1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
5 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
6 <title>Writing an LLVM Compiler Backend
</title>
7 <link rel=
"stylesheet" href=
"llvm.css" type=
"text/css">
12 <div class=
"doc_title">
13 Writing an LLVM Compiler Backend
17 <li><a href=
"#intro">Introduction
</a>
19 <li><a href=
"#Audience">Audience
</a></li>
20 <li><a href=
"#Prerequisite">Prerequisite Reading
</a></li>
21 <li><a href=
"#Basic">Basic Steps
</a></li>
22 <li><a href=
"#Preliminaries">Preliminaries
</a></li>
24 <li><a href=
"#TargetMachine">Target Machine
</a></li>
25 <li><a href=
"#RegisterSet">Register Set and Register Classes
</a>
27 <li><a href=
"#RegisterDef">Defining a Register
</a></li>
28 <li><a href=
"#RegisterClassDef">Defining a Register Class
</a></li>
29 <li><a href=
"#implementRegister">Implement a subclass of TargetRegisterInfo
</a></li>
31 <li><a href=
"#InstructionSet">Instruction Set
</a>
33 <li><a href=
"#operandMapping">Instruction Operand Mapping
</a></li>
34 <li><a href=
"#implementInstr">Implement a subclass of TargetInstrInfo
</a></li>
35 <li><a href=
"#branchFolding">Branch Folding and If Conversion
</a></li>
37 <li><a href=
"#InstructionSelector">Instruction Selector
</a>
39 <li><a href=
"#LegalizePhase">The SelectionDAG Legalize Phase
</a>
41 <li><a href=
"#promote">Promote
</a></li>
42 <li><a href=
"#expand">Expand
</a></li>
43 <li><a href=
"#custom">Custom
</a></li>
44 <li><a href=
"#legal">Legal
</a></li>
46 <li><a href=
"#callingConventions">Calling Conventions
</a></li>
48 <li><a href=
"#assemblyPrinter">Assembly Printer
</a></li>
49 <li><a href=
"#subtargetSupport">Subtarget Support
</a></li>
50 <li><a href=
"#jitSupport">JIT Support
</a>
52 <li><a href=
"#mce">Machine Code Emitter
</a></li>
53 <li><a href=
"#targetJITInfo">Target JIT Info
</a></li>
57 <div class=
"doc_author">
58 <p>Written by
<a href=
"http://www.woo.com">Mason Woo
</a> and
59 <a href=
"http://misha.brukman.net">Misha Brukman
</a></p>
62 <!-- *********************************************************************** -->
63 <div class=
"doc_section">
64 <a name=
"intro">Introduction
</a>
66 <!-- *********************************************************************** -->
68 <div class=
"doc_text">
71 This document describes techniques for writing compiler backends that convert
72 the LLVM Intermediate Representation (IR) to code for a specified machine or
73 other languages. Code intended for a specific machine can take the form of
74 either assembly code or binary code (usable for a JIT compiler).
78 The backend of LLVM features a target-independent code generator that may create
79 output for several types of target CPUs
— including X86, PowerPC, Alpha,
80 and SPARC. The backend may also be used to generate code targeted at SPUs of the
81 Cell processor or GPUs to support the execution of compute kernels.
85 The document focuses on existing examples found in subdirectories
86 of
<tt>llvm/lib/Target
</tt> in a downloaded LLVM release. In particular, this
87 document focuses on the example of creating a static compiler (one that emits
88 text assembly) for a SPARC target, because SPARC has fairly standard
89 characteristics, such as a RISC instruction set and straightforward calling
95 <div class=
"doc_subsection">
96 <a name=
"Audience">Audience
</a>
99 <div class=
"doc_text">
102 The audience for this document is anyone who needs to write an LLVM backend to
103 generate code for a specific hardware or software target.
108 <div class=
"doc_subsection">
109 <a name=
"Prerequisite">Prerequisite Reading
</a>
112 <div class=
"doc_text">
115 These essential documents must be read before reading this document:
119 <li><i><a href=
"http://www.llvm.org/docs/LangRef.html">LLVM Language Reference
120 Manual
</a></i> — a reference manual for the LLVM assembly language.
</li>
122 <li><i><a href=
"http://www.llvm.org/docs/CodeGenerator.html">The LLVM
123 Target-Independent Code Generator
</a></i> — a guide to the components
124 (classes and code generation algorithms) for translating the LLVM internal
125 representation into machine code for a specified target. Pay particular
126 attention to the descriptions of code generation stages: Instruction
127 Selection, Scheduling and Formation, SSA-based Optimization, Register
128 Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations,
129 and Code Emission.
</li>
131 <li><i><a href=
"http://www.llvm.org/docs/TableGenFundamentals.html">TableGen
132 Fundamentals
</a></i> —a document that describes the TableGen
133 (
<tt>tblgen
</tt>) application that manages domain-specific information to
134 support LLVM code generation. TableGen processes input from a target
135 description file (
<tt>.td
</tt> suffix) and generates C++ code that can be
136 used for code generation.
</li>
138 <li><i><a href=
"http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM
139 Pass
</a></i> — The assembly printer is a
<tt>FunctionPass
</tt>, as are
140 several SelectionDAG processing steps.
</li>
144 To follow the SPARC examples in this document, have a copy of
145 <i><a href=
"http://www.sparc.org/standards/V8.pdf">The SPARC Architecture
146 Manual, Version
8</a></i> for reference. For details about the ARM instruction
147 set, refer to the
<i><a href=
"http://infocenter.arm.com/">ARM Architecture
148 Reference Manual
</a></i>. For more about the GNU Assembler format
150 <i><a href=
"http://sourceware.org/binutils/docs/as/index.html">Using As
</a></i>,
151 especially for the assembly printer.
<i>Using As
</i> contains a list of target
152 machine dependent features.
157 <div class=
"doc_subsection">
158 <a name=
"Basic">Basic Steps
</a>
161 <div class=
"doc_text">
164 To write a compiler backend for LLVM that converts the LLVM IR to code for a
165 specified target (machine or other language), follow these steps:
169 <li>Create a subclass of the TargetMachine class that describes characteristics
170 of your target machine. Copy existing examples of specific TargetMachine
171 class and header files; for example, start with
172 <tt>SparcTargetMachine.cpp
</tt> and
<tt>SparcTargetMachine.h
</tt>, but
173 change the file names for your target. Similarly, change code that
174 references
"Sparc" to reference your target.
</li>
176 <li>Describe the register set of the target. Use TableGen to generate code for
177 register definition, register aliases, and register classes from a
178 target-specific
<tt>RegisterInfo.td
</tt> input file. You should also write
179 additional code for a subclass of the TargetRegisterInfo class that
180 represents the class register file data used for register allocation and
181 also describes the interactions between registers.
</li>
183 <li>Describe the instruction set of the target. Use TableGen to generate code
184 for target-specific instructions from target-specific versions of
185 <tt>TargetInstrFormats.td
</tt> and
<tt>TargetInstrInfo.td
</tt>. You should
186 write additional code for a subclass of the TargetInstrInfo class to
187 represent machine instructions supported by the target machine.
</li>
189 <li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic
190 Graph (DAG) representation of instructions to native target-specific
191 instructions. Use TableGen to generate code that matches patterns and
192 selects instructions based on additional information in a target-specific
193 version of
<tt>TargetInstrInfo.td
</tt>. Write code
194 for
<tt>XXXISelDAGToDAG.cpp
</tt>, where XXX identifies the specific target,
195 to perform pattern matching and DAG-to-DAG instruction selection. Also write
196 code in
<tt>XXXISelLowering.cpp
</tt> to replace or remove operations and
197 data types that are not supported natively in a SelectionDAG.
</li>
199 <li>Write code for an assembly printer that converts LLVM IR to a GAS format for
200 your target machine. You should add assembly strings to the instructions
201 defined in your target-specific version of
<tt>TargetInstrInfo.td
</tt>. You
202 should also write code for a subclass of AsmPrinter that performs the
203 LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.
</li>
205 <li>Optionally, add support for subtargets (i.e., variants with different
206 capabilities). You should also write code for a subclass of the
207 TargetSubtarget class, which allows you to use the
<tt>-mcpu=
</tt>
208 and
<tt>-mattr=
</tt> command-line options.
</li>
210 <li>Optionally, add JIT support and create a machine code emitter (subclass of
211 TargetJITInfo) that is used to emit binary code directly into memory.
</li>
215 In the
<tt>.cpp
</tt> and
<tt>.h
</tt>. files, initially stub up these methods and
216 then implement them later. Initially, you may not know which private members
217 that the class will need and which components will need to be subclassed.
222 <div class=
"doc_subsection">
223 <a name=
"Preliminaries">Preliminaries
</a>
226 <div class=
"doc_text">
229 To actually create your compiler backend, you need to create and modify a few
230 files. The absolute minimum is discussed here. But to actually use the LLVM
231 target-independent code generator, you must perform the steps described in
232 the
<a href=
"http://www.llvm.org/docs/CodeGenerator.html">LLVM
233 Target-Independent Code Generator
</a> document.
237 First, you should create a subdirectory under
<tt>lib/Target
</tt> to hold all
238 the files related to your target. If your target is called
"Dummy," create the
239 directory
<tt>lib/Target/Dummy
</tt>.
244 directory, create a
<tt>Makefile
</tt>. It is easiest to copy a
245 <tt>Makefile
</tt> of another target and modify it. It should at least contain
246 the
<tt>LEVEL
</tt>,
<tt>LIBRARYNAME
</tt> and
<tt>TARGET
</tt> variables, and then
247 include
<tt>$(LEVEL)/Makefile.common
</tt>. The library can be
248 named
<tt>LLVMDummy
</tt> (for example, see the MIPS target). Alternatively, you
249 can split the library into
<tt>LLVMDummyCodeGen
</tt>
250 and
<tt>LLVMDummyAsmPrinter
</tt>, the latter of which should be implemented in a
251 subdirectory below
<tt>lib/Target/Dummy
</tt> (for example, see the PowerPC
256 Note that these two naming schemes are hardcoded into
<tt>llvm-config
</tt>.
257 Using any other naming scheme will confuse
<tt>llvm-config
</tt> and produce a
258 lot of (seemingly unrelated) linker errors when linking
<tt>llc
</tt>.
262 To make your target actually do something, you need to implement a subclass of
263 <tt>TargetMachine
</tt>. This implementation should typically be in the file
264 <tt>lib/Target/DummyTargetMachine.cpp
</tt>, but any file in
265 the
<tt>lib/Target
</tt> directory will be built and should work. To use LLVM's
266 target independent code generator, you should do what all current machine
267 backends do: create a subclass of
<tt>LLVMTargetMachine
</tt>. (To create a
268 target from scratch, create a subclass of
<tt>TargetMachine
</tt>.)
272 To get LLVM to actually build and link your target, you need to add it to
273 the
<tt>TARGETS_TO_BUILD
</tt> variable. To do this, you modify the configure
274 script to know about your target when parsing the
<tt>--enable-targets
</tt>
275 option. Search the configure script for
<tt>TARGETS_TO_BUILD
</tt>, add your
276 target to the lists there (some creativity required), and then
277 reconfigure. Alternatively, you can change
<tt>autotools/configure.ac
</tt> and
278 regenerate configure by running
<tt>./autoconf/AutoRegen.sh
</tt>.
283 <!-- *********************************************************************** -->
284 <div class=
"doc_section">
285 <a name=
"TargetMachine">Target Machine
</a>
287 <!-- *********************************************************************** -->
289 <div class=
"doc_text">
292 <tt>LLVMTargetMachine
</tt> is designed as a base class for targets implemented
293 with the LLVM target-independent code generator. The
<tt>LLVMTargetMachine
</tt>
294 class should be specialized by a concrete target class that implements the
295 various virtual methods.
