Make DebugLoc independent of DwarfWriter.
[llvm/msp430.git] / lib / Analysis / ScalarEvolution.cpp
blobfbfb0308e34131e2aaec9698280d03b5851e6fb4
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. These classes are reference counted, managed by the SCEVHandle
18 // class. We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression. These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
39 //===----------------------------------------------------------------------===//
41 // There are several good references for the techniques used in this analysis.
43 // Chains of recurrences -- a method to expedite the evaluation
44 // of closed-form functions
45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
47 // On computational properties of chains of recurrences
48 // Eugene V. Zima
50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 // Robert A. van Engelen
53 // Efficient Symbolic Analysis for Optimizing Compilers
54 // Robert A. van Engelen
56 // Using the chains of recurrences algebra for data dependence testing and
57 // induction variable substitution
58 // MS Thesis, Johnie Birch
60 //===----------------------------------------------------------------------===//
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/Dominators.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Assembly/Writer.h"
72 #include "llvm/Target/TargetData.h"
73 #include "llvm/Transforms/Scalar.h"
74 #include "llvm/Support/CFG.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/ConstantRange.h"
78 #include "llvm/Support/GetElementPtrTypeIterator.h"
79 #include "llvm/Support/InstIterator.h"
80 #include "llvm/Support/ManagedStatic.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/ADT/Statistic.h"
84 #include "llvm/ADT/STLExtras.h"
85 #include <ostream>
86 #include <algorithm>
87 #include <cmath>
88 using namespace llvm;
90 STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92 STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94 STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96 STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
99 static cl::opt<unsigned>
100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant derived loop"),
103 cl::init(100));
105 static RegisterPass<ScalarEvolution>
106 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107 char ScalarEvolution::ID = 0;
109 //===----------------------------------------------------------------------===//
110 // SCEV class definitions
111 //===----------------------------------------------------------------------===//
113 //===----------------------------------------------------------------------===//
114 // Implementation of the SCEV class.
116 SCEV::~SCEV() {}
117 void SCEV::dump() const {
118 print(errs());
119 errs() << '\n';
122 void SCEV::print(std::ostream &o) const {
123 raw_os_ostream OS(o);
124 print(OS);
127 bool SCEV::isZero() const {
128 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
129 return SC->getValue()->isZero();
130 return false;
134 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
135 SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
137 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
139 return false;
142 const Type *SCEVCouldNotCompute::getType() const {
143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144 return 0;
147 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
148 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
149 return false;
152 SCEVHandle SCEVCouldNotCompute::
153 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
154 const SCEVHandle &Conc,
155 ScalarEvolution &SE) const {
156 return this;
159 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
160 OS << "***COULDNOTCOMPUTE***";
163 bool SCEVCouldNotCompute::classof(const SCEV *S) {
164 return S->getSCEVType() == scCouldNotCompute;
168 // SCEVConstants - Only allow the creation of one SCEVConstant for any
169 // particular value. Don't use a SCEVHandle here, or else the object will
170 // never be deleted!
171 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174 SCEVConstant::~SCEVConstant() {
175 SCEVConstants->erase(V);
178 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
179 SCEVConstant *&R = (*SCEVConstants)[V];
180 if (R == 0) R = new SCEVConstant(V);
181 return R;
184 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
185 return getConstant(ConstantInt::get(Val));
188 const Type *SCEVConstant::getType() const { return V->getType(); }
190 void SCEVConstant::print(raw_ostream &OS) const {
191 WriteAsOperand(OS, V, false);
194 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
195 const SCEVHandle &op, const Type *ty)
196 : SCEV(SCEVTy), Op(op), Ty(ty) {}
198 SCEVCastExpr::~SCEVCastExpr() {}
200 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
201 return Op->dominates(BB, DT);
204 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
205 // particular input. Don't use a SCEVHandle here, or else the object will
206 // never be deleted!
207 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
208 SCEVTruncateExpr*> > SCEVTruncates;
210 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
211 : SCEVCastExpr(scTruncate, op, ty) {
212 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
213 (Ty->isInteger() || isa<PointerType>(Ty)) &&
214 "Cannot truncate non-integer value!");
217 SCEVTruncateExpr::~SCEVTruncateExpr() {
218 SCEVTruncates->erase(std::make_pair(Op, Ty));
221 void SCEVTruncateExpr::print(raw_ostream &OS) const {
222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
225 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226 // particular input. Don't use a SCEVHandle here, or else the object will never
227 // be deleted!
228 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
229 SCEVZeroExtendExpr*> > SCEVZeroExtends;
231 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
232 : SCEVCastExpr(scZeroExtend, op, ty) {
233 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
234 (Ty->isInteger() || isa<PointerType>(Ty)) &&
235 "Cannot zero extend non-integer value!");
238 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
239 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
243 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
246 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
247 // particular input. Don't use a SCEVHandle here, or else the object will never
248 // be deleted!
249 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
250 SCEVSignExtendExpr*> > SCEVSignExtends;
252 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
253 : SCEVCastExpr(scSignExtend, op, ty) {
254 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
255 (Ty->isInteger() || isa<PointerType>(Ty)) &&
256 "Cannot sign extend non-integer value!");
259 SCEVSignExtendExpr::~SCEVSignExtendExpr() {
260 SCEVSignExtends->erase(std::make_pair(Op, Ty));
263 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
264 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
267 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
268 // particular input. Don't use a SCEVHandle here, or else the object will never
269 // be deleted!
270 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
271 SCEVCommutativeExpr*> > SCEVCommExprs;
273 SCEVCommutativeExpr::~SCEVCommutativeExpr() {
274 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
275 std::vector<SCEV*>(Operands.begin(),
276 Operands.end())));
279 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
280 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
281 const char *OpStr = getOperationStr();
282 OS << "(" << *Operands[0];
283 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
284 OS << OpStr << *Operands[i];
285 OS << ")";
288 SCEVHandle SCEVCommutativeExpr::
289 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
290 const SCEVHandle &Conc,
291 ScalarEvolution &SE) const {
292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
293 SCEVHandle H =
294 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
295 if (H != getOperand(i)) {
296 std::vector<SCEVHandle> NewOps;
297 NewOps.reserve(getNumOperands());
298 for (unsigned j = 0; j != i; ++j)
299 NewOps.push_back(getOperand(j));
300 NewOps.push_back(H);
301 for (++i; i != e; ++i)
302 NewOps.push_back(getOperand(i)->
303 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
305 if (isa<SCEVAddExpr>(this))
306 return SE.getAddExpr(NewOps);
307 else if (isa<SCEVMulExpr>(this))
308 return SE.getMulExpr(NewOps);
309 else if (isa<SCEVSMaxExpr>(this))
310 return SE.getSMaxExpr(NewOps);
311 else if (isa<SCEVUMaxExpr>(this))
312 return SE.getUMaxExpr(NewOps);
313 else
314 assert(0 && "Unknown commutative expr!");
317 return this;
320 bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
322 if (!getOperand(i)->dominates(BB, DT))
323 return false;
325 return true;
329 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
330 // input. Don't use a SCEVHandle here, or else the object will never be
331 // deleted!
332 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
333 SCEVUDivExpr*> > SCEVUDivs;
335 SCEVUDivExpr::~SCEVUDivExpr() {
336 SCEVUDivs->erase(std::make_pair(LHS, RHS));
339 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
340 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
343 void SCEVUDivExpr::print(raw_ostream &OS) const {
344 OS << "(" << *LHS << " /u " << *RHS << ")";
347 const Type *SCEVUDivExpr::getType() const {
348 return LHS->getType();
351 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
352 // particular input. Don't use a SCEVHandle here, or else the object will never
353 // be deleted!
354 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
355 SCEVAddRecExpr*> > SCEVAddRecExprs;
357 SCEVAddRecExpr::~SCEVAddRecExpr() {
358 SCEVAddRecExprs->erase(std::make_pair(L,
359 std::vector<SCEV*>(Operands.begin(),
360 Operands.end())));
363 bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
364 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
365 if (!getOperand(i)->dominates(BB, DT))
366 return false;
368 return true;
372 SCEVHandle SCEVAddRecExpr::
373 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
374 const SCEVHandle &Conc,
375 ScalarEvolution &SE) const {
376 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
377 SCEVHandle H =
378 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
379 if (H != getOperand(i)) {
380 std::vector<SCEVHandle> NewOps;
381 NewOps.reserve(getNumOperands());
382 for (unsigned j = 0; j != i; ++j)
383 NewOps.push_back(getOperand(j));
384 NewOps.push_back(H);
385 for (++i; i != e; ++i)
386 NewOps.push_back(getOperand(i)->
387 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
389 return SE.getAddRecExpr(NewOps, L);
392 return this;
396 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
397 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
398 // contain L and if the start is invariant.
399 return !QueryLoop->contains(L->getHeader()) &&
400 getOperand(0)->isLoopInvariant(QueryLoop);
404 void SCEVAddRecExpr::print(raw_ostream &OS) const {
405 OS << "{" << *Operands[0];
406 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
407 OS << ",+," << *Operands[i];
408 OS << "}<" << L->getHeader()->getName() + ">";
411 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
412 // value. Don't use a SCEVHandle here, or else the object will never be
413 // deleted!
414 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
416 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
418 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
419 // All non-instruction values are loop invariant. All instructions are loop
420 // invariant if they are not contained in the specified loop.
421 if (Instruction *I = dyn_cast<Instruction>(V))
422 return !L->contains(I->getParent());
423 return true;
426 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
427 if (Instruction *I = dyn_cast<Instruction>(getValue()))
428 return DT->dominates(I->getParent(), BB);
429 return true;
432 const Type *SCEVUnknown::getType() const {
433 return V->getType();
436 void SCEVUnknown::print(raw_ostream &OS) const {
437 if (isa<PointerType>(V->getType()))
438 OS << "(ptrtoint " << *V->getType() << " ";
439 WriteAsOperand(OS, V, false);
440 if (isa<PointerType>(V->getType()))
441 OS << " to iPTR)";
444 //===----------------------------------------------------------------------===//
445 // SCEV Utilities
446 //===----------------------------------------------------------------------===//
448 namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
451 /// expressions.
452 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
453 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
454 return LHS->getSCEVType() < RHS->getSCEVType();
459 /// GroupByComplexity - Given a list of SCEV objects, order them by their
460 /// complexity, and group objects of the same complexity together by value.
461 /// When this routine is finished, we know that any duplicates in the vector are
462 /// consecutive and that complexity is monotonically increasing.
464 /// Note that we go take special precautions to ensure that we get determinstic
465 /// results from this routine. In other words, we don't want the results of
466 /// this to depend on where the addresses of various SCEV objects happened to
467 /// land in memory.
469 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
470 if (Ops.size() < 2) return; // Noop
471 if (Ops.size() == 2) {
472 // This is the common case, which also happens to be trivially simple.
473 // Special case it.
474 if (SCEVComplexityCompare()(Ops[1], Ops[0]))
475 std::swap(Ops[0], Ops[1]);
476 return;
479 // Do the rough sort by complexity.
480 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
482 // Now that we are sorted by complexity, group elements of the same
483 // complexity. Note that this is, at worst, N^2, but the vector is likely to
484 // be extremely short in practice. Note that we take this approach because we
485 // do not want to depend on the addresses of the objects we are grouping.
486 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
487 SCEV *S = Ops[i];
488 unsigned Complexity = S->getSCEVType();
490 // If there are any objects of the same complexity and same value as this
491 // one, group them.
492 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
493 if (Ops[j] == S) { // Found a duplicate.
494 // Move it to immediately after i'th element.
495 std::swap(Ops[i+1], Ops[j]);
496 ++i; // no need to rescan it.
497 if (i == e-2) return; // Done!
505 //===----------------------------------------------------------------------===//
506 // Simple SCEV method implementations
507 //===----------------------------------------------------------------------===//
509 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
510 // Assume, K > 0.
511 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
512 ScalarEvolution &SE,
513 const Type* ResultTy) {
514 // Handle the simplest case efficiently.
515 if (K == 1)
516 return SE.getTruncateOrZeroExtend(It, ResultTy);
518 // We are using the following formula for BC(It, K):
520 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
522 // Suppose, W is the bitwidth of the return value. We must be prepared for
523 // overflow. Hence, we must assure that the result of our computation is
524 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
525 // safe in modular arithmetic.
