1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/CodeGen/DwarfWriter.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/Target/TargetFrameInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Target/TargetSubtarget.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Constants.h"
30 #include "llvm/DerivedTypes.h"
31 #include "llvm/Function.h"
32 #include "llvm/GlobalVariable.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/SmallPtrSet.h"
42 //===----------------------------------------------------------------------===//
43 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44 /// hacks on it until the target machine can handle it. This involves
45 /// eliminating value sizes the machine cannot handle (promoting small sizes to
46 /// large sizes or splitting up large values into small values) as well as
47 /// eliminating operations the machine cannot handle.
49 /// This code also does a small amount of optimization and recognition of idioms
50 /// as part of its processing. For example, if a target does not support a
51 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52 /// will attempt merge setcc and brc instructions into brcc's.
55 class VISIBILITY_HIDDEN SelectionDAGLegalize
{
58 CodeGenOpt::Level OptLevel
;
59 bool TypesNeedLegalizing
;
61 // Libcall insertion helpers.
63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64 /// legalized. We use this to ensure that calls are properly serialized
65 /// against each other, including inserted libcalls.
66 SDValue LastCALLSEQ_END
;
68 /// IsLegalizingCall - This member is used *only* for purposes of providing
69 /// helpful assertions that a libcall isn't created while another call is
70 /// being legalized (which could lead to non-serialized call sequences).
71 bool IsLegalizingCall
;
73 /// IsLegalizingCallArguments - This member is used only for the purpose
74 /// of providing assert to check for LegalizeTypes because legalizing an
75 /// operation might introduce call nodes that might need type legalization.
76 bool IsLegalizingCallArgs
;
79 Legal
, // The target natively supports this operation.
80 Promote
, // This operation should be executed in a larger type.
81 Expand
// Try to expand this to other ops, otherwise use a libcall.
84 /// ValueTypeActions - This is a bitvector that contains two bits for each
85 /// value type, where the two bits correspond to the LegalizeAction enum.
86 /// This can be queried with "getTypeAction(VT)".
87 TargetLowering::ValueTypeActionImpl ValueTypeActions
;
89 /// LegalizedNodes - For nodes that are of legal width, and that have more
90 /// than one use, this map indicates what regularized operand to use. This
91 /// allows us to avoid legalizing the same thing more than once.
92 DenseMap
<SDValue
, SDValue
> LegalizedNodes
;
94 /// PromotedNodes - For nodes that are below legal width, and that have more
95 /// than one use, this map indicates what promoted value to use. This allows
96 /// us to avoid promoting the same thing more than once.
97 DenseMap
<SDValue
, SDValue
> PromotedNodes
;
99 /// ExpandedNodes - For nodes that need to be expanded this map indicates
100 /// which operands are the expanded version of the input. This allows
101 /// us to avoid expanding the same node more than once.
102 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> > ExpandedNodes
;
104 /// SplitNodes - For vector nodes that need to be split, this map indicates
105 /// which operands are the split version of the input. This allows us
106 /// to avoid splitting the same node more than once.
107 std::map
<SDValue
, std::pair
<SDValue
, SDValue
> > SplitNodes
;
109 /// ScalarizedNodes - For nodes that need to be converted from vector types to
110 /// scalar types, this contains the mapping of ones we have already
111 /// processed to the result.
112 std::map
<SDValue
, SDValue
> ScalarizedNodes
;
114 /// WidenNodes - For nodes that need to be widened from one vector type to
115 /// another, this contains the mapping of those that we have already widen.
116 /// This allows us to avoid widening more than once.
117 std::map
<SDValue
, SDValue
> WidenNodes
;
119 void AddLegalizedOperand(SDValue From
, SDValue To
) {
120 LegalizedNodes
.insert(std::make_pair(From
, To
));
121 // If someone requests legalization of the new node, return itself.
123 LegalizedNodes
.insert(std::make_pair(To
, To
));
125 void AddPromotedOperand(SDValue From
, SDValue To
) {
126 bool isNew
= PromotedNodes
.insert(std::make_pair(From
, To
)).second
;
127 assert(isNew
&& "Got into the map somehow?");
129 // If someone requests legalization of the new node, return itself.
