Avoid making the transformation enabled by my last patch if the new destinations...
[llvm/msp430.git] / examples / Kaleidoscope / toy.cpp
blobbec430c41f5adfec790252b66fb650c00ecf7157
1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/Module.h"
4 #include "llvm/ModuleProvider.h"
5 #include "llvm/PassManager.h"
6 #include "llvm/Analysis/Verifier.h"
7 #include "llvm/Target/TargetData.h"
8 #include "llvm/Transforms/Scalar.h"
9 #include "llvm/Support/IRBuilder.h"
10 #include <cstdio>
11 #include <string>
12 #include <map>
13 #include <vector>
14 using namespace llvm;
16 //===----------------------------------------------------------------------===//
17 // Lexer
18 //===----------------------------------------------------------------------===//
20 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
21 // of these for known things.
22 enum Token {
23 tok_eof = -1,
25 // commands
26 tok_def = -2, tok_extern = -3,
28 // primary
29 tok_identifier = -4, tok_number = -5,
31 // control
32 tok_if = -6, tok_then = -7, tok_else = -8,
33 tok_for = -9, tok_in = -10,
35 // operators
36 tok_binary = -11, tok_unary = -12,
38 // var definition
39 tok_var = -13
42 static std::string IdentifierStr; // Filled in if tok_identifier
43 static double NumVal; // Filled in if tok_number
45 /// gettok - Return the next token from standard input.
46 static int gettok() {
47 static int LastChar = ' ';
49 // Skip any whitespace.
50 while (isspace(LastChar))
51 LastChar = getchar();
53 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
54 IdentifierStr = LastChar;
55 while (isalnum((LastChar = getchar())))
56 IdentifierStr += LastChar;
58 if (IdentifierStr == "def") return tok_def;
59 if (IdentifierStr == "extern") return tok_extern;
60 if (IdentifierStr == "if") return tok_if;
61 if (IdentifierStr == "then") return tok_then;
62 if (IdentifierStr == "else") return tok_else;
63 if (IdentifierStr == "for") return tok_for;
64 if (IdentifierStr == "in") return tok_in;
65 if (IdentifierStr == "binary") return tok_binary;
66 if (IdentifierStr == "unary") return tok_unary;
67 if (IdentifierStr == "var") return tok_var;
68 return tok_identifier;
71 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
72 std::string NumStr;
73 do {
74 NumStr += LastChar;
75 LastChar = getchar();
76 } while (isdigit(LastChar) || LastChar == '.');
78 NumVal = strtod(NumStr.c_str(), 0);
79 return tok_number;
82 if (LastChar == '#') {
83 // Comment until end of line.
84 do LastChar = getchar();
85 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
87 if (LastChar != EOF)
88 return gettok();
91 // Check for end of file. Don't eat the EOF.
92 if (LastChar == EOF)
93 return tok_eof;
95 // Otherwise, just return the character as its ascii value.
96 int ThisChar = LastChar;
97 LastChar = getchar();
98 return ThisChar;
101 //===----------------------------------------------------------------------===//
102 // Abstract Syntax Tree (aka Parse Tree)
103 //===----------------------------------------------------------------------===//
105 /// ExprAST - Base class for all expression nodes.
106 class ExprAST {
107 public:
108 virtual ~ExprAST() {}
109 virtual Value *Codegen() = 0;
112 /// NumberExprAST - Expression class for numeric literals like "1.0".
113 class NumberExprAST : public ExprAST {
114 double Val;
115 public:
116 NumberExprAST(double val) : Val(val) {}
117 virtual Value *Codegen();
120 /// VariableExprAST - Expression class for referencing a variable, like "a".
121 class VariableExprAST : public ExprAST {
122 std::string Name;
123 public:
124 VariableExprAST(const std::string &name) : Name(name) {}
125 const std::string &getName() const { return Name; }
126 virtual Value *Codegen();
129 /// UnaryExprAST - Expression class for a unary operator.
130 class UnaryExprAST : public ExprAST {
131 char Opcode;
132 ExprAST *Operand;
133 public:
134 UnaryExprAST(char opcode, ExprAST *operand)
135 : Opcode(opcode), Operand(operand) {}
136 virtual Value *Codegen();
139 /// BinaryExprAST - Expression class for a binary operator.
