Proper handle loading of effective address of stack slot stuff
[llvm/msp430.git] / lib / Target / PowerPC / PPCISelLowering.cpp
blobbf562b500e08f75a7c95599268c40ea9904e5bb8
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPredicates.h"
17 #include "PPCTargetMachine.h"
18 #include "PPCPerfectShuffle.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/Function.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Support/CommandLine.h"
35 using namespace llvm;
37 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39 cl::Hidden);
41 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
44 setPow2DivIsCheap();
46 // Use _setjmp/_longjmp instead of setjmp/longjmp.
47 setUseUnderscoreSetJmp(true);
48 setUseUnderscoreLongJmp(true);
50 // Set up the register classes.
51 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
56 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
57 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
59 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
76 // This is used in the ppcf128->int sequence. Note it has different semantics
77 // from FP_ROUND: that rounds to nearest, this rounds to zero.
78 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
80 // PowerPC has no SREM/UREM instructions
81 setOperationAction(ISD::SREM, MVT::i32, Expand);
82 setOperationAction(ISD::UREM, MVT::i32, Expand);
83 setOperationAction(ISD::SREM, MVT::i64, Expand);
84 setOperationAction(ISD::UREM, MVT::i64, Expand);
86 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
87 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
88 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
89 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
90 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
91 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
92 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
93 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
94 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
96 // We don't support sin/cos/sqrt/fmod/pow
97 setOperationAction(ISD::FSIN , MVT::f64, Expand);
98 setOperationAction(ISD::FCOS , MVT::f64, Expand);
99 setOperationAction(ISD::FREM , MVT::f64, Expand);
100 setOperationAction(ISD::FPOW , MVT::f64, Expand);
101 setOperationAction(ISD::FSIN , MVT::f32, Expand);
102 setOperationAction(ISD::FCOS , MVT::f32, Expand);
103 setOperationAction(ISD::FREM , MVT::f32, Expand);
104 setOperationAction(ISD::FPOW , MVT::f32, Expand);
106 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
108 // If we're enabling GP optimizations, use hardware square root
109 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
110 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
111 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
114 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
115 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
117 // PowerPC does not have BSWAP, CTPOP or CTTZ
118 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
119 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
120 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
121 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
122 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
123 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
125 // PowerPC does not have ROTR
126 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
127 setOperationAction(ISD::ROTR, MVT::i64 , Expand);
129 // PowerPC does not have Select
130 setOperationAction(ISD::SELECT, MVT::i32, Expand);
131 setOperationAction(ISD::SELECT, MVT::i64, Expand);
132 setOperationAction(ISD::SELECT, MVT::f32, Expand);
133 setOperationAction(ISD::SELECT, MVT::f64, Expand);
135 // PowerPC wants to turn select_cc of FP into fsel when possible.
136 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
137 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
139 // PowerPC wants to optimize integer setcc a bit
140 setOperationAction(ISD::SETCC, MVT::i32, Custom);
142 // PowerPC does not have BRCOND which requires SetCC
143 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
145 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
147 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
148 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
150 // PowerPC does not have [U|S]INT_TO_FP
151 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
152 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
154 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
155 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
156 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
157 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
159 // We cannot sextinreg(i1). Expand to shifts.
160 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
162 // Support label based line numbers.
163 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
164 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
166 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
167 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
168 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
169 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
172 // We want to legalize GlobalAddress and ConstantPool nodes into the
173 // appropriate instructions to materialize the address.
174 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
175 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
176 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
177 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
178 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
179 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
180 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
181 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
183 // RET must be custom lowered, to meet ABI requirements.
184 setOperationAction(ISD::RET , MVT::Other, Custom);
186 // TRAP is legal.
187 setOperationAction(ISD::TRAP, MVT::Other, Legal);
189 // TRAMPOLINE is custom lowered.
190 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
192 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
193 setOperationAction(ISD::VASTART , MVT::Other, Custom);
195 // VAARG is custom lowered with ELF 32 ABI
196 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
197 setOperationAction(ISD::VAARG, MVT::Other, Custom);
198 else
199 setOperationAction(ISD::VAARG, MVT::Other, Expand);
201 // Use the default implementation.
202 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
203 setOperationAction(ISD::VAEND , MVT::Other, Expand);
204 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
205 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
207 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
209 // We want to custom lower some of our intrinsics.
210 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
212 // Comparisons that require checking two conditions.
213 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
214 setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
215 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
216 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
217 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
218 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
219 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
220 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
221 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
222 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
223 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
224 setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
226 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
227 // They also have instructions for converting between i64 and fp.
228 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
229 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
230 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
231 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
232 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
234 // FIXME: disable this lowered code. This generates 64-bit register values,
235 // and we don't model the fact that the top part is clobbered by calls. We
236 // need to flag these together so that the value isn't live across a call.
237 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
239 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
240 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
241 } else {
242 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
243 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
246 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
247 // 64-bit PowerPC implementations can support i64 types directly
248 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
249 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
250 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
251 // 64-bit PowerPC wants to expand i128 shifts itself.
252 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
253 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
254 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
255 } else {
256 // 32-bit PowerPC wants to expand i64 shifts itself.
257 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
258 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
259 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
262 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
263 // First set operation action for all vector types to expand. Then we
264 // will selectively turn on ones that can be effectively codegen'd.
265 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
266 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
267 MVT VT = (MVT::SimpleValueType)i;
269 // add/sub are legal for all supported vector VT's.
270 setOperationAction(ISD::ADD , VT, Legal);
271 setOperationAction(ISD::SUB , VT, Legal);
273 // We promote all shuffles to v16i8.
274 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
275 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
277 // We promote all non-typed operations to v4i32.
278 setOperationAction(ISD::AND , VT, Promote);
279 AddPromotedToType (ISD::AND , VT, MVT::v4i32);
280 setOperationAction(ISD::OR , VT, Promote);
281 AddPromotedToType (ISD::OR , VT, MVT::v4i32);
282 setOperationAction(ISD::XOR , VT, Promote);
283 AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
284 setOperationAction(ISD::LOAD , VT, Promote);
285 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
286 setOperationAction(ISD::SELECT, VT, Promote);
287 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
288 setOperationAction(ISD::STORE, VT, Promote);
289 AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
291 // No other operations are legal.
292 setOperationAction(ISD::MUL , VT, Expand);
293 setOperationAction(ISD::SDIV, VT, Expand);
294 setOperationAction(ISD::SREM, VT, Expand);
295 setOperationAction(ISD::UDIV, VT, Expand);
296 setOperationAction(ISD::UREM, VT, Expand);
297 setOperationAction(ISD::FDIV, VT, Expand);
298 setOperationAction(ISD::FNEG, VT, Expand);
299 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
300 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
301 setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
302 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
303 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
304 setOperationAction(ISD::UDIVREM, VT, Expand);
305 setOperationAction(ISD::SDIVREM, VT, Expand);
306 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
307 setOperationAction(ISD::FPOW, VT, Expand);
308 setOperationAction(ISD::CTPOP, VT, Expand);
309 setOperationAction(ISD::CTLZ, VT, Expand);
310 setOperationAction(ISD::CTTZ, VT, Expand);
313 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
314 // with merges, splats, etc.
315 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
317 setOperationAction(ISD::AND , MVT::v4i32, Legal);
318 setOperationAction(ISD::OR , MVT::v4i32, Legal);
319 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
320 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
321 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
322 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
324 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
325 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
326 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
327 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
329 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
330 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
331 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
332 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
334 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
335 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
337 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
338 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
339 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
340 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
343 setShiftAmountType(MVT::i32);
344 setBooleanContents(ZeroOrOneBooleanContent);
346 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
347 setStackPointerRegisterToSaveRestore(PPC::X1);
348 setExceptionPointerRegister(PPC::X3);
349 setExceptionSelectorRegister(PPC::X4);
350 } else {
351 setStackPointerRegisterToSaveRestore(PPC::R1);
352 setExceptionPointerRegister(PPC::R3);
353 setExceptionSelectorRegister(PPC::R4);
356 // We have target-specific dag combine patterns for the following nodes:
357 setTargetDAGCombine(ISD::SINT_TO_FP);
358 setTargetDAGCombine(ISD::STORE);
359 setTargetDAGCombine(ISD::BR_CC);
360 setTargetDAGCombine(ISD::BSWAP);
362 // Darwin long double math library functions have $LDBL128 appended.
363 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
364 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
365 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
366 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
367 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
368 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
369 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
370 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
371 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
372 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
373 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
376 computeRegisterProperties();
379 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
380 /// function arguments in the caller parameter area.
381 unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
382 TargetMachine &TM = getTargetMachine();
383 // Darwin passes everything on 4 byte boundary.
384 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
385 return 4;
386 // FIXME Elf TBD
387 return 4;
390 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
391 switch (Opcode) {
392 default: return 0;
393 case PPCISD::FSEL: return "PPCISD::FSEL";
394 case PPCISD::FCFID: return "PPCISD::FCFID";
395 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
396 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
397 case PPCISD::STFIWX: return "PPCISD::STFIWX";
398 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
399 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
400 case PPCISD::VPERM: return "PPCISD::VPERM";
401 case PPCISD::Hi: return "PPCISD::Hi";
402 case PPCISD::Lo: return "PPCISD::Lo";
403 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
404 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
405 case PPCISD::SRL: return "PPCISD::SRL";
406 case PPCISD::SRA: return "PPCISD::SRA";
407 case PPCISD::SHL: return "PPCISD::SHL";
408 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
409 case PPCISD::STD_32: return "PPCISD::STD_32";
410 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
411 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
412 case PPCISD::MTCTR: return "PPCISD::MTCTR";
413 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
414 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
415 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
416 case PPCISD::MFCR: return "PPCISD::MFCR";
417 case PPCISD::VCMP: return "PPCISD::VCMP";
418 case PPCISD::VCMPo: return "PPCISD::VCMPo";
419 case PPCISD::LBRX: return "PPCISD::LBRX";
420 case PPCISD::STBRX: return "PPCISD::STBRX";
421 case PPCISD::LARX: return "PPCISD::LARX";
422 case PPCISD::STCX: return "PPCISD::STCX";
423 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
424 case PPCISD::MFFS: return "PPCISD::MFFS";
425 case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
426 case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
427 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
428 case PPCISD::MTFSF: return "PPCISD::MTFSF";
429 case PPCISD::TAILCALL: return "PPCISD::TAILCALL";
430 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
435 MVT PPCTargetLowering::getSetCCResultType(MVT VT) const {
436 return MVT::i32;
440 //===----------------------------------------------------------------------===//
441 // Node matching predicates, for use by the tblgen matching code.
442 //===----------------------------------------------------------------------===//
444 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
445 static bool isFloatingPointZero(SDValue Op) {
446 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
447 return CFP->getValueAPF().isZero();
448 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
449 // Maybe this has already been legalized into the constant pool?
450 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
451 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
452 return CFP->getValueAPF().isZero();
454 return false;
457 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
458 /// true if Op is undef or if it matches the specified value.
459 static bool isConstantOrUndef(int Op, int Val) {
460 return Op < 0 || Op == Val;
463 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
464 /// VPKUHUM instruction.
465 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
466 if (!isUnary) {
467 for (unsigned i = 0; i != 16; ++i)
468 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
469 return false;
470 } else {
471 for (unsigned i = 0; i != 8; ++i)
472 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) ||
473 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1))
474 return false;
476 return true;
479 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
480 /// VPKUWUM instruction.
481 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
482 if (!isUnary) {
483 for (unsigned i = 0; i != 16; i += 2)
484 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
485 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
486 return false;
487 } else {
488 for (unsigned i = 0; i != 8; i += 2)
489 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
490 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) ||
491 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) ||
492 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3))
493 return false;
495 return true;
498 /// isVMerge - Common function, used to match vmrg* shuffles.
500 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
501 unsigned LHSStart, unsigned RHSStart) {
502 assert(N->getValueType(0) == MVT::v16i8 &&
503 "PPC only supports shuffles by bytes!");
504 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
505 "Unsupported merge size!");
507 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
508 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
509 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
510 LHSStart+j+i*UnitSize) ||
511 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
512 RHSStart+j+i*UnitSize))
513 return false;
515 return true;
518 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
519 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
520 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
521 bool isUnary) {
522 if (!isUnary)
523 return isVMerge(N, UnitSize, 8, 24);
524 return isVMerge(N, UnitSize, 8, 8);
527 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
528 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
529 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
530 bool isUnary) {
531 if (!isUnary)
532 return isVMerge(N, UnitSize, 0, 16);
533 return isVMerge(N, UnitSize, 0, 0);
537 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
538 /// amount, otherwise return -1.
539 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
540 assert(N->getValueType(0) == MVT::v16i8 &&
541 "PPC only supports shuffles by bytes!");
543 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
545 // Find the first non-undef value in the shuffle mask.
546 unsigned i;
547 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
548 /*search*/;
550 if (i == 16) return -1; // all undef.
552 // Otherwise, check to see if the rest of the elements are consecutively
553 // numbered from this value.
554 unsigned ShiftAmt = SVOp->getMaskElt(i);
555 if (ShiftAmt < i) return -1;
556 ShiftAmt -= i;
558 if (!isUnary) {
559 // Check the rest of the elements to see if they are consecutive.
560 for (++i; i != 16; ++i)
561 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
562 return -1;
563 } else {
564 // Check the rest of the elements to see if they are consecutive.
565 for (++i; i != 16; ++i)
566 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
567 return -1;
569 return ShiftAmt;
572 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
573 /// specifies a splat of a single element that is suitable for input to
574 /// VSPLTB/VSPLTH/VSPLTW.
575 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
576 assert(N->getValueType(0) == MVT::v16i8 &&
577 (EltSize == 1 || EltSize == 2 || EltSize == 4));
579 // This is a splat operation if each element of the permute is the same, and
580 // if the value doesn't reference the second vector.
581 unsigned ElementBase = N->getMaskElt(0);
583 // FIXME: Handle UNDEF elements too!
584 if (ElementBase >= 16)
585 return false;
587 // Check that the indices are consecutive, in the case of a multi-byte element
588 // splatted with a v16i8 mask.
589 for (unsigned i = 1; i != EltSize; ++i)
590 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
591 return false;
593 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
594 if (N->getMaskElt(i) < 0) continue;
595 for (unsigned j = 0; j != EltSize; ++j)
596 if (N->getMaskElt(i+j) != N->getMaskElt(j))
597 return false;
599 return true;
602 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
603 /// are -0.0.
604 bool PPC::isAllNegativeZeroVector(SDNode *N) {
605 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
607 APInt APVal, APUndef;
608 unsigned BitSize;
609 bool HasAnyUndefs;
611 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
612 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
613 return CFP->getValueAPF().isNegZero();
615 return false;
618 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
619 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
620 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
621 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
622 assert(isSplatShuffleMask(SVOp, EltSize));
623 return SVOp->getMaskElt(0) / EltSize;
626 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
627 /// by using a vspltis[bhw] instruction of the specified element size, return
628 /// the constant being splatted. The ByteSize field indicates the number of
629 /// bytes of each element [124] -> [bhw].
630 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
631 SDValue OpVal(0, 0);
633 // If ByteSize of the splat is bigger than the element size of the
634 // build_vector, then we have a case where we are checking for a splat where
635 // multiple elements of the buildvector are folded together into a single
636 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
637 unsigned EltSize = 16/N->getNumOperands();
638 if (EltSize < ByteSize) {
639 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
640 SDValue UniquedVals[4];
641 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
643 // See if all of the elements in the buildvector agree across.
644 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
645 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
646 // If the element isn't a constant, bail fully out.
647 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
650 if (UniquedVals[i&(Multiple-1)].getNode() == 0)
651 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
652 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
653 return SDValue(); // no match.
656 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
657 // either constant or undef values that are identical for each chunk. See
658 // if these chunks can form into a larger vspltis*.
660 // Check to see if all of the leading entries are either 0 or -1. If
661 // neither, then this won't fit into the immediate field.
662 bool LeadingZero = true;
663 bool LeadingOnes = true;
664 for (unsigned i = 0; i != Multiple-1; ++i) {
665 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs.
667 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
668 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
670 // Finally, check the least significant entry.
671 if (LeadingZero) {
672 if (UniquedVals[Multiple-1].getNode() == 0)
673 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
674 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
675 if (Val < 16)
676 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
678 if (LeadingOnes) {
679 if (UniquedVals[Multiple-1].getNode() == 0)
680 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
681 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
682 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
683 return DAG.getTargetConstant(Val, MVT::i32);
686 return SDValue();
689 // Check to see if this buildvec has a single non-undef value in its elements.
690 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
691 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
692 if (OpVal.getNode() == 0)
693 OpVal = N->getOperand(i);
694 else if (OpVal != N->getOperand(i))
695 return SDValue();
698 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
700 unsigned ValSizeInBytes = 0;
701 uint64_t Value = 0;
702 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
703 Value = CN->getZExtValue();
704 ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
705 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
706 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
707 Value = FloatToBits(CN->getValueAPF().convertToFloat());
708 ValSizeInBytes = 4;
711 // If the splat value is larger than the element value, then we can never do
712 // this splat. The only case that we could fit the replicated bits into our
713 // immediate field for would be zero, and we prefer to use vxor for it.
