1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. These classes are reference counted, managed by the SCEVHandle
18 // class. We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression. These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
39 //===----------------------------------------------------------------------===//
41 // There are several good references for the techniques used in this analysis.
43 // Chains of recurrences -- a method to expedite the evaluation
44 // of closed-form functions
45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
47 // On computational properties of chains of recurrences
50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 // Robert A. van Engelen
53 // Efficient Symbolic Analysis for Optimizing Compilers
54 // Robert A. van Engelen
56 // Using the chains of recurrences algebra for data dependence testing and
57 // induction variable substitution
58 // MS Thesis, Johnie Birch
60 //===----------------------------------------------------------------------===//
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/Analysis/ConstantFolding.h"
69 #include "llvm/Analysis/Dominators.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Assembly/Writer.h"
72 #include "llvm/Target/TargetData.h"
73 #include "llvm/Transforms/Scalar.h"
74 #include "llvm/Support/CFG.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/ConstantRange.h"
78 #include "llvm/Support/GetElementPtrTypeIterator.h"
79 #include "llvm/Support/InstIterator.h"
80 #include "llvm/Support/ManagedStatic.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/ADT/Statistic.h"
84 #include "llvm/ADT/STLExtras.h"
90 STATISTIC(NumArrayLenItCounts
,
91 "Number of trip counts computed with array length");
92 STATISTIC(NumTripCountsComputed
,
93 "Number of loops with predictable loop counts");
94 STATISTIC(NumTripCountsNotComputed
,
95 "Number of loops without predictable loop counts");
96 STATISTIC(NumBruteForceTripCountsComputed
,
97 "Number of loops with trip counts computed by force");
99 static cl::opt
<unsigned>
100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant derived loop"),
105 static RegisterPass
<ScalarEvolution
>
106 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107 char ScalarEvolution::ID
= 0;
109 //===----------------------------------------------------------------------===//
110 // SCEV class definitions
111 //===----------------------------------------------------------------------===//
113 //===----------------------------------------------------------------------===//
114 // Implementation of the SCEV class.
117 void SCEV::dump() const {
122 void SCEV::print(std::ostream
&o
) const {
123 raw_os_ostream
OS(o
);
127 bool SCEV::isZero() const {
128 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
129 return SC
->getValue()->isZero();
134 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute
) {}
135 SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
137 bool SCEVCouldNotCompute::isLoopInvariant(const Loop
*L
) const {
138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142 const Type
*SCEVCouldNotCompute::getType() const {
143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop
*L
) const {
148 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152 SCEVHandle
SCEVCouldNotCompute::
153 replaceSymbolicValuesWithConcrete(const SCEVHandle
&Sym
,
154 const SCEVHandle
&Conc
,
155 ScalarEvolution
&SE
) const {
159 void SCEVCouldNotCompute::print(raw_ostream
&OS
) const {
160 OS
<< "***COULDNOTCOMPUTE***";
163 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
164 return S
->getSCEVType() == scCouldNotCompute
;
168 // SCEVConstants - Only allow the creation of one SCEVConstant for any
169 // particular value. Don't use a SCEVHandle here, or else the object will
171 static ManagedStatic
<std::map
<ConstantInt
*, SCEVConstant
*> > SCEVConstants
;
174 SCEVConstant::~SCEVConstant() {
175 SCEVConstants
->erase(V
);
178 SCEVHandle
ScalarEvolution::getConstant(ConstantInt
*V
) {
179 SCEVConstant
*&R
= (*SCEVConstants
)[V
];
180 if (R
== 0) R
= new SCEVConstant(V
);
184 SCEVHandle
ScalarEvolution::getConstant(const APInt
& Val
) {
185 return getConstant(ConstantInt::get(Val
));
188 const Type
*SCEVConstant::getType() const { return V
->getType(); }
190 void SCEVConstant::print(raw_ostream
&OS
) const {
191 WriteAsOperand(OS
, V
, false);
194 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy
,
195 const SCEVHandle
&op
, const Type
*ty
)
196 : SCEV(SCEVTy
), Op(op
), Ty(ty
) {}
198 SCEVCastExpr::~SCEVCastExpr() {}
200 bool SCEVCastExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
201 return Op
->dominates(BB
, DT
);
204 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
205 // particular input. Don't use a SCEVHandle here, or else the object will
207 static ManagedStatic
<std::map
<std::pair
<SCEV
*, const Type
*>,
208 SCEVTruncateExpr
*> > SCEVTruncates
;
210 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle
&op
, const Type
*ty
)
211 : SCEVCastExpr(scTruncate
, op
, ty
) {
212 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
213 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
214 "Cannot truncate non-integer value!");
217 SCEVTruncateExpr::~SCEVTruncateExpr() {
218 SCEVTruncates
->erase(std::make_pair(Op
, Ty
));
221 void SCEVTruncateExpr::print(raw_ostream
&OS
) const {
222 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
225 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226 // particular input. Don't use a SCEVHandle here, or else the object will never
228 static ManagedStatic
<std::map
<std::pair
<SCEV
*, const Type
*>,
229 SCEVZeroExtendExpr
*> > SCEVZeroExtends
;
231 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle
&op
, const Type
*ty
)
232 : SCEVCastExpr(scZeroExtend
, op
, ty
) {
233 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
234 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
235 "Cannot zero extend non-integer value!");
238 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
239 SCEVZeroExtends
->erase(std::make_pair(Op
, Ty
));
242 void SCEVZeroExtendExpr::print(raw_ostream
&OS
) const {
243 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
246 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
247 // particular input. Don't use a SCEVHandle here, or else the object will never
249 static ManagedStatic
<std::map
<std::pair
<SCEV
*, const Type
*>,
250 SCEVSignExtendExpr
*> > SCEVSignExtends
;
252 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle
&op
, const Type
*ty
)
253 : SCEVCastExpr(scSignExtend
, op
, ty
) {
254 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
255 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
256 "Cannot sign extend non-integer value!");
259 SCEVSignExtendExpr::~SCEVSignExtendExpr() {
260 SCEVSignExtends
->erase(std::make_pair(Op
, Ty
));
263 void SCEVSignExtendExpr::print(raw_ostream
&OS
) const {
264 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
267 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
268 // particular input. Don't use a SCEVHandle here, or else the object will never
270 static ManagedStatic
<std::map
<std::pair
<unsigned, std::vector
<SCEV
*> >,
271 SCEVCommutativeExpr
*> > SCEVCommExprs
;
273 SCEVCommutativeExpr::~SCEVCommutativeExpr() {
274 SCEVCommExprs
->erase(std::make_pair(getSCEVType(),
275 std::vector
<SCEV
*>(Operands
.begin(),
279 void SCEVCommutativeExpr::print(raw_ostream
&OS
) const {
280 assert(Operands
.size() > 1 && "This plus expr shouldn't exist!");
281 const char *OpStr
= getOperationStr();
282 OS
<< "(" << *Operands
[0];
283 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
284 OS
<< OpStr
<< *Operands
[i
];
288 SCEVHandle
SCEVCommutativeExpr::
289 replaceSymbolicValuesWithConcrete(const SCEVHandle
&Sym
,
290 const SCEVHandle
&Conc
,
291 ScalarEvolution
&SE
) const {
292 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
294 getOperand(i
)->replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
);
295 if (H
!= getOperand(i
)) {
296 std::vector
<SCEVHandle
> NewOps
;
297 NewOps
.reserve(getNumOperands());
298 for (unsigned j
= 0; j
!= i
; ++j
)
299 NewOps
.push_back(getOperand(j
));
301 for (++i
; i
!= e
; ++i
)
302 NewOps
.push_back(getOperand(i
)->
303 replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
));
305 if (isa
<SCEVAddExpr
>(this))
306 return SE
.getAddExpr(NewOps
);
307 else if (isa
<SCEVMulExpr
>(this))
308 return SE
.getMulExpr(NewOps
);
309 else if (isa
<SCEVSMaxExpr
>(this))
310 return SE
.getSMaxExpr(NewOps
);
311 else if (isa
<SCEVUMaxExpr
>(this))
312 return SE
.getUMaxExpr(NewOps
);
314 assert(0 && "Unknown commutative expr!");
320 bool SCEVCommutativeExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
321 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
322 if (!getOperand(i
)->dominates(BB
, DT
))
329 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
330 // input. Don't use a SCEVHandle here, or else the object will never be
332 static ManagedStatic
<std::map
<std::pair
<SCEV
*, SCEV
*>,
333 SCEVUDivExpr
*> > SCEVUDivs
;
335 SCEVUDivExpr::~SCEVUDivExpr() {
336 SCEVUDivs
->erase(std::make_pair(LHS
, RHS
));
339 bool SCEVUDivExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
340 return LHS
->dominates(BB
, DT
) && RHS
->dominates(BB
, DT
);
343 void SCEVUDivExpr::print(raw_ostream
&OS
) const {
344 OS
<< "(" << *LHS
<< " /u " << *RHS
<< ")";
347 const Type
*SCEVUDivExpr::getType() const {
348 return LHS
->getType();
351 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
352 // particular input. Don't use a SCEVHandle here, or else the object will never
354 static ManagedStatic
<std::map
<std::pair
<const Loop
*, std::vector
<SCEV
*> >,
355 SCEVAddRecExpr
*> > SCEVAddRecExprs
;
357 SCEVAddRecExpr::~SCEVAddRecExpr() {
358 SCEVAddRecExprs
->erase(std::make_pair(L
,
359 std::vector
<SCEV
*>(Operands
.begin(),
363 bool SCEVAddRecExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
364 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
365 if (!getOperand(i
)->dominates(BB
, DT
))
372 SCEVHandle
SCEVAddRecExpr::
373 replaceSymbolicValuesWithConcrete(const SCEVHandle
&Sym
,
374 const SCEVHandle
&Conc
,
375 ScalarEvolution
&SE
) const {
376 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
378 getOperand(i
)->replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
);
379 if (H
!= getOperand(i
)) {
380 std::vector
<SCEVHandle
> NewOps
;
381 NewOps
.reserve(getNumOperands());
382 for (unsigned j
= 0; j
!= i
; ++j
)
383 NewOps
.push_back(getOperand(j
));
385 for (++i
; i
!= e
; ++i
)
386 NewOps
.push_back(getOperand(i
)->
387 replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
));
389 return SE
.getAddRecExpr(NewOps
, L
);
396 bool SCEVAddRecExpr::isLoopInvariant(const Loop
*QueryLoop
) const {
397 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
398 // contain L and if the start is invariant.
399 return !QueryLoop
->contains(L
->getHeader()) &&
400 getOperand(0)->isLoopInvariant(QueryLoop
);
404 void SCEVAddRecExpr::print(raw_ostream
&OS
) const {
405 OS
<< "{" << *Operands
[0];
406 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
407 OS
<< ",+," << *Operands
[i
];
408 OS
<< "}<" << L
->getHeader()->getName() + ">";
411 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
412 // value. Don't use a SCEVHandle here, or else the object will never be
414 static ManagedStatic
<std::map
<Value
*, SCEVUnknown
*> > SCEVUnknowns
;
416 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns
->erase(V
); }
418 bool SCEVUnknown::isLoopInvariant(const Loop
*L
) const {
419 // All non-instruction values are loop invariant. All instructions are loop
420 // invariant if they are not contained in the specified loop.
421 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
422 return !L
->contains(I
->getParent());
426 bool SCEVUnknown::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
427 if (Instruction
*I
= dyn_cast
<Instruction
>(getValue()))
428 return DT
->dominates(I
->getParent(), BB
);
432 const Type
*SCEVUnknown::getType() const {
436 void SCEVUnknown::print(raw_ostream
&OS
) const {
437 if (isa
<PointerType
>(V
->getType()))
438 OS
<< "(ptrtoint " << *V
->getType() << " ";
439 WriteAsOperand(OS
, V
, false);
440 if (isa
<PointerType
>(V
->getType()))
444 //===----------------------------------------------------------------------===//
446 //===----------------------------------------------------------------------===//
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
452 struct VISIBILITY_HIDDEN SCEVComplexityCompare
{
453 bool operator()(const SCEV
*LHS
, const SCEV
*RHS
) const {
454 return LHS
->getSCEVType() < RHS
->getSCEVType();
459 /// GroupByComplexity - Given a list of SCEV objects, order them by their
460 /// complexity, and group objects of the same complexity together by value.
461 /// When this routine is finished, we know that any duplicates in the vector are
462 /// consecutive and that complexity is monotonically increasing.
464 /// Note that we go take special precautions to ensure that we get determinstic
465 /// results from this routine. In other words, we don't want the results of
466 /// this to depend on where the addresses of various SCEV objects happened to
469 static void GroupByComplexity(std::vector
<SCEVHandle
> &Ops
) {
470 if (Ops
.size() < 2) return; // Noop
471 if (Ops
.size() == 2) {
472 // This is the common case, which also happens to be trivially simple.
474 if (SCEVComplexityCompare()(Ops
[1], Ops
[0]))
475 std::swap(Ops
[0], Ops
[1]);
479 // Do the rough sort by complexity.
480 std::sort(Ops
.begin(), Ops
.end(), SCEVComplexityCompare());
482 // Now that we are sorted by complexity, group elements of the same
483 // complexity. Note that this is, at worst, N^2, but the vector is likely to
484 // be extremely short in practice. Note that we take this approach because we
485 // do not want to depend on the addresses of the objects we are grouping.
486 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
488 unsigned Complexity
= S
->getSCEVType();
490 // If there are any objects of the same complexity and same value as this
492 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
493 if (Ops
[j
] == S
) { // Found a duplicate.
494 // Move it to immediately after i'th element.
495 std::swap(Ops
[i
+1], Ops
[j
]);
496 ++i
; // no need to rescan it.
497 if (i
== e
-2) return; // Done!
505 //===----------------------------------------------------------------------===//
506 // Simple SCEV method implementations
507 //===----------------------------------------------------------------------===//
509 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
511 static SCEVHandle
BinomialCoefficient(SCEVHandle It
, unsigned K
,
513 const Type
* ResultTy
) {
514 // Handle the simplest case efficiently.
516 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
518 // We are using the following formula for BC(It, K):
520 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
522 // Suppose, W is the bitwidth of the return value. We must be prepared for
523 // overflow. Hence, we must assure that the result of our computation is
524 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
525 // safe in modular arithmetic.
527 // However, this code doesn't use exactly that formula; the formula it uses
528 // is something like the following, where T is the number of factors of 2 in
529 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
532 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
534 // This formula is trivially equivalent to the previous formula. However,
535 // this formula can be implemented much more efficiently. The trick is that
536 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
537 // arithmetic. To do exact division in modular arithmetic, all we have
538 // to do is multiply by the inverse. Therefore, this step can be done at
541 // The next issue is how to safely do the division by 2^T. The way this
542 // is done is by doing the multiplication step at a width of at least W + T
543 // bits. This way, the bottom W+T bits of the product are accurate. Then,
544 // when we perform the division by 2^T (which is equivalent to a right shift
545 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
546 // truncated out after the division by 2^T.
548 // In comparison to just directly using the first formula, this technique
549 // is much more efficient; using the first formula requires W * K bits,
550 // but this formula less than W + K bits. Also, the first formula requires
551 // a division step, whereas this formula only requires multiplies and shifts.