140 class BinaryExprAST : public ExprAST {
141 char Op;
142 ExprAST *LHS, *RHS;
143 public:
144 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
145 : Op(op), LHS(lhs), RHS(rhs) {}
146 virtual Value *Codegen();
149 /// CallExprAST - Expression class for function calls.
150 class CallExprAST : public ExprAST {
151 std::string Callee;
152 std::vector<ExprAST*> Args;
153 public:
154 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
155 : Callee(callee), Args(args) {}
156 virtual Value *Codegen();
159 /// IfExprAST - Expression class for if/then/else.
160 class IfExprAST : public ExprAST {
161 ExprAST *Cond, *Then, *Else;
162 public:
163 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
164 : Cond(cond), Then(then), Else(_else) {}
165 virtual Value *Codegen();
168 /// ForExprAST - Expression class for for/in.
169 class ForExprAST : public ExprAST {
170 std::string VarName;
171 ExprAST *Start, *End, *Step, *Body;
172 public:
173 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
174 ExprAST *step, ExprAST *body)
175 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
176 virtual Value *Codegen();
179 /// VarExprAST - Expression class for var/in
180 class VarExprAST : public ExprAST {
181 std::vector<std::pair<std::string, ExprAST*> > VarNames;
182 ExprAST *Body;
183 public:
184 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
185 ExprAST *body)
186 : VarNames(varnames), Body(body) {}
188 virtual Value *Codegen();
191 /// PrototypeAST - This class represents the "prototype" for a function,
192 /// which captures its argument names as well as if it is an operator.
193 class PrototypeAST {
194 std::string Name;
195 std::vector<std::string> Args;
196 bool isOperator;
197 unsigned Precedence; // Precedence if a binary op.
198 public:
199 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
200 bool isoperator = false, unsigned prec = 0)
201 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
203 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
204 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
206 char getOperatorName() const {
207 assert(isUnaryOp() || isBinaryOp());
208 return Name[Name.size()-1];
211 unsigned getBinaryPrecedence() const { return Precedence; }
213 Function *Codegen();
215 void CreateArgumentAllocas(Function *F);
218 /// FunctionAST - This class represents a function definition itself.
219 class FunctionAST {
220 PrototypeAST *Proto;
221 ExprAST *Body;
222 public:
223 FunctionAST(PrototypeAST *proto, ExprAST *body)
224 : Proto(proto), Body(body) {}
226 Function *Codegen();
229 //===----------------------------------------------------------------------===//
230 // Parser
231 //===----------------------------------------------------------------------===//
233 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
234 /// token the parser it looking at. getNextToken reads another token from the
235 /// lexer and updates CurTok with its results.
236 static int CurTok;
237 static int getNextToken() {
238 return CurTok = gettok();
241 /// BinopPrecedence - This holds the precedence for each binary operator that is
242 /// defined.
243 static std::map<char, int> BinopPrecedence;
245 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
246 static int GetTokPrecedence() {
247 if (!isascii(CurTok))
248 return -1;
250 // Make sure it's a declared binop.
251 int TokPrec = BinopPrecedence[CurTok];
252 if (TokPrec <= 0) return -1;
253 return TokPrec;
256 /// Error* - These are little helper functions for error handling.
257 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
258 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
259 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
261 static ExprAST *ParseExpression();
263 /// identifierexpr
264 /// ::= identifier
265 /// ::= identifier '(' expression* ')'
266 static ExprAST *ParseIdentifierExpr() {
267 std::string IdName = IdentifierStr;
269 getNextToken(); // eat identifier.
271 if (CurTok != '(') // Simple variable ref.
272 return new VariableExprAST(IdName);
274 // Call.
275 getNextToken(); // eat (
276 std::vector<ExprAST*> Args;
277 if (CurTok != ')') {
278 while (1) {
279 ExprAST *Arg = ParseExpression();
280 if (!Arg) return 0;
281 Args.push_back(Arg);
283 if (CurTok == ')') break;
285 if (CurTok != ',')
286 return Error("Expected ')' or ',' in argument list");
287 getNextToken();
291 // Eat the ')'.
