1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetAsmInfo.h"
15 #include "llvm/Target/TargetLowering.h"
16 #include "llvm/Target/TargetSubtarget.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/MathExtras.h"
30 TLSModel::Model
getTLSModel(const GlobalValue
*GV
, Reloc::Model reloc
) {
31 bool isLocal
= GV
->hasLocalLinkage();
32 bool isDeclaration
= GV
->isDeclaration();
33 // FIXME: what should we do for protected and internal visibility?
34 // For variables, is internal different from hidden?
35 bool isHidden
= GV
->hasHiddenVisibility();
37 if (reloc
== Reloc::PIC_
) {
38 if (isLocal
|| isHidden
)
39 return TLSModel::LocalDynamic
;
41 return TLSModel::GeneralDynamic
;
43 if (!isDeclaration
|| isHidden
)
44 return TLSModel::LocalExec
;
46 return TLSModel::InitialExec
;
51 /// InitLibcallNames - Set default libcall names.
53 static void InitLibcallNames(const char **Names
) {
54 Names
[RTLIB::SHL_I16
] = "__ashli16";
55 Names
[RTLIB::SHL_I32
] = "__ashlsi3";
56 Names
[RTLIB::SHL_I64
] = "__ashldi3";
57 Names
[RTLIB::SHL_I128
] = "__ashlti3";
58 Names
[RTLIB::SRL_I16
] = "__lshri16";
59 Names
[RTLIB::SRL_I32
] = "__lshrsi3";
60 Names
[RTLIB::SRL_I64
] = "__lshrdi3";
61 Names
[RTLIB::SRL_I128
] = "__lshrti3";
62 Names
[RTLIB::SRA_I16
] = "__ashri16";
63 Names
[RTLIB::SRA_I32
] = "__ashrsi3";
64 Names
[RTLIB::SRA_I64
] = "__ashrdi3";
65 Names
[RTLIB::SRA_I128
] = "__ashrti3";
66 Names
[RTLIB::MUL_I16
] = "__muli16";
67 Names
[RTLIB::MUL_I32
] = "__mulsi3";
68 Names
[RTLIB::MUL_I64
] = "__muldi3";
69 Names
[RTLIB::MUL_I128
] = "__multi3";
70 Names
[RTLIB::SDIV_I32
] = "__divsi3";
71 Names
[RTLIB::SDIV_I64
] = "__divdi3";
72 Names
[RTLIB::SDIV_I128
] = "__divti3";
73 Names
[RTLIB::UDIV_I32
] = "__udivsi3";
74 Names
[RTLIB::UDIV_I64
] = "__udivdi3";
75 Names
[RTLIB::UDIV_I128
] = "__udivti3";
76 Names
[RTLIB::SREM_I32
] = "__modsi3";
77 Names
[RTLIB::SREM_I64
] = "__moddi3";
78 Names
[RTLIB::SREM_I128
] = "__modti3";
79 Names
[RTLIB::UREM_I32
] = "__umodsi3";
80 Names
[RTLIB::UREM_I64
] = "__umoddi3";
81 Names
[RTLIB::UREM_I128
] = "__umodti3";
82 Names
[RTLIB::NEG_I32
] = "__negsi2";
83 Names
[RTLIB::NEG_I64
] = "__negdi2";
84 Names
[RTLIB::ADD_F32
] = "__addsf3";
85 Names
[RTLIB::ADD_F64
] = "__adddf3";
86 Names
[RTLIB::ADD_F80
] = "__addxf3";
87 Names
[RTLIB::ADD_PPCF128
] = "__gcc_qadd";
88 Names
[RTLIB::SUB_F32
] = "__subsf3";
89 Names
[RTLIB::SUB_F64
] = "__subdf3";
90 Names
[RTLIB::SUB_F80
] = "__subxf3";
91 Names
[RTLIB::SUB_PPCF128
] = "__gcc_qsub";
92 Names
[RTLIB::MUL_F32
] = "__mulsf3";
93 Names
[RTLIB::MUL_F64
] = "__muldf3";
94 Names
[RTLIB::MUL_F80
] = "__mulxf3";
95 Names
[RTLIB::MUL_PPCF128
] = "__gcc_qmul";
96 Names
[RTLIB::DIV_F32
] = "__divsf3";
97 Names
[RTLIB::DIV_F64
] = "__divdf3";
98 Names
[RTLIB::DIV_F80
] = "__divxf3";
99 Names
[RTLIB::DIV_PPCF128
] = "__gcc_qdiv";
100 Names
[RTLIB::REM_F32
] = "fmodf";
101 Names
[RTLIB::REM_F64
] = "fmod";
102 Names
[RTLIB::REM_F80
] = "fmodl";
103 Names
[RTLIB::REM_PPCF128
] = "fmodl";
104 Names
[RTLIB::POWI_F32
] = "__powisf2";
105 Names
[RTLIB::POWI_F64
] = "__powidf2";
106 Names
[RTLIB::POWI_F80
] = "__powixf2";
107 Names
[RTLIB::POWI_PPCF128
] = "__powitf2";
108 Names
[RTLIB::SQRT_F32
] = "sqrtf";
109 Names
[RTLIB::SQRT_F64
] = "sqrt";
110 Names
[RTLIB::SQRT_F80
] = "sqrtl";
111 Names
[RTLIB::SQRT_PPCF128
] = "sqrtl";
112 Names
[RTLIB::LOG_F32
] = "logf";
113 Names
[RTLIB::LOG_F64
] = "log";
114 Names
[RTLIB::LOG_F80
] = "logl";
115 Names
[RTLIB::LOG_PPCF128
] = "logl";
116 Names
[RTLIB::LOG2_F32
] = "log2f";
117 Names
[RTLIB::LOG2_F64
] = "log2";
118 Names
[RTLIB::LOG2_F80
] = "log2l";
119 Names
[RTLIB::LOG2_PPCF128
] = "log2l";
120 Names
[RTLIB::LOG10_F32
] = "log10f";
121 Names
[RTLIB::LOG10_F64
] = "log10";
122 Names
[RTLIB::LOG10_F80
] = "log10l";
123 Names
[RTLIB::LOG10_PPCF128
] = "log10l";
124 Names
[RTLIB::EXP_F32
] = "expf";
125 Names
[RTLIB::EXP_F64
] = "exp";
126 Names
[RTLIB::EXP_F80
] = "expl";
127 Names
[RTLIB::EXP_PPCF128
] = "expl";
128 Names
[RTLIB::EXP2_F32
] = "exp2f";
129 Names
[RTLIB::EXP2_F64
] = "exp2";
130 Names
[RTLIB::EXP2_F80
] = "exp2l";
131 Names
[RTLIB::EXP2_PPCF128
] = "exp2l";
132 Names
[RTLIB::SIN_F32
] = "sinf";
133 Names
[RTLIB::SIN_F64
] = "sin";
134 Names
[RTLIB::SIN_F80
] = "sinl";
135 Names
[RTLIB::SIN_PPCF128
] = "sinl";
136 Names
[RTLIB::COS_F32
] = "cosf";
137 Names
[RTLIB::COS_F64
] = "cos";
138 Names
[RTLIB::COS_F80
] = "cosl";
139 Names
[RTLIB::COS_PPCF128
] = "cosl";
140 Names
[RTLIB::POW_F32
] = "powf";
141 Names
[RTLIB::POW_F64
] = "pow";
142 Names
[RTLIB::POW_F80
] = "powl";
143 Names
[RTLIB::POW_PPCF128
] = "powl";
144 Names
[RTLIB::CEIL_F32
] = "ceilf";
145 Names
[RTLIB::CEIL_F64
] = "ceil";
146 Names
[RTLIB::CEIL_F80
] = "ceill";
147 Names
[RTLIB::CEIL_PPCF128
] = "ceill";
148 Names
[RTLIB::TRUNC_F32
] = "truncf";
149 Names
[RTLIB::TRUNC_F64
] = "trunc";
150 Names
[RTLIB::TRUNC_F80
] = "truncl";
151 Names
[RTLIB::TRUNC_PPCF128
] = "truncl";
152 Names
[RTLIB::RINT_F32
] = "rintf";
153 Names
[RTLIB::RINT_F64
] = "rint";
154 Names
[RTLIB::RINT_F80
] = "rintl";
155 Names
[RTLIB::RINT_PPCF128
] = "rintl";
156 Names
[RTLIB::NEARBYINT_F32
] = "nearbyintf";
157 Names
[RTLIB::NEARBYINT_F64
] = "nearbyint";
158 Names
[RTLIB::NEARBYINT_F80
] = "nearbyintl";
159 Names
[RTLIB::NEARBYINT_PPCF128
] = "nearbyintl";
160 Names
[RTLIB::FLOOR_F32
] = "floorf";
161 Names
[RTLIB::FLOOR_F64
] = "floor";
162 Names
[RTLIB::FLOOR_F80
] = "floorl";
163 Names
[RTLIB::FLOOR_PPCF128
] = "floorl";
164 Names
[RTLIB::FPEXT_F32_F64
] = "__extendsfdf2";
165 Names
[RTLIB::FPROUND_F64_F32
] = "__truncdfsf2";
166 Names
[RTLIB::FPROUND_F80_F32
] = "__truncxfsf2";
167 Names
[RTLIB::FPROUND_PPCF128_F32
] = "__trunctfsf2";
168 Names
[RTLIB::FPROUND_F80_F64
] = "__truncxfdf2";
169 Names
[RTLIB::FPROUND_PPCF128_F64
] = "__trunctfdf2";
170 Names
[RTLIB::FPTOSINT_F32_I32
] = "__fixsfsi";
171 Names
[RTLIB::FPTOSINT_F32_I64
] = "__fixsfdi";
172 Names
[RTLIB::FPTOSINT_F32_I128
] = "__fixsfti";
173 Names
[RTLIB::FPTOSINT_F64_I32
] = "__fixdfsi";
174 Names
[RTLIB::FPTOSINT_F64_I64
] = "__fixdfdi";
175 Names
[RTLIB::FPTOSINT_F64_I128
] = "__fixdfti";
176 Names
[RTLIB::FPTOSINT_F80_I32
] = "__fixxfsi";
177 Names
[RTLIB::FPTOSINT_F80_I64
] = "__fixxfdi";
178 Names
[RTLIB::FPTOSINT_F80_I128
] = "__fixxfti";
179 Names
[RTLIB::FPTOSINT_PPCF128_I32
] = "__fixtfsi";
180 Names
[RTLIB::FPTOSINT_PPCF128_I64
] = "__fixtfdi";
181 Names
[RTLIB::FPTOSINT_PPCF128_I128
] = "__fixtfti";
182 Names
[RTLIB::FPTOUINT_F32_I32
] = "__fixunssfsi";
183 Names
[RTLIB::FPTOUINT_F32_I64
] = "__fixunssfdi";
184 Names
[RTLIB::FPTOUINT_F32_I128
] = "__fixunssfti";
185 Names
[RTLIB::FPTOUINT_F64_I32
] = "__fixunsdfsi";
186 Names
[RTLIB::FPTOUINT_F64_I64
] = "__fixunsdfdi";
187 Names
[RTLIB::FPTOUINT_F64_I128
] = "__fixunsdfti";
188 Names
[RTLIB::FPTOUINT_F80_I32
] = "__fixunsxfsi";
189 Names
[RTLIB::FPTOUINT_F80_I64
] = "__fixunsxfdi";
190 Names
[RTLIB::FPTOUINT_F80_I128
] = "__fixunsxfti";
191 Names
[RTLIB::FPTOUINT_PPCF128_I32
] = "__fixunstfsi";
192 Names
[RTLIB::FPTOUINT_PPCF128_I64
] = "__fixunstfdi";
193 Names
[RTLIB::FPTOUINT_PPCF128_I128
] = "__fixunstfti";
194 Names
[RTLIB::SINTTOFP_I32_F32
] = "__floatsisf";
195 Names
[RTLIB::SINTTOFP_I32_F64
] = "__floatsidf";
196 Names
[RTLIB::SINTTOFP_I32_F80
] = "__floatsixf";
197 Names
[RTLIB::SINTTOFP_I32_PPCF128
] = "__floatsitf";
198 Names
[RTLIB::SINTTOFP_I64_F32
] = "__floatdisf";
199 Names
[RTLIB::SINTTOFP_I64_F64
] = "__floatdidf";
200 Names
[RTLIB::SINTTOFP_I64_F80
] = "__floatdixf";
201 Names
[RTLIB::SINTTOFP_I64_PPCF128
] = "__floatditf";
202 Names
[RTLIB::SINTTOFP_I128_F32
] = "__floattisf";
203 Names
[RTLIB::SINTTOFP_I128_F64
] = "__floattidf";
204 Names
[RTLIB::SINTTOFP_I128_F80
] = "__floattixf";
205 Names
[RTLIB::SINTTOFP_I128_PPCF128
] = "__floattitf";
206 Names
[RTLIB::UINTTOFP_I32_F32
] = "__floatunsisf";
207 Names
[RTLIB::UINTTOFP_I32_F64
] = "__floatunsidf";
208 Names
[RTLIB::UINTTOFP_I32_F80
] = "__floatunsixf";
209 Names
[RTLIB::UINTTOFP_I32_PPCF128
] = "__floatunsitf";
210 Names
[RTLIB::UINTTOFP_I64_F32
] = "__floatundisf";
211 Names
[RTLIB::UINTTOFP_I64_F64
] = "__floatundidf";
212 Names
[RTLIB::UINTTOFP_I64_F80
] = "__floatundixf";
213 Names
[RTLIB::UINTTOFP_I64_PPCF128
] = "__floatunditf";
214 Names
[RTLIB::UINTTOFP_I128_F32
] = "__floatuntisf";
215 Names
[RTLIB::UINTTOFP_I128_F64
] = "__floatuntidf";
216 Names
[RTLIB::UINTTOFP_I128_F80
] = "__floatuntixf";
217 Names
[RTLIB::UINTTOFP_I128_PPCF128
] = "__floatuntitf";
218 Names
[RTLIB::OEQ_F32
] = "__eqsf2";
219 Names
[RTLIB::OEQ_F64
] = "__eqdf2";
220 Names
[RTLIB::UNE_F32
] = "__nesf2";
221 Names
[RTLIB::UNE_F64
] = "__nedf2";
222 Names
[RTLIB::OGE_F32
] = "__gesf2";
223 Names
[RTLIB::OGE_F64
] = "__gedf2";
224 Names
[RTLIB::OLT_F32
] = "__ltsf2";
225 Names
[RTLIB::OLT_F64
] = "__ltdf2";
226 Names
[RTLIB::OLE_F32
] = "__lesf2";
227 Names
[RTLIB::OLE_F64
] = "__ledf2";
228 Names
[RTLIB::OGT_F32
] = "__gtsf2";
229 Names
[RTLIB::OGT_F64
] = "__gtdf2";
230 Names
[RTLIB::UO_F32
] = "__unordsf2";
231 Names
[RTLIB::UO_F64
] = "__unorddf2";
232 Names
[RTLIB::O_F32
] = "__unordsf2";
233 Names
[RTLIB::O_F64
] = "__unorddf2";
236 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
237 /// UNKNOWN_LIBCALL if there is none.