553 // It doesn't matter whether the subtraction step is done in the calculation
554 // width or the input iteration count's width; if the subtraction overflows,
555 // the result must be zero anyway. We prefer here to do it in the width of
556 // the induction variable because it helps a lot for certain cases; CodeGen
557 // isn't smart enough to ignore the overflow, which leads to much less
558 // efficient code if the width of the subtraction is wider than the native
561 // (It's possible to not widen at all by pulling out factors of 2 before
562 // the multiplication; for example, K=2 can be calculated as
563 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
564 // extra arithmetic, so it's not an obvious win, and it gets
565 // much more complicated for K > 3.)
567 // Protection from insane SCEVs; this bound is conservative,
568 // but it probably doesn't matter.
570 return SE
.getCouldNotCompute();
572 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
574 // Calculate K! / 2^T and T; we divide out the factors of two before
575 // multiplying for calculating K! / 2^T to avoid overflow.
576 // Other overflow doesn't matter because we only care about the bottom
577 // W bits of the result.
578 APInt
OddFactorial(W
, 1);
580 for (unsigned i
= 3; i
<= K
; ++i
) {
582 unsigned TwoFactors
= Mult
.countTrailingZeros();
584 Mult
= Mult
.lshr(TwoFactors
);
585 OddFactorial
*= Mult
;
588 // We need at least W + T bits for the multiplication step
589 unsigned CalculationBits
= W
+ T
;
591 // Calcuate 2^T, at width T+W.
592 APInt DivFactor
= APInt(CalculationBits
, 1).shl(T
);
594 // Calculate the multiplicative inverse of K! / 2^T;
595 // this multiplication factor will perform the exact division by
597 APInt Mod
= APInt::getSignedMinValue(W
+1);
598 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
599 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
600 MultiplyFactor
= MultiplyFactor
.trunc(W
);
602 // Calculate the product, at width T+W
603 const IntegerType
*CalculationTy
= IntegerType::get(CalculationBits
);
604 SCEVHandle Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
605 for (unsigned i
= 1; i
!= K
; ++i
) {
606 SCEVHandle S
= SE
.getMinusSCEV(It
, SE
.getIntegerSCEV(i
, It
->getType()));
607 Dividend
= SE
.getMulExpr(Dividend
,
608 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
612 SCEVHandle DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
614 // Truncate the result, and divide by K! / 2^T.
616 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
617 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
620 /// evaluateAtIteration - Return the value of this chain of recurrences at
621 /// the specified iteration number. We can evaluate this recurrence by
622 /// multiplying each element in the chain by the binomial coefficient
623 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
625 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
627 /// where BC(It, k) stands for binomial coefficient.
629 SCEVHandle
SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It
,
630 ScalarEvolution
&SE
) const {
631 SCEVHandle Result
= getStart();
632 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
633 // The computation is correct in the face of overflow provided that the
634 // multiplication is performed _after_ the evaluation of the binomial
636 SCEVHandle Coeff
= BinomialCoefficient(It
, i
, SE
, getType());
637 if (isa
<SCEVCouldNotCompute
>(Coeff
))
640 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(getOperand(i
), Coeff
));
645 //===----------------------------------------------------------------------===//
646 // SCEV Expression folder implementations
647 //===----------------------------------------------------------------------===//
649 SCEVHandle
ScalarEvolution::getTruncateExpr(const SCEVHandle
&Op
, const Type
*Ty
) {
650 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
651 "This is not a truncating conversion!");
653 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
655 ConstantExpr::getTrunc(SC
->getValue(), Ty
));
657 // trunc(trunc(x)) --> trunc(x)
658 if (SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
659 return getTruncateExpr(ST
->getOperand(), Ty
);
661 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
662 if (SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
663 return getTruncateOrSignExtend(SS
->getOperand(), Ty
);
665 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
666 if (SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
667 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
);
669 // If the input value is a chrec scev made out of constants, truncate
670 // all of the constants.
671 if (SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
672 std::vector
<SCEVHandle
> Operands
;
673 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
674 // FIXME: This should allow truncation of other expression types!
675 if (isa
<SCEVConstant
>(AddRec
->getOperand(i
)))
676 Operands
.push_back(getTruncateExpr(AddRec
->getOperand(i
), Ty
));
679 if (Operands
.size() == AddRec
->getNumOperands())
680 return getAddRecExpr(Operands
, AddRec
->getLoop());
683 SCEVTruncateExpr
*&Result
= (*SCEVTruncates
)[std::make_pair(Op
, Ty
)];
684 if (Result
== 0) Result
= new SCEVTruncateExpr(Op
, Ty
);
688 SCEVHandle
ScalarEvolution::getZeroExtendExpr(const SCEVHandle
&Op
,
690 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
691 "This is not an extending conversion!");
693 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
694 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
695 Constant
*C
= ConstantExpr::getZExt(SC
->getValue(), IntTy
);
696 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
697 return getUnknown(C
);
700 // zext(zext(x)) --> zext(x)
701 if (SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
702 return getZeroExtendExpr(SZ
->getOperand(), Ty
);
704 // If the input value is a chrec scev, and we can prove that the value
705 // did not overflow the old, smaller, value, we can zero extend all of the
706 // operands (often constants). This allows analysis of something like
707 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
708 if (SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
709 if (AR
->isAffine()) {
710 // Check whether the backedge-taken count is SCEVCouldNotCompute.
711 // Note that this serves two purposes: It filters out loops that are
712 // simply not analyzable, and it covers the case where this code is
713 // being called from within backedge-taken count analysis, such that
714 // attempting to ask for the backedge-taken count would likely result
715 // in infinite recursion. In the later case, the analysis code will
716 // cope with a conservative value, and it will take care to purge
717 // that value once it has finished.
718 SCEVHandle MaxBECount
= getMaxBackedgeTakenCount(AR
->getLoop());
719 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
720 // Manually compute the final value for AR, checking for
722 SCEVHandle Start
= AR
->getStart();
723 SCEVHandle Step
= AR
->getStepRecurrence(*this);
725 // Check whether the backedge-taken count can be losslessly casted to
726 // the addrec's type. The count is always unsigned.
727 SCEVHandle CastedMaxBECount
=
728 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
730 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType())) {
732 IntegerType::get(getTypeSizeInBits(Start
->getType()) * 2);
733 // Check whether Start+Step*MaxBECount has no unsigned overflow.
735 getMulExpr(CastedMaxBECount
,
736 getTruncateOrZeroExtend(Step
, Start
->getType()));
737 SCEVHandle Add
= getAddExpr(Start
, ZMul
);
738 if (getZeroExtendExpr(Add
, WideTy
) ==
739 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
740 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
741 getZeroExtendExpr(Step
, WideTy
))))
742 // Return the expression with the addrec on the outside.
743 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
744 getZeroExtendExpr(Step
, Ty
),
747 // Similar to above, only this time treat the step value as signed.
748 // This covers loops that count down.
750 getMulExpr(CastedMaxBECount
,
751 getTruncateOrSignExtend(Step
, Start
->getType()));
752 Add
= getAddExpr(Start
, SMul
);
753 if (getZeroExtendExpr(Add
, WideTy
) ==
754 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
755 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
756 getSignExtendExpr(Step
, WideTy
))))
757 // Return the expression with the addrec on the outside.
758 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
759 getSignExtendExpr(Step
, Ty
),
765 SCEVZeroExtendExpr
*&Result
= (*SCEVZeroExtends
)[std::make_pair(Op
, Ty
)];
766 if (Result
== 0) Result
= new SCEVZeroExtendExpr(Op
, Ty
);
770 SCEVHandle
ScalarEvolution::getSignExtendExpr(const SCEVHandle
&Op
,
772 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
773 "This is not an extending conversion!");
775 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
776 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
777 Constant
*C
= ConstantExpr::getSExt(SC
->getValue(), IntTy
);
778 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
779 return getUnknown(C
);
782 // sext(sext(x)) --> sext(x)
783 if (SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
784 return getSignExtendExpr(SS
->getOperand(), Ty
);
786 // If the input value is a chrec scev, and we can prove that the value
787 // did not overflow the old, smaller, value, we can sign extend all of the
788 // operands (often constants). This allows analysis of something like
789 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
790 if (SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
791 if (AR
->isAffine()) {
792 // Check whether the backedge-taken count is SCEVCouldNotCompute.
793 // Note that this serves two purposes: It filters out loops that are
794 // simply not analyzable, and it covers the case where this code is
795 // being called from within backedge-taken count analysis, such that
796 // attempting to ask for the backedge-taken count would likely result
797 // in infinite recursion. In the later case, the analysis code will
798 // cope with a conservative value, and it will take care to purge
799 // that value once it has finished.
800 SCEVHandle MaxBECount
= getMaxBackedgeTakenCount(AR
->getLoop());
801 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
802 // Manually compute the final value for AR, checking for
804 SCEVHandle Start
= AR
->getStart();
805 SCEVHandle Step
= AR
->getStepRecurrence(*this);
807 // Check whether the backedge-taken count can be losslessly casted to
808 // the addrec's type. The count is always unsigned.
809 SCEVHandle CastedMaxBECount
=
810 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
812 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType())) {
814 IntegerType::get(getTypeSizeInBits(Start
->getType()) * 2);
815 // Check whether Start+Step*MaxBECount has no signed overflow.
817 getMulExpr(CastedMaxBECount
,
818 getTruncateOrSignExtend(Step
, Start
->getType()));
819 SCEVHandle Add
= getAddExpr(Start
, SMul
);
820 if (getSignExtendExpr(Add
, WideTy
) ==
821 getAddExpr(getSignExtendExpr(Start
, WideTy
),
822 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
823 getSignExtendExpr(Step
, WideTy
))))
824 // Return the expression with the addrec on the outside.
825 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
826 getSignExtendExpr(Step
, Ty
),
832 SCEVSignExtendExpr
*&Result
= (*SCEVSignExtends
)[std::make_pair(Op
, Ty
)];
833 if (Result
== 0) Result
= new SCEVSignExtendExpr(Op
, Ty
);
837 // get - Get a canonical add expression, or something simpler if possible.
838 SCEVHandle
ScalarEvolution::getAddExpr(std::vector
<SCEVHandle
> &Ops
) {
839 assert(!Ops
.empty() && "Cannot get empty add!");
840 if (Ops
.size() == 1) return Ops
[0];
842 // Sort by complexity, this groups all similar expression types together.
843 GroupByComplexity(Ops
);
845 // If there are any constants, fold them together.
847 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
849 assert(Idx
< Ops
.size());
850 while (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
851 // We found two constants, fold them together!
852 ConstantInt
*Fold
= ConstantInt::get(LHSC
->getValue()->getValue() +
853 RHSC
->getValue()->getValue());
854 Ops
[0] = getConstant(Fold
);
855 Ops
.erase(Ops
.begin()+1); // Erase the folded element
856 if (Ops
.size() == 1) return Ops
[0];
857 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
860 // If we are left with a constant zero being added, strip it off.
861 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
862 Ops
.erase(Ops
.begin());
867 if (Ops
.size() == 1) return Ops
[0];
869 // Okay, check to see if the same value occurs in the operand list twice. If
870 // so, merge them together into an multiply expression. Since we sorted the
871 // list, these values are required to be adjacent.
872 const Type
*Ty
= Ops
[0]->getType();
873 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
874 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
875 // Found a match, merge the two values into a multiply, and add any
876 // remaining values to the result.
877 SCEVHandle Two
= getIntegerSCEV(2, Ty
);
878 SCEVHandle Mul
= getMulExpr(Ops
[i
], Two
);
881 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
883 return getAddExpr(Ops
);
886 // Now we know the first non-constant operand. Skip past any cast SCEVs.
887 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
890 // If there are add operands they would be next.
891 if (Idx
< Ops
.size()) {
892 bool DeletedAdd
= false;
893 while (SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
894 // If we have an add, expand the add operands onto the end of the operands
896 Ops
.insert(Ops
.end(), Add
->op_begin(), Add
->op_end());
897 Ops
.erase(Ops
.begin()+Idx
);
901 // If we deleted at least one add, we added operands to the end of the list,
902 // and they are not necessarily sorted. Recurse to resort and resimplify
903 // any operands we just aquired.
905 return getAddExpr(Ops
);
908 // Skip over the add expression until we get to a multiply.
909 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
912 // If we are adding something to a multiply expression, make sure the
913 // something is not already an operand of the multiply. If so, merge it into
915 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
916 SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
917 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
918 SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
919 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
920 if (MulOpSCEV
== Ops
[AddOp
] && !isa
<SCEVConstant
>(MulOpSCEV
)) {
921 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
922 SCEVHandle InnerMul
= Mul
->getOperand(MulOp
== 0);
923 if (Mul
->getNumOperands() != 2) {
924 // If the multiply has more than two operands, we must get the
926 std::vector
<SCEVHandle
> MulOps(Mul
->op_begin(), Mul
->op_end());
927 MulOps
.erase(MulOps
.begin()+MulOp
);
928 InnerMul
= getMulExpr(MulOps
);
930 SCEVHandle One
= getIntegerSCEV(1, Ty
);
931 SCEVHandle AddOne
= getAddExpr(InnerMul
, One
);
932 SCEVHandle OuterMul
= getMulExpr(AddOne
, Ops
[AddOp
]);
933 if (Ops
.size() == 2) return OuterMul
;
935 Ops
.erase(Ops
.begin()+AddOp
);
936 Ops
.erase(Ops
.begin()+Idx
-1);
938 Ops
.erase(Ops
.begin()+Idx
);
939 Ops
.erase(Ops
.begin()+AddOp
-1);
941 Ops
.push_back(OuterMul
);
942 return getAddExpr(Ops
);
945 // Check this multiply against other multiplies being added together.
946 for (unsigned OtherMulIdx
= Idx
+1;
947 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
949 SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
950 // If MulOp occurs in OtherMul, we can fold the two multiplies
952 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
953 OMulOp
!= e
; ++OMulOp
)
954 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
955 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
956 SCEVHandle InnerMul1
= Mul
->getOperand(MulOp
== 0);
957 if (Mul
->getNumOperands() != 2) {
958 std::vector
<SCEVHandle
> MulOps(Mul
->op_begin(), Mul
->op_end());
959 MulOps
.erase(MulOps
.begin()+MulOp
);
960 InnerMul1
= getMulExpr(MulOps
);
962 SCEVHandle InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
963 if (OtherMul
->getNumOperands() != 2) {
964 std::vector
<SCEVHandle
> MulOps(OtherMul
->op_begin(),
966 MulOps
.erase(MulOps
.begin()+OMulOp
);
967 InnerMul2
= getMulExpr(MulOps
);
969 SCEVHandle InnerMulSum
= getAddExpr(InnerMul1
,InnerMul2
);
970 SCEVHandle OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
);
971 if (Ops
.size() == 2) return OuterMul
;
972 Ops
.erase(Ops
.begin()+Idx
);
973 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
974 Ops
.push_back(OuterMul
);
975 return getAddExpr(Ops
);
981 // If there are any add recurrences in the operands list, see if any other
982 // added values are loop invariant. If so, we can fold them into the
984 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
987 // Scan over all recurrences, trying to fold loop invariants into them.