<tt>LLVMTargetMachine
</tt> is defined as a subclass of
296 <tt>TargetMachine
</tt> in
<tt>include/llvm/Target/TargetMachine.h
</tt>. The
297 <tt>TargetMachine
</tt> class implementation (
<tt>TargetMachine.cpp
</tt>) also
298 processes numerous command-line options.
302 To create a concrete target-specific subclass of
<tt>LLVMTargetMachine
</tt>,
303 start by copying an existing
<tt>TargetMachine
</tt> class and header. You
304 should name the files that you create to reflect your specific target. For
305 instance, for the SPARC target, name the files
<tt>SparcTargetMachine.h
</tt> and
306 <tt>SparcTargetMachine.cpp
</tt>.
310 For a target machine
<tt>XXX
</tt>, the implementation of
311 <tt>XXXTargetMachine
</tt> must have access methods to obtain objects that
312 represent target components. These methods are named
<tt>get*Info
</tt>, and are
313 intended to obtain the instruction set (
<tt>getInstrInfo
</tt>), register set
314 (
<tt>getRegisterInfo
</tt>), stack frame layout (
<tt>getFrameInfo
</tt>), and
315 similar information.
<tt>XXXTargetMachine
</tt> must also implement the
316 <tt>getTargetData
</tt> method to access an object with target-specific data
317 characteristics, such as data type size and alignment requirements.
321 For instance, for the SPARC target, the header file
322 <tt>SparcTargetMachine.h
</tt> declares prototypes for several
<tt>get*Info
</tt>
323 and
<tt>getTargetData
</tt> methods that simply return a class member.
326 <div class=
"doc_code">
332 class SparcTargetMachine : public LLVMTargetMachine {
333 const TargetData DataLayout; // Calculates type size
& alignment
334 SparcSubtarget Subtarget;
335 SparcInstrInfo InstrInfo;
336 TargetFrameInfo FrameInfo;
339 virtual const TargetAsmInfo *createTargetAsmInfo() const;
342 SparcTargetMachine(const Module
&M, const std::string
&FS);
344 virtual const SparcInstrInfo *getInstrInfo() const {return
&InstrInfo; }
345 virtual const TargetFrameInfo *getFrameInfo() const {return
&FrameInfo; }
346 virtual const TargetSubtarget *getSubtargetImpl() const{return
&Subtarget; }
347 virtual const TargetRegisterInfo *getRegisterInfo() const {
348 return
&InstrInfo.getRegisterInfo();
350 virtual const TargetData *getTargetData() const { return
&DataLayout; }
351 static unsigned getModuleMatchQuality(const Module
&M);
353 // Pass Pipeline Configuration
354 virtual bool addInstSelector(PassManagerBase
&PM, bool Fast);
355 virtual bool addPreEmitPass(PassManagerBase
&PM, bool Fast);
356 virtual bool addAssemblyEmitter(PassManagerBase
&PM, bool Fast,
357 std::ostream
&Out);
360 } // end namespace llvm
367 <div class=
"doc_text">
370 <li><tt>getInstrInfo()
</tt></li>
371 <li><tt>getRegisterInfo()
</tt></li>
372 <li><tt>getFrameInfo()
</tt></li>
373 <li><tt>getTargetData()
</tt></li>
374 <li><tt>getSubtargetImpl()
</tt></li>
377 <p>For some targets, you also need to support the following methods:
</p>
380 <li><tt>getTargetLowering()
</tt></li>
381 <li><tt>getJITInfo()
</tt></li>
385 In addition, the
<tt>XXXTargetMachine
</tt> constructor should specify a
386 <tt>TargetDescription
</tt> string that determines the data layout for the target
387 machine, including characteristics such as pointer size, alignment, and
388 endianness. For example, the constructor for SparcTargetMachine contains the
392 <div class=
"doc_code">
394 SparcTargetMachine::SparcTargetMachine(const Module
&M, const std::string
&FS)
395 : DataLayout(
"E-p:32:32-f128:128:128"),
396 Subtarget(M, FS), InstrInfo(Subtarget),
397 FrameInfo(TargetFrameInfo::StackGrowsDown,
8,
0) {
404 <div class=
"doc_text">
406 <p>Hyphens separate portions of the
<tt>TargetDescription
</tt> string.
</p>
409 <li>An upper-case
"<tt>E</tt>" in the string indicates a big-endian target data
410 model. a lower-case
"<tt>e</tt>" indicates little-endian.
</li>
412 <li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and
413 preferred alignment. If only two figures follow
"<tt>p:</tt>", then the
414 first value is pointer size, and the second value is both ABI and preferred
417 <li>Then a letter for numeric type alignment:
"<tt>i</tt>",
"<tt>f</tt>",
418 "<tt>v</tt>", or
"<tt>a</tt>" (corresponding to integer, floating point,
419 vector, or aggregate).
"<tt>i</tt>",
"<tt>v</tt>", or
"<tt>a</tt>" are
420 followed by ABI alignment and preferred alignment.
"<tt>f</tt>" is followed
421 by three values: the first indicates the size of a long double, then ABI
422 alignment, and then ABI preferred alignment.
</li>
426 You must also register your target using the
<tt>RegisterTarget
</tt>
427 template. (See the
<tt>TargetMachineRegistry
</tt> class.) For example,
428 in
<tt>SparcTargetMachine.cpp
</tt>, the target is registered with:
431 <div class=
"doc_code">
434 // Register the target.
435 RegisterTarget
<SparcTargetMachine
>X(
"sparc",
"SPARC");
442 <!-- *********************************************************************** -->
443 <div class=
"doc_section">
444 <a name=
"RegisterSet">Register Set and Register Classes
</a>
446 <!-- *********************************************************************** -->
448 <div class=
"doc_text">
451 You should describe a concrete target-specific class that represents the
452 register file of a target machine. This class is called
<tt>XXXRegisterInfo
</tt>
453 (where
<tt>XXX
</tt> identifies the target) and represents the class register
454 file data that is used for register allocation. It also describes the
455 interactions between registers.
459 You also need to define register classes to categorize related registers. A
460 register class should be added for groups of registers that are all treated the
461 same way for some instruction. Typical examples are register classes for
462 integer, floating-point, or vector registers. A register allocator allows an
463 instruction to use any register in a specified register class to perform the
464 instruction in a similar manner. Register classes allocate virtual registers to
465 instructions from these sets, and register classes let the target-independent
466 register allocator automatically choose the actual registers.
470 Much of the code for registers, including register definition, register aliases,
471 and register classes, is generated by TableGen from
<tt>XXXRegisterInfo.td
</tt>
472 input files and placed in
<tt>XXXGenRegisterInfo.h.inc
</tt> and
473 <tt>XXXGenRegisterInfo.inc
</tt> output files. Some of the code in the
474 implementation of
<tt>XXXRegisterInfo
</tt> requires hand-coding.
479 <!-- ======================================================================= -->
480 <div class=
"doc_subsection">
481 <a name=
"RegisterDef">Defining a Register
</a>
484 <div class=
"doc_text">
487 The
<tt>XXXRegisterInfo.td
</tt> file typically starts with register definitions
488 for a target machine. The
<tt>Register
</tt> class (specified
489 in
<tt>Target.td
</tt>) is used to define an object for each register. The
490 specified string
<tt>n
</tt> becomes the
<tt>Name
</tt> of the register. The
491 basic
<tt>Register
</tt> object does not have any subregisters and does not
495 <div class=
"doc_code">
497 class Register
<string n
> {
498 string Namespace =
"";
502 int SpillAlignment =
0;
503 list
<Register
> Aliases = [];
504 list
<Register
> SubRegs = [];
505 list
<int
> DwarfNumbers = [];
511 For example, in the
<tt>X86RegisterInfo.td
</tt> file, there are register
512 definitions that utilize the Register class, such as:
515 <div class=
"doc_code">
517 def AL : Register
<"AL">, DwarfRegNum
<[
0,
0,
0]
>;
522 This defines the register
<tt>AL
</tt> and assigns it values (with
523 <tt>DwarfRegNum
</tt>) that are used by
<tt>gcc
</tt>,
<tt>gdb
</tt>, or a debug
524 information writer (such as
<tt>DwarfWriter
</tt>
525 in
<tt>llvm/lib/CodeGen/AsmPrinter
</tt>) to identify a register. For register
526 <tt>AL
</tt>,
<tt>DwarfRegNum
</tt> takes an array of
3 values representing
3
527 different modes: the first element is for X86-
64, the second for exception
528 handling (EH) on X86-
32, and the third is generic. -
1 is a special Dwarf number
529 that indicates the gcc number is undefined, and -
2 indicates the register number
530 is invalid for this mode.
534 From the previously described line in the
<tt>X86RegisterInfo.td
</tt> file,
535 TableGen generates this code in the
<tt>X86GenRegisterInfo.inc
</tt> file:
538 <div class=
"doc_code">
540 static const unsigned GR8[] = { X86::AL, ... };
542 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX,
0 };
544 const TargetRegisterDesc RegisterDescriptors[] = {
546 {
"AL",
"AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
551 From the register info file, TableGen generates a
<tt>TargetRegisterDesc
</tt>
552 object for each register.
<tt>TargetRegisterDesc
</tt> is defined in
553 <tt>include/llvm/Target/TargetRegisterInfo.h
</tt> with the following fields:
556 <div class=
"doc_code">
558 struct TargetRegisterDesc {
559 const char *AsmName; // Assembly language name for the register
560 const char *Name; // Printable name for the reg (for debugging)
561 const unsigned *AliasSet; // Register Alias Set
562 const unsigned *SubRegs; // Sub-register set
563 const unsigned *ImmSubRegs; // Immediate sub-register set
564 const unsigned *SuperRegs; // Super-register set
569 TableGen uses the entire target description file (
<tt>.td
</tt>) to determine
570 text names for the register (in the
<tt>AsmName
</tt> and
<tt>Name
</tt> fields of
571 <tt>TargetRegisterDesc
</tt>) and the relationships of other registers to the
572 defined register (in the other
<tt>TargetRegisterDesc
</tt> fields). In this
573 example, other definitions establish the registers
"<tt>AX</tt>",
574 "<tt>EAX</tt>", and
"<tt>RAX</tt>" as aliases for one another, so TableGen
575 generates a null-terminated array (
<tt>AL_AliasSet
</tt>) for this register alias
580 The
<tt>Register
</tt> class is commonly used as a base class for more complex
581 classes. In
<tt>Target.td
</tt>, the
<tt>Register
</tt> class is the base for the
582 <tt>RegisterWithSubRegs
</tt> class that is used to define registers that need to
583 specify subregisters in the
<tt>SubRegs
</tt> list, as shown here:
586 <div class=
"doc_code">
588 class RegisterWithSubRegs
<string n,
589 list
<Register
> subregs
> : Register
<n
> {
590 let SubRegs = subregs;
596 In
<tt>SparcRegisterInfo.td
</tt>, additional register classes are defined for
597 SPARC: a Register subclass, SparcReg, and further subclasses:
<tt>Ri
</tt>,
598 <tt>Rf
</tt>, and
<tt>Rd
</tt>. SPARC registers are identified by
5-bit ID
599 numbers, which is a feature common to these subclasses. Note the use of
600 '
<tt>let
</tt>' expressions to override values that are initially defined in a
601 superclass (such as
<tt>SubRegs
</tt> field in the
<tt>Rd
</tt> class).
604 <div class=
"doc_code">
606 class SparcReg
<string n
> : Register
<n
> {
607 field bits
<5> Num;
608 let Namespace =
"SP";
610 // Ri -
32-bit integer registers
611 class Ri
<bits
<5> num, string n
> :
615 // Rf -
32-bit floating-point registers
616 class Rf
<bits
<5> num, string n
> :
620 // Rd - Slots in the FP register file for
64-bit
621 floating-point values.