238 RTLIB::Libcall
RTLIB::getFPEXT(MVT OpVT
, MVT RetVT
) {
239 if (OpVT
== MVT::f32
) {
240 if (RetVT
== MVT::f64
)
241 return FPEXT_F32_F64
;
243 return UNKNOWN_LIBCALL
;
246 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
247 /// UNKNOWN_LIBCALL if there is none.
248 RTLIB::Libcall
RTLIB::getFPROUND(MVT OpVT
, MVT RetVT
) {
249 if (RetVT
== MVT::f32
) {
250 if (OpVT
== MVT::f64
)
251 return FPROUND_F64_F32
;
252 if (OpVT
== MVT::f80
)
253 return FPROUND_F80_F32
;
254 if (OpVT
== MVT::ppcf128
)
255 return FPROUND_PPCF128_F32
;
256 } else if (RetVT
== MVT::f64
) {
257 if (OpVT
== MVT::f80
)
258 return FPROUND_F80_F64
;
259 if (OpVT
== MVT::ppcf128
)
260 return FPROUND_PPCF128_F64
;
262 return UNKNOWN_LIBCALL
;
265 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
266 /// UNKNOWN_LIBCALL if there is none.
267 RTLIB::Libcall
RTLIB::getFPTOSINT(MVT OpVT
, MVT RetVT
) {
268 if (OpVT
== MVT::f32
) {
269 if (RetVT
== MVT::i32
)
270 return FPTOSINT_F32_I32
;
271 if (RetVT
== MVT::i64
)
272 return FPTOSINT_F32_I64
;
273 if (RetVT
== MVT::i128
)
274 return FPTOSINT_F32_I128
;
275 } else if (OpVT
== MVT::f64
) {
276 if (RetVT
== MVT::i32
)
277 return FPTOSINT_F64_I32
;
278 if (RetVT
== MVT::i64
)
279 return FPTOSINT_F64_I64
;
280 if (RetVT
== MVT::i128
)
281 return FPTOSINT_F64_I128
;
282 } else if (OpVT
== MVT::f80
) {
283 if (RetVT
== MVT::i32
)
284 return FPTOSINT_F80_I32
;
285 if (RetVT
== MVT::i64
)
286 return FPTOSINT_F80_I64
;
287 if (RetVT
== MVT::i128
)
288 return FPTOSINT_F80_I128
;
289 } else if (OpVT
== MVT::ppcf128
) {
290 if (RetVT
== MVT::i32
)
291 return FPTOSINT_PPCF128_I32
;
292 if (RetVT
== MVT::i64
)
293 return FPTOSINT_PPCF128_I64
;
294 if (RetVT
== MVT::i128
)
295 return FPTOSINT_PPCF128_I128
;
297 return UNKNOWN_LIBCALL
;
300 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
301 /// UNKNOWN_LIBCALL if there is none.
302 RTLIB::Libcall
RTLIB::getFPTOUINT(MVT OpVT
, MVT RetVT
) {
303 if (OpVT
== MVT::f32
) {
304 if (RetVT
== MVT::i32
)
305 return FPTOUINT_F32_I32
;
306 if (RetVT
== MVT::i64
)
307 return FPTOUINT_F32_I64
;
308 if (RetVT
== MVT::i128
)
309 return FPTOUINT_F32_I128
;
310 } else if (OpVT
== MVT::f64
) {
311 if (RetVT
== MVT::i32
)
312 return FPTOUINT_F64_I32
;
313 if (RetVT
== MVT::i64
)
314 return FPTOUINT_F64_I64
;
315 if (RetVT
== MVT::i128
)
316 return FPTOUINT_F64_I128
;
317 } else if (OpVT
== MVT::f80
) {
318 if (RetVT
== MVT::i32
)
319 return FPTOUINT_F80_I32
;
320 if (RetVT
== MVT::i64
)
321 return FPTOUINT_F80_I64
;
322 if (RetVT
== MVT::i128
)
323 return FPTOUINT_F80_I128
;
324 } else if (OpVT
== MVT::ppcf128
) {
325 if (RetVT
== MVT::i32
)
326 return FPTOUINT_PPCF128_I32
;
327 if (RetVT
== MVT::i64
)
328 return FPTOUINT_PPCF128_I64
;
329 if (RetVT
== MVT::i128
)
330 return FPTOUINT_PPCF128_I128
;
332 return UNKNOWN_LIBCALL
;
335 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
336 /// UNKNOWN_LIBCALL if there is none.
337 RTLIB::Libcall
RTLIB::getSINTTOFP(MVT OpVT
, MVT RetVT
) {
338 if (OpVT
== MVT::i32
) {
339 if (RetVT
== MVT::f32
)
340 return SINTTOFP_I32_F32
;
341 else if (RetVT
== MVT::f64
)
342 return SINTTOFP_I32_F64
;
343 else if (RetVT
== MVT::f80
)
344 return SINTTOFP_I32_F80
;
345 else if (RetVT
== MVT::ppcf128
)
346 return SINTTOFP_I32_PPCF128
;
347 } else if (OpVT
== MVT::i64
) {
348 if (RetVT
== MVT::f32
)
349 return SINTTOFP_I64_F32
;
350 else if (RetVT
== MVT::f64
)
351 return SINTTOFP_I64_F64
;
352 else if (RetVT
== MVT::f80
)
353 return SINTTOFP_I64_F80
;
354 else if (RetVT
== MVT::ppcf128
)
355 return SINTTOFP_I64_PPCF128
;
356 } else if (OpVT
== MVT::i128
) {
357 if (RetVT
== MVT::f32
)
358 return SINTTOFP_I128_F32
;
359 else if (RetVT
== MVT::f64
)
360 return SINTTOFP_I128_F64
;
361 else if (RetVT
== MVT::f80
)
362 return SINTTOFP_I128_F80
;
363 else if (RetVT
== MVT::ppcf128
)
364 return SINTTOFP_I128_PPCF128
;
366 return UNKNOWN_LIBCALL
;
369 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
370 /// UNKNOWN_LIBCALL if there is none.
371 RTLIB::Libcall
RTLIB::getUINTTOFP(MVT OpVT
, MVT RetVT
) {
372 if (OpVT
== MVT::i32
) {
373 if (RetVT
== MVT::f32
)
374 return UINTTOFP_I32_F32
;
375 else if (RetVT
== MVT::f64
)
376 return UINTTOFP_I32_F64
;
377 else if (RetVT
== MVT::f80
)
378 return UINTTOFP_I32_F80
;
379 else if (RetVT
== MVT::ppcf128
)
380 return UINTTOFP_I32_PPCF128
;
381 } else if (OpVT
== MVT::i64
) {
382 if (RetVT
== MVT::f32
)
383 return UINTTOFP_I64_F32
;
384 else if (RetVT
== MVT::f64
)
385 return UINTTOFP_I64_F64
;
386 else if (RetVT
== MVT::f80
)
387 return UINTTOFP_I64_F80
;
388 else if (RetVT
== MVT::ppcf128
)
389 return UINTTOFP_I64_PPCF128
;
390 } else if (OpVT
== MVT::i128
) {
391 if (RetVT
== MVT::f32
)
392 return UINTTOFP_I128_F32
;
393 else if (RetVT
== MVT::f64
)
394 return UINTTOFP_I128_F64
;
395 else if (RetVT
== MVT::f80
)
396 return UINTTOFP_I128_F80
;
397 else if (RetVT
== MVT::ppcf128
)
398 return UINTTOFP_I128_PPCF128
;
400 return UNKNOWN_LIBCALL
;
403 /// InitCmpLibcallCCs - Set default comparison libcall CC.
405 static void InitCmpLibcallCCs(ISD::CondCode
*CCs
) {
406 memset(CCs
, ISD::SETCC_INVALID
, sizeof(ISD::CondCode
)*RTLIB::UNKNOWN_LIBCALL
);
407 CCs
[RTLIB::OEQ_F32
] = ISD::SETEQ
;
408 CCs
[RTLIB::OEQ_F64
] = ISD::SETEQ
;
409 CCs
[RTLIB::UNE_F32
] = ISD::SETNE
;
410 CCs
[RTLIB::UNE_F64
] = ISD::SETNE
;
411 CCs
[RTLIB::OGE_F32
] = ISD::SETGE
;
412 CCs
[RTLIB::OGE_F64
] = ISD::SETGE
;
413 CCs
[RTLIB::OLT_F32
] = ISD::SETLT
;
414 CCs
[RTLIB::OLT_F64
] = ISD::SETLT
;
415 CCs
[RTLIB::OLE_F32
] = ISD::SETLE
;
416 CCs
[RTLIB::OLE_F64
] = ISD::SETLE
;
417 CCs
[RTLIB::OGT_F32
] = ISD::SETGT
;
418 CCs
[RTLIB::OGT_F64
] = ISD::SETGT
;
419 CCs
[RTLIB::UO_F32
] = ISD::SETNE
;
420 CCs
[RTLIB::UO_F64
] = ISD::SETNE
;
421 CCs
[RTLIB::O_F32
] = ISD::SETEQ
;
422 CCs
[RTLIB::O_F64
] = ISD::SETEQ
;
425 TargetLowering::TargetLowering(TargetMachine
&tm
)
426 : TM(tm
), TD(TM
.getTargetData()) {
427 // All operations default to being supported.