988 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
989 // Scan all of the other operands to this add and add them to the vector if
990 // they are loop invariant w.r.t. the recurrence.
991 std::vector
<SCEVHandle
> LIOps
;
992 SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
993 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
994 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
995 LIOps
.push_back(Ops
[i
]);
996 Ops
.erase(Ops
.begin()+i
);
1000 // If we found some loop invariants, fold them into the recurrence.
1001 if (!LIOps
.empty()) {
1002 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1003 LIOps
.push_back(AddRec
->getStart());
1005 std::vector
<SCEVHandle
> AddRecOps(AddRec
->op_begin(), AddRec
->op_end());
1006 AddRecOps
[0] = getAddExpr(LIOps
);
1008 SCEVHandle NewRec
= getAddRecExpr(AddRecOps
, AddRec
->getLoop());
1009 // If all of the other operands were loop invariant, we are done.
1010 if (Ops
.size() == 1) return NewRec
;
1012 // Otherwise, add the folded AddRec by the non-liv parts.
1013 for (unsigned i
= 0;; ++i
)
1014 if (Ops
[i
] == AddRec
) {
1018 return getAddExpr(Ops
);
1021 // Okay, if there weren't any loop invariants to be folded, check to see if
1022 // there are multiple AddRec's with the same loop induction variable being
1023 // added together. If so, we can fold them.
1024 for (unsigned OtherIdx
= Idx
+1;
1025 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1026 if (OtherIdx
!= Idx
) {
1027 SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1028 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1029 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1030 std::vector
<SCEVHandle
> NewOps(AddRec
->op_begin(), AddRec
->op_end());
1031 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands(); i
!= e
; ++i
) {
1032 if (i
>= NewOps
.size()) {
1033 NewOps
.insert(NewOps
.end(), OtherAddRec
->op_begin()+i
,
1034 OtherAddRec
->op_end());
1037 NewOps
[i
] = getAddExpr(NewOps
[i
], OtherAddRec
->getOperand(i
));
1039 SCEVHandle NewAddRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1041 if (Ops
.size() == 2) return NewAddRec
;
1043 Ops
.erase(Ops
.begin()+Idx
);
1044 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1045 Ops
.push_back(NewAddRec
);
1046 return getAddExpr(Ops
);
1050 // Otherwise couldn't fold anything into this recurrence. Move onto the
1054 // Okay, it looks like we really DO need an add expr. Check to see if we
1055 // already have one, otherwise create a new one.
1056 std::vector
<SCEV
*> SCEVOps(Ops
.begin(), Ops
.end());
1057 SCEVCommutativeExpr
*&Result
= (*SCEVCommExprs
)[std::make_pair(scAddExpr
,
1059 if (Result
== 0) Result
= new SCEVAddExpr(Ops
);
1064 SCEVHandle
ScalarEvolution::getMulExpr(std::vector
<SCEVHandle
> &Ops
) {
1065 assert(!Ops
.empty() && "Cannot get empty mul!");
1067 // Sort by complexity, this groups all similar expression types together.
1068 GroupByComplexity(Ops
);
1070 // If there are any constants, fold them together.
1072 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1074 // C1*(C2+V) -> C1*C2 + C1*V
1075 if (Ops
.size() == 2)
1076 if (SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
1077 if (Add
->getNumOperands() == 2 &&
1078 isa
<SCEVConstant
>(Add
->getOperand(0)))
1079 return getAddExpr(getMulExpr(LHSC
, Add
->getOperand(0)),
1080 getMulExpr(LHSC
, Add
->getOperand(1)));
1084 while (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1085 // We found two constants, fold them together!
1086 ConstantInt
*Fold
= ConstantInt::get(LHSC
->getValue()->getValue() *
1087 RHSC
->getValue()->getValue());
1088 Ops
[0] = getConstant(Fold
);
1089 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1090 if (Ops
.size() == 1) return Ops
[0];
1091 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1094 // If we are left with a constant one being multiplied, strip it off.
1095 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->equalsInt(1)) {
1096 Ops
.erase(Ops
.begin());
1098 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1099 // If we have a multiply of zero, it will always be zero.
1104 // Skip over the add expression until we get to a multiply.
1105 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1108 if (Ops
.size() == 1)
1111 // If there are mul operands inline them all into this expression.
1112 if (Idx
< Ops
.size()) {
1113 bool DeletedMul
= false;
1114 while (SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
1115 // If we have an mul, expand the mul operands onto the end of the operands
1117 Ops
.insert(Ops
.end(), Mul
->op_begin(), Mul
->op_end());
1118 Ops
.erase(Ops
.begin()+Idx
);
1122 // If we deleted at least one mul, we added operands to the end of the list,
1123 // and they are not necessarily sorted. Recurse to resort and resimplify
1124 // any operands we just aquired.
1126 return getMulExpr(Ops
);
1129 // If there are any add recurrences in the operands list, see if any other
1130 // added values are loop invariant. If so, we can fold them into the
1132 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1135 // Scan over all recurrences, trying to fold loop invariants into them.
1136 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1137 // Scan all of the other operands to this mul and add them to the vector if
1138 // they are loop invariant w.r.t. the recurrence.
1139 std::vector
<SCEVHandle
> LIOps
;
1140 SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1141 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1142 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1143 LIOps
.push_back(Ops
[i
]);
1144 Ops
.erase(Ops
.begin()+i
);
1148 // If we found some loop invariants, fold them into the recurrence.
1149 if (!LIOps
.empty()) {
1150 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1151 std::vector
<SCEVHandle
> NewOps
;
1152 NewOps
.reserve(AddRec
->getNumOperands());
1153 if (LIOps
.size() == 1) {
1154 SCEV
*Scale
= LIOps
[0];
1155 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
1156 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
)));
1158 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
1159 std::vector
<SCEVHandle
> MulOps(LIOps
);
1160 MulOps
.push_back(AddRec
->getOperand(i
));
1161 NewOps
.push_back(getMulExpr(MulOps
));
1165 SCEVHandle NewRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1167 // If all of the other operands were loop invariant, we are done.
1168 if (Ops
.size() == 1) return NewRec
;
1170 // Otherwise, multiply the folded AddRec by the non-liv parts.
1171 for (unsigned i
= 0;; ++i
)
1172 if (Ops
[i
] == AddRec
) {
1176 return getMulExpr(Ops
);
1179 // Okay, if there weren't any loop invariants to be folded, check to see if
1180 // there are multiple AddRec's with the same loop induction variable being
1181 // multiplied together. If so, we can fold them.
1182 for (unsigned OtherIdx
= Idx
+1;
1183 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1184 if (OtherIdx
!= Idx
) {
1185 SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1186 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1187 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1188 SCEVAddRecExpr
*F
= AddRec
, *G
= OtherAddRec
;
1189 SCEVHandle NewStart
= getMulExpr(F
->getStart(),
1191 SCEVHandle B
= F
->getStepRecurrence(*this);
1192 SCEVHandle D
= G
->getStepRecurrence(*this);
1193 SCEVHandle NewStep
= getAddExpr(getMulExpr(F
, D
),
1196 SCEVHandle NewAddRec
= getAddRecExpr(NewStart
, NewStep
,
1198 if (Ops
.size() == 2) return NewAddRec
;
1200 Ops
.erase(Ops
.begin()+Idx
);
1201 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1202 Ops
.push_back(NewAddRec
);
1203 return getMulExpr(Ops
);
1207 // Otherwise couldn't fold anything into this recurrence. Move onto the
1211 // Okay, it looks like we really DO need an mul expr. Check to see if we
1212 // already have one, otherwise create a new one.
1213 std::vector
<SCEV
*> SCEVOps(Ops
.begin(), Ops
.end());
1214 SCEVCommutativeExpr
*&Result
= (*SCEVCommExprs
)[std::make_pair(scMulExpr
,
1217 Result
= new SCEVMulExpr(Ops
);
1221 SCEVHandle
ScalarEvolution::getUDivExpr(const SCEVHandle
&LHS
, const SCEVHandle
&RHS
) {
1222 if (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
1223 if (RHSC
->getValue()->equalsInt(1))
1224 return LHS
; // X udiv 1 --> x
1226 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
1227 Constant
*LHSCV
= LHSC
->getValue();
1228 Constant
*RHSCV
= RHSC
->getValue();
1229 return getUnknown(ConstantExpr::getUDiv(LHSCV
, RHSCV
));
1233 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1235 SCEVUDivExpr
*&Result
= (*SCEVUDivs
)[std::make_pair(LHS
, RHS
)];
1236 if (Result
== 0) Result
= new SCEVUDivExpr(LHS
, RHS
);
1241 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1242 /// specified loop. Simplify the expression as much as possible.
1243 SCEVHandle
ScalarEvolution::getAddRecExpr(const SCEVHandle
&Start
,
1244 const SCEVHandle
&Step
, const Loop
*L
) {
1245 std::vector
<SCEVHandle
> Operands
;
1246 Operands
.push_back(Start
);
1247 if (SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
1248 if (StepChrec
->getLoop() == L
) {
1249 Operands
.insert(Operands
.end(), StepChrec
->op_begin(),
1250 StepChrec
->op_end());
1251 return getAddRecExpr(Operands
, L
);
1254 Operands
.push_back(Step
);
1255 return getAddRecExpr(Operands
, L
);
1258 /// SCEVAddRecExpr::get - Get a add recurrence expression for the
1259 /// specified loop. Simplify the expression as much as possible.
1260 SCEVHandle
ScalarEvolution::getAddRecExpr(std::vector
<SCEVHandle
> &Operands
,
1262 if (Operands
.size() == 1) return Operands
[0];
1264 if (Operands
.back()->isZero()) {
1265 Operands
.pop_back();
1266 return getAddRecExpr(Operands
, L
); // {X,+,0} --> X
1269 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1270 if (SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
1271 const Loop
* NestedLoop
= NestedAR
->getLoop();
1272 if (L
->getLoopDepth() < NestedLoop
->getLoopDepth()) {
1273 std::vector
<SCEVHandle
> NestedOperands(NestedAR
->op_begin(),
1274 NestedAR
->op_end());
1275 SCEVHandle
NestedARHandle(NestedAR
);
1276 Operands
[0] = NestedAR
->getStart();
1277 NestedOperands
[0] = getAddRecExpr(Operands
, L
);
1278 return getAddRecExpr(NestedOperands
, NestedLoop
);
1282 SCEVAddRecExpr
*&Result
=
1283 (*SCEVAddRecExprs
)[std::make_pair(L
, std::vector
<SCEV
*>(Operands
.begin(),
1285 if (Result
== 0) Result
= new SCEVAddRecExpr(Operands
, L
);
1289 SCEVHandle
ScalarEvolution::getSMaxExpr(const SCEVHandle
&LHS
,
1290 const SCEVHandle
&RHS
) {
1291 std::vector
<SCEVHandle
> Ops
;
1294 return getSMaxExpr(Ops
);
1297 SCEVHandle
ScalarEvolution::getSMaxExpr(std::vector
<SCEVHandle
> Ops
) {
1298 assert(!Ops
.empty() && "Cannot get empty smax!");
1299 if (Ops
.size() == 1) return Ops
[0];
1301 // Sort by complexity, this groups all similar expression types together.
1302 GroupByComplexity(Ops
);
1304 // If there are any constants, fold them together.
1306 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1308 assert(Idx
< Ops
.size());
1309 while (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1310 // We found two constants, fold them together!
1311 ConstantInt
*Fold
= ConstantInt::get(
1312 APIntOps::smax(LHSC
->getValue()->getValue(),
1313 RHSC
->getValue()->getValue()));
1314 Ops
[0] = getConstant(Fold
);
1315 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1316 if (Ops
.size() == 1) return Ops
[0];
1317 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1320 // If we are left with a constant -inf, strip it off.
1321 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(true)) {
1322 Ops
.erase(Ops
.begin());
1327 if (Ops
.size() == 1) return Ops
[0];
1329 // Find the first SMax
1330 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scSMaxExpr
)
1333 // Check to see if one of the operands is an SMax. If so, expand its operands
1334 // onto our operand list, and recurse to simplify.
1335 if (Idx
< Ops
.size()) {
1336 bool DeletedSMax
= false;
1337 while (SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(Ops
[Idx
])) {
1338 Ops
.insert(Ops
.end(), SMax
->op_begin(), SMax
->op_end());
1339 Ops
.erase(Ops
.begin()+Idx
);
1344 return getSMaxExpr(Ops
);
1347 // Okay, check to see if the same value occurs in the operand list twice. If
1348 // so, delete one. Since we sorted the list, these values are required to
1350 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1351 if (Ops
[i
] == Ops
[i
+1]) { // X smax Y smax Y --> X smax Y
1352 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
1356 if (Ops
.size() == 1) return Ops
[0];
1358 assert(!Ops
.empty() && "Reduced smax down to nothing!");
1360 // Okay, it looks like we really DO need an smax expr. Check to see if we
1361 // already have one, otherwise create a new one.
1362 std::vector
<SCEV
*> SCEVOps(Ops
.begin(), Ops
.end());
1363 SCEVCommutativeExpr
*&Result
= (*SCEVCommExprs
)[std::make_pair(scSMaxExpr
,
1365 if (Result
== 0) Result
= new SCEVSMaxExpr(Ops
);
1369 SCEVHandle
ScalarEvolution::getUMaxExpr(const SCEVHandle
&LHS
,
1370 const SCEVHandle
&RHS
) {
1371 std::vector
<SCEVHandle
> Ops
;
1374 return getUMaxExpr(Ops
);
1377 SCEVHandle
ScalarEvolution::getUMaxExpr(std::vector
<SCEVHandle
> Ops
) {
1378 assert(!Ops
.empty() && "Cannot get empty umax!");
1379 if (Ops
.size() == 1) return Ops
[0];
1381 // Sort by complexity, this groups all similar expression types together.
1382 GroupByComplexity(Ops
);
1384 // If there are any constants, fold them together.
1386 if (SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1388 assert(Idx
< Ops
.size());
1389 while (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1390 // We found two constants, fold them together!
1391 ConstantInt
*Fold
= ConstantInt::get(
1392 APIntOps::umax(LHSC
->getValue()->getValue(),
1393 RHSC
->getValue()->getValue()));
1394 Ops
[0] = getConstant(Fold
);
1395 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1396 if (Ops
.size() == 1) return Ops
[0];
1397 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1400 // If we are left with a constant zero, strip it off.
1401 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(false)) {
1402 Ops
.erase(Ops
.begin());
1407 if (Ops
.size() == 1) return Ops
[0];
1409 // Find the first UMax
1410 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scUMaxExpr
)
1413 // Check to see if one of the operands is a UMax. If so, expand its operands
1414 // onto our operand list, and recurse to simplify.