622 class Rd
<bits
<5> num, string n,
623 list
<Register
> subregs
> : SparcReg
<n
> {
625 let SubRegs = subregs;
631 In the
<tt>SparcRegisterInfo.td
</tt> file, there are register definitions that
632 utilize these subclasses of
<tt>Register
</tt>, such as:
635 <div class=
"doc_code">
637 def G0 : Ri
< 0,
"G0">,
638 DwarfRegNum
<[
0]
>;
639 def G1 : Ri
< 1,
"G1">, DwarfRegNum
<[
1]
>;
641 def F0 : Rf
< 0,
"F0">,
642 DwarfRegNum
<[
32]
>;
643 def F1 : Rf
< 1,
"F1">,
644 DwarfRegNum
<[
33]
>;
646 def D0 : Rd
< 0,
"F0", [F0, F1]
>,
647 DwarfRegNum
<[
32]
>;
648 def D1 : Rd
< 2,
"F2", [F2, F3]
>,
649 DwarfRegNum
<[
34]
>;
654 The last two registers shown above (
<tt>D0
</tt> and
<tt>D1
</tt>) are
655 double-precision floating-point registers that are aliases for pairs of
656 single-precision floating-point sub-registers. In addition to aliases, the
657 sub-register and super-register relationships of the defined register are in
658 fields of a register's TargetRegisterDesc.
663 <!-- ======================================================================= -->
664 <div class=
"doc_subsection">
665 <a name=
"RegisterClassDef">Defining a Register Class
</a>
668 <div class=
"doc_text">
671 The
<tt>RegisterClass
</tt> class (specified in
<tt>Target.td
</tt>) is used to
672 define an object that represents a group of related registers and also defines
673 the default allocation order of the registers. A target description file
674 <tt>XXXRegisterInfo.td
</tt> that uses
<tt>Target.td
</tt> can construct register
675 classes using the following class:
678 <div class=
"doc_code">
680 class RegisterClass
<string namespace,
681 list
<ValueType
> regTypes, int alignment,
682 list
<Register
> regList
> {
683 string Namespace = namespace;
684 list
<ValueType
> RegTypes = regTypes;
685 int Size =
0; // spill size, in bits; zero lets tblgen pick the size
686 int Alignment = alignment;
688 // CopyCost is the cost of copying a value between two registers
689 // default value
1 means a single instruction
690 // A negative value means copying is extremely expensive or impossible
692 list
<Register
> MemberList = regList;
694 // for register classes that are subregisters of this class
695 list
<RegisterClass
> SubRegClassList = [];
697 code MethodProtos = [{}]; // to insert arbitrary code
698 code MethodBodies = [{}];
703 <p>To define a RegisterClass, use the following
4 arguments:
</p>
706 <li>The first argument of the definition is the name of the namespace.
</li>
708 <li>The second argument is a list of
<tt>ValueType
</tt> register type values
709 that are defined in
<tt>include/llvm/CodeGen/ValueTypes.td
</tt>. Defined
710 values include integer types (such as
<tt>i16
</tt>,
<tt>i32
</tt>,
711 and
<tt>i1
</tt> for Boolean), floating-point types
712 (
<tt>f32
</tt>,
<tt>f64
</tt>), and vector types (for example,
<tt>v8i16
</tt>
713 for an
<tt>8 x i16
</tt> vector). All registers in a
<tt>RegisterClass
</tt>
714 must have the same
<tt>ValueType
</tt>, but some registers may store vector
715 data in different configurations. For example a register that can process a
716 128-bit vector may be able to handle
16 8-bit integer elements,
8 16-bit
717 integers,
4 32-bit integers, and so on.
</li>
719 <li>The third argument of the
<tt>RegisterClass
</tt> definition specifies the
720 alignment required of the registers when they are stored or loaded to
723 <li>The final argument,
<tt>regList
</tt>, specifies which registers are in this
724 class. If an
<tt>allocation_order_*
</tt> method is not specified,
725 then
<tt>regList
</tt> also defines the order of allocation used by the
726 register allocator.
</li>
730 In
<tt>SparcRegisterInfo.td
</tt>, three RegisterClass objects are defined:
731 <tt>FPRegs
</tt>,
<tt>DFPRegs
</tt>, and
<tt>IntRegs
</tt>. For all three register
732 classes, the first argument defines the namespace with the string
733 '
<tt>SP
</tt>'.
<tt>FPRegs
</tt> defines a group of
32 single-precision
734 floating-point registers (
<tt>F0
</tt> to
<tt>F31
</tt>);
<tt>DFPRegs
</tt> defines
735 a group of
16 double-precision registers
736 (
<tt>D0-D15
</tt>). For
<tt>IntRegs
</tt>, the
<tt>MethodProtos
</tt>
737 and
<tt>MethodBodies
</tt> methods are used by TableGen to insert the specified
738 code into generated output.
741 <div class=
"doc_code">
743 def FPRegs : RegisterClass
<"SP", [f32],
32,
744 [F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15,
745 F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31]
>;
747 def DFPRegs : RegisterClass
<"SP", [f64],
64,
748 [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15]
>;
750 def IntRegs : RegisterClass
<"SP", [i32],
32,
751 [L0, L1, L2, L3, L4, L5, L6, L7,
752 I0, I1, I2, I3, I4, I5,
753 O0, O1, O2, O3, O4, O5, O7,
755 // Non-allocatable regs:
759 I7, // return address
761 G5, G6, G7 // reserved for kernel
763 let MethodProtos = [{
764 iterator allocation_order_end(const MachineFunction
&MF) const;
766 let MethodBodies = [{
767 IntRegsClass::iterator
768 IntRegsClass::allocation_order_end(const MachineFunction
&MF) const {
769 return end() -
10 // Don't allocate special registers
778 Using
<tt>SparcRegisterInfo.td
</tt> with TableGen generates several output files
779 that are intended for inclusion in other source code that you write.
780 <tt>SparcRegisterInfo.td
</tt> generates
<tt>SparcGenRegisterInfo.h.inc
</tt>,
781 which should be included in the header file for the implementation of the SPARC
782 register implementation that you write (
<tt>SparcRegisterInfo.h
</tt>). In
783 <tt>SparcGenRegisterInfo.h.inc
</tt> a new structure is defined called
784 <tt>SparcGenRegisterInfo
</tt> that uses
<tt>TargetRegisterInfo
</tt> as its
785 base. It also specifies types, based upon the defined register
786 classes:
<tt>DFPRegsClass
</tt>,
<tt>FPRegsClass
</tt>, and
<tt>IntRegsClass
</tt>.
790 <tt>SparcRegisterInfo.td
</tt> also generates
<tt>SparcGenRegisterInfo.inc
</tt>,
791 which is included at the bottom of
<tt>SparcRegisterInfo.cpp
</tt>, the SPARC
792 register implementation. The code below shows only the generated integer
793 registers and associated register classes. The order of registers
794 in
<tt>IntRegs
</tt> reflects the order in the definition of
<tt>IntRegs
</tt> in
795 the target description file. Take special note of the use
796 of
<tt>MethodBodies
</tt> in
<tt>SparcRegisterInfo.td
</tt> to create code in
797 <tt>SparcGenRegisterInfo.inc
</tt>.
<tt>MethodProtos
</tt> generates similar code
798 in
<tt>SparcGenRegisterInfo.h.inc
</tt>.
801 <div class=
"doc_code">
802 <pre> // IntRegs Register Class...
803 static const unsigned IntRegs[] = {
804 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
805 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
806 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
807 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
808 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
812 // IntRegsVTs Register Class Value Types...
813 static const MVT::ValueType IntRegsVTs[] = {
817 namespace SP { // Register class instances
818 DFPRegsClass
DFPRegsRegClass;
819 FPRegsClass
FPRegsRegClass;
820 IntRegsClass
IntRegsRegClass;
822 // IntRegs Sub-register Classess...
823 static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
827 // IntRegs Super-register Classess...
828 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
832 // IntRegs Register Class sub-classes...
833 static const TargetRegisterClass* const IntRegsSubclasses [] = {
837 // IntRegs Register Class super-classes...
838 static const TargetRegisterClass* const IntRegsSuperclasses [] = {
842 IntRegsClass::iterator
843 IntRegsClass::allocation_order_end(const MachineFunction
&MF) const {
844 return end()-
10 // Don't allocate special registers
848 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
849 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
850 IntRegsSuperRegClasses,
4,
4,
1, IntRegs, IntRegs +
32) {}
857 <!-- ======================================================================= -->
858 <div class=
"doc_subsection">
859 <a name=
"implementRegister">Implement a subclass of
</a>
860 <a href=
"http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo
</a>
863 <div class=
"doc_text">
866 The final step is to hand code portions of
<tt>XXXRegisterInfo
</tt>, which
867 implements the interface described in
<tt>TargetRegisterInfo.h
</tt>. These
868 functions return
<tt>0</tt>,
<tt>NULL
</tt>, or
<tt>false
</tt>, unless
869 overridden. Here is a list of functions that are overridden for the SPARC
870 implementation in
<tt>SparcRegisterInfo.cpp
</tt>:
874 <li><tt>getCalleeSavedRegs
</tt> — Returns a list of callee-saved registers
875 in the order of the desired callee-save stack frame offset.
</li>
877 <li><tt>getCalleeSavedRegClasses
</tt> — Returns a list of preferred
878 register classes with which to spill each callee saved register.
</li>
880 <li><tt>getReservedRegs
</tt> — Returns a bitset indexed by physical
881 register numbers, indicating if a particular register is unavailable.
</li>
883 <li><tt>hasFP
</tt> — Return a Boolean indicating if a function should have
884 a dedicated frame pointer register.
</li>
886 <li><tt>eliminateCallFramePseudoInstr
</tt> — If call frame setup or
887 destroy pseudo instructions are used, this can be called to eliminate
890 <li><tt>eliminateFrameIndex
</tt> — Eliminate abstract frame indices from
891 instructions that may use them.
</li>
893 <li><tt>emitPrologue
</tt> — Insert prologue code into the function.
</li>
895 <li><tt>emitEpilogue
</tt> — Insert epilogue code into the function.
</li>
900 <!-- *********************************************************************** -->
901 <div class=
"doc_section">
902 <a name=
"InstructionSet">Instruction Set
</a>
905 <!-- *********************************************************************** -->
906 <div class=
"doc_text">
909 During the early stages of code generation, the LLVM IR code is converted to a
910 <tt>SelectionDAG
</tt> with nodes that are instances of the
<tt>SDNode
</tt> class
911 containing target instructions. An
<tt>SDNode
</tt> has an opcode, operands, type
912 requirements, and operation properties. For example, is an operation
913 commutative, does an operation load from memory. The various operation node
914 types are described in the
<tt>include/llvm/CodeGen/SelectionDAGNodes.h
</tt>
915 file (values of the
<tt>NodeType
</tt> enum in the
<tt>ISD
</tt> namespace).
919 TableGen uses the following target description (
<tt>.td
</tt>) input files to
920 generate much of the code for instruction definition:
924 <li><tt>Target.td
</tt> — Where the
<tt>Instruction
</tt>,
<tt>Operand
</tt>,
925 <tt>InstrInfo
</tt>, and other fundamental classes are defined.
</li>
927 <li><tt>TargetSelectionDAG.td
</tt>— Used by
<tt>SelectionDAG
</tt>
928 instruction selection generators, contains
<tt>SDTC*
</tt> classes (selection
929 DAG type constraint), definitions of
<tt>SelectionDAG
</tt> nodes (such as
930 <tt>imm
</tt>,
<tt>cond
</tt>,
<tt>bb
</tt>,
<tt>add
</tt>,
<tt>fadd
</tt>,
931 <tt>sub
</tt>), and pattern support (
<tt>Pattern
</tt>,
<tt>Pat
</tt>,
932 <tt>PatFrag
</tt>,
<tt>PatLeaf
</tt>,
<tt>ComplexPattern
</tt>.
</li>
934 <li><tt>XXXInstrFormats.td
</tt> — Patterns for definitions of
935 target-specific instructions.
</li>
937 <li><tt>XXXInstrInfo.td
</tt> — Target-specific definitions of instruction
938 templates, condition codes, and instructions of an instruction set. For
939 architecture modifications, a different file name may be used. For example,
940 for Pentium with SSE instruction, this file is
<tt>X86InstrSSE.td
</tt>, and
941 for Pentium with MMX, this file is
<tt>X86InstrMMX.td
</tt>.