292 getNextToken();
294 return new CallExprAST(IdName, Args);
297 /// numberexpr ::= number
298 static ExprAST *ParseNumberExpr() {
299 ExprAST *Result = new NumberExprAST(NumVal);
300 getNextToken(); // consume the number
301 return Result;
304 /// parenexpr ::= '(' expression ')'
305 static ExprAST *ParseParenExpr() {
306 getNextToken(); // eat (.
307 ExprAST *V = ParseExpression();
308 if (!V) return 0;
310 if (CurTok != ')')
311 return Error("expected ')'");
312 getNextToken(); // eat ).
313 return V;
316 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
317 static ExprAST *ParseIfExpr() {
318 getNextToken(); // eat the if.
320 // condition.
321 ExprAST *Cond = ParseExpression();
322 if (!Cond) return 0;
324 if (CurTok != tok_then)
325 return Error("expected then");
326 getNextToken(); // eat the then
328 ExprAST *Then = ParseExpression();
329 if (Then == 0) return 0;
331 if (CurTok != tok_else)
332 return Error("expected else");
334 getNextToken();
336 ExprAST *Else = ParseExpression();
337 if (!Else) return 0;
339 return new IfExprAST(Cond, Then, Else);
342 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
343 static ExprAST *ParseForExpr() {
344 getNextToken(); // eat the for.
346 if (CurTok != tok_identifier)
347 return Error("expected identifier after for");
349 std::string IdName = IdentifierStr;
350 getNextToken(); // eat identifier.
352 if (CurTok != '=')
353 return Error("expected '=' after for");
354 getNextToken(); // eat '='.
357 ExprAST *Start = ParseExpression();
358 if (Start == 0) return 0;
359 if (CurTok != ',')
360 return Error("expected ',' after for start value");
361 getNextToken();
363 ExprAST *End = ParseExpression();
364 if (End == 0) return 0;
366 // The step value is optional.
367 ExprAST *Step = 0;
368 if (CurTok == ',') {
369 getNextToken();
370 Step = ParseExpression();
371 if (Step == 0) return 0;
374 if (CurTok != tok_in)
375 return Error("expected 'in' after for");
376 getNextToken(); // eat 'in'.
378 ExprAST *Body = ParseExpression();
379 if (Body == 0) return 0;
381 return new ForExprAST(IdName, Start, End, Step, Body);
384 /// varexpr ::= 'var' identifier ('=' expression)?
385 // (',' identifier ('=' expression)?)* 'in' expression
386 static ExprAST *ParseVarExpr() {
387 getNextToken(); // eat the var.
389 std::vector<std::pair<std::string, ExprAST*> > VarNames;
391 // At least one variable name is required.
392 if (CurTok != tok_identifier)
393 return Error("expected identifier after var");
395 while (1) {
396 std::string Name = IdentifierStr;
397 getNextToken(); // eat identifier.
399 // Read the optional initializer.
400 ExprAST *Init = 0;
401 if (CurTok == '=') {
402 getNextToken(); // eat the '='.
404 Init = ParseExpression();
405 if (Init == 0) return 0;
408 VarNames.push_back(std::make_pair(Name, Init));
410 // End of var list, exit loop.
411 if (CurTok != ',') break;
412 getNextToken(); // eat the ','.
414 if (CurTok != tok_identifier)
415 return Error("expected identifier list after var");
418 // At this point, we have to have 'in'.
419 if (CurTok != tok_in)
420 return Error("expected 'in' keyword after 'var'");
421 getNextToken(); // eat 'in'.
423 ExprAST *Body = ParseExpression();
424 if (Body == 0) return 0;
426 return new VarExprAST(VarNames, Body);
430 /// primary
431 /// ::= identifierexpr
432 /// ::= numberexpr
433 /// ::= parenexpr
434 /// ::= ifexpr
435 /// ::= forexpr
436 /// ::= varexpr
437 static ExprAST *ParsePrimary() {
438 switch (CurTok) {
439 default: return Error("unknown token when expecting an expression");
440 case tok_identifier: return ParseIdentifierExpr();
441 case tok_number: return ParseNumberExpr();
442 case '(': return ParseParenExpr();
443 case tok_if: return ParseIfExpr();
444 case tok_for: return ParseForExpr();
445 case tok_var: return ParseVarExpr();
449 /// unary
450 /// ::= primary
451 /// ::= '!' unary
452 static ExprAST *ParseUnary() {
453 // If the current token is not an operator, it must be a primary expr.