1415 if (Idx
< Ops
.size()) {
1416 bool DeletedUMax
= false;
1417 while (SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(Ops
[Idx
])) {
1418 Ops
.insert(Ops
.end(), UMax
->op_begin(), UMax
->op_end());
1419 Ops
.erase(Ops
.begin()+Idx
);
1424 return getUMaxExpr(Ops
);
1427 // Okay, check to see if the same value occurs in the operand list twice. If
1428 // so, delete one. Since we sorted the list, these values are required to
1430 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1431 if (Ops
[i
] == Ops
[i
+1]) { // X umax Y umax Y --> X umax Y
1432 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
1436 if (Ops
.size() == 1) return Ops
[0];
1438 assert(!Ops
.empty() && "Reduced umax down to nothing!");
1440 // Okay, it looks like we really DO need a umax expr. Check to see if we
1441 // already have one, otherwise create a new one.
1442 std::vector
<SCEV
*> SCEVOps(Ops
.begin(), Ops
.end());
1443 SCEVCommutativeExpr
*&Result
= (*SCEVCommExprs
)[std::make_pair(scUMaxExpr
,
1445 if (Result
== 0) Result
= new SCEVUMaxExpr(Ops
);
1449 SCEVHandle
ScalarEvolution::getUnknown(Value
*V
) {
1450 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
1451 return getConstant(CI
);
1452 if (isa
<ConstantPointerNull
>(V
))
1453 return getIntegerSCEV(0, V
->getType());
1454 SCEVUnknown
*&Result
= (*SCEVUnknowns
)[V
];
1455 if (Result
== 0) Result
= new SCEVUnknown(V
);
1459 //===----------------------------------------------------------------------===//
1460 // Basic SCEV Analysis and PHI Idiom Recognition Code
1463 /// deleteValueFromRecords - This method should be called by the
1464 /// client before it removes an instruction from the program, to make sure
1465 /// that no dangling references are left around.
1466 void ScalarEvolution::deleteValueFromRecords(Value
*V
) {
1467 SmallVector
<Value
*, 16> Worklist
;
1469 if (Scalars
.erase(V
)) {
1470 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
))
1471 ConstantEvolutionLoopExitValue
.erase(PN
);
1472 Worklist
.push_back(V
);
1475 while (!Worklist
.empty()) {
1476 Value
*VV
= Worklist
.back();
1477 Worklist
.pop_back();
1479 for (Instruction::use_iterator UI
= VV
->use_begin(), UE
= VV
->use_end();
1481 Instruction
*Inst
= cast
<Instruction
>(*UI
);
1482 if (Scalars
.erase(Inst
)) {
1483 if (PHINode
*PN
= dyn_cast
<PHINode
>(VV
))
1484 ConstantEvolutionLoopExitValue
.erase(PN
);
1485 Worklist
.push_back(Inst
);
1491 /// isSCEVable - Test if values of the given type are analyzable within
1492 /// the SCEV framework. This primarily includes integer types, and it
1493 /// can optionally include pointer types if the ScalarEvolution class
1494 /// has access to target-specific information.
1495 bool ScalarEvolution::isSCEVable(const Type
*Ty
) const {
1496 // Integers are always SCEVable.
1497 if (Ty
->isInteger())
1500 // Pointers are SCEVable if TargetData information is available
1501 // to provide pointer size information.
1502 if (isa
<PointerType
>(Ty
))
1505 // Otherwise it's not SCEVable.
1509 /// getTypeSizeInBits - Return the size in bits of the specified type,
1510 /// for which isSCEVable must return true.
1511 uint64_t ScalarEvolution::getTypeSizeInBits(const Type
*Ty
) const {
1512 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
1514 // If we have a TargetData, use it!
1516 return TD
->getTypeSizeInBits(Ty
);
1518 // Otherwise, we support only integer types.
1519 assert(Ty
->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1520 return Ty
->getPrimitiveSizeInBits();
1523 /// getEffectiveSCEVType - Return a type with the same bitwidth as
1524 /// the given type and which represents how SCEV will treat the given
1525 /// type, for which isSCEVable must return true. For pointer types,
1526 /// this is the pointer-sized integer type.
1527 const Type
*ScalarEvolution::getEffectiveSCEVType(const Type
*Ty
) const {
1528 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
1530 if (Ty
->isInteger())
1533 assert(isa
<PointerType
>(Ty
) && "Unexpected non-pointer non-integer type!");
1534 return TD
->getIntPtrType();
1537 SCEVHandle
ScalarEvolution::getCouldNotCompute() {
1538 return UnknownValue
;
1541 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1542 /// expression and create a new one.
1543 SCEVHandle
ScalarEvolution::getSCEV(Value
*V
) {
1544 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
1546 std::map
<Value
*, SCEVHandle
>::iterator I
= Scalars
.find(V
);
1547 if (I
!= Scalars
.end()) return I
->second
;
1548 SCEVHandle S
= createSCEV(V
);
1549 Scalars
.insert(std::make_pair(V
, S
));
1553 /// getIntegerSCEV - Given an integer or FP type, create a constant for the
1554 /// specified signed integer value and return a SCEV for the constant.
1555 SCEVHandle
ScalarEvolution::getIntegerSCEV(int Val
, const Type
*Ty
) {
1556 Ty
= getEffectiveSCEVType(Ty
);
1559 C
= Constant::getNullValue(Ty
);
1560 else if (Ty
->isFloatingPoint())
1561 C
= ConstantFP::get(APFloat(Ty
==Type::FloatTy
? APFloat::IEEEsingle
:
1562 APFloat::IEEEdouble
, Val
));
1564 C
= ConstantInt::get(Ty
, Val
);
1565 return getUnknown(C
);
1568 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1570 SCEVHandle
ScalarEvolution::getNegativeSCEV(const SCEVHandle
&V
) {
1571 if (SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
1572 return getUnknown(ConstantExpr::getNeg(VC
->getValue()));
1574 const Type
*Ty
= V
->getType();
1575 Ty
= getEffectiveSCEVType(Ty
);
1576 return getMulExpr(V
, getConstant(ConstantInt::getAllOnesValue(Ty
)));
1579 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1580 SCEVHandle
ScalarEvolution::getNotSCEV(const SCEVHandle
&V
) {
1581 if (SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
1582 return getUnknown(ConstantExpr::getNot(VC
->getValue()));
1584 const Type
*Ty
= V
->getType();
1585 Ty
= getEffectiveSCEVType(Ty
);
1586 SCEVHandle AllOnes
= getConstant(ConstantInt::getAllOnesValue(Ty
));
1587 return getMinusSCEV(AllOnes
, V
);
1590 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1592 SCEVHandle
ScalarEvolution::getMinusSCEV(const SCEVHandle
&LHS
,
1593 const SCEVHandle
&RHS
) {
1595 return getAddExpr(LHS
, getNegativeSCEV(RHS
));
1598 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1599 /// input value to the specified type. If the type must be extended, it is zero
1602 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle
&V
,
1604 const Type
*SrcTy
= V
->getType();
1605 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
1606 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
1607 "Cannot truncate or zero extend with non-integer arguments!");
1608 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
1609 return V
; // No conversion
1610 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
1611 return getTruncateExpr(V
, Ty
);
1612 return getZeroExtendExpr(V
, Ty
);
1615 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1616 /// input value to the specified type. If the type must be extended, it is sign
1619 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle
&V
,
1621 const Type
*SrcTy
= V
->getType();
1622 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
1623 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
1624 "Cannot truncate or zero extend with non-integer arguments!");
1625 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
1626 return V
; // No conversion
1627 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
1628 return getTruncateExpr(V
, Ty
);
1629 return getSignExtendExpr(V
, Ty
);
1632 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1633 /// the specified instruction and replaces any references to the symbolic value
1634 /// SymName with the specified value. This is used during PHI resolution.
1635 void ScalarEvolution::
1636 ReplaceSymbolicValueWithConcrete(Instruction
*I
, const SCEVHandle
&SymName
,
1637 const SCEVHandle
&NewVal
) {
1638 std::map
<Value
*, SCEVHandle
>::iterator SI
= Scalars
.find(I
);
1639 if (SI
== Scalars
.end()) return;
1642 SI
->second
->replaceSymbolicValuesWithConcrete(SymName
, NewVal
, *this);
1643 if (NV
== SI
->second
) return; // No change.
1645 SI
->second
= NV
; // Update the scalars map!
1647 // Any instruction values that use this instruction might also need to be
1649 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1651 ReplaceSymbolicValueWithConcrete(cast
<Instruction
>(*UI
), SymName
, NewVal
);
1654 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1655 /// a loop header, making it a potential recurrence, or it doesn't.
1657 SCEVHandle
ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
1658 if (PN
->getNumIncomingValues() == 2) // The loops have been canonicalized.
1659 if (const Loop
*L
= LI
->getLoopFor(PN
->getParent()))
1660 if (L
->getHeader() == PN
->getParent()) {
1661 // If it lives in the loop header, it has two incoming values, one
1662 // from outside the loop, and one from inside.
1663 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
1664 unsigned BackEdge
= IncomingEdge
^1;
1666 // While we are analyzing this PHI node, handle its value symbolically.
1667 SCEVHandle SymbolicName
= getUnknown(PN
);
1668 assert(Scalars
.find(PN
) == Scalars
.end() &&
1669 "PHI node already processed?");
1670 Scalars
.insert(std::make_pair(PN
, SymbolicName
));
1672 // Using this symbolic name for the PHI, analyze the value coming around
1674 SCEVHandle BEValue
= getSCEV(PN
->getIncomingValue(BackEdge
));
1676 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1677 // has a special value for the first iteration of the loop.
1679 // If the value coming around the backedge is an add with the symbolic
1680 // value we just inserted, then we found a simple induction variable!
1681 if (SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
1682 // If there is a single occurrence of the symbolic value, replace it
1683 // with a recurrence.
1684 unsigned FoundIndex
= Add
->getNumOperands();
1685 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
1686 if (Add
->getOperand(i
) == SymbolicName
)
1687 if (FoundIndex
== e
) {
1692 if (FoundIndex
!= Add
->getNumOperands()) {
1693 // Create an add with everything but the specified operand.
1694 std::vector
<SCEVHandle
> Ops
;
1695 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
1696 if (i
!= FoundIndex
)
1697 Ops
.push_back(Add
->getOperand(i
));
1698 SCEVHandle Accum
= getAddExpr(Ops
);
1700 // This is not a valid addrec if the step amount is varying each
1701 // loop iteration, but is not itself an addrec in this loop.
1702 if (Accum
->isLoopInvariant(L
) ||
1703 (isa
<SCEVAddRecExpr
>(Accum
) &&
1704 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
1705 SCEVHandle StartVal
= getSCEV(PN
->getIncomingValue(IncomingEdge
));
1706 SCEVHandle PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
);
1708 // Okay, for the entire analysis of this edge we assumed the PHI
1709 // to be symbolic. We now need to go back and update all of the
1710 // entries for the scalars that use the PHI (except for the PHI
1711 // itself) to use the new analyzed value instead of the "symbolic"
1713 ReplaceSymbolicValueWithConcrete(PN
, SymbolicName
, PHISCEV
);
1717 } else if (SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(BEValue
)) {
1718 // Otherwise, this could be a loop like this:
1719 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1720 // In this case, j = {1,+,1} and BEValue is j.
1721 // Because the other in-value of i (0) fits the evolution of BEValue
1722 // i really is an addrec evolution.
1723 if (AddRec
->getLoop() == L
&& AddRec
->isAffine()) {
1724 SCEVHandle StartVal
= getSCEV(PN
->getIncomingValue(IncomingEdge
));
1726 // If StartVal = j.start - j.stride, we can use StartVal as the
1727 // initial step of the addrec evolution.
1728 if (StartVal
== getMinusSCEV(AddRec
->getOperand(0),
1729 AddRec
->getOperand(1))) {
1730 SCEVHandle PHISCEV
=
1731 getAddRecExpr(StartVal
, AddRec
->getOperand(1), L
);
1733 // Okay, for the entire analysis of this edge we assumed the PHI
1734 // to be symbolic. We now need to go back and update all of the
1735 // entries for the scalars that use the PHI (except for the PHI
1736 // itself) to use the new analyzed value instead of the "symbolic"
1738 ReplaceSymbolicValueWithConcrete(PN
, SymbolicName
, PHISCEV
);
1744 return SymbolicName
;
1747 // If it's not a loop phi, we can't handle it yet.
1748 return getUnknown(PN
);
1751 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1752 /// guaranteed to end in (at every loop iteration). It is, at the same time,
1753 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1754 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
1755 static uint32_t GetMinTrailingZeros(SCEVHandle S
, const ScalarEvolution
&SE
) {
1756 if (SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
1757 return C
->getValue()->getValue().countTrailingZeros();
1759 if (SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(S
))
1760 return std::min(GetMinTrailingZeros(T
->getOperand(), SE
),
1761 (uint32_t)SE
.getTypeSizeInBits(T
->getType()));
1763 if (SCEVZeroExtendExpr
*E
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
1764 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand(), SE
);
1765 return OpRes
== SE
.getTypeSizeInBits(E
->getOperand()->getType()) ?
1766 SE
.getTypeSizeInBits(E
->getOperand()->getType()) : OpRes
;
1769 if (SCEVSignExtendExpr
*E
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
1770 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand(), SE
);
1771 return OpRes
== SE
.getTypeSizeInBits(E
->getOperand()->getType()) ?
1772 SE
.getTypeSizeInBits(E
->getOperand()->getType()) : OpRes
;
1775 if (SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(S
)) {
1776 // The result is the min of all operands results.
1777 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0), SE
);
1778 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
1779 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
), SE
));
1783 if (SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
1784 // The result is the sum of all operands results.
1785 uint32_t SumOpRes
= GetMinTrailingZeros(M
->getOperand(0), SE
);
1786 uint32_t BitWidth
= SE
.getTypeSizeInBits(M
->getType());
1787 for (unsigned i
= 1, e
= M
->getNumOperands();
1788 SumOpRes
!= BitWidth
&& i
!= e
; ++i
)
1789 SumOpRes
= std::min(SumOpRes
+ GetMinTrailingZeros(M
->getOperand(i
), SE
),
1794 if (SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
1795 // The result is the min of all operands results.
1796 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0), SE
);
1797 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
1798 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
), SE
));
1802 if (SCEVSMaxExpr
*M
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
1803 // The result is the min of all operands results.
1804 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0), SE
);
1805 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
1806 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
), SE
));
1810 if (SCEVUMaxExpr
*M
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
1811 // The result is the min of all operands results.
1812 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0), SE
);
1813 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
1814 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
), SE
));
1818 // SCEVUDivExpr, SCEVUnknown
1822 /// createSCEV - We know that there is no SCEV for the specified value.
1823 /// Analyze the expression.
1825 SCEVHandle
ScalarEvolution::createSCEV(Value
*V
) {
1826 if (!isSCEVable(V
->getType()))
1827 return getUnknown(V
);
1829 unsigned Opcode
= Instruction::UserOp1
;
1830 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
1831 Opcode
= I
->getOpcode();
1832 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
1833 Opcode
= CE
->getOpcode();
1835 return getUnknown(V
);
1837 User
*U
= cast
<User
>(V
);
1839 case Instruction::Add
:
1840 return getAddExpr(getSCEV(U
->getOperand(0)),
1841 getSCEV(U
->getOperand(1)));
1842 case Instruction::Mul
:
1843 return getMulExpr(getSCEV(U
->getOperand(0)),
1844 getSCEV(U
->getOperand(1)));
1845 case Instruction::UDiv
:
1846 return getUDivExpr(getSCEV(U
->getOperand(0)),
1847 getSCEV(U
->getOperand(1)));
1848 case Instruction::Sub
:
1849 return getMinusSCEV(getSCEV(U
->getOperand(0)),
1850 getSCEV(U
->getOperand(1)));
1851 case Instruction::And
:
1852 // For an expression like x&255 that merely masks off the high bits,
1853 // use zext(trunc(x)) as the SCEV expression.