130 LegalizedNodes
.insert(std::make_pair(To
, To
));
132 void AddWidenedOperand(SDValue From
, SDValue To
) {
133 bool isNew
= WidenNodes
.insert(std::make_pair(From
, To
)).second
;
134 assert(isNew
&& "Got into the map somehow?");
136 // If someone requests legalization of the new node, return itself.
137 LegalizedNodes
.insert(std::make_pair(To
, To
));
141 explicit SelectionDAGLegalize(SelectionDAG
&DAG
, bool TypesNeedLegalizing
,
142 CodeGenOpt::Level ol
);
144 /// getTypeAction - Return how we should legalize values of this type, either
145 /// it is already legal or we need to expand it into multiple registers of
146 /// smaller integer type, or we need to promote it to a larger type.
147 LegalizeAction
getTypeAction(MVT VT
) const {
148 return (LegalizeAction
)ValueTypeActions
.getTypeAction(VT
);
151 /// isTypeLegal - Return true if this type is legal on this target.
153 bool isTypeLegal(MVT VT
) const {
154 return getTypeAction(VT
) == Legal
;
160 /// HandleOp - Legalize, Promote, or Expand the specified operand as
161 /// appropriate for its type.
162 void HandleOp(SDValue Op
);
164 /// LegalizeOp - We know that the specified value has a legal type.
165 /// Recursively ensure that the operands have legal types, then return the
167 SDValue
LegalizeOp(SDValue O
);
169 /// UnrollVectorOp - We know that the given vector has a legal type, however
170 /// the operation it performs is not legal and is an operation that we have
171 /// no way of lowering. "Unroll" the vector, splitting out the scalars and
172 /// operating on each element individually.
173 SDValue
UnrollVectorOp(SDValue O
);
175 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
176 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
177 /// is necessary to spill the vector being inserted into to memory, perform
178 /// the insert there, and then read the result back.
179 SDValue
PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
,
180 SDValue Idx
, DebugLoc dl
);
182 /// PromoteOp - Given an operation that produces a value in an invalid type,
183 /// promote it to compute the value into a larger type. The produced value
184 /// will have the correct bits for the low portion of the register, but no
185 /// guarantee is made about the top bits: it may be zero, sign-extended, or
187 SDValue
PromoteOp(SDValue O
);
189 /// ExpandOp - Expand the specified SDValue into its two component pieces
190 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this,
191 /// the LegalizedNodes map is filled in for any results that are not expanded,
192 /// the ExpandedNodes map is filled in for any results that are expanded, and
193 /// the Lo/Hi values are returned. This applies to integer types and Vector
195 void ExpandOp(SDValue O
, SDValue
&Lo
, SDValue
&Hi
);
197 /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT
198 /// (e.g., v3i32 to v4i32). The produced value will have the correct value
199 /// for the existing elements but no guarantee is made about the new elements
200 /// at the end of the vector: it may be zero, ones, or garbage. This is useful
201 /// when we have an instruction operating on an illegal vector type and we
202 /// want to widen it to do the computation on a legal wider vector type.
203 SDValue
WidenVectorOp(SDValue Op
, MVT WidenVT
);
205 /// SplitVectorOp - Given an operand of vector type, break it down into
206 /// two smaller values.
207 void SplitVectorOp(SDValue O
, SDValue
&Lo
, SDValue
&Hi
);
209 /// ScalarizeVectorOp - Given an operand of single-element vector type
210 /// (e.g. v1f32), convert it into the equivalent operation that returns a
211 /// scalar (e.g. f32) value.
212 SDValue
ScalarizeVectorOp(SDValue O
);
214 /// Useful 16 element vector type that is used to pass operands for widening.