714 if (ValSizeInBytes < ByteSize) return SDValue();
716 // If the element value is larger than the splat value, cut it in half and
717 // check to see if the two halves are equal. Continue doing this until we
718 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
719 while (ValSizeInBytes > ByteSize) {
720 ValSizeInBytes >>= 1;
722 // If the top half equals the bottom half, we're still ok.
723 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
724 (Value & ((1 << (8*ValSizeInBytes))-1)))
725 return SDValue();
728 // Properly sign extend the value.
729 int ShAmt = (4-ByteSize)*8;
730 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
732 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
733 if (MaskVal == 0) return SDValue();
735 // Finally, if this value fits in a 5 bit sext field, return it
736 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
737 return DAG.getTargetConstant(MaskVal, MVT::i32);
738 return SDValue();
741 //===----------------------------------------------------------------------===//
742 // Addressing Mode Selection
743 //===----------------------------------------------------------------------===//
745 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
746 /// or 64-bit immediate, and if the value can be accurately represented as a
747 /// sign extension from a 16-bit value. If so, this returns true and the
748 /// immediate.
749 static bool isIntS16Immediate(SDNode *N, short &Imm) {
750 if (N->getOpcode() != ISD::Constant)
751 return false;
753 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
754 if (N->getValueType(0) == MVT::i32)
755 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
756 else
757 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
759 static bool isIntS16Immediate(SDValue Op, short &Imm) {
760 return isIntS16Immediate(Op.getNode(), Imm);
764 /// SelectAddressRegReg - Given the specified addressed, check to see if it
765 /// can be represented as an indexed [r+r] operation. Returns false if it
766 /// can be more efficiently represented with [r+imm].
767 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
768 SDValue &Index,
769 SelectionDAG &DAG) const {
770 short imm = 0;
771 if (N.getOpcode() == ISD::ADD) {
772 if (isIntS16Immediate(N.getOperand(1), imm))
773 return false; // r+i
774 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
775 return false; // r+i
777 Base = N.getOperand(0);
778 Index = N.getOperand(1);
779 return true;
780 } else if (N.getOpcode() == ISD::OR) {
781 if (isIntS16Immediate(N.getOperand(1), imm))
782 return false; // r+i can fold it if we can.
784 // If this is an or of disjoint bitfields, we can codegen this as an add
785 // (for better address arithmetic) if the LHS and RHS of the OR are provably
786 // disjoint.
787 APInt LHSKnownZero, LHSKnownOne;
788 APInt RHSKnownZero, RHSKnownOne;
789 DAG.ComputeMaskedBits(N.getOperand(0),
790 APInt::getAllOnesValue(N.getOperand(0)
791 .getValueSizeInBits()),
792 LHSKnownZero, LHSKnownOne);
794 if (LHSKnownZero.getBoolValue()) {
795 DAG.ComputeMaskedBits(N.getOperand(1),
796 APInt::getAllOnesValue(N.getOperand(1)
797 .getValueSizeInBits()),
798 RHSKnownZero, RHSKnownOne);
799 // If all of the bits are known zero on the LHS or RHS, the add won't
800 // carry.
801 if (~(LHSKnownZero | RHSKnownZero) == 0) {
802 Base = N.getOperand(0);
803 Index = N.getOperand(1);
804 return true;
809 return false;
812 /// Returns true if the address N can be represented by a base register plus
813 /// a signed 16-bit displacement [r+imm], and if it is not better
814 /// represented as reg+reg.
815 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
816 SDValue &Base,
817 SelectionDAG &DAG) const {
818 // FIXME dl should come from parent load or store, not from address
819 DebugLoc dl = N.getDebugLoc();
820 // If this can be more profitably realized as r+r, fail.
821 if (SelectAddressRegReg(N, Disp, Base, DAG))
822 return false;
824 if (N.getOpcode() == ISD::ADD) {
825 short imm = 0;
826 if (isIntS16Immediate(N.getOperand(1), imm)) {
827 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
828 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
829 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
830 } else {
831 Base = N.getOperand(0);
833 return true; // [r+i]
834 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
835 // Match LOAD (ADD (X, Lo(G))).
836 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
837 && "Cannot handle constant offsets yet!");
838 Disp = N.getOperand(1).getOperand(0); // The global address.
839 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
840 Disp.getOpcode() == ISD::TargetConstantPool ||
841 Disp.getOpcode() == ISD::TargetJumpTable);
842 Base = N.getOperand(0);
843 return true; // [&g+r]
845 } else if (N.getOpcode() == ISD::OR) {
846 short imm = 0;
847 if (isIntS16Immediate(N.getOperand(1), imm)) {
848 // If this is an or of disjoint bitfields, we can codegen this as an add
849 // (for better address arithmetic) if the LHS and RHS of the OR are
850 // provably disjoint.
851 APInt LHSKnownZero, LHSKnownOne;
852 DAG.ComputeMaskedBits(N.getOperand(0),
853 APInt::getAllOnesValue(N.getOperand(0)
854 .getValueSizeInBits()),
855 LHSKnownZero, LHSKnownOne);
857 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
858 // If all of the bits are known zero on the LHS or RHS, the add won't
859 // carry.
860 Base = N.getOperand(0);
861 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
862 return true;
865 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
866 // Loading from a constant address.
868 // If this address fits entirely in a 16-bit sext immediate field, codegen
869 // this as "d, 0"
870 short Imm;
871 if (isIntS16Immediate(CN, Imm)) {
872 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
873 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
874 return true;
877 // Handle 32-bit sext immediates with LIS + addr mode.
878 if (CN->getValueType(0) == MVT::i32 ||
879 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
880 int Addr = (int)CN->getZExtValue();
882 // Otherwise, break this down into an LIS + disp.
883 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
885 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
886 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
887 Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
888 return true;
892 Disp = DAG.getTargetConstant(0, getPointerTy());
893 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
894 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
895 else
896 Base = N;
897 return true; // [r+0]
900 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
901 /// represented as an indexed [r+r] operation.
902 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
903 SDValue &Index,
904 SelectionDAG &DAG) const {
905 // Check to see if we can easily represent this as an [r+r] address. This
906 // will fail if it thinks that the address is more profitably represented as
907 // reg+imm, e.g. where imm = 0.
908 if (SelectAddressRegReg(N, Base, Index, DAG))
909 return true;
911 // If the operand is an addition, always emit this as [r+r], since this is
912 // better (for code size, and execution, as the memop does the add for free)
913 // than emitting an explicit add.
914 if (N.getOpcode() == ISD::ADD) {
915 Base = N.getOperand(0);
916 Index = N.getOperand(1);
917 return true;
920 // Otherwise, do it the hard way, using R0 as the base register.
921 Base = DAG.getRegister(PPC::R0, N.getValueType());
922 Index = N;
923 return true;
926 /// SelectAddressRegImmShift - Returns true if the address N can be
927 /// represented by a base register plus a signed 14-bit displacement
928 /// [r+imm*4]. Suitable for use by STD and friends.
929 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
930 SDValue &Base,
931 SelectionDAG &DAG) const {
932 // FIXME dl should come from the parent load or store, not the address
933 DebugLoc dl = N.getDebugLoc();
934 // If this can be more profitably realized as r+r, fail.
935 if (SelectAddressRegReg(N, Disp, Base, DAG))
936 return false;
938 if (N.getOpcode() == ISD::ADD) {
939 short imm = 0;
940 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
941 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
942 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
943 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
944 } else {
945 Base = N.getOperand(0);
947 return true; // [r+i]
948 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
949 // Match LOAD (ADD (X, Lo(G))).
950 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
951 && "Cannot handle constant offsets yet!");
952 Disp = N.getOperand(1).getOperand(0); // The global address.
953 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
954 Disp.getOpcode() == ISD::TargetConstantPool ||
955 Disp.getOpcode() == ISD::TargetJumpTable);
956 Base = N.getOperand(0);
957 return true; // [&g+r]
959 } else if (N.getOpcode() == ISD::OR) {
960 short imm = 0;
961 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
962 // If this is an or of disjoint bitfields, we can codegen this as an add
963 // (for better address arithmetic) if the LHS and RHS of the OR are
964 // provably disjoint.
965 APInt LHSKnownZero, LHSKnownOne;
966 DAG.ComputeMaskedBits(N.getOperand(0),
967 APInt::getAllOnesValue(N.getOperand(0)
968 .getValueSizeInBits()),
969 LHSKnownZero, LHSKnownOne);
970 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
971 // If all of the bits are known zero on the LHS or RHS, the add won't
972 // carry.
973 Base = N.getOperand(0);
974 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
975 return true;
978 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
979 // Loading from a constant address. Verify low two bits are clear.
980 if ((CN->getZExtValue() & 3) == 0) {
981 // If this address fits entirely in a 14-bit sext immediate field, codegen
982 // this as "d, 0"
983 short Imm;
984 if (isIntS16Immediate(CN, Imm)) {
985 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
986 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
987 return true;
990 // Fold the low-part of 32-bit absolute addresses into addr mode.
991 if (CN->getValueType(0) == MVT::i32 ||
992 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
993 int Addr = (int)CN->getZExtValue();
995 // Otherwise, break this down into an LIS + disp.
996 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
997 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
998 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
999 Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
1000 return true;
1005 Disp = DAG.getTargetConstant(0, getPointerTy());
1006 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1007 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1008 else
1009 Base = N;
1010 return true; // [r+0]
1014 /// getPreIndexedAddressParts - returns true by value, base pointer and
1015 /// offset pointer and addressing mode by reference if the node's address
1016 /// can be legally represented as pre-indexed load / store address.
1017 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1018 SDValue &Offset,
1019 ISD::MemIndexedMode &AM,
1020 SelectionDAG &DAG) const {
1021 // Disabled by default for now.
1022 if (!EnablePPCPreinc) return false;
1024 SDValue Ptr;
1025 MVT VT;
1026 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1027 Ptr = LD->getBasePtr();
1028 VT = LD->getMemoryVT();
1030 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1031 ST = ST;
1032 Ptr = ST->getBasePtr();
1033 VT = ST->getMemoryVT();
1034 } else
1035 return false;
1037 // PowerPC doesn't have preinc load/store instructions for vectors.
1038 if (VT.isVector())
1039 return false;
1041 // TODO: Check reg+reg first.
1043 // LDU/STU use reg+imm*4, others use reg+imm.
1044 if (VT != MVT::i64) {
1045 // reg + imm
1046 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1047 return false;
1048 } else {
1049 // reg + imm * 4.
1050 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1051 return false;
1054 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1055 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1056 // sext i32 to i64 when addr mode is r+i.
1057 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1058 LD->getExtensionType() == ISD::SEXTLOAD &&
1059 isa<ConstantSDNode>(Offset))
1060 return false;
1063 AM = ISD::PRE_INC;
1064 return true;
1067 //===----------------------------------------------------------------------===//
1068 // LowerOperation implementation
1069 //===----------------------------------------------------------------------===//
1071 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1072 SelectionDAG &DAG) {
1073 MVT PtrVT = Op.getValueType();
1074 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1075 Constant *C = CP->getConstVal();
1076 SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1077 SDValue Zero = DAG.getConstant(0, PtrVT);
1078 // FIXME there isn't really any debug info here
1079 DebugLoc dl = Op.getDebugLoc();
1081 const TargetMachine &TM = DAG.getTarget();
1083 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1084 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1086 // If this is a non-darwin platform, we don't support non-static relo models
1087 // yet.
1088 if (TM.getRelocationModel() == Reloc::Static ||
1089 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1090 // Generate non-pic code that has direct accesses to the constant pool.
1091 // The address of the global is just (hi(&g)+lo(&g)).
1092 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1095 if (TM.getRelocationModel() == Reloc::PIC_) {
1096 // With PIC, the first instruction is actually "GR+hi(&G)".
1097 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1098 DAG.getNode(PPCISD::GlobalBaseReg,
1099 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1102 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1103 return Lo;
1106 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1107 MVT PtrVT = Op.getValueType();
1108 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1109 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1110 SDValue Zero = DAG.getConstant(0, PtrVT);
1111 // FIXME there isn't really any debug loc here
1112 DebugLoc dl = Op.getDebugLoc();
1114 const TargetMachine &TM = DAG.getTarget();
1116 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1117 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1119 // If this is a non-darwin platform, we don't support non-static relo models
1120 // yet.
1121 if (TM.getRelocationModel() == Reloc::Static ||
1122 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1123 // Generate non-pic code that has direct accesses to the constant pool.
1124 // The address of the global is just (hi(&g)+lo(&g)).
1125 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1128 if (TM.getRelocationModel() == Reloc::PIC_) {
1129 // With PIC, the first instruction is actually "GR+hi(&G)".
1130 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1131 DAG.getNode(PPCISD::GlobalBaseReg,
1132 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1135 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1136 return Lo;
1139 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1140 SelectionDAG &DAG) {
1141 assert(0 && "TLS not implemented for PPC.");
1142 return SDValue(); // Not reached
1145 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1146 SelectionDAG &DAG) {
1147 MVT PtrVT = Op.getValueType();
1148 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1149 GlobalValue *GV = GSDN->getGlobal();
1150 SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1151 SDValue Zero = DAG.getConstant(0, PtrVT);
1152 // FIXME there isn't really any debug info here
1153 DebugLoc dl = GSDN->getDebugLoc();
1155 const TargetMachine &TM = DAG.getTarget();
1157 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1158 SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1160 // If this is a non-darwin platform, we don't support non-static relo models
1161 // yet.
1162 if (TM.getRelocationModel() == Reloc::Static ||
1163 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1164 // Generate non-pic code that has direct accesses to globals.
1165 // The address of the global is just (hi(&g)+lo(&g)).
1166 return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1169 if (TM.getRelocationModel() == Reloc::PIC_) {
1170 // With PIC, the first instruction is actually "GR+hi(&G)".
1171 Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1172 DAG.getNode(PPCISD::GlobalBaseReg,
1173 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1176 Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1178 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1179 return Lo;
1181 // If the global is weak or external, we have to go through the lazy
1182 // resolution stub.
1183 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1186 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1187 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1188 DebugLoc dl = Op.getDebugLoc();
1190 // If we're comparing for equality to zero, expose the fact that this is
1191 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1192 // fold the new nodes.
1193 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1194 if (C->isNullValue() && CC == ISD::SETEQ) {
1195 MVT VT = Op.getOperand(0).getValueType();
1196 SDValue Zext = Op.getOperand(0);
1197 if (VT.bitsLT(MVT::i32)) {
1198 VT = MVT::i32;
1199 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1201 unsigned Log2b = Log2_32(VT.getSizeInBits());
1202 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1203 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1204 DAG.getConstant(Log2b, MVT::i32));
1205 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1207 // Leave comparisons against 0 and -1 alone for now, since they're usually
1208 // optimized. FIXME: revisit this when we can custom lower all setcc
1209 // optimizations.
1210 if (C->isAllOnesValue() || C->isNullValue())
1211 return SDValue();
1214 // If we have an integer seteq/setne, turn it into a compare against zero
1215 // by xor'ing the rhs with the lhs, which is faster than setting a
1216 // condition register, reading it back out, and masking the correct bit. The
1217 // normal approach here uses sub to do this instead of xor. Using xor exposes
1218 // the result to other bit-twiddling opportunities.
1219 MVT LHSVT = Op.getOperand(0).getValueType();
1220 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1221 MVT VT = Op.getValueType();
1222 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1223 Op.getOperand(1));
1224 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1226 return SDValue();
1229 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1230 int VarArgsFrameIndex,
1231 int VarArgsStackOffset,
1232 unsigned VarArgsNumGPR,
1233 unsigned VarArgsNumFPR,
1234 const PPCSubtarget &Subtarget) {
1236 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1237 return SDValue(); // Not reached
1240 SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1241 SDValue Chain = Op.getOperand(0);
1242 SDValue Trmp = Op.getOperand(1); // trampoline
1243 SDValue FPtr = Op.getOperand(2); // nested function
1244 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1245 DebugLoc dl = Op.getDebugLoc();
1247 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1248 bool isPPC64 = (PtrVT == MVT::i64);
1249 const Type *IntPtrTy =
1250 DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType();
1252 TargetLowering::ArgListTy Args;
1253 TargetLowering::ArgListEntry Entry;
1255 Entry.Ty = IntPtrTy;
1256 Entry.Node = Trmp; Args.push_back(Entry);
1258 // TrampSize == (isPPC64 ? 48 : 40);
1259 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1260 isPPC64 ? MVT::i64 : MVT::i32);
1261 Args.push_back(Entry);
1263 Entry.Node = FPtr; Args.push_back(Entry);
1264 Entry.Node = Nest; Args.push_back(Entry);
1266 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1267 std::pair<SDValue, SDValue> CallResult =
1268 LowerCallTo(Chain, Op.getValueType().getTypeForMVT(), false, false,
1269 false, false, CallingConv::C, false,
1270 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1271 Args, DAG, dl);
1273 SDValue Ops[] =
1274 { CallResult.first, CallResult.second };
1276 return DAG.getMergeValues(Ops, 2, dl);
1279 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1280 int VarArgsFrameIndex,
1281 int VarArgsStackOffset,
1282 unsigned VarArgsNumGPR,
1283 unsigned VarArgsNumFPR,
1284 const PPCSubtarget &Subtarget) {
1285 DebugLoc dl = Op.getDebugLoc();
1287 if (Subtarget.isMachoABI()) {
1288 // vastart just stores the address of the VarArgsFrameIndex slot into the
1289 // memory location argument.