454 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
455 return ParsePrimary();
457 // If this is a unary operator, read it.
458 int Opc = CurTok;
459 getNextToken();
460 if (ExprAST *Operand = ParseUnary())
461 return new UnaryExprAST(Opc, Operand);
462 return 0;
465 /// binoprhs
466 /// ::= ('+' unary)*
467 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
468 // If this is a binop, find its precedence.
469 while (1) {
470 int TokPrec = GetTokPrecedence();
472 // If this is a binop that binds at least as tightly as the current binop,
473 // consume it, otherwise we are done.
474 if (TokPrec < ExprPrec)
475 return LHS;
477 // Okay, we know this is a binop.
478 int BinOp = CurTok;
479 getNextToken(); // eat binop
481 // Parse the unary expression after the binary operator.
482 ExprAST *RHS = ParseUnary();
483 if (!RHS) return 0;
485 // If BinOp binds less tightly with RHS than the operator after RHS, let
486 // the pending operator take RHS as its LHS.
487 int NextPrec = GetTokPrecedence();
488 if (TokPrec < NextPrec) {
489 RHS = ParseBinOpRHS(TokPrec+1, RHS);
490 if (RHS == 0) return 0;
493 // Merge LHS/RHS.
494 LHS = new BinaryExprAST(BinOp, LHS, RHS);
498 /// expression
499 /// ::= unary binoprhs
501 static ExprAST *ParseExpression() {
502 ExprAST *LHS = ParseUnary();
503 if (!LHS) return 0;
505 return ParseBinOpRHS(0, LHS);
508 /// prototype
509 /// ::= id '(' id* ')'
510 /// ::= binary LETTER number? (id, id)
511 /// ::= unary LETTER (id)
512 static PrototypeAST *ParsePrototype() {
513 std::string FnName;
515 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
516 unsigned BinaryPrecedence = 30;
518 switch (CurTok) {
519 default:
520 return ErrorP("Expected function name in prototype");
521 case tok_identifier:
522 FnName = IdentifierStr;
523 Kind = 0;
524 getNextToken();
525 break;
526 case tok_unary:
527 getNextToken();
528 if (!isascii(CurTok))
529 return ErrorP("Expected unary operator");
530 FnName = "unary";
531 FnName += (char)CurTok;
532 Kind = 1;
533 getNextToken();
534 break;
535 case tok_binary:
536 getNextToken();
537 if (!isascii(CurTok))
538 return ErrorP("Expected binary operator");
539 FnName = "binary";
540 FnName += (char)CurTok;
541 Kind = 2;
542 getNextToken();
544 // Read the precedence if present.
545 if (CurTok == tok_number) {
546 if (NumVal < 1 || NumVal > 100)
547 return ErrorP("Invalid precedecnce: must be 1..100");
548 BinaryPrecedence = (unsigned)NumVal;
549 getNextToken();
551 break;
554 if (CurTok != '(')
555 return ErrorP("Expected '(' in prototype");
557 std::vector<std::string> ArgNames;
558 while (getNextToken() == tok_identifier)
559 ArgNames.push_back(IdentifierStr);
560 if (CurTok != ')')
561 return ErrorP("Expected ')' in prototype");
563 // success.
564 getNextToken(); // eat ')'.
566 // Verify right number of names for operator.
567 if (Kind && ArgNames.size() != Kind)
568 return ErrorP("Invalid number of operands for operator");
570 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
573 /// definition ::= 'def' prototype expression
574 static FunctionAST *ParseDefinition() {
575 getNextToken(); // eat def.
576 PrototypeAST *Proto = ParsePrototype();
577 if (Proto == 0) return 0;
579 if (ExprAST *E = ParseExpression())
580 return new FunctionAST(Proto, E);
581 return 0;
584 /// toplevelexpr ::= expression
585 static FunctionAST *ParseTopLevelExpr() {
586 if (ExprAST *E = ParseExpression()) {
587 // Make an anonymous proto.
