
1198 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1199 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1200 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1201 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1202 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1203 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1204 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1205 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1206 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1207 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1208 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1209 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1210 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1211 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1212 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1213 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1214 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1216 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1217 printEscapedString(I->getName());
1218 Out << "\", " << bbname << ");";
1219 break;
1221 case Instruction::ICmp: {
1222 Out << "ICmpInst* " << iName << " = new ICmpInst(";
1223 switch (cast<ICmpInst>(I)->getPredicate()) {
1224 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1225 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1226 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1227 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1228 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1229 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1230 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1231 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1232 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1233 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1234 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1236 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1237 printEscapedString(I->getName());
1238 Out << "\", " << bbname << ");";
1239 break;
1241 case Instruction::Malloc: {
1242 const MallocInst* mallocI = cast<MallocInst>(I);
1243 Out << "MallocInst* " << iName << " = new MallocInst("
1244 << getCppName(mallocI->getAllocatedType()) << ", ";
1245 if (mallocI->isArrayAllocation())
1246 Out << opNames[0] << ", " ;
1247 Out << "\"";
1248 printEscapedString(mallocI->getName());
1249 Out << "\", " << bbname << ");";
1250 if (mallocI->getAlignment())
1251 nl(Out) << iName << "->setAlignment("
1252 << mallocI->getAlignment() << ");";
1253 break;
1255 case Instruction::Free: {
1256 Out << "FreeInst* " << iName << " = new FreeInst("
1257 << getCppName(I->getOperand(0)) << ", " << bbname << ");";
1258 break;
1260 case Instruction::Alloca: {
1261 const AllocaInst* allocaI = cast<AllocaInst>(I);
1262 Out << "AllocaInst* " << iName << " = new AllocaInst("
1263 << getCppName(allocaI->getAllocatedType()) << ", ";
1264 if (allocaI->isArrayAllocation())
1265 Out << opNames[0] << ", ";
1266 Out << "\"";
1267 printEscapedString(allocaI->getName());
1268 Out << "\", " << bbname << ");";
1269 if (allocaI->getAlignment())
1270 nl(Out) << iName << "->setAlignment("
1271 << allocaI->getAlignment() << ");";
1272 break;
1274 case Instruction::Load:{
1275 const LoadInst* load = cast<LoadInst>(I);
1276 Out << "LoadInst* " << iName << " = new LoadInst("
1277 << opNames[0] << ", \"";
1278 printEscapedString(load->getName());
1279 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1280 << ", " << bbname << ");";
1281 break;
1283 case Instruction::Store: {
1284 const StoreInst* store = cast<StoreInst>(I);
1285 Out << " new StoreInst("
1286 << opNames[0] << ", "
1287 << opNames[1] << ", "
1288 << (store->isVolatile() ? "true" : "false")
1289 << ", " << bbname << ");";
1290 break;
1292 case Instruction::GetElementPtr: {
1293 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1294 if (gep->getNumOperands() <= 2) {
1295 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1296 << opNames[0];
1297 if (gep->getNumOperands() == 2)
1298 Out << ", " << opNames[1];
1299 } else {
1300 Out << "std::vector<Value*> " << iName << "_indices;";
1301 nl(Out);
1302 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1303 Out << iName << "_indices.push_back("