1290 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1291 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1292 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1293 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1296 // For ELF 32 ABI we follow the layout of the va_list struct.
1297 // We suppose the given va_list is already allocated.
1299 // typedef struct {
1300 // char gpr; /* index into the array of 8 GPRs
1301 // * stored in the register save area
1302 // * gpr=0 corresponds to r3,
1303 // * gpr=1 to r4, etc.
1304 // */
1305 // char fpr; /* index into the array of 8 FPRs
1306 // * stored in the register save area
1307 // * fpr=0 corresponds to f1,
1308 // * fpr=1 to f2, etc.
1309 // */
1310 // char *overflow_arg_area;
1311 // /* location on stack that holds
1312 // * the next overflow argument
1313 // */
1314 // char *reg_save_area;
1315 // /* where r3:r10 and f1:f8 (if saved)
1316 // * are stored
1317 // */
1318 // } va_list[1];
1321 SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1322 SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1325 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1327 SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1328 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1330 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1331 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1333 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1334 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1336 uint64_t FPROffset = 1;
1337 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1339 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1341 // Store first byte : number of int regs
1342 SDValue firstStore = DAG.getStore(Op.getOperand(0), dl, ArgGPR,
1343 Op.getOperand(1), SV, 0);
1344 uint64_t nextOffset = FPROffset;
1345 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1346 ConstFPROffset);
1348 // Store second byte : number of float regs
1349 SDValue secondStore =
1350 DAG.getStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset);
1351 nextOffset += StackOffset;
1352 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1354 // Store second word : arguments given on stack
1355 SDValue thirdStore =
1356 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1357 nextOffset += FrameOffset;
1358 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1360 // Store third word : arguments given in registers
1361 return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1365 #include "PPCGenCallingConv.inc"
1367 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1368 /// depending on which subtarget is selected.
1369 static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1370 if (Subtarget.isMachoABI()) {
1371 static const unsigned FPR[] = {
1372 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1373 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1375 return FPR;
1379 static const unsigned FPR[] = {
1380 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1381 PPC::F8
1383 return FPR;
1386 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1387 /// the stack.
1388 static unsigned CalculateStackSlotSize(SDValue Arg, ISD::ArgFlagsTy Flags,
1389 bool isVarArg, unsigned PtrByteSize) {
1390 MVT ArgVT = Arg.getValueType();
1391 unsigned ArgSize =ArgVT.getSizeInBits()/8;
1392 if (Flags.isByVal())
1393 ArgSize = Flags.getByValSize();
1394 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1396 return ArgSize;
1399 SDValue
1400 PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1401 SelectionDAG &DAG,
1402 int &VarArgsFrameIndex,
1403 int &VarArgsStackOffset,
1404 unsigned &VarArgsNumGPR,
1405 unsigned &VarArgsNumFPR,
1406 const PPCSubtarget &Subtarget) {
1407 // TODO: add description of PPC stack frame format, or at least some docs.
1409 MachineFunction &MF = DAG.getMachineFunction();
1410 MachineFrameInfo *MFI = MF.getFrameInfo();
1411 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1412 SmallVector<SDValue, 8> ArgValues;
1413 SDValue Root = Op.getOperand(0);
1414 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1415 DebugLoc dl = Op.getDebugLoc();
1417 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1418 bool isPPC64 = PtrVT == MVT::i64;
1419 bool isMachoABI = Subtarget.isMachoABI();
1420 bool isELF32_ABI = Subtarget.isELF32_ABI();
1421 // Potential tail calls could cause overwriting of argument stack slots.
1422 unsigned CC = MF.getFunction()->getCallingConv();
1423 bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1424 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1426 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1427 // Area that is at least reserved in caller of this function.
1428 unsigned MinReservedArea = ArgOffset;
1430 static const unsigned GPR_32[] = { // 32-bit registers.
1431 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1432 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1434 static const unsigned GPR_64[] = { // 64-bit registers.
1435 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1436 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1439 static const unsigned *FPR = GetFPR(Subtarget);
1441 static const unsigned VR[] = {
1442 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1443 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1446 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1447 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1448 const unsigned Num_VR_Regs = array_lengthof( VR);
1450 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1452 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1454 // In 32-bit non-varargs functions, the stack space for vectors is after the
1455 // stack space for non-vectors. We do not use this space unless we have
1456 // too many vectors to fit in registers, something that only occurs in
1457 // constructed examples:), but we have to walk the arglist to figure
1458 // that out...for the pathological case, compute VecArgOffset as the
1459 // start of the vector parameter area. Computing VecArgOffset is the
1460 // entire point of the following loop.
1461 // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1462 // to handle Elf here.
1463 unsigned VecArgOffset = ArgOffset;
1464 if (!isVarArg && !isPPC64) {
1465 for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e;
1466 ++ArgNo) {
1467 MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1468 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1469 ISD::ArgFlagsTy Flags =
1470 cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1472 if (Flags.isByVal()) {
1473 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1474 ObjSize = Flags.getByValSize();
1475 unsigned ArgSize =
1476 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1477 VecArgOffset += ArgSize;
1478 continue;
1481 switch(ObjectVT.getSimpleVT()) {
1482 default: assert(0 && "Unhandled argument type!");
1483 case MVT::i32:
1484 case MVT::f32:
1485 VecArgOffset += isPPC64 ? 8 : 4;
1486 break;
1487 case MVT::i64: // PPC64
1488 case MVT::f64:
1489 VecArgOffset += 8;
1490 break;
1491 case MVT::v4f32:
1492 case MVT::v4i32:
1493 case MVT::v8i16:
1494 case MVT::v16i8:
1495 // Nothing to do, we're only looking at Nonvector args here.
1496 break;
1500 // We've found where the vector parameter area in memory is. Skip the
1501 // first 12 parameters; these don't use that memory.
1502 VecArgOffset = ((VecArgOffset+15)/16)*16;
1503 VecArgOffset += 12*16;
1505 // Add DAG nodes to load the arguments or copy them out of registers. On
1506 // entry to a function on PPC, the arguments start after the linkage area,
1507 // although the first ones are often in registers.
1509 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1510 // represented with two words (long long or double) must be copied to an
1511 // even GPR_idx value or to an even ArgOffset value.
1513 SmallVector<SDValue, 8> MemOps;
1514 unsigned nAltivecParamsAtEnd = 0;
1515 for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
1516 ArgNo != e; ++ArgNo) {
1517 SDValue ArgVal;
1518 bool needsLoad = false;
1519 MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1520 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1521 unsigned ArgSize = ObjSize;
1522 ISD::ArgFlagsTy Flags =
1523 cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1524 // See if next argument requires stack alignment in ELF
1525 bool Align = Flags.isSplit();
1527 unsigned CurArgOffset = ArgOffset;
1529 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1530 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1531 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1532 if (isVarArg || isPPC64) {
1533 MinReservedArea = ((MinReservedArea+15)/16)*16;
1534 MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1535 Flags,
1536 isVarArg,
1537 PtrByteSize);
1538 } else nAltivecParamsAtEnd++;
1539 } else
1540 // Calculate min reserved area.
1541 MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1542 Flags,
1543 isVarArg,
1544 PtrByteSize);
1546 // FIXME alignment for ELF may not be right
1547 // FIXME the codegen can be much improved in some cases.
1548 // We do not have to keep everything in memory.
1549 if (Flags.isByVal()) {
1550 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1551 ObjSize = Flags.getByValSize();
1552 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1553 // Double word align in ELF
1554 if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1555 // Objects of size 1 and 2 are right justified, everything else is
1556 // left justified. This means the memory address is adjusted forwards.
1557 if (ObjSize==1 || ObjSize==2) {
1558 CurArgOffset = CurArgOffset + (4 - ObjSize);
1560 // The value of the object is its address.
1561 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1562 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1563 ArgValues.push_back(FIN);
1564 if (ObjSize==1 || ObjSize==2) {
1565 if (GPR_idx != Num_GPR_Regs) {
1566 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1567 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1568 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1569 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1570 NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1571 MemOps.push_back(Store);
1572 ++GPR_idx;
1573 if (isMachoABI) ArgOffset += PtrByteSize;
1574 } else {
1575 ArgOffset += PtrByteSize;
1577 continue;
1579 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1580 // Store whatever pieces of the object are in registers
1581 // to memory. ArgVal will be address of the beginning of
1582 // the object.
1583 if (GPR_idx != Num_GPR_Regs) {
1584 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1585 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1586 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1587 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1588 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1589 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1590 MemOps.push_back(Store);
1591 ++GPR_idx;
1592 if (isMachoABI) ArgOffset += PtrByteSize;
1593 } else {
1594 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1595 break;
1598 continue;
1601 switch (ObjectVT.getSimpleVT()) {
1602 default: assert(0 && "Unhandled argument type!");
1603 case MVT::i32:
1604 if (!isPPC64) {
1605 // Double word align in ELF
1606 if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1608 if (GPR_idx != Num_GPR_Regs) {
1609 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1610 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1611 ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1612 ++GPR_idx;
1613 } else {
1614 needsLoad = true;
1615 ArgSize = PtrByteSize;
1617 // Stack align in ELF
1618 if (needsLoad && Align && isELF32_ABI)
1619 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1620 // All int arguments reserve stack space in Macho ABI.
1621 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1622 break;
1624 // FALLTHROUGH
1625 case MVT::i64: // PPC64
1626 if (GPR_idx != Num_GPR_Regs) {
1627 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1628 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1629 ArgVal = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1631 if (ObjectVT == MVT::i32) {
1632 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1633 // value to MVT::i64 and then truncate to the correct register size.
1634 if (Flags.isSExt())
1635 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1636 DAG.getValueType(ObjectVT));
1637 else if (Flags.isZExt())
1638 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1639 DAG.getValueType(ObjectVT));
1641 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1644 ++GPR_idx;
1645 } else {
1646 needsLoad = true;
1647 ArgSize = PtrByteSize;
1649 // All int arguments reserve stack space in Macho ABI.
1650 if (isMachoABI || needsLoad) ArgOffset += 8;
1651 break;
1653 case MVT::f32:
1654 case MVT::f64:
1655 // Every 4 bytes of argument space consumes one of the GPRs available for
1656 // argument passing.
1657 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1658 ++GPR_idx;
1659 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1660 ++GPR_idx;
1662 if (FPR_idx != Num_FPR_Regs) {
1663 unsigned VReg;
1664 if (ObjectVT == MVT::f32)
1665 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1666 else
1667 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1668 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1669 ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1670 ++FPR_idx;
1671 } else {
1672 needsLoad = true;
1675 // Stack align in ELF
1676 if (needsLoad && Align && isELF32_ABI)
1677 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1678 // All FP arguments reserve stack space in Macho ABI.
1679 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1680 break;
1681 case MVT::v4f32:
1682 case MVT::v4i32:
1683 case MVT::v8i16:
1684 case MVT::v16i8:
1685 // Note that vector arguments in registers don't reserve stack space,
1686 // except in varargs functions.
1687 if (VR_idx != Num_VR_Regs) {
1688 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1689 RegInfo.addLiveIn(VR[VR_idx], VReg);
1690 ArgVal = DAG.getCopyFromReg(Root, dl, VReg, ObjectVT);
1691 if (isVarArg) {
1692 while ((ArgOffset % 16) != 0) {
1693 ArgOffset += PtrByteSize;
1694 if (GPR_idx != Num_GPR_Regs)
1695 GPR_idx++;
1697 ArgOffset += 16;
1698 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1700 ++VR_idx;
1701 } else {
1702 if (!isVarArg && !isPPC64) {
1703 // Vectors go after all the nonvectors.
1704 CurArgOffset = VecArgOffset;
1705 VecArgOffset += 16;
1706 } else {
1707 // Vectors are aligned.
1708 ArgOffset = ((ArgOffset+15)/16)*16;
1709 CurArgOffset = ArgOffset;
1710 ArgOffset += 16;
1712 needsLoad = true;
1714 break;
1717 // We need to load the argument to a virtual register if we determined above
1718 // that we ran out of physical registers of the appropriate type.
1719 if (needsLoad) {
1720 int FI = MFI->CreateFixedObject(ObjSize,
1721 CurArgOffset + (ArgSize - ObjSize),
1722 isImmutable);
1723 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1724 ArgVal = DAG.getLoad(ObjectVT, dl, Root, FIN, NULL, 0);
1727 ArgValues.push_back(ArgVal);
1730 // Set the size that is at least reserved in caller of this function. Tail
1731 // call optimized function's reserved stack space needs to be aligned so that
1732 // taking the difference between two stack areas will result in an aligned
1733 // stack.
1734 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1735 // Add the Altivec parameters at the end, if needed.
1736 if (nAltivecParamsAtEnd) {
1737 MinReservedArea = ((MinReservedArea+15)/16)*16;
1738 MinReservedArea += 16*nAltivecParamsAtEnd;
1740 MinReservedArea =
1741 std::max(MinReservedArea,
1742 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1743 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1744 getStackAlignment();
1745 unsigned AlignMask = TargetAlign-1;
1746 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1747 FI->setMinReservedArea(MinReservedArea);
1749 // If the function takes variable number of arguments, make a frame index for
1750 // the start of the first vararg value... for expansion of llvm.va_start.
1751 if (isVarArg) {
1753 int depth;
1754 if (isELF32_ABI) {
1755 VarArgsNumGPR = GPR_idx;
1756 VarArgsNumFPR = FPR_idx;
1758 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1759 // pointer.
1760 depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1761 Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1762 PtrVT.getSizeInBits()/8);
1764 VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1765 ArgOffset);
1768 else
1769 depth = ArgOffset;
1771 VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1772 depth);
1773 SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1775 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1776 // stored to the VarArgsFrameIndex on the stack.
1777 if (isELF32_ABI) {
1778 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1779 SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1780 SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1781 MemOps.push_back(Store);
1782 // Increment the address by four for the next argument to store
1783 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1784 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1788 // If this function is vararg, store any remaining integer argument regs
1789 // to their spots on the stack so that they may be loaded by deferencing the
1790 // result of va_next.
1791 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1792 unsigned VReg;
1793 if (isPPC64)
1794 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1795 else
1796 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1798 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1799 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, PtrVT);
1800 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1801 MemOps.push_back(Store);
1802 // Increment the address by four for the next argument to store
1803 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1804 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1807 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1808 // on the stack.
1809 if (isELF32_ABI) {
1810 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1811 SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1812 SDValue Store = DAG.getStore(Root, dl, Val, FIN, NULL, 0);
1813 MemOps.push_back(Store);
1814 // Increment the address by eight for the next argument to store
1815 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1816 PtrVT);
1817 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1820 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1821 unsigned VReg;
1822 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1824 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1825 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::f64);
1826 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1827 MemOps.push_back(Store);
1828 // Increment the address by eight for the next argument to store
1829 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1830 PtrVT);
1831 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1836 if (!MemOps.empty())
1837 Root = DAG.getNode(ISD::TokenFactor, dl,
1838 MVT::Other, &MemOps[0], MemOps.size());
1840 ArgValues.push_back(Root);
1842 // Return the new list of results.
1843 return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1844 &ArgValues[0], ArgValues.size());
1847 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1848 /// linkage area.
1849 static unsigned
1850 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1851 bool isPPC64,
1852 bool isMachoABI,
1853 bool isVarArg,
1854 unsigned CC,
1855 CallSDNode *TheCall,
1856 unsigned &nAltivecParamsAtEnd) {
1857 // Count how many bytes are to be pushed on the stack, including the linkage
1858 // area, and parameter passing area. We start with 24/48 bytes, which is
1859 // prereserved space for [SP][CR][LR][3 x unused].
1860 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1861 unsigned NumOps = TheCall->getNumArgs();
1862 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1864 // Add up all the space actually used.
1865 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1866 // they all go in registers, but we must reserve stack space for them for
1867 // possible use by the caller. In varargs or 64-bit calls, parameters are
1868 // assigned stack space in order, with padding so Altivec parameters are
1869 // 16-byte aligned.
1870 nAltivecParamsAtEnd = 0;
1871 for (unsigned i = 0; i != NumOps; ++i) {
1872 SDValue Arg = TheCall->getArg(i);
1873 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1874 MVT ArgVT = Arg.getValueType();
1875 // Varargs Altivec parameters are padded to a 16 byte boundary.
1876 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1877 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1878 if (!isVarArg && !isPPC64) {
1879 // Non-varargs Altivec parameters go after all the non-Altivec
1880 // parameters; handle those later so we know how much padding we need.
1881 nAltivecParamsAtEnd++;
1882 continue;
1884 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1885 NumBytes = ((NumBytes+15)/16)*16;
1887 NumBytes += CalculateStackSlotSize(Arg, Flags, isVarArg, PtrByteSize);
1890 // Allow for Altivec parameters at the end, if needed.