428 memset(OpActions
, 0, sizeof(OpActions
));
429 memset(LoadExtActions
, 0, sizeof(LoadExtActions
));
430 memset(TruncStoreActions
, 0, sizeof(TruncStoreActions
));
431 memset(IndexedModeActions
, 0, sizeof(IndexedModeActions
));
432 memset(ConvertActions
, 0, sizeof(ConvertActions
));
433 memset(CondCodeActions
, 0, sizeof(CondCodeActions
));
435 // Set default actions for various operations.
436 for (unsigned VT
= 0; VT
!= (unsigned)MVT::LAST_VALUETYPE
; ++VT
) {
437 // Default all indexed load / store to expand.
438 for (unsigned IM
= (unsigned)ISD::PRE_INC
;
439 IM
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++IM
) {
440 setIndexedLoadAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
441 setIndexedStoreAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
444 // These operations default to expand.
445 setOperationAction(ISD::FGETSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
448 // Most targets ignore the @llvm.prefetch intrinsic.
449 setOperationAction(ISD::PREFETCH
, MVT::Other
, Expand
);
451 // ConstantFP nodes default to expand. Targets can either change this to
452 // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
453 // to optimize expansions for certain constants.
454 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
455 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
456 setOperationAction(ISD::ConstantFP
, MVT::f80
, Expand
);
458 // These library functions default to expand.
459 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
460 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
461 setOperationAction(ISD::FLOG10
,MVT::f64
, Expand
);
462 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
463 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
464 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
465 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
466 setOperationAction(ISD::FLOG10
,MVT::f32
, Expand
);
467 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
468 setOperationAction(ISD::FEXP2
, MVT::f32
, Expand
);
470 // Default ISD::TRAP to expand (which turns it into abort).
471 setOperationAction(ISD::TRAP
, MVT::Other
, Expand
);
473 IsLittleEndian
= TD
->isLittleEndian();
474 UsesGlobalOffsetTable
= false;
475 ShiftAmountTy
= PointerTy
= getValueType(TD
->getIntPtrType());
476 ShiftAmtHandling
= Undefined
;
477 memset(RegClassForVT
, 0,MVT::LAST_VALUETYPE
*sizeof(TargetRegisterClass
*));
478 memset(TargetDAGCombineArray
, 0, array_lengthof(TargetDAGCombineArray
));
479 maxStoresPerMemset
= maxStoresPerMemcpy
= maxStoresPerMemmove
= 8;
480 allowUnalignedMemoryAccesses
= false;
481 UseUnderscoreSetJmp
= false;
482 UseUnderscoreLongJmp
= false;
483 SelectIsExpensive
= false;
484 IntDivIsCheap
= false;
485 Pow2DivIsCheap
= false;
486 StackPointerRegisterToSaveRestore
= 0;
487 ExceptionPointerRegister
= 0;
488 ExceptionSelectorRegister
= 0;
489 BooleanContents
= UndefinedBooleanContent
;
490 SchedPreferenceInfo
= SchedulingForLatency
;
492 JumpBufAlignment
= 0;
493 IfCvtBlockSizeLimit
= 2;
494 IfCvtDupBlockSizeLimit
= 0;
495 PrefLoopAlignment
= 0;
497 InitLibcallNames(LibcallRoutineNames
);
498 InitCmpLibcallCCs(CmpLibcallCCs
);
500 // Tell Legalize whether the assembler supports DEBUG_LOC.
501 const TargetAsmInfo
*TASM
= TM
.getTargetAsmInfo();
502 if (!TASM
|| !TASM
->hasDotLocAndDotFile())
503 setOperationAction(ISD::DEBUG_LOC
, MVT::Other
, Expand
);
506 TargetLowering::~TargetLowering() {}
508 /// computeRegisterProperties - Once all of the register classes are added,
509 /// this allows us to compute derived properties we expose.
510 void TargetLowering::computeRegisterProperties() {
511 assert(MVT::LAST_VALUETYPE
<= 32 &&
512 "Too many value types for ValueTypeActions to hold!");
514 // Everything defaults to needing one register.
515 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
516 NumRegistersForVT
[i
] = 1;
517 RegisterTypeForVT
[i
] = TransformToType
[i
] = (MVT::SimpleValueType
)i
;
519 // ...except isVoid, which doesn't need any registers.
520 NumRegistersForVT
[MVT::isVoid
] = 0;
522 // Find the largest integer register class.
523 unsigned LargestIntReg
= MVT::LAST_INTEGER_VALUETYPE
;
524 for (; RegClassForVT
[LargestIntReg
] == 0; --LargestIntReg
)
525 assert(LargestIntReg
!= MVT::i1
&& "No integer registers defined!");
527 // Every integer value type larger than this largest register takes twice as
528 // many registers to represent as the previous ValueType.
529 for (unsigned ExpandedReg
= LargestIntReg
+ 1; ; ++ExpandedReg
) {
530 MVT EVT
= (MVT::SimpleValueType
)ExpandedReg
;
531 if (!EVT
.isInteger())
533 NumRegistersForVT
[ExpandedReg
] = 2*NumRegistersForVT
[ExpandedReg
-1];
534 RegisterTypeForVT
[ExpandedReg
] = (MVT::SimpleValueType
)LargestIntReg
;
535 TransformToType
[ExpandedReg
] = (MVT::SimpleValueType
)(ExpandedReg
- 1);
536 ValueTypeActions
.setTypeAction(EVT
, Expand
);
539 // Inspect all of the ValueType's smaller than the largest integer
540 // register to see which ones need promotion.
541 unsigned LegalIntReg
= LargestIntReg
;
542 for (unsigned IntReg
= LargestIntReg
- 1;
543 IntReg
>= (unsigned)MVT::i1
; --IntReg
) {
544 MVT IVT
= (MVT::SimpleValueType
)IntReg
;
545 if (isTypeLegal(IVT
)) {
546 LegalIntReg
= IntReg
;
548 RegisterTypeForVT
[IntReg
] = TransformToType
[IntReg
] =
549 (MVT::SimpleValueType
)LegalIntReg
;
550 ValueTypeActions
.setTypeAction(IVT
, Promote
);
554 // ppcf128 type is really two f64's.
555 if (!isTypeLegal(MVT::ppcf128
)) {
556 NumRegistersForVT
[MVT::ppcf128
] = 2*NumRegistersForVT
[MVT::f64
];
557 RegisterTypeForVT
[MVT::ppcf128
] = MVT::f64
;
558 TransformToType
[MVT::ppcf128
] = MVT::f64
;
559 ValueTypeActions
.setTypeAction(MVT::ppcf128
, Expand
);
562 // Decide how to handle f64. If the target does not have native f64 support,
563 // expand it to i64 and we will be generating soft float library calls.
564 if (!isTypeLegal(MVT::f64
)) {
565 NumRegistersForVT
[MVT::f64
] = NumRegistersForVT
[MVT::i64
];
566 RegisterTypeForVT
[MVT::f64
] = RegisterTypeForVT
[MVT::i64
];
567 TransformToType
[MVT::f64
] = MVT::i64
;
568 ValueTypeActions
.setTypeAction(MVT::f64
, Expand
);
571 // Decide how to handle f32. If the target does not have native support for
572 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
573 if (!isTypeLegal(MVT::f32
)) {
574 if (isTypeLegal(MVT::f64
)) {
575 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::f64
];
576 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::f64
];
577 TransformToType
[MVT::f32
] = MVT::f64
;
578 ValueTypeActions
.setTypeAction(MVT::f32
, Promote
);
580 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::i32
];
581 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::i32
];
582 TransformToType
[MVT::f32
] = MVT::i32
;
583 ValueTypeActions
.setTypeAction(MVT::f32
, Expand
);
587 // Loop over all of the vector value types to see which need transformations.
588 for (unsigned i
= MVT::FIRST_VECTOR_VALUETYPE
;
589 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
590 MVT VT
= (MVT::SimpleValueType
)i
;
591 if (!isTypeLegal(VT
)) {
592 MVT IntermediateVT
, RegisterVT
;
593 unsigned NumIntermediates
;
594 NumRegistersForVT
[i
] =
595 getVectorTypeBreakdown(VT
,
596 IntermediateVT
, NumIntermediates
,
598 RegisterTypeForVT
[i
] = RegisterVT
;
600 // Determine if there is a legal wider type.
601 bool IsLegalWiderType
= false;
602 MVT EltVT
= VT
.getVectorElementType();
603 unsigned NElts
= VT
.getVectorNumElements();
604 for (unsigned nVT
= i
+1; nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
605 MVT SVT
= (MVT::SimpleValueType
)nVT
;
606 if (isTypeLegal(SVT
) && SVT
.getVectorElementType() == EltVT
&&
607 SVT
.getVectorNumElements() > NElts
) {
608 TransformToType
[i
] = SVT
;
609 ValueTypeActions
.setTypeAction(VT
, Promote
);
610 IsLegalWiderType
= true;
614 if (!IsLegalWiderType
) {
615 MVT NVT
= VT
.getPow2VectorType();
617 // Type is already a power of 2. The default action is to split.
618 TransformToType
[i
] = MVT::Other
;
619 ValueTypeActions
.setTypeAction(VT
, Expand
);
621 TransformToType
[i
] = NVT
;
622 ValueTypeActions
.setTypeAction(VT
, Promote
);
629 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
634 MVT
TargetLowering::getSetCCResultType(MVT VT
) const {
635 return getValueType(TD
->getIntPtrType());
639 /// getVectorTypeBreakdown - Vector types are broken down into some number of
640 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
641 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
642 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
644 /// This method returns the number of registers needed, and the VT for each
645 /// register. It also returns the VT and quantity of the intermediate values
646 /// before they are promoted/expanded.
648 unsigned TargetLowering::getVectorTypeBreakdown(MVT VT
,
650 unsigned &NumIntermediates
,
651 MVT
&RegisterVT
) const {
652 // Figure out the right, legal destination reg to copy into.
653 unsigned NumElts
= VT
.getVectorNumElements();
654 MVT EltTy
= VT
.getVectorElementType();
656 unsigned NumVectorRegs
= 1;
658 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
659 // could break down into LHS/RHS like LegalizeDAG does.
660 if (!isPowerOf2_32(NumElts
)) {
661 NumVectorRegs
= NumElts
;
665 // Divide the input until we get to a supported size. This will always
666 // end with a scalar if the target doesn't support vectors.
667 while (NumElts
> 1 && !isTypeLegal(MVT::getVectorVT(EltTy
, NumElts
))) {
672 NumIntermediates
= NumVectorRegs
;
674 MVT NewVT
= MVT::getVectorVT(EltTy
, NumElts
);
675 if (!isTypeLegal(NewVT
))
677 IntermediateVT
= NewVT
;
679 MVT DestVT
= getRegisterType(NewVT
);
681 if (DestVT
.bitsLT(NewVT
)) {
682 // Value is expanded, e.g. i64 -> i16.
683 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
685 // Otherwise, promotion or legal types use the same number of registers as
686 // the vector decimated to the appropriate level.
687 return NumVectorRegs
;
693 /// getWidenVectorType: given a vector type, returns the type to widen to
694 /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
695 /// If there is no vector type that we want to widen to, returns MVT::Other
696 /// When and where to widen is target dependent based on the cost of
697 /// scalarizing vs using the wider vector type.
698 MVT
TargetLowering::getWidenVectorType(MVT VT
) const {
699 assert(VT
.isVector());
703 // Default is not to widen until moved to LegalizeTypes
707 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
708 /// function arguments in the caller parameter area. This is the actual
709 /// alignment, not its logarithm.
710 unsigned TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
711 return TD
->getCallFrameTypeAlignment(Ty
);
714 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
715 SelectionDAG
&DAG
) const {
716 if (usesGlobalOffsetTable())
717 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
722 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
723 // Assume that everything is safe in static mode.
724 if (getTargetMachine().getRelocationModel() == Reloc::Static
)
727 // In dynamic-no-pic mode, assume that known defined values are safe.
728 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC
&&
730 !GA
->getGlobal()->isDeclaration() &&
731 !GA
->getGlobal()->isWeakForLinker())
734 // Otherwise assume nothing is safe.