588 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
589 return new FunctionAST(Proto, E);
591 return 0;
594 /// external ::= 'extern' prototype
595 static PrototypeAST *ParseExtern() {
596 getNextToken(); // eat extern.
597 return ParsePrototype();
600 //===----------------------------------------------------------------------===//
601 // Code Generation
602 //===----------------------------------------------------------------------===//
604 static Module *TheModule;
605 static IRBuilder<> Builder;
606 static std::map<std::string, AllocaInst*> NamedValues;
607 static FunctionPassManager *TheFPM;
609 Value *ErrorV(const char *Str) { Error(Str); return 0; }
611 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
612 /// the function. This is used for mutable variables etc.
613 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
614 const std::string &VarName) {
615 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
616 TheFunction->getEntryBlock().begin());
617 return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str());
621 Value *NumberExprAST::Codegen() {
622 return ConstantFP::get(APFloat(Val));
625 Value *VariableExprAST::Codegen() {
626 // Look this variable up in the function.
627 Value *V = NamedValues[Name];
628 if (V == 0) return ErrorV("Unknown variable name");
630 // Load the value.
631 return Builder.CreateLoad(V, Name.c_str());
634 Value *UnaryExprAST::Codegen() {
635 Value *OperandV = Operand->Codegen();
636 if (OperandV == 0) return 0;
638 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
639 if (F == 0)
640 return ErrorV("Unknown unary operator");
642 return Builder.CreateCall(F, OperandV, "unop");
646 Value *BinaryExprAST::Codegen() {
647 // Special case '=' because we don't want to emit the LHS as an expression.
648 if (Op == '=') {
649 // Assignment requires the LHS to be an identifier.
650 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
651 if (!LHSE)
652 return ErrorV("destination of '=' must be a variable");
653 // Codegen the RHS.
654 Value *Val = RHS->Codegen();
655 if (Val == 0) return 0;
657 // Look up the name.
658 Value *Variable = NamedValues[LHSE->getName()];
659 if (Variable == 0) return ErrorV("Unknown variable name");
661 Builder.CreateStore(Val, Variable);
662 return Val;
666 Value *L = LHS->Codegen();
667 Value *R = RHS->Codegen();
668 if (L == 0 || R == 0) return 0;
670 switch (Op) {
671 case '+': return Builder.CreateAdd(L, R, "addtmp");
672 case '-': return Builder.CreateSub(L, R, "subtmp");
673 case '*': return Builder.CreateMul(L, R, "multmp");
674 case '<':
675 L = Builder.CreateFCmpULT(L, R, "cmptmp");
676 // Convert bool 0/1 to double 0.0 or 1.0
677 return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
678 default: break;
681 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
682 // a call to it.
683 Function *F = TheModule->getFunction(std::string("binary")+Op);
684 assert(F && "binary operator not found!");
686 Value *Ops[] = { L, R };
687 return Builder.CreateCall(F, Ops, Ops+2, "binop");
690 Value *CallExprAST::Codegen() {
691 // Look up the name in the global module table.
692 Function *CalleeF = TheModule->getFunction(Callee);
693 if (CalleeF == 0)
694 return ErrorV("Unknown function referenced");
696 // If argument mismatch error.
697 if (CalleeF->arg_size() != Args.size())
698 return ErrorV("Incorrect # arguments passed");
700 std::vector<Value*> ArgsV;
701 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
702 ArgsV.push_back(Args[i]->Codegen());
703 if (ArgsV.back() == 0) return 0;
706 return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
709 Value *IfExprAST::Codegen() {
710 Value *CondV = Cond->Codegen();
711 if (CondV == 0) return 0;
713 // Convert condition to a bool by comparing equal to 0.0.
714 CondV = Builder.CreateFCmpONE(CondV,
715 ConstantFP::get(APFloat(0.0)),
716 "ifcond");
718 Function *TheFunction = Builder.GetInsertBlock()->getParent();
720 // Create blocks for the then and else cases. Insert the 'then' block at the
721 // end of the function.