1891 if (nAltivecParamsAtEnd) {
1892 NumBytes = ((NumBytes+15)/16)*16;
1893 NumBytes += 16*nAltivecParamsAtEnd;
1896 // The prolog code of the callee may store up to 8 GPR argument registers to
1897 // the stack, allowing va_start to index over them in memory if its varargs.
1898 // Because we cannot tell if this is needed on the caller side, we have to
1899 // conservatively assume that it is needed. As such, make sure we have at
1900 // least enough stack space for the caller to store the 8 GPRs.
1901 NumBytes = std::max(NumBytes,
1902 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1904 // Tail call needs the stack to be aligned.
1905 if (CC==CallingConv::Fast && PerformTailCallOpt) {
1906 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1907 getStackAlignment();
1908 unsigned AlignMask = TargetAlign-1;
1909 NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1912 return NumBytes;
1915 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1916 /// adjusted to accomodate the arguments for the tailcall.
1917 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1918 unsigned ParamSize) {
1920 if (!IsTailCall) return 0;
1922 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1923 unsigned CallerMinReservedArea = FI->getMinReservedArea();
1924 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1925 // Remember only if the new adjustement is bigger.
1926 if (SPDiff < FI->getTailCallSPDelta())
1927 FI->setTailCallSPDelta(SPDiff);
1929 return SPDiff;
1932 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
1933 /// following the call is a return. A function is eligible if caller/callee
1934 /// calling conventions match, currently only fastcc supports tail calls, and
1935 /// the function CALL is immediatly followed by a RET.
1936 bool
1937 PPCTargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1938 SDValue Ret,
1939 SelectionDAG& DAG) const {
1940 // Variable argument functions are not supported.
1941 if (!PerformTailCallOpt || TheCall->isVarArg())
1942 return false;
1944 if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1945 MachineFunction &MF = DAG.getMachineFunction();
1946 unsigned CallerCC = MF.getFunction()->getCallingConv();
1947 unsigned CalleeCC = TheCall->getCallingConv();
1948 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1949 // Functions containing by val parameters are not supported.
1950 for (unsigned i = 0; i != TheCall->getNumArgs(); i++) {
1951 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1952 if (Flags.isByVal()) return false;
1955 SDValue Callee = TheCall->getCallee();
1956 // Non PIC/GOT tail calls are supported.
1957 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1958 return true;
1960 // At the moment we can only do local tail calls (in same module, hidden
1961 // or protected) if we are generating PIC.
1962 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1963 return G->getGlobal()->hasHiddenVisibility()
1964 || G->getGlobal()->hasProtectedVisibility();
1968 return false;
1971 /// isCallCompatibleAddress - Return the immediate to use if the specified
1972 /// 32-bit value is representable in the immediate field of a BxA instruction.
1973 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1974 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1975 if (!C) return 0;
1977 int Addr = C->getZExtValue();
1978 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1979 (Addr << 6 >> 6) != Addr)
1980 return 0; // Top 6 bits have to be sext of immediate.
1982 return DAG.getConstant((int)C->getZExtValue() >> 2,
1983 DAG.getTargetLoweringInfo().getPointerTy()).getNode();
1986 namespace {
1988 struct TailCallArgumentInfo {
1989 SDValue Arg;
1990 SDValue FrameIdxOp;
1991 int FrameIdx;
1993 TailCallArgumentInfo() : FrameIdx(0) {}
1998 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1999 static void
2000 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2001 SDValue Chain,
2002 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2003 SmallVector<SDValue, 8> &MemOpChains,
2004 DebugLoc dl) {
2005 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2006 SDValue Arg = TailCallArgs[i].Arg;
2007 SDValue FIN = TailCallArgs[i].FrameIdxOp;
2008 int FI = TailCallArgs[i].FrameIdx;
2009 // Store relative to framepointer.
2010 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2011 PseudoSourceValue::getFixedStack(FI),
2012 0));
2016 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2017 /// the appropriate stack slot for the tail call optimized function call.
2018 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2019 MachineFunction &MF,
2020 SDValue Chain,
2021 SDValue OldRetAddr,
2022 SDValue OldFP,
2023 int SPDiff,
2024 bool isPPC64,
2025 bool isMachoABI,
2026 DebugLoc dl) {
2027 if (SPDiff) {
2028 // Calculate the new stack slot for the return address.
2029 int SlotSize = isPPC64 ? 8 : 4;
2030 int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2031 isMachoABI);
2032 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2033 NewRetAddrLoc);
2034 int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
2035 isMachoABI);
2036 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2038 MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2039 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2040 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2041 PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2042 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2043 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2044 PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2046 return Chain;
2049 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2050 /// the position of the argument.
2051 static void
2052 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2053 SDValue Arg, int SPDiff, unsigned ArgOffset,
2054 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2055 int Offset = ArgOffset + SPDiff;
2056 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2057 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2058 MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2059 SDValue FIN = DAG.getFrameIndex(FI, VT);
2060 TailCallArgumentInfo Info;
2061 Info.Arg = Arg;
2062 Info.FrameIdxOp = FIN;
2063 Info.FrameIdx = FI;
2064 TailCallArguments.push_back(Info);
2067 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2068 /// stack slot. Returns the chain as result and the loaded frame pointers in
2069 /// LROpOut/FPOpout. Used when tail calling.
2070 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2071 int SPDiff,
2072 SDValue Chain,
2073 SDValue &LROpOut,
2074 SDValue &FPOpOut,
2075 DebugLoc dl) {
2076 if (SPDiff) {
2077 // Load the LR and FP stack slot for later adjusting.
2078 MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2079 LROpOut = getReturnAddrFrameIndex(DAG);
2080 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2081 Chain = SDValue(LROpOut.getNode(), 1);
2082 FPOpOut = getFramePointerFrameIndex(DAG);
2083 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2084 Chain = SDValue(FPOpOut.getNode(), 1);
2086 return Chain;
2089 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2090 /// by "Src" to address "Dst" of size "Size". Alignment information is
2091 /// specified by the specific parameter attribute. The copy will be passed as
2092 /// a byval function parameter.
2093 /// Sometimes what we are copying is the end of a larger object, the part that
2094 /// does not fit in registers.
2095 static SDValue
2096 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2097 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2098 unsigned Size, DebugLoc dl) {
2099 SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2100 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2101 false, NULL, 0, NULL, 0);
2104 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2105 /// tail calls.
2106 static void
2107 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2108 SDValue Arg, SDValue PtrOff, int SPDiff,
2109 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2110 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2111 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2112 DebugLoc dl) {
2113 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2114 if (!isTailCall) {
2115 if (isVector) {
2116 SDValue StackPtr;
2117 if (isPPC64)
2118 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2119 else
2120 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2121 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2122 DAG.getConstant(ArgOffset, PtrVT));
2124 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2125 // Calculate and remember argument location.
2126 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2127 TailCallArguments);
2130 SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2131 const PPCSubtarget &Subtarget,
2132 TargetMachine &TM) {
2133 CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
2134 SDValue Chain = TheCall->getChain();
2135 bool isVarArg = TheCall->isVarArg();
2136 unsigned CC = TheCall->getCallingConv();
2137 bool isTailCall = TheCall->isTailCall()
2138 && CC == CallingConv::Fast && PerformTailCallOpt;
2139 SDValue Callee = TheCall->getCallee();
2140 unsigned NumOps = TheCall->getNumArgs();
2141 DebugLoc dl = TheCall->getDebugLoc();
2143 bool isMachoABI = Subtarget.isMachoABI();
2144 bool isELF32_ABI = Subtarget.isELF32_ABI();
2146 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2147 bool isPPC64 = PtrVT == MVT::i64;
2148 unsigned PtrByteSize = isPPC64 ? 8 : 4;
2150 MachineFunction &MF = DAG.getMachineFunction();
2152 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2153 // SelectExpr to use to put the arguments in the appropriate registers.
2154 std::vector<SDValue> args_to_use;
2156 // Mark this function as potentially containing a function that contains a
2157 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2158 // and restoring the callers stack pointer in this functions epilog. This is
2159 // done because by tail calling the called function might overwrite the value
2160 // in this function's (MF) stack pointer stack slot 0(SP).
2161 if (PerformTailCallOpt && CC==CallingConv::Fast)
2162 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2164 unsigned nAltivecParamsAtEnd = 0;
2166 // Count how many bytes are to be pushed on the stack, including the linkage
2167 // area, and parameter passing area. We start with 24/48 bytes, which is
2168 // prereserved space for [SP][CR][LR][3 x unused].
2169 unsigned NumBytes =
2170 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2171 TheCall, nAltivecParamsAtEnd);
2173 // Calculate by how many bytes the stack has to be adjusted in case of tail
2174 // call optimization.
2175 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2177 // Adjust the stack pointer for the new arguments...
2178 // These operations are automatically eliminated by the prolog/epilog pass
2179 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2180 SDValue CallSeqStart = Chain;
2182 // Load the return address and frame pointer so it can be move somewhere else
2183 // later.
2184 SDValue LROp, FPOp;
2185 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
2187 // Set up a copy of the stack pointer for use loading and storing any
2188 // arguments that may not fit in the registers available for argument
2189 // passing.
2190 SDValue StackPtr;
2191 if (isPPC64)
2192 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2193 else
2194 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2196 // Figure out which arguments are going to go in registers, and which in
2197 // memory. Also, if this is a vararg function, floating point operations
2198 // must be stored to our stack, and loaded into integer regs as well, if
2199 // any integer regs are available for argument passing.
2200 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2201 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2203 static const unsigned GPR_32[] = { // 32-bit registers.
2204 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2205 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2207 static const unsigned GPR_64[] = { // 64-bit registers.
2208 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2209 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2211 static const unsigned *FPR = GetFPR(Subtarget);
2213 static const unsigned VR[] = {
2214 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2215 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2217 const unsigned NumGPRs = array_lengthof(GPR_32);
2218 const unsigned NumFPRs = isMachoABI ? 13 : 8;
2219 const unsigned NumVRs = array_lengthof( VR);
2221 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2223 std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2224 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2226 SmallVector<SDValue, 8> MemOpChains;
2227 for (unsigned i = 0; i != NumOps; ++i) {
2228 bool inMem = false;
2229 SDValue Arg = TheCall->getArg(i);
2230 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
2231 // See if next argument requires stack alignment in ELF
2232 bool Align = Flags.isSplit();
2234 // PtrOff will be used to store the current argument to the stack if a
2235 // register cannot be found for it.
2236 SDValue PtrOff;
2238 // Stack align in ELF 32
2239 if (isELF32_ABI && Align)
2240 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2241 StackPtr.getValueType());
2242 else
2243 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2245 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2247 // On PPC64, promote integers to 64-bit values.
2248 if (isPPC64 && Arg.getValueType() == MVT::i32) {
2249 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2250 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2251 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2254 // FIXME Elf untested, what are alignment rules?
2255 // FIXME memcpy is used way more than necessary. Correctness first.
2256 if (Flags.isByVal()) {
2257 unsigned Size = Flags.getByValSize();
2258 if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2259 if (Size==1 || Size==2) {
2260 // Very small objects are passed right-justified.
2261 // Everything else is passed left-justified.
2262 MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2263 if (GPR_idx != NumGPRs) {
2264 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2265 NULL, 0, VT);
2266 MemOpChains.push_back(Load.getValue(1));
2267 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2268 if (isMachoABI)
2269 ArgOffset += PtrByteSize;
2270 } else {
2271 SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2272 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2273 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2274 CallSeqStart.getNode()->getOperand(0),
2275 Flags, DAG, Size, dl);
2276 // This must go outside the CALLSEQ_START..END.
2277 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2278 CallSeqStart.getNode()->getOperand(1));
2279 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2280 NewCallSeqStart.getNode());
2281 Chain = CallSeqStart = NewCallSeqStart;
2282 ArgOffset += PtrByteSize;
2284 continue;
2286 // Copy entire object into memory. There are cases where gcc-generated
2287 // code assumes it is there, even if it could be put entirely into
2288 // registers. (This is not what the doc says.)
2289 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2290 CallSeqStart.getNode()->getOperand(0),
2291 Flags, DAG, Size, dl);
2292 // This must go outside the CALLSEQ_START..END.
2293 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2294 CallSeqStart.getNode()->getOperand(1));
2295 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2296 Chain = CallSeqStart = NewCallSeqStart;
2297 // And copy the pieces of it that fit into registers.
2298 for (unsigned j=0; j<Size; j+=PtrByteSize) {
2299 SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2300 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2301 if (GPR_idx != NumGPRs) {
2302 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2303 MemOpChains.push_back(Load.getValue(1));
2304 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2305 if (isMachoABI)
2306 ArgOffset += PtrByteSize;
2307 } else {
2308 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2309 break;
2312 continue;
2315 switch (Arg.getValueType().getSimpleVT()) {
2316 default: assert(0 && "Unexpected ValueType for argument!");
2317 case MVT::i32:
2318 case MVT::i64:
2319 // Double word align in ELF
2320 if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2321 if (GPR_idx != NumGPRs) {
2322 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2323 } else {
2324 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2325 isPPC64, isTailCall, false, MemOpChains,
2326 TailCallArguments, dl);
2327 inMem = true;
2329 if (inMem || isMachoABI) {
2330 // Stack align in ELF
2331 if (isELF32_ABI && Align)
2332 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2334 ArgOffset += PtrByteSize;
2336 break;
2337 case MVT::f32:
2338 case MVT::f64:
2339 if (FPR_idx != NumFPRs) {
2340 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2342 if (isVarArg) {
2343 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2344 MemOpChains.push_back(Store);
2346 // Float varargs are always shadowed in available integer registers
2347 if (GPR_idx != NumGPRs) {
2348 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2349 MemOpChains.push_back(Load.getValue(1));
2350 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2351 Load));
2353 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2354 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2355 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
2356 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
2357 MemOpChains.push_back(Load.getValue(1));
2358 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2359 Load));
2361 } else {
2362 // If we have any FPRs remaining, we may also have GPRs remaining.
2363 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2364 // GPRs.
2365 if (isMachoABI) {
2366 if (GPR_idx != NumGPRs)
2367 ++GPR_idx;
2368 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2369 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
2370 ++GPR_idx;
2373 } else {
2374 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2375 isPPC64, isTailCall, false, MemOpChains,
2376 TailCallArguments, dl);
2377 inMem = true;
2379 if (inMem || isMachoABI) {
2380 // Stack align in ELF
2381 if (isELF32_ABI && Align)
2382 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2383 if (isPPC64)
2384 ArgOffset += 8;
2385 else
2386 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2388 break;
2389 case MVT::v4f32:
2390 case MVT::v4i32:
2391 case MVT::v8i16:
2392 case MVT::v16i8:
2393 if (isVarArg) {
2394 // These go aligned on the stack, or in the corresponding R registers
2395 // when within range. The Darwin PPC ABI doc claims they also go in
2396 // V registers; in fact gcc does this only for arguments that are
2397 // prototyped, not for those that match the ... We do it for all
2398 // arguments, seems to work.
2399 while (ArgOffset % 16 !=0) {
2400 ArgOffset += PtrByteSize;
2401 if (GPR_idx != NumGPRs)
2402 GPR_idx++;
2404 // We could elide this store in the case where the object fits
2405 // entirely in R registers. Maybe later.
2406 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2407 DAG.getConstant(ArgOffset, PtrVT));
2408 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
2409 MemOpChains.push_back(Store);
2410 if (VR_idx != NumVRs) {
2411 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
2412 MemOpChains.push_back(Load.getValue(1));
2413 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2415 ArgOffset += 16;
2416 for (unsigned i=0; i<16; i+=PtrByteSize) {
2417 if (GPR_idx == NumGPRs)
2418 break;
2419 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
2420 DAG.getConstant(i, PtrVT));
2421 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
2422 MemOpChains.push_back(Load.getValue(1));
2423 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2425 break;
2428 // Non-varargs Altivec params generally go in registers, but have
2429 // stack space allocated at the end.
2430 if (VR_idx != NumVRs) {
2431 // Doesn't have GPR space allocated.
2432 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2433 } else if (nAltivecParamsAtEnd==0) {
2434 // We are emitting Altivec params in order.
2435 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2436 isPPC64, isTailCall, true, MemOpChains,
2437 TailCallArguments, dl);
2438 ArgOffset += 16;
2440 break;
2443 // If all Altivec parameters fit in registers, as they usually do,
2444 // they get stack space following the non-Altivec parameters. We
2445 // don't track this here because nobody below needs it.
2446 // If there are more Altivec parameters than fit in registers emit
2447 // the stores here.
2448 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2449 unsigned j = 0;
2450 // Offset is aligned; skip 1st 12 params which go in V registers.
2451 ArgOffset = ((ArgOffset+15)/16)*16;
2452 ArgOffset += 12*16;
2453 for (unsigned i = 0; i != NumOps; ++i) {
2454 SDValue Arg = TheCall->getArg(i);
2455 MVT ArgType = Arg.getValueType();
2456 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2457 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2458 if (++j > NumVRs) {
2459 SDValue PtrOff;
2460 // We are emitting Altivec params in order.
2461 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2462 isPPC64, isTailCall, true, MemOpChains,
2463 TailCallArguments, dl);
2464 ArgOffset += 16;
2470 if (!MemOpChains.empty())
2471 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2472 &MemOpChains[0], MemOpChains.size());
2474 // Build a sequence of copy-to-reg nodes chained together with token chain
2475 // and flag operands which copy the outgoing args into the appropriate regs.