738 //===----------------------------------------------------------------------===//
739 // Optimization Methods
740 //===----------------------------------------------------------------------===//
742 /// ShrinkDemandedConstant - Check to see if the specified operand of the
743 /// specified instruction is a constant integer. If so, check to see if there
744 /// are any bits set in the constant that are not demanded. If so, shrink the
745 /// constant and return true.
746 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op
,
747 const APInt
&Demanded
) {
748 DebugLoc dl
= Op
.getDebugLoc();
750 // FIXME: ISD::SELECT, ISD::SELECT_CC
751 switch (Op
.getOpcode()) {
756 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
757 if (!C
) return false;
759 if (Op
.getOpcode() == ISD::XOR
&&
760 (C
->getAPIntValue() | (~Demanded
)).isAllOnesValue())
763 // if we can expand it to have all bits set, do it
764 if (C
->getAPIntValue().intersects(~Demanded
)) {
765 MVT VT
= Op
.getValueType();
766 SDValue New
= DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op
.getOperand(0),
767 DAG
.getConstant(Demanded
&
770 return CombineTo(Op
, New
);
780 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
781 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
782 /// cast, but it could be generalized for targets with other types of
783 /// implicit widening casts.
785 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op
,
787 const APInt
&Demanded
,
789 assert(Op
.getNumOperands() == 2 &&
790 "ShrinkDemandedOp only supports binary operators!");
791 assert(Op
.getNode()->getNumValues() == 1 &&
792 "ShrinkDemandedOp only supports nodes with one result!");
794 // Don't do this if the node has another user, which may require the
796 if (!Op
.getNode()->hasOneUse())
799 // Search for the smallest integer type with free casts to and from
800 // Op's type. For expedience, just check power-of-2 integer types.
801 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
802 unsigned SmallVTBits
= BitWidth
- Demanded
.countLeadingZeros();
803 if (!isPowerOf2_32(SmallVTBits
))
804 SmallVTBits
= NextPowerOf2(SmallVTBits
);
805 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
806 MVT SmallVT
= MVT::getIntegerVT(SmallVTBits
);
807 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
808 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
809 // We found a type with free casts.
810 SDValue X
= DAG
.getNode(Op
.getOpcode(), dl
, SmallVT
,
811 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
812 Op
.getNode()->getOperand(0)),
813 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
814 Op
.getNode()->getOperand(1)));
815 SDValue Z
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, Op
.getValueType(), X
);
816 return CombineTo(Op
, Z
);
822 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
823 /// DemandedMask bits of the result of Op are ever used downstream. If we can
824 /// use this information to simplify Op, create a new simplified DAG node and
825 /// return true, returning the original and new nodes in Old and New. Otherwise,
826 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
827 /// the expression (used to simplify the caller). The KnownZero/One bits may
828 /// only be accurate for those bits in the DemandedMask.
829 bool TargetLowering::SimplifyDemandedBits(SDValue Op
,
830 const APInt
&DemandedMask
,
833 TargetLoweringOpt
&TLO
,
834 unsigned Depth
) const {
835 unsigned BitWidth
= DemandedMask
.getBitWidth();
836 assert(Op
.getValueSizeInBits() == BitWidth
&&
837 "Mask size mismatches value type size!");
838 APInt NewMask
= DemandedMask
;
839 DebugLoc dl
= Op
.getDebugLoc();
841 // Don't know anything.
842 KnownZero
= KnownOne
= APInt(BitWidth
, 0);
844 // Other users may use these bits.
845 if (!Op
.getNode()->hasOneUse()) {
847 // If not at the root, Just compute the KnownZero/KnownOne bits to
848 // simplify things downstream.
849 TLO
.DAG
.ComputeMaskedBits(Op
, DemandedMask
, KnownZero
, KnownOne
, Depth
);
852 // If this is the root being simplified, allow it to have multiple uses,
853 // just set the NewMask to all bits.
854 NewMask
= APInt::getAllOnesValue(BitWidth
);
855 } else if (DemandedMask
== 0) {
856 // Not demanding any bits from Op.
857 if (Op
.getOpcode() != ISD::UNDEF
)
858 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(Op
.getValueType()));
860 } else if (Depth
== 6) { // Limit search depth.
864 APInt KnownZero2
, KnownOne2
, KnownZeroOut
, KnownOneOut
;
865 switch (Op
.getOpcode()) {
867 // We know all of the bits for a constant!
868 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & NewMask
;
869 KnownZero
= ~KnownOne
& NewMask
;
870 return false; // Don't fall through, will infinitely loop.
872 // If the RHS is a constant, check to see if the LHS would be zero without
873 // using the bits from the RHS. Below, we use knowledge about the RHS to
874 // simplify the LHS, here we're using information from the LHS to simplify
876 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
877 APInt LHSZero
, LHSOne
;
878 TLO
.DAG
.ComputeMaskedBits(Op
.getOperand(0), NewMask
,
879 LHSZero
, LHSOne
, Depth
+1);
880 // If the LHS already has zeros where RHSC does, this and is dead.
881 if ((LHSZero
& NewMask
) == (~RHSC
->getAPIntValue() & NewMask
))
882 return TLO
.CombineTo(Op
, Op
.getOperand(0));
883 // If any of the set bits in the RHS are known zero on the LHS, shrink
885 if (TLO
.ShrinkDemandedConstant(Op
, ~LHSZero
& NewMask
))
889 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
890 KnownOne
, TLO
, Depth
+1))
892 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
893 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownZero
& NewMask
,
894 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
896 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
898 // If all of the demanded bits are known one on one side, return the other.
899 // These bits cannot contribute to the result of the 'and'.
900 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
901 return TLO
.CombineTo(Op
, Op
.getOperand(0));
902 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
903 return TLO
.CombineTo(Op
, Op
.getOperand(1));
904 // If all of the demanded bits in the inputs are known zeros, return zero.
905 if ((NewMask
& (KnownZero
|KnownZero2
)) == NewMask
)
906 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, Op
.getValueType()));
907 // If the RHS is a constant, see if we can simplify it.
908 if (TLO
.ShrinkDemandedConstant(Op
, ~KnownZero2
& NewMask
))
910 // If the operation can be done in a smaller type, do so.
911 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
914 // Output known-1 bits are only known if set in both the LHS & RHS.
915 KnownOne
&= KnownOne2
;
916 // Output known-0 are known to be clear if zero in either the LHS | RHS.
917 KnownZero
|= KnownZero2
;
920 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
921 KnownOne
, TLO
, Depth
+1))
923 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
924 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownOne
& NewMask
,
925 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
927 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
929 // If all of the demanded bits are known zero on one side, return the other.
930 // These bits cannot contribute to the result of the 'or'.
931 if ((NewMask
& ~KnownOne2
& KnownZero
) == (~KnownOne2
& NewMask
))
932 return TLO
.CombineTo(Op
, Op
.getOperand(0));
933 if ((NewMask
& ~KnownOne
& KnownZero2
) == (~KnownOne
& NewMask
))
934 return TLO
.CombineTo(Op
, Op
.getOperand(1));
935 // If all of the potentially set bits on one side are known to be set on
936 // the other side, just use the 'other' side.
937 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
938 return TLO
.CombineTo(Op
, Op
.getOperand(0));
939 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
940 return TLO
.CombineTo(Op
, Op
.getOperand(1));
941 // If the RHS is a constant, see if we can simplify it.
942 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
944 // If the operation can be done in a smaller type, do so.
945 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
948 // Output known-0 bits are only known if clear in both the LHS & RHS.
949 KnownZero
&= KnownZero2
;
950 // Output known-1 are known to be set if set in either the LHS | RHS.
951 KnownOne
|= KnownOne2
;
954 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
955 KnownOne
, TLO
, Depth
+1))
957 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
958 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
, KnownZero2
,
959 KnownOne2
, TLO
, Depth
+1))
961 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
963 // If all of the demanded bits are known zero on one side, return the other.
964 // These bits cannot contribute to the result of the 'xor'.
965 if ((KnownZero
& NewMask
) == NewMask
)
966 return TLO
.CombineTo(Op
, Op
.getOperand(0));
967 if ((KnownZero2
& NewMask
) == NewMask
)
968 return TLO
.CombineTo(Op
, Op
.getOperand(1));
969 // If the operation can be done in a smaller type, do so.
970 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
973 // If all of the unknown bits are known to be zero on one side or the other
974 // (but not both) turn this into an *inclusive* or.
975 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
976 if ((NewMask
& ~KnownZero
& ~KnownZero2
) == 0)
977 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, Op
.getValueType(),
981 // Output known-0 bits are known if clear or set in both the LHS & RHS.
982 KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
983 // Output known-1 are known to be set if set in only one of the LHS, RHS.
984 KnownOneOut
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
986 // If all of the demanded bits on one side are known, and all of the set
987 // bits on that side are also known to be set on the other side, turn this
988 // into an AND, as we know the bits will be cleared.
989 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
990 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
) { // all known
991 if ((KnownOne
& KnownOne2
) == KnownOne
) {
992 MVT VT
= Op
.getValueType();
993 SDValue ANDC
= TLO
.DAG
.getConstant(~KnownOne
& NewMask
, VT
);
994 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
,
995 Op
.getOperand(0), ANDC
));
999 // If the RHS is a constant, see if we can simplify it.
1000 // for XOR, we prefer to force bits to 1 if they will make a -1.
1001 // if we can't force bits, try to shrink constant
1002 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1003 APInt Expanded
= C
->getAPIntValue() | (~NewMask
);
1004 // if we can expand it to have all bits set, do it
1005 if (Expanded
.isAllOnesValue()) {
1006 if (Expanded
!= C
->getAPIntValue()) {
1007 MVT VT
= Op
.getValueType();
1008 SDValue New
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
,VT
, Op
.getOperand(0),
1009 TLO
.DAG
.getConstant(Expanded
, VT
));
1010 return TLO
.CombineTo(Op
, New
);
1012 // if it already has all the bits set, nothing to change
1013 // but don't shrink either!
1014 } else if (TLO
.ShrinkDemandedConstant(Op
, NewMask
)) {
1019 KnownZero
= KnownZeroOut
;
1020 KnownOne
= KnownOneOut
;
1023 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero
,
1024 KnownOne
, TLO
, Depth
+1))
1026 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero2
,
1027 KnownOne2
, TLO
, Depth
+1))
1029 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1030 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1032 // If the operands are constants, see if we can simplify them.
1033 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1036 // Only known if known in both the LHS and RHS.
1037 KnownOne
&= KnownOne2
;
1038 KnownZero
&= KnownZero2
;
1040 case ISD::SELECT_CC
:
1041 if (SimplifyDemandedBits(Op
.getOperand(3), NewMask
, KnownZero
,
1042 KnownOne
, TLO
, Depth
+1))
1044 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero2
,
1045 KnownOne2
, TLO
, Depth
+1))
1047 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1048 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1050 // If the operands are constants, see if we can simplify them.
1051 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1054 // Only known if known in both the LHS and RHS.
1055 KnownOne
&= KnownOne2
;
1056 KnownZero
&= KnownZero2
;
1059 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1060 unsigned ShAmt
= SA
->getZExtValue();
1061 SDValue InOp
= Op
.getOperand(0);
1063 // If the shift count is an invalid immediate, don't do anything.
1064 if (ShAmt
>= BitWidth
)
1067 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1068 // single shift. We can do this if the bottom bits (which are shifted
1069 // out) are never demanded.
1070 if (InOp
.getOpcode() == ISD::SRL
&&
1071 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1072 if (ShAmt
&& (NewMask
& APInt::getLowBitsSet(BitWidth
, ShAmt
)) == 0) {
1073 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1074 unsigned Opc
= ISD::SHL
;
1075 int Diff
= ShAmt
-C1
;
1082 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1083 MVT VT
= Op
.getValueType();
1084 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1085 InOp
.getOperand(0), NewSA
));
1089 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
.lshr(ShAmt
),
1090 KnownZero
, KnownOne
, TLO
, Depth
+1))
1092 KnownZero
<<= SA
->getZExtValue();
1093 KnownOne
<<= SA
->getZExtValue();
1094 // low bits known zero.