215 typedef SmallVector
<SDValue
, 16> SDValueVector
;
217 /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if
218 /// the LdChain contains a single load and false if it contains a token
219 /// factor for multiple loads. It takes
220 /// Result: location to return the result
221 /// LdChain: location to return the load chain
222 /// Op: load operation to widen
223 /// NVT: widen vector result type we want for the load
224 bool LoadWidenVectorOp(SDValue
& Result
, SDValue
& LdChain
,
225 SDValue Op
, MVT NVT
);
227 /// Helper genWidenVectorLoads - Helper function to generate a set of
228 /// loads to load a vector with a resulting wider type. It takes
229 /// LdChain: list of chains for the load we have generated
230 /// Chain: incoming chain for the ld vector
231 /// BasePtr: base pointer to load from
232 /// SV: memory disambiguation source value
233 /// SVOffset: memory disambiugation offset
234 /// Alignment: alignment of the memory
235 /// isVolatile: volatile load
236 /// LdWidth: width of memory that we want to load
237 /// ResType: the wider result result type for the resulting loaded vector
238 SDValue
genWidenVectorLoads(SDValueVector
& LdChain
, SDValue Chain
,
239 SDValue BasePtr
, const Value
*SV
,
240 int SVOffset
, unsigned Alignment
,
241 bool isVolatile
, unsigned LdWidth
,
242 MVT ResType
, DebugLoc dl
);
244 /// StoreWidenVectorOp - Stores a widen vector into non widen memory
245 /// location. It takes
246 /// ST: store node that we want to replace
247 /// Chain: incoming store chain
248 /// BasePtr: base address of where we want to store into
249 SDValue
StoreWidenVectorOp(StoreSDNode
*ST
, SDValue Chain
,
252 /// Helper genWidenVectorStores - Helper function to generate a set of
253 /// stores to store a widen vector into non widen memory
255 // StChain: list of chains for the stores we have generated
256 // Chain: incoming chain for the ld vector
257 // BasePtr: base pointer to load from
258 // SV: memory disambiguation source value
259 // SVOffset: memory disambiugation offset
260 // Alignment: alignment of the memory
261 // isVolatile: volatile lod
262 // ValOp: value to store
263 // StWidth: width of memory that we want to store
264 void genWidenVectorStores(SDValueVector
& StChain
, SDValue Chain
,
265 SDValue BasePtr
, const Value
*SV
,
266 int SVOffset
, unsigned Alignment
,
267 bool isVolatile
, SDValue ValOp
,
268 unsigned StWidth
, DebugLoc dl
);
270 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
271 /// performs the same shuffe in terms of order or result bytes, but on a type
272 /// whose vector element type is narrower than the original shuffle type.
273 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
274 SDValue
ShuffleWithNarrowerEltType(MVT NVT
, MVT VT
, DebugLoc dl
,
275 SDValue N1
, SDValue N2
,
276 SmallVectorImpl
<int> &Mask
) const;
278 bool LegalizeAllNodesNotLeadingTo(SDNode
*N
, SDNode
*Dest
,
279 SmallPtrSet
<SDNode
*, 32> &NodesLeadingTo
);
281 void LegalizeSetCCOperands(SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
283 void LegalizeSetCCCondCode(MVT VT
, SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
285 void LegalizeSetCC(MVT VT
, SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
287 LegalizeSetCCOperands(LHS
, RHS
, CC
, dl
);
288 LegalizeSetCCCondCode(VT
, LHS
, RHS
, CC
, dl
);
291 SDValue
ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
, bool isSigned
,
293 SDValue
ExpandIntToFP(bool isSigned
, MVT DestTy
, SDValue Source
, DebugLoc dl
);
295 SDValue
EmitStackConvert(SDValue SrcOp
, MVT SlotVT
, MVT DestVT
, DebugLoc dl
);
296 SDValue
ExpandBUILD_VECTOR(SDNode
*Node
);
297 SDValue
ExpandSCALAR_TO_VECTOR(SDNode
*Node
);
298 SDValue
LegalizeINT_TO_FP(SDValue Result
, bool isSigned
, MVT DestTy
,
299 SDValue Op
, DebugLoc dl
);
300 SDValue
ExpandLegalINT_TO_FP(bool isSigned
, SDValue LegalOp
, MVT DestVT
,
302 SDValue
PromoteLegalINT_TO_FP(SDValue LegalOp
, MVT DestVT
, bool isSigned
,
304 SDValue
PromoteLegalFP_TO_INT(SDValue LegalOp
, MVT DestVT
, bool isSigned
,
307 SDValue
ExpandBSWAP(SDValue Op
, DebugLoc dl
);
308 SDValue
ExpandBitCount(unsigned Opc
, SDValue Op
, DebugLoc dl
);
309 bool ExpandShift(unsigned Opc
, SDValue Op
, SDValue Amt
,
310 SDValue
&Lo
, SDValue
&Hi
, DebugLoc dl
);
311 void ExpandShiftParts(unsigned NodeOp
, SDValue Op
, SDValue Amt
,
312 SDValue
&Lo
, SDValue
&Hi
, DebugLoc dl
);
314 SDValue
ExpandEXTRACT_SUBVECTOR(SDValue Op
);
315 SDValue
ExpandEXTRACT_VECTOR_ELT(SDValue Op
);
319 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
320 /// performs the same shuffe in terms of order or result bytes, but on a type
321 /// whose vector element type is narrower than the original shuffle type.