722 BasicBlock *ThenBB = BasicBlock::Create("then", TheFunction);
723 BasicBlock *ElseBB = BasicBlock::Create("else");
724 BasicBlock *MergeBB = BasicBlock::Create("ifcont");
726 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
728 // Emit then value.
729 Builder.SetInsertPoint(ThenBB);
731 Value *ThenV = Then->Codegen();
732 if (ThenV == 0) return 0;
734 Builder.CreateBr(MergeBB);
735 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
736 ThenBB = Builder.GetInsertBlock();
738 // Emit else block.
739 TheFunction->getBasicBlockList().push_back(ElseBB);
740 Builder.SetInsertPoint(ElseBB);
742 Value *ElseV = Else->Codegen();
743 if (ElseV == 0) return 0;
745 Builder.CreateBr(MergeBB);
746 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
747 ElseBB = Builder.GetInsertBlock();
749 // Emit merge block.
750 TheFunction->getBasicBlockList().push_back(MergeBB);
751 Builder.SetInsertPoint(MergeBB);
752 PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
754 PN->addIncoming(ThenV, ThenBB);
755 PN->addIncoming(ElseV, ElseBB);
756 return PN;
759 Value *ForExprAST::Codegen() {
760 // Output this as:
761 // var = alloca double
762 // ...
763 // start = startexpr
764 // store start -> var
765 // goto loop
766 // loop:
767 // ...
768 // bodyexpr
769 // ...
770 // loopend:
771 // step = stepexpr
772 // endcond = endexpr
774 // curvar = load var
775 // nextvar = curvar + step
776 // store nextvar -> var
777 // br endcond, loop, endloop
778 // outloop:
780 Function *TheFunction = Builder.GetInsertBlock()->getParent();
782 // Create an alloca for the variable in the entry block.
783 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
785 // Emit the start code first, without 'variable' in scope.
786 Value *StartVal = Start->Codegen();
787 if (StartVal == 0) return 0;
789 // Store the value into the alloca.
790 Builder.CreateStore(StartVal, Alloca);
792 // Make the new basic block for the loop header, inserting after current
793 // block.
794 BasicBlock *LoopBB = BasicBlock::Create("loop", TheFunction);
796 // Insert an explicit fall through from the current block to the LoopBB.
797 Builder.CreateBr(LoopBB);
799 // Start insertion in LoopBB.
800 Builder.SetInsertPoint(LoopBB);
802 // Within the loop, the variable is defined equal to the PHI node. If it
803 // shadows an existing variable, we have to restore it, so save it now.
804 AllocaInst *OldVal = NamedValues[VarName];
805 NamedValues[VarName] = Alloca;
807 // Emit the body of the loop. This, like any other expr, can change the
808 // current BB. Note that we ignore the value computed by the body, but don't
809 // allow an error.
810 if (Body->Codegen() == 0)
811 return 0;
813 // Emit the step value.
814 Value *StepVal;
815 if (Step) {
816 StepVal = Step->Codegen();
817 if (StepVal == 0) return 0;
818 } else {
819 // If not specified, use 1.0.
820 StepVal = ConstantFP::get(APFloat(1.0));
823 // Compute the end condition.
824 Value *EndCond = End->Codegen();
825 if (EndCond == 0) return EndCond;
827 // Reload, increment, and restore the alloca. This handles the case where
828 // the body of the loop mutates the variable.
829 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
830 Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
831 Builder.CreateStore(NextVar, Alloca);
833 // Convert condition to a bool by comparing equal to 0.0.
834 EndCond = Builder.CreateFCmpONE(EndCond,
835 ConstantFP::get(APFloat(0.0)),
836 "loopcond");
838 // Create the "after loop" block and insert it.
839 BasicBlock *AfterBB = BasicBlock::Create("afterloop", TheFunction);
841 // Insert the conditional branch into the end of LoopEndBB.
842 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
844 // Any new code will be inserted in AfterBB.
845 Builder.SetInsertPoint(AfterBB);
847 // Restore the unshadowed variable.
848 if (OldVal)
849 NamedValues[VarName] = OldVal;
850 else
851 NamedValues.erase(VarName);
854 // for expr always returns 0.0.