1095 KnownZero
|= APInt::getLowBitsSet(BitWidth
, SA
->getZExtValue());
1099 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1100 MVT VT
= Op
.getValueType();
1101 unsigned ShAmt
= SA
->getZExtValue();
1102 unsigned VTSize
= VT
.getSizeInBits();
1103 SDValue InOp
= Op
.getOperand(0);
1105 // If the shift count is an invalid immediate, don't do anything.
1106 if (ShAmt
>= BitWidth
)
1109 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1110 // single shift. We can do this if the top bits (which are shifted out)
1111 // are never demanded.
1112 if (InOp
.getOpcode() == ISD::SHL
&&
1113 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1114 if (ShAmt
&& (NewMask
& APInt::getHighBitsSet(VTSize
, ShAmt
)) == 0) {
1115 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1116 unsigned Opc
= ISD::SRL
;
1117 int Diff
= ShAmt
-C1
;
1124 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1125 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1126 InOp
.getOperand(0), NewSA
));
1130 // Compute the new bits that are at the top now.
1131 if (SimplifyDemandedBits(InOp
, (NewMask
<< ShAmt
),
1132 KnownZero
, KnownOne
, TLO
, Depth
+1))
1134 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1135 KnownZero
= KnownZero
.lshr(ShAmt
);
1136 KnownOne
= KnownOne
.lshr(ShAmt
);
1138 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1139 KnownZero
|= HighBits
; // High bits known zero.
1143 // If this is an arithmetic shift right and only the low-bit is set, we can
1144 // always convert this into a logical shr, even if the shift amount is
1145 // variable. The low bit of the shift cannot be an input sign bit unless
1146 // the shift amount is >= the size of the datatype, which is undefined.
1147 if (DemandedMask
== 1)
1148 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(),
1149 Op
.getOperand(0), Op
.getOperand(1)));
1151 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1152 MVT VT
= Op
.getValueType();
1153 unsigned ShAmt
= SA
->getZExtValue();
1155 // If the shift count is an invalid immediate, don't do anything.
1156 if (ShAmt
>= BitWidth
)
1159 APInt InDemandedMask
= (NewMask
<< ShAmt
);
1161 // If any of the demanded bits are produced by the sign extension, we also
1162 // demand the input sign bit.
1163 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1164 if (HighBits
.intersects(NewMask
))
1165 InDemandedMask
|= APInt::getSignBit(VT
.getSizeInBits());
1167 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedMask
,
1168 KnownZero
, KnownOne
, TLO
, Depth
+1))
1170 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1171 KnownZero
= KnownZero
.lshr(ShAmt
);
1172 KnownOne
= KnownOne
.lshr(ShAmt
);
1174 // Handle the sign bit, adjusted to where it is now in the mask.
1175 APInt SignBit
= APInt::getSignBit(BitWidth
).lshr(ShAmt
);
1177 // If the input sign bit is known to be zero, or if none of the top bits
1178 // are demanded, turn this into an unsigned shift right.
1179 if (KnownZero
.intersects(SignBit
) || (HighBits
& ~NewMask
) == HighBits
) {
1180 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
,
1183 } else if (KnownOne
.intersects(SignBit
)) { // New bits are known one.
1184 KnownOne
|= HighBits
;
1188 case ISD::SIGN_EXTEND_INREG
: {
1189 MVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1191 // Sign extension. Compute the demanded bits in the result that are not
1192 // present in the input.
1193 APInt NewBits
= APInt::getHighBitsSet(BitWidth
,
1194 BitWidth
- EVT
.getSizeInBits()) &
1197 // If none of the extended bits are demanded, eliminate the sextinreg.
1199 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1201 APInt InSignBit
= APInt::getSignBit(EVT
.getSizeInBits());
1202 InSignBit
.zext(BitWidth
);
1203 APInt InputDemandedBits
= APInt::getLowBitsSet(BitWidth
,
1204 EVT
.getSizeInBits()) &
1207 // Since the sign extended bits are demanded, we know that the sign
1209 InputDemandedBits
|= InSignBit
;
1211 if (SimplifyDemandedBits(Op
.getOperand(0), InputDemandedBits
,
1212 KnownZero
, KnownOne
, TLO
, Depth
+1))
1214 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1216 // If the sign bit of the input is known set or clear, then we know the
1217 // top bits of the result.
1219 // If the input sign bit is known zero, convert this into a zero extension.
1220 if (KnownZero
.intersects(InSignBit
))
1221 return TLO
.CombineTo(Op
,
1222 TLO
.DAG
.getZeroExtendInReg(Op
.getOperand(0),dl
,EVT
));
1224 if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1225 KnownOne
|= NewBits
;
1226 KnownZero
&= ~NewBits
;
1227 } else { // Input sign bit unknown
1228 KnownZero
&= ~NewBits
;
1229 KnownOne
&= ~NewBits
;
1233 case ISD::ZERO_EXTEND
: {
1234 unsigned OperandBitWidth
= Op
.getOperand(0).getValueSizeInBits();
1235 APInt InMask
= NewMask
;
1236 InMask
.trunc(OperandBitWidth
);
1238 // If none of the top bits are demanded, convert this into an any_extend.
1240 APInt::getHighBitsSet(BitWidth
, BitWidth
- OperandBitWidth
) & NewMask
;
1241 if (!NewBits
.intersects(NewMask
))
1242 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1246 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1247 KnownZero
, KnownOne
, TLO
, Depth
+1))
1249 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1250 KnownZero
.zext(BitWidth
);
1251 KnownOne
.zext(BitWidth
);
1252 KnownZero
|= NewBits
;
1255 case ISD::SIGN_EXTEND
: {
1256 MVT InVT
= Op
.getOperand(0).getValueType();
1257 unsigned InBits
= InVT
.getSizeInBits();
1258 APInt InMask
= APInt::getLowBitsSet(BitWidth
, InBits
);
1259 APInt InSignBit
= APInt::getBitsSet(BitWidth
, InBits
- 1, InBits
);
1260 APInt NewBits
= ~InMask
& NewMask
;
1262 // If none of the top bits are demanded, convert this into an any_extend.
1264 return TLO
.CombineTo(Op
,TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1268 // Since some of the sign extended bits are demanded, we know that the sign
1270 APInt InDemandedBits
= InMask
& NewMask
;
1271 InDemandedBits
|= InSignBit
;
1272 InDemandedBits
.trunc(InBits
);
1274 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedBits
, KnownZero
,
1275 KnownOne
, TLO
, Depth
+1))
1277 KnownZero
.zext(BitWidth
);
1278 KnownOne
.zext(BitWidth
);
1280 // If the sign bit is known zero, convert this to a zero extend.
1281 if (KnownZero
.intersects(InSignBit
))
1282 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
1286 // If the sign bit is known one, the top bits match.
1287 if (KnownOne
.intersects(InSignBit
)) {
1288 KnownOne
|= NewBits
;
1289 KnownZero
&= ~NewBits
;
1290 } else { // Otherwise, top bits aren't known.
1291 KnownOne
&= ~NewBits
;
1292 KnownZero
&= ~NewBits
;
1296 case ISD::ANY_EXTEND
: {
1297 unsigned OperandBitWidth
= Op
.getOperand(0).getValueSizeInBits();
1298 APInt InMask
= NewMask
;
1299 InMask
.trunc(OperandBitWidth
);
1300 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1301 KnownZero
, KnownOne
, TLO
, Depth
+1))
1303 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1304 KnownZero
.zext(BitWidth
);
1305 KnownOne
.zext(BitWidth
);
1308 case ISD::TRUNCATE
: {
1309 // Simplify the input, using demanded bit information, and compute the known
1310 // zero/one bits live out.
1311 APInt TruncMask
= NewMask
;
1312 TruncMask
.zext(Op
.getOperand(0).getValueSizeInBits());
1313 if (SimplifyDemandedBits(Op
.getOperand(0), TruncMask
,
1314 KnownZero
, KnownOne
, TLO
, Depth
+1))
1316 KnownZero
.trunc(BitWidth
);
1317 KnownOne
.trunc(BitWidth
);
1319 // If the input is only used by this truncate, see if we can shrink it based
1320 // on the known demanded bits.
1321 if (Op
.getOperand(0).getNode()->hasOneUse()) {
1322 SDValue In
= Op
.getOperand(0);
1323 unsigned InBitWidth
= In
.getValueSizeInBits();
1324 switch (In
.getOpcode()) {
1327 // Shrink SRL by a constant if none of the high bits shifted in are
1329 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(In
.getOperand(1))){
1330 APInt HighBits
= APInt::getHighBitsSet(InBitWidth
,
1331 InBitWidth
- BitWidth
);
1332 HighBits
= HighBits
.lshr(ShAmt
->getZExtValue());
1333 HighBits
.trunc(BitWidth
);
1335 if (ShAmt
->getZExtValue() < BitWidth
&& !(HighBits
& NewMask
)) {
1336 // None of the shifted in bits are needed. Add a truncate of the
1337 // shift input, then shift it.
1338 SDValue NewTrunc
= TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
,
1341 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
,
1351 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1354 case ISD::AssertZext
: {
1355 MVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1356 APInt InMask
= APInt::getLowBitsSet(BitWidth
,
1357 VT
.getSizeInBits());
1358 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
& NewMask
,
1359 KnownZero
, KnownOne
, TLO
, Depth
+1))
1361 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1362 KnownZero
|= ~InMask
& NewMask
;
1365 case ISD::BIT_CONVERT
:
1367 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1368 // is demanded, turn this into a FGETSIGN.
1369 if (NewMask
== MVT::getIntegerVTSignBit(Op
.getValueType()) &&
1370 MVT::isFloatingPoint(Op
.getOperand(0).getValueType()) &&
1371 !MVT::isVector(Op
.getOperand(0).getValueType())) {
1372 // Only do this xform if FGETSIGN is valid or if before legalize.
1373 if (!TLO
.AfterLegalize
||
1374 isOperationLegal(ISD::FGETSIGN
, Op
.getValueType())) {
1375 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1376 // place. We expect the SHL to be eliminated by other optimizations.
1377 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, Op
.getValueType(),
1379 unsigned ShVal
= Op
.getValueType().getSizeInBits()-1;
1380 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, getShiftAmountTy());
1381 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SHL
, Op
.getValueType(),
1390 // Add, Sub, and Mul don't demand any bits in positions beyond that
1391 // of the highest bit demanded of them.
1392 APInt LoMask
= APInt::getLowBitsSet(BitWidth
,
1393 BitWidth
- NewMask
.countLeadingZeros());
1394 if (SimplifyDemandedBits(Op
.getOperand(0), LoMask
, KnownZero2
,
1395 KnownOne2
, TLO
, Depth
+1))
1397 if (SimplifyDemandedBits(Op
.getOperand(1), LoMask
, KnownZero2
,
1398 KnownOne2
, TLO
, Depth
+1))
1400 // See if the operation should be performed at a smaller bit width.
1401 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1406 // Just use ComputeMaskedBits to compute output bits.
1407 TLO
.DAG
.ComputeMaskedBits(Op
, NewMask
, KnownZero
, KnownOne
, Depth
);
1411 // If we know the value of all of the demanded bits, return this as a
1413 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
)
1414 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(KnownOne
, Op
.getValueType()));
1419 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1420 /// in Mask are known to be either zero or one and return them in the
1421 /// KnownZero/KnownOne bitsets.
1422 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
1426 const SelectionDAG
&DAG
,
1427 unsigned Depth
) const {
1428 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1429 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1430 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1431 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1432 "Should use MaskedValueIsZero if you don't know whether Op"
1433 " is a target node!");
1434 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
1437 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1438 /// targets that want to expose additional information about sign bits to the
1440 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
1441 unsigned Depth
) const {
1442 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1443 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1444 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1445 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1446 "Should use ComputeNumSignBits if you don't know whether Op"
1447 " is a target node!");
1451 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1452 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1453 /// determine which bit is set.
1455 static bool ValueHasExactlyOneBitSet(SDValue Val
, const SelectionDAG
&DAG
) {
1456 // A left-shift of a constant one will have exactly one bit set, because
1457 // shifting the bit off the end is undefined.