2476 SDValue InFlag;
2477 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2478 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2479 RegsToPass[i].second, InFlag);
2480 InFlag = Chain.getValue(1);
2483 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2484 if (isVarArg && isELF32_ABI) {
2485 SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2486 Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2487 InFlag = Chain.getValue(1);
2490 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2491 // might overwrite each other in case of tail call optimization.
2492 if (isTailCall) {
2493 SmallVector<SDValue, 8> MemOpChains2;
2494 // Do not flag preceeding copytoreg stuff together with the following stuff.
2495 InFlag = SDValue();
2496 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2497 MemOpChains2, dl);
2498 if (!MemOpChains2.empty())
2499 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2500 &MemOpChains2[0], MemOpChains2.size());
2502 // Store the return address to the appropriate stack slot.
2503 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2504 isPPC64, isMachoABI, dl);
2507 // Emit callseq_end just before tailcall node.
2508 if (isTailCall) {
2509 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2510 DAG.getIntPtrConstant(0, true), InFlag);
2511 InFlag = Chain.getValue(1);
2514 std::vector<MVT> NodeTys;
2515 NodeTys.push_back(MVT::Other); // Returns a chain
2516 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
2518 SmallVector<SDValue, 8> Ops;
2519 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2521 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2522 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2523 // node so that legalize doesn't hack it.
2524 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2525 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2526 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2527 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2528 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2529 // If this is an absolute destination address, use the munged value.
2530 Callee = SDValue(Dest, 0);
2531 else {
2532 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
2533 // to do the call, we can't use PPCISD::CALL.
2534 SDValue MTCTROps[] = {Chain, Callee, InFlag};
2535 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2536 2 + (InFlag.getNode() != 0));
2537 InFlag = Chain.getValue(1);
2539 // Copy the callee address into R12/X12 on darwin.
2540 if (isMachoABI) {
2541 unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2542 Chain = DAG.getCopyToReg(Chain, dl, Reg, Callee, InFlag);
2543 InFlag = Chain.getValue(1);
2546 NodeTys.clear();
2547 NodeTys.push_back(MVT::Other);
2548 NodeTys.push_back(MVT::Flag);
2549 Ops.push_back(Chain);
2550 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2551 Callee.setNode(0);
2552 // Add CTR register as callee so a bctr can be emitted later.
2553 if (isTailCall)
2554 Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2557 // If this is a direct call, pass the chain and the callee.
2558 if (Callee.getNode()) {
2559 Ops.push_back(Chain);
2560 Ops.push_back(Callee);
2562 // If this is a tail call add stack pointer delta.
2563 if (isTailCall)
2564 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2566 // Add argument registers to the end of the list so that they are known live
2567 // into the call.
2568 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2569 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2570 RegsToPass[i].second.getValueType()));
2572 // When performing tail call optimization the callee pops its arguments off
2573 // the stack. Account for this here so these bytes can be pushed back on in
2574 // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2575 int BytesCalleePops =
2576 (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2578 if (InFlag.getNode())
2579 Ops.push_back(InFlag);
2581 // Emit tail call.
2582 if (isTailCall) {
2583 assert(InFlag.getNode() &&
2584 "Flag must be set. Depend on flag being set in LowerRET");
2585 Chain = DAG.getNode(PPCISD::TAILCALL, dl,
2586 TheCall->getVTList(), &Ops[0], Ops.size());
2587 return SDValue(Chain.getNode(), Op.getResNo());
2590 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2591 InFlag = Chain.getValue(1);
2593 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2594 DAG.getIntPtrConstant(BytesCalleePops, true),
2595 InFlag);
2596 if (TheCall->getValueType(0) != MVT::Other)
2597 InFlag = Chain.getValue(1);
2599 SmallVector<SDValue, 16> ResultVals;
2600 SmallVector<CCValAssign, 16> RVLocs;
2601 unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2602 CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2603 CCInfo.AnalyzeCallResult(TheCall, RetCC_PPC);
2605 // Copy all of the result registers out of their specified physreg.
2606 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2607 CCValAssign &VA = RVLocs[i];
2608 MVT VT = VA.getValVT();
2609 assert(VA.isRegLoc() && "Can only return in registers!");
2610 Chain = DAG.getCopyFromReg(Chain, dl,
2611 VA.getLocReg(), VT, InFlag).getValue(1);
2612 ResultVals.push_back(Chain.getValue(0));
2613 InFlag = Chain.getValue(2);
2616 // If the function returns void, just return the chain.
2617 if (RVLocs.empty())
2618 return Chain;
2620 // Otherwise, merge everything together with a MERGE_VALUES node.
2621 ResultVals.push_back(Chain);
2622 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
2623 &ResultVals[0], ResultVals.size());
2624 return Res.getValue(Op.getResNo());
2627 SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2628 TargetMachine &TM) {
2629 SmallVector<CCValAssign, 16> RVLocs;
2630 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2631 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2632 DebugLoc dl = Op.getDebugLoc();
2633 CCState CCInfo(CC, isVarArg, TM, RVLocs);
2634 CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
2636 // If this is the first return lowered for this function, add the regs to the
2637 // liveout set for the function.
2638 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2639 for (unsigned i = 0; i != RVLocs.size(); ++i)
2640 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2643 SDValue Chain = Op.getOperand(0);
2645 Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2646 if (Chain.getOpcode() == PPCISD::TAILCALL) {
2647 SDValue TailCall = Chain;
2648 SDValue TargetAddress = TailCall.getOperand(1);
2649 SDValue StackAdjustment = TailCall.getOperand(2);
2651 assert(((TargetAddress.getOpcode() == ISD::Register &&
2652 cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2653 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2654 TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2655 isa<ConstantSDNode>(TargetAddress)) &&
2656 "Expecting an global address, external symbol, absolute value or register");
2658 assert(StackAdjustment.getOpcode() == ISD::Constant &&
2659 "Expecting a const value");
2661 SmallVector<SDValue,8> Operands;
2662 Operands.push_back(Chain.getOperand(0));
2663 Operands.push_back(TargetAddress);
2664 Operands.push_back(StackAdjustment);
2665 // Copy registers used by the call. Last operand is a flag so it is not
2666 // copied.
2667 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2668 Operands.push_back(Chain.getOperand(i));
2670 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Operands[0],
2671 Operands.size());
2674 SDValue Flag;
2676 // Copy the result values into the output registers.
2677 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2678 CCValAssign &VA = RVLocs[i];
2679 assert(VA.isRegLoc() && "Can only return in registers!");
2680 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2681 Op.getOperand(i*2+1), Flag);
2682 Flag = Chain.getValue(1);
2685 if (Flag.getNode())
2686 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
2687 else
2688 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
2691 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2692 const PPCSubtarget &Subtarget) {
2693 // When we pop the dynamic allocation we need to restore the SP link.
2694 DebugLoc dl = Op.getDebugLoc();
2696 // Get the corect type for pointers.
2697 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2699 // Construct the stack pointer operand.
2700 bool IsPPC64 = Subtarget.isPPC64();
2701 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2702 SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2704 // Get the operands for the STACKRESTORE.
2705 SDValue Chain = Op.getOperand(0);
2706 SDValue SaveSP = Op.getOperand(1);
2708 // Load the old link SP.
2709 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
2711 // Restore the stack pointer.
2712 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
2714 // Store the old link SP.
2715 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
2720 SDValue
2721 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2722 MachineFunction &MF = DAG.getMachineFunction();
2723 bool IsPPC64 = PPCSubTarget.isPPC64();
2724 bool isMachoABI = PPCSubTarget.isMachoABI();
2725 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2727 // Get current frame pointer save index. The users of this index will be
2728 // primarily DYNALLOC instructions.
2729 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2730 int RASI = FI->getReturnAddrSaveIndex();
2732 // If the frame pointer save index hasn't been defined yet.
2733 if (!RASI) {
2734 // Find out what the fix offset of the frame pointer save area.
2735 int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2736 // Allocate the frame index for frame pointer save area.
2737 RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2738 // Save the result.
2739 FI->setReturnAddrSaveIndex(RASI);
2741 return DAG.getFrameIndex(RASI, PtrVT);
2744 SDValue
2745 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2746 MachineFunction &MF = DAG.getMachineFunction();
2747 bool IsPPC64 = PPCSubTarget.isPPC64();
2748 bool isMachoABI = PPCSubTarget.isMachoABI();
2749 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2751 // Get current frame pointer save index. The users of this index will be
2752 // primarily DYNALLOC instructions.
2753 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2754 int FPSI = FI->getFramePointerSaveIndex();
2756 // If the frame pointer save index hasn't been defined yet.
2757 if (!FPSI) {
2758 // Find out what the fix offset of the frame pointer save area.
2759 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2761 // Allocate the frame index for frame pointer save area.
2762 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2763 // Save the result.
2764 FI->setFramePointerSaveIndex(FPSI);
2766 return DAG.getFrameIndex(FPSI, PtrVT);
2769 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2770 SelectionDAG &DAG,
2771 const PPCSubtarget &Subtarget) {
2772 // Get the inputs.
2773 SDValue Chain = Op.getOperand(0);
2774 SDValue Size = Op.getOperand(1);
2775 DebugLoc dl = Op.getDebugLoc();
2777 // Get the corect type for pointers.
2778 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2779 // Negate the size.
2780 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
2781 DAG.getConstant(0, PtrVT), Size);
2782 // Construct a node for the frame pointer save index.
2783 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2784 // Build a DYNALLOC node.
2785 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2786 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2787 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
2790 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2791 /// possible.
2792 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2793 // Not FP? Not a fsel.
2794 if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2795 !Op.getOperand(2).getValueType().isFloatingPoint())
2796 return SDValue();
2798 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2800 // Cannot handle SETEQ/SETNE.
2801 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2803 MVT ResVT = Op.getValueType();
2804 MVT CmpVT = Op.getOperand(0).getValueType();
2805 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2806 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
2807 DebugLoc dl = Op.getDebugLoc();
2809 // If the RHS of the comparison is a 0.0, we don't need to do the
2810 // subtraction at all.
2811 if (isFloatingPointZero(RHS))
2812 switch (CC) {
2813 default: break; // SETUO etc aren't handled by fsel.
2814 case ISD::SETULT:
2815 case ISD::SETLT:
2816 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2817 case ISD::SETOGE:
2818 case ISD::SETGE:
2819 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2820 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
2821 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
2822 case ISD::SETUGT:
2823 case ISD::SETGT:
2824 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2825 case ISD::SETOLE:
2826 case ISD::SETLE:
2827 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2828 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
2829 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
2830 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
2833 SDValue Cmp;
2834 switch (CC) {
2835 default: break; // SETUO etc aren't handled by fsel.
2836 case ISD::SETULT:
2837 case ISD::SETLT:
2838 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
2839 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2840 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2841 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
2842 case ISD::SETOGE:
2843 case ISD::SETGE:
2844 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
2845 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2846 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2847 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
2848 case ISD::SETUGT:
2849 case ISD::SETGT:
2850 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
2851 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2852 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2853 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
2854 case ISD::SETOLE:
2855 case ISD::SETLE:
2856 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
2857 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2858 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
2859 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
2861 return SDValue();
2864 // FIXME: Split this code up when LegalizeDAGTypes lands.
2865 SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
2866 DebugLoc dl) {
2867 assert(Op.getOperand(0).getValueType().isFloatingPoint());
2868 SDValue Src = Op.getOperand(0);
2869 if (Src.getValueType() == MVT::f32)
2870 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
2872 SDValue Tmp;
2873 switch (Op.getValueType().getSimpleVT()) {
2874 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2875 case MVT::i32:
2876 Tmp = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Src);
2877 break;
2878 case MVT::i64:
2879 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
2880 break;
2883 // Convert the FP value to an int value through memory.
2884 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2886 // Emit a store to the stack slot.
2887 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
2889 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2890 // add in a bias.
2891 if (Op.getValueType() == MVT::i32)
2892 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
2893 DAG.getConstant(4, FIPtr.getValueType()));
2894 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
2897 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2898 DebugLoc dl = Op.getDebugLoc();
2899 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2900 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2901 return SDValue();
2903 if (Op.getOperand(0).getValueType() == MVT::i64) {
2904 SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
2905 MVT::f64, Op.getOperand(0));
2906 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
2907 if (Op.getValueType() == MVT::f32)
2908 FP = DAG.getNode(ISD::FP_ROUND, dl,
2909 MVT::f32, FP, DAG.getIntPtrConstant(0));
2910 return FP;
2913 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2914 "Unhandled SINT_TO_FP type in custom expander!");
2915 // Since we only generate this in 64-bit mode, we can take advantage of
2916 // 64-bit registers. In particular, sign extend the input value into the
2917 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2918 // then lfd it and fcfid it.
2919 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2920 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2921 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2922 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2924 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
2925 Op.getOperand(0));
2927 // STD the extended value into the stack slot.
2928 MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2929 MachineMemOperand::MOStore, 0, 8, 8);
2930 SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
2931 DAG.getEntryNode(), Ext64, FIdx,
2932 DAG.getMemOperand(MO));
2933 // Load the value as a double.
2934 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
2936 // FCFID it and return it.
2937 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
2938 if (Op.getValueType() == MVT::f32)
2939 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
2940 return FP;
2943 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2944 DebugLoc dl = Op.getDebugLoc();
2946 The rounding mode is in bits 30:31 of FPSR, and has the following
2947 settings:
2948 00 Round to nearest
2949 01 Round to 0
2950 10 Round to +inf
2951 11 Round to -inf
2953 FLT_ROUNDS, on the other hand, expects the following:
2954 -1 Undefined
2955 0 Round to 0
2956 1 Round to nearest
2957 2 Round to +inf
2958 3 Round to -inf
2960 To perform the conversion, we do:
2961 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2964 MachineFunction &MF = DAG.getMachineFunction();
2965 MVT VT = Op.getValueType();
2966 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2967 std::vector<MVT> NodeTys;
2968 SDValue MFFSreg, InFlag;
2970 // Save FP Control Word to register
2971 NodeTys.push_back(MVT::f64); // return register
2972 NodeTys.push_back(MVT::Flag); // unused in this context
2973 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
2975 // Save FP register to stack slot
2976 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2977 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2978 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
2979 StackSlot, NULL, 0);
2981 // Load FP Control Word from low 32 bits of stack slot.
2982 SDValue Four = DAG.getConstant(4, PtrVT);
2983 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
2984 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
2986 // Transform as necessary
2987 SDValue CWD1 =
2988 DAG.getNode(ISD::AND, dl, MVT::i32,
2989 CWD, DAG.getConstant(3, MVT::i32));
2990 SDValue CWD2 =
2991 DAG.getNode(ISD::SRL, dl, MVT::i32,
2992 DAG.getNode(ISD::AND, dl, MVT::i32,
2993 DAG.getNode(ISD::XOR, dl, MVT::i32,
2994 CWD, DAG.getConstant(3, MVT::i32)),
2995 DAG.getConstant(3, MVT::i32)),
2996 DAG.getConstant(1, MVT::i32));
2998 SDValue RetVal =
2999 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3001 return DAG.getNode((VT.getSizeInBits() < 16 ?
3002 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3005 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3006 MVT VT = Op.getValueType();
3007 unsigned BitWidth = VT.getSizeInBits();
3008 DebugLoc dl = Op.getDebugLoc();
3009 assert(Op.getNumOperands() == 3 &&
3010 VT == Op.getOperand(1).getValueType() &&
3011 "Unexpected SHL!");
3013 // Expand into a bunch of logical ops. Note that these ops
3014 // depend on the PPC behavior for oversized shift amounts.
3015 SDValue Lo = Op.getOperand(0);
3016 SDValue Hi = Op.getOperand(1);
3017 SDValue Amt = Op.getOperand(2);
3018 MVT AmtVT = Amt.getValueType();
3020 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3021 DAG.getConstant(BitWidth, AmtVT), Amt);
3022 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3023 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3024 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3025 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3026 DAG.getConstant(-BitWidth, AmtVT));
3027 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3028 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3029 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3030 SDValue OutOps[] = { OutLo, OutHi };
3031 return DAG.getMergeValues(OutOps, 2, dl);
3034 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3035 MVT VT = Op.getValueType();
3036 DebugLoc dl = Op.getDebugLoc();
3037 unsigned BitWidth = VT.getSizeInBits();
3038 assert(Op.getNumOperands() == 3 &&
3039 VT == Op.getOperand(1).getValueType() &&
3040 "Unexpected SRL!");
3042 // Expand into a bunch of logical ops. Note that these ops
3043 // depend on the PPC behavior for oversized shift amounts.