1304 << opNames[i] << ");";
1305 nl(Out);
1307 Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1308 << opNames[0] << ", " << iName << "_indices.begin(), "
1309 << iName << "_indices.end()";
1311 Out << ", \"";
1312 printEscapedString(gep->getName());
1313 Out << "\", " << bbname << ");";
1314 break;
1316 case Instruction::PHI: {
1317 const PHINode* phi = cast<PHINode>(I);
1319 Out << "PHINode* " << iName << " = PHINode::Create("
1320 << getCppName(phi->getType()) << ", \"";
1321 printEscapedString(phi->getName());
1322 Out << "\", " << bbname << ");";
1323 nl(Out) << iName << "->reserveOperandSpace("
1324 << phi->getNumIncomingValues()
1325 << ");";
1326 nl(Out);
1327 for (unsigned i = 0; i < phi->getNumOperands(); i+=2) {
1328 Out << iName << "->addIncoming("
1329 << opNames[i] << ", " << opNames[i+1] << ");";
1330 nl(Out);
1332 break;
1334 case Instruction::Trunc:
1335 case Instruction::ZExt:
1336 case Instruction::SExt:
1337 case Instruction::FPTrunc:
1338 case Instruction::FPExt:
1339 case Instruction::FPToUI:
1340 case Instruction::FPToSI:
1341 case Instruction::UIToFP:
1342 case Instruction::SIToFP:
1343 case Instruction::PtrToInt:
1344 case Instruction::IntToPtr:
1345 case Instruction::BitCast: {
1346 const CastInst* cst = cast<CastInst>(I);
1347 Out << "CastInst* " << iName << " = new ";
1348 switch (I->getOpcode()) {
1349 case Instruction::Trunc: Out << "TruncInst"; break;
1350 case Instruction::ZExt: Out << "ZExtInst"; break;
1351 case Instruction::SExt: Out << "SExtInst"; break;
1352 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1353 case Instruction::FPExt: Out << "FPExtInst"; break;
1354 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1355 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1356 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1357 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1358 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1359 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1360 case Instruction::BitCast: Out << "BitCastInst"; break;
1361 default: assert(!"Unreachable"); break;
1363 Out << "(" << opNames[0] << ", "
1364 << getCppName(cst->getType()) << ", \"";
1365 printEscapedString(cst->getName());
1366 Out << "\", " << bbname << ");";
1367 break;
1369 case Instruction::Call:{
1370 const CallInst* call = cast<CallInst>(I);
1371 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1372 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1373 << getCppName(ila->getFunctionType()) << ", \""
1374 << ila->getAsmString() << "\", \""
1375 << ila->getConstraintString() << "\","
1376 << (ila->hasSideEffects() ? "true" : "false") << ");";
1377 nl(Out);
1379 if (call->getNumOperands() > 2) {
1380 Out << "std::vector<Value*> " << iName << "_params;";
1381 nl(Out);
1382 for (unsigned i = 1; i < call->getNumOperands(); ++i) {
1383 Out << iName << "_params.push_back(" << opNames[i] << ");";
1384 nl(Out);
1386 Out << "CallInst* " << iName << " = CallInst::Create("
1387 << opNames[0] << ", " << iName << "_params.begin(), "
1388 << iName << "_params.end(), \"";
1389 } else if (call->getNumOperands() == 2) {
1390 Out << "CallInst* " << iName << " = CallInst::Create("
1391 << opNames[0] << ", " << opNames[1] << ", \"";
1392 } else {
1393 Out << "CallInst* " << iName << " = CallInst::Create(" << opNames[0]
1394 << ", \"";
1396 printEscapedString(call->getName());
1397 Out << "\", " << bbname << ");";
1398 nl(Out) << iName << "->setCallingConv(";
1399 printCallingConv(call->getCallingConv());
1400 Out << ");";
1401 nl(Out) << iName << "->setTailCall("
1402 << (call->isTailCall() ? "true":"false");
1403 Out << ");";
1404 printAttributes(call->getAttributes(), iName);
1405 Out << iName << "->setAttributes(" << iName << "_PAL);";
1406 nl(Out);
1407 break;
1409 case Instruction::Select: {
1410 const SelectInst* sel = cast<SelectInst>(I);
1411 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1412 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1413 printEscapedString(sel->getName());
1414 Out << "\", " << bbname << ");";
1415 break;
1417 case Instruction::UserOp1:
1418 /// FALL THROUGH
1419 case Instruction::UserOp2: {
1420 /// FIXME: What should be done here?