1458 if (Val
.getOpcode() == ISD::SHL
)
1459 if (ConstantSDNode
*C
=
1460 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1461 if (C
->getAPIntValue() == 1)
1464 // Similarly, a right-shift of a constant sign-bit will have exactly
1466 if (Val
.getOpcode() == ISD::SRL
)
1467 if (ConstantSDNode
*C
=
1468 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1469 if (C
->getAPIntValue().isSignBit())
1472 // More could be done here, though the above checks are enough
1473 // to handle some common cases.
1475 // Fall back to ComputeMaskedBits to catch other known cases.
1476 MVT OpVT
= Val
.getValueType();
1477 unsigned BitWidth
= OpVT
.getSizeInBits();
1478 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
1479 APInt KnownZero
, KnownOne
;
1480 DAG
.ComputeMaskedBits(Val
, Mask
, KnownZero
, KnownOne
);
1481 return (KnownZero
.countPopulation() == BitWidth
- 1) &&
1482 (KnownOne
.countPopulation() == 1);
1485 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1486 /// and cc. If it is unable to simplify it, return a null SDValue.
1488 TargetLowering::SimplifySetCC(MVT VT
, SDValue N0
, SDValue N1
,
1489 ISD::CondCode Cond
, bool foldBooleans
,
1490 DAGCombinerInfo
&DCI
, DebugLoc dl
) const {
1491 SelectionDAG
&DAG
= DCI
.DAG
;
1493 // These setcc operations always fold.
1497 case ISD::SETFALSE2
: return DAG
.getConstant(0, VT
);
1499 case ISD::SETTRUE2
: return DAG
.getConstant(1, VT
);
1502 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1503 const APInt
&C1
= N1C
->getAPIntValue();
1504 if (isa
<ConstantSDNode
>(N0
.getNode())) {
1505 return DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
);
1507 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1508 // equality comparison, then we're just comparing whether X itself is
1510 if (N0
.getOpcode() == ISD::SRL
&& (C1
== 0 || C1
== 1) &&
1511 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
1512 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1513 unsigned ShAmt
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
1514 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1515 ShAmt
== Log2_32(N0
.getValueType().getSizeInBits())) {
1516 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
1517 // (srl (ctlz x), 5) == 0 -> X != 0
1518 // (srl (ctlz x), 5) != 1 -> X != 0
1521 // (srl (ctlz x), 5) != 0 -> X == 0
1522 // (srl (ctlz x), 5) == 1 -> X == 0
1525 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
1526 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
1531 // If the LHS is '(and load, const)', the RHS is 0,
1532 // the test is for equality or unsigned, and all 1 bits of the const are
1533 // in the same partial word, see if we can shorten the load.
1534 if (DCI
.isBeforeLegalize() &&
1535 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
1536 N0
.getNode()->hasOneUse() &&
1537 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
1538 N0
.getOperand(0).getNode()->hasOneUse() &&
1539 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1540 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
1541 uint64_t bestMask
= 0;
1542 unsigned bestWidth
= 0, bestOffset
= 0;
1543 if (!Lod
->isVolatile() && Lod
->isUnindexed() &&
1544 // FIXME: This uses getZExtValue() below so it only works on i64 and
1546 N0
.getValueType().getSizeInBits() <= 64) {
1547 unsigned origWidth
= N0
.getValueType().getSizeInBits();
1548 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1549 // 8 bits, but have to be careful...
1550 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
1551 origWidth
= Lod
->getMemoryVT().getSizeInBits();
1552 uint64_t Mask
=cast
<ConstantSDNode
>(N0
.getOperand(1))->getZExtValue();
1553 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
1554 uint64_t newMask
= (1ULL << width
) - 1;
1555 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
1556 if ((newMask
& Mask
) == Mask
) {
1557 if (!TD
->isLittleEndian())
1558 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
1560 bestOffset
= (uint64_t)offset
* (width
/8);
1561 bestMask
= Mask
>> (offset
* (width
/8) * 8);
1565 newMask
= newMask
<< width
;
1570 MVT newVT
= MVT::getIntegerVT(bestWidth
);
1571 if (newVT
.isRound()) {
1572 MVT PtrType
= Lod
->getOperand(1).getValueType();
1573 SDValue Ptr
= Lod
->getBasePtr();
1574 if (bestOffset
!= 0)
1575 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
1576 DAG
.getConstant(bestOffset
, PtrType
));
1577 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
1578 SDValue NewLoad
= DAG
.getLoad(newVT
, dl
, Lod
->getChain(), Ptr
,
1580 Lod
->getSrcValueOffset() + bestOffset
,
1582 return DAG
.getSetCC(dl
, VT
,
1583 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
1584 DAG
.getConstant(bestMask
, newVT
)),
1585 DAG
.getConstant(0LL, newVT
), Cond
);
1590 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1591 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
1592 unsigned InSize
= N0
.getOperand(0).getValueType().getSizeInBits();
1594 // If the comparison constant has bits in the upper part, the
1595 // zero-extended value could never match.
1596 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
1597 C1
.getBitWidth() - InSize
))) {
1601 case ISD::SETEQ
: return DAG
.getConstant(0, VT
);
1604 case ISD::SETNE
: return DAG
.getConstant(1, VT
);
1607 // True if the sign bit of C1 is set.
1608 return DAG
.getConstant(C1
.isNegative(), VT
);
1611 // True if the sign bit of C1 isn't set.
1612 return DAG
.getConstant(C1
.isNonNegative(), VT
);
1618 // Otherwise, we can perform the comparison with the low bits.
1626 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1627 DAG
.getConstant(APInt(C1
).trunc(InSize
),
1628 N0
.getOperand(0).getValueType()),
1631 break; // todo, be more careful with signed comparisons
1633 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
1634 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1635 MVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
1636 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
1637 MVT ExtDstTy
= N0
.getValueType();
1638 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
1640 // If the extended part has any inconsistent bits, it cannot ever
1641 // compare equal. In other words, they have to be all ones or all
1644 APInt::getHighBitsSet(ExtDstTyBits
, ExtDstTyBits
- ExtSrcTyBits
);
1645 if ((C1
& ExtBits
) != 0 && (C1
& ExtBits
) != ExtBits
)
1646 return DAG
.getConstant(Cond
== ISD::SETNE
, VT
);
1649 MVT Op0Ty
= N0
.getOperand(0).getValueType();
1650 if (Op0Ty
== ExtSrcTy
) {
1651 ZextOp
= N0
.getOperand(0);
1653 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
1654 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
1655 DAG
.getConstant(Imm
, Op0Ty
));
1657 if (!DCI
.isCalledByLegalizer())
1658 DCI
.AddToWorklist(ZextOp
.getNode());
1659 // Otherwise, make this a use of a zext.
1660 return DAG
.getSetCC(dl
, VT
, ZextOp
,
1661 DAG
.getConstant(C1
& APInt::getLowBitsSet(
1666 } else if ((N1C
->isNullValue() || N1C
->getAPIntValue() == 1) &&
1667 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1669 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1670 if (N0
.getOpcode() == ISD::SETCC
) {
1671 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (N1C
->getZExtValue() != 1);
1675 // Invert the condition.
1676 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
1677 CC
= ISD::getSetCCInverse(CC
,
1678 N0
.getOperand(0).getValueType().isInteger());
1679 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
1682 if ((N0
.getOpcode() == ISD::XOR
||
1683 (N0
.getOpcode() == ISD::AND
&&
1684 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
1685 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
1686 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
1687 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue() == 1) {
1688 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1689 // can only do this if the top bits are known zero.
1690 unsigned BitWidth
= N0
.getValueSizeInBits();
1691 if (DAG
.MaskedValueIsZero(N0
,
1692 APInt::getHighBitsSet(BitWidth
,
1694 // Okay, get the un-inverted input value.
1696 if (N0
.getOpcode() == ISD::XOR
)
1697 Val
= N0
.getOperand(0);
1699 assert(N0
.getOpcode() == ISD::AND
&&
1700 N0
.getOperand(0).getOpcode() == ISD::XOR
);
1701 // ((X^1)&1)^1 -> X & 1
1702 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
1703 N0
.getOperand(0).getOperand(0),
1706 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
1707 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
1712 APInt MinVal
, MaxVal
;
1713 unsigned OperandBitSize
= N1C
->getValueType(0).getSizeInBits();
1714 if (ISD::isSignedIntSetCC(Cond
)) {
1715 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
1716 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
1718 MinVal
= APInt::getMinValue(OperandBitSize
);
1719 MaxVal
= APInt::getMaxValue(OperandBitSize
);
1722 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1723 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
1724 if (C1
== MinVal
) return DAG
.getConstant(1, VT
); // X >= MIN --> true
1725 // X >= C0 --> X > (C0-1)
1726 return DAG
.getSetCC(dl
, VT
, N0
,
1727 DAG
.getConstant(C1
-1, N1
.getValueType()),
1728 (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
);
1731 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
1732 if (C1
== MaxVal
) return DAG
.getConstant(1, VT
); // X <= MAX --> true
1733 // X <= C0 --> X < (C0+1)
1734 return DAG
.getSetCC(dl
, VT
, N0
,
1735 DAG
.getConstant(C1
+1, N1
.getValueType()),
1736 (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
);
1739 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
)
1740 return DAG
.getConstant(0, VT
); // X < MIN --> false
1741 if ((Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) && C1
== MinVal
)
1742 return DAG
.getConstant(1, VT
); // X >= MIN --> true
1743 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
)
1744 return DAG
.getConstant(0, VT
); // X > MAX --> false
1745 if ((Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) && C1
== MaxVal
)
1746 return DAG
.getConstant(1, VT
); // X <= MAX --> true
1748 // Canonicalize setgt X, Min --> setne X, Min
1749 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MinVal
)
1750 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
1751 // Canonicalize setlt X, Max --> setne X, Max
1752 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MaxVal
)
1753 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
1755 // If we have setult X, 1, turn it into seteq X, 0
1756 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
+1)
1757 return DAG
.getSetCC(dl
, VT
, N0
,
1758 DAG
.getConstant(MinVal
, N0
.getValueType()),
1760 // If we have setugt X, Max-1, turn it into seteq X, Max
1761 else if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
-1)
1762 return DAG
.getSetCC(dl
, VT
, N0
,
1763 DAG
.getConstant(MaxVal
, N0
.getValueType()),
1766 // If we have "setcc X, C0", check to see if we can shrink the immediate
1769 // SETUGT X, SINTMAX -> SETLT X, 0
1770 if (Cond
== ISD::SETUGT
&&
1771 C1
== APInt::getSignedMaxValue(OperandBitSize
))
1772 return DAG
.getSetCC(dl
, VT
, N0
,
1773 DAG
.getConstant(0, N1
.getValueType()),
1776 // SETULT X, SINTMIN -> SETGT X, -1
1777 if (Cond
== ISD::SETULT
&&
1778 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
1779 SDValue ConstMinusOne
=
1780 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
),
1782 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
1785 // Fold bit comparisons when we can.
1786 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1787 VT
== N0
.getValueType() && N0
.getOpcode() == ISD::AND
)
1788 if (ConstantSDNode
*AndRHS
=
1789 dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
1790 MVT ShiftTy
= DCI
.isBeforeLegalize() ?
1791 getPointerTy() : getShiftAmountTy();
1792 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
1793 // Perform the xform if the AND RHS is a single bit.
1794 if (isPowerOf2_64(AndRHS
->getZExtValue())) {
1795 return DAG
.getNode(ISD::SRL
, dl
, VT
, N0
,
1796 DAG
.getConstant(Log2_64(AndRHS
->getZExtValue()),
1799 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getZExtValue()) {
1800 // (X & 8) == 8 --> (X & 8) >> 3
1801 // Perform the xform if C1 is a single bit.
1802 if (C1
.isPowerOf2()) {
1803 return DAG
.getNode(ISD::SRL
, dl
, VT
, N0
,
1804 DAG
.getConstant(C1
.logBase2(), ShiftTy
));
1809 } else if (isa
<ConstantSDNode
>(N0
.getNode())) {
1810 // Ensure that the constant occurs on the RHS.
1811 return DAG
.getSetCC(dl
, VT
, N1
, N0
, ISD::getSetCCSwappedOperands(Cond
));
1814 if (isa
<ConstantFPSDNode
>(N0
.getNode())) {
1815 // Constant fold or commute setcc.