322 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
324 SelectionDAGLegalize::ShuffleWithNarrowerEltType(MVT NVT
, MVT VT
, DebugLoc dl
,
325 SDValue N1
, SDValue N2
,
326 SmallVectorImpl
<int> &Mask
) const {
327 MVT EltVT
= NVT
.getVectorElementType();
328 unsigned NumMaskElts
= VT
.getVectorNumElements();
329 unsigned NumDestElts
= NVT
.getVectorNumElements();
330 unsigned NumEltsGrowth
= NumDestElts
/ NumMaskElts
;
332 assert(NumEltsGrowth
&& "Cannot promote to vector type with fewer elts!");
334 if (NumEltsGrowth
== 1)
335 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, &Mask
[0]);
337 SmallVector
<int, 8> NewMask
;
338 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
340 for (unsigned j
= 0; j
!= NumEltsGrowth
; ++j
) {
342 NewMask
.push_back(-1);
344 NewMask
.push_back(Idx
* NumEltsGrowth
+ j
);
347 assert(NewMask
.size() == NumDestElts
&& "Non-integer NumEltsGrowth?");
348 assert(TLI
.isShuffleMaskLegal(NewMask
, NVT
) && "Shuffle not legal?");
349 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, &NewMask
[0]);
352 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG
&dag
,
353 bool types
, CodeGenOpt::Level ol
)
354 : TLI(dag
.getTargetLoweringInfo()), DAG(dag
), OptLevel(ol
),
355 TypesNeedLegalizing(types
), ValueTypeActions(TLI
.getValueTypeActions()) {
356 assert(MVT::LAST_VALUETYPE
<= 32 &&
357 "Too many value types for ValueTypeActions to hold!");
360 void SelectionDAGLegalize::LegalizeDAG() {
361 LastCALLSEQ_END
= DAG
.getEntryNode();
362 IsLegalizingCall
= false;
363 IsLegalizingCallArgs
= false;
365 // The legalize process is inherently a bottom-up recursive process (users
366 // legalize their uses before themselves). Given infinite stack space, we
367 // could just start legalizing on the root and traverse the whole graph. In
368 // practice however, this causes us to run out of stack space on large basic
369 // blocks. To avoid this problem, compute an ordering of the nodes where each
370 // node is only legalized after all of its operands are legalized.
371 DAG
.AssignTopologicalOrder();
372 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
373 E
= prior(DAG
.allnodes_end()); I
!= next(E
); ++I
)
374 HandleOp(SDValue(I
, 0));
376 // Finally, it's possible the root changed. Get the new root.
377 SDValue OldRoot
= DAG
.getRoot();
378 assert(LegalizedNodes
.count(OldRoot
) && "Root didn't get legalized?");
379 DAG
.setRoot(LegalizedNodes
[OldRoot
]);
381 ExpandedNodes
.clear();
382 LegalizedNodes
.clear();
383 PromotedNodes
.clear();
385 ScalarizedNodes
.clear();
388 // Remove dead nodes now.
389 DAG
.RemoveDeadNodes();
393 /// FindCallEndFromCallStart - Given a chained node that is part of a call
394 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
395 static SDNode
*FindCallEndFromCallStart(SDNode
*Node
) {
396 if (Node
->getOpcode() == ISD::CALLSEQ_END
)
398 if (Node
->use_empty())
399 return 0; // No CallSeqEnd
401 // The chain is usually at the end.