1854 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1855 if (CI
->isNullValue())
1856 return getSCEV(U
->getOperand(1));
1857 if (CI
->isAllOnesValue())
1858 return getSCEV(U
->getOperand(0));
1859 const APInt
&A
= CI
->getValue();
1860 unsigned Ones
= A
.countTrailingOnes();
1861 if (APIntOps::isMask(Ones
, A
))
1863 getZeroExtendExpr(getTruncateExpr(getSCEV(U
->getOperand(0)),
1864 IntegerType::get(Ones
)),
1868 case Instruction::Or
:
1869 // If the RHS of the Or is a constant, we may have something like:
1870 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
1871 // optimizations will transparently handle this case.
1873 // In order for this transformation to be safe, the LHS must be of the
1874 // form X*(2^n) and the Or constant must be less than 2^n.
1875 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1876 SCEVHandle LHS
= getSCEV(U
->getOperand(0));
1877 const APInt
&CIVal
= CI
->getValue();
1878 if (GetMinTrailingZeros(LHS
, *this) >=
1879 (CIVal
.getBitWidth() - CIVal
.countLeadingZeros()))
1880 return getAddExpr(LHS
, getSCEV(U
->getOperand(1)));
1883 case Instruction::Xor
:
1884 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1885 // If the RHS of the xor is a signbit, then this is just an add.
1886 // Instcombine turns add of signbit into xor as a strength reduction step.
1887 if (CI
->getValue().isSignBit())
1888 return getAddExpr(getSCEV(U
->getOperand(0)),
1889 getSCEV(U
->getOperand(1)));
1891 // If the RHS of xor is -1, then this is a not operation.
1892 else if (CI
->isAllOnesValue())
1893 return getNotSCEV(getSCEV(U
->getOperand(0)));
1897 case Instruction::Shl
:
1898 // Turn shift left of a constant amount into a multiply.
1899 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1900 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
1901 Constant
*X
= ConstantInt::get(
1902 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
1903 return getMulExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
1907 case Instruction::LShr
:
1908 // Turn logical shift right of a constant into a unsigned divide.
1909 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
1910 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
1911 Constant
*X
= ConstantInt::get(
1912 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
1913 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
1917 case Instruction::AShr
:
1918 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
1919 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
1920 if (Instruction
*L
= dyn_cast
<Instruction
>(U
->getOperand(0)))
1921 if (L
->getOpcode() == Instruction::Shl
&&
1922 L
->getOperand(1) == U
->getOperand(1)) {
1923 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
1924 uint64_t Amt
= BitWidth
- CI
->getZExtValue();
1925 if (Amt
== BitWidth
)
1926 return getSCEV(L
->getOperand(0)); // shift by zero --> noop
1928 return getIntegerSCEV(0, U
->getType()); // value is undefined
1930 getSignExtendExpr(getTruncateExpr(getSCEV(L
->getOperand(0)),
1931 IntegerType::get(Amt
)),
1936 case Instruction::Trunc
:
1937 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
1939 case Instruction::ZExt
:
1940 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
1942 case Instruction::SExt
:
1943 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
1945 case Instruction::BitCast
:
1946 // BitCasts are no-op casts so we just eliminate the cast.
1947 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
1948 return getSCEV(U
->getOperand(0));
1951 case Instruction::IntToPtr
:
1952 if (!TD
) break; // Without TD we can't analyze pointers.
1953 return getTruncateOrZeroExtend(getSCEV(U
->getOperand(0)),
1954 TD
->getIntPtrType());
1956 case Instruction::PtrToInt
:
1957 if (!TD
) break; // Without TD we can't analyze pointers.
1958 return getTruncateOrZeroExtend(getSCEV(U
->getOperand(0)),
1961 case Instruction::GetElementPtr
: {
1962 if (!TD
) break; // Without TD we can't analyze pointers.
1963 const Type
*IntPtrTy
= TD
->getIntPtrType();
1964 Value
*Base
= U
->getOperand(0);
1965 SCEVHandle TotalOffset
= getIntegerSCEV(0, IntPtrTy
);
1966 gep_type_iterator GTI
= gep_type_begin(U
);
1967 for (GetElementPtrInst::op_iterator I
= next(U
->op_begin()),
1971 // Compute the (potentially symbolic) offset in bytes for this index.
1972 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
++)) {
1973 // For a struct, add the member offset.
1974 const StructLayout
&SL
= *TD
->getStructLayout(STy
);
1975 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
1976 uint64_t Offset
= SL
.getElementOffset(FieldNo
);
1977 TotalOffset
= getAddExpr(TotalOffset
,
1978 getIntegerSCEV(Offset
, IntPtrTy
));
1980 // For an array, add the element offset, explicitly scaled.
1981 SCEVHandle LocalOffset
= getSCEV(Index
);
1982 if (!isa
<PointerType
>(LocalOffset
->getType()))
1983 // Getelementptr indicies are signed.
1984 LocalOffset
= getTruncateOrSignExtend(LocalOffset
,
1987 getMulExpr(LocalOffset
,
1988 getIntegerSCEV(TD
->getTypePaddedSize(*GTI
),
1990 TotalOffset
= getAddExpr(TotalOffset
, LocalOffset
);
1993 return getAddExpr(getSCEV(Base
), TotalOffset
);
1996 case Instruction::PHI
:
1997 return createNodeForPHI(cast
<PHINode
>(U
));
1999 case Instruction::Select
:
2000 // This could be a smax or umax that was lowered earlier.
2001 // Try to recover it.
2002 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(U
->getOperand(0))) {
2003 Value
*LHS
= ICI
->getOperand(0);
2004 Value
*RHS
= ICI
->getOperand(1);
2005 switch (ICI
->getPredicate()) {
2006 case ICmpInst::ICMP_SLT
:
2007 case ICmpInst::ICMP_SLE
:
2008 std::swap(LHS
, RHS
);
2010 case ICmpInst::ICMP_SGT
:
2011 case ICmpInst::ICMP_SGE
:
2012 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
2013 return getSMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
2014 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
2015 // ~smax(~x, ~y) == smin(x, y).
2016 return getNotSCEV(getSMaxExpr(
2017 getNotSCEV(getSCEV(LHS
)),
2018 getNotSCEV(getSCEV(RHS
))));
2020 case ICmpInst::ICMP_ULT
:
2021 case ICmpInst::ICMP_ULE
:
2022 std::swap(LHS
, RHS
);
2024 case ICmpInst::ICMP_UGT
:
2025 case ICmpInst::ICMP_UGE
:
2026 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
2027 return getUMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
2028 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
2029 // ~umax(~x, ~y) == umin(x, y)
2030 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS
)),
2031 getNotSCEV(getSCEV(RHS
))));
2038 default: // We cannot analyze this expression.
2042 return getUnknown(V
);
2047 //===----------------------------------------------------------------------===//
2048 // Iteration Count Computation Code
2051 /// getBackedgeTakenCount - If the specified loop has a predictable
2052 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2053 /// object. The backedge-taken count is the number of times the loop header
2054 /// will be branched to from within the loop. This is one less than the
2055 /// trip count of the loop, since it doesn't count the first iteration,
2056 /// when the header is branched to from outside the loop.
2058 /// Note that it is not valid to call this method on a loop without a
2059 /// loop-invariant backedge-taken count (see
2060 /// hasLoopInvariantBackedgeTakenCount).
2062 SCEVHandle
ScalarEvolution::getBackedgeTakenCount(const Loop
*L
) {
2063 return getBackedgeTakenInfo(L
).Exact
;
2066 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2067 /// return the least SCEV value that is known never to be less than the
2068 /// actual backedge taken count.
2069 SCEVHandle
ScalarEvolution::getMaxBackedgeTakenCount(const Loop
*L
) {
2070 return getBackedgeTakenInfo(L
).Max
;
2073 const ScalarEvolution::BackedgeTakenInfo
&
2074 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
2075 // Initially insert a CouldNotCompute for this loop. If the insertion
2076 // succeeds, procede to actually compute a backedge-taken count and
2077 // update the value. The temporary CouldNotCompute value tells SCEV
2078 // code elsewhere that it shouldn't attempt to request a new
2079 // backedge-taken count, which could result in infinite recursion.
2080 std::pair
<std::map
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
2081 BackedgeTakenCounts
.insert(std::make_pair(L
, getCouldNotCompute()));
2083 BackedgeTakenInfo ItCount
= ComputeBackedgeTakenCount(L
);
2084 if (ItCount
.Exact
!= UnknownValue
) {
2085 assert(ItCount
.Exact
->isLoopInvariant(L
) &&
2086 ItCount
.Max
->isLoopInvariant(L
) &&
2087 "Computed trip count isn't loop invariant for loop!");
2088 ++NumTripCountsComputed
;
2090 // Update the value in the map.
2091 Pair
.first
->second
= ItCount
;
2092 } else if (isa
<PHINode
>(L
->getHeader()->begin())) {
2093 // Only count loops that have phi nodes as not being computable.
2094 ++NumTripCountsNotComputed
;
2097 // Now that we know more about the trip count for this loop, forget any
2098 // existing SCEV values for PHI nodes in this loop since they are only
2099 // conservative estimates made without the benefit
2100 // of trip count information.
2101 if (ItCount
.hasAnyInfo())
2102 for (BasicBlock::iterator I
= L
->getHeader()->begin();
2103 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
2104 deleteValueFromRecords(PN
);
2106 return Pair
.first
->second
;
2109 /// forgetLoopBackedgeTakenCount - This method should be called by the
2110 /// client when it has changed a loop in a way that may effect
2111 /// ScalarEvolution's ability to compute a trip count, or if the loop
2113 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop
*L
) {
2114 BackedgeTakenCounts
.erase(L
);
2117 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
2118 /// of the specified loop will execute.
2119 ScalarEvolution::BackedgeTakenInfo
2120 ScalarEvolution::ComputeBackedgeTakenCount(const Loop
*L
) {
2121 // If the loop has a non-one exit block count, we can't analyze it.
2122 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
2123 L
->getExitBlocks(ExitBlocks
);
2124 if (ExitBlocks
.size() != 1) return UnknownValue
;
2126 // Okay, there is one exit block. Try to find the condition that causes the
2127 // loop to be exited.
2128 BasicBlock
*ExitBlock
= ExitBlocks
[0];
2130 BasicBlock
*ExitingBlock
= 0;
2131 for (pred_iterator PI
= pred_begin(ExitBlock
), E
= pred_end(ExitBlock
);
2133 if (L
->contains(*PI
)) {
2134 if (ExitingBlock
== 0)
2137 return UnknownValue
; // More than one block exiting!
2139 assert(ExitingBlock
&& "No exits from loop, something is broken!");
2141 // Okay, we've computed the exiting block. See what condition causes us to
2144 // FIXME: we should be able to handle switch instructions (with a single exit)
2145 BranchInst
*ExitBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2146 if (ExitBr
== 0) return UnknownValue
;
2147 assert(ExitBr
->isConditional() && "If unconditional, it can't be in loop!");
2149 // At this point, we know we have a conditional branch that determines whether
2150 // the loop is exited. However, we don't know if the branch is executed each
2151 // time through the loop. If not, then the execution count of the branch will
2152 // not be equal to the trip count of the loop.
2154 // Currently we check for this by checking to see if the Exit branch goes to
2155 // the loop header. If so, we know it will always execute the same number of
2156 // times as the loop. We also handle the case where the exit block *is* the
2157 // loop header. This is common for un-rotated loops. More extensive analysis
2158 // could be done to handle more cases here.
2159 if (ExitBr
->getSuccessor(0) != L
->getHeader() &&
2160 ExitBr
->getSuccessor(1) != L
->getHeader() &&
2161 ExitBr
->getParent() != L
->getHeader())
2162 return UnknownValue
;
2164 ICmpInst
*ExitCond
= dyn_cast
<ICmpInst
>(ExitBr
->getCondition());
2166 // If it's not an integer comparison then compute it the hard way.
2167 // Note that ICmpInst deals with pointer comparisons too so we must check
2168 // the type of the operand.
2169 if (ExitCond
== 0 || isa
<PointerType
>(ExitCond
->getOperand(0)->getType()))
2170 return ComputeBackedgeTakenCountExhaustively(L
, ExitBr
->getCondition(),
2171 ExitBr
->getSuccessor(0) == ExitBlock
);
2173 // If the condition was exit on true, convert the condition to exit on false
2174 ICmpInst::Predicate Cond
;
2175 if (ExitBr
->getSuccessor(1) == ExitBlock
)
2176 Cond
= ExitCond
->getPredicate();
2178 Cond
= ExitCond
->getInversePredicate();
2180 // Handle common loops like: for (X = "string"; *X; ++X)
2181 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(ExitCond
->getOperand(0)))
2182 if (Constant
*RHS
= dyn_cast
<Constant
>(ExitCond
->getOperand(1))) {
2184 ComputeLoadConstantCompareBackedgeTakenCount(LI
, RHS
, L
, Cond
);
2185 if (!isa
<SCEVCouldNotCompute
>(ItCnt
)) return ItCnt
;
2188 SCEVHandle LHS
= getSCEV(ExitCond
->getOperand(0));
2189 SCEVHandle RHS
= getSCEV(ExitCond
->getOperand(1));
2191 // Try to evaluate any dependencies out of the loop.
2192 SCEVHandle Tmp
= getSCEVAtScope(LHS
, L
);
2193 if (!isa
<SCEVCouldNotCompute
>(Tmp
)) LHS
= Tmp
;
2194 Tmp
= getSCEVAtScope(RHS
, L
);
2195 if (!isa
<SCEVCouldNotCompute
>(Tmp
)) RHS
= Tmp
;
2197 // At this point, we would like to compute how many iterations of the
2198 // loop the predicate will return true for these inputs.
2199 if (LHS
->isLoopInvariant(L
) && !RHS
->isLoopInvariant(L
)) {
2200 // If there is a loop-invariant, force it into the RHS.
2201 std::swap(LHS
, RHS
);
2202 Cond
= ICmpInst::getSwappedPredicate(Cond
);
2205 // If we have a comparison of a chrec against a constant, try to use value
2206 // ranges to answer this query.
2207 if (SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
2208 if (SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
2209 if (AddRec
->getLoop() == L
) {
2210 // Form the comparison range using the constant of the correct type so
2211 // that the ConstantRange class knows to do a signed or unsigned
2213 ConstantInt
*CompVal
= RHSC
->getValue();
2214 const Type
*RealTy
= ExitCond
->getOperand(0)->getType();
2215 CompVal
= dyn_cast
<ConstantInt
>(
2216 ConstantExpr::getBitCast(CompVal
, RealTy
));
2218 // Form the constant range.