1421 break;
1423 case Instruction::VAArg: {
1424 const VAArgInst* va = cast<VAArgInst>(I);
1425 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1426 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1427 printEscapedString(va->getName());
1428 Out << "\", " << bbname << ");";
1429 break;
1431 case Instruction::ExtractElement: {
1432 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1433 Out << "ExtractElementInst* " << getCppName(eei)
1434 << " = new ExtractElementInst(" << opNames[0]
1435 << ", " << opNames[1] << ", \"";
1436 printEscapedString(eei->getName());
1437 Out << "\", " << bbname << ");";
1438 break;
1440 case Instruction::InsertElement: {
1441 const InsertElementInst* iei = cast<InsertElementInst>(I);
1442 Out << "InsertElementInst* " << getCppName(iei)
1443 << " = InsertElementInst::Create(" << opNames[0]
1444 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1445 printEscapedString(iei->getName());
1446 Out << "\", " << bbname << ");";
1447 break;
1449 case Instruction::ShuffleVector: {
1450 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1451 Out << "ShuffleVectorInst* " << getCppName(svi)
1452 << " = new ShuffleVectorInst(" << opNames[0]
1453 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1454 printEscapedString(svi->getName());
1455 Out << "\", " << bbname << ");";
1456 break;
1458 case Instruction::ExtractValue: {
1459 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1460 Out << "std::vector<unsigned> " << iName << "_indices;";
1461 nl(Out);
1462 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1463 Out << iName << "_indices.push_back("
1464 << evi->idx_begin()[i] << ");";
1465 nl(Out);
1467 Out << "ExtractValueInst* " << getCppName(evi)
1468 << " = ExtractValueInst::Create(" << opNames[0]
1469 << ", "
1470 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1471 printEscapedString(evi->getName());
1472 Out << "\", " << bbname << ");";
1473 break;
1475 case Instruction::InsertValue: {
1476 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1477 Out << "std::vector<unsigned> " << iName << "_indices;";
1478 nl(Out);
1479 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1480 Out << iName << "_indices.push_back("
1481 << ivi->idx_begin()[i] << ");";
1482 nl(Out);
1484 Out << "InsertValueInst* " << getCppName(ivi)
1485 << " = InsertValueInst::Create(" << opNames[0]
1486 << ", " << opNames[1] << ", "
1487 << iName << "_indices.begin(), " << iName << "_indices.end(), \"";
1488 printEscapedString(ivi->getName());
1489 Out << "\", " << bbname << ");";
1490 break;
1493 DefinedValues.insert(I);
1494 nl(Out);
1495 delete [] opNames;
1498 // Print out the types, constants and declarations needed by one function
1499 void CppWriter::printFunctionUses(const Function* F) {
1500 nl(Out) << "// Type Definitions"; nl(Out);
1501 if (!is_inline) {
1502 // Print the function's return type
1503 printType(F->getReturnType());
1505 // Print the function's function type
1506 printType(F->getFunctionType());
1508 // Print the types of each of the function's arguments
1509 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1510 AI != AE; ++AI) {
1511 printType(AI->getType());
1515 // Print type definitions for every type referenced by an instruction and
1516 // make a note of any global values or constants that are referenced
1517 SmallPtrSet<GlobalValue*,64> gvs;
1518 SmallPtrSet<Constant*,64> consts;
1519 for (Function::const_iterator BB = F->begin(), BE = F->end();
1520 BB != BE; ++BB){
1521 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1522 I != E; ++I) {
1523 // Print the type of the instruction itself
1524 printType(I->getType());
1526 // Print the type of each of the instruction's operands
1527 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1528 Value* operand = I->getOperand(i);
1529 printType(operand->getType());
1531 // If the operand references a GVal or Constant, make a note of it
1532 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1533 gvs.insert(GV);
1534 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1535 if (GVar->hasInitializer())
1536 consts.insert(GVar->getInitializer());
1537 } else if (Constant* C = dyn_cast<Constant>(operand))
1538 consts.insert(C);
1543 // Print the function declarations for any functions encountered
1544 nl(Out) << "// Function Declarations"; nl(Out);
1545 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1546 I != E; ++I) {
1547 if (Function* Fun = dyn_cast<Function>(*I)) {
1548 if (!is_inline || Fun != F)
1549 printFunctionHead(Fun);
1553 // Print the global variable declarations for any variables encountered
1554 nl(Out) << "// Global Variable Declarations"; nl(Out);
1555 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1556 I != E; ++I) {
1557 if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1558 printVariableHead(F);
1561 // Print the constants found
1562 nl(Out) << "// Constant Definitions"; nl(Out);
1563 for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1564 E = consts.end(); I != E; ++I) {
1565 printConstant(*I);
1568 // Process the global variables definitions now that all the constants have
1569 // been emitted. These definitions just couple the gvars with their constant
1570 // initializers.