402 SDValue
TheChain(Node
, Node
->getNumValues()-1);
403 if (TheChain
.getValueType() != MVT::Other
) {
404 // Sometimes it's at the beginning.
405 TheChain
= SDValue(Node
, 0);
406 if (TheChain
.getValueType() != MVT::Other
) {
407 // Otherwise, hunt for it.
408 for (unsigned i
= 1, e
= Node
->getNumValues(); i
!= e
; ++i
)
409 if (Node
->getValueType(i
) == MVT::Other
) {
410 TheChain
= SDValue(Node
, i
);
414 // Otherwise, we walked into a node without a chain.
415 if (TheChain
.getValueType() != MVT::Other
)
420 for (SDNode::use_iterator UI
= Node
->use_begin(),
421 E
= Node
->use_end(); UI
!= E
; ++UI
) {
423 // Make sure to only follow users of our token chain.
425 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
)
426 if (User
->getOperand(i
) == TheChain
)
427 if (SDNode
*Result
= FindCallEndFromCallStart(User
))
433 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
434 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
435 static SDNode
*FindCallStartFromCallEnd(SDNode
*Node
) {
436 assert(Node
&& "Didn't find callseq_start for a call??");
437 if (Node
->getOpcode() == ISD::CALLSEQ_START
) return Node
;
439 assert(Node
->getOperand(0).getValueType() == MVT::Other
&&
440 "Node doesn't have a token chain argument!");
441 return FindCallStartFromCallEnd(Node
->getOperand(0).getNode());
444 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
445 /// see if any uses can reach Dest. If no dest operands can get to dest,
446 /// legalize them, legalize ourself, and return false, otherwise, return true.
448 /// Keep track of the nodes we fine that actually do lead to Dest in
449 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
451 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode
*N
, SDNode
*Dest
,
452 SmallPtrSet
<SDNode
*, 32> &NodesLeadingTo
) {
453 if (N
== Dest
) return true; // N certainly leads to Dest :)
455 // If we've already processed this node and it does lead to Dest, there is no
456 // need to reprocess it.
457 if (NodesLeadingTo
.count(N
)) return true;
459 // If the first result of this node has been already legalized, then it cannot
461 switch (getTypeAction(N
->getValueType(0))) {
463 if (LegalizedNodes
.count(SDValue(N
, 0))) return false;
466 if (PromotedNodes
.count(SDValue(N
, 0))) return false;
469 if (ExpandedNodes
.count(SDValue(N
, 0))) return false;
473 // Okay, this node has not already been legalized. Check and legalize all
474 // operands. If none lead to Dest, then we can legalize this node.
475 bool OperandsLeadToDest
= false;
476 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
477 OperandsLeadToDest
|= // If an operand leads to Dest, so do we.
478 LegalizeAllNodesNotLeadingTo(N
->getOperand(i
).getNode(), Dest
, NodesLeadingTo
);
480 if (OperandsLeadToDest
) {
481 NodesLeadingTo
.insert(N
);
485 // Okay, this node looks safe, legalize it and return false.
486 HandleOp(SDValue(N
, 0));
490 /// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as
491 /// appropriate for its type.
492 void SelectionDAGLegalize::HandleOp(SDValue Op
) {
493 MVT VT
= Op
.getValueType();
494 // If the type legalizer was run then we should never see any illegal result
495 // types here except for target constants (the type legalizer does not touch
496 // those) or for build vector used as a mask for a vector shuffle.
497 assert((TypesNeedLegalizing
|| getTypeAction(VT
) == Legal
||
498 IsLegalizingCallArgs
|| Op
.getOpcode() == ISD::TargetConstant
) &&
499 "Illegal type introduced after type legalization?");
500 switch (getTypeAction(VT
)) {
501 default: assert(0 && "Bad type action!");
502 case Legal
: (void)LegalizeOp(Op
); break;
504 if (!VT
.isVector()) {
509 // See if we can widen otherwise use Expand to either scalarize or split
510 MVT WidenVT
= TLI
.getWidenVectorType(VT
);
511 if (WidenVT
!= MVT::Other
) {
512 (void) WidenVectorOp(Op
, WidenVT
);
515 // else fall thru to expand since we can't widen the vector
518 if (!VT
.isVector()) {
519 // If this is an illegal scalar, expand it into its two component
522 if (Op
.getOpcode() == ISD::TargetConstant
)
523 break; // Allow illegal target nodes.