2219 ConstantRange
CompRange(
2220 ICmpInst::makeConstantRange(Cond
, CompVal
->getValue()));
2222 SCEVHandle Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
2223 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
2228 case ICmpInst::ICMP_NE
: { // while (X != Y)
2229 // Convert to: while (X-Y != 0)
2230 SCEVHandle TC
= HowFarToZero(getMinusSCEV(LHS
, RHS
), L
);
2231 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
2234 case ICmpInst::ICMP_EQ
: {
2235 // Convert to: while (X-Y == 0) // while (X == Y)
2236 SCEVHandle TC
= HowFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
2237 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
2240 case ICmpInst::ICMP_SLT
: {
2241 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, true);
2242 if (BTI
.hasAnyInfo()) return BTI
;
2245 case ICmpInst::ICMP_SGT
: {
2246 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
2247 getNotSCEV(RHS
), L
, true);
2248 if (BTI
.hasAnyInfo()) return BTI
;
2251 case ICmpInst::ICMP_ULT
: {
2252 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, false);
2253 if (BTI
.hasAnyInfo()) return BTI
;
2256 case ICmpInst::ICMP_UGT
: {
2257 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
2258 getNotSCEV(RHS
), L
, false);
2259 if (BTI
.hasAnyInfo()) return BTI
;
2264 errs() << "ComputeBackedgeTakenCount ";
2265 if (ExitCond
->getOperand(0)->getType()->isUnsigned())
2266 errs() << "[unsigned] ";
2267 errs() << *LHS
<< " "
2268 << Instruction::getOpcodeName(Instruction::ICmp
)
2269 << " " << *RHS
<< "\n";
2274 ComputeBackedgeTakenCountExhaustively(L
, ExitCond
,
2275 ExitBr
->getSuccessor(0) == ExitBlock
);
2278 static ConstantInt
*
2279 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
2280 ScalarEvolution
&SE
) {
2281 SCEVHandle InVal
= SE
.getConstant(C
);
2282 SCEVHandle Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
2283 assert(isa
<SCEVConstant
>(Val
) &&
2284 "Evaluation of SCEV at constant didn't fold correctly?");
2285 return cast
<SCEVConstant
>(Val
)->getValue();
2288 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
2289 /// and a GEP expression (missing the pointer index) indexing into it, return
2290 /// the addressed element of the initializer or null if the index expression is
2293 GetAddressedElementFromGlobal(GlobalVariable
*GV
,
2294 const std::vector
<ConstantInt
*> &Indices
) {
2295 Constant
*Init
= GV
->getInitializer();
2296 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
) {
2297 uint64_t Idx
= Indices
[i
]->getZExtValue();
2298 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(Init
)) {
2299 assert(Idx
< CS
->getNumOperands() && "Bad struct index!");
2300 Init
= cast
<Constant
>(CS
->getOperand(Idx
));
2301 } else if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(Init
)) {
2302 if (Idx
>= CA
->getNumOperands()) return 0; // Bogus program
2303 Init
= cast
<Constant
>(CA
->getOperand(Idx
));
2304 } else if (isa
<ConstantAggregateZero
>(Init
)) {
2305 if (const StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
2306 assert(Idx
< STy
->getNumElements() && "Bad struct index!");
2307 Init
= Constant::getNullValue(STy
->getElementType(Idx
));
2308 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Init
->getType())) {
2309 if (Idx
>= ATy
->getNumElements()) return 0; // Bogus program
2310 Init
= Constant::getNullValue(ATy
->getElementType());
2312 assert(0 && "Unknown constant aggregate type!");
2316 return 0; // Unknown initializer type
2322 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2323 /// 'icmp op load X, cst', try to see if we can compute the backedge
2324 /// execution count.
2325 SCEVHandle
ScalarEvolution::
2326 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst
*LI
, Constant
*RHS
,
2328 ICmpInst::Predicate predicate
) {
2329 if (LI
->isVolatile()) return UnknownValue
;
2331 // Check to see if the loaded pointer is a getelementptr of a global.
2332 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0));
2333 if (!GEP
) return UnknownValue
;
2335 // Make sure that it is really a constant global we are gepping, with an
2336 // initializer, and make sure the first IDX is really 0.
2337 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
2338 if (!GV
|| !GV
->isConstant() || !GV
->hasInitializer() ||
2339 GEP
->getNumOperands() < 3 || !isa
<Constant
>(GEP
->getOperand(1)) ||
2340 !cast
<Constant
>(GEP
->getOperand(1))->isNullValue())
2341 return UnknownValue
;
2343 // Okay, we allow one non-constant index into the GEP instruction.
2345 std::vector
<ConstantInt
*> Indexes
;
2346 unsigned VarIdxNum
= 0;
2347 for (unsigned i
= 2, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
2348 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
2349 Indexes
.push_back(CI
);
2350 } else if (!isa
<ConstantInt
>(GEP
->getOperand(i
))) {
2351 if (VarIdx
) return UnknownValue
; // Multiple non-constant idx's.
2352 VarIdx
= GEP
->getOperand(i
);
2354 Indexes
.push_back(0);
2357 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2358 // Check to see if X is a loop variant variable value now.
2359 SCEVHandle Idx
= getSCEV(VarIdx
);
2360 SCEVHandle Tmp
= getSCEVAtScope(Idx
, L
);
2361 if (!isa
<SCEVCouldNotCompute
>(Tmp
)) Idx
= Tmp
;
2363 // We can only recognize very limited forms of loop index expressions, in
2364 // particular, only affine AddRec's like {C1,+,C2}.
2365 SCEVAddRecExpr
*IdxExpr
= dyn_cast
<SCEVAddRecExpr
>(Idx
);
2366 if (!IdxExpr
|| !IdxExpr
->isAffine() || IdxExpr
->isLoopInvariant(L
) ||
2367 !isa
<SCEVConstant
>(IdxExpr
->getOperand(0)) ||
2368 !isa
<SCEVConstant
>(IdxExpr
->getOperand(1)))
2369 return UnknownValue
;
2371 unsigned MaxSteps
= MaxBruteForceIterations
;
2372 for (unsigned IterationNum
= 0; IterationNum
!= MaxSteps
; ++IterationNum
) {
2373 ConstantInt
*ItCst
=
2374 ConstantInt::get(IdxExpr
->getType(), IterationNum
);
2375 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(IdxExpr
, ItCst
, *this);
2377 // Form the GEP offset.
2378 Indexes
[VarIdxNum
] = Val
;
2380 Constant
*Result
= GetAddressedElementFromGlobal(GV
, Indexes
);
2381 if (Result
== 0) break; // Cannot compute!
2383 // Evaluate the condition for this iteration.
2384 Result
= ConstantExpr::getICmp(predicate
, Result
, RHS
);
2385 if (!isa
<ConstantInt
>(Result
)) break; // Couldn't decide for sure
2386 if (cast
<ConstantInt
>(Result
)->getValue().isMinValue()) {
2388 errs() << "\n***\n*** Computed loop count " << *ItCst
2389 << "\n*** From global " << *GV
<< "*** BB: " << *L
->getHeader()
2392 ++NumArrayLenItCounts
;
2393 return getConstant(ItCst
); // Found terminating iteration!
2396 return UnknownValue
;
2400 /// CanConstantFold - Return true if we can constant fold an instruction of the
2401 /// specified type, assuming that all operands were constants.
2402 static bool CanConstantFold(const Instruction
*I
) {
2403 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
2404 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
))
2407 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
2408 if (const Function
*F
= CI
->getCalledFunction())
2409 return canConstantFoldCallTo(F
);
2413 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2414 /// in the loop that V is derived from. We allow arbitrary operations along the
2415 /// way, but the operands of an operation must either be constants or a value
2416 /// derived from a constant PHI. If this expression does not fit with these
2417 /// constraints, return null.
2418 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
2419 // If this is not an instruction, or if this is an instruction outside of the
2420 // loop, it can't be derived from a loop PHI.
2421 Instruction
*I
= dyn_cast
<Instruction
>(V
);
2422 if (I
== 0 || !L
->contains(I
->getParent())) return 0;
2424 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
2425 if (L
->getHeader() == I
->getParent())
2428 // We don't currently keep track of the control flow needed to evaluate
2429 // PHIs, so we cannot handle PHIs inside of loops.
2433 // If we won't be able to constant fold this expression even if the operands
2434 // are constants, return early.
2435 if (!CanConstantFold(I
)) return 0;
2437 // Otherwise, we can evaluate this instruction if all of its operands are
2438 // constant or derived from a PHI node themselves.
2440 for (unsigned Op
= 0, e
= I
->getNumOperands(); Op
!= e
; ++Op
)
2441 if (!(isa
<Constant
>(I
->getOperand(Op
)) ||
2442 isa
<GlobalValue
>(I
->getOperand(Op
)))) {
2443 PHINode
*P
= getConstantEvolvingPHI(I
->getOperand(Op
), L
);
2444 if (P
== 0) return 0; // Not evolving from PHI
2448 return 0; // Evolving from multiple different PHIs.
2451 // This is a expression evolving from a constant PHI!
2455 /// EvaluateExpression - Given an expression that passes the
2456 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2457 /// in the loop has the value PHIVal. If we can't fold this expression for some
2458 /// reason, return null.
2459 static Constant
*EvaluateExpression(Value
*V
, Constant
*PHIVal
) {
2460 if (isa
<PHINode
>(V
)) return PHIVal
;
2461 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
2462 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) return GV
;
2463 Instruction
*I
= cast
<Instruction
>(V
);
2465 std::vector
<Constant
*> Operands
;
2466 Operands
.resize(I
->getNumOperands());
2468 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
2469 Operands
[i
] = EvaluateExpression(I
->getOperand(i
), PHIVal
);
2470 if (Operands
[i
] == 0) return 0;
2473 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
2474 return ConstantFoldCompareInstOperands(CI
->getPredicate(),
2475 &Operands
[0], Operands
.size());
2477 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
2478 &Operands
[0], Operands
.size());
2481 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2482 /// in the header of its containing loop, we know the loop executes a
2483 /// constant number of times, and the PHI node is just a recurrence
2484 /// involving constants, fold it.
2485 Constant
*ScalarEvolution::
2486 getConstantEvolutionLoopExitValue(PHINode
*PN
, const APInt
& BEs
, const Loop
*L
){
2487 std::map
<PHINode
*, Constant
*>::iterator I
=
2488 ConstantEvolutionLoopExitValue
.find(PN
);
2489 if (I
!= ConstantEvolutionLoopExitValue
.end())
2492 if (BEs
.ugt(APInt(BEs
.getBitWidth(),MaxBruteForceIterations
)))
2493 return ConstantEvolutionLoopExitValue
[PN
] = 0; // Not going to evaluate it.
2495 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
2497 // Since the loop is canonicalized, the PHI node must have two entries. One
2498 // entry must be a constant (coming in from outside of the loop), and the
2499 // second must be derived from the same PHI.
2500 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
2501 Constant
*StartCST
=
2502 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
2504 return RetVal
= 0; // Must be a constant.
2506 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
2507 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
2509 return RetVal
= 0; // Not derived from same PHI.
2511 // Execute the loop symbolically to determine the exit value.
2512 if (BEs
.getActiveBits() >= 32)
2513 return RetVal
= 0; // More than 2^32-1 iterations?? Not doing it!
2515 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
2516 unsigned IterationNum
= 0;
2517 for (Constant
*PHIVal
= StartCST
; ; ++IterationNum
) {
2518 if (IterationNum
== NumIterations
)
2519 return RetVal
= PHIVal
; // Got exit value!
2521 // Compute the value of the PHI node for the next iteration.
2522 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
2523 if (NextPHI
== PHIVal
)
2524 return RetVal
= NextPHI
; // Stopped evolving!
2526 return 0; // Couldn't evaluate!
2531 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2532 /// constant number of times (the condition evolves only from constants),
2533 /// try to evaluate a few iterations of the loop until we get the exit
2534 /// condition gets a value of ExitWhen (true or false). If we cannot
2535 /// evaluate the trip count of the loop, return UnknownValue.
2536 SCEVHandle
ScalarEvolution::
2537 ComputeBackedgeTakenCountExhaustively(const Loop
*L
, Value
*Cond
, bool ExitWhen
) {
2538 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
2539 if (PN
== 0) return UnknownValue
;
2541 // Since the loop is canonicalized, the PHI node must have two entries. One
2542 // entry must be a constant (coming in from outside of the loop), and the
2543 // second must be derived from the same PHI.
2544 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
2545 Constant
*StartCST
=
2546 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
2547 if (StartCST
== 0) return UnknownValue
; // Must be a constant.
2549 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
2550 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
2551 if (PN2
!= PN
) return UnknownValue
; // Not derived from same PHI.
2553 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2554 // the loop symbolically to determine when the condition gets a value of
2556 unsigned IterationNum
= 0;
2557 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
2558 for (Constant
*PHIVal
= StartCST
;
2559 IterationNum
!= MaxIterations
; ++IterationNum
) {
2560 ConstantInt
*CondVal
=
2561 dyn_cast_or_null
<ConstantInt
>(EvaluateExpression(Cond
, PHIVal
));
2563 // Couldn't symbolically evaluate.
2564 if (!CondVal
) return UnknownValue
;
2566 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
2567 ConstantEvolutionLoopExitValue
[PN
] = PHIVal
;
2568 ++NumBruteForceTripCountsComputed
;
2569 return getConstant(ConstantInt::get(Type::Int32Ty
, IterationNum
));
2572 // Compute the value of the PHI node for the next iteration.
2573 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
2574 if (NextPHI
== 0 || NextPHI
== PHIVal
)
2575 return UnknownValue
; // Couldn't evaluate or not making progress...
2579 // Too many iterations were needed to evaluate.
2580 return UnknownValue
;
2583 /// getSCEVAtScope - Compute the value of the specified expression within the
2584 /// indicated loop (which may be null to indicate in no loop). If the
2585 /// expression cannot be evaluated, return UnknownValue.
2586 SCEVHandle
ScalarEvolution::getSCEVAtScope(SCEV
*V
, const Loop
*L
) {
2587 // FIXME: this should be turned into a virtual method on SCEV!
2589 if (isa
<SCEVConstant
>(V
)) return V
;
2591 // If this instruction is evolved from a constant-evolving PHI, compute the
2592 // exit value from the loop without using SCEVs.
2593 if (SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
)) {
2594 if (Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue())) {
2595 const Loop
*LI
= (*this->LI
)[I
->getParent()];
2596 if (LI
&& LI
->getParentLoop() == L
) // Looking for loop exit value.
2597 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
2598 if (PN
->getParent() == LI
->getHeader()) {
2599 // Okay, there is no closed form solution for the PHI node. Check
2600 // to see if the loop that contains it has a known backedge-taken
2601 // count. If so, we may be able to force computation of the exit
2603 SCEVHandle BackedgeTakenCount
= getBackedgeTakenCount(LI
);
2604 if (SCEVConstant
*BTCC
=
2605 dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
2606 // Okay, we know how many times the containing loop executes. If
2607 // this is a constant evolving PHI node, get the final value at
2608 // the specified iteration number.