1571 nl(Out) << "// Global Variable Definitions"; nl(Out);
1572 for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1573 I != E; ++I) {
1574 if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1575 printVariableBody(GV);
1579 void CppWriter::printFunctionHead(const Function* F) {
1580 nl(Out) << "Function* " << getCppName(F);
1581 if (is_inline) {
1582 Out << " = mod->getFunction(\"";
1583 printEscapedString(F->getName());
1584 Out << "\", " << getCppName(F->getFunctionType()) << ");";
1585 nl(Out) << "if (!" << getCppName(F) << ") {";
1586 nl(Out) << getCppName(F);
1588 Out<< " = Function::Create(";
1589 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1590 nl(Out) << "/*Linkage=*/";
1591 printLinkageType(F->getLinkage());
1592 Out << ",";
1593 nl(Out) << "/*Name=*/\"";
1594 printEscapedString(F->getName());
1595 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1596 nl(Out,-1);
1597 printCppName(F);
1598 Out << "->setCallingConv(";
1599 printCallingConv(F->getCallingConv());
1600 Out << ");";
1601 nl(Out);
1602 if (F->hasSection()) {
1603 printCppName(F);
1604 Out << "->setSection(\"" << F->getSection() << "\");";
1605 nl(Out);
1607 if (F->getAlignment()) {
1608 printCppName(F);
1609 Out << "->setAlignment(" << F->getAlignment() << ");";
1610 nl(Out);
1612 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1613 printCppName(F);
1614 Out << "->setVisibility(";
1615 printVisibilityType(F->getVisibility());
1616 Out << ");";
1617 nl(Out);
1619 if (F->hasGC()) {
1620 printCppName(F);
1621 Out << "->setGC(\"" << F->getGC() << "\");";
1622 nl(Out);
1624 if (is_inline) {
1625 Out << "}";
1626 nl(Out);
1628 printAttributes(F->getAttributes(), getCppName(F));
1629 printCppName(F);
1630 Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1631 nl(Out);
1634 void CppWriter::printFunctionBody(const Function *F) {
1635 if (F->isDeclaration())
1636 return; // external functions have no bodies.
1638 // Clear the DefinedValues and ForwardRefs maps because we can't have
1639 // cross-function forward refs
1640 ForwardRefs.clear();
1641 DefinedValues.clear();
1643 // Create all the argument values
1644 if (!is_inline) {
1645 if (!F->arg_empty()) {
1646 Out << "Function::arg_iterator args = " << getCppName(F)
1647 << "->arg_begin();";
1648 nl(Out);
1650 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1651 AI != AE; ++AI) {
1652 Out << "Value* " << getCppName(AI) << " = args++;";
1653 nl(Out);
1654 if (AI->hasName()) {
1655 Out << getCppName(AI) << "->setName(\"" << AI->getName() << "\");";
1656 nl(Out);
1661 // Create all the basic blocks
1662 nl(Out);
1663 for (Function::const_iterator BI = F->begin(), BE = F->end();
1664 BI != BE; ++BI) {
1665 std::string bbname(getCppName(BI));
1666 Out << "BasicBlock* " << bbname << " = BasicBlock::Create(\"";
1667 if (BI->hasName())
1668 printEscapedString(BI->getName());
1669 Out << "\"," << getCppName(BI->getParent()) << ",0);";
1670 nl(Out);
1673 // Output all of its basic blocks... for the function
1674 for (Function::const_iterator BI = F->begin(), BE = F->end();
1675 BI != BE; ++BI) {
1676 std::string bbname(getCppName(BI));
1677 nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1678 nl(Out);
1680 // Output all of the instructions in the basic block...