525 } else if (VT
.getVectorNumElements() == 1) {
526 // If this is an illegal single element vector, convert it to a
528 (void)ScalarizeVectorOp(Op
);
530 // This is an illegal multiple element vector.
531 // Split it in half and legalize both parts.
533 SplitVectorOp(Op
, X
, Y
);
539 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
540 /// a load from the constant pool.
541 static SDValue
ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
,
542 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
544 DebugLoc dl
= CFP
->getDebugLoc();
546 // If a FP immediate is precise when represented as a float and if the
547 // target can do an extending load from float to double, we put it into
548 // the constant pool as a float, even if it's is statically typed as a
549 // double. This shrinks FP constants and canonicalizes them for targets where
550 // an FP extending load is the same cost as a normal load (such as on the x87
551 // fp stack or PPC FP unit).
552 MVT VT
= CFP
->getValueType(0);
553 ConstantFP
*LLVMC
= const_cast<ConstantFP
*>(CFP
->getConstantFPValue());
555 assert((VT
== MVT::f64
|| VT
== MVT::f32
) && "Invalid type expansion");
556 return DAG
.getConstant(LLVMC
->getValueAPF().bitcastToAPInt(),
557 (VT
== MVT::f64
) ? MVT::i64
: MVT::i32
);
562 while (SVT
!= MVT::f32
) {
563 SVT
= (MVT::SimpleValueType
)(SVT
.getSimpleVT() - 1);
564 if (CFP
->isValueValidForType(SVT
, CFP
->getValueAPF()) &&
565 // Only do this if the target has a native EXTLOAD instruction from
567 TLI
.isLoadExtLegal(ISD::EXTLOAD
, SVT
) &&
568 TLI
.ShouldShrinkFPConstant(OrigVT
)) {
569 const Type
*SType
= SVT
.getTypeForMVT();
570 LLVMC
= cast
<ConstantFP
>(ConstantExpr::getFPTrunc(LLVMC
, SType
));
576 SDValue CPIdx
= DAG
.getConstantPool(LLVMC
, TLI
.getPointerTy());
577 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
579 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
,
580 OrigVT
, DAG
.getEntryNode(),
581 CPIdx
, PseudoSourceValue::getConstantPool(),
582 0, VT
, false, Alignment
);
583 return DAG
.getLoad(OrigVT
, dl
, DAG
.getEntryNode(), CPIdx
,
584 PseudoSourceValue::getConstantPool(), 0, false, Alignment
);
588 /// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise
591 SDValue
ExpandFCOPYSIGNToBitwiseOps(SDNode
*Node
, MVT NVT
,
593 const TargetLowering
&TLI
) {
594 DebugLoc dl
= Node
->getDebugLoc();
595 MVT VT
= Node
->getValueType(0);
596 MVT SrcVT
= Node
->getOperand(1).getValueType();
597 assert((SrcVT
== MVT::f32
|| SrcVT
== MVT::f64
) &&
598 "fcopysign expansion only supported for f32 and f64");
599 MVT SrcNVT
= (SrcVT
== MVT::f64
) ? MVT::i64
: MVT::i32
;
601 // First get the sign bit of second operand.
602 SDValue Mask1
= (SrcVT
== MVT::f64
)
603 ? DAG
.getConstantFP(BitsToDouble(1ULL << 63), SrcVT
)
604 : DAG
.getConstantFP(BitsToFloat(1U << 31), SrcVT
);
605 Mask1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, SrcNVT
, Mask1
);
606 SDValue SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, SrcNVT
,
607 Node
->getOperand(1));
608 SignBit
= DAG
.getNode(ISD::AND
, dl
, SrcNVT
, SignBit
, Mask1
);
609 // Shift right or sign-extend it if the two operands have different types.