2609 Constant
*RV
= getConstantEvolutionLoopExitValue(PN
,
2610 BTCC
->getValue()->getValue(),
2612 if (RV
) return getUnknown(RV
);
2616 // Okay, this is an expression that we cannot symbolically evaluate
2617 // into a SCEV. Check to see if it's possible to symbolically evaluate
2618 // the arguments into constants, and if so, try to constant propagate the
2619 // result. This is particularly useful for computing loop exit values.
2620 if (CanConstantFold(I
)) {
2621 std::vector
<Constant
*> Operands
;
2622 Operands
.reserve(I
->getNumOperands());
2623 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
2624 Value
*Op
= I
->getOperand(i
);
2625 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
2626 Operands
.push_back(C
);
2628 // If any of the operands is non-constant and if they are
2629 // non-integer and non-pointer, don't even try to analyze them
2630 // with scev techniques.
2631 if (!isSCEVable(Op
->getType()))
2634 SCEVHandle OpV
= getSCEVAtScope(getSCEV(Op
), L
);
2635 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(OpV
)) {
2636 Constant
*C
= SC
->getValue();
2637 if (C
->getType() != Op
->getType())
2638 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
2642 Operands
.push_back(C
);
2643 } else if (SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(OpV
)) {
2644 if (Constant
*C
= dyn_cast
<Constant
>(SU
->getValue())) {
2645 if (C
->getType() != Op
->getType())
2647 ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
2651 Operands
.push_back(C
);
2661 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
2662 C
= ConstantFoldCompareInstOperands(CI
->getPredicate(),
2663 &Operands
[0], Operands
.size());
2665 C
= ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
2666 &Operands
[0], Operands
.size());
2667 return getUnknown(C
);
2671 // This is some other type of SCEVUnknown, just return it.
2675 if (SCEVCommutativeExpr
*Comm
= dyn_cast
<SCEVCommutativeExpr
>(V
)) {
2676 // Avoid performing the look-up in the common case where the specified
2677 // expression has no loop-variant portions.
2678 for (unsigned i
= 0, e
= Comm
->getNumOperands(); i
!= e
; ++i
) {
2679 SCEVHandle OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
2680 if (OpAtScope
!= Comm
->getOperand(i
)) {
2681 if (OpAtScope
== UnknownValue
) return UnknownValue
;
2682 // Okay, at least one of these operands is loop variant but might be
2683 // foldable. Build a new instance of the folded commutative expression.
2684 std::vector
<SCEVHandle
> NewOps(Comm
->op_begin(), Comm
->op_begin()+i
);
2685 NewOps
.push_back(OpAtScope
);
2687 for (++i
; i
!= e
; ++i
) {
2688 OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
2689 if (OpAtScope
== UnknownValue
) return UnknownValue
;
2690 NewOps
.push_back(OpAtScope
);
2692 if (isa
<SCEVAddExpr
>(Comm
))
2693 return getAddExpr(NewOps
);
2694 if (isa
<SCEVMulExpr
>(Comm
))
2695 return getMulExpr(NewOps
);
2696 if (isa
<SCEVSMaxExpr
>(Comm
))
2697 return getSMaxExpr(NewOps
);
2698 if (isa
<SCEVUMaxExpr
>(Comm
))
2699 return getUMaxExpr(NewOps
);
2700 assert(0 && "Unknown commutative SCEV type!");
2703 // If we got here, all operands are loop invariant.
2707 if (SCEVUDivExpr
*Div
= dyn_cast
<SCEVUDivExpr
>(V
)) {
2708 SCEVHandle LHS
= getSCEVAtScope(Div
->getLHS(), L
);
2709 if (LHS
== UnknownValue
) return LHS
;
2710 SCEVHandle RHS
= getSCEVAtScope(Div
->getRHS(), L
);
2711 if (RHS
== UnknownValue
) return RHS
;
2712 if (LHS
== Div
->getLHS() && RHS
== Div
->getRHS())
2713 return Div
; // must be loop invariant
2714 return getUDivExpr(LHS
, RHS
);
2717 // If this is a loop recurrence for a loop that does not contain L, then we
2718 // are dealing with the final value computed by the loop.
2719 if (SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
2720 if (!L
|| !AddRec
->getLoop()->contains(L
->getHeader())) {
2721 // To evaluate this recurrence, we need to know how many times the AddRec
2722 // loop iterates. Compute this now.
2723 SCEVHandle BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
2724 if (BackedgeTakenCount
== UnknownValue
) return UnknownValue
;
2726 // Then, evaluate the AddRec.
2727 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
2729 return UnknownValue
;
2732 if (SCEVZeroExtendExpr
*Cast
= dyn_cast
<SCEVZeroExtendExpr
>(V
)) {
2733 SCEVHandle Op
= getSCEVAtScope(Cast
->getOperand(), L
);
2734 if (Op
== UnknownValue
) return Op
;
2735 if (Op
== Cast
->getOperand())
2736 return Cast
; // must be loop invariant
2737 return getZeroExtendExpr(Op
, Cast
->getType());
2740 if (SCEVSignExtendExpr
*Cast
= dyn_cast
<SCEVSignExtendExpr
>(V
)) {
2741 SCEVHandle Op
= getSCEVAtScope(Cast
->getOperand(), L
);
2742 if (Op
== UnknownValue
) return Op
;
2743 if (Op
== Cast
->getOperand())
2744 return Cast
; // must be loop invariant
2745 return getSignExtendExpr(Op
, Cast
->getType());
2748 if (SCEVTruncateExpr
*Cast
= dyn_cast
<SCEVTruncateExpr
>(V
)) {
2749 SCEVHandle Op
= getSCEVAtScope(Cast
->getOperand(), L
);
2750 if (Op
== UnknownValue
) return Op
;
2751 if (Op
== Cast
->getOperand())
2752 return Cast
; // must be loop invariant
2753 return getTruncateExpr(Op
, Cast
->getType());
2756 assert(0 && "Unknown SCEV type!");
2759 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
2760 /// at the specified scope in the program. The L value specifies a loop
2761 /// nest to evaluate the expression at, where null is the top-level or a
2762 /// specified loop is immediately inside of the loop.
2764 /// This method can be used to compute the exit value for a variable defined
2765 /// in a loop by querying what the value will hold in the parent loop.
2767 /// If this value is not computable at this scope, a SCEVCouldNotCompute
2768 /// object is returned.
2769 SCEVHandle
ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
2770 return getSCEVAtScope(getSCEV(V
), L
);
2773 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2774 /// following equation:
2776 /// A * X = B (mod N)
2778 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2779 /// A and B isn't important.
2781 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2782 static SCEVHandle
SolveLinEquationWithOverflow(const APInt
&A
, const APInt
&B
,
2783 ScalarEvolution
&SE
) {
2784 uint32_t BW
= A
.getBitWidth();
2785 assert(BW
== B
.getBitWidth() && "Bit widths must be the same.");
2786 assert(A
!= 0 && "A must be non-zero.");
2790 // The gcd of A and N may have only one prime factor: 2. The number of
2791 // trailing zeros in A is its multiplicity
2792 uint32_t Mult2
= A
.countTrailingZeros();
2795 // 2. Check if B is divisible by D.
2797 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2798 // is not less than multiplicity of this prime factor for D.
2799 if (B
.countTrailingZeros() < Mult2
)
2800 return SE
.getCouldNotCompute();
2802 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2805 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
2806 // bit width during computations.
2807 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
2808 APInt
Mod(BW
+ 1, 0);
2809 Mod
.set(BW
- Mult2
); // Mod = N / D
2810 APInt I
= AD
.multiplicativeInverse(Mod
);
2812 // 4. Compute the minimum unsigned root of the equation:
2813 // I * (B / D) mod (N / D)
2814 APInt Result
= (I
* B
.lshr(Mult2
).zext(BW
+ 1)).urem(Mod
);
2816 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2818 return SE
.getConstant(Result
.trunc(BW
));
2821 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2822 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2823 /// might be the same) or two SCEVCouldNotCompute objects.
2825 static std::pair
<SCEVHandle
,SCEVHandle
>
2826 SolveQuadraticEquation(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
2827 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
2828 SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
2829 SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
2830 SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
2832 // We currently can only solve this if the coefficients are constants.
2833 if (!LC
|| !MC
|| !NC
) {
2834 SCEV
*CNC
= SE
.getCouldNotCompute();
2835 return std::make_pair(CNC
, CNC
);
2838 uint32_t BitWidth
= LC
->getValue()->getValue().getBitWidth();
2839 const APInt
&L
= LC
->getValue()->getValue();
2840 const APInt
&M
= MC
->getValue()->getValue();
2841 const APInt
&N
= NC
->getValue()->getValue();
2842 APInt
Two(BitWidth
, 2);
2843 APInt
Four(BitWidth
, 4);
2846 using namespace APIntOps
;
2848 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2849 // The B coefficient is M-N/2
2853 // The A coefficient is N/2
2854 APInt
A(N
.sdiv(Two
));
2856 // Compute the B^2-4ac term.
2859 SqrtTerm
-= Four
* (A
* C
);
2861 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2862 // integer value or else APInt::sqrt() will assert.
2863 APInt
SqrtVal(SqrtTerm
.sqrt());
2865 // Compute the two solutions for the quadratic formula.
2866 // The divisions must be performed as signed divisions.
2868 APInt
TwoA( A
<< 1 );
2869 if (TwoA
.isMinValue()) {
2870 SCEV
*CNC
= SE
.getCouldNotCompute();
2871 return std::make_pair(CNC
, CNC
);
2874 ConstantInt
*Solution1
= ConstantInt::get((NegB
+ SqrtVal
).sdiv(TwoA
));
2875 ConstantInt
*Solution2
= ConstantInt::get((NegB
- SqrtVal
).sdiv(TwoA
));
2877 return std::make_pair(SE
.getConstant(Solution1
),
2878 SE
.getConstant(Solution2
));
2879 } // end APIntOps namespace
2882 /// HowFarToZero - Return the number of times a backedge comparing the specified
2883 /// value to zero will execute. If not computable, return UnknownValue
2884 SCEVHandle
ScalarEvolution::HowFarToZero(SCEV
*V
, const Loop
*L
) {
2885 // If the value is a constant
2886 if (SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
2887 // If the value is already zero, the branch will execute zero times.
2888 if (C
->getValue()->isZero()) return C
;
2889 return UnknownValue
; // Otherwise it will loop infinitely.
2892 SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
);
2893 if (!AddRec
|| AddRec
->getLoop() != L
)
2894 return UnknownValue
;
2896 if (AddRec
->isAffine()) {
2897 // If this is an affine expression, the execution count of this branch is
2898 // the minimum unsigned root of the following equation:
2900 // Start + Step*N = 0 (mod 2^BW)
2904 // Step*N = -Start (mod 2^BW)
2906 // where BW is the common bit width of Start and Step.
2908 // Get the initial value for the loop.
2909 SCEVHandle Start
= getSCEVAtScope(AddRec
->getStart(), L
->getParentLoop());
2910 if (isa
<SCEVCouldNotCompute
>(Start
)) return UnknownValue
;
2912 SCEVHandle Step
= getSCEVAtScope(AddRec
->getOperand(1), L
->getParentLoop());
2914 if (SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
)) {
2915 // For now we handle only constant steps.
2917 // First, handle unitary steps.
2918 if (StepC
->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
2919 return getNegativeSCEV(Start
); // N = -Start (as unsigned)
2920 if (StepC
->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
2921 return Start
; // N = Start (as unsigned)
2923 // Then, try to solve the above equation provided that Start is constant.
2924 if (SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
))
2925 return SolveLinEquationWithOverflow(StepC
->getValue()->getValue(),
2926 -StartC
->getValue()->getValue(),
2929 } else if (AddRec
->isQuadratic() && AddRec
->getType()->isInteger()) {
2930 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2931 // the quadratic equation to solve it.
2932 std::pair
<SCEVHandle
,SCEVHandle
> Roots
= SolveQuadraticEquation(AddRec
,
2934 SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
2935 SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
2938 errs() << "HFTZ: " << *V
<< " - sol#1: " << *R1
2939 << " sol#2: " << *R2
<< "\n";
2941 // Pick the smallest positive root value.
2942 if (ConstantInt
*CB
=
2943 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
2944 R1
->getValue(), R2
->getValue()))) {
2945 if (CB
->getZExtValue() == false)
2946 std::swap(R1
, R2
); // R1 is the minimum root now.
2948 // We can only use this value if the chrec ends up with an exact zero
2949 // value at this index. When solving for "X*X != 5", for example, we
2950 // should not accept a root of 2.
2951 SCEVHandle Val
= AddRec
->evaluateAtIteration(R1
, *this);
2953 return R1
; // We found a quadratic root!
2958 return UnknownValue
;
2961 /// HowFarToNonZero - Return the number of times a backedge checking the
2962 /// specified value for nonzero will execute. If not computable, return
2964 SCEVHandle
ScalarEvolution::HowFarToNonZero(SCEV
*V
, const Loop
*L
) {
2965 // Loops that look like: while (X == 0) are very strange indeed. We don't
2966 // handle them yet except for the trivial case. This could be expanded in the
2967 // future as needed.
2969 // If the value is a constant, check to see if it is known to be non-zero
2970 // already. If so, the backedge will execute zero times.
2971 if (SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
2972 if (!C
->getValue()->isNullValue())
2973 return getIntegerSCEV(0, C
->getType());
2974 return UnknownValue
; // Otherwise it will loop infinitely.
2977 // We could implement others, but I really doubt anyone writes loops like
2978 // this, and if they did, they would already be constant folded.
2979 return UnknownValue
;
2982 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2983 /// (which may not be an immediate predecessor) which has exactly one
2984 /// successor from which BB is reachable, or null if no such block is
2988 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock
*BB
) {
2989 // If the block has a unique predecessor, then there is no path from the
2990 // predecessor to the block that does not go through the direct edge
2991 // from the predecessor to the block.
2992 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
2995 // A loop's header is defined to be a block that dominates the loop.
2996 // If the loop has a preheader, it must be a block that has exactly
2997 // one successor that can reach BB. This is slightly more strict
2998 // than necessary, but works if critical edges are split.
2999 if (Loop
*L
= LI
->getLoopFor(BB
))
3000 return L
->getLoopPreheader();
3005 /// isLoopGuardedByCond - Test whether entry to the loop is protected by
3006 /// a conditional between LHS and RHS. This is used to help avoid max
3007 /// expressions in loop trip counts.
3008 bool ScalarEvolution::isLoopGuardedByCond(const Loop
*L
,
3009 ICmpInst::Predicate Pred
,
3010 SCEV
*LHS
, SCEV
*RHS
) {
3011 BasicBlock
*Preheader
= L
->getLoopPreheader();
3012 BasicBlock
*PreheaderDest
= L
->getHeader();
3014 // Starting at the preheader, climb up the predecessor chain, as long as
3015 // there are predecessors that can be found that have unique successors
3016 // leading to the original header.
3018 PreheaderDest
= Preheader
,
3019 Preheader
= getPredecessorWithUniqueSuccessorForBB(Preheader
)) {
3021 BranchInst
*LoopEntryPredicate
=
3022 dyn_cast
<BranchInst
>(Preheader
->getTerminator());
3023 if (!LoopEntryPredicate
||
3024 LoopEntryPredicate
->isUnconditional())
3027 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(LoopEntryPredicate
->getCondition());
3030 // Now that we found a conditional branch that dominates the loop, check to
3031 // see if it is the comparison we are looking for.