527 // However, this code doesn't use exactly that formula; the formula it uses
528 // is something like the following, where T is the number of factors of 2 in
529 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
530 // exponentiation:
532 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
534 // This formula is trivially equivalent to the previous formula. However,
535 // this formula can be implemented much more efficiently. The trick is that
536 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
537 // arithmetic. To do exact division in modular arithmetic, all we have
538 // to do is multiply by the inverse. Therefore, this step can be done at
539 // width W.
541 // The next issue is how to safely do the division by 2^T. The way this
542 // is done is by doing the multiplication step at a width of at least W + T
543 // bits. This way, the bottom W+T bits of the product are accurate. Then,
544 // when we perform the division by 2^T (which is equivalent to a right shift
545 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
546 // truncated out after the division by 2^T.
548 // In comparison to just directly using the first formula, this technique
549 // is much more efficient; using the first formula requires W * K bits,
550 // but this formula less than W + K bits. Also, the first formula requires
551 // a division step, whereas this formula only requires multiplies and shifts.
553 // It doesn't matter whether the subtraction step is done in the calculation
554 // width or the input iteration count's width; if the subtraction overflows,
555 // the result must be zero anyway. We prefer here to do it in the width of
556 // the induction variable because it helps a lot for certain cases; CodeGen
557 // isn't smart enough to ignore the overflow, which leads to much less
558 // efficient code if the width of the subtraction is wider than the native
559 // register width.
561 // (It's possible to not widen at all by pulling out factors of 2 before
562 // the multiplication; for example, K=2 can be calculated as
563 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
564 // extra arithmetic, so it's not an obvious win, and it gets
565 // much more complicated for K > 3.)
567 // Protection from insane SCEVs; this bound is conservative,
568 // but it probably doesn't matter.
569 if (K > 1000)
570 return SE.getCouldNotCompute();
572 unsigned W = SE.getTypeSizeInBits(ResultTy);
574 // Calculate K! / 2^T and T; we divide out the factors of two before
575 // multiplying for calculating K! / 2^T to avoid overflow.
576 // Other overflow doesn't matter because we only care about the bottom
577 // W bits of the result.
578 APInt OddFactorial(W, 1);
579 unsigned T = 1;
580 for (unsigned i = 3; i <= K; ++i) {
581 APInt Mult(W, i);
582 unsigned TwoFactors = Mult.countTrailingZeros();
583 T += TwoFactors;
584 Mult = Mult.lshr(TwoFactors);
585 OddFactorial *= Mult;
588 // We need at least W + T bits for the multiplication step
589 unsigned CalculationBits = W + T;
591 // Calcuate 2^T, at width T+W.
592 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
594 // Calculate the multiplicative inverse of K! / 2^T;
595 // this multiplication factor will perform the exact division by
596 // K! / 2^T.
597 APInt Mod = APInt::getSignedMinValue(W+1);
598 APInt MultiplyFactor = OddFactorial.zext(W+1);
599 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
600 MultiplyFactor = MultiplyFactor.trunc(W);
602 // Calculate the product, at width T+W
603 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
604 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
605 for (unsigned i = 1; i != K; ++i) {
606 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
607 Dividend = SE.getMulExpr(Dividend,
608 SE.getTruncateOrZeroExtend(S, CalculationTy));
611 // Divide by 2^T
612 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
614 // Truncate the result, and divide by K! / 2^T.
616 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
617 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
620 /// evaluateAtIteration - Return the value of this chain of recurrences at
621 /// the specified iteration number. We can evaluate this recurrence by
622 /// multiplying each element in the chain by the binomial coefficient
623 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
625 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
627 /// where BC(It, k) stands for binomial coefficient.
629 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
630 ScalarEvolution &SE) const {
631 SCEVHandle Result = getStart();
632 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
633 // The computation is correct in the face of overflow provided that the
634 // multiplication is performed _after_ the evaluation of the binomial
635 // coefficient.
636 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
637 if (isa<SCEVCouldNotCompute>(Coeff))
638 return Coeff;
640 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
642 return Result;
645 //===----------------------------------------------------------------------===//
646 // SCEV Expression folder implementations
647 //===----------------------------------------------------------------------===//
649 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
650 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
651 "This is not a truncating conversion!");
653 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
654 return getUnknown(
655 ConstantExpr::getTrunc(SC->getValue(), Ty));
657 // trunc(trunc(x)) --> trunc(x)
658 if (SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
659 return getTruncateExpr(ST->getOperand(), Ty);
661 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
662 if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
663 return getTruncateOrSignExtend(SS->getOperand(), Ty);
665 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
666 if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
667 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
669 // If the input value is a chrec scev made out of constants, truncate
670 // all of the constants.
671 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
672 std::vector<SCEVHandle> Operands;
673 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
674 // FIXME: This should allow truncation of other expression types!
675 if (isa<SCEVConstant>(AddRec->getOperand(i)))
676 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
677 else
678 break;
679 if (Operands.size() == AddRec->getNumOperands())
680 return getAddRecExpr(Operands, AddRec->getLoop());
683 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
684 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
685 return Result;
688 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
689 const Type *Ty) {
690 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
691 "This is not an extending conversion!");
693 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
694 const Type *IntTy = getEffectiveSCEVType(Ty);
695 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
696 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
697 return getUnknown(C);
700 // zext(zext(x)) --> zext(x)
701 if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
702 return getZeroExtendExpr(SZ->getOperand(), Ty);
704 // If the input value is a chrec scev, and we can prove that the value
705 // did not overflow the old, smaller, value, we can zero extend all of the
706 // operands (often constants). This allows analysis of something like
707 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
708 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
709 if (AR->isAffine()) {
710 // Check whether the backedge-taken count is SCEVCouldNotCompute.
711 // Note that this serves two purposes: It filters out loops that are
712 // simply not analyzable, and it covers the case where this code is
713 // being called from within backedge-taken count analysis, such that
714 // attempting to ask for the backedge-taken count would likely result
715 // in infinite recursion. In the later case, the analysis code will
716 // cope with a conservative value, and it will take care to purge
717 // that value once it has finished.
718 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
719 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
720 // Manually compute the final value for AR, checking for
721 // overflow.
722 SCEVHandle Start = AR->getStart();
723 SCEVHandle Step = AR->getStepRecurrence(*this);
725 // Check whether the backedge-taken count can be losslessly casted to
726 // the addrec's type. The count is always unsigned.
727 SCEVHandle CastedMaxBECount =
728 getTruncateOrZeroExtend(MaxBECount, Start->getType());
729 if (MaxBECount ==
730 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
731 const Type *WideTy =
732 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
733 // Check whether Start+Step*MaxBECount has no unsigned overflow.
734 SCEVHandle ZMul =
735 getMulExpr(CastedMaxBECount,
736 getTruncateOrZeroExtend(Step, Start->getType()));
737 SCEVHandle Add = getAddExpr(Start, ZMul);
738 if (getZeroExtendExpr(Add, WideTy) ==
739 getAddExpr(getZeroExtendExpr(Start, WideTy),
740 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
741 getZeroExtendExpr(Step, WideTy))))
742 // Return the expression with the addrec on the outside.
743 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
744 getZeroExtendExpr(Step, Ty),
745 AR->getLoop());
747 // Similar to above, only this time treat the step value as signed.
748 // This covers loops that count down.
749 SCEVHandle SMul =
750 getMulExpr(CastedMaxBECount,
751 getTruncateOrSignExtend(Step, Start->getType()));
752 Add = getAddExpr(Start, SMul);
753 if (getZeroExtendExpr(Add, WideTy) ==
754 getAddExpr(getZeroExtendExpr(Start, WideTy),
755 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
756 getSignExtendExpr(Step, WideTy))))
757 // Return the expression with the addrec on the outside.
758 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
759 getSignExtendExpr(Step, Ty),
760 AR->getLoop());
765 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
766 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
767 return Result;
770 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
771 const Type *Ty) {
772 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
773 "This is not an extending conversion!");
775 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
776 const Type *IntTy = getEffectiveSCEVType(Ty);
777 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
778 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
779 return getUnknown(C);
782 // sext(sext(x)) --> sext(x)
783 if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
784 return getSignExtendExpr(SS->getOperand(), Ty);
786 // If the input value is a chrec scev, and we can prove that the value
787 // did not overflow the old, smaller, value, we can sign extend all of the
788 // operands (often constants). This allows analysis of something like
789 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
790 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
791 if (AR->isAffine()) {
792 // Check whether the backedge-taken count is SCEVCouldNotCompute.
793 // Note that this serves two purposes: It filters out loops that are
794 // simply not analyzable, and it covers the case where this code is
795 // being called from within backedge-taken count analysis, such that
796 // attempting to ask for the backedge-taken count would likely result
797 // in infinite recursion. In the later case, the analysis code will
798 // cope with a conservative value, and it will take care to purge
799 // that value once it has finished.
800 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
801 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
802 // Manually compute the final value for AR, checking for
803 // overflow.
804 SCEVHandle Start = AR->getStart();
805 SCEVHandle Step = AR->getStepRecurrence(*this);
807 // Check whether the backedge-taken count can be losslessly casted to
808 // the addrec's type. The count is always unsigned.
809 SCEVHandle CastedMaxBECount =
810 getTruncateOrZeroExtend(MaxBECount, Start->getType());
811 if (MaxBECount ==
812 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
813 const Type *WideTy =
814 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
815 // Check whether Start+Step*MaxBECount has no signed overflow.
816 SCEVHandle SMul =
817 getMulExpr(CastedMaxBECount,
818 getTruncateOrSignExtend(Step, Start->getType()));
819 SCEVHandle Add = getAddExpr(Start, SMul);
820 if (getSignExtendExpr(Add, WideTy) ==
821 getAddExpr(getSignExtendExpr(Start, WideTy),
822 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
823 getSignExtendExpr(Step, WideTy))))
824 // Return the expression with the addrec on the outside.
825 return getAddRecExpr(getSignExtendExpr(Start, Ty),
826 getSignExtendExpr(Step, Ty),
827 AR->getLoop());
832 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
833 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
834 return Result;
837 // get - Get a canonical add expression, or something simpler if possible.
838 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
839 assert(!Ops.empty() && "Cannot get empty add!");
840 if (Ops.size() == 1) return Ops[0];
842 // Sort by complexity, this groups all similar expression types together.
843 GroupByComplexity(Ops);
845 // If there are any constants, fold them together.
846 unsigned Idx = 0;
847 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
848 ++Idx;
849 assert(Idx < Ops.size());
850 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
851 // We found two constants, fold them together!
852 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
853 RHSC->getValue()->getValue());
854 Ops[0] = getConstant(Fold);
855 Ops.erase(Ops.begin()+1); // Erase the folded element
856 if (Ops.size() == 1) return Ops[0];
857 LHSC = cast<SCEVConstant>(Ops[0]);
860 // If we are left with a constant zero being added, strip it off.
861 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
862 Ops.erase(Ops.begin());
863 --Idx;
867 if (Ops.size() == 1) return Ops[0];
869 // Okay, check to see if the same value occurs in the operand list twice. If
870 // so, merge them together into an multiply expression. Since we sorted the
871 // list, these values are required to be adjacent.
872 const Type *Ty = Ops[0]->getType();
873 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
874 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
875 // Found a match, merge the two values into a multiply, and add any
876 // remaining values to the result.
877 SCEVHandle Two = getIntegerSCEV(2, Ty);
878 SCEVHandle Mul = getMulExpr(Ops[i], Two);
879 if (Ops.size() == 2)
880 return Mul;
881 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
882 Ops.push_back(Mul);
883 return getAddExpr(Ops);
886 // Now we know the first non-constant operand. Skip past any cast SCEVs.
887 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
888 ++Idx;
890 // If there are add operands they would be next.
891 if (Idx < Ops.size()) {
892 bool DeletedAdd = false;
893 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
894 // If we have an add, expand the add operands onto the end of the operands
895 // list.
896 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
897 Ops.erase(Ops.begin()+Idx);
898 DeletedAdd = true;
901 // If we deleted at least one add, we added operands to the end of the list,
902 // and they are not necessarily sorted. Recurse to resort and resimplify
903 // any operands we just aquired.
904 if (DeletedAdd)
905 return getAddExpr(Ops);
908 // Skip over the add expression until we get to a multiply.
909 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
910 ++Idx;
912 // If we are adding something to a multiply expression, make sure the
913 // something is not already an operand of the multiply. If so, merge it into
914 // the multiply.
915 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
916 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
917 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
918 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
919 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
920 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
921 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
922 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
923 if (Mul->getNumOperands() != 2) {
924 // If the multiply has more than two operands, we must get the
925 // Y*Z term.