</li>
945 There is also a target-specific
<tt>XXX.td
</tt> file, where
<tt>XXX
</tt> is the
946 name of the target. The
<tt>XXX.td
</tt> file includes the other
<tt>.td
</tt>
947 input files, but its contents are only directly important for subtargets.
951 You should describe a concrete target-specific class
<tt>XXXInstrInfo
</tt> that
952 represents machine instructions supported by a target machine.
953 <tt>XXXInstrInfo
</tt> contains an array of
<tt>XXXInstrDescriptor
</tt> objects,
954 each of which describes one instruction. An instruction descriptor defines:
</p>
957 <li>Opcode mnemonic
</li>
959 <li>Number of operands
</li>
961 <li>List of implicit register definitions and uses
</li>
963 <li>Target-independent properties (such as memory access, is commutable)
</li>
965 <li>Target-specific flags
</li>
969 The Instruction class (defined in
<tt>Target.td
</tt>) is mostly used as a base
970 for more complex instruction classes.
973 <div class=
"doc_code">
974 <pre>class Instruction {
975 string Namespace =
"";
976 dag OutOperandList; // An dag containing the MI def operand list.
977 dag InOperandList; // An dag containing the MI use operand list.
978 string AsmString =
""; // The .s format to print the instruction with.
979 list
<dag
> Pattern; // Set to the DAG pattern for this instruction
980 list
<Register
> Uses = [];
981 list
<Register
> Defs = [];
982 list
<Predicate
> Predicates = []; // predicates turned into isel match code
983 ... remainder not shown for space ...
989 A
<tt>SelectionDAG
</tt> node (
<tt>SDNode
</tt>) should contain an object
990 representing a target-specific instruction that is defined
991 in
<tt>XXXInstrInfo.td
</tt>. The instruction objects should represent
992 instructions from the architecture manual of the target machine (such as the
993 SPARC Architecture Manual for the SPARC target).
997 A single instruction from the architecture manual is often modeled as multiple
998 target instructions, depending upon its operands. For example, a manual might
999 describe an add instruction that takes a register or an immediate operand. An
1000 LLVM target could model this with two instructions named
<tt>ADDri
</tt> and
1005 You should define a class for each instruction category and define each opcode
1006 as a subclass of the category with appropriate parameters such as the fixed
1007 binary encoding of opcodes and extended opcodes. You should map the register
1008 bits to the bits of the instruction in which they are encoded (for the
1009 JIT). Also you should specify how the instruction should be printed when the
1010 automatic assembly printer is used.
1014 As is described in the SPARC Architecture Manual, Version
8, there are three
1015 major
32-bit formats for instructions. Format
1 is only for the
<tt>CALL
</tt>
1016 instruction. Format
2 is for branch on condition codes and
<tt>SETHI
</tt> (set
1017 high bits of a register) instructions. Format
3 is for other instructions.
1021 Each of these formats has corresponding classes in
<tt>SparcInstrFormat.td
</tt>.
1022 <tt>InstSP
</tt> is a base class for other instruction classes. Additional base
1023 classes are specified for more precise formats: for example
1024 in
<tt>SparcInstrFormat.td
</tt>,
<tt>F2_1
</tt> is for
<tt>SETHI
</tt>,
1025 and
<tt>F2_2
</tt> is for branches. There are three other base
1026 classes:
<tt>F3_1
</tt> for register/register operations,
<tt>F3_2
</tt> for
1027 register/immediate operations, and
<tt>F3_3
</tt> for floating-point
1028 operations.
<tt>SparcInstrInfo.td
</tt> also adds the base class Pseudo for
1029 synthetic SPARC instructions.
1033 <tt>SparcInstrInfo.td
</tt> largely consists of operand and instruction
1034 definitions for the SPARC target. In
<tt>SparcInstrInfo.td
</tt>, the following
1035 target description file entry,
<tt>LDrr
</tt>, defines the Load Integer
1036 instruction for a Word (the
<tt>LD
</tt> SPARC opcode) from a memory address to a
1037 register. The first parameter, the value
3 (
<tt>11<sub>2</sub></tt>), is the
1038 operation value for this category of operation. The second parameter
1039 (
<tt>000000<sub>2</sub></tt>) is the specific operation value
1040 for
<tt>LD
</tt>/Load Word. The third parameter is the output destination, which
1041 is a register operand and defined in the
<tt>Register
</tt> target description
1042 file (
<tt>IntRegs
</tt>).
1045 <div class=
"doc_code">
1046 <pre>def LDrr : F3_1
<3,
0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
1048 [(set IntRegs:$dst, (load ADDRrr:$addr))]
>;
1053 The fourth parameter is the input source, which uses the address
1054 operand
<tt>MEMrr
</tt> that is defined earlier in
<tt>SparcInstrInfo.td
</tt>:
1057 <div class=
"doc_code">
1058 <pre>def MEMrr : Operand
<i32
> {
1059 let PrintMethod =
"printMemOperand";
1060 let MIOperandInfo = (ops IntRegs, IntRegs);
1066 The fifth parameter is a string that is used by the assembly printer and can be
1067 left as an empty string until the assembly printer interface is implemented. The
1068 sixth and final parameter is the pattern used to match the instruction during
1069 the SelectionDAG Select Phase described in
1070 (
<a href=
"http://www.llvm.org/docs/CodeGenerator.html">The LLVM
1071 Target-Independent Code Generator
</a>). This parameter is detailed in the next
1072 section,
<a href=
"#InstructionSelector">Instruction Selector
</a>.
1076 Instruction class definitions are not overloaded for different operand types, so
1077 separate versions of instructions are needed for register, memory, or immediate
1078 value operands. For example, to perform a Load Integer instruction for a Word
1079 from an immediate operand to a register, the following instruction class is
1083 <div class=
"doc_code">
1084 <pre>def LDri : F3_2
<3,
0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
1086 [(set IntRegs:$dst, (load ADDRri:$addr))]
>;
1091 Writing these definitions for so many similar instructions can involve a lot of
1092 cut and paste. In td files, the
<tt>multiclass
</tt> directive enables the
1093 creation of templates to define several instruction classes at once (using
1094 the
<tt>defm
</tt> directive). For example in
<tt>SparcInstrInfo.td
</tt>, the
1095 <tt>multiclass
</tt> pattern
<tt>F3_12
</tt> is defined to create
2 instruction
1096 classes each time
<tt>F3_12
</tt> is invoked:
1099 <div class=
"doc_code">
1100 <pre>multiclass F3_12
<string OpcStr, bits
<6> Op3Val, SDNode OpNode
> {
1101 def rr : F3_1
<2, Op3Val,
1102 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
1103 !strconcat(OpcStr,
" $b, $c, $dst"),
1104 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]
>;
1105 def ri : F3_2
<2, Op3Val,
1106 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
1107 !strconcat(OpcStr,
" $b, $c, $dst"),
1108 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]
>;
1114 So when the
<tt>defm
</tt> directive is used for the
<tt>XOR
</tt>
1115 and
<tt>ADD
</tt> instructions, as seen below, it creates four instruction
1116 objects:
<tt>XORrr
</tt>,
<tt>XORri
</tt>,
<tt>ADDrr
</tt>, and
<tt>ADDri
</tt>.
1119 <div class=
"doc_code">
1121 defm XOR : F3_12
<"xor",
0b000011, xor
>;
1122 defm ADD : F3_12
<"add",
0b000000, add
>;
1127 <tt>SparcInstrInfo.td
</tt> also includes definitions for condition codes that
1128 are referenced by branch instructions. The following definitions
1129 in
<tt>SparcInstrInfo.td
</tt> indicate the bit location of the SPARC condition
1130 code. For example, the
10<sup>th
</sup> bit represents the 'greater than'
1131 condition for integers, and the
22<sup>nd
</sup> bit represents the 'greater
1132 than' condition for floats.
1135 <div class=
"doc_code">
1137 def ICC_NE : ICC_VAL
< 9>; // Not Equal
1138 def ICC_E : ICC_VAL
< 1>; // Equal
1139 def ICC_G : ICC_VAL
<10>; // Greater
1141 def FCC_U : FCC_VAL
<23>; // Unordered
1142 def FCC_G : FCC_VAL
<22>; // Greater
1143 def FCC_UG : FCC_VAL
<21>; // Unordered or Greater
1149 (Note that
<tt>Sparc.h
</tt> also defines enums that correspond to the same SPARC
1150 condition codes. Care must be taken to ensure the values in
<tt>Sparc.h
</tt>
1151 correspond to the values in
<tt>SparcInstrInfo.td
</tt>. I.e.,
1152 <tt>SPCC::ICC_NE =
9</tt>,
<tt>SPCC::FCC_U =
23</tt> and so on.)
1157 <!-- ======================================================================= -->
1158 <div class=
"doc_subsection">
1159 <a name=
"operandMapping">Instruction Operand Mapping
</a>
1162 <div class=
"doc_text">
1165 The code generator backend maps instruction operands to fields in the
1166 instruction. Operands are assigned to unbound fields in the instruction in the
1167 order they are defined. Fields are bound when they are assigned a value. For
1168 example, the Sparc target defines the
<tt>XNORrr
</tt> instruction as
1169 a
<tt>F3_1
</tt> format instruction having three operands.
1172 <div class=
"doc_code">
1174 def XNORrr : F3_1
<2,
0b000111,
1175 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
1176 "xnor $b, $c, $dst",
1177 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]
>;
1182 The instruction templates in
<tt>SparcInstrFormats.td
</tt> show the base class
1183 for
<tt>F3_1
</tt> is
<tt>InstSP
</tt>.
1186 <div class=
"doc_code">
1188 class InstSP
<dag outs, dag ins, string asmstr, list
<dag
> pattern
> : Instruction {
1189 field bits
<32> Inst;
1190 let Namespace =
"SP";
1192 let Inst{
31-
30} = op;
1193 dag OutOperandList = outs;
1194 dag InOperandList = ins;
1195 let AsmString = asmstr;
1196 let Pattern = pattern;
1201 <p><tt>InstSP
</tt> leaves the
<tt>op
</tt> field unbound.
</p>
1203 <div class=
"doc_code">
1205 class F3
<dag outs, dag ins, string asmstr, list
<dag
> pattern
>
1206 : InstSP
<outs, ins, asmstr, pattern
> {
1210 let op{
1} =
1; // Op =
2 or
3
1211 let Inst{
29-
25} = rd;
1212 let Inst{
24-
19} = op3;
1213 let Inst{
18-
14} = rs1;
1219 <tt>F3
</tt> binds the
<tt>op
</tt> field and defines the
<tt>rd
</tt>,
1220 <tt>op3
</tt>, and
<tt>rs1
</tt> fields.
<tt>F3
</tt> format instructions will
1221 bind the operands
<tt>rd
</tt>,
<tt>op3
</tt>, and
<tt>rs1
</tt> fields.
1224 <div class=
"doc_code">
1226 class F3_1
<bits
<2> opVal, bits
<6> op3val, dag outs, dag ins,
1227 string asmstr, list
<dag
> pattern
> : F3
<outs, ins, asmstr, pattern
> {
1228 bits
<8> asi =
0; // asi not currently used
1232 let Inst{
13} =
0; // i field =
0
1233 let Inst{
12-
5} = asi; // address space identifier
1234 let Inst{
4-
0} = rs2;
1240 <tt>F3_1
</tt> binds the
<tt>op3
</tt> field and defines the
<tt>rs2
</tt>
1241 fields.
<tt>F3_1
</tt> format instructions will bind the operands to the
<tt>rd
</tt>,
1242 <tt>rs1
</tt>, and
<tt>rs2
</tt> fields. This results in the
<tt>XNORrr
</tt>
1243 instruction binding
<tt>$dst
</tt>,
<tt>$b
</tt>, and
<tt>$c
</tt> operands to
1244 the
<tt>rd
</tt>,
<tt>rs1
</tt>, and
<tt>rs2
</tt> fields respectively.