1681 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1682 I != E; ++I) {
1683 printInstruction(I,bbname);
1687 // Loop over the ForwardRefs and resolve them now that all instructions
1688 // are generated.
1689 if (!ForwardRefs.empty()) {
1690 nl(Out) << "// Resolve Forward References";
1691 nl(Out);
1694 while (!ForwardRefs.empty()) {
1695 ForwardRefMap::iterator I = ForwardRefs.begin();
1696 Out << I->second << "->replaceAllUsesWith("
1697 << getCppName(I->first) << "); delete " << I->second << ";";
1698 nl(Out);
1699 ForwardRefs.erase(I);
1703 void CppWriter::printInline(const std::string& fname,
1704 const std::string& func) {
1705 const Function* F = TheModule->getFunction(func);
1706 if (!F) {
1707 error(std::string("Function '") + func + "' not found in input module");
1708 return;
1710 if (F->isDeclaration()) {
1711 error(std::string("Function '") + func + "' is external!");
1712 return;
1714 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1715 << getCppName(F);
1716 unsigned arg_count = 1;
1717 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1718 AI != AE; ++AI) {
1719 Out << ", Value* arg_" << arg_count;
1721 Out << ") {";
1722 nl(Out);
1723 is_inline = true;
1724 printFunctionUses(F);
1725 printFunctionBody(F);
1726 is_inline = false;
1727 Out << "return " << getCppName(F->begin()) << ";";
1728 nl(Out) << "}";
1729 nl(Out);
1732 void CppWriter::printModuleBody() {
1733 // Print out all the type definitions
1734 nl(Out) << "// Type Definitions"; nl(Out);
1735 printTypes(TheModule);
1737 // Functions can call each other and global variables can reference them so
1738 // define all the functions first before emitting their function bodies.
1739 nl(Out) << "// Function Declarations"; nl(Out);
1740 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1741 I != E; ++I)
1742 printFunctionHead(I);
1744 // Process the global variables declarations. We can't initialze them until
1745 // after the constants are printed so just print a header for each global
1746 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1747 for (Module::const_global_iterator I = TheModule->global_begin(),
1748 E = TheModule->global_end(); I != E; ++I) {
1749 printVariableHead(I);
1752 // Print out all the constants definitions. Constants don't recurse except
1753 // through GlobalValues. All GlobalValues have been declared at this point
1754 // so we can proceed to generate the constants.
1755 nl(Out) << "// Constant Definitions"; nl(Out);
1756 printConstants(TheModule);
1758 // Process the global variables definitions now that all the constants have
1759 // been emitted. These definitions just couple the gvars with their constant
1760 // initializers.
1761 nl(Out) << "// Global Variable Definitions"; nl(Out);
1762 for (Module::const_global_iterator I = TheModule->global_begin(),
1763 E = TheModule->global_end(); I != E; ++I) {
1764 printVariableBody(I);
1767 // Finally, we can safely put out all of the function bodies.