855 return Constant::getNullValue(Type::DoubleTy);
858 Value *VarExprAST::Codegen() {
859 std::vector<AllocaInst *> OldBindings;
861 Function *TheFunction = Builder.GetInsertBlock()->getParent();
863 // Register all variables and emit their initializer.
864 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
865 const std::string &VarName = VarNames[i].first;
866 ExprAST *Init = VarNames[i].second;
868 // Emit the initializer before adding the variable to scope, this prevents
869 // the initializer from referencing the variable itself, and permits stuff
870 // like this:
871 // var a = 1 in
872 // var a = a in ... # refers to outer 'a'.
873 Value *InitVal;
874 if (Init) {
875 InitVal = Init->Codegen();
876 if (InitVal == 0) return 0;
877 } else { // If not specified, use 0.0.
878 InitVal = ConstantFP::get(APFloat(0.0));
881 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
882 Builder.CreateStore(InitVal, Alloca);
884 // Remember the old variable binding so that we can restore the binding when
885 // we unrecurse.
886 OldBindings.push_back(NamedValues[VarName]);
888 // Remember this binding.
889 NamedValues[VarName] = Alloca;
892 // Codegen the body, now that all vars are in scope.
893 Value *BodyVal = Body->Codegen();
894 if (BodyVal == 0) return 0;
896 // Pop all our variables from scope.
897 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
898 NamedValues[VarNames[i].first] = OldBindings[i];
900 // Return the body computation.
901 return BodyVal;
905 Function *PrototypeAST::Codegen() {
906 // Make the function type: double(double,double) etc.
907 std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy);
908 FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
910 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
912 // If F conflicted, there was already something named 'Name'. If it has a
913 // body, don't allow redefinition or reextern.
914 if (F->getName() != Name) {
915 // Delete the one we just made and get the existing one.
916 F->eraseFromParent();
917 F = TheModule->getFunction(Name);
919 // If F already has a body, reject this.
920 if (!F->empty()) {
921 ErrorF("redefinition of function");
922 return 0;
925 // If F took a different number of args, reject.
926 if (F->arg_size() != Args.size()) {
927 ErrorF("redefinition of function with different # args");
928 return 0;
932 // Set names for all arguments.
933 unsigned Idx = 0;
934 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
935 ++AI, ++Idx)
936 AI->setName(Args[Idx]);
938 return F;
941 /// CreateArgumentAllocas - Create an alloca for each argument and register the
942 /// argument in the symbol table so that references to it will succeed.
943 void PrototypeAST::CreateArgumentAllocas(Function *F) {
944 Function::arg_iterator AI = F->arg_begin();
945 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
946 // Create an alloca for this variable.
947 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
949 // Store the initial value into the alloca.
950 Builder.CreateStore(AI, Alloca);
952 // Add arguments to variable symbol table.
953 NamedValues[Args[Idx]] = Alloca;
958 Function *FunctionAST::Codegen() {
959 NamedValues.clear();
961 Function *TheFunction = Proto->Codegen();
962 if (TheFunction == 0)
963 return 0;
965 // If this is an operator, install it.
966 if (Proto->isBinaryOp())
967 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
969 // Create a new basic block to start insertion into.
970 BasicBlock *BB = BasicBlock::Create("entry", TheFunction);
971 Builder.SetInsertPoint(BB);
973 // Add all arguments to the symbol table and create their allocas.
974 Proto->CreateArgumentAllocas(TheFunction);
976 if (Value *RetVal = Body->Codegen()) {
977 // Finish off the function.
978 Builder.CreateRet(RetVal);
980 // Validate the generated code, checking for consistency.
981 verifyFunction(*TheFunction);
983 // Optimize the function.
984 TheFPM->run(*TheFunction);
986 return TheFunction;
989 // Error reading body, remove function.