3044 SDValue Lo = Op.getOperand(0);
3045 SDValue Hi = Op.getOperand(1);
3046 SDValue Amt = Op.getOperand(2);
3047 MVT AmtVT = Amt.getValueType();
3049 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3050 DAG.getConstant(BitWidth, AmtVT), Amt);
3051 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3052 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3053 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3054 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3055 DAG.getConstant(-BitWidth, AmtVT));
3056 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3057 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3058 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3059 SDValue OutOps[] = { OutLo, OutHi };
3060 return DAG.getMergeValues(OutOps, 2, dl);
3063 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3064 DebugLoc dl = Op.getDebugLoc();
3065 MVT VT = Op.getValueType();
3066 unsigned BitWidth = VT.getSizeInBits();
3067 assert(Op.getNumOperands() == 3 &&
3068 VT == Op.getOperand(1).getValueType() &&
3069 "Unexpected SRA!");
3071 // Expand into a bunch of logical ops, followed by a select_cc.
3072 SDValue Lo = Op.getOperand(0);
3073 SDValue Hi = Op.getOperand(1);
3074 SDValue Amt = Op.getOperand(2);
3075 MVT AmtVT = Amt.getValueType();
3077 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3078 DAG.getConstant(BitWidth, AmtVT), Amt);
3079 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3080 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3081 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3082 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3083 DAG.getConstant(-BitWidth, AmtVT));
3084 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3085 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3086 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3087 Tmp4, Tmp6, ISD::SETLE);
3088 SDValue OutOps[] = { OutLo, OutHi };
3089 return DAG.getMergeValues(OutOps, 2, dl);
3092 //===----------------------------------------------------------------------===//
3093 // Vector related lowering.
3096 /// BuildSplatI - Build a canonical splati of Val with an element size of
3097 /// SplatSize. Cast the result to VT.
3098 static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3099 SelectionDAG &DAG, DebugLoc dl) {
3100 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3102 static const MVT VTys[] = { // canonical VT to use for each size.
3103 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3106 MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3108 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3109 if (Val == -1)
3110 SplatSize = 1;
3112 MVT CanonicalVT = VTys[SplatSize-1];
3114 // Build a canonical splat for this value.
3115 SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3116 SmallVector<SDValue, 8> Ops;
3117 Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3118 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3119 &Ops[0], Ops.size());
3120 return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3123 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3124 /// specified intrinsic ID.
3125 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3126 SelectionDAG &DAG, DebugLoc dl,
3127 MVT DestVT = MVT::Other) {
3128 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3129 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3130 DAG.getConstant(IID, MVT::i32), LHS, RHS);
3133 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3134 /// specified intrinsic ID.
3135 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3136 SDValue Op2, SelectionDAG &DAG,
3137 DebugLoc dl, MVT DestVT = MVT::Other) {
3138 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3139 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3140 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3144 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3145 /// amount. The result has the specified value type.
3146 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3147 MVT VT, SelectionDAG &DAG, DebugLoc dl) {
3148 // Force LHS/RHS to be the right type.
3149 LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3150 RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3152 int Ops[16];
3153 for (unsigned i = 0; i != 16; ++i)
3154 Ops[i] = i + Amt;
3155 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3156 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3159 // If this is a case we can't handle, return null and let the default
3160 // expansion code take care of it. If we CAN select this case, and if it
3161 // selects to a single instruction, return Op. Otherwise, if we can codegen
3162 // this case more efficiently than a constant pool load, lower it to the
3163 // sequence of ops that should be used.
3164 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3165 DebugLoc dl = Op.getDebugLoc();
3166 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3167 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3169 // Check if this is a splat of a constant value.
3170 APInt APSplatBits, APSplatUndef;
3171 unsigned SplatBitSize;
3172 bool HasAnyUndefs;
3173 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3174 HasAnyUndefs) || SplatBitSize > 32)
3175 return SDValue();
3177 unsigned SplatBits = APSplatBits.getZExtValue();
3178 unsigned SplatUndef = APSplatUndef.getZExtValue();
3179 unsigned SplatSize = SplatBitSize / 8;
3181 // First, handle single instruction cases.
3183 // All zeros?
3184 if (SplatBits == 0) {
3185 // Canonicalize all zero vectors to be v4i32.
3186 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3187 SDValue Z = DAG.getConstant(0, MVT::i32);
3188 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3189 Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3191 return Op;
3194 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3195 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3196 (32-SplatBitSize));
3197 if (SextVal >= -16 && SextVal <= 15)
3198 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3201 // Two instruction sequences.
3203 // If this value is in the range [-32,30] and is even, use:
3204 // tmp = VSPLTI[bhw], result = add tmp, tmp
3205 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3206 SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3207 Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3208 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3211 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
3212 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
3213 // for fneg/fabs.
3214 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3215 // Make -1 and vspltisw -1:
3216 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3218 // Make the VSLW intrinsic, computing 0x8000_0000.
3219 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3220 OnesV, DAG, dl);
3222 // xor by OnesV to invert it.
3223 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3224 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3227 // Check to see if this is a wide variety of vsplti*, binop self cases.
3228 static const signed char SplatCsts[] = {
3229 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3230 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3233 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3234 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3235 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
3236 int i = SplatCsts[idx];
3238 // Figure out what shift amount will be used by altivec if shifted by i in
3239 // this splat size.
3240 unsigned TypeShiftAmt = i & (SplatBitSize-1);
3242 // vsplti + shl self.
3243 if (SextVal == (i << (int)TypeShiftAmt)) {
3244 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3245 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3246 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3247 Intrinsic::ppc_altivec_vslw
3249 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3250 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3253 // vsplti + srl self.
3254 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3255 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3256 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3257 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3258 Intrinsic::ppc_altivec_vsrw
3260 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3261 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3264 // vsplti + sra self.
3265 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3266 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3267 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3268 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3269 Intrinsic::ppc_altivec_vsraw
3271 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3272 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3275 // vsplti + rol self.
3276 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3277 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3278 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3279 static const unsigned IIDs[] = { // Intrinsic to use for each size.
3280 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3281 Intrinsic::ppc_altivec_vrlw
3283 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3284 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3287 // t = vsplti c, result = vsldoi t, t, 1
3288 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3289 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3290 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3292 // t = vsplti c, result = vsldoi t, t, 2
3293 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3294 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3295 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3297 // t = vsplti c, result = vsldoi t, t, 3
3298 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3299 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3300 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3304 // Three instruction sequences.
3306 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
3307 if (SextVal >= 0 && SextVal <= 31) {
3308 SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3309 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3310 LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3311 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3313 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
3314 if (SextVal >= -31 && SextVal <= 0) {
3315 SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3316 SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3317 LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3318 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3321 return SDValue();
3324 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3325 /// the specified operations to build the shuffle.
3326 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3327 SDValue RHS, SelectionDAG &DAG,
3328 DebugLoc dl) {
3329 unsigned OpNum = (PFEntry >> 26) & 0x0F;
3330 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3331 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
3333 enum {
3334 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3335 OP_VMRGHW,
3336 OP_VMRGLW,
3337 OP_VSPLTISW0,
3338 OP_VSPLTISW1,
3339 OP_VSPLTISW2,
3340 OP_VSPLTISW3,
3341 OP_VSLDOI4,
3342 OP_VSLDOI8,
3343 OP_VSLDOI12
3346 if (OpNum == OP_COPY) {
3347 if (LHSID == (1*9+2)*9+3) return LHS;
3348 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3349 return RHS;
3352 SDValue OpLHS, OpRHS;
3353 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3354 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3356 int ShufIdxs[16];
3357 switch (OpNum) {
3358 default: assert(0 && "Unknown i32 permute!");
3359 case OP_VMRGHW:
3360 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
3361 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3362 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
3363 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3364 break;
3365 case OP_VMRGLW:
3366 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3367 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3368 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3369 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3370 break;
3371 case OP_VSPLTISW0:
3372 for (unsigned i = 0; i != 16; ++i)
3373 ShufIdxs[i] = (i&3)+0;
3374 break;
3375 case OP_VSPLTISW1:
3376 for (unsigned i = 0; i != 16; ++i)
3377 ShufIdxs[i] = (i&3)+4;
3378 break;
3379 case OP_VSPLTISW2:
3380 for (unsigned i = 0; i != 16; ++i)
3381 ShufIdxs[i] = (i&3)+8;
3382 break;
3383 case OP_VSPLTISW3:
3384 for (unsigned i = 0; i != 16; ++i)
3385 ShufIdxs[i] = (i&3)+12;
3386 break;
3387 case OP_VSLDOI4:
3388 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3389 case OP_VSLDOI8:
3390 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3391 case OP_VSLDOI12:
3392 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3394 MVT VT = OpLHS.getValueType();
3395 OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3396 OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3397 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3398 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3401 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
3402 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
3403 /// return the code it can be lowered into. Worst case, it can always be
3404 /// lowered into a vperm.
3405 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3406 SelectionDAG &DAG) {
3407 DebugLoc dl = Op.getDebugLoc();
3408 SDValue V1 = Op.getOperand(0);
3409 SDValue V2 = Op.getOperand(1);
3410 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3411 MVT VT = Op.getValueType();
3413 // Cases that are handled by instructions that take permute immediates
3414 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3415 // selected by the instruction selector.
3416 if (V2.getOpcode() == ISD::UNDEF) {
3417 if (PPC::isSplatShuffleMask(SVOp, 1) ||
3418 PPC::isSplatShuffleMask(SVOp, 2) ||
3419 PPC::isSplatShuffleMask(SVOp, 4) ||
3420 PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3421 PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3422 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3423 PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3424 PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3425 PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3426 PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3427 PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3428 PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3429 return Op;
3433 // Altivec has a variety of "shuffle immediates" that take two vector inputs
3434 // and produce a fixed permutation. If any of these match, do not lower to
3435 // VPERM.
3436 if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3437 PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3438 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3439 PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3440 PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3441 PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3442 PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3443 PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3444 PPC::isVMRGHShuffleMask(SVOp, 4, false))
3445 return Op;
3447 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
3448 // perfect shuffle table to emit an optimal matching sequence.
3449 SmallVector<int, 16> PermMask;
3450 SVOp->getMask(PermMask);
3452 unsigned PFIndexes[4];
3453 bool isFourElementShuffle = true;
3454 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3455 unsigned EltNo = 8; // Start out undef.
3456 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
3457 if (PermMask[i*4+j] < 0)
3458 continue; // Undef, ignore it.
3460 unsigned ByteSource = PermMask[i*4+j];
3461 if ((ByteSource & 3) != j) {
3462 isFourElementShuffle = false;
3463 break;
3466 if (EltNo == 8) {
3467 EltNo = ByteSource/4;
3468 } else if (EltNo != ByteSource/4) {
3469 isFourElementShuffle = false;
3470 break;
3473 PFIndexes[i] = EltNo;
3476 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3477 // perfect shuffle vector to determine if it is cost effective to do this as
3478 // discrete instructions, or whether we should use a vperm.
3479 if (isFourElementShuffle) {
3480 // Compute the index in the perfect shuffle table.
3481 unsigned PFTableIndex =
3482 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3484 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3485 unsigned Cost = (PFEntry >> 30);
3487 // Determining when to avoid vperm is tricky. Many things affect the cost
3488 // of vperm, particularly how many times the perm mask needs to be computed.
3489 // For example, if the perm mask can be hoisted out of a loop or is already
3490 // used (perhaps because there are multiple permutes with the same shuffle
3491 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
3492 // the loop requires an extra register.
3494 // As a compromise, we only emit discrete instructions if the shuffle can be
3495 // generated in 3 or fewer operations. When we have loop information
3496 // available, if this block is within a loop, we should avoid using vperm
3497 // for 3-operation perms and use a constant pool load instead.
3498 if (Cost < 3)
3499 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3502 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3503 // vector that will get spilled to the constant pool.
3504 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3506 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3507 // that it is in input element units, not in bytes. Convert now.
3508 MVT EltVT = V1.getValueType().getVectorElementType();
3509 unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3511 SmallVector<SDValue, 16> ResultMask;
3512 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
3513 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
3515 for (unsigned j = 0; j != BytesPerElement; ++j)
3516 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3517 MVT::i8));
3520 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
3521 &ResultMask[0], ResultMask.size());
3522 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
3525 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3526 /// altivec comparison. If it is, return true and fill in Opc/isDot with
3527 /// information about the intrinsic.
3528 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3529 bool &isDot) {
3530 unsigned IntrinsicID =
3531 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
3532 CompareOpc = -1;
3533 isDot = false;
3534 switch (IntrinsicID) {
3535 default: return false;
3536 // Comparison predicates.
3537 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
3538 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3539 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
3540 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
3541 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3542 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3543 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3544 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3545 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3546 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3547 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3548 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3549 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3551 // Normal Comparisons.
3552 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
3553 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
3554 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
3555 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
3556 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
3557 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
3558 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
3559 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
3560 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
3561 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
3562 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
3563 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
3564 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
3566 return true;
3569 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3570 /// lower, do it, otherwise return null.
3571 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3572 SelectionDAG &DAG) {
3573 // If this is a lowered altivec predicate compare, CompareOpc is set to the
3574 // opcode number of the comparison.
3575 DebugLoc dl = Op.getDebugLoc();
3576 int CompareOpc;
3577 bool isDot;
3578 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3579 return SDValue(); // Don't custom lower most intrinsics.
3581 // If this is a non-dot comparison, make the VCMP node and we are done.
3582 if (!isDot) {
3583 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
3584 Op.getOperand(1), Op.getOperand(2),
3585 DAG.getConstant(CompareOpc, MVT::i32));
3586 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
3589 // Create the PPCISD altivec 'dot' comparison node.
3590 SDValue Ops[] = {
3591 Op.getOperand(2), // LHS
3592 Op.getOperand(3), // RHS
3593 DAG.getConstant(CompareOpc, MVT::i32)
3595 std::vector<MVT> VTs;
3596 VTs.push_back(Op.getOperand(2).getValueType());
3597 VTs.push_back(MVT::Flag);
3598 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
3600 // Now that we have the comparison, emit a copy from the CR to a GPR.
3601 // This is flagged to the above dot comparison.
3602 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
3603 DAG.getRegister(PPC::CR6, MVT::i32),
3604 CompNode.getValue(1));
3606 // Unpack the result based on how the target uses it.
3607 unsigned BitNo; // Bit # of CR6.
3608 bool InvertBit; // Invert result?
3609 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
3610 default: // Can't happen, don't crash on invalid number though.
3611 case 0: // Return the value of the EQ bit of CR6.
3612 BitNo = 0; InvertBit = false;
3613 break;
3614 case 1: // Return the inverted value of the EQ bit of CR6.
3615 BitNo = 0; InvertBit = true;
3616 break;
3617 case 2: // Return the value of the LT bit of CR6.
3618 BitNo = 2; InvertBit = false;
3619 break;
3620 case 3: // Return the inverted value of the LT bit of CR6.
3621 BitNo = 2; InvertBit = true;
3622 break;
3625 // Shift the bit into the low position.
3626 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
3627 DAG.getConstant(8-(3-BitNo), MVT::i32));
3628 // Isolate the bit.
3629 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
3630 DAG.getConstant(1, MVT::i32));
3632 // If we are supposed to, toggle the bit.
3633 if (InvertBit)
3634 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
3635 DAG.getConstant(1, MVT::i32));
3636 return Flags;
3639 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3640 SelectionDAG &DAG) {
3641 DebugLoc dl = Op.getDebugLoc();
3642 // Create a stack slot that is 16-byte aligned.
3643 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3644 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3645 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3646 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3648 // Store the input value into Value#0 of the stack slot.
3649 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
3650 Op.getOperand(0), FIdx, NULL, 0);
3651 // Load it out.
3652 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
3655 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3656 DebugLoc dl = Op.getDebugLoc();
3657 if (Op.getValueType() == MVT::v4i32) {
3658 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3660 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
3661 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
3663 SDValue RHSSwap = // = vrlw RHS, 16
3664 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
3666 // Shrinkify inputs to v8i16.
3667 LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
3668 RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
3669 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
3671 // Low parts multiplied together, generating 32-bit results (we ignore the
3672 // top parts).
3673 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3674 LHS, RHS, DAG, dl, MVT::v4i32);
3676 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3677 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
3678 // Shift the high parts up 16 bits.
3679 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
3680 Neg16, DAG, dl);
3681 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
3682 } else if (Op.getValueType() == MVT::v8i16) {
3683 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3685 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
3687 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3688 LHS, RHS, Zero, DAG, dl);
3689 } else if (Op.getValueType() == MVT::v16i8) {
3690 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3692 // Multiply the even 8-bit parts, producing 16-bit sums.
3693 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3694 LHS, RHS, DAG, dl, MVT::v8i16);
3695 EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
3697 // Multiply the odd 8-bit parts, producing 16-bit sums.
3698 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3699 LHS, RHS, DAG, dl, MVT::v8i16);
3700 OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
3702 // Merge the results together.
3703 int Ops[16];
3704 for (unsigned i = 0; i != 8; ++i) {
3705 Ops[i*2 ] = 2*i+1;
3706 Ops[i*2+1] = 2*i+1+16;
3708 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
3709 } else {
3710 assert(0 && "Unknown mul to lower!");
3711 abort();
3715 /// LowerOperation - Provide custom lowering hooks for some operations.