1249 <!-- ======================================================================= -->
1250 <div class=
"doc_subsection">
1251 <a name=
"implementInstr">Implement a subclass of
</a>
1252 <a href=
"http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo
</a>
1255 <div class=
"doc_text">
1258 The final step is to hand code portions of
<tt>XXXInstrInfo
</tt>, which
1259 implements the interface described in
<tt>TargetInstrInfo.h
</tt>. These
1260 functions return
<tt>0</tt> or a Boolean or they assert, unless
1261 overridden. Here's a list of functions that are overridden for the SPARC
1262 implementation in
<tt>SparcInstrInfo.cpp
</tt>:
1266 <li><tt>isMoveInstr
</tt> — Return true if the instruction is a register to
1267 register move; false, otherwise.
</li>
1269 <li><tt>isLoadFromStackSlot
</tt> — If the specified machine instruction is
1270 a direct load from a stack slot, return the register number of the
1271 destination and the
<tt>FrameIndex
</tt> of the stack slot.
</li>
1273 <li><tt>isStoreToStackSlot
</tt> — If the specified machine instruction is
1274 a direct store to a stack slot, return the register number of the
1275 destination and the
<tt>FrameIndex
</tt> of the stack slot.
</li>
1277 <li><tt>copyRegToReg
</tt> — Copy values between a pair of registers.
</li>
1279 <li><tt>storeRegToStackSlot
</tt> — Store a register value to a stack
1282 <li><tt>loadRegFromStackSlot
</tt> — Load a register value from a stack
1285 <li><tt>storeRegToAddr
</tt> — Store a register value to memory.
</li>
1287 <li><tt>loadRegFromAddr
</tt> — Load a register value from memory.
</li>
1289 <li><tt>foldMemoryOperand
</tt> — Attempt to combine instructions of any
1290 load or store instruction for the specified operand(s).
</li>
1295 <!-- ======================================================================= -->
1296 <div class=
"doc_subsection">
1297 <a name=
"branchFolding">Branch Folding and If Conversion
</a>
1299 <div class=
"doc_text">
1302 Performance can be improved by combining instructions or by eliminating
1303 instructions that are never reached. The
<tt>AnalyzeBranch
</tt> method
1304 in
<tt>XXXInstrInfo
</tt> may be implemented to examine conditional instructions
1305 and remove unnecessary instructions.
<tt>AnalyzeBranch
</tt> looks at the end of
1306 a machine basic block (MBB) for opportunities for improvement, such as branch
1307 folding and if conversion. The
<tt>BranchFolder
</tt> and
<tt>IfConverter
</tt>
1308 machine function passes (see the source files
<tt>BranchFolding.cpp
</tt> and
1309 <tt>IfConversion.cpp
</tt> in the
<tt>lib/CodeGen
</tt> directory) call
1310 <tt>AnalyzeBranch
</tt> to improve the control flow graph that represents the
1315 Several implementations of
<tt>AnalyzeBranch
</tt> (for ARM, Alpha, and X86) can
1316 be examined as models for your own
<tt>AnalyzeBranch
</tt> implementation. Since
1317 SPARC does not implement a useful
<tt>AnalyzeBranch
</tt>, the ARM target
1318 implementation is shown below.
1321 <p><tt>AnalyzeBranch
</tt> returns a Boolean value and takes four parameters:
</p>
1324 <li><tt>MachineBasicBlock
&MBB
</tt> — The incoming block to be
1327 <li><tt>MachineBasicBlock *
&TBB
</tt> — A destination block that is
1328 returned. For a conditional branch that evaluates to true,
<tt>TBB
</tt> is
1329 the destination.
</li>
1331 <li><tt>MachineBasicBlock *
&FBB
</tt> — For a conditional branch that
1332 evaluates to false,
<tt>FBB
</tt> is returned as the destination.
</li>
1334 <li><tt>std::vector
<MachineOperand
> &Cond
</tt> — List of
1335 operands to evaluate a condition for a conditional branch.
</li>
1339 In the simplest case, if a block ends without a branch, then it falls through to
1340 the successor block. No destination blocks are specified for either
<tt>TBB
</tt>
1341 or
<tt>FBB
</tt>, so both parameters return
<tt>NULL
</tt>. The start of
1342 the
<tt>AnalyzeBranch
</tt> (see code below for the ARM target) shows the
1343 function parameters and the code for the simplest case.
1346 <div class=
"doc_code">
1347 <pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock
&MBB,
1348 MachineBasicBlock *
&TBB, MachineBasicBlock *
&FBB,
1349 std::vector
<MachineOperand
> &Cond) const
1351 MachineBasicBlock::iterator I = MBB.end();
1352 if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1358 If a block ends with a single unconditional branch instruction, then
1359 <tt>AnalyzeBranch
</tt> (shown below) should return the destination of that
1360 branch in the
<tt>TBB
</tt> parameter.
1363 <div class=
"doc_code">
1365 if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1366 TBB = LastInst-
>getOperand(
0).getMBB();
1373 If a block ends with two unconditional branches, then the second branch is never
1374 reached. In that situation, as shown below, remove the last branch instruction
1375 and return the penultimate branch in the
<tt>TBB
</tt> parameter.
1378 <div class=
"doc_code">
1380 if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB)
&&
1381 (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1382 TBB = SecondLastInst-
>getOperand(
0).getMBB();
1384 I-
>eraseFromParent();
1391 A block may end with a single conditional branch instruction that falls through
1392 to successor block if the condition evaluates to false. In that case,
1393 <tt>AnalyzeBranch
</tt> (shown below) should return the destination of that
1394 conditional branch in the
<tt>TBB
</tt> parameter and a list of operands in
1395 the
<tt>Cond
</tt> parameter to evaluate the condition.
1398 <div class=
"doc_code">
1400 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1401 // Block ends with fall-through condbranch.
1402 TBB = LastInst-
>getOperand(
0).getMBB();
1403 Cond.push_back(LastInst-
>getOperand(
1));
1404 Cond.push_back(LastInst-
>getOperand(
2));
1411 If a block ends with both a conditional branch and an ensuing unconditional
1412 branch, then
<tt>AnalyzeBranch
</tt> (shown below) should return the conditional
1413 branch destination (assuming it corresponds to a conditional evaluation of
1414 '
<tt>true
</tt>') in the
<tt>TBB
</tt> parameter and the unconditional branch
1415 destination in the
<tt>FBB
</tt> (corresponding to a conditional evaluation of
1416 '
<tt>false
</tt>'). A list of operands to evaluate the condition should be
1417 returned in the
<tt>Cond
</tt> parameter.
1420 <div class=
"doc_code">
1422 unsigned SecondLastOpc = SecondLastInst-
>getOpcode();
1424 if ((SecondLastOpc == ARM::Bcc
&& LastOpc == ARM::B) ||
1425 (SecondLastOpc == ARM::tBcc
&& LastOpc == ARM::tB)) {
1426 TBB = SecondLastInst-
>getOperand(
0).getMBB();
1427 Cond.push_back(SecondLastInst-
>getOperand(
1));
1428 Cond.push_back(SecondLastInst-
>getOperand(
2));
1429 FBB = LastInst-
>getOperand(
0).getMBB();
1436 For the last two cases (ending with a single conditional branch or ending with
1437 one conditional and one unconditional branch), the operands returned in
1438 the
<tt>Cond
</tt> parameter can be passed to methods of other instructions to
1439 create new branches or perform other operations. An implementation
1440 of
<tt>AnalyzeBranch
</tt> requires the helper methods
<tt>RemoveBranch
</tt>
1441 and
<tt>InsertBranch
</tt> to manage subsequent operations.
1445 <tt>AnalyzeBranch
</tt> should return false indicating success in most circumstances.
1446 <tt>AnalyzeBranch
</tt> should only return true when the method is stumped about what to
1447 do, for example, if a block has three terminating branches.
<tt>AnalyzeBranch
</tt> may
1448 return true if it encounters a terminator it cannot handle, such as an indirect
1454 <!-- *********************************************************************** -->
1455 <div class=
"doc_section">
1456 <a name=
"InstructionSelector">Instruction Selector
</a>
1458 <!-- *********************************************************************** -->
1460 <div class=
"doc_text">
1463 LLVM uses a
<tt>SelectionDAG
</tt> to represent LLVM IR instructions, and nodes
1464 of the
<tt>SelectionDAG
</tt> ideally represent native target
1465 instructions. During code generation, instruction selection passes are performed
1466 to convert non-native DAG instructions into native target-specific
1467 instructions. The pass described in
<tt>XXXISelDAGToDAG.cpp
</tt> is used to
1468 match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass
1469 may be defined (in
<tt>XXXBranchSelector.cpp
</tt>) to perform similar DAG-to-DAG
1470 operations for branch instructions. Later, the code in
1471 <tt>XXXISelLowering.cpp
</tt> replaces or removes operations and data types not
1472 supported natively (legalizes) in a
<tt>SelectionDAG
</tt>.
1476 TableGen generates code for instruction selection using the following target
1477 description input files:
1481 <li><tt>XXXInstrInfo.td
</tt> — Contains definitions of instructions in a
1482 target-specific instruction set, generates
<tt>XXXGenDAGISel.inc
</tt>, which
1483 is included in
<tt>XXXISelDAGToDAG.cpp
</tt>.
</li>
1485 <li><tt>XXXCallingConv.td
</tt> — Contains the calling and return value
1486 conventions for the target architecture, and it generates
1487 <tt>XXXGenCallingConv.inc
</tt>, which is included in
1488 <tt>XXXISelLowering.cpp
</tt>.
</li>
1492 The implementation of an instruction selection pass must include a header that
1493 declares the
<tt>FunctionPass
</tt> class or a subclass of
<tt>FunctionPass
</tt>. In
1494 <tt>XXXTargetMachine.cpp
</tt>, a Pass Manager (PM) should add each instruction
1495 selection pass into the queue of passes to run.
1499 The LLVM static compiler (
<tt>llc
</tt>) is an excellent tool for visualizing the
1500 contents of DAGs. To display the
<tt>SelectionDAG
</tt> before or after specific
1501 processing phases, use the command line options for
<tt>llc
</tt>, described
1502 at
<a href=
"http://llvm.org/docs/CodeGenerator.html#selectiondag_process">
1503 SelectionDAG Instruction Selection Process
</a>.
1507 To describe instruction selector behavior, you should add patterns for lowering
1508 LLVM code into a
<tt>SelectionDAG
</tt> as the last parameter of the instruction
1509 definitions in
<tt>XXXInstrInfo.td
</tt>. For example, in
1510 <tt>SparcInstrInfo.td
</tt>, this entry defines a register store operation, and
1511 the last parameter describes a pattern with the store DAG operator.
1514 <div class=
"doc_code">
1516 def STrr : F3_1
< 3,
0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1517 "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]
>;
1522 <tt>ADDRrr
</tt> is a memory mode that is also defined in
1523 <tt>SparcInstrInfo.td
</tt>:
1526 <div class=
"doc_code">
1528 def ADDRrr : ComplexPattern
<i32,
2,
"SelectADDRrr", [], []
>;
1533 The definition of
<tt>ADDRrr
</tt> refers to
<tt>SelectADDRrr
</tt>, which is a
1534 function defined in an implementation of the Instructor Selector (such
1535 as
<tt>SparcISelDAGToDAG.cpp
</tt>).
1539 In
<tt>lib/Target/TargetSelectionDAG.td
</tt>, the DAG operator for store is
1543 <div class=
"doc_code">
1545 def store : PatFrag
<(ops node:$val, node:$ptr),
1546 (st node:$val, node:$ptr), [{
1547 if (StoreSDNode *ST = dyn_cast
<StoreSDNode
>(N))
1548 return !ST-
>isTruncatingStore()
&&
1549 ST-
>getAddressingMode() == ISD::UNINDEXED;
1556 <tt>XXXInstrInfo.td
</tt> also generates (in
<tt>XXXGenDAGISel.inc
</tt>) the
1557 <tt>SelectCode
</tt> method that is used to call the appropriate processing
1558 method for an instruction. In this example,
<tt>SelectCode
</tt>
1559 calls
<tt>Select_ISD_STORE
</tt> for the
<tt>ISD::STORE
</tt> opcode.