926 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
927 MulOps.erase(MulOps.begin()+MulOp);
928 InnerMul = getMulExpr(MulOps);
930 SCEVHandle One = getIntegerSCEV(1, Ty);
931 SCEVHandle AddOne = getAddExpr(InnerMul, One);
932 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
933 if (Ops.size() == 2) return OuterMul;
934 if (AddOp < Idx) {
935 Ops.erase(Ops.begin()+AddOp);
936 Ops.erase(Ops.begin()+Idx-1);
937 } else {
938 Ops.erase(Ops.begin()+Idx);
939 Ops.erase(Ops.begin()+AddOp-1);
941 Ops.push_back(OuterMul);
942 return getAddExpr(Ops);
945 // Check this multiply against other multiplies being added together.
946 for (unsigned OtherMulIdx = Idx+1;
947 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
948 ++OtherMulIdx) {
949 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
950 // If MulOp occurs in OtherMul, we can fold the two multiplies
951 // together.
952 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
953 OMulOp != e; ++OMulOp)
954 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
955 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
956 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
957 if (Mul->getNumOperands() != 2) {
958 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
959 MulOps.erase(MulOps.begin()+MulOp);
960 InnerMul1 = getMulExpr(MulOps);
962 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
963 if (OtherMul->getNumOperands() != 2) {
964 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
965 OtherMul->op_end());
966 MulOps.erase(MulOps.begin()+OMulOp);
967 InnerMul2 = getMulExpr(MulOps);
969 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
970 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
971 if (Ops.size() == 2) return OuterMul;
972 Ops.erase(Ops.begin()+Idx);
973 Ops.erase(Ops.begin()+OtherMulIdx-1);
974 Ops.push_back(OuterMul);
975 return getAddExpr(Ops);
981 // If there are any add recurrences in the operands list, see if any other
982 // added values are loop invariant. If so, we can fold them into the
983 // recurrence.
984 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
985 ++Idx;
987 // Scan over all recurrences, trying to fold loop invariants into them.
988 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
989 // Scan all of the other operands to this add and add them to the vector if
990 // they are loop invariant w.r.t. the recurrence.
991 std::vector<SCEVHandle> LIOps;
992 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
993 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
994 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
995 LIOps.push_back(Ops[i]);
996 Ops.erase(Ops.begin()+i);
997 --i; --e;
1000 // If we found some loop invariants, fold them into the recurrence.
1001 if (!LIOps.empty()) {
1002 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1003 LIOps.push_back(AddRec->getStart());
1005 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1006 AddRecOps[0] = getAddExpr(LIOps);
1008 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1009 // If all of the other operands were loop invariant, we are done.
1010 if (Ops.size() == 1) return NewRec;
1012 // Otherwise, add the folded AddRec by the non-liv parts.
1013 for (unsigned i = 0;; ++i)
1014 if (Ops[i] == AddRec) {
1015 Ops[i] = NewRec;
1016 break;
1018 return getAddExpr(Ops);
1021 // Okay, if there weren't any loop invariants to be folded, check to see if
1022 // there are multiple AddRec's with the same loop induction variable being
1023 // added together. If so, we can fold them.
1024 for (unsigned OtherIdx = Idx+1;
1025 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1026 if (OtherIdx != Idx) {
1027 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1028 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1029 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1030 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1031 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1032 if (i >= NewOps.size()) {
1033 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1034 OtherAddRec->op_end());
1035 break;
1037 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1039 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1041 if (Ops.size() == 2) return NewAddRec;
1043 Ops.erase(Ops.begin()+Idx);
1044 Ops.erase(Ops.begin()+OtherIdx-1);
1045 Ops.push_back(NewAddRec);
1046 return getAddExpr(Ops);
1050 // Otherwise couldn't fold anything into this recurrence. Move onto the
1051 // next one.
1054 // Okay, it looks like we really DO need an add expr. Check to see if we
1055 // already have one, otherwise create a new one.
1056 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1057 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1058 SCEVOps)];
1059 if (Result == 0) Result = new SCEVAddExpr(Ops);
1060 return Result;
1064 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1065 assert(!Ops.empty() && "Cannot get empty mul!");
1067 // Sort by complexity, this groups all similar expression types together.
1068 GroupByComplexity(Ops);
1070 // If there are any constants, fold them together.
1071 unsigned Idx = 0;
1072 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1074 // C1*(C2+V) -> C1*C2 + C1*V
1075 if (Ops.size() == 2)
1076 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1077 if (Add->getNumOperands() == 2 &&
1078 isa<SCEVConstant>(Add->getOperand(0)))
1079 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1080 getMulExpr(LHSC, Add->getOperand(1)));
1083 ++Idx;
1084 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1085 // We found two constants, fold them together!
1086 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1087 RHSC->getValue()->getValue());
1088 Ops[0] = getConstant(Fold);
1089 Ops.erase(Ops.begin()+1); // Erase the folded element
1090 if (Ops.size() == 1) return Ops[0];
1091 LHSC = cast<SCEVConstant>(Ops[0]);
1094 // If we are left with a constant one being multiplied, strip it off.
1095 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1096 Ops.erase(Ops.begin());
1097 --Idx;
1098 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1099 // If we have a multiply of zero, it will always be zero.
1100 return Ops[0];
1104 // Skip over the add expression until we get to a multiply.
1105 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1106 ++Idx;
1108 if (Ops.size() == 1)
1109 return Ops[0];
1111 // If there are mul operands inline them all into this expression.
1112 if (Idx < Ops.size()) {
1113 bool DeletedMul = false;
1114 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1115 // If we have an mul, expand the mul operands onto the end of the operands
1116 // list.
1117 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1118 Ops.erase(Ops.begin()+Idx);
1119 DeletedMul = true;
1122 // If we deleted at least one mul, we added operands to the end of the list,
1123 // and they are not necessarily sorted. Recurse to resort and resimplify
1124 // any operands we just aquired.
1125 if (DeletedMul)
1126 return getMulExpr(Ops);
1129 // If there are any add recurrences in the operands list, see if any other
1130 // added values are loop invariant. If so, we can fold them into the
1131 // recurrence.
1132 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1133 ++Idx;
1135 // Scan over all recurrences, trying to fold loop invariants into them.
1136 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1137 // Scan all of the other operands to this mul and add them to the vector if
1138 // they are loop invariant w.r.t. the recurrence.
1139 std::vector<SCEVHandle> LIOps;
1140 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1141 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1142 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1143 LIOps.push_back(Ops[i]);
1144 Ops.erase(Ops.begin()+i);
1145 --i; --e;
1148 // If we found some loop invariants, fold them into the recurrence.
1149 if (!LIOps.empty()) {
1150 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1151 std::vector<SCEVHandle> NewOps;
1152 NewOps.reserve(AddRec->getNumOperands());
1153 if (LIOps.size() == 1) {
1154 SCEV *Scale = LIOps[0];
1155 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1156 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1157 } else {
1158 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1159 std::vector<SCEVHandle> MulOps(LIOps);
1160 MulOps.push_back(AddRec->getOperand(i));
1161 NewOps.push_back(getMulExpr(MulOps));
1165 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1167 // If all of the other operands were loop invariant, we are done.
1168 if (Ops.size() == 1) return NewRec;
1170 // Otherwise, multiply the folded AddRec by the non-liv parts.
1171 for (unsigned i = 0;; ++i)
1172 if (Ops[i] == AddRec) {
1173 Ops[i] = NewRec;
1174 break;
1176 return getMulExpr(Ops);
1179 // Okay, if there weren't any loop invariants to be folded, check to see if
1180 // there are multiple AddRec's with the same loop induction variable being
1181 // multiplied together. If so, we can fold them.
1182 for (unsigned OtherIdx = Idx+1;
1183 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1184 if (OtherIdx != Idx) {
1185 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1186 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1187 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1188 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1189 SCEVHandle NewStart = getMulExpr(F->getStart(),
1190 G->getStart());
1191 SCEVHandle B = F->getStepRecurrence(*this);
1192 SCEVHandle D = G->getStepRecurrence(*this);
1193 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1194 getMulExpr(G, B),
1195 getMulExpr(B, D));
1196 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1197 F->getLoop());
1198 if (Ops.size() == 2) return NewAddRec;
1200 Ops.erase(Ops.begin()+Idx);
1201 Ops.erase(Ops.begin()+OtherIdx-1);
1202 Ops.push_back(NewAddRec);
1203 return getMulExpr(Ops);
1207 // Otherwise couldn't fold anything into this recurrence. Move onto the
1208 // next one.
1211 // Okay, it looks like we really DO need an mul expr. Check to see if we
1212 // already have one, otherwise create a new one.
1213 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1214 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1215 SCEVOps)];
1216 if (Result == 0)
1217 Result = new SCEVMulExpr(Ops);
1218 return Result;
1221 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1222 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1223 if (RHSC->getValue()->equalsInt(1))
1224 return LHS; // X udiv 1 --> x
1226 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1227 Constant *LHSCV = LHSC->getValue();
1228 Constant *RHSCV = RHSC->getValue();
1229 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1233 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1235 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1236 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1237 return Result;
1241 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1242 /// specified loop. Simplify the expression as much as possible.
1243 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1244 const SCEVHandle &Step, const Loop *L) {
1245 std::vector<SCEVHandle> Operands;
1246 Operands.push_back(Start);
1247 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1248 if (StepChrec->getLoop() == L) {
1249 Operands.insert(Operands.end(), StepChrec->op_begin(),
1250 StepChrec->op_end());
1251 return getAddRecExpr(Operands, L);
1254 Operands.push_back(Step);
1255 return getAddRecExpr(Operands, L);
1258 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1259 /// specified loop. Simplify the expression as much as possible.
1260 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1261 const Loop *L) {
1262 if (Operands.size() == 1) return Operands[0];
1264 if (Operands.back()->isZero()) {
1265 Operands.pop_back();
1266 return getAddRecExpr(Operands, L); // {X,+,0} --> X
1269 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1270 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1271 const Loop* NestedLoop = NestedAR->getLoop();
1272 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1273 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1274 NestedAR->op_end());
1275 SCEVHandle NestedARHandle(NestedAR);
1276 Operands[0] = NestedAR->getStart();
1277 NestedOperands[0] = getAddRecExpr(Operands, L);
1278 return getAddRecExpr(NestedOperands, NestedLoop);
1282 SCEVAddRecExpr *&Result =
1283 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1284 Operands.end()))];
1285 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1286 return Result;
1289 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1290 const SCEVHandle &RHS) {
1291 std::vector<SCEVHandle> Ops;
1292 Ops.push_back(LHS);
1293 Ops.push_back(RHS);
1294 return getSMaxExpr(Ops);
1297 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1298 assert(!Ops.empty() && "Cannot get empty smax!");
1299 if (Ops.size() == 1) return Ops[0];
1301 // Sort by complexity, this groups all similar expression types together.
1302 GroupByComplexity(Ops);
1304 // If there are any constants, fold them together.
1305 unsigned Idx = 0;
1306 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1307 ++Idx;
1308 assert(Idx < Ops.size());
1309 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1310 // We found two constants, fold them together!
1311 ConstantInt *Fold = ConstantInt::get(
1312 APIntOps::smax(LHSC->getValue()->getValue(),
1313 RHSC->getValue()->getValue()));
1314 Ops[0] = getConstant(Fold);
1315 Ops.erase(Ops.begin()+1); // Erase the folded element
1316 if (Ops.size() == 1) return Ops[0];
1317 LHSC = cast<SCEVConstant>(Ops[0]);
1320 // If we are left with a constant -inf, strip it off.
1321 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1322 Ops.erase(Ops.begin());
1323 --Idx;
1327 if (Ops.size() == 1) return Ops[0];
1329 // Find the first SMax
1330 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1331 ++Idx;
1333 // Check to see if one of the operands is an SMax. If so, expand its operands
1334 // onto our operand list, and recurse to simplify.
1335 if (Idx < Ops.size()) {
1336 bool DeletedSMax = false;
1337 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1338 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1339 Ops.erase(Ops.begin()+Idx);
1340 DeletedSMax = true;
1343 if (DeletedSMax)
1344 return getSMaxExpr(Ops);
1347 // Okay, check to see if the same value occurs in the operand list twice. If
1348 // so, delete one. Since we sorted the list, these values are required to
1349 // be adjacent.