1768 nl(Out) << "// Function Definitions"; nl(Out);
1769 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1770 I != E; ++I) {
1771 if (!I->isDeclaration()) {
1772 nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1773 << ")";
1774 nl(Out) << "{";
1775 nl(Out,1);
1776 printFunctionBody(I);
1777 nl(Out,-1) << "}";
1778 nl(Out);
1783 void CppWriter::printProgram(const std::string& fname,
1784 const std::string& mName) {
1785 Out << "#include <llvm/Module.h>\n";
1786 Out << "#include <llvm/DerivedTypes.h>\n";
1787 Out << "#include <llvm/Constants.h>\n";
1788 Out << "#include <llvm/GlobalVariable.h>\n";
1789 Out << "#include <llvm/Function.h>\n";
1790 Out << "#include <llvm/CallingConv.h>\n";
1791 Out << "#include <llvm/BasicBlock.h>\n";
1792 Out << "#include <llvm/Instructions.h>\n";
1793 Out << "#include <llvm/InlineAsm.h>\n";
1794 Out << "#include <llvm/Support/MathExtras.h>\n";
1795 Out << "#include <llvm/Support/raw_ostream.h>\n";
1796 Out << "#include <llvm/Pass.h>\n";
1797 Out << "#include <llvm/PassManager.h>\n";
1798 Out << "#include <llvm/ADT/SmallVector.h>\n";
1799 Out << "#include <llvm/Analysis/Verifier.h>\n";
1800 Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1801 Out << "#include <algorithm>\n";
1802 Out << "using namespace llvm;\n\n";
1803 Out << "Module* " << fname << "();\n\n";
1804 Out << "int main(int argc, char**argv) {\n";
1805 Out << " Module* Mod = " << fname << "();\n";
1806 Out << " verifyModule(*Mod, PrintMessageAction);\n";
1807 Out << " outs().flush();\n";
1808 Out << " PassManager PM;\n";
1809 Out << " PM.add(createPrintModulePass(&outs()));\n";
1810 Out << " PM.run(*Mod);\n";
1811 Out << " return 0;\n";
1812 Out << "}\n\n";
1813 printModule(fname,mName);
1816 void CppWriter::printModule(const std::string& fname,
1817 const std::string& mName) {
1818 nl(Out) << "Module* " << fname << "() {";
1819 nl(Out,1) << "// Module Construction";
1820 nl(Out) << "Module* mod = new Module(\"" << mName << "\");";
1821 if (!TheModule->getTargetTriple().empty()) {
1822 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1824 if (!TheModule->getTargetTriple().empty()) {
1825 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1826 << "\");";
1829 if (!TheModule->getModuleInlineAsm().empty()) {
1830 nl(Out) << "mod->setModuleInlineAsm(\"";
1831 printEscapedString(TheModule->getModuleInlineAsm());
1832 Out << "\");";
1834 nl(Out);
1836 // Loop over the dependent libraries and emit them.
1837 Module::lib_iterator LI = TheModule->lib_begin();
1838 Module::lib_iterator LE = TheModule->lib_end();
1839 while (LI != LE) {
1840 Out << "mod->addLibrary(\"" << *LI << "\");";
1841 nl(Out);
1842 ++LI;
1844 printModuleBody();
1845 nl(Out) << "return mod;";
1846 nl(Out,-1) << "}";
1847 nl(Out);
1850 void CppWriter::printContents(const std::string& fname,
1851 const std::string& mName) {
1852 Out << "\nModule* " << fname << "(Module *mod) {\n";
1853 Out << "\nmod->setModuleIdentifier(\"" << mName << "\");\n";
1854 printModuleBody();
1855 Out << "\nreturn mod;\n";
1856 Out << "\n}\n";
1859 void CppWriter::printFunction(const std::string& fname,
1860 const std::string& funcName) {
1861 const Function* F = TheModule->getFunction(funcName);
1862 if (!F) {
1863 error(std::string("Function '") + funcName + "' not found in input module");
1864 return;
1866 Out << "\nFunction* " << fname << "(Module *mod) {\n";
1867 printFunctionUses(F);
1868 printFunctionHead(F);
1869 printFunctionBody(F);
1870 Out << "return " << getCppName(F) << ";\n";
1871 Out << "}\n";
1874 void CppWriter::printFunctions() {