1562 <div class=
"doc_code">
1564 SDNode *SelectCode(SDValue N) {
1566 MVT::ValueType NVT = N.getNode()-
>getValueType(
0);
1567 switch (N.getOpcode()) {
1571 return Select_ISD_STORE(N);
1581 The pattern for
<tt>STrr
</tt> is matched, so elsewhere in
1582 <tt>XXXGenDAGISel.inc
</tt>, code for
<tt>STrr
</tt> is created for
1583 <tt>Select_ISD_STORE
</tt>. The
<tt>Emit_22
</tt> method is also generated
1584 in
<tt>XXXGenDAGISel.inc
</tt> to complete the processing of this
1588 <div class=
"doc_code">
1590 SDNode *Select_ISD_STORE(const SDValue
&N) {
1591 SDValue Chain = N.getOperand(
0);
1592 if (Predicate_store(N.getNode())) {
1593 SDValue N1 = N.getOperand(
1);
1594 SDValue N2 = N.getOperand(
2);
1598 // Pattern: (st:void IntRegs:i32:$src,
1599 // ADDRrr:i32:$addr)
<<P:Predicate_store
>>
1600 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1601 // Pattern complexity =
13 cost =
1 size =
0
1602 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1)
&&
1603 N1.getNode()-
>getValueType(
0) == MVT::i32
&&
1604 N2.getNode()-
>getValueType(
0) == MVT::i32) {
1605 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1613 <!-- ======================================================================= -->
1614 <div class=
"doc_subsection">
1615 <a name=
"LegalizePhase">The SelectionDAG Legalize Phase
</a>
1618 <div class=
"doc_text">
1621 The Legalize phase converts a DAG to use types and operations that are natively
1622 supported by the target. For natively unsupported types and operations, you need
1623 to add code to the target-specific XXXTargetLowering implementation to convert
1624 unsupported types and operations to supported ones.
1628 In the constructor for the
<tt>XXXTargetLowering
</tt> class, first use the
1629 <tt>addRegisterClass
</tt> method to specify which types are supports and which
1630 register classes are associated with them. The code for the register classes are
1631 generated by TableGen from
<tt>XXXRegisterInfo.td
</tt> and placed
1632 in
<tt>XXXGenRegisterInfo.h.inc
</tt>. For example, the implementation of the
1633 constructor for the SparcTargetLowering class (in
1634 <tt>SparcISelLowering.cpp
</tt>) starts with the following code:
1637 <div class=
"doc_code">
1639 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1640 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1641 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1646 You should examine the node types in the
<tt>ISD
</tt> namespace
1647 (
<tt>include/llvm/CodeGen/SelectionDAGNodes.h
</tt>) and determine which
1648 operations the target natively supports. For operations that do
<b>not
</b> have
1649 native support, add a callback to the constructor for the XXXTargetLowering
1650 class, so the instruction selection process knows what to do. The TargetLowering
1651 class callback methods (declared in
<tt>llvm/Target/TargetLowering.h
</tt>) are:
1655 <li><tt>setOperationAction
</tt> — General operation.
</li>
1657 <li><tt>setLoadExtAction
</tt> — Load with extension.
</li>
1659 <li><tt>setTruncStoreAction
</tt> — Truncating store.
</li>
1661 <li><tt>setIndexedLoadAction
</tt> — Indexed load.
</li>
1663 <li><tt>setIndexedStoreAction
</tt> — Indexed store.
</li>
1665 <li><tt>setConvertAction
</tt> — Type conversion.
</li>
1667 <li><tt>setCondCodeAction
</tt> — Support for a given condition code.
</li>
1671 Note: on older releases,
<tt>setLoadXAction
</tt> is used instead
1672 of
<tt>setLoadExtAction
</tt>. Also, on older releases,
1673 <tt>setCondCodeAction
</tt> may not be supported. Examine your release
1674 to see what methods are specifically supported.
1678 These callbacks are used to determine that an operation does or does not work
1679 with a specified type (or types). And in all cases, the third parameter is
1680 a
<tt>LegalAction
</tt> type enum value:
<tt>Promote
</tt>,
<tt>Expand
</tt>,
1681 <tt>Custom
</tt>, or
<tt>Legal
</tt>.
<tt>SparcISelLowering.cpp
</tt>
1682 contains examples of all four
<tt>LegalAction
</tt> values.
1687 <!-- _______________________________________________________________________ -->
1688 <div class=
"doc_subsubsection">
1689 <a name=
"promote">Promote
</a>
1692 <div class=
"doc_text">
1695 For an operation without native support for a given type, the specified type may
1696 be promoted to a larger type that is supported. For example, SPARC does not
1697 support a sign-extending load for Boolean values (
<tt>i1
</tt> type), so
1698 in
<tt>SparcISelLowering.cpp
</tt> the third parameter below,
<tt>Promote
</tt>,
1699 changes
<tt>i1
</tt> type values to a large type before loading.
1702 <div class=
"doc_code">
1704 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1710 <!-- _______________________________________________________________________ -->
1711 <div class=
"doc_subsubsection">
1712 <a name=
"expand">Expand
</a>
1715 <div class=
"doc_text">
1718 For a type without native support, a value may need to be broken down further,
1719 rather than promoted. For an operation without native support, a combination of
1720 other operations may be used to similar effect. In SPARC, the floating-point
1721 sine and cosine trig operations are supported by expansion to other operations,
1722 as indicated by the third parameter,
<tt>Expand
</tt>, to
1723 <tt>setOperationAction
</tt>:
1726 <div class=
"doc_code">
1728 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1729 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1735 <!-- _______________________________________________________________________ -->
1736 <div class=
"doc_subsubsection">
1737 <a name=
"custom">Custom
</a>
1740 <div class=
"doc_text">
1743 For some operations, simple type promotion or operation expansion may be
1744 insufficient. In some cases, a special intrinsic function must be implemented.
1748 For example, a constant value may require special treatment, or an operation may
1749 require spilling and restoring registers in the stack and working with register
1754 As seen in
<tt>SparcISelLowering.cpp
</tt> code below, to perform a type
1755 conversion from a floating point value to a signed integer, first the
1756 <tt>setOperationAction
</tt> should be called with
<tt>Custom
</tt> as the third
1760 <div class=
"doc_code">
1762 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1767 In the
<tt>LowerOperation
</tt> method, for each
<tt>Custom
</tt> operation, a
1768 case statement should be added to indicate what function to call. In the
1769 following code, an
<tt>FP_TO_SINT
</tt> opcode will call
1770 the
<tt>LowerFP_TO_SINT
</tt> method:
1773 <div class=
"doc_code">
1775 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG
&DAG) {
1776 switch (Op.getOpcode()) {
1777 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1785 Finally, the
<tt>LowerFP_TO_SINT
</tt> method is implemented, using an FP
1786 register to convert the floating-point value to an integer.
1789 <div class=
"doc_code">
1791 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG
&DAG) {
1792 assert(Op.getValueType() == MVT::i32);
1793 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(
0));
1794 return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
1801 <!-- _______________________________________________________________________ -->
1802 <div class=
"doc_subsubsection">
1803 <a name=
"legal">Legal
</a>
1806 <div class=
"doc_text">
1809 The
<tt>Legal
</tt> LegalizeAction enum value simply indicates that an
1810 operation
<b>is
</b> natively supported.
<tt>Legal
</tt> represents the default
1811 condition, so it is rarely used. In
<tt>SparcISelLowering.cpp
</tt>, the action
1812 for
<tt>CTPOP
</tt> (an operation to count the bits set in an integer) is
1813 natively supported only for SPARC v9. The following code enables
1814 the
<tt>Expand
</tt> conversion technique for non-v9 SPARC implementations.
1817 <div class=
"doc_code">
1819 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1821 if (TM.getSubtarget
<SparcSubtarget
>().isV9())
1822 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1823 case ISD::SETULT: return SPCC::ICC_CS;
1824 case ISD::SETULE: return SPCC::ICC_LEU;
1825 case ISD::SETUGT: return SPCC::ICC_GU;
1826 case ISD::SETUGE: return SPCC::ICC_CC;
1834 <!-- ======================================================================= -->
1835 <div class=
"doc_subsection">
1836 <a name=
"callingConventions">Calling Conventions
</a>
1839 <div class=
"doc_text">
1842 To support target-specific calling conventions,
<tt>XXXGenCallingConv.td
</tt>
1843 uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
1844 <tt>lib/Target/TargetCallingConv.td
</tt>. TableGen can take the target
1845 descriptor file
<tt>XXXGenCallingConv.td
</tt> and generate the header
1846 file
<tt>XXXGenCallingConv.inc
</tt>, which is typically included
1847 in
<tt>XXXISelLowering.cpp
</tt>. You can use the interfaces in
1848 <tt>TargetCallingConv.td
</tt> to specify:
1852 <li>The order of parameter allocation.
</li>
1854 <li>Where parameters and return values are placed (that is, on the stack or in
1857 <li>Which registers may be used.
</li>
1859 <li>Whether the caller or callee unwinds the stack.
</li>
1863 The following example demonstrates the use of the
<tt>CCIfType
</tt> and
1864 <tt>CCAssignToReg
</tt> interfaces. If the
<tt>CCIfType
</tt> predicate is true
1865 (that is, if the current argument is of type
<tt>f32
</tt> or
<tt>f64
</tt>), then
1866 the action is performed. In this case, the
<tt>CCAssignToReg
</tt> action assigns
1867 the argument value to the first available register: either
<tt>R0
</tt>
1871 <div class=
"doc_code">
1873 CCIfType
<[f32,f64], CCAssignToReg
<[R0, R1]
>>
1878 <tt>SparcCallingConv.td
</tt> contains definitions for a target-specific
1879 return-value calling convention (RetCC_Sparc32) and a basic
32-bit C calling
1880 convention (
<tt>CC_Sparc32
</tt>). The definition of
<tt>RetCC_Sparc32
</tt>
1881 (shown below) indicates which registers are used for specified scalar return
1882 types. A single-precision float is returned to register
<tt>F0
</tt>, and a
1883 double-precision float goes to register
<tt>D0
</tt>. A
32-bit integer is
1884 returned in register
<tt>I0
</tt> or
<tt>I1
</tt>.
1887 <div class=
"doc_code">
1889 def RetCC_Sparc32 : CallingConv
<[
1890 CCIfType
<[i32], CCAssignToReg
<[I0, I1]
>>,
1891 CCIfType
<[f32], CCAssignToReg
<[F0]
>>,
1892 CCIfType
<[f64], CCAssignToReg
<[D0]
>>
1898 The definition of
<tt>CC_Sparc32
</tt> in
<tt>SparcCallingConv.td
</tt> introduces
1899 <tt>CCAssignToStack
</tt>, which assigns the value to a stack slot with the
1900 specified size and alignment. In the example below, the first parameter,
4,
1901 indicates the size of the slot, and the second parameter, also
4, indicates the
1902 stack alignment along
4-byte units. (Special cases: if size is zero, then the
1903 ABI size is used; if alignment is zero, then the ABI alignment is used.)
1906 <div class=
"doc_code">
1908 def CC_Sparc32 : CallingConv
<[
1909 // All arguments get passed in integer registers if there is space.