1350 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1351 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1352 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1353 --i; --e;
1356 if (Ops.size() == 1) return Ops[0];
1358 assert(!Ops.empty() && "Reduced smax down to nothing!");
1360 // Okay, it looks like we really DO need an smax expr. Check to see if we
1361 // already have one, otherwise create a new one.
1362 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1363 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1364 SCEVOps)];
1365 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1366 return Result;
1369 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1370 const SCEVHandle &RHS) {
1371 std::vector<SCEVHandle> Ops;
1372 Ops.push_back(LHS);
1373 Ops.push_back(RHS);
1374 return getUMaxExpr(Ops);
1377 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1378 assert(!Ops.empty() && "Cannot get empty umax!");
1379 if (Ops.size() == 1) return Ops[0];
1381 // Sort by complexity, this groups all similar expression types together.
1382 GroupByComplexity(Ops);
1384 // If there are any constants, fold them together.
1385 unsigned Idx = 0;
1386 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1387 ++Idx;
1388 assert(Idx < Ops.size());
1389 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1390 // We found two constants, fold them together!
1391 ConstantInt *Fold = ConstantInt::get(
1392 APIntOps::umax(LHSC->getValue()->getValue(),
1393 RHSC->getValue()->getValue()));
1394 Ops[0] = getConstant(Fold);
1395 Ops.erase(Ops.begin()+1); // Erase the folded element
1396 if (Ops.size() == 1) return Ops[0];
1397 LHSC = cast<SCEVConstant>(Ops[0]);
1400 // If we are left with a constant zero, strip it off.
1401 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1402 Ops.erase(Ops.begin());
1403 --Idx;
1407 if (Ops.size() == 1) return Ops[0];
1409 // Find the first UMax
1410 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1411 ++Idx;
1413 // Check to see if one of the operands is a UMax. If so, expand its operands
1414 // onto our operand list, and recurse to simplify.
1415 if (Idx < Ops.size()) {
1416 bool DeletedUMax = false;
1417 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1418 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1419 Ops.erase(Ops.begin()+Idx);
1420 DeletedUMax = true;
1423 if (DeletedUMax)
1424 return getUMaxExpr(Ops);
1427 // Okay, check to see if the same value occurs in the operand list twice. If
1428 // so, delete one. Since we sorted the list, these values are required to
1429 // be adjacent.
1430 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1431 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1432 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1433 --i; --e;
1436 if (Ops.size() == 1) return Ops[0];
1438 assert(!Ops.empty() && "Reduced umax down to nothing!");
1440 // Okay, it looks like we really DO need a umax expr. Check to see if we
1441 // already have one, otherwise create a new one.
1442 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1443 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1444 SCEVOps)];
1445 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1446 return Result;
1449 SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1450 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1451 return getConstant(CI);
1452 if (isa<ConstantPointerNull>(V))
1453 return getIntegerSCEV(0, V->getType());
1454 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1455 if (Result == 0) Result = new SCEVUnknown(V);
1456 return Result;
1459 //===----------------------------------------------------------------------===//
1460 // Basic SCEV Analysis and PHI Idiom Recognition Code
1463 /// deleteValueFromRecords - This method should be called by the
1464 /// client before it removes an instruction from the program, to make sure
1465 /// that no dangling references are left around.
1466 void ScalarEvolution::deleteValueFromRecords(Value *V) {
1467 SmallVector<Value *, 16> Worklist;
1469 if (Scalars.erase(V)) {
1470 if (PHINode *PN = dyn_cast<PHINode>(V))
1471 ConstantEvolutionLoopExitValue.erase(PN);
1472 Worklist.push_back(V);
1475 while (!Worklist.empty()) {
1476 Value *VV = Worklist.back();
1477 Worklist.pop_back();
1479 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1480 UI != UE; ++UI) {
1481 Instruction *Inst = cast<Instruction>(*UI);
1482 if (Scalars.erase(Inst)) {
1483 if (PHINode *PN = dyn_cast<PHINode>(VV))
1484 ConstantEvolutionLoopExitValue.erase(PN);
1485 Worklist.push_back(Inst);
1491 /// isSCEVable - Test if values of the given type are analyzable within
1492 /// the SCEV framework. This primarily includes integer types, and it
1493 /// can optionally include pointer types if the ScalarEvolution class
1494 /// has access to target-specific information.
1495 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1496 // Integers are always SCEVable.
1497 if (Ty->isInteger())
1498 return true;
1500 // Pointers are SCEVable if TargetData information is available
1501 // to provide pointer size information.
1502 if (isa<PointerType>(Ty))
1503 return TD != NULL;
1505 // Otherwise it's not SCEVable.
1506 return false;
1509 /// getTypeSizeInBits - Return the size in bits of the specified type,
1510 /// for which isSCEVable must return true.
1511 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1512 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1514 // If we have a TargetData, use it!
1515 if (TD)
1516 return TD->getTypeSizeInBits(Ty);
1518 // Otherwise, we support only integer types.
1519 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1520 return Ty->getPrimitiveSizeInBits();
1523 /// getEffectiveSCEVType - Return a type with the same bitwidth as
1524 /// the given type and which represents how SCEV will treat the given
1525 /// type, for which isSCEVable must return true. For pointer types,
1526 /// this is the pointer-sized integer type.
1527 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1528 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1530 if (Ty->isInteger())
1531 return Ty;
1533 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1534 return TD->getIntPtrType();
1537 SCEVHandle ScalarEvolution::getCouldNotCompute() {
1538 return UnknownValue;
1541 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1542 /// expression and create a new one.
1543 SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1544 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1546 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1547 if (I != Scalars.end()) return I->second;
1548 SCEVHandle S = createSCEV(V);
1549 Scalars.insert(std::make_pair(V, S));
1550 return S;
1553 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1554 /// specified signed integer value and return a SCEV for the constant.
1555 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1556 Ty = getEffectiveSCEVType(Ty);
1557 Constant *C;
1558 if (Val == 0)
1559 C = Constant::getNullValue(Ty);
1560 else if (Ty->isFloatingPoint())
1561 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1562 APFloat::IEEEdouble, Val));
1563 else
1564 C = ConstantInt::get(Ty, Val);
1565 return getUnknown(C);
1568 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1570 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1571 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1572 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1574 const Type *Ty = V->getType();
1575 Ty = getEffectiveSCEVType(Ty);
1576 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1579 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1580 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1581 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1582 return getUnknown(ConstantExpr::getNot(VC->getValue()));
1584 const Type *Ty = V->getType();
1585 Ty = getEffectiveSCEVType(Ty);
1586 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1587 return getMinusSCEV(AllOnes, V);
1590 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1592 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1593 const SCEVHandle &RHS) {
1594 // X - Y --> X + -Y
1595 return getAddExpr(LHS, getNegativeSCEV(RHS));
1598 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1599 /// input value to the specified type. If the type must be extended, it is zero
1600 /// extended.
1601 SCEVHandle
1602 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1603 const Type *Ty) {
1604 const Type *SrcTy = V->getType();
1605 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1606 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1607 "Cannot truncate or zero extend with non-integer arguments!");
1608 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1609 return V; // No conversion
1610 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1611 return getTruncateExpr(V, Ty);
1612 return getZeroExtendExpr(V, Ty);
1615 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1616 /// input value to the specified type. If the type must be extended, it is sign
1617 /// extended.
1618 SCEVHandle
1619 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1620 const Type *Ty) {
1621 const Type *SrcTy = V->getType();
1622 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1623 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1624 "Cannot truncate or zero extend with non-integer arguments!");
1625 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1626 return V; // No conversion
1627 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1628 return getTruncateExpr(V, Ty);
1629 return getSignExtendExpr(V, Ty);
1632 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1633 /// the specified instruction and replaces any references to the symbolic value
1634 /// SymName with the specified value. This is used during PHI resolution.
1635 void ScalarEvolution::
1636 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1637 const SCEVHandle &NewVal) {
1638 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1639 if (SI == Scalars.end()) return;
1641 SCEVHandle NV =
1642 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1643 if (NV == SI->second) return; // No change.
1645 SI->second = NV; // Update the scalars map!
1647 // Any instruction values that use this instruction might also need to be
1648 // updated!
1649 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1650 UI != E; ++UI)
1651 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1654 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1655 /// a loop header, making it a potential recurrence, or it doesn't.
1657 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1658 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
1659 if (const Loop *L = LI->getLoopFor(PN->getParent()))
1660 if (L->getHeader() == PN->getParent()) {
1661 // If it lives in the loop header, it has two incoming values, one
1662 // from outside the loop, and one from inside.
1663 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1664 unsigned BackEdge = IncomingEdge^1;
1666 // While we are analyzing this PHI node, handle its value symbolically.
1667 SCEVHandle SymbolicName = getUnknown(PN);
1668 assert(Scalars.find(PN) == Scalars.end() &&
1669 "PHI node already processed?");
1670 Scalars.insert(std::make_pair(PN, SymbolicName));
1672 // Using this symbolic name for the PHI, analyze the value coming around
1673 // the back-edge.
1674 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1676 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1677 // has a special value for the first iteration of the loop.
1679 // If the value coming around the backedge is an add with the symbolic
1680 // value we just inserted, then we found a simple induction variable!
1681 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1682 // If there is a single occurrence of the symbolic value, replace it
1683 // with a recurrence.
1684 unsigned FoundIndex = Add->getNumOperands();
1685 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1686 if (Add->getOperand(i) == SymbolicName)
1687 if (FoundIndex == e) {
1688 FoundIndex = i;
1689 break;
1692 if (FoundIndex != Add->getNumOperands()) {
1693 // Create an add with everything but the specified operand.
1694 std::vector<SCEVHandle> Ops;
1695 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1696 if (i != FoundIndex)
1697 Ops.push_back(Add->getOperand(i));
1698 SCEVHandle Accum = getAddExpr(Ops);
1700 // This is not a valid addrec if the step amount is varying each
1701 // loop iteration, but is not itself an addrec in this loop.
1702 if (Accum->isLoopInvariant(L) ||
1703 (isa<SCEVAddRecExpr>(Accum) &&
1704 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1705 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1706 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
1708 // Okay, for the entire analysis of this edge we assumed the PHI
1709 // to be symbolic. We now need to go back and update all of the
1710 // entries for the scalars that use the PHI (except for the PHI
1711 // itself) to use the new analyzed value instead of the "symbolic"
1712 // value.
1713 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1714 return PHISCEV;
1717 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1718 // Otherwise, this could be a loop like this:
1719 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1720 // In this case, j = {1,+,1} and BEValue is j.
1721 // Because the other in-value of i (0) fits the evolution of BEValue
1722 // i really is an addrec evolution.
1723 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1724 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1726 // If StartVal = j.start - j.stride, we can use StartVal as the
1727 // initial step of the addrec evolution.
1728 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1729 AddRec->getOperand(1))) {
1730 SCEVHandle PHISCEV =
1731 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1733 // Okay, for the entire analysis of this edge we assumed the PHI
1734 // to be symbolic. We now need to go back and update all of the
1735 // entries for the scalars that use the PHI (except for the PHI
1736 // itself) to use the new analyzed value instead of the "symbolic"
1737 // value.
1738 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1739 return PHISCEV;
1744 return SymbolicName;
1747 // If it's not a loop phi, we can't handle it yet.
1748 return getUnknown(PN);
1751 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1752 /// guaranteed to end in (at every loop iteration). It is, at the same time,
1753 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1754 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
1755 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
1756 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1757 return C->getValue()->getValue().countTrailingZeros();
1759 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1760 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1761 (uint32_t)SE.getTypeSizeInBits(T->getType()));
1763 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1764 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1765 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1766 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1769 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1770 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1771 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1772 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1775 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1776 // The result is the min of all operands results.
1777 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1778 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1779 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1780 return MinOpRes;
1783 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1784 // The result is the sum of all operands results.
1785 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1786 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
1787 for (unsigned i = 1, e = M->getNumOperands();
1788 SumOpRes != BitWidth && i != e; ++i)
1789 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
1790 BitWidth);
1791 return SumOpRes;
1794 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1795 // The result is the min of all operands results.
1796 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1797 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1798 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1799 return MinOpRes;
1802 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1803 // The result is the min of all operands results.
1804 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1805 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1806 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1807 return MinOpRes;
1810 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1811 // The result is the min of all operands results.
1812 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1813 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1814 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1815 return MinOpRes;
1818 // SCEVUDivExpr, SCEVUnknown
1819 return 0;
1822 /// createSCEV - We know that there is no SCEV for the specified value.
1823 /// Analyze the expression.