610 int SizeDiff
= SrcNVT
.getSizeInBits() - NVT
.getSizeInBits();
612 SignBit
= DAG
.getNode(ISD::SRL
, dl
, SrcNVT
, SignBit
,
613 DAG
.getConstant(SizeDiff
, TLI
.getShiftAmountTy()));
614 SignBit
= DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, SignBit
);
615 } else if (SizeDiff
< 0) {
616 SignBit
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, SignBit
);
617 SignBit
= DAG
.getNode(ISD::SHL
, dl
, NVT
, SignBit
,
618 DAG
.getConstant(-SizeDiff
, TLI
.getShiftAmountTy()));
621 // Clear the sign bit of first operand.
622 SDValue Mask2
= (VT
== MVT::f64
)
623 ? DAG
.getConstantFP(BitsToDouble(~(1ULL << 63)), VT
)
624 : DAG
.getConstantFP(BitsToFloat(~(1U << 31)), VT
);
625 Mask2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Mask2
);
626 SDValue Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
627 Result
= DAG
.getNode(ISD::AND
, dl
, NVT
, Result
, Mask2
);
629 // Or the value with the sign bit.
630 Result
= DAG
.getNode(ISD::OR
, dl
, NVT
, Result
, SignBit
);
634 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
636 SDValue
ExpandUnalignedStore(StoreSDNode
*ST
, SelectionDAG
&DAG
,
637 const TargetLowering
&TLI
) {
638 SDValue Chain
= ST
->getChain();
639 SDValue Ptr
= ST
->getBasePtr();
640 SDValue Val
= ST
->getValue();
641 MVT VT
= Val
.getValueType();
642 int Alignment
= ST
->getAlignment();
643 int SVOffset
= ST
->getSrcValueOffset();
644 DebugLoc dl
= ST
->getDebugLoc();
645 if (ST
->getMemoryVT().isFloatingPoint() ||
646 ST
->getMemoryVT().isVector()) {
647 MVT intVT
= MVT::getIntegerVT(VT
.getSizeInBits());
648 if (TLI
.isTypeLegal(intVT
)) {
649 // Expand to a bitconvert of the value to the integer type of the
650 // same size, then a (misaligned) int store.
651 // FIXME: Does not handle truncating floating point stores!
652 SDValue Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, intVT
, Val
);
653 return DAG
.getStore(Chain
, dl
, Result
, Ptr
, ST
->getSrcValue(),
654 SVOffset
, ST
->isVolatile(), Alignment
);
656 // Do a (aligned) store to a stack slot, then copy from the stack slot
657 // to the final destination using (unaligned) integer loads and stores.
658 MVT StoredVT
= ST
->getMemoryVT();
660 TLI
.getRegisterType(MVT::getIntegerVT(StoredVT
.getSizeInBits()));
661 unsigned StoredBytes
= StoredVT
.getSizeInBits() / 8;
662 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
663 unsigned NumRegs
= (StoredBytes
+ RegBytes
- 1) / RegBytes
;
665 // Make sure the stack slot is also aligned for the register type.
666 SDValue StackPtr
= DAG
.CreateStackTemporary(StoredVT
, RegVT
);
668 // Perform the original store, only redirected to the stack slot.
669 SDValue Store
= DAG
.getTruncStore(Chain
, dl
,
670 Val
, StackPtr
, NULL
, 0, StoredVT
);
671 SDValue Increment
= DAG
.getConstant(RegBytes
, TLI
.getPointerTy());
672 SmallVector
<SDValue
, 8> Stores
;
675 // Do all but one copies using the full register width.
676 for (unsigned i
= 1; i
< NumRegs
; i
++) {
677 // Load one integer register's worth from the stack slot.
678 SDValue Load
= DAG
.getLoad(RegVT
, dl
, Store
, StackPtr
, NULL
, 0);
679 // Store it to the final location. Remember the store.
680 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, Ptr
,
681 ST
->getSrcValue(), SVOffset
+ Offset
,
683 MinAlign(ST
->getAlignment(), Offset
)));
684 // Increment the pointers.
686 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, StackPtr
.getValueType(), StackPtr
,
688 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
, Increment
);
691 // The last store may be partial. Do a truncating store. On big-endian
692 // machines this requires an extending load from the stack slot to ensure
693 // that the bits are in the right place.
694 MVT MemVT
= MVT::getIntegerVT(8 * (StoredBytes
- Offset
));
696 // Load from the stack slot.