1910 CCIfType
<[i32, f32, f64], CCAssignToReg
<[I0, I1, I2, I3, I4, I5]
>>,
1911 CCAssignToStack
<4,
4>
1917 <tt>CCDelegateTo
</tt> is another commonly used interface, which tries to find a
1918 specified sub-calling convention, and, if a match is found, it is invoked. In
1919 the following example (in
<tt>X86CallingConv.td
</tt>), the definition of
1920 <tt>RetCC_X86_32_C
</tt> ends with
<tt>CCDelegateTo
</tt>. After the current value
1921 is assigned to the register
<tt>ST0
</tt> or
<tt>ST1
</tt>,
1922 the
<tt>RetCC_X86Common
</tt> is invoked.
1925 <div class=
"doc_code">
1927 def RetCC_X86_32_C : CallingConv
<[
1928 CCIfType
<[f32], CCAssignToReg
<[ST0, ST1]
>>,
1929 CCIfType
<[f64], CCAssignToReg
<[ST0, ST1]
>>,
1930 CCDelegateTo
<RetCC_X86Common
>
1936 <tt>CCIfCC
</tt> is an interface that attempts to match the given name to the
1937 current calling convention. If the name identifies the current calling
1938 convention, then a specified action is invoked. In the following example (in
1939 <tt>X86CallingConv.td
</tt>), if the
<tt>Fast
</tt> calling convention is in use,
1940 then
<tt>RetCC_X86_32_Fast
</tt> is invoked. If the
<tt>SSECall
</tt> calling
1941 convention is in use, then
<tt>RetCC_X86_32_SSE
</tt> is invoked.
1944 <div class=
"doc_code">
1946 def RetCC_X86_32 : CallingConv
<[
1947 CCIfCC
<"CallingConv::Fast", CCDelegateTo
<RetCC_X86_32_Fast
>>,
1948 CCIfCC
<"CallingConv::X86_SSECall", CCDelegateTo
<RetCC_X86_32_SSE
>>,
1949 CCDelegateTo
<RetCC_X86_32_C
>
1954 <p>Other calling convention interfaces include:
</p>
1957 <li><tt>CCIf
<predicate, action
></tt> — If the predicate matches,
1958 apply the action.
</li>
1960 <li><tt>CCIfInReg
<action
></tt> — If the argument is marked with the
1961 '
<tt>inreg
</tt>' attribute, then apply the action.
</li>
1963 <li><tt>CCIfNest
<action
></tt> — Inf the argument is marked with the
1964 '
<tt>nest
</tt>' attribute, then apply the action.
</li>
1966 <li><tt>CCIfNotVarArg
<action
></tt> — If the current function does
1967 not take a variable number of arguments, apply the action.
</li>
1969 <li><tt>CCAssignToRegWithShadow
<registerList, shadowList
></tt> —
1970 similar to
<tt>CCAssignToReg
</tt>, but with a shadow list of registers.
</li>
1972 <li><tt>CCPassByVal
<size, align
></tt> — Assign value to a stack
1973 slot with the minimum specified size and alignment.
</li>
1975 <li><tt>CCPromoteToType
<type
></tt> — Promote the current value to
1976 the specified type.
</li>
1978 <li><tt>CallingConv
<[actions]
></tt> — Define each calling
1979 convention that is supported.
</li>
1984 <!-- *********************************************************************** -->
1985 <div class=
"doc_section">
1986 <a name=
"assemblyPrinter">Assembly Printer
</a>
1988 <!-- *********************************************************************** -->
1990 <div class=
"doc_text">
1993 During the code emission stage, the code generator may utilize an LLVM pass to
1994 produce assembly output. To do this, you want to implement the code for a
1995 printer that converts LLVM IR to a GAS-format assembly language for your target
1996 machine, using the following steps:
2000 <li>Define all the assembly strings for your target, adding them to the
2001 instructions defined in the
<tt>XXXInstrInfo.td
</tt> file.
2002 (See
<a href=
"#InstructionSet">Instruction Set
</a>.) TableGen will produce
2003 an output file (
<tt>XXXGenAsmWriter.inc
</tt>) with an implementation of
2004 the
<tt>printInstruction
</tt> method for the XXXAsmPrinter class.
</li>
2006 <li>Write
<tt>XXXTargetAsmInfo.h
</tt>, which contains the bare-bones declaration
2007 of the
<tt>XXXTargetAsmInfo
</tt> class (a subclass
2008 of
<tt>TargetAsmInfo
</tt>).
</li>
2010 <li>Write
<tt>XXXTargetAsmInfo.cpp
</tt>, which contains target-specific values
2011 for
<tt>TargetAsmInfo
</tt> properties and sometimes new implementations for
2014 <li>Write
<tt>XXXAsmPrinter.cpp
</tt>, which implements the
<tt>AsmPrinter
</tt>
2015 class that performs the LLVM-to-assembly conversion.
</li>
2019 The code in
<tt>XXXTargetAsmInfo.h
</tt> is usually a trivial declaration of the
2020 <tt>XXXTargetAsmInfo
</tt> class for use in
<tt>XXXTargetAsmInfo.cpp
</tt>.
2021 Similarly,
<tt>XXXTargetAsmInfo.cpp
</tt> usually has a few declarations of
2022 <tt>XXXTargetAsmInfo
</tt> replacement values that override the default values
2023 in
<tt>TargetAsmInfo.cpp
</tt>. For example in
<tt>SparcTargetAsmInfo.cpp
</tt>:
2026 <div class=
"doc_code">
2028 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine
&TM) {
2029 Data16bitsDirective =
"\t.half\t";
2030 Data32bitsDirective =
"\t.word\t";
2031 Data64bitsDirective =
0; // .xword is only supported by V9.
2032 ZeroDirective =
"\t.skip\t";
2033 CommentString =
"!";
2034 ConstantPoolSection =
"\t.section \".rodata\
",#alloc\n";
2040 The X86 assembly printer implementation (
<tt>X86TargetAsmInfo
</tt>) is an
2041 example where the target specific
<tt>TargetAsmInfo
</tt> class uses overridden
2042 methods:
<tt>ExpandInlineAsm
</tt> and
<tt>PreferredEHDataFormat
</tt>.
2046 A target-specific implementation of AsmPrinter is written in
2047 <tt>XXXAsmPrinter.cpp
</tt>, which implements the
<tt>AsmPrinter
</tt> class that
2048 converts the LLVM to printable assembly. The implementation must include the
2049 following headers that have declarations for the
<tt>AsmPrinter
</tt> and
2050 <tt>MachineFunctionPass
</tt> classes. The
<tt>MachineFunctionPass
</tt> is a
2051 subclass of
<tt>FunctionPass
</tt>.
2054 <div class=
"doc_code">
2056 #include
"llvm/CodeGen/AsmPrinter.h"
2057 #include
"llvm/CodeGen/MachineFunctionPass.h"
2062 As a
<tt>FunctionPass
</tt>,
<tt>AsmPrinter
</tt> first
2063 calls
<tt>doInitialization
</tt> to set up the
<tt>AsmPrinter
</tt>. In
2064 <tt>SparcAsmPrinter
</tt>, a
<tt>Mangler
</tt> object is instantiated to process
2069 In
<tt>XXXAsmPrinter.cpp
</tt>, the
<tt>runOnMachineFunction
</tt> method
2070 (declared in
<tt>MachineFunctionPass
</tt>) must be implemented
2071 for
<tt>XXXAsmPrinter
</tt>. In
<tt>MachineFunctionPass
</tt>,
2072 the
<tt>runOnFunction
</tt> method invokes
<tt>runOnMachineFunction
</tt>.
2073 Target-specific implementations of
<tt>runOnMachineFunction
</tt> differ, but
2074 generally do the following to process each machine function:
2078 <li>Call
<tt>SetupMachineFunction
</tt> to perform initialization.
</li>
2080 <li>Call
<tt>EmitConstantPool
</tt> to print out (to the output stream) constants
2081 which have been spilled to memory.
</li>
2083 <li>Call
<tt>EmitJumpTableInfo
</tt> to print out jump tables used by the current
2086 <li>Print out the label for the current function.
</li>
2088 <li>Print out the code for the function, including basic block labels and the
2089 assembly for the instruction (using
<tt>printInstruction
</tt>)
</li>
2093 The
<tt>XXXAsmPrinter
</tt> implementation must also include the code generated
2094 by TableGen that is output in the
<tt>XXXGenAsmWriter.inc
</tt> file. The code
2095 in
<tt>XXXGenAsmWriter.inc
</tt> contains an implementation of the
2096 <tt>printInstruction
</tt> method that may call these methods:
2100 <li><tt>printOperand
</tt></li>
2102 <li><tt>printMemOperand
</tt></li>
2104 <li><tt>printCCOperand (for conditional statements)
</tt></li>
2106 <li><tt>printDataDirective
</tt></li>
2108 <li><tt>printDeclare
</tt></li>
2110 <li><tt>printImplicitDef
</tt></li>
2112 <li><tt>printInlineAsm
</tt></li>
2114 <li><tt>printLabel
</tt></li>
2116 <li><tt>printPICJumpTableEntry
</tt></li>
2118 <li><tt>printPICJumpTableSetLabel
</tt></li>
2122 The implementations of
<tt>printDeclare
</tt>,
<tt>printImplicitDef
</tt>,
2123 <tt>printInlineAsm
</tt>, and
<tt>printLabel
</tt> in
<tt>AsmPrinter.cpp
</tt> are
2124 generally adequate for printing assembly and do not need to be
2125 overridden. (
<tt>printBasicBlockLabel
</tt> is another method that is implemented
2126 in
<tt>AsmPrinter.cpp
</tt> that may be directly used in an implementation of
2127 <tt>XXXAsmPrinter
</tt>.)
2131 The
<tt>printOperand
</tt> method is implemented with a long switch/case
2132 statement for the type of operand: register, immediate, basic block, external
2133 symbol, global address, constant pool index, or jump table index. For an
2134 instruction with a memory address operand, the
<tt>printMemOperand
</tt> method
2135 should be implemented to generate the proper output. Similarly,
2136 <tt>printCCOperand
</tt> should be used to print a conditional operand.
2139 <p><tt>doFinalization
</tt> should be overridden in
<tt>XXXAsmPrinter
</tt>, and
2140 it should be called to shut down the assembly printer. During
2141 <tt>doFinalization
</tt>, global variables and constants are printed to
2147 <!-- *********************************************************************** -->
2148 <div class=
"doc_section">
2149 <a name=
"subtargetSupport">Subtarget Support
</a>
2151 <!-- *********************************************************************** -->
2153 <div class=
"doc_text">
2156 Subtarget support is used to inform the code generation process of instruction
2157 set variations for a given chip set. For example, the LLVM SPARC implementation
2158 provided covers three major versions of the SPARC microprocessor architecture:
2159 Version
8 (V8, which is a
32-bit architecture), Version
9 (V9, a
64-bit
2160 architecture), and the UltraSPARC architecture. V8 has
16 double-precision
2161 floating-point registers that are also usable as either
32 single-precision or
8
2162 quad-precision registers. V8 is also purely big-endian. V9 has
32
2163 double-precision floating-point registers that are also usable as
16
2164 quad-precision registers, but cannot be used as single-precision registers. The
2165 UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
2170 If subtarget support is needed, you should implement a target-specific
2171 XXXSubtarget class for your architecture. This class should process the
2172 command-line options
<tt>-mcpu=
</tt> and
<tt>-mattr=
</tt>.
2176 TableGen uses definitions in the
<tt>Target.td
</tt> and
<tt>Sparc.td
</tt> files
2177 to generate code in
<tt>SparcGenSubtarget.inc
</tt>. In
<tt>Target.td
</tt>, shown
2178 below, the
<tt>SubtargetFeature
</tt> interface is defined. The first
4 string
2179 parameters of the
<tt>SubtargetFeature
</tt> interface are a feature name, an
2180 attribute set by the feature, the value of the attribute, and a description of
2181 the feature. (The fifth parameter is a list of features whose presence is
2182 implied, and its default value is an empty array.)