1875 const Module::FunctionListType &funcs = TheModule->getFunctionList();
1876 Module::const_iterator I = funcs.begin();
1877 Module::const_iterator IE = funcs.end();
1879 for (; I != IE; ++I) {
1880 const Function &func = *I;
1881 if (!func.isDeclaration()) {
1882 std::string name("define_");
1883 name += func.getName();
1884 printFunction(name, func.getName());
1889 void CppWriter::printVariable(const std::string& fname,
1890 const std::string& varName) {
1891 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
1893 if (!GV) {
1894 error(std::string("Variable '") + varName + "' not found in input module");
1895 return;
1897 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
1898 printVariableUses(GV);
1899 printVariableHead(GV);
1900 printVariableBody(GV);
1901 Out << "return " << getCppName(GV) << ";\n";
1902 Out << "}\n";
1905 void CppWriter::printType(const std::string& fname,
1906 const std::string& typeName) {
1907 const Type* Ty = TheModule->getTypeByName(typeName);
1908 if (!Ty) {
1909 error(std::string("Type '") + typeName + "' not found in input module");
1910 return;
1912 Out << "\nType* " << fname << "(Module *mod) {\n";
1913 printType(Ty);
1914 Out << "return " << getCppName(Ty) << ";\n";
1915 Out << "}\n";
1918 bool CppWriter::runOnModule(Module &M) {
1919 TheModule = &M;
1921 // Emit a header
1922 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
1924 // Get the name of the function we're supposed to generate
1925 std::string fname = FuncName.getValue();
1927 // Get the name of the thing we are to generate
1928 std::string tgtname = NameToGenerate.getValue();
1929 if (GenerationType == GenModule ||
1930 GenerationType == GenContents ||
1931 GenerationType == GenProgram ||
1932 GenerationType == GenFunctions) {
1933 if (tgtname == "!bad!") {
1934 if (M.getModuleIdentifier() == "-")
1935 tgtname = "<stdin>";
1936 else
1937 tgtname = M.getModuleIdentifier();
1939 } else if (tgtname == "!bad!")
1940 error("You must use the -for option with -gen-{function,variable,type}");
1942 switch (WhatToGenerate(GenerationType)) {
1943 case GenProgram:
1944 if (fname.empty())
1945 fname = "makeLLVMModule";
1946 printProgram(fname,tgtname);
1947 break;
1948 case GenModule:
1949 if (fname.empty())
1950 fname = "makeLLVMModule";
1951 printModule(fname,tgtname);
1952 break;
1953 case GenContents:
1954 if (fname.empty())
1955 fname = "makeLLVMModuleContents";
1956 printContents(fname,tgtname);
1957 break;
1958 case GenFunction:
1959 if (fname.empty())
1960 fname = "makeLLVMFunction";
1961 printFunction(fname,tgtname);
1962 break;
1963 case GenFunctions:
1964 printFunctions();
1965 break;
1966 case GenInline:
1967 if (fname.empty())
1968 fname = "makeLLVMInline";
1969 printInline(fname,tgtname);
1970 break;
1971 case GenVariable:
1972 if (fname.empty())
1973 fname = "makeLLVMVariable";
1974 printVariable(fname,tgtname);
1975 break;
1976 case GenType:
1977 if (fname.empty())
1978 fname = "makeLLVMType";
1979 printType(fname,tgtname);
1980 break;
1981 default:
1982 error("Invalid generation option");
1985 return false;
1989 char CppWriter::ID = 0;
1991 //===----------------------------------------------------------------------===//
1992 // External Interface declaration
1993 //===----------------------------------------------------------------------===//
1995 bool CPPTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
1996 raw_ostream &o,
1997 CodeGenFileType FileType,
1998 CodeGenOpt::Level OptLevel) {
1999 if (FileType != TargetMachine::AssemblyFile) return true;
2000 PM.add(new CppWriter(o));
2001 return false;