3717 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3718 switch (Op.getOpcode()) {
3719 default: assert(0 && "Wasn't expecting to be able to lower this!");
3720 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3721 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3722 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3723 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3724 case ISD::SETCC: return LowerSETCC(Op, DAG);
3725 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
3726 case ISD::VASTART:
3727 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3728 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3730 case ISD::VAARG:
3731 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3732 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3734 case ISD::FORMAL_ARGUMENTS:
3735 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3736 VarArgsStackOffset, VarArgsNumGPR,
3737 VarArgsNumFPR, PPCSubTarget);
3739 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget,
3740 getTargetMachine());
3741 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3742 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3743 case ISD::DYNAMIC_STACKALLOC:
3744 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3746 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3747 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG,
3748 Op.getDebugLoc());
3749 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
3750 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
3752 // Lower 64-bit shifts.
3753 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3754 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3755 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3757 // Vector-related lowering.
3758 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3759 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3760 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3761 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3762 case ISD::MUL: return LowerMUL(Op, DAG);
3764 // Frame & Return address.
3765 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
3766 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3768 return SDValue();
3771 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
3772 SmallVectorImpl<SDValue>&Results,
3773 SelectionDAG &DAG) {
3774 DebugLoc dl = N->getDebugLoc();
3775 switch (N->getOpcode()) {
3776 default:
3777 assert(false && "Do not know how to custom type legalize this operation!");
3778 return;
3779 case ISD::FP_ROUND_INREG: {
3780 assert(N->getValueType(0) == MVT::ppcf128);
3781 assert(N->getOperand(0).getValueType() == MVT::ppcf128);
3782 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
3783 MVT::f64, N->getOperand(0),
3784 DAG.getIntPtrConstant(0));
3785 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
3786 MVT::f64, N->getOperand(0),
3787 DAG.getIntPtrConstant(1));
3789 // This sequence changes FPSCR to do round-to-zero, adds the two halves
3790 // of the long double, and puts FPSCR back the way it was. We do not
3791 // actually model FPSCR.
3792 std::vector<MVT> NodeTys;
3793 SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
3795 NodeTys.push_back(MVT::f64); // Return register
3796 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
3797 Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3798 MFFSreg = Result.getValue(0);
3799 InFlag = Result.getValue(1);
3801 NodeTys.clear();
3802 NodeTys.push_back(MVT::Flag); // Returns a flag
3803 Ops[0] = DAG.getConstant(31, MVT::i32);
3804 Ops[1] = InFlag;
3805 Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
3806 InFlag = Result.getValue(0);
3808 NodeTys.clear();
3809 NodeTys.push_back(MVT::Flag); // Returns a flag
3810 Ops[0] = DAG.getConstant(30, MVT::i32);
3811 Ops[1] = InFlag;
3812 Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
3813 InFlag = Result.getValue(0);
3815 NodeTys.clear();
3816 NodeTys.push_back(MVT::f64); // result of add
3817 NodeTys.push_back(MVT::Flag); // Returns a flag
3818 Ops[0] = Lo;
3819 Ops[1] = Hi;
3820 Ops[2] = InFlag;
3821 Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
3822 FPreg = Result.getValue(0);
3823 InFlag = Result.getValue(1);
3825 NodeTys.clear();
3826 NodeTys.push_back(MVT::f64);
3827 Ops[0] = DAG.getConstant(1, MVT::i32);
3828 Ops[1] = MFFSreg;
3829 Ops[2] = FPreg;
3830 Ops[3] = InFlag;
3831 Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
3832 FPreg = Result.getValue(0);
3834 // We know the low half is about to be thrown away, so just use something
3835 // convenient.
3836 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
3837 FPreg, FPreg));
3838 return;
3840 case ISD::FP_TO_SINT:
3841 Results.push_back(LowerFP_TO_SINT(SDValue(N, 0), DAG, dl));
3842 return;
3847 //===----------------------------------------------------------------------===//
3848 // Other Lowering Code
3849 //===----------------------------------------------------------------------===//
3851 MachineBasicBlock *
3852 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3853 bool is64bit, unsigned BinOpcode) const {
3854 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3855 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3857 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3858 MachineFunction *F = BB->getParent();
3859 MachineFunction::iterator It = BB;
3860 ++It;
3862 unsigned dest = MI->getOperand(0).getReg();
3863 unsigned ptrA = MI->getOperand(1).getReg();
3864 unsigned ptrB = MI->getOperand(2).getReg();
3865 unsigned incr = MI->getOperand(3).getReg();
3866 DebugLoc dl = MI->getDebugLoc();
3868 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3869 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3870 F->insert(It, loopMBB);
3871 F->insert(It, exitMBB);
3872 exitMBB->transferSuccessors(BB);
3874 MachineRegisterInfo &RegInfo = F->getRegInfo();
3875 unsigned TmpReg = (!BinOpcode) ? incr :
3876 RegInfo.createVirtualRegister(
3877 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3878 (const TargetRegisterClass *) &PPC::GPRCRegClass);
3880 // thisMBB:
3881 // ...
3882 // fallthrough --> loopMBB
3883 BB->addSuccessor(loopMBB);
3885 // loopMBB:
3886 // l[wd]arx dest, ptr
3887 // add r0, dest, incr
3888 // st[wd]cx. r0, ptr
3889 // bne- loopMBB
3890 // fallthrough --> exitMBB
3891 BB = loopMBB;
3892 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
3893 .addReg(ptrA).addReg(ptrB);
3894 if (BinOpcode)
3895 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
3896 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
3897 .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
3898 BuildMI(BB, dl, TII->get(PPC::BCC))
3899 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
3900 BB->addSuccessor(loopMBB);
3901 BB->addSuccessor(exitMBB);
3903 // exitMBB:
3904 // ...
3905 BB = exitMBB;
3906 return BB;
3909 MachineBasicBlock *
3910 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
3911 MachineBasicBlock *BB,
3912 bool is8bit, // operation
3913 unsigned BinOpcode) const {
3914 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3915 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3916 // In 64 bit mode we have to use 64 bits for addresses, even though the
3917 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
3918 // registers without caring whether they're 32 or 64, but here we're
3919 // doing actual arithmetic on the addresses.
3920 bool is64bit = PPCSubTarget.isPPC64();
3922 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3923 MachineFunction *F = BB->getParent();
3924 MachineFunction::iterator It = BB;
3925 ++It;
3927 unsigned dest = MI->getOperand(0).getReg();
3928 unsigned ptrA = MI->getOperand(1).getReg();
3929 unsigned ptrB = MI->getOperand(2).getReg();
3930 unsigned incr = MI->getOperand(3).getReg();
3931 DebugLoc dl = MI->getDebugLoc();
3933 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3934 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3935 F->insert(It, loopMBB);
3936 F->insert(It, exitMBB);
3937 exitMBB->transferSuccessors(BB);
3939 MachineRegisterInfo &RegInfo = F->getRegInfo();
3940 const TargetRegisterClass *RC =
3941 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
3942 (const TargetRegisterClass *) &PPC::GPRCRegClass;
3943 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
3944 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
3945 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
3946 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
3947 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
3948 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
3949 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
3950 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
3951 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
3952 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
3953 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
3954 unsigned Ptr1Reg;
3955 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
3957 // thisMBB:
3958 // ...
3959 // fallthrough --> loopMBB
3960 BB->addSuccessor(loopMBB);
3962 // The 4-byte load must be aligned, while a char or short may be
3963 // anywhere in the word. Hence all this nasty bookkeeping code.
3964 // add ptr1, ptrA, ptrB [copy if ptrA==0]
3965 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
3966 // xori shift, shift1, 24 [16]
3967 // rlwinm ptr, ptr1, 0, 0, 29
3968 // slw incr2, incr, shift
3969 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
3970 // slw mask, mask2, shift
3971 // loopMBB:
3972 // lwarx tmpDest, ptr
3973 // add tmp, tmpDest, incr2
3974 // andc tmp2, tmpDest, mask
3975 // and tmp3, tmp, mask
3976 // or tmp4, tmp3, tmp2
3977 // stwcx. tmp4, ptr
3978 // bne- loopMBB
3979 // fallthrough --> exitMBB
3980 // srw dest, tmpDest, shift
3982 if (ptrA!=PPC::R0) {
3983 Ptr1Reg = RegInfo.createVirtualRegister(RC);
3984 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
3985 .addReg(ptrA).addReg(ptrB);
3986 } else {
3987 Ptr1Reg = ptrB;
3989 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
3990 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
3991 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
3992 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
3993 if (is64bit)
3994 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
3995 .addReg(Ptr1Reg).addImm(0).addImm(61);
3996 else
3997 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
3998 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
3999 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4000 .addReg(incr).addReg(ShiftReg);
4001 if (is8bit)
4002 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4003 else {
4004 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4005 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4007 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4008 .addReg(Mask2Reg).addReg(ShiftReg);
4010 BB = loopMBB;
4011 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4012 .addReg(PPC::R0).addReg(PtrReg);
4013 if (BinOpcode)
4014 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4015 .addReg(Incr2Reg).addReg(TmpDestReg);
4016 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4017 .addReg(TmpDestReg).addReg(MaskReg);
4018 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4019 .addReg(TmpReg).addReg(MaskReg);
4020 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4021 .addReg(Tmp3Reg).addReg(Tmp2Reg);
4022 BuildMI(BB, dl, TII->get(PPC::STWCX))
4023 .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4024 BuildMI(BB, dl, TII->get(PPC::BCC))
4025 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4026 BB->addSuccessor(loopMBB);
4027 BB->addSuccessor(exitMBB);
4029 // exitMBB:
4030 // ...
4031 BB = exitMBB;
4032 BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4033 return BB;
4036 MachineBasicBlock *
4037 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4038 MachineBasicBlock *BB) const {
4039 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4041 // To "insert" these instructions we actually have to insert their
4042 // control-flow patterns.
4043 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4044 MachineFunction::iterator It = BB;
4045 ++It;
4047 MachineFunction *F = BB->getParent();
4049 if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4050 MI->getOpcode() == PPC::SELECT_CC_I8 ||
4051 MI->getOpcode() == PPC::SELECT_CC_F4 ||
4052 MI->getOpcode() == PPC::SELECT_CC_F8 ||
4053 MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4055 // The incoming instruction knows the destination vreg to set, the
4056 // condition code register to branch on, the true/false values to
4057 // select between, and a branch opcode to use.
4059 // thisMBB:
4060 // ...
4061 // TrueVal = ...
4062 // cmpTY ccX, r1, r2
4063 // bCC copy1MBB
4064 // fallthrough --> copy0MBB
4065 MachineBasicBlock *thisMBB = BB;
4066 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4067 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4068 unsigned SelectPred = MI->getOperand(4).getImm();
4069 DebugLoc dl = MI->getDebugLoc();
4070 BuildMI(BB, dl, TII->get(PPC::BCC))
4071 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4072 F->insert(It, copy0MBB);
4073 F->insert(It, sinkMBB);
4074 // Update machine-CFG edges by transferring all successors of the current
4075 // block to the new block which will contain the Phi node for the select.
4076 sinkMBB->transferSuccessors(BB);
4077 // Next, add the true and fallthrough blocks as its successors.
4078 BB->addSuccessor(copy0MBB);
4079 BB->addSuccessor(sinkMBB);
4081 // copy0MBB:
4082 // %FalseValue = ...
4083 // # fallthrough to sinkMBB
4084 BB = copy0MBB;
4086 // Update machine-CFG edges
4087 BB->addSuccessor(sinkMBB);
4089 // sinkMBB:
4090 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4091 // ...
4092 BB = sinkMBB;
4093 BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4094 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4095 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4097 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4098 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4099 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4100 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4101 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4102 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4103 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4104 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4106 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4107 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4108 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4109 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4110 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4111 BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4112 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4113 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4115 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4116 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4117 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4118 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4119 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4120 BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4121 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4122 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4124 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4125 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4126 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4127 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4128 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4129 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4130 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4131 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4133 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4134 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4135 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4136 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4137 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4138 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4139 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4140 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4142 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4143 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4144 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4145 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4146 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4147 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4148 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4149 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4151 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4152 BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4153 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4154 BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4155 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4156 BB = EmitAtomicBinary(MI, BB, false, 0);
4157 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4158 BB = EmitAtomicBinary(MI, BB, true, 0);
4160 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4161 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4162 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4164 unsigned dest = MI->getOperand(0).getReg();
4165 unsigned ptrA = MI->getOperand(1).getReg();
4166 unsigned ptrB = MI->getOperand(2).getReg();
4167 unsigned oldval = MI->getOperand(3).getReg();
4168 unsigned newval = MI->getOperand(4).getReg();
4169 DebugLoc dl = MI->getDebugLoc();
4171 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4172 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4173 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4174 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4175 F->insert(It, loop1MBB);
4176 F->insert(It, loop2MBB);
4177 F->insert(It, midMBB);
4178 F->insert(It, exitMBB);
4179 exitMBB->transferSuccessors(BB);
4181 // thisMBB:
4182 // ...
4183 // fallthrough --> loopMBB
4184 BB->addSuccessor(loop1MBB);
4186 // loop1MBB:
4187 // l[wd]arx dest, ptr
4188 // cmp[wd] dest, oldval
4189 // bne- midMBB
4190 // loop2MBB:
4191 // st[wd]cx. newval, ptr
4192 // bne- loopMBB
4193 // b exitBB
4194 // midMBB:
4195 // st[wd]cx. dest, ptr
4196 // exitBB:
4197 BB = loop1MBB;
4198 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4199 .addReg(ptrA).addReg(ptrB);
4200 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4201 .addReg(oldval).addReg(dest);
4202 BuildMI(BB, dl, TII->get(PPC::BCC))
4203 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4204 BB->addSuccessor(loop2MBB);
4205 BB->addSuccessor(midMBB);
4207 BB = loop2MBB;
4208 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4209 .addReg(newval).addReg(ptrA).addReg(ptrB);
4210 BuildMI(BB, dl, TII->get(PPC::BCC))
4211 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4212 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4213 BB->addSuccessor(loop1MBB);
4214 BB->addSuccessor(exitMBB);
4216 BB = midMBB;
4217 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4218 .addReg(dest).addReg(ptrA).addReg(ptrB);
4219 BB->addSuccessor(exitMBB);
4221 // exitMBB:
4222 // ...
4223 BB = exitMBB;
4224 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4225 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4226 // We must use 64-bit registers for addresses when targeting 64-bit,
4227 // since we're actually doing arithmetic on them. Other registers
4228 // can be 32-bit.
4229 bool is64bit = PPCSubTarget.isPPC64();
4230 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4232 unsigned dest = MI->getOperand(0).getReg();
4233 unsigned ptrA = MI->getOperand(1).getReg();
4234 unsigned ptrB = MI->getOperand(2).getReg();
4235 unsigned oldval = MI->getOperand(3).getReg();
4236 unsigned newval = MI->getOperand(4).getReg();
4237 DebugLoc dl = MI->getDebugLoc();
4239 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4240 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4241 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4242 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4243 F->insert(It, loop1MBB);
4244 F->insert(It, loop2MBB);
4245 F->insert(It, midMBB);
4246 F->insert(It, exitMBB);
4247 exitMBB->transferSuccessors(BB);
4249 MachineRegisterInfo &RegInfo = F->getRegInfo();
4250 const TargetRegisterClass *RC =
4251 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4252 (const TargetRegisterClass *) &PPC::GPRCRegClass;
4253 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4254 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4255 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4256 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4257 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4258 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4259 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4260 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4261 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4262 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4263 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4264 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4265 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4266 unsigned Ptr1Reg;
4267 unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4268 // thisMBB:
4269 // ...
4270 // fallthrough --> loopMBB
4271 BB->addSuccessor(loop1MBB);
4273 // The 4-byte load must be aligned, while a char or short may be
4274 // anywhere in the word. Hence all this nasty bookkeeping code.
4275 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4276 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4277 // xori shift, shift1, 24 [16]
4278 // rlwinm ptr, ptr1, 0, 0, 29
4279 // slw newval2, newval, shift
4280 // slw oldval2, oldval,shift
4281 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4282 // slw mask, mask2, shift
4283 // and newval3, newval2, mask
4284 // and oldval3, oldval2, mask
4285 // loop1MBB:
4286 // lwarx tmpDest, ptr
4287 // and tmp, tmpDest, mask
4288 // cmpw tmp, oldval3
4289 // bne- midMBB
4290 // loop2MBB:
4291 // andc tmp2, tmpDest, mask
4292 // or tmp4, tmp2, newval3
4293 // stwcx. tmp4, ptr
4294 // bne- loop1MBB
4295 // b exitBB
4296 // midMBB:
4297 // stwcx. tmpDest, ptr
4298 // exitBB:
4299 // srw dest, tmpDest, shift
4300 if (ptrA!=PPC::R0) {
4301 Ptr1Reg = RegInfo.createVirtualRegister(RC);
4302 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4303 .addReg(ptrA).addReg(ptrB);
4304 } else {
4305 Ptr1Reg = ptrB;
4307 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4308 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4309 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4310 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4311 if (is64bit)
4312 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4313 .addReg(Ptr1Reg).addImm(0).addImm(61);
4314 else
4315 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4316 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4317 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4318 .addReg(newval).addReg(ShiftReg);
4319 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4320 .addReg(oldval).addReg(ShiftReg);
4321 if (is8bit)
4322 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4323 else {
4324 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4325 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4326 .addReg(Mask3Reg).addImm(65535);
4328 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4329 .addReg(Mask2Reg).addReg(ShiftReg);
4330 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4331 .addReg(NewVal2Reg).addReg(MaskReg);
4332 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4333 .addReg(OldVal2Reg).addReg(MaskReg);
4335 BB = loop1MBB;
4336 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4337 .addReg(PPC::R0).addReg(PtrReg);
4338 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4339 .addReg(TmpDestReg).addReg(MaskReg);
4340 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4341 .addReg(TmpReg).addReg(OldVal3Reg);
4342 BuildMI(BB, dl, TII->get(PPC::BCC))
4343 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4344 BB->addSuccessor(loop2MBB);
4345 BB->addSuccessor(midMBB);
4347 BB = loop2MBB;
4348 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4349 .addReg(TmpDestReg).addReg(MaskReg);
4350 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4351 .addReg(Tmp2Reg).addReg(NewVal3Reg);
4352 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4353 .addReg(PPC::R0).addReg(PtrReg);
4354 BuildMI(BB, dl, TII->get(PPC::BCC))
4355 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4356 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4357 BB->addSuccessor(loop1MBB);
4358 BB->addSuccessor(exitMBB);
4360 BB = midMBB;
4361 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4362 .addReg(PPC::R0).addReg(PtrReg);
4363 BB->addSuccessor(exitMBB);
4365 // exitMBB:
4366 // ...