2185 <div class=
"doc_code">
2187 class SubtargetFeature
<string n, string a, string v, string d,
2188 list
<SubtargetFeature
> i = []
> {
2190 string Attribute = a;
2193 list
<SubtargetFeature
> Implies = i;
2199 In the
<tt>Sparc.td
</tt> file, the SubtargetFeature is used to define the
2203 <div class=
"doc_code">
2205 def FeatureV9 : SubtargetFeature
<"v9",
"IsV9",
"true",
2206 "Enable SPARC-V9 instructions">;
2207 def FeatureV8Deprecated : SubtargetFeature
<"deprecated-v8",
2208 "V8DeprecatedInsts",
"true",
2209 "Enable deprecated V8 instructions in V9 mode">;
2210 def FeatureVIS : SubtargetFeature
<"vis",
"IsVIS",
"true",
2211 "Enable UltraSPARC Visual Instruction Set extensions">;
2216 Elsewhere in
<tt>Sparc.td
</tt>, the Proc class is defined and then is used to
2217 define particular SPARC processor subtypes that may have the previously
2221 <div class=
"doc_code">
2223 class Proc
<string Name, list
<SubtargetFeature
> Features
>
2224 : Processor
<Name, NoItineraries, Features
>;
2226 def : Proc
<"generic", []
>;
2227 def : Proc
<"v8", []
>;
2228 def : Proc
<"supersparc", []
>;
2229 def : Proc
<"sparclite", []
>;
2230 def : Proc
<"f934", []
>;
2231 def : Proc
<"hypersparc", []
>;
2232 def : Proc
<"sparclite86x", []
>;
2233 def : Proc
<"sparclet", []
>;
2234 def : Proc
<"tsc701", []
>;
2235 def : Proc
<"v9", [FeatureV9]
>;
2236 def : Proc
<"ultrasparc", [FeatureV9, FeatureV8Deprecated]
>;
2237 def : Proc
<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]
>;
2238 def : Proc
<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]
>;
2243 From
<tt>Target.td
</tt> and
<tt>Sparc.td
</tt> files, the resulting
2244 SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
2245 constants to represent the CPU features and CPU subtypes, and the
2246 ParseSubtargetFeatures method that parses the features string that sets
2247 specified subtarget options. The generated
<tt>SparcGenSubtarget.inc
</tt> file
2248 should be included in the
<tt>SparcSubtarget.cpp
</tt>. The target-specific
2249 implementation of the XXXSubtarget method should follow this pseudocode:
2252 <div class=
"doc_code">
2254 XXXSubtarget::XXXSubtarget(const Module
&M, const std::string
&FS) {
2255 // Set the default features
2256 // Determine default and user specified characteristics of the CPU
2257 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
2258 // Perform any additional operations
2265 <!-- *********************************************************************** -->
2266 <div class=
"doc_section">
2267 <a name=
"jitSupport">JIT Support
</a>
2269 <!-- *********************************************************************** -->
2271 <div class=
"doc_text">
2274 The implementation of a target machine optionally includes a Just-In-Time (JIT)
2275 code generator that emits machine code and auxiliary structures as binary output
2276 that can be written directly to memory. To do this, implement JIT code
2277 generation by performing the following steps:
2281 <li>Write an
<tt>XXXCodeEmitter.cpp
</tt> file that contains a machine function
2282 pass that transforms target-machine instructions into relocatable machine
2285 <li>Write an
<tt>XXXJITInfo.cpp
</tt> file that implements the JIT interfaces for
2286 target-specific code-generation activities, such as emitting machine code
2289 <li>Modify
<tt>XXXTargetMachine
</tt> so that it provides a
2290 <tt>TargetJITInfo
</tt> object through its
<tt>getJITInfo
</tt> method.
</li>
2294 There are several different approaches to writing the JIT support code. For
2295 instance, TableGen and target descriptor files may be used for creating a JIT
2296 code generator, but are not mandatory. For the Alpha and PowerPC target
2297 machines, TableGen is used to generate
<tt>XXXGenCodeEmitter.inc
</tt>, which
2298 contains the binary coding of machine instructions and the
2299 <tt>getBinaryCodeForInstr
</tt> method to access those codes. Other JIT
2300 implementations do not.
2304 Both
<tt>XXXJITInfo.cpp
</tt> and
<tt>XXXCodeEmitter.cpp
</tt> must include the
2305 <tt>llvm/CodeGen/MachineCodeEmitter.h
</tt> header file that defines the
2306 <tt>MachineCodeEmitter
</tt> class containing code for several callback functions
2307 that write data (in bytes, words, strings, etc.) to the output stream.
2312 <!-- ======================================================================= -->
2313 <div class=
"doc_subsection">
2314 <a name=
"mce">Machine Code Emitter
</a>
2317 <div class=
"doc_text">
2320 In
<tt>XXXCodeEmitter.cpp
</tt>, a target-specific of the
<tt>Emitter
</tt> class
2321 is implemented as a function pass (subclass
2322 of
<tt>MachineFunctionPass
</tt>). The target-specific implementation
2323 of
<tt>runOnMachineFunction
</tt> (invoked by
2324 <tt>runOnFunction
</tt> in
<tt>MachineFunctionPass
</tt>) iterates through the
2325 <tt>MachineBasicBlock
</tt> calls
<tt>emitInstruction
</tt> to process each
2326 instruction and emit binary code.
<tt>emitInstruction
</tt> is largely
2327 implemented with case statements on the instruction types defined in
2328 <tt>XXXInstrInfo.h
</tt>. For example, in
<tt>X86CodeEmitter.cpp
</tt>,
2329 the
<tt>emitInstruction
</tt> method is built around the following switch/case
2333 <div class=
"doc_code">
2335 switch (Desc-
>TSFlags
& X86::FormMask) {
2336 case X86II::Pseudo: // for not yet implemented instructions
2337 ... // or pseudo-instructions
2339 case X86II::RawFrm: // for instructions with a fixed opcode value
2342 case X86II::AddRegFrm: // for instructions that have one register operand
2343 ... // added to their opcode
2345 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
2346 ... // to specify a destination (register)
2348 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
2349 ... // to specify a destination (memory)
2351 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
2352 ... // to specify a source (register)
2354 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
2355 ... // to specify a source (memory)
2357 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
2358 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
2359 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
2360 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
2363 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
2364 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
2365 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
2366 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
2369 case X86II::MRMInitReg: // for instructions whose source and
2370 ... // destination are the same register
2377 The implementations of these case statements often first emit the opcode and
2378 then get the operand(s). Then depending upon the operand, helper methods may be
2379 called to process the operand(s). For example, in
<tt>X86CodeEmitter.cpp
</tt>,
2380 for the
<tt>X86II::AddRegFrm
</tt> case, the first data emitted
2381 (by
<tt>emitByte
</tt>) is the opcode added to the register operand. Then an
2382 object representing the machine operand,
<tt>MO1
</tt>, is extracted. The helper
2383 methods such as
<tt>isImmediate
</tt>,
2384 <tt>isGlobalAddress
</tt>,
<tt>isExternalSymbol
</tt>,
<tt>isConstantPoolIndex
</tt>, and
2385 <tt>isJumpTableIndex
</tt> determine the operand
2386 type. (
<tt>X86CodeEmitter.cpp
</tt> also has private methods such
2387 as
<tt>emitConstant
</tt>,
<tt>emitGlobalAddress
</tt>,
2388 <tt>emitExternalSymbolAddress
</tt>,
<tt>emitConstPoolAddress
</tt>,
2389 and
<tt>emitJumpTableAddress
</tt> that emit the data into the output stream.)
2392 <div class=
"doc_code">
2394 case X86II::AddRegFrm:
2395 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
2397 if (CurOp != NumOps) {
2398 const MachineOperand
&MO1 = MI.getOperand(CurOp++);
2399 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2400 if (MO1.isImmediate())
2401 emitConstant(MO1.getImm(), Size);
2403 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
2404 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
2405 if (Opcode == X86::MOV64ri)
2406 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
2407 if (MO1.isGlobalAddress()) {
2408 bool NeedStub = isa
<Function
>(MO1.getGlobal());
2409 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
2410 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(),
0,
2412 } else if (MO1.isExternalSymbol())
2413 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
2414 else if (MO1.isConstantPoolIndex())
2415 emitConstPoolAddress(MO1.getIndex(), rt);
2416 else if (MO1.isJumpTableIndex())
2417 emitJumpTableAddress(MO1.getIndex(), rt);
2425 In the previous example,
<tt>XXXCodeEmitter.cpp
</tt> uses the
2426 variable
<tt>rt
</tt>, which is a RelocationType enum that may be used to
2427 relocate addresses (for example, a global address with a PIC base offset). The
2428 <tt>RelocationType
</tt> enum for that target is defined in the short
2429 target-specific
<tt>XXXRelocations.h
</tt> file. The
<tt>RelocationType
</tt> is used by
2430 the
<tt>relocate
</tt> method defined in
<tt>XXXJITInfo.cpp
</tt> to rewrite
2431 addresses for referenced global symbols.
2435 For example,
<tt>X86Relocations.h
</tt> specifies the following relocation types
2436 for the X86 addresses. In all four cases, the relocated value is added to the
2437 value already in memory. For
<tt>reloc_pcrel_word
</tt>
2438 and
<tt>reloc_picrel_word
</tt>, there is an additional initial adjustment.
2441 <div class=
"doc_code">
2443 enum RelocationType {
2444 reloc_pcrel_word =
0, // add reloc value after adjusting for the PC loc
2445 reloc_picrel_word =
1, // add reloc value after adjusting for the PIC base
2446 reloc_absolute_word =
2, // absolute relocation; no additional adjustment
2447 reloc_absolute_dword =
3 // absolute relocation; no additional adjustment
2454 <!-- ======================================================================= -->
2455 <div class=
"doc_subsection">
2456 <a name=
"targetJITInfo">Target JIT Info
</a>
2459 <div class=
"doc_text">
2462 <tt>XXXJITInfo.cpp
</tt> implements the JIT interfaces for target-specific
2463 code-generation activities, such as emitting machine code and stubs. At minimum,
2464 a target-specific version of
<tt>XXXJITInfo
</tt> implements the following:
2468 <li><tt>getLazyResolverFunction
</tt> — Initializes the JIT, gives the
2469 target a function that is used for compilation.
</li>
2471 <li><tt>emitFunctionStub
</tt> — Returns a native function with a specified
2472 address for a callback function.
</li>
2474 <li><tt>relocate
</tt> — Changes the addresses of referenced globals, based
2475 on relocation types.
</li>
2477 <li>Callback function that are wrappers to a function stub that is used when the
2478 real target is not initially known.
</li>
2482 <tt>getLazyResolverFunction
</tt> is generally trivial to implement. It makes the
2483 incoming parameter as the global
<tt>JITCompilerFunction
</tt> and returns the
2484 callback function that will be used a function wrapper. For the Alpha target
2485 (in
<tt>AlphaJITInfo.cpp
</tt>), the
<tt>getLazyResolverFunction
</tt>
2486 implementation is simply:
2489 <div class=
"doc_code">
2491 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
2493 JITCompilerFunction = F;
2494 return AlphaCompilationCallback;
2500 For the X86 target, the
<tt>getLazyResolverFunction
</tt> implementation is a
2501 little more complication, because it returns a different callback function for
2502 processors with SSE instructions and XMM registers.
2506 The callback function initially saves and later restores the callee register
2507 values, incoming arguments, and frame and return address. The callback function
2508 needs low-level access to the registers or stack, so it is typically implemented
2514 <!-- *********************************************************************** -->
2518 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
2519 src=
"http://jigsaw.w3.org/css-validator/images/vcss-blue" alt=
"Valid CSS"></a>
2520 <a href=
"http://validator.w3.org/check/referer"><img
2521 src=
"http://www.w3.org/Icons/valid-html401-blue" alt=
"Valid HTML 4.01"></a>
2523 <a href=
"http://www.woo.com">Mason Woo
</a> and
<a href=
"http://misha.brukman.net">Misha Brukman
</a><br>
2524 <a href=
"http://llvm.org">The LLVM Compiler Infrastructure
</a>
2526 Last modified: $Date$