990 TheFunction->eraseFromParent();
992 if (Proto->isBinaryOp())
993 BinopPrecedence.erase(Proto->getOperatorName());
994 return 0;
997 //===----------------------------------------------------------------------===//
998 // Top-Level parsing and JIT Driver
999 //===----------------------------------------------------------------------===//
1001 static ExecutionEngine *TheExecutionEngine;
1003 static void HandleDefinition() {
1004 if (FunctionAST *F = ParseDefinition()) {
1005 if (Function *LF = F->Codegen()) {
1006 fprintf(stderr, "Read function definition:");
1007 LF->dump();
1009 } else {
1010 // Skip token for error recovery.
1011 getNextToken();
1015 static void HandleExtern() {
1016 if (PrototypeAST *P = ParseExtern()) {
1017 if (Function *F = P->Codegen()) {
1018 fprintf(stderr, "Read extern: ");
1019 F->dump();
1021 } else {
1022 // Skip token for error recovery.
1023 getNextToken();
1027 static void HandleTopLevelExpression() {
1028 // Evaluate a top level expression into an anonymous function.
1029 if (FunctionAST *F = ParseTopLevelExpr()) {
1030 if (Function *LF = F->Codegen()) {
1031 // JIT the function, returning a function pointer.
1032 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1034 // Cast it to the right type (takes no arguments, returns a double) so we
1035 // can call it as a native function.
1036 double (*FP)() = (double (*)())(intptr_t)FPtr;
1037 fprintf(stderr, "Evaluated to %f\n", FP());
1039 } else {
1040 // Skip token for error recovery.
1041 getNextToken();
1045 /// top ::= definition | external | expression | ';'
1046 static void MainLoop() {
1047 while (1) {
1048 fprintf(stderr, "ready> ");
1049 switch (CurTok) {
1050 case tok_eof: return;
1051 case ';': getNextToken(); break; // ignore top level semicolons.
1052 case tok_def: HandleDefinition(); break;
1053 case tok_extern: HandleExtern(); break;
1054 default: HandleTopLevelExpression(); break;
1061 //===----------------------------------------------------------------------===//
1062 // "Library" functions that can be "extern'd" from user code.
1063 //===----------------------------------------------------------------------===//
1065 /// putchard - putchar that takes a double and returns 0.
1066 extern "C"
1067 double putchard(double X) {
1068 putchar((char)X);
1069 return 0;
1072 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1073 extern "C"
1074 double printd(double X) {
1075 printf("%f\n", X);
1076 return 0;
1079 //===----------------------------------------------------------------------===//
1080 // Main driver code.
1081 //===----------------------------------------------------------------------===//
1083 int main() {
1084 // Install standard binary operators.
1085 // 1 is lowest precedence.
1086 BinopPrecedence['='] = 2;
1087 BinopPrecedence['<'] = 10;
1088 BinopPrecedence['+'] = 20;
1089 BinopPrecedence['-'] = 20;
1090 BinopPrecedence['*'] = 40; // highest.
1092 // Prime the first token.
1093 fprintf(stderr, "ready> ");
1094 getNextToken();
1096 // Make the module, which holds all the code.
1097 TheModule = new Module("my cool jit");
1099 // Create the JIT.
1100 TheExecutionEngine = ExecutionEngine::create(TheModule);
1103 ExistingModuleProvider OurModuleProvider(TheModule);
1104 FunctionPassManager OurFPM(&OurModuleProvider);
1106 // Set up the optimizer pipeline. Start with registering info about how the
1107 // target lays out data structures.
1108 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
1109 // Promote allocas to registers.
1110 OurFPM.add(createPromoteMemoryToRegisterPass());
1111 // Do simple "peephole" optimizations and bit-twiddling optzns.
1112 OurFPM.add(createInstructionCombiningPass());
1113 // Reassociate expressions.
1114 OurFPM.add(createReassociatePass());
1115 // Eliminate Common SubExpressions.
1116 OurFPM.add(createGVNPass());
1117 // Simplify the control flow graph (deleting unreachable blocks, etc).
1118 OurFPM.add(createCFGSimplificationPass());
1120 // Set the global so the code gen can use this.
1121 TheFPM = &OurFPM;
1123 // Run the main "interpreter loop" now.
1124 MainLoop();
1126 TheFPM = 0;
1128 // Print out all of the generated code.
1129 TheModule->dump();
1131 } // Free module provider (and thus the module) and pass manager.
1133 return 0;