1825 SCEVHandle ScalarEvolution::createSCEV(Value *V) {
1826 if (!isSCEVable(V->getType()))
1827 return getUnknown(V);
1829 unsigned Opcode = Instruction::UserOp1;
1830 if (Instruction *I = dyn_cast<Instruction>(V))
1831 Opcode = I->getOpcode();
1832 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1833 Opcode = CE->getOpcode();
1834 else
1835 return getUnknown(V);
1837 User *U = cast<User>(V);
1838 switch (Opcode) {
1839 case Instruction::Add:
1840 return getAddExpr(getSCEV(U->getOperand(0)),
1841 getSCEV(U->getOperand(1)));
1842 case Instruction::Mul:
1843 return getMulExpr(getSCEV(U->getOperand(0)),
1844 getSCEV(U->getOperand(1)));
1845 case Instruction::UDiv:
1846 return getUDivExpr(getSCEV(U->getOperand(0)),
1847 getSCEV(U->getOperand(1)));
1848 case Instruction::Sub:
1849 return getMinusSCEV(getSCEV(U->getOperand(0)),
1850 getSCEV(U->getOperand(1)));
1851 case Instruction::And:
1852 // For an expression like x&255 that merely masks off the high bits,
1853 // use zext(trunc(x)) as the SCEV expression.
1854 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1855 if (CI->isNullValue())
1856 return getSCEV(U->getOperand(1));
1857 if (CI->isAllOnesValue())
1858 return getSCEV(U->getOperand(0));
1859 const APInt &A = CI->getValue();
1860 unsigned Ones = A.countTrailingOnes();
1861 if (APIntOps::isMask(Ones, A))
1862 return
1863 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
1864 IntegerType::get(Ones)),
1865 U->getType());
1867 break;
1868 case Instruction::Or:
1869 // If the RHS of the Or is a constant, we may have something like:
1870 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
1871 // optimizations will transparently handle this case.
1873 // In order for this transformation to be safe, the LHS must be of the
1874 // form X*(2^n) and the Or constant must be less than 2^n.
1875 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1876 SCEVHandle LHS = getSCEV(U->getOperand(0));
1877 const APInt &CIVal = CI->getValue();
1878 if (GetMinTrailingZeros(LHS, *this) >=
1879 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1880 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
1882 break;
1883 case Instruction::Xor:
1884 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1885 // If the RHS of the xor is a signbit, then this is just an add.
1886 // Instcombine turns add of signbit into xor as a strength reduction step.
1887 if (CI->getValue().isSignBit())
1888 return getAddExpr(getSCEV(U->getOperand(0)),
1889 getSCEV(U->getOperand(1)));
1891 // If the RHS of xor is -1, then this is a not operation.
1892 else if (CI->isAllOnesValue())
1893 return getNotSCEV(getSCEV(U->getOperand(0)));
1895 break;
1897 case Instruction::Shl:
1898 // Turn shift left of a constant amount into a multiply.
1899 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1900 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1901 Constant *X = ConstantInt::get(
1902 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1903 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1905 break;
1907 case Instruction::LShr:
1908 // Turn logical shift right of a constant into a unsigned divide.
1909 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1910 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1911 Constant *X = ConstantInt::get(
1912 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1913 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1915 break;
1917 case Instruction::AShr:
1918 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
1919 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
1920 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
1921 if (L->getOpcode() == Instruction::Shl &&
1922 L->getOperand(1) == U->getOperand(1)) {
1923 unsigned BitWidth = getTypeSizeInBits(U->getType());
1924 uint64_t Amt = BitWidth - CI->getZExtValue();
1925 if (Amt == BitWidth)
1926 return getSCEV(L->getOperand(0)); // shift by zero --> noop
1927 if (Amt > BitWidth)
1928 return getIntegerSCEV(0, U->getType()); // value is undefined
1929 return
1930 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
1931 IntegerType::get(Amt)),
1932 U->getType());
1934 break;
1936 case Instruction::Trunc:
1937 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1939 case Instruction::ZExt:
1940 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1942 case Instruction::SExt:
1943 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1945 case Instruction::BitCast:
1946 // BitCasts are no-op casts so we just eliminate the cast.
1947 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
1948 return getSCEV(U->getOperand(0));
1949 break;
1951 case Instruction::IntToPtr:
1952 if (!TD) break; // Without TD we can't analyze pointers.
1953 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1954 TD->getIntPtrType());
1956 case Instruction::PtrToInt:
1957 if (!TD) break; // Without TD we can't analyze pointers.
1958 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1959 U->getType());
1961 case Instruction::GetElementPtr: {
1962 if (!TD) break; // Without TD we can't analyze pointers.
1963 const Type *IntPtrTy = TD->getIntPtrType();
1964 Value *Base = U->getOperand(0);
1965 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
1966 gep_type_iterator GTI = gep_type_begin(U);
1967 for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1968 E = U->op_end();
1969 I != E; ++I) {
1970 Value *Index = *I;
1971 // Compute the (potentially symbolic) offset in bytes for this index.
1972 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1973 // For a struct, add the member offset.
1974 const StructLayout &SL = *TD->getStructLayout(STy);
1975 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1976 uint64_t Offset = SL.getElementOffset(FieldNo);
1977 TotalOffset = getAddExpr(TotalOffset,
1978 getIntegerSCEV(Offset, IntPtrTy));
1979 } else {
1980 // For an array, add the element offset, explicitly scaled.
1981 SCEVHandle LocalOffset = getSCEV(Index);
1982 if (!isa<PointerType>(LocalOffset->getType()))
1983 // Getelementptr indicies are signed.
1984 LocalOffset = getTruncateOrSignExtend(LocalOffset,
1985 IntPtrTy);
1986 LocalOffset =
1987 getMulExpr(LocalOffset,
1988 getIntegerSCEV(TD->getTypePaddedSize(*GTI),
1989 IntPtrTy));
1990 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
1993 return getAddExpr(getSCEV(Base), TotalOffset);
1996 case Instruction::PHI:
1997 return createNodeForPHI(cast<PHINode>(U));
1999 case Instruction::Select:
2000 // This could be a smax or umax that was lowered earlier.
2001 // Try to recover it.
2002 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2003 Value *LHS = ICI->getOperand(0);
2004 Value *RHS = ICI->getOperand(1);
2005 switch (ICI->getPredicate()) {
2006 case ICmpInst::ICMP_SLT:
2007 case ICmpInst::ICMP_SLE:
2008 std::swap(LHS, RHS);
2009 // fall through
2010 case ICmpInst::ICMP_SGT:
2011 case ICmpInst::ICMP_SGE:
2012 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2013 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2014 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2015 // ~smax(~x, ~y) == smin(x, y).
2016 return getNotSCEV(getSMaxExpr(
2017 getNotSCEV(getSCEV(LHS)),
2018 getNotSCEV(getSCEV(RHS))));
2019 break;
2020 case ICmpInst::ICMP_ULT:
2021 case ICmpInst::ICMP_ULE:
2022 std::swap(LHS, RHS);
2023 // fall through
2024 case ICmpInst::ICMP_UGT:
2025 case ICmpInst::ICMP_UGE:
2026 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2027 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2028 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2029 // ~umax(~x, ~y) == umin(x, y)
2030 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2031 getNotSCEV(getSCEV(RHS))));
2032 break;
2033 default:
2034 break;
2038 default: // We cannot analyze this expression.
2039 break;
2042 return getUnknown(V);
2047 //===----------------------------------------------------------------------===//
2048 // Iteration Count Computation Code
2051 /// getBackedgeTakenCount - If the specified loop has a predictable
2052 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2053 /// object. The backedge-taken count is the number of times the loop header
2054 /// will be branched to from within the loop. This is one less than the
2055 /// trip count of the loop, since it doesn't count the first iteration,
2056 /// when the header is branched to from outside the loop.
2058 /// Note that it is not valid to call this method on a loop without a
2059 /// loop-invariant backedge-taken count (see
2060 /// hasLoopInvariantBackedgeTakenCount).
2062 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2063 return getBackedgeTakenInfo(L).Exact;
2066 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2067 /// return the least SCEV value that is known never to be less than the
2068 /// actual backedge taken count.
2069 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2070 return getBackedgeTakenInfo(L).Max;
2073 const ScalarEvolution::BackedgeTakenInfo &
2074 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2075 // Initially insert a CouldNotCompute for this loop. If the insertion
2076 // succeeds, procede to actually compute a backedge-taken count and
2077 // update the value. The temporary CouldNotCompute value tells SCEV
2078 // code elsewhere that it shouldn't attempt to request a new
2079 // backedge-taken count, which could result in infinite recursion.
2080 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2081 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2082 if (Pair.second) {
2083 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2084 if (ItCount.Exact != UnknownValue) {
2085 assert(ItCount.Exact->isLoopInvariant(L) &&
2086 ItCount.Max->isLoopInvariant(L) &&
2087 "Computed trip count isn't loop invariant for loop!");
2088 ++NumTripCountsComputed;
2090 // Update the value in the map.
2091 Pair.first->second = ItCount;
2092 } else if (isa<PHINode>(L->getHeader()->begin())) {
2093 // Only count loops that have phi nodes as not being computable.
2094 ++NumTripCountsNotComputed;
2097 // Now that we know more about the trip count for this loop, forget any
2098 // existing SCEV values for PHI nodes in this loop since they are only
2099 // conservative estimates made without the benefit
2100 // of trip count information.
2101 if (ItCount.hasAnyInfo())
2102 for (BasicBlock::iterator I = L->getHeader()->begin();
2103 PHINode *PN = dyn_cast<PHINode>(I); ++I)
2104 deleteValueFromRecords(PN);
2106 return Pair.first->second;
2109 /// forgetLoopBackedgeTakenCount - This method should be called by the
2110 /// client when it has changed a loop in a way that may effect
2111 /// ScalarEvolution's ability to compute a trip count, or if the loop
2112 /// is deleted.
2113 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2114 BackedgeTakenCounts.erase(L);
2117 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
2118 /// of the specified loop will execute.
2119 ScalarEvolution::BackedgeTakenInfo
2120 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2121 // If the loop has a non-one exit block count, we can't analyze it.
2122 SmallVector<BasicBlock*, 8> ExitBlocks;
2123 L->getExitBlocks(ExitBlocks);
2124 if (ExitBlocks.size() != 1) return UnknownValue;
2126 // Okay, there is one exit block. Try to find the condition that causes the
2127 // loop to be exited.
2128 BasicBlock *ExitBlock = ExitBlocks[0];
2130 BasicBlock *ExitingBlock = 0;
2131 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2132 PI != E; ++PI)
2133 if (L->contains(*PI)) {
2134 if (ExitingBlock == 0)
2135 ExitingBlock = *PI;
2136 else
2137 return UnknownValue; // More than one block exiting!
2139 assert(ExitingBlock && "No exits from loop, something is broken!");
2141 // Okay, we've computed the exiting block. See what condition causes us to
2142 // exit.
2144 // FIXME: we should be able to handle switch instructions (with a single exit)
2145 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2146 if (ExitBr == 0) return UnknownValue;
2147 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2149 // At this point, we know we have a conditional branch that determines whether
2150 // the loop is exited. However, we don't know if the branch is executed each
2151 // time through the loop. If not, then the execution count of the branch will
2152 // not be equal to the trip count of the loop.
2154 // Currently we check for this by checking to see if the Exit branch goes to
2155 // the loop header. If so, we know it will always execute the same number of
2156 // times as the loop. We also handle the case where the exit block *is* the
2157 // loop header. This is common for un-rotated loops. More extensive analysis
2158 // could be done to handle more cases here.
2159 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2160 ExitBr->getSuccessor(1) != L->getHeader() &&
2161 ExitBr->getParent() != L->getHeader())
2162 return UnknownValue;
2164 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2166 // If it's not an integer comparison then compute it the hard way.
2167 // Note that ICmpInst deals with pointer comparisons too so we must check
2168 // the type of the operand.
2169 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
2170 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2171 ExitBr->getSuccessor(0) == ExitBlock);
2173 // If the condition was exit on true, convert the condition to exit on false
2174 ICmpInst::Predicate Cond;
2175 if (ExitBr->getSuccessor(1) == ExitBlock)
2176 Cond = ExitCond->getPredicate();
2177 else
2178 Cond = ExitCond->getInversePredicate();
2180 // Handle common loops like: for (X = "string"; *X; ++X)
2181 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2182 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2183 SCEVHandle ItCnt =
2184 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2185 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2188 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2189 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2191 // Try to evaluate any dependencies out of the loop.