1816 SDValue O
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
);
1817 if (O
.getNode()) return O
;
1818 } else if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1819 // If the RHS of an FP comparison is a constant, simplify it away in
1821 if (CFP
->getValueAPF().isNaN()) {
1822 // If an operand is known to be a nan, we can fold it.
1823 switch (ISD::getUnorderedFlavor(Cond
)) {
1824 default: assert(0 && "Unknown flavor!");
1825 case 0: // Known false.
1826 return DAG
.getConstant(0, VT
);
1827 case 1: // Known true.
1828 return DAG
.getConstant(1, VT
);
1829 case 2: // Undefined.
1830 return DAG
.getUNDEF(VT
);
1834 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1835 // constant if knowing that the operand is non-nan is enough. We prefer to
1836 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1838 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
1839 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
1843 // We can always fold X == X for integer setcc's.
1844 if (N0
.getValueType().isInteger())
1845 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
1846 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
1847 if (UOF
== 2) // FP operators that are undefined on NaNs.
1848 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
1849 if (UOF
== unsigned(ISD::isTrueWhenEqual(Cond
)))
1850 return DAG
.getConstant(UOF
, VT
);
1851 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1852 // if it is not already.
1853 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
1854 if (NewCond
!= Cond
)
1855 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
1858 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1859 N0
.getValueType().isInteger()) {
1860 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
1861 N0
.getOpcode() == ISD::XOR
) {
1862 // Simplify (X+Y) == (X+Z) --> Y == Z
1863 if (N0
.getOpcode() == N1
.getOpcode()) {
1864 if (N0
.getOperand(0) == N1
.getOperand(0))
1865 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
1866 if (N0
.getOperand(1) == N1
.getOperand(1))
1867 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
1868 if (DAG
.isCommutativeBinOp(N0
.getOpcode())) {
1869 // If X op Y == Y op X, try other combinations.
1870 if (N0
.getOperand(0) == N1
.getOperand(1))
1871 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
1873 if (N0
.getOperand(1) == N1
.getOperand(0))
1874 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
1879 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
1880 if (ConstantSDNode
*LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
1881 // Turn (X+C1) == C2 --> X == C2-C1
1882 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
1883 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1884 DAG
.getConstant(RHSC
->getAPIntValue()-
1885 LHSR
->getAPIntValue(),
1886 N0
.getValueType()), Cond
);
1889 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1890 if (N0
.getOpcode() == ISD::XOR
)
1891 // If we know that all of the inverted bits are zero, don't bother
1892 // performing the inversion.
1893 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
1895 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1896 DAG
.getConstant(LHSR
->getAPIntValue() ^
1897 RHSC
->getAPIntValue(),
1902 // Turn (C1-X) == C2 --> X == C1-C2
1903 if (ConstantSDNode
*SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
1904 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
1906 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
1907 DAG
.getConstant(SUBC
->getAPIntValue() -
1908 RHSC
->getAPIntValue(),
1915 // Simplify (X+Z) == X --> Z == 0
1916 if (N0
.getOperand(0) == N1
)
1917 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
1918 DAG
.getConstant(0, N0
.getValueType()), Cond
);
1919 if (N0
.getOperand(1) == N1
) {
1920 if (DAG
.isCommutativeBinOp(N0
.getOpcode()))
1921 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
1922 DAG
.getConstant(0, N0
.getValueType()), Cond
);
1923 else if (N0
.getNode()->hasOneUse()) {
1924 assert(N0
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
1925 // (Z-X) == X --> Z == X<<1
1926 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(),
1928 DAG
.getConstant(1, getShiftAmountTy()));
1929 if (!DCI
.isCalledByLegalizer())
1930 DCI
.AddToWorklist(SH
.getNode());
1931 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), SH
, Cond
);
1936 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
1937 N1
.getOpcode() == ISD::XOR
) {
1938 // Simplify X == (X+Z) --> Z == 0
1939 if (N1
.getOperand(0) == N0
) {
1940 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(1),
1941 DAG
.getConstant(0, N1
.getValueType()), Cond
);
1942 } else if (N1
.getOperand(1) == N0
) {
1943 if (DAG
.isCommutativeBinOp(N1
.getOpcode())) {
1944 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(0),
1945 DAG
.getConstant(0, N1
.getValueType()), Cond
);
1946 } else if (N1
.getNode()->hasOneUse()) {
1947 assert(N1
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
1948 // X == (Z-X) --> X<<1 == Z
1949 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(), N0
,
1950 DAG
.getConstant(1, getShiftAmountTy()));
1951 if (!DCI
.isCalledByLegalizer())
1952 DCI
.AddToWorklist(SH
.getNode());
1953 return DAG
.getSetCC(dl
, VT
, SH
, N1
.getOperand(0), Cond
);
1958 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1959 // Note that where y is variable and is known to have at most
1960 // one bit set (for example, if it is z&1) we cannot do this;
1961 // the expressions are not equivalent when y==0.
1962 if (N0
.getOpcode() == ISD::AND
)
1963 if (N0
.getOperand(0) == N1
|| N0
.getOperand(1) == N1
) {
1964 if (ValueHasExactlyOneBitSet(N1
, DAG
)) {
1965 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
1966 SDValue Zero
= DAG
.getConstant(0, N1
.getValueType());
1967 return DAG
.getSetCC(dl
, VT
, N0
, Zero
, Cond
);
1970 if (N1
.getOpcode() == ISD::AND
)
1971 if (N1
.getOperand(0) == N0
|| N1
.getOperand(1) == N0
) {
1972 if (ValueHasExactlyOneBitSet(N0
, DAG
)) {
1973 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
1974 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
1975 return DAG
.getSetCC(dl
, VT
, N1
, Zero
, Cond
);
1980 // Fold away ALL boolean setcc's.
1982 if (N0
.getValueType() == MVT::i1
&& foldBooleans
) {
1984 default: assert(0 && "Unknown integer setcc!");
1985 case ISD::SETEQ
: // X == Y -> ~(X^Y)
1986 Temp
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
1987 N0
= DAG
.getNOT(dl
, Temp
, MVT::i1
);
1988 if (!DCI
.isCalledByLegalizer())
1989 DCI
.AddToWorklist(Temp
.getNode());
1991 case ISD::SETNE
: // X != Y --> (X^Y)
1992 N0
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
1994 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
1995 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
1996 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
1997 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N1
, Temp
);
1998 if (!DCI
.isCalledByLegalizer())
1999 DCI
.AddToWorklist(Temp
.getNode());
2001 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2002 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2003 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2004 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N0
, Temp
);
2005 if (!DCI
.isCalledByLegalizer())
2006 DCI
.AddToWorklist(Temp
.getNode());
2008 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2009 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2010 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2011 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N1
, Temp
);
2012 if (!DCI
.isCalledByLegalizer())
2013 DCI
.AddToWorklist(Temp
.getNode());
2015 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2016 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2017 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2018 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N0
, Temp
);
2021 if (VT
!= MVT::i1
) {
2022 if (!DCI
.isCalledByLegalizer())
2023 DCI
.AddToWorklist(N0
.getNode());
2024 // FIXME: If running after legalize, we probably can't do this.
2025 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, N0
);
2030 // Could not fold it.
2034 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2035 /// node is a GlobalAddress + offset.
2036 bool TargetLowering::isGAPlusOffset(SDNode
*N
, GlobalValue
* &GA
,
2037 int64_t &Offset
) const {
2038 if (isa
<GlobalAddressSDNode
>(N
)) {
2039 GlobalAddressSDNode
*GASD
= cast
<GlobalAddressSDNode
>(N
);
2040 GA
= GASD
->getGlobal();
2041 Offset
+= GASD
->getOffset();
2045 if (N
->getOpcode() == ISD::ADD
) {
2046 SDValue N1
= N
->getOperand(0);
2047 SDValue N2
= N
->getOperand(1);
2048 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
2049 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N2
);
2051 Offset
+= V
->getSExtValue();
2054 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
2055 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N1
);
2057 Offset
+= V
->getSExtValue();
2066 /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
2067 /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
2068 /// location that the 'Base' load is loading from.
2069 bool TargetLowering::isConsecutiveLoad(SDNode
*LD
, SDNode
*Base
,
2070 unsigned Bytes
, int Dist
,
2071 const MachineFrameInfo
*MFI
) const {
2072 if (LD
->getOperand(0).getNode() != Base
->getOperand(0).getNode())
2074 MVT VT
= LD
->getValueType(0);
2075 if (VT
.getSizeInBits() / 8 != Bytes
)
2078 SDValue Loc
= LD
->getOperand(1);
2079 SDValue BaseLoc
= Base
->getOperand(1);
2080 if (Loc
.getOpcode() == ISD::FrameIndex
) {
2081 if (BaseLoc
.getOpcode() != ISD::FrameIndex
)
2083 int FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
2084 int BFI
= cast
<FrameIndexSDNode
>(BaseLoc
)->getIndex();
2085 int FS
= MFI
->getObjectSize(FI
);
2086 int BFS
= MFI
->getObjectSize(BFI
);
2087 if (FS
!= BFS
|| FS
!= (int)Bytes
) return false;
2088 return MFI
->getObjectOffset(FI
) == (MFI
->getObjectOffset(BFI
) + Dist
*Bytes
);
2091 GlobalValue
*GV1
= NULL
;
2092 GlobalValue
*GV2
= NULL
;
2093 int64_t Offset1
= 0;
2094 int64_t Offset2
= 0;
2095 bool isGA1
= isGAPlusOffset(Loc
.getNode(), GV1
, Offset1
);
2096 bool isGA2
= isGAPlusOffset(BaseLoc
.getNode(), GV2
, Offset2
);
2097 if (isGA1
&& isGA2
&& GV1
== GV2
)
2098 return Offset1
== (Offset2
+ Dist
*Bytes
);
2103 SDValue
TargetLowering::
2104 PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
2105 // Default implementation: no optimization.
2109 //===----------------------------------------------------------------------===//
2110 // Inline Assembler Implementation Methods
2111 //===----------------------------------------------------------------------===//
2114 TargetLowering::ConstraintType
2115 TargetLowering::getConstraintType(const std::string
&Constraint
) const {
2116 // FIXME: lots more standard ones to handle.
2117 if (Constraint
.size() == 1) {
2118 switch (Constraint
[0]) {
2120 case 'r': return C_RegisterClass
;
2122 case 'o': // offsetable
2123 case 'V': // not offsetable
2125 case 'i': // Simple Integer or Relocatable Constant
2126 case 'n': // Simple Integer
2127 case 's': // Relocatable Constant
2128 case 'X': // Allow ANY value.
2129 case 'I': // Target registers.
2141 if (Constraint
.size() > 1 && Constraint
[0] == '{' &&
2142 Constraint
[Constraint
.size()-1] == '}')
2147 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2148 /// with another that has more specific requirements based on the type of the
2149 /// corresponding operand.
2150 const char *TargetLowering::LowerXConstraint(MVT ConstraintVT
) const{
2151 if (ConstraintVT
.isInteger())
2153 if (ConstraintVT
.isFloatingPoint())
2154 return "f"; // works for many targets
2158 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2159 /// vector. If it is invalid, don't add anything to Ops.
2160 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
2161 char ConstraintLetter
,
2163 std::vector
<SDValue
> &Ops
,
2164 SelectionDAG
&DAG
) const {
2165 switch (ConstraintLetter
) {
2167 case 'X': // Allows any operand; labels (basic block) use this.
2168 if (Op
.getOpcode() == ISD::BasicBlock
) {
2173 case 'i': // Simple Integer or Relocatable Constant
2174 case 'n': // Simple Integer
2175 case 's': { // Relocatable Constant
2176 // These operands are interested in values of the form (GV+C), where C may
2177 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2178 // is possible and fine if either GV or C are missing.
2179 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2180 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2182 // If we have "(add GV, C)", pull out GV/C
2183 if (Op
.getOpcode() == ISD::ADD
) {
2184 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2185 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(0));
2186 if (C
== 0 || GA
== 0) {
2187 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
2188 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(1));
2190 if (C
== 0 || GA
== 0)
2194 // If we find a valid operand, map to the TargetXXX version so that the
2195 // value itself doesn't get selected.
2196 if (GA
) { // Either &GV or &GV+C
2197 if (ConstraintLetter
!= 'n') {
2198 int64_t Offs
= GA
->getOffset();
2199 if (C
) Offs
+= C
->getZExtValue();
2200 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(),
2201 Op
.getValueType(), Offs
));
2205 if (C
) { // just C, no GV.