3032 Value
*PreCondLHS
= ICI
->getOperand(0);
3033 Value
*PreCondRHS
= ICI
->getOperand(1);
3034 ICmpInst::Predicate Cond
;
3035 if (LoopEntryPredicate
->getSuccessor(0) == PreheaderDest
)
3036 Cond
= ICI
->getPredicate();
3038 Cond
= ICI
->getInversePredicate();
3041 ; // An exact match.
3042 else if (!ICmpInst::isTrueWhenEqual(Cond
) && Pred
== ICmpInst::ICMP_NE
)
3043 ; // The actual condition is beyond sufficient.
3045 // Check a few special cases.
3047 case ICmpInst::ICMP_UGT
:
3048 if (Pred
== ICmpInst::ICMP_ULT
) {
3049 std::swap(PreCondLHS
, PreCondRHS
);
3050 Cond
= ICmpInst::ICMP_ULT
;
3054 case ICmpInst::ICMP_SGT
:
3055 if (Pred
== ICmpInst::ICMP_SLT
) {
3056 std::swap(PreCondLHS
, PreCondRHS
);
3057 Cond
= ICmpInst::ICMP_SLT
;
3061 case ICmpInst::ICMP_NE
:
3062 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3063 // so check for this case by checking if the NE is comparing against
3064 // a minimum or maximum constant.
3065 if (!ICmpInst::isTrueWhenEqual(Pred
))
3066 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(PreCondRHS
)) {
3067 const APInt
&A
= CI
->getValue();
3069 case ICmpInst::ICMP_SLT
:
3070 if (A
.isMaxSignedValue()) break;
3072 case ICmpInst::ICMP_SGT
:
3073 if (A
.isMinSignedValue()) break;
3075 case ICmpInst::ICMP_ULT
:
3076 if (A
.isMaxValue()) break;
3078 case ICmpInst::ICMP_UGT
:
3079 if (A
.isMinValue()) break;
3084 Cond
= ICmpInst::ICMP_NE
;
3085 // NE is symmetric but the original comparison may not be. Swap
3086 // the operands if necessary so that they match below.
3087 if (isa
<SCEVConstant
>(LHS
))
3088 std::swap(PreCondLHS
, PreCondRHS
);
3093 // We weren't able to reconcile the condition.
3097 if (!PreCondLHS
->getType()->isInteger()) continue;
3099 SCEVHandle PreCondLHSSCEV
= getSCEV(PreCondLHS
);
3100 SCEVHandle PreCondRHSSCEV
= getSCEV(PreCondRHS
);
3101 if ((LHS
== PreCondLHSSCEV
&& RHS
== PreCondRHSSCEV
) ||
3102 (LHS
== getNotSCEV(PreCondRHSSCEV
) &&
3103 RHS
== getNotSCEV(PreCondLHSSCEV
)))
3110 /// HowManyLessThans - Return the number of times a backedge containing the
3111 /// specified less-than comparison will execute. If not computable, return
3113 ScalarEvolution::BackedgeTakenInfo
ScalarEvolution::
3114 HowManyLessThans(SCEV
*LHS
, SCEV
*RHS
, const Loop
*L
, bool isSigned
) {
3115 // Only handle: "ADDREC < LoopInvariant".
3116 if (!RHS
->isLoopInvariant(L
)) return UnknownValue
;
3118 SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
3119 if (!AddRec
|| AddRec
->getLoop() != L
)
3120 return UnknownValue
;
3122 if (AddRec
->isAffine()) {
3123 // FORNOW: We only support unit strides.
3124 unsigned BitWidth
= getTypeSizeInBits(AddRec
->getType());
3125 SCEVHandle Step
= AddRec
->getStepRecurrence(*this);
3126 SCEVHandle NegOne
= getIntegerSCEV(-1, AddRec
->getType());
3128 // TODO: handle non-constant strides.
3129 const SCEVConstant
*CStep
= dyn_cast
<SCEVConstant
>(Step
);
3130 if (!CStep
|| CStep
->isZero())
3131 return UnknownValue
;
3132 if (CStep
->getValue()->getValue() == 1) {
3133 // With unit stride, the iteration never steps past the limit value.
3134 } else if (CStep
->getValue()->getValue().isStrictlyPositive()) {
3135 if (const SCEVConstant
*CLimit
= dyn_cast
<SCEVConstant
>(RHS
)) {
3136 // Test whether a positive iteration iteration can step past the limit
3137 // value and past the maximum value for its type in a single step.
3139 APInt Max
= APInt::getSignedMaxValue(BitWidth
);
3140 if ((Max
- CStep
->getValue()->getValue())
3141 .slt(CLimit
->getValue()->getValue()))
3142 return UnknownValue
;
3144 APInt Max
= APInt::getMaxValue(BitWidth
);
3145 if ((Max
- CStep
->getValue()->getValue())
3146 .ult(CLimit
->getValue()->getValue()))
3147 return UnknownValue
;
3150 // TODO: handle non-constant limit values below.
3151 return UnknownValue
;
3153 // TODO: handle negative strides below.
3154 return UnknownValue
;
3156 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3157 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3158 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3159 // treat m-n as signed nor unsigned due to overflow possibility.
3161 // First, we get the value of the LHS in the first iteration: n
3162 SCEVHandle Start
= AddRec
->getOperand(0);
3164 // Determine the minimum constant start value.
3165 SCEVHandle MinStart
= isa
<SCEVConstant
>(Start
) ? Start
:
3166 getConstant(isSigned
? APInt::getSignedMinValue(BitWidth
) :
3167 APInt::getMinValue(BitWidth
));
3169 // If we know that the condition is true in order to enter the loop,
3170 // then we know that it will run exactly (m-n)/s times. Otherwise, we
3171 // only know if will execute (max(m,n)-n)/s times. In both cases, the
3172 // division must round up.
3173 SCEVHandle End
= RHS
;
3174 if (!isLoopGuardedByCond(L
,
3175 isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
3176 getMinusSCEV(Start
, Step
), RHS
))
3177 End
= isSigned
? getSMaxExpr(RHS
, Start
)
3178 : getUMaxExpr(RHS
, Start
);
3180 // Determine the maximum constant end value.
3181 SCEVHandle MaxEnd
= isa
<SCEVConstant
>(End
) ? End
:
3182 getConstant(isSigned
? APInt::getSignedMaxValue(BitWidth
) :
3183 APInt::getMaxValue(BitWidth
));
3185 // Finally, we subtract these two values and divide, rounding up, to get
3186 // the number of times the backedge is executed.
3187 SCEVHandle BECount
= getUDivExpr(getAddExpr(getMinusSCEV(End
, Start
),
3188 getAddExpr(Step
, NegOne
)),
3191 // The maximum backedge count is similar, except using the minimum start
3192 // value and the maximum end value.
3193 SCEVHandle MaxBECount
= getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd
,
3195 getAddExpr(Step
, NegOne
)),
3198 return BackedgeTakenInfo(BECount
, MaxBECount
);
3201 return UnknownValue
;
3204 /// getNumIterationsInRange - Return the number of iterations of this loop that
3205 /// produce values in the specified constant range. Another way of looking at
3206 /// this is that it returns the first iteration number where the value is not in
3207 /// the condition, thus computing the exit count. If the iteration count can't
3208 /// be computed, an instance of SCEVCouldNotCompute is returned.
3209 SCEVHandle
SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range
,
3210 ScalarEvolution
&SE
) const {
3211 if (Range
.isFullSet()) // Infinite loop.
3212 return SE
.getCouldNotCompute();
3214 // If the start is a non-zero constant, shift the range to simplify things.
3215 if (SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
3216 if (!SC
->getValue()->isZero()) {
3217 std::vector
<SCEVHandle
> Operands(op_begin(), op_end());
3218 Operands
[0] = SE
.getIntegerSCEV(0, SC
->getType());
3219 SCEVHandle Shifted
= SE
.getAddRecExpr(Operands
, getLoop());
3220 if (SCEVAddRecExpr
*ShiftedAddRec
= dyn_cast
<SCEVAddRecExpr
>(Shifted
))
3221 return ShiftedAddRec
->getNumIterationsInRange(
3222 Range
.subtract(SC
->getValue()->getValue()), SE
);
3223 // This is strange and shouldn't happen.
3224 return SE
.getCouldNotCompute();
3227 // The only time we can solve this is when we have all constant indices.
3228 // Otherwise, we cannot determine the overflow conditions.
3229 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
3230 if (!isa
<SCEVConstant
>(getOperand(i
)))
3231 return SE
.getCouldNotCompute();
3234 // Okay at this point we know that all elements of the chrec are constants and
3235 // that the start element is zero.
3237 // First check to see if the range contains zero. If not, the first
3239 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
3240 if (!Range
.contains(APInt(BitWidth
, 0)))
3241 return SE
.getConstant(ConstantInt::get(getType(),0));
3244 // If this is an affine expression then we have this situation:
3245 // Solve {0,+,A} in Range === Ax in Range
3247 // We know that zero is in the range. If A is positive then we know that
3248 // the upper value of the range must be the first possible exit value.
3249 // If A is negative then the lower of the range is the last possible loop
3250 // value. Also note that we already checked for a full range.
3251 APInt
One(BitWidth
,1);
3252 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getValue()->getValue();
3253 APInt End
= A
.sge(One
) ? (Range
.getUpper() - One
) : Range
.getLower();
3255 // The exit value should be (End+A)/A.
3256 APInt ExitVal
= (End
+ A
).udiv(A
);
3257 ConstantInt
*ExitValue
= ConstantInt::get(ExitVal
);
3259 // Evaluate at the exit value. If we really did fall out of the valid
3260 // range, then we computed our trip count, otherwise wrap around or other
3261 // things must have happened.
3262 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
3263 if (Range
.contains(Val
->getValue()))
3264 return SE
.getCouldNotCompute(); // Something strange happened
3266 // Ensure that the previous value is in the range. This is a sanity check.
3267 assert(Range
.contains(
3268 EvaluateConstantChrecAtConstant(this,
3269 ConstantInt::get(ExitVal
- One
), SE
)->getValue()) &&
3270 "Linear scev computation is off in a bad way!");
3271 return SE
.getConstant(ExitValue
);
3272 } else if (isQuadratic()) {
3273 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3274 // quadratic equation to solve it. To do this, we must frame our problem in
3275 // terms of figuring out when zero is crossed, instead of when
3276 // Range.getUpper() is crossed.
3277 std::vector
<SCEVHandle
> NewOps(op_begin(), op_end());
3278 NewOps
[0] = SE
.getNegativeSCEV(SE
.getConstant(Range
.getUpper()));
3279 SCEVHandle NewAddRec
= SE
.getAddRecExpr(NewOps
, getLoop());
3281 // Next, solve the constructed addrec
3282 std::pair
<SCEVHandle
,SCEVHandle
> Roots
=
3283 SolveQuadraticEquation(cast
<SCEVAddRecExpr
>(NewAddRec
), SE
);
3284 SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
3285 SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
3287 // Pick the smallest positive root value.
3288 if (ConstantInt
*CB
=
3289 dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT
,
3290 R1
->getValue(), R2
->getValue()))) {
3291 if (CB
->getZExtValue() == false)
3292 std::swap(R1
, R2
); // R1 is the minimum root now.
3294 // Make sure the root is not off by one. The returned iteration should
3295 // not be in the range, but the previous one should be. When solving
3296 // for "X*X < 5", for example, we should not return a root of 2.
3297 ConstantInt
*R1Val
= EvaluateConstantChrecAtConstant(this,
3300 if (Range
.contains(R1Val
->getValue())) {
3301 // The next iteration must be out of the range...
3302 ConstantInt
*NextVal
= ConstantInt::get(R1
->getValue()->getValue()+1);
3304 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
3305 if (!Range
.contains(R1Val
->getValue()))
3306 return SE
.getConstant(NextVal
);
3307 return SE
.getCouldNotCompute(); // Something strange happened
3310 // If R1 was not in the range, then it is a good return value. Make
3311 // sure that R1-1 WAS in the range though, just in case.
3312 ConstantInt
*NextVal
= ConstantInt::get(R1
->getValue()->getValue()-1);
3313 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
3314 if (Range
.contains(R1Val
->getValue()))
3316 return SE
.getCouldNotCompute(); // Something strange happened
3321 return SE
.getCouldNotCompute();
3326 //===----------------------------------------------------------------------===//
3327 // ScalarEvolution Class Implementation
3328 //===----------------------------------------------------------------------===//
3330 ScalarEvolution::ScalarEvolution()
3331 : FunctionPass(&ID
), UnknownValue(new SCEVCouldNotCompute()) {
3334 bool ScalarEvolution::runOnFunction(Function
&F
) {
3336 LI
= &getAnalysis
<LoopInfo
>();
3337 TD
= getAnalysisIfAvailable
<TargetData
>();
3341 void ScalarEvolution::releaseMemory() {
3343 BackedgeTakenCounts
.clear();
3344 ConstantEvolutionLoopExitValue
.clear();
3347 void ScalarEvolution::getAnalysisUsage(AnalysisUsage
&AU
) const {
3348 AU
.setPreservesAll();
3349 AU
.addRequiredTransitive
<LoopInfo
>();
3352 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
3353 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
3356 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
3358 // Print all inner loops first
3359 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
3360 PrintLoopInfo(OS
, SE
, *I
);
3362 OS
<< "Loop " << L
->getHeader()->getName() << ": ";
3364 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
3365 L
->getExitBlocks(ExitBlocks
);
3366 if (ExitBlocks
.size() != 1)
3367 OS
<< "<multiple exits> ";
3369 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
3370 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
);
3372 OS
<< "Unpredictable backedge-taken count. ";
3378 void ScalarEvolution::print(raw_ostream
&OS
, const Module
* ) const {
3379 // ScalarEvolution's implementaiton of the print method is to print
3380 // out SCEV values of all instructions that are interesting. Doing
3381 // this potentially causes it to create new SCEV objects though,
3382 // which technically conflicts with the const qualifier. This isn't
3383 // observable from outside the class though (the hasSCEV function
3384 // notwithstanding), so casting away the const isn't dangerous.
3385 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
3387 OS
<< "Classifying expressions for: " << F
->getName() << "\n";
3388 for (inst_iterator I
= inst_begin(F
), E
= inst_end(F
); I
!= E
; ++I
)
3389 if (isSCEVable(I
->getType())) {
3392 SCEVHandle SV
= SE
.getSCEV(&*I
);
3396 if (const Loop
*L
= LI
->getLoopFor((*I
).getParent())) {
3398 SCEVHandle ExitValue
= SE
.getSCEVAtScope(&*I
, L
->getParentLoop());
3399 if (isa
<SCEVCouldNotCompute
>(ExitValue
)) {
3400 OS
<< "<<Unknown>>";
3410 OS
<< "Determining loop execution counts for: " << F
->getName() << "\n";
3411 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
3412 PrintLoopInfo(OS
, &SE
, *I
);
3415 void ScalarEvolution::print(std::ostream
&o
, const Module
*M
) const {
3416 raw_os_ostream
OS(o
);