4367 BB = exitMBB;
4368 BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4369 } else {
4370 assert(0 && "Unexpected instr type to insert");
4373 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
4374 return BB;
4377 //===----------------------------------------------------------------------===//
4378 // Target Optimization Hooks
4379 //===----------------------------------------------------------------------===//
4381 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4382 DAGCombinerInfo &DCI) const {
4383 TargetMachine &TM = getTargetMachine();
4384 SelectionDAG &DAG = DCI.DAG;
4385 DebugLoc dl = N->getDebugLoc();
4386 switch (N->getOpcode()) {
4387 default: break;
4388 case PPCISD::SHL:
4389 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4390 if (C->getZExtValue() == 0) // 0 << V -> 0.
4391 return N->getOperand(0);
4393 break;
4394 case PPCISD::SRL:
4395 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4396 if (C->getZExtValue() == 0) // 0 >>u V -> 0.
4397 return N->getOperand(0);
4399 break;
4400 case PPCISD::SRA:
4401 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4402 if (C->getZExtValue() == 0 || // 0 >>s V -> 0.
4403 C->isAllOnesValue()) // -1 >>s V -> -1.
4404 return N->getOperand(0);
4406 break;
4408 case ISD::SINT_TO_FP:
4409 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4410 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4411 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4412 // We allow the src/dst to be either f32/f64, but the intermediate
4413 // type must be i64.
4414 if (N->getOperand(0).getValueType() == MVT::i64 &&
4415 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4416 SDValue Val = N->getOperand(0).getOperand(0);
4417 if (Val.getValueType() == MVT::f32) {
4418 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4419 DCI.AddToWorklist(Val.getNode());
4422 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4423 DCI.AddToWorklist(Val.getNode());
4424 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4425 DCI.AddToWorklist(Val.getNode());
4426 if (N->getValueType(0) == MVT::f32) {
4427 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4428 DAG.getIntPtrConstant(0));
4429 DCI.AddToWorklist(Val.getNode());
4431 return Val;
4432 } else if (N->getOperand(0).getValueType() == MVT::i32) {
4433 // If the intermediate type is i32, we can avoid the load/store here
4434 // too.
4438 break;
4439 case ISD::STORE:
4440 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4441 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4442 !cast<StoreSDNode>(N)->isTruncatingStore() &&
4443 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4444 N->getOperand(1).getValueType() == MVT::i32 &&
4445 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4446 SDValue Val = N->getOperand(1).getOperand(0);
4447 if (Val.getValueType() == MVT::f32) {
4448 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4449 DCI.AddToWorklist(Val.getNode());
4451 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4452 DCI.AddToWorklist(Val.getNode());
4454 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4455 N->getOperand(2), N->getOperand(3));
4456 DCI.AddToWorklist(Val.getNode());
4457 return Val;
4460 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4461 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4462 N->getOperand(1).getNode()->hasOneUse() &&
4463 (N->getOperand(1).getValueType() == MVT::i32 ||
4464 N->getOperand(1).getValueType() == MVT::i16)) {
4465 SDValue BSwapOp = N->getOperand(1).getOperand(0);
4466 // Do an any-extend to 32-bits if this is a half-word input.
4467 if (BSwapOp.getValueType() == MVT::i16)
4468 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4470 return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4471 BSwapOp, N->getOperand(2), N->getOperand(3),
4472 DAG.getValueType(N->getOperand(1).getValueType()));
4474 break;
4475 case ISD::BSWAP:
4476 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4477 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4478 N->getOperand(0).hasOneUse() &&
4479 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4480 SDValue Load = N->getOperand(0);
4481 LoadSDNode *LD = cast<LoadSDNode>(Load);
4482 // Create the byte-swapping load.
4483 std::vector<MVT> VTs;
4484 VTs.push_back(MVT::i32);
4485 VTs.push_back(MVT::Other);
4486 SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4487 SDValue Ops[] = {
4488 LD->getChain(), // Chain
4489 LD->getBasePtr(), // Ptr
4490 MO, // MemOperand
4491 DAG.getValueType(N->getValueType(0)) // VT
4493 SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4495 // If this is an i16 load, insert the truncate.
4496 SDValue ResVal = BSLoad;
4497 if (N->getValueType(0) == MVT::i16)
4498 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4500 // First, combine the bswap away. This makes the value produced by the
4501 // load dead.
4502 DCI.CombineTo(N, ResVal);
4504 // Next, combine the load away, we give it a bogus result value but a real
4505 // chain result. The result value is dead because the bswap is dead.
4506 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4508 // Return N so it doesn't get rechecked!
4509 return SDValue(N, 0);
4512 break;
4513 case PPCISD::VCMP: {
4514 // If a VCMPo node already exists with exactly the same operands as this
4515 // node, use its result instead of this node (VCMPo computes both a CR6 and
4516 // a normal output).
4518 if (!N->getOperand(0).hasOneUse() &&
4519 !N->getOperand(1).hasOneUse() &&
4520 !N->getOperand(2).hasOneUse()) {
4522 // Scan all of the users of the LHS, looking for VCMPo's that match.
4523 SDNode *VCMPoNode = 0;
4525 SDNode *LHSN = N->getOperand(0).getNode();
4526 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4527 UI != E; ++UI)
4528 if (UI->getOpcode() == PPCISD::VCMPo &&
4529 UI->getOperand(1) == N->getOperand(1) &&
4530 UI->getOperand(2) == N->getOperand(2) &&
4531 UI->getOperand(0) == N->getOperand(0)) {
4532 VCMPoNode = *UI;
4533 break;
4536 // If there is no VCMPo node, or if the flag value has a single use, don't
4537 // transform this.
4538 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4539 break;
4541 // Look at the (necessarily single) use of the flag value. If it has a
4542 // chain, this transformation is more complex. Note that multiple things
4543 // could use the value result, which we should ignore.
4544 SDNode *FlagUser = 0;
4545 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4546 FlagUser == 0; ++UI) {
4547 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4548 SDNode *User = *UI;
4549 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4550 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4551 FlagUser = User;
4552 break;
4557 // If the user is a MFCR instruction, we know this is safe. Otherwise we
4558 // give up for right now.
4559 if (FlagUser->getOpcode() == PPCISD::MFCR)
4560 return SDValue(VCMPoNode, 0);
4562 break;
4564 case ISD::BR_CC: {
4565 // If this is a branch on an altivec predicate comparison, lower this so
4566 // that we don't have to do a MFCR: instead, branch directly on CR6. This
4567 // lowering is done pre-legalize, because the legalizer lowers the predicate
4568 // compare down to code that is difficult to reassemble.
4569 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4570 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4571 int CompareOpc;
4572 bool isDot;
4574 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4575 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4576 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4577 assert(isDot && "Can't compare against a vector result!");
4579 // If this is a comparison against something other than 0/1, then we know
4580 // that the condition is never/always true.
4581 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
4582 if (Val != 0 && Val != 1) {
4583 if (CC == ISD::SETEQ) // Cond never true, remove branch.
4584 return N->getOperand(0);
4585 // Always !=, turn it into an unconditional branch.
4586 return DAG.getNode(ISD::BR, dl, MVT::Other,
4587 N->getOperand(0), N->getOperand(4));
4590 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4592 // Create the PPCISD altivec 'dot' comparison node.
4593 std::vector<MVT> VTs;
4594 SDValue Ops[] = {
4595 LHS.getOperand(2), // LHS of compare
4596 LHS.getOperand(3), // RHS of compare
4597 DAG.getConstant(CompareOpc, MVT::i32)
4599 VTs.push_back(LHS.getOperand(2).getValueType());
4600 VTs.push_back(MVT::Flag);
4601 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4603 // Unpack the result based on how the target uses it.
4604 PPC::Predicate CompOpc;
4605 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
4606 default: // Can't happen, don't crash on invalid number though.
4607 case 0: // Branch on the value of the EQ bit of CR6.
4608 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4609 break;
4610 case 1: // Branch on the inverted value of the EQ bit of CR6.
4611 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4612 break;
4613 case 2: // Branch on the value of the LT bit of CR6.
4614 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4615 break;
4616 case 3: // Branch on the inverted value of the LT bit of CR6.
4617 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4618 break;
4621 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
4622 DAG.getConstant(CompOpc, MVT::i32),
4623 DAG.getRegister(PPC::CR6, MVT::i32),
4624 N->getOperand(4), CompNode.getValue(1));
4626 break;
4630 return SDValue();
4633 //===----------------------------------------------------------------------===//
4634 // Inline Assembly Support
4635 //===----------------------------------------------------------------------===//
4637 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4638 const APInt &Mask,
4639 APInt &KnownZero,
4640 APInt &KnownOne,
4641 const SelectionDAG &DAG,
4642 unsigned Depth) const {
4643 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4644 switch (Op.getOpcode()) {
4645 default: break;
4646 case PPCISD::LBRX: {
4647 // lhbrx is known to have the top bits cleared out.
4648 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4649 KnownZero = 0xFFFF0000;
4650 break;
4652 case ISD::INTRINSIC_WO_CHAIN: {
4653 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
4654 default: break;
4655 case Intrinsic::ppc_altivec_vcmpbfp_p:
4656 case Intrinsic::ppc_altivec_vcmpeqfp_p:
4657 case Intrinsic::ppc_altivec_vcmpequb_p:
4658 case Intrinsic::ppc_altivec_vcmpequh_p:
4659 case Intrinsic::ppc_altivec_vcmpequw_p:
4660 case Intrinsic::ppc_altivec_vcmpgefp_p:
4661 case Intrinsic::ppc_altivec_vcmpgtfp_p:
4662 case Intrinsic::ppc_altivec_vcmpgtsb_p:
4663 case Intrinsic::ppc_altivec_vcmpgtsh_p:
4664 case Intrinsic::ppc_altivec_vcmpgtsw_p:
4665 case Intrinsic::ppc_altivec_vcmpgtub_p:
4666 case Intrinsic::ppc_altivec_vcmpgtuh_p:
4667 case Intrinsic::ppc_altivec_vcmpgtuw_p:
4668 KnownZero = ~1U; // All bits but the low one are known to be zero.
4669 break;
4676 /// getConstraintType - Given a constraint, return the type of
4677 /// constraint it is for this target.
4678 PPCTargetLowering::ConstraintType
4679 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4680 if (Constraint.size() == 1) {
4681 switch (Constraint[0]) {
4682 default: break;
4683 case 'b':
4684 case 'r':
4685 case 'f':
4686 case 'v':
4687 case 'y':
4688 return C_RegisterClass;
4691 return TargetLowering::getConstraintType(Constraint);
4694 std::pair<unsigned, const TargetRegisterClass*>
4695 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4696 MVT VT) const {
4697 if (Constraint.size() == 1) {
4698 // GCC RS6000 Constraint Letters
4699 switch (Constraint[0]) {
4700 case 'b': // R1-R31
4701 case 'r': // R0-R31
4702 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4703 return std::make_pair(0U, PPC::G8RCRegisterClass);
4704 return std::make_pair(0U, PPC::GPRCRegisterClass);
4705 case 'f':
4706 if (VT == MVT::f32)
4707 return std::make_pair(0U, PPC::F4RCRegisterClass);
4708 else if (VT == MVT::f64)
4709 return std::make_pair(0U, PPC::F8RCRegisterClass);
4710 break;
4711 case 'v':
4712 return std::make_pair(0U, PPC::VRRCRegisterClass);
4713 case 'y': // crrc
4714 return std::make_pair(0U, PPC::CRRCRegisterClass);
4718 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4722 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4723 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is true
4724 /// it means one of the asm constraint of the inline asm instruction being
4725 /// processed is 'm'.
4726 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4727 bool hasMemory,
4728 std::vector<SDValue>&Ops,
4729 SelectionDAG &DAG) const {
4730 SDValue Result(0,0);
4731 switch (Letter) {
4732 default: break;
4733 case 'I':
4734 case 'J':
4735 case 'K':
4736 case 'L':
4737 case 'M':
4738 case 'N':
4739 case 'O':
4740 case 'P': {
4741 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4742 if (!CST) return; // Must be an immediate to match.
4743 unsigned Value = CST->getZExtValue();
4744 switch (Letter) {
4745 default: assert(0 && "Unknown constraint letter!");
4746 case 'I': // "I" is a signed 16-bit constant.
4747 if ((short)Value == (int)Value)
4748 Result = DAG.getTargetConstant(Value, Op.getValueType());
4749 break;
4750 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
4751 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
4752 if ((short)Value == 0)
4753 Result = DAG.getTargetConstant(Value, Op.getValueType());
4754 break;
4755 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
4756 if ((Value >> 16) == 0)
4757 Result = DAG.getTargetConstant(Value, Op.getValueType());
4758 break;
4759 case 'M': // "M" is a constant that is greater than 31.
4760 if (Value > 31)
4761 Result = DAG.getTargetConstant(Value, Op.getValueType());
4762 break;
4763 case 'N': // "N" is a positive constant that is an exact power of two.
4764 if ((int)Value > 0 && isPowerOf2_32(Value))
4765 Result = DAG.getTargetConstant(Value, Op.getValueType());
4766 break;
4767 case 'O': // "O" is the constant zero.
4768 if (Value == 0)
4769 Result = DAG.getTargetConstant(Value, Op.getValueType());
4770 break;
4771 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
4772 if ((short)-Value == (int)-Value)
4773 Result = DAG.getTargetConstant(Value, Op.getValueType());
4774 break;
4776 break;
4780 if (Result.getNode()) {
4781 Ops.push_back(Result);
4782 return;
4785 // Handle standard constraint letters.
4786 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
4789 // isLegalAddressingMode - Return true if the addressing mode represented
4790 // by AM is legal for this target, for a load/store of the specified type.
4791 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4792 const Type *Ty) const {
4793 // FIXME: PPC does not allow r+i addressing modes for vectors!
4795 // PPC allows a sign-extended 16-bit immediate field.
4796 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4797 return false;
4799 // No global is ever allowed as a base.
4800 if (AM.BaseGV)
4801 return false;
4803 // PPC only support r+r,
4804 switch (AM.Scale) {
4805 case 0: // "r+i" or just "i", depending on HasBaseReg.
4806 break;
4807 case 1:
4808 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
4809 return false;
4810 // Otherwise we have r+r or r+i.
4811 break;
4812 case 2:
4813 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
4814 return false;
4815 // Allow 2*r as r+r.
4816 break;
4817 default:
4818 // No other scales are supported.
4819 return false;
4822 return true;
4825 /// isLegalAddressImmediate - Return true if the integer value can be used
4826 /// as the offset of the target addressing mode for load / store of the
4827 /// given type.
4828 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4829 // PPC allows a sign-extended 16-bit immediate field.
4830 return (V > -(1 << 16) && V < (1 << 16)-1);
4833 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4834 return false;
4837 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4838 DebugLoc dl = Op.getDebugLoc();
4839 // Depths > 0 not supported yet!
4840 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4841 return SDValue();
4843 MachineFunction &MF = DAG.getMachineFunction();
4844 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4846 // Just load the return address off the stack.
4847 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4849 // Make sure the function really does not optimize away the store of the RA
4850 // to the stack.
4851 FuncInfo->setLRStoreRequired();
4852 return DAG.getLoad(getPointerTy(), dl,
4853 DAG.getEntryNode(), RetAddrFI, NULL, 0);
4856 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4857 DebugLoc dl = Op.getDebugLoc();
4858 // Depths > 0 not supported yet!
4859 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
4860 return SDValue();
4862 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4863 bool isPPC64 = PtrVT == MVT::i64;
4865 MachineFunction &MF = DAG.getMachineFunction();
4866 MachineFrameInfo *MFI = MF.getFrameInfo();
4867 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4868 && MFI->getStackSize();
4870 if (isPPC64)
4871 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
4872 MVT::i64);
4873 else
4874 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
4875 MVT::i32);
4878 bool
4879 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4880 // The PowerPC target isn't yet aware of offsets.
4881 return false;