2206 // Simple constants are not allowed for 's'.
2207 if (ConstraintLetter
!= 's') {
2208 // gcc prints these as sign extended. Sign extend value to 64 bits
2209 // now; without this it would get ZExt'd later in
2210 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2211 Ops
.push_back(DAG
.getTargetConstant(C
->getAPIntValue().getSExtValue(),
2221 std::vector
<unsigned> TargetLowering::
2222 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
2224 return std::vector
<unsigned>();
2228 std::pair
<unsigned, const TargetRegisterClass
*> TargetLowering::
2229 getRegForInlineAsmConstraint(const std::string
&Constraint
,
2231 if (Constraint
[0] != '{')
2232 return std::pair
<unsigned, const TargetRegisterClass
*>(0, 0);
2233 assert(*(Constraint
.end()-1) == '}' && "Not a brace enclosed constraint?");
2235 // Remove the braces from around the name.
2236 std::string
RegName(Constraint
.begin()+1, Constraint
.end()-1);
2238 // Figure out which register class contains this reg.
2239 const TargetRegisterInfo
*RI
= TM
.getRegisterInfo();
2240 for (TargetRegisterInfo::regclass_iterator RCI
= RI
->regclass_begin(),
2241 E
= RI
->regclass_end(); RCI
!= E
; ++RCI
) {
2242 const TargetRegisterClass
*RC
= *RCI
;
2244 // If none of the the value types for this register class are valid, we
2245 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2246 bool isLegal
= false;
2247 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
2249 if (isTypeLegal(*I
)) {
2255 if (!isLegal
) continue;
2257 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
2259 if (StringsEqualNoCase(RegName
, RI
->get(*I
).AsmName
))
2260 return std::make_pair(*I
, RC
);
2264 return std::pair
<unsigned, const TargetRegisterClass
*>(0, 0);
2267 //===----------------------------------------------------------------------===//
2268 // Constraint Selection.
2270 /// isMatchingInputConstraint - Return true of this is an input operand that is
2271 /// a matching constraint like "4".
2272 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2273 assert(!ConstraintCode
.empty() && "No known constraint!");
2274 return isdigit(ConstraintCode
[0]);
2277 /// getMatchedOperand - If this is an input matching constraint, this method
2278 /// returns the output operand it matches.
2279 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2280 assert(!ConstraintCode
.empty() && "No known constraint!");
2281 return atoi(ConstraintCode
.c_str());
2285 /// getConstraintGenerality - Return an integer indicating how general CT
2287 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
2289 default: assert(0 && "Unknown constraint type!");
2290 case TargetLowering::C_Other
:
2291 case TargetLowering::C_Unknown
:
2293 case TargetLowering::C_Register
:
2295 case TargetLowering::C_RegisterClass
:
2297 case TargetLowering::C_Memory
:
2302 /// ChooseConstraint - If there are multiple different constraints that we
2303 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2304 /// This is somewhat tricky: constraints fall into four classes:
2305 /// Other -> immediates and magic values
2306 /// Register -> one specific register
2307 /// RegisterClass -> a group of regs
2308 /// Memory -> memory
2309 /// Ideally, we would pick the most specific constraint possible: if we have
2310 /// something that fits into a register, we would pick it. The problem here
2311 /// is that if we have something that could either be in a register or in
2312 /// memory that use of the register could cause selection of *other*
2313 /// operands to fail: they might only succeed if we pick memory. Because of
2314 /// this the heuristic we use is:
2316 /// 1) If there is an 'other' constraint, and if the operand is valid for
2317 /// that constraint, use it. This makes us take advantage of 'i'
2318 /// constraints when available.
2319 /// 2) Otherwise, pick the most general constraint present. This prefers
2320 /// 'm' over 'r', for example.
2322 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
2323 bool hasMemory
, const TargetLowering
&TLI
,
2324 SDValue Op
, SelectionDAG
*DAG
) {
2325 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
2326 unsigned BestIdx
= 0;
2327 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
2328 int BestGenerality
= -1;
2330 // Loop over the options, keeping track of the most general one.
2331 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
2332 TargetLowering::ConstraintType CType
=
2333 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
2335 // If this is an 'other' constraint, see if the operand is valid for it.
2336 // For example, on X86 we might have an 'rI' constraint. If the operand
2337 // is an integer in the range [0..31] we want to use I (saving a load
2338 // of a register), otherwise we must use 'r'.
2339 if (CType
== TargetLowering::C_Other
&& Op
.getNode()) {
2340 assert(OpInfo
.Codes
[i
].size() == 1 &&
2341 "Unhandled multi-letter 'other' constraint");
2342 std::vector
<SDValue
> ResultOps
;
2343 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
][0], hasMemory
,
2345 if (!ResultOps
.empty()) {
2352 // This constraint letter is more general than the previous one, use it.
2353 int Generality
= getConstraintGenerality(CType
);
2354 if (Generality
> BestGenerality
) {
2357 BestGenerality
= Generality
;
2361 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
2362 OpInfo
.ConstraintType
= BestType
;
2365 /// ComputeConstraintToUse - Determines the constraint code and constraint
2366 /// type to use for the specific AsmOperandInfo, setting
2367 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2368 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
2371 SelectionDAG
*DAG
) const {
2372 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
2374 // Single-letter constraints ('r') are very common.
2375 if (OpInfo
.Codes
.size() == 1) {
2376 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
2377 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
2379 ChooseConstraint(OpInfo
, hasMemory
, *this, Op
, DAG
);
2382 // 'X' matches anything.
2383 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
2384 // Labels and constants are handled elsewhere ('X' is the only thing
2385 // that matches labels).
2386 if (isa
<BasicBlock
>(OpInfo
.CallOperandVal
) ||
2387 isa
<ConstantInt
>(OpInfo
.CallOperandVal
))
2390 // Otherwise, try to resolve it to something we know about by looking at
2391 // the actual operand type.
2392 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
2393 OpInfo
.ConstraintCode
= Repl
;
2394 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
2399 //===----------------------------------------------------------------------===//
2400 // Loop Strength Reduction hooks
2401 //===----------------------------------------------------------------------===//
2403 /// isLegalAddressingMode - Return true if the addressing mode represented
2404 /// by AM is legal for this target, for a load/store of the specified type.
2405 bool TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
2406 const Type
*Ty
) const {
2407 // The default implementation of this implements a conservative RISCy, r+r and
2410 // Allows a sign-extended 16-bit immediate field.
2411 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
2414 // No global is ever allowed as a base.
2418 // Only support r+r,
2420 case 0: // "r+i" or just "i", depending on HasBaseReg.
2423 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
2425 // Otherwise we have r+r or r+i.
2428 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
2430 // Allow 2*r as r+r.
2437 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2438 /// return a DAG expression to select that will generate the same value by
2439 /// multiplying by a magic number. See:
2440 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2441 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
2442 std::vector
<SDNode
*>* Created
) const {
2443 MVT VT
= N
->getValueType(0);
2444 DebugLoc dl
= N
->getDebugLoc();
2446 // Check to see if we can do this.
2447 // FIXME: We should be more aggressive here.
2448 if (!isTypeLegal(VT
))
2451 APInt d
= cast
<ConstantSDNode
>(N
->getOperand(1))->getAPIntValue();
2452 APInt::ms magics
= d
.magic();
2454 // Multiply the numerator (operand 0) by the magic value
2455 // FIXME: We should support doing a MUL in a wider type
2457 if (isOperationLegalOrCustom(ISD::MULHS
, VT
))
2458 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N
->getOperand(0),
2459 DAG
.getConstant(magics
.m
, VT
));
2460 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
))
2461 Q
= SDValue(DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
2463 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
2465 return SDValue(); // No mulhs or equvialent
2466 // If d > 0 and m < 0, add the numerator
2467 if (d
.isStrictlyPositive() && magics
.m
.isNegative()) {
2468 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, N
->getOperand(0));
2470 Created
->push_back(Q
.getNode());
2472 // If d < 0 and m > 0, subtract the numerator.
2473 if (d
.isNegative() && magics
.m
.isStrictlyPositive()) {
2474 Q
= DAG
.getNode(ISD::SUB
, dl
, VT
, Q
, N
->getOperand(0));
2476 Created
->push_back(Q
.getNode());
2478 // Shift right algebraic if shift value is nonzero
2480 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
,
2481 DAG
.getConstant(magics
.s
, getShiftAmountTy()));
2483 Created
->push_back(Q
.getNode());
2485 // Extract the sign bit and add it to the quotient
2487 DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, DAG
.getConstant(VT
.getSizeInBits()-1,
2488 getShiftAmountTy()));
2490 Created
->push_back(T
.getNode());
2491 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
2494 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2495 /// return a DAG expression to select that will generate the same value by
2496 /// multiplying by a magic number. See:
2497 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2498 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
2499 std::vector
<SDNode
*>* Created
) const {
2500 MVT VT
= N
->getValueType(0);
2501 DebugLoc dl
= N
->getDebugLoc();
2503 // Check to see if we can do this.
2504 // FIXME: We should be more aggressive here.
2505 if (!isTypeLegal(VT
))
2508 // FIXME: We should use a narrower constant when the upper
2509 // bits are known to be zero.
2510 ConstantSDNode
*N1C
= cast
<ConstantSDNode
>(N
->getOperand(1));
2511 APInt::mu magics
= N1C
->getAPIntValue().magicu();
2513 // Multiply the numerator (operand 0) by the magic value
2514 // FIXME: We should support doing a MUL in a wider type
2516 if (isOperationLegalOrCustom(ISD::MULHU
, VT
))
2517 Q
= DAG
.getNode(ISD::MULHU
, dl
, VT
, N
->getOperand(0),
2518 DAG
.getConstant(magics
.m
, VT
));
2519 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
))
2520 Q
= SDValue(DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
2522 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
2524 return SDValue(); // No mulhu or equvialent
2526 Created
->push_back(Q
.getNode());
2528 if (magics
.a
== 0) {
2529 assert(magics
.s
< N1C
->getAPIntValue().getBitWidth() &&
2530 "We shouldn't generate an undefined shift!");
2531 return DAG
.getNode(ISD::SRL
, dl
, VT
, Q
,
2532 DAG
.getConstant(magics
.s
, getShiftAmountTy()));
2534 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N
->getOperand(0), Q
);
2536 Created
->push_back(NPQ
.getNode());
2537 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
2538 DAG
.getConstant(1, getShiftAmountTy()));
2540 Created
->push_back(NPQ
.getNode());
2541 NPQ
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
2543 Created
->push_back(NPQ
.getNode());
2544 return DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
2545 DAG
.getConstant(magics
.s
-1, getShiftAmountTy()));
2549 /// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2550 /// node that don't prevent tail call optimization.
2551 static SDValue
IgnoreHarmlessInstructions(SDValue node
) {
2552 // Found call return.
2553 if (node
.getOpcode() == ISD::CALL
) return node
;
2554 // Ignore MERGE_VALUES. Will have at least one operand.
2555 if (node
.getOpcode() == ISD::MERGE_VALUES
)
2556 return IgnoreHarmlessInstructions(node
.getOperand(0));
2557 // Ignore ANY_EXTEND node.
2558 if (node
.getOpcode() == ISD::ANY_EXTEND
)
2559 return IgnoreHarmlessInstructions(node
.getOperand(0));
2560 if (node
.getOpcode() == ISD::TRUNCATE
)
2561 return IgnoreHarmlessInstructions(node
.getOperand(0));
2562 // Any other node type.
2566 bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode
*TheCall
,
2568 unsigned NumOps
= Ret
.getNumOperands();
2569 // ISD::CALL results:(value0, ..., valuen, chain)
2570 // ISD::RET operands:(chain, value0, flag0, ..., valuen, flagn)
2572 // Check that operand of the RET node sources from the CALL node. The RET node
2573 // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2576 IgnoreHarmlessInstructions(Ret
.getOperand(1)) == SDValue(TheCall
,0))
2578 // void return: The RET node has the chain result value of the CALL node as
2581 Ret
.getOperand(0) == SDValue(TheCall
, TheCall
->getNumValues()-1))