697 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Store
, StackPtr
,
700 Stores
.push_back(DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, Ptr
,
701 ST
->getSrcValue(), SVOffset
+ Offset
,
702 MemVT
, ST
->isVolatile(),
703 MinAlign(ST
->getAlignment(), Offset
)));
704 // The order of the stores doesn't matter - say it with a TokenFactor.
705 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Stores
[0],
709 assert(ST
->getMemoryVT().isInteger() &&
710 !ST
->getMemoryVT().isVector() &&
711 "Unaligned store of unknown type.");
712 // Get the half-size VT
714 (MVT::SimpleValueType
)(ST
->getMemoryVT().getSimpleVT() - 1);
715 int NumBits
= NewStoredVT
.getSizeInBits();
716 int IncrementSize
= NumBits
/ 8;
718 // Divide the stored value in two parts.
719 SDValue ShiftAmount
= DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy());
721 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, VT
, Val
, ShiftAmount
);
723 // Store the two parts
724 SDValue Store1
, Store2
;
725 Store1
= DAG
.getTruncStore(Chain
, dl
, TLI
.isLittleEndian()?Lo
:Hi
, Ptr
,
726 ST
->getSrcValue(), SVOffset
, NewStoredVT
,
727 ST
->isVolatile(), Alignment
);
728 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
729 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
730 Alignment
= MinAlign(Alignment
, IncrementSize
);
731 Store2
= DAG
.getTruncStore(Chain
, dl
, TLI
.isLittleEndian()?Hi
:Lo
, Ptr
,
732 ST
->getSrcValue(), SVOffset
+ IncrementSize
,
733 NewStoredVT
, ST
->isVolatile(), Alignment
);
735 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Store1
, Store2
);
738 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
740 SDValue
ExpandUnalignedLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
,
741 const TargetLowering
&TLI
) {
742 int SVOffset
= LD
->getSrcValueOffset();
743 SDValue Chain
= LD
->getChain();
744 SDValue Ptr
= LD
->getBasePtr();
745 MVT VT
= LD
->getValueType(0);
746 MVT LoadedVT
= LD
->getMemoryVT();
747 DebugLoc dl
= LD
->getDebugLoc();
748 if (VT
.isFloatingPoint() || VT
.isVector()) {
749 MVT intVT
= MVT::getIntegerVT(LoadedVT
.getSizeInBits());
750 if (TLI
.isTypeLegal(intVT
)) {
751 // Expand to a (misaligned) integer load of the same size,
752 // then bitconvert to floating point or vector.
753 SDValue newLoad
= DAG
.getLoad(intVT
, dl
, Chain
, Ptr
, LD
->getSrcValue(),
754 SVOffset
, LD
->isVolatile(),
756 SDValue Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, LoadedVT
, newLoad
);
757 if (VT
.isFloatingPoint() && LoadedVT
!= VT
)
758 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Result
);
760 SDValue Ops
[] = { Result
, Chain
};
761 return DAG
.getMergeValues(Ops
, 2, dl
);
763 // Copy the value to a (aligned) stack slot using (unaligned) integer
764 // loads and stores, then do a (aligned) load from the stack slot.
765 MVT RegVT
= TLI
.getRegisterType(intVT
);
766 unsigned LoadedBytes
= LoadedVT
.getSizeInBits() / 8;
767 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
768 unsigned NumRegs
= (LoadedBytes
+ RegBytes
- 1) / RegBytes
;
770 // Make sure the stack slot is also aligned for the register type.
771 SDValue StackBase
= DAG
.CreateStackTemporary(LoadedVT
, RegVT
);
773 SDValue Increment
= DAG
.getConstant(RegBytes
, TLI
.getPointerTy());
774 SmallVector
<SDValue
, 8> Stores
;
775 SDValue StackPtr
= StackBase
;
778 // Do all but one copies using the full register width.
779 for (unsigned i
= 1; i
< NumRegs
; i
++) {
780 // Load one integer register's worth from the original location.
781 SDValue Load
= DAG
.getLoad(RegVT
, dl
, Chain
, Ptr
, LD
->getSrcValue(),
782 SVOffset
+ Offset
, LD
->isVolatile(),
783 MinAlign(LD
->getAlignment(), Offset
));
784 