2192 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2193 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2194 Tmp = getSCEVAtScope(RHS, L);
2195 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2197 // At this point, we would like to compute how many iterations of the
2198 // loop the predicate will return true for these inputs.
2199 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2200 // If there is a loop-invariant, force it into the RHS.
2201 std::swap(LHS, RHS);
2202 Cond = ICmpInst::getSwappedPredicate(Cond);
2205 // If we have a comparison of a chrec against a constant, try to use value
2206 // ranges to answer this query.
2207 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2208 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2209 if (AddRec->getLoop() == L) {
2210 // Form the comparison range using the constant of the correct type so
2211 // that the ConstantRange class knows to do a signed or unsigned
2212 // comparison.
2213 ConstantInt *CompVal = RHSC->getValue();
2214 const Type *RealTy = ExitCond->getOperand(0)->getType();
2215 CompVal = dyn_cast<ConstantInt>(
2216 ConstantExpr::getBitCast(CompVal, RealTy));
2217 if (CompVal) {
2218 // Form the constant range.
2219 ConstantRange CompRange(
2220 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2222 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2223 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2227 switch (Cond) {
2228 case ICmpInst::ICMP_NE: { // while (X != Y)
2229 // Convert to: while (X-Y != 0)
2230 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2231 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2232 break;
2234 case ICmpInst::ICMP_EQ: {
2235 // Convert to: while (X-Y == 0) // while (X == Y)
2236 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2237 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2238 break;
2240 case ICmpInst::ICMP_SLT: {
2241 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2242 if (BTI.hasAnyInfo()) return BTI;
2243 break;
2245 case ICmpInst::ICMP_SGT: {
2246 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2247 getNotSCEV(RHS), L, true);
2248 if (BTI.hasAnyInfo()) return BTI;
2249 break;
2251 case ICmpInst::ICMP_ULT: {
2252 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2253 if (BTI.hasAnyInfo()) return BTI;
2254 break;
2256 case ICmpInst::ICMP_UGT: {
2257 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2258 getNotSCEV(RHS), L, false);
2259 if (BTI.hasAnyInfo()) return BTI;
2260 break;
2262 default:
2263 #if 0
2264 errs() << "ComputeBackedgeTakenCount ";
2265 if (ExitCond->getOperand(0)->getType()->isUnsigned())
2266 errs() << "[unsigned] ";
2267 errs() << *LHS << " "
2268 << Instruction::getOpcodeName(Instruction::ICmp)
2269 << " " << *RHS << "\n";
2270 #endif
2271 break;
2273 return
2274 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2275 ExitBr->getSuccessor(0) == ExitBlock);
2278 static ConstantInt *
2279 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2280 ScalarEvolution &SE) {
2281 SCEVHandle InVal = SE.getConstant(C);
2282 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2283 assert(isa<SCEVConstant>(Val) &&
2284 "Evaluation of SCEV at constant didn't fold correctly?");
2285 return cast<SCEVConstant>(Val)->getValue();
2288 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
2289 /// and a GEP expression (missing the pointer index) indexing into it, return
2290 /// the addressed element of the initializer or null if the index expression is
2291 /// invalid.
2292 static Constant *
2293 GetAddressedElementFromGlobal(GlobalVariable *GV,
2294 const std::vector<ConstantInt*> &Indices) {
2295 Constant *Init = GV->getInitializer();
2296 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2297 uint64_t Idx = Indices[i]->getZExtValue();
2298 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2299 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2300 Init = cast<Constant>(CS->getOperand(Idx));
2301 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2302 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2303 Init = cast<Constant>(CA->getOperand(Idx));
2304 } else if (isa<ConstantAggregateZero>(Init)) {
2305 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2306 assert(Idx < STy->getNumElements() && "Bad struct index!");
2307 Init = Constant::getNullValue(STy->getElementType(Idx));
2308 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2309 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2310 Init = Constant::getNullValue(ATy->getElementType());
2311 } else {
2312 assert(0 && "Unknown constant aggregate type!");
2314 return 0;
2315 } else {
2316 return 0; // Unknown initializer type
2319 return Init;
2322 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2323 /// 'icmp op load X, cst', try to see if we can compute the backedge
2324 /// execution count.
2325 SCEVHandle ScalarEvolution::
2326 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2327 const Loop *L,
2328 ICmpInst::Predicate predicate) {
2329 if (LI->isVolatile()) return UnknownValue;
2331 // Check to see if the loaded pointer is a getelementptr of a global.
2332 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2333 if (!GEP) return UnknownValue;
2335 // Make sure that it is really a constant global we are gepping, with an
2336 // initializer, and make sure the first IDX is really 0.
2337 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2338 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2339 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2340 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2341 return UnknownValue;
2343 // Okay, we allow one non-constant index into the GEP instruction.
2344 Value *VarIdx = 0;
2345 std::vector<ConstantInt*> Indexes;
2346 unsigned VarIdxNum = 0;
2347 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2348 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2349 Indexes.push_back(CI);
2350 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2351 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2352 VarIdx = GEP->getOperand(i);
2353 VarIdxNum = i-2;
2354 Indexes.push_back(0);
2357 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2358 // Check to see if X is a loop variant variable value now.
2359 SCEVHandle Idx = getSCEV(VarIdx);
2360 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2361 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2363 // We can only recognize very limited forms of loop index expressions, in
2364 // particular, only affine AddRec's like {C1,+,C2}.
2365 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2366 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2367 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2368 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2369 return UnknownValue;
2371 unsigned MaxSteps = MaxBruteForceIterations;
2372 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2373 ConstantInt *ItCst =
2374 ConstantInt::get(IdxExpr->getType(), IterationNum);
2375 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2377 // Form the GEP offset.
2378 Indexes[VarIdxNum] = Val;
2380 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2381 if (Result == 0) break; // Cannot compute!
2383 // Evaluate the condition for this iteration.
2384 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2385 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2386 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2387 #if 0
2388 errs() << "\n***\n*** Computed loop count " << *ItCst
2389 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2390 << "***\n";
2391 #endif
2392 ++NumArrayLenItCounts;
2393 return getConstant(ItCst); // Found terminating iteration!
2396 return UnknownValue;
2400 /// CanConstantFold - Return true if we can constant fold an instruction of the
2401 /// specified type, assuming that all operands were constants.
2402 static bool CanConstantFold(const Instruction *I) {
2403 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2404 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2405 return true;
2407 if (const CallInst *CI = dyn_cast<CallInst>(I))
2408 if (const Function *F = CI->getCalledFunction())
2409 return canConstantFoldCallTo(F);
2410 return false;
2413 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2414 /// in the loop that V is derived from. We allow arbitrary operations along the
2415 /// way, but the operands of an operation must either be constants or a value
2416 /// derived from a constant PHI. If this expression does not fit with these
2417 /// constraints, return null.
2418 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2419 // If this is not an instruction, or if this is an instruction outside of the
2420 // loop, it can't be derived from a loop PHI.
2421 Instruction *I = dyn_cast<Instruction>(V);
2422 if (I == 0 || !L->contains(I->getParent())) return 0;
2424 if (PHINode *PN = dyn_cast<PHINode>(I)) {
2425 if (L->getHeader() == I->getParent())
2426 return PN;
2427 else
2428 // We don't currently keep track of the control flow needed to evaluate
2429 // PHIs, so we cannot handle PHIs inside of loops.
2430 return 0;
2433 // If we won't be able to constant fold this expression even if the operands
2434 // are constants, return early.
2435 if (!CanConstantFold(I)) return 0;
2437 // Otherwise, we can evaluate this instruction if all of its operands are
2438 // constant or derived from a PHI node themselves.
2439 PHINode *PHI = 0;
2440 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2441 if (!(isa<Constant>(I->getOperand(Op)) ||
2442 isa<GlobalValue>(I->getOperand(Op)))) {
2443 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2444 if (P == 0) return 0; // Not evolving from PHI
2445 if (PHI == 0)
2446 PHI = P;
2447 else if (PHI != P)
2448 return 0; // Evolving from multiple different PHIs.
2451 // This is a expression evolving from a constant PHI!
2452 return PHI;
2455 /// EvaluateExpression - Given an expression that passes the
2456 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2457 /// in the loop has the value PHIVal. If we can't fold this expression for some
2458 /// reason, return null.
2459 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2460 if (isa<PHINode>(V)) return PHIVal;
2461 if (Constant *C = dyn_cast<Constant>(V)) return C;
2462 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2463 Instruction *I = cast<Instruction>(V);
2465 std::vector<Constant*> Operands;
2466 Operands.resize(I->getNumOperands());
2468 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2469 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2470 if (Operands[i] == 0) return 0;
2473 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2474 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2475 &Operands[0], Operands.size());
2476 else
2477 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2478 &Operands[0], Operands.size());
2481 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2482 /// in the header of its containing loop, we know the loop executes a
2483 /// constant number of times, and the PHI node is just a recurrence
2484 /// involving constants, fold it.
2485 Constant *ScalarEvolution::
2486 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2487 std::map<PHINode*, Constant*>::iterator I =
2488 ConstantEvolutionLoopExitValue.find(PN);
2489 if (I != ConstantEvolutionLoopExitValue.end())
2490 return I->second;
2492 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2493 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2495 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2497 // Since the loop is canonicalized, the PHI node must have two entries. One
2498 // entry must be a constant (coming in from outside of the loop), and the
2499 // second must be derived from the same PHI.
2500 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2501 Constant *StartCST =
2502 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2503 if (StartCST == 0)
2504 return RetVal = 0; // Must be a constant.
2506 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2507 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2508 if (PN2 != PN)
2509 return RetVal = 0; // Not derived from same PHI.
2511 // Execute the loop symbolically to determine the exit value.
2512 if (BEs.getActiveBits() >= 32)
2513 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2515 unsigned NumIterations = BEs.getZExtValue(); // must be in range
2516 unsigned IterationNum = 0;
2517 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2518 if (IterationNum == NumIterations)
2519 return RetVal = PHIVal; // Got exit value!
2521 // Compute the value of the PHI node for the next iteration.
2522 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2523 if (NextPHI == PHIVal)
2524 return RetVal = NextPHI; // Stopped evolving!
2525 if (NextPHI == 0)
2526 return 0; // Couldn't evaluate!
2527 PHIVal = NextPHI;
2531 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2532 /// constant number of times (the condition evolves only from constants),
2533 /// try to evaluate a few iterations of the loop until we get the exit
2534 /// condition gets a value of ExitWhen (true or false). If we cannot
2535 /// evaluate the trip count of the loop, return UnknownValue.
2536 SCEVHandle ScalarEvolution::
2537 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2538 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2539 if (PN == 0) return UnknownValue;
2541 // Since the loop is canonicalized, the PHI node must have two entries. One
2542 // entry must be a constant (coming in from outside of the loop), and the
2543 // second must be derived from the same PHI.
2544 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2545 Constant *StartCST =
2546 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2547 if (StartCST == 0) return UnknownValue; // Must be a constant.
2549 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2550 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2551 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2553 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2554 // the loop symbolically to determine when the condition gets a value of
2555 // "ExitWhen".
2556 unsigned IterationNum = 0;
2557 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2558 for (Constant *PHIVal = StartCST;
2559 IterationNum != MaxIterations; ++IterationNum) {
2560 ConstantInt *CondVal =
2561 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2563 // Couldn't symbolically evaluate.
2564 if (!CondVal) return UnknownValue;
2566 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2567 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2568 ++NumBruteForceTripCountsComputed;
2569 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2572 // Compute the value of the PHI node for the next iteration.
2573 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2574 if (NextPHI == 0 || NextPHI == PHIVal)
2575 return UnknownValue; // Couldn't evaluate or not making progress...
2576 PHIVal = NextPHI;
2579 // Too many iterations were needed to evaluate.
2580 return UnknownValue;
2583 /// getSCEVAtScope - Compute the value of the specified expression within the
2584 /// indicated loop (which may be null to indicate in no loop). If the
2585 /// expression cannot be evaluated, return UnknownValue.
2586 SCEVHandle ScalarEvolution::getSCEVAtScope(SCEV *V, const Loop *L) {
2587 // FIXME: this should be turned into a virtual method on SCEV!
2589 if (isa<SCEVConstant>(V)) return V;
2591 // If this instruction is evolved from a constant-evolving PHI, compute the
2592 // exit value from the loop without using SCEVs.
2593 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2594 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2595 const Loop *LI = (*this->LI)[I->getParent()];
2596 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2597 if (PHINode *PN = dyn_cast<PHINode>(I))
2598 if (PN->getParent() == LI->getHeader()) {
2599 // Okay, there is no closed form solution for the PHI node. Check
2600 // to see if the loop that contains it has a known backedge-taken
2601 // count. If so, we may be able to force computation of the exit
2602 // value.
2603 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2604 if (SCEVConstant *BTCC =
2605 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2606 // Okay, we know how many times the containing loop executes. If
2607 // this is a constant evolving PHI node, get the final value at
2608 // the specified iteration number.
2609 Constant *RV = getConstantEvolutionLoopExitValue(PN,
2610 BTCC->getValue()->getValue(),
2611 LI);
2612 if (RV) return getUnknown(RV);
2616 // Okay, this is an expression that we cannot symbolically evaluate
2617 // into a SCEV. Check to see if it's possible to symbolically evaluate
2618 // the arguments into constants, and if so, try to constant propagate the
2619 // result. This is particularly useful for computing loop exit values.
2620 if (CanConstantFold(I)) {
2621 std::vector<Constant*> Operands;
2622 Operands.reserve(I->getNumOperands());
2623 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2624 Value *Op = I->getOperand(i);
2625 if (Constant *C = dyn_cast<Constant>(Op)) {
2626 Operands.push_back(C);
2627 } else {
2628 // If any of the operands is non-constant and if they are
2629 // non-integer and non-pointer, don't even try to analyze them
2630 // with scev techniques.
2631 if (!isSCEVable(Op->getType()))
2632 return V;
2634 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2635 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2636 Constant *C = SC->getValue();
2637 if (C->getType() != Op->getType())
2638 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2639 Op->getType(),
2640 false),
2641 C, Op->getType());
2642 Operands.push_back(C);
2643 } else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2644 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2645 if (C->getType() != Op->getType())
2647 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2648 Op->getType(),
2649 false),
2650 C, Op->getType());
2651 Operands.push_back(C);
2652 } else
2653 return V;
2654 } else {
2655 return V;
2660 Constant *C;
2661 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2662 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2663 &Operands[0], Operands.size());
2664 else
2665 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2666 &Operands[0], Operands.size());
2667 return getUnknown(C);
2671 // This is some other type of SCEVUnknown, just return it.
2672 return V;
2675 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2676 // Avoid performing the look-up in the common case where the specified
2677 // expression has no loop-variant portions.
2678 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2679 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2680 if (OpAtScope != Comm->getOperand(i)) {
2681 if (OpAtScope == UnknownValue) return UnknownValue;
2682 // Okay, at least one of these operands is loop variant but might be
2683 // foldable. Build a new instance of the folded commutative expression.
2684 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2685 NewOps.push_back(OpAtScope);
2687 for (++i; i != e; ++i) {
2688 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2689 if (OpAtScope == UnknownValue) return UnknownValue;
2690 NewOps.push_back(OpAtScope);
2692 if (isa<SCEVAddExpr>(Comm))
2693 return getAddExpr(NewOps);
2694 if (isa<SCEVMulExpr>(Comm))
2695 return getMulExpr(NewOps);
2696 if (isa<SCEVSMaxExpr>(Comm))
2697 return getSMaxExpr(NewOps);
2698 if (isa<SCEVUMaxExpr>(Comm))
2699 return getUMaxExpr(NewOps);
2700 assert(0 && "Unknown commutative SCEV type!");
2703 // If we got here, all operands are loop invariant.
2704 return Comm;
2707 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2708 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2709 if (LHS == UnknownValue) return LHS;
2710 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2711 if (RHS == UnknownValue) return RHS;
2712 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2713 return Div; // must be loop invariant
2714 return getUDivExpr(LHS, RHS);
2717 // If this is a loop recurrence for a loop that does not contain L, then we
2718 // are dealing with the final value computed by the loop.
2719 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2720 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2721 // To evaluate this recurrence, we need to know how many times the AddRec
2722 // loop iterates. Compute this now.
2723 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2724 if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2726 // Then, evaluate the AddRec.
2727 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
2729 return UnknownValue;
2732 if (SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
2733 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2734 if (Op == UnknownValue) return Op;
2735 if (Op == Cast->getOperand())
2736 return Cast; // must be loop invariant
2737 return getZeroExtendExpr(Op, Cast->getType());
2740 if (SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
2741 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2742 if (Op == UnknownValue) return Op;
2743 if (Op == Cast->getOperand())
2744 return Cast; // must be loop invariant
2745 return getSignExtendExpr(Op, Cast->getType());
2748 if (SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
2749 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2750 if (Op == UnknownValue) return Op;
2751 if (Op == Cast->getOperand())
2752 return Cast; // must be loop invariant
2753 return getTruncateExpr(Op, Cast->getType());
2756 assert(0 && "Unknown SCEV type!");
2759 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
2760 /// at the specified scope in the program. The L value specifies a loop
2761 /// nest to evaluate the expression at, where null is the top-level or a
2762 /// specified loop is immediately inside of the loop.
2764 /// This method can be used to compute the exit value for a variable defined
2765 /// in a loop by querying what the value will hold in the parent loop.
2767 /// If this value is not computable at this scope, a SCEVCouldNotCompute
2768 /// object is returned.
2769 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2770 return getSCEVAtScope(getSCEV(V), L);
2773 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2774 /// following equation:
2776 /// A * X = B (mod N)
2778 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2779 /// A and B isn't important.
2781 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2782 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2783 ScalarEvolution &SE) {
2784 uint32_t BW = A.getBitWidth();
2785 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2786 assert(A != 0 && "A must be non-zero.");
2788 // 1. D = gcd(A, N)
2790 // The gcd of A and N may have only one prime factor: 2. The number of
2791 // trailing zeros in A is its multiplicity
2792 uint32_t Mult2 = A.countTrailingZeros();
2793 // D = 2^Mult2
2795 // 2. Check if B is divisible by D.
2797 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2798 // is not less than multiplicity of this prime factor for D.
2799 if (B.countTrailingZeros() < Mult2)
2800 return SE.getCouldNotCompute();
2802 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2803 // modulo (N / D).
2805 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
2806 // bit width during computations.
2807 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
2808 APInt Mod(BW + 1, 0);
2809 Mod.set(BW - Mult2); // Mod = N / D
2810 APInt I = AD.multiplicativeInverse(Mod);
2812 // 4. Compute the minimum unsigned root of the equation:
2813 // I * (B / D) mod (N / D)
2814 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2816 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2817 // bits.
2818 return SE.getConstant(Result.trunc(BW));
2821 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2822 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2823 /// might be the same) or two SCEVCouldNotCompute objects.
2825 static std::pair<SCEVHandle,SCEVHandle>
2826 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2827 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2828 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2829 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2830 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2832 // We currently can only solve this if the coefficients are constants.
2833 if (!LC || !MC || !NC) {
2834 SCEV *CNC = SE.getCouldNotCompute();
2835 return std::make_pair(CNC, CNC);
2838 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2839 const APInt &L = LC->getValue()->getValue();
2840 const APInt &M = MC->getValue()->getValue();
2841 const APInt &N = NC->getValue()->getValue();
2842 APInt Two(BitWidth, 2);
2843 APInt Four(BitWidth, 4);
2846 using namespace APIntOps;
2847 const APInt& C = L;
2848 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2849 // The B coefficient is M-N/2
2850 APInt B(M);
2851 B -= sdiv(N,Two);
2853 // The A coefficient is N/2
2854 APInt A(N.sdiv(Two));
2856 // Compute the B^2-4ac term.
2857 APInt SqrtTerm(B);
2858 SqrtTerm *= B;
2859 SqrtTerm -= Four * (A * C);
2861 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2862 // integer value or else APInt::sqrt() will assert.
2863 APInt SqrtVal(SqrtTerm.sqrt());
2865 // Compute the two solutions for the quadratic formula.
2866 // The divisions must be performed as signed divisions.
2867 APInt NegB(-B);
2868 APInt TwoA( A << 1 );
2869 if (TwoA.isMinValue()) {
2870 SCEV *CNC = SE.getCouldNotCompute();
2871 return std::make_pair(CNC, CNC);
2874 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2875 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2877 return std::make_pair(SE.getConstant(Solution1),
2878 SE.getConstant(Solution2));
2879 } // end APIntOps namespace
2882 /// HowFarToZero - Return the number of times a backedge comparing the specified
2883 /// value to zero will execute. If not computable, return UnknownValue
2884 SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
2885 // If the value is a constant
2886 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2887 // If the value is already zero, the branch will execute zero times.
2888 if (C->getValue()->isZero()) return C;
2889 return UnknownValue; // Otherwise it will loop infinitely.
2892 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2893 if (!AddRec || AddRec->getLoop() != L)
2894 return UnknownValue;
2896 if (AddRec->isAffine()) {
2897 // If this is an affine expression, the execution count of this branch is
2898 // the minimum unsigned root of the following equation:
2900 // Start + Step*N = 0 (mod 2^BW)
2902 // equivalent to:
2904 // Step*N = -Start (mod 2^BW)
2906 // where BW is the common bit width of Start and Step.
2908 // Get the initial value for the loop.
2909 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2910 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2912 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
2914 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2915 // For now we handle only constant steps.
2917 // First, handle unitary steps.
2918 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
2919 return getNegativeSCEV(Start); // N = -Start (as unsigned)
2920 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
2921 return Start; // N = Start (as unsigned)
2923 // Then, try to solve the above equation provided that Start is constant.
2924 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2925 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2926 -StartC->getValue()->getValue(),
2927 *this);
2929 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2930 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2931 // the quadratic equation to solve it.
2932 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
2933 *this);
2934 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2935 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2936 if (R1) {
2937 #if 0
2938 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
2939 << " sol#2: " << *R2 << "\n";
2940 #endif
2941 // Pick the smallest positive root value.
2942 if (ConstantInt *CB =
2943 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2944 R1->getValue(), R2->getValue()))) {
2945 if (CB->getZExtValue() == false)
2946 std::swap(R1, R2); // R1 is the minimum root now.
2948 // We can only use this value if the chrec ends up with an exact zero
2949 // value at this index. When solving for "X*X != 5", for example, we
2950 // should not accept a root of 2.
2951 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
2952 if (Val->isZero())
2953 return R1; // We found a quadratic root!
2958 return UnknownValue;
2961 /// HowFarToNonZero - Return the number of times a backedge checking the
2962 /// specified value for nonzero will execute. If not computable, return
2963 /// UnknownValue
2964 SCEVHandle ScalarEvolution::HowFarToNonZero(SCEV *V, const Loop *L) {
2965 // Loops that look like: while (X == 0) are very strange indeed. We don't
2966 // handle them yet except for the trivial case. This could be expanded in the
2967 // future as needed.
2969 // If the value is a constant, check to see if it is known to be non-zero
2970 // already. If so, the backedge will execute zero times.
2971 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2972 if (!C->getValue()->isNullValue())
2973 return getIntegerSCEV(0, C->getType());
2974 return UnknownValue; // Otherwise it will loop infinitely.
2977 // We could implement others, but I really doubt anyone writes loops like
2978 // this, and if they did, they would already be constant folded.
2979 return UnknownValue;
2982 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2983 /// (which may not be an immediate predecessor) which has exactly one
2984 /// successor from which BB is reachable, or null if no such block is
2985 /// found.
2987 BasicBlock *
2988 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
2989 // If the block has a unique predecessor, then there is no path from the
2990 // predecessor to the block that does not go through the direct edge
2991 // from the predecessor to the block.
2992 if (BasicBlock *Pred = BB->getSinglePredecessor())
2993 return Pred;
2995 // A loop's header is defined to be a block that dominates the loop.
2996 // If the loop has a preheader, it must be a block that has exactly
2997 // one successor that can reach BB. This is slightly more strict
2998 // than necessary, but works if critical edges are split.
2999 if (Loop *L = LI->getLoopFor(BB))
3000 return L->getLoopPreheader();
3002 return 0;
3005 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
3006 /// a conditional between LHS and RHS. This is used to help avoid max
3007 /// expressions in loop trip counts.
3008 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3009 ICmpInst::Predicate Pred,
3010 SCEV *LHS, SCEV *RHS) {
3011 BasicBlock *Preheader = L->getLoopPreheader();
3012 BasicBlock *PreheaderDest = L->getHeader();
3014 // Starting at the preheader, climb up the predecessor chain, as long as
3015 // there are predecessors that can be found that have unique successors
3016 // leading to the original header.
3017 for (; Preheader;
3018 PreheaderDest = Preheader,
3019 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3021 BranchInst *LoopEntryPredicate =
3022 dyn_cast<BranchInst>(Preheader->getTerminator());
3023 if (!LoopEntryPredicate ||
3024 LoopEntryPredicate->isUnconditional())
3025 continue;
3027 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3028 if (!ICI) continue;
3030 // Now that we found a conditional branch that dominates the loop, check to
3031 // see if it is the comparison we are looking for.
3032 Value *PreCondLHS = ICI->getOperand(0);
3033 Value *PreCondRHS = ICI->getOperand(1);
3034 ICmpInst::Predicate Cond;
3035 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3036 Cond = ICI->getPredicate();
3037 else
3038 Cond = ICI->getInversePredicate();
3040 if (Cond == Pred)
3041 ; // An exact match.
3042 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3043 ; // The actual condition is beyond sufficient.
3044 else
3045 // Check a few special cases.
3046 switch (Cond) {
3047 case ICmpInst::ICMP_UGT:
3048 if (Pred == ICmpInst::ICMP_ULT) {
3049 std::swap(PreCondLHS, PreCondRHS);
3050 Cond = ICmpInst::ICMP_ULT;
3051 break;
3053 continue;
3054 case ICmpInst::ICMP_SGT:
3055 if (Pred == ICmpInst::ICMP_SLT) {
3056 std::swap(PreCondLHS, PreCondRHS);
3057 Cond = ICmpInst::ICMP_SLT;
3058 break;
3060 continue;
3061 case ICmpInst::ICMP_NE:
3062 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3063 // so check for this case by checking if the NE is comparing against
3064 // a minimum or maximum constant.
3065 if (!ICmpInst::isTrueWhenEqual(Pred))
3066 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3067 const APInt &A = CI->getValue();
3068 switch (Pred) {
3069 case ICmpInst::ICMP_SLT:
3070 if (A.isMaxSignedValue()) break;
3071 continue;
3072 case ICmpInst::ICMP_SGT:
3073 if (A.isMinSignedValue()) break;
3074 continue;
3075 case ICmpInst::ICMP_ULT:
3076 if (A.isMaxValue()) break;
3077 continue;
3078 case ICmpInst::ICMP_UGT:
3079 if (A.isMinValue()) break;
3080 continue;
3081 default:
3082 continue;
3084 Cond = ICmpInst::ICMP_NE;
3085 // NE is symmetric but the original comparison may not be. Swap
3086 // the operands if necessary so that they match below.
3087 if (isa<SCEVConstant>(LHS))
3088 std::swap(PreCondLHS, PreCondRHS);
3089 break;
3091 continue;
3092 default:
3093 // We weren't able to reconcile the condition.
3094 continue;
3097 if (!PreCondLHS->getType()->isInteger()) continue;
3099 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3100 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3101 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3102 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3103 RHS == getNotSCEV(PreCondLHSSCEV)))
3104 return true;
3107 return false;
3110 /// HowManyLessThans - Return the number of times a backedge containing the
3111 /// specified less-than comparison will execute. If not computable, return
3112 /// UnknownValue.
3113 ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3114 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
3115 // Only handle: "ADDREC < LoopInvariant".
3116 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3118 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3119 if (!AddRec || AddRec->getLoop() != L)
3120 return UnknownValue;
3122 if (AddRec->isAffine()) {
3123 // FORNOW: We only support unit strides.
3124 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3125 SCEVHandle Step = AddRec->getStepRecurrence(*this);
3126 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3128 // TODO: handle non-constant strides.
3129 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3130 if (!CStep || CStep->isZero())
3131 return UnknownValue;
3132 if (CStep->getValue()->getValue() == 1) {
3133 // With unit stride, the iteration never steps past the limit value.
3134 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3135 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3136 // Test whether a positive iteration iteration can step past the limit
3137 // value and past the maximum value for its type in a single step.
3138 if (isSigned) {
3139 APInt Max = APInt::getSignedMaxValue(BitWidth);
3140 if ((Max - CStep->getValue()->getValue())
3141 .slt(CLimit->getValue()->getValue()))
3142 return UnknownValue;
3143 } else {
3144 APInt Max = APInt::getMaxValue(BitWidth);
3145 if ((Max - CStep->getValue()->getValue())
3146 .ult(CLimit->getValue()->getValue()))
3147 return UnknownValue;
3149 } else
3150 // TODO: handle non-constant limit values below.
3151 return UnknownValue;
3152 } else
3153 // TODO: handle negative strides below.
3154 return UnknownValue;
3156 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3157 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3158 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3159 // treat m-n as signed nor unsigned due to overflow possibility.
3161 // First, we get the value of the LHS in the first iteration: n
3162 SCEVHandle Start = AddRec->getOperand(0);
3164 // Determine the minimum constant start value.
3165 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3166 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3167 APInt::getMinValue(BitWidth));
3169 // If we know that the condition is true in order to enter the loop,
3170 // then we know that it will run exactly (m-n)/s times. Otherwise, we
3171 // only know if will execute (max(m,n)-n)/s times. In both cases, the
3172 // division must round up.
3173 SCEVHandle End = RHS;
3174 if (!isLoopGuardedByCond(L,
3175 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3176 getMinusSCEV(Start, Step), RHS))
3177 End = isSigned ? getSMaxExpr(RHS, Start)
3178 : getUMaxExpr(RHS, Start);
3180 // Determine the maximum constant end value.
3181 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3182 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3183 APInt::getMaxValue(BitWidth));
3185 // Finally, we subtract these two values and divide, rounding up, to get
3186 // the number of times the backedge is executed.
3187 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3188 getAddExpr(Step, NegOne)),
3189 Step);
3191 // The maximum backedge count is similar, except using the minimum start
3192 // value and the maximum end value.
3193 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3194 MinStart),
3195 getAddExpr(Step, NegOne)),
3196 Step);
3198 return BackedgeTakenInfo(BECount, MaxBECount);
3201 return UnknownValue;
3204 /// getNumIterationsInRange - Return the number of iterations of this loop that
3205 /// produce values in the specified constant range. Another way of looking at
3206 /// this is that it returns the first iteration number where the value is not in
3207 /// the condition, thus computing the exit count. If the iteration count can't
3208 /// be computed, an instance of SCEVCouldNotCompute is returned.
3209 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3210 ScalarEvolution &SE) const {
3211 if (Range.isFullSet()) // Infinite loop.
3212 return SE.getCouldNotCompute();
3214 // If the start is a non-zero constant, shift the range to simplify things.
3215 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3216 if (!SC->getValue()->isZero()) {
3217 std::vector<SCEVHandle> Operands(op_begin(), op_end());
3218 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3219 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3220 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
3221 return ShiftedAddRec->getNumIterationsInRange(
3222 Range.subtract(SC->getValue()->getValue()), SE);
3223 // This is strange and shouldn't happen.
3224 return SE.getCouldNotCompute();
3227 // The only time we can solve this is when we have all constant indices.
3228 // Otherwise, we cannot determine the overflow conditions.
3229 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3230 if (!isa<SCEVConstant>(getOperand(i)))
3231 return SE.getCouldNotCompute();
3234 // Okay at this point we know that all elements of the chrec are constants and
3235 // that the start element is zero.
3237 // First check to see if the range contains zero. If not, the first
3238 // iteration exits.
3239 unsigned BitWidth = SE.getTypeSizeInBits(getType());
3240 if (!Range.contains(APInt(BitWidth, 0)))
3241 return SE.getConstant(ConstantInt::get(getType(),0));
3243 if (isAffine()) {
3244 // If this is an affine expression then we have this situation:
3245 // Solve {0,+,A} in Range === Ax in Range
3247 // We know that zero is in the range. If A is positive then we know that
3248 // the upper value of the range must be the first possible exit value.
3249 // If A is negative then the lower of the range is the last possible loop
3250 // value. Also note that we already checked for a full range.
3251 APInt One(BitWidth,1);
3252 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3253 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3255 // The exit value should be (End+A)/A.
3256 APInt ExitVal = (End + A).udiv(A);
3257 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3259 // Evaluate at the exit value. If we really did fall out of the valid
3260 // range, then we computed our trip count, otherwise wrap around or other
3261 // things must have happened.
3262 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3263 if (Range.contains(Val->getValue()))
3264 return SE.getCouldNotCompute(); // Something strange happened
3266 // Ensure that the previous value is in the range. This is a sanity check.
3267 assert(Range.contains(
3268 EvaluateConstantChrecAtConstant(this,
3269 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3270 "Linear scev computation is off in a bad way!");
3271 return SE.getConstant(ExitValue);
3272 } else if (isQuadratic()) {
3273 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3274 // quadratic equation to solve it. To do this, we must frame our problem in
3275 // terms of figuring out when zero is crossed, instead of when
3276 // Range.getUpper() is crossed.
3277 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3278 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3279 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3281 // Next, solve the constructed addrec
3282 std::pair<SCEVHandle,SCEVHandle> Roots =
3283 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3284 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3285 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3286 if (R1) {
3287 // Pick the smallest positive root value.
3288 if (ConstantInt *CB =
3289 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3290 R1->getValue(), R2->getValue()))) {
3291 if (CB->getZExtValue() == false)
3292 std::swap(R1, R2); // R1 is the minimum root now.
3294 // Make sure the root is not off by one. The returned iteration should
3295 // not be in the range, but the previous one should be. When solving
3296 // for "X*X < 5", for example, we should not return a root of 2.
3297 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3298 R1->getValue(),
3299 SE);
3300 if (Range.contains(R1Val->getValue())) {
3301 // The next iteration must be out of the range...
3302 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3304 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3305 if (!Range.contains(R1Val->getValue()))
3306 return SE.getConstant(NextVal);
3307 return SE.getCouldNotCompute(); // Something strange happened
3310 // If R1 was not in the range, then it is a good return value. Make
3311 // sure that R1-1 WAS in the range though, just in case.
3312 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3313 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3314 if (Range.contains(R1Val->getValue()))
3315 return R1;
3316 return SE.getCouldNotCompute(); // Something strange happened
3321 return SE.getCouldNotCompute();
3326 //===----------------------------------------------------------------------===//
3327 // ScalarEvolution Class Implementation
3328 //===----------------------------------------------------------------------===//
3330 ScalarEvolution::ScalarEvolution()
3331 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3334 bool ScalarEvolution::runOnFunction(Function &F) {
3335 this->F = &F;
3336 LI = &getAnalysis<LoopInfo>();
3337 TD = getAnalysisIfAvailable<TargetData>();
3338 return false;
3341 void ScalarEvolution::releaseMemory() {
3342 Scalars.clear();
3343 BackedgeTakenCounts.clear();
3344 ConstantEvolutionLoopExitValue.clear();
3347 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3348 AU.setPreservesAll();
3349 AU.addRequiredTransitive<LoopInfo>();
3352 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3353 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3356 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3357 const Loop *L) {
3358 // Print all inner loops first
3359 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3360 PrintLoopInfo(OS, SE, *I);
3362 OS << "Loop " << L->getHeader()->getName() << ": ";
3364 SmallVector<BasicBlock*, 8> ExitBlocks;
3365 L->getExitBlocks(ExitBlocks);
3366 if (ExitBlocks.size() != 1)
3367 OS << "<multiple exits> ";
3369 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3370 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3371 } else {
3372 OS << "Unpredictable backedge-taken count. ";
3375 OS << "\n";
3378 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3379 // ScalarEvolution's implementaiton of the print method is to print
3380 // out SCEV values of all instructions that are interesting. Doing
3381 // this potentially causes it to create new SCEV objects though,
3382 // which technically conflicts with the const qualifier. This isn't
3383 // observable from outside the class though (the hasSCEV function
3384 // notwithstanding), so casting away the const isn't dangerous.
3385 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3387 OS << "Classifying expressions for: " << F->getName() << "\n";
3388 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3389 if (isSCEVable(I->getType())) {
3390 OS << *I;
3391 OS << " --> ";
3392 SCEVHandle SV = SE.getSCEV(&*I);
3393 SV->print(OS);
3394 OS << "\t\t";
3396 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3397 OS << "Exits: ";
3398 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3399 if (isa<SCEVCouldNotCompute>(ExitValue)) {
3400 OS << "<<Unknown>>";
3401 } else {
3402 OS << *ExitValue;
3407 OS << "\n";
3410 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3411 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3412 PrintLoopInfo(OS, &SE, *I);
3415 void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3416 raw_os_ostream OS(o);
3417 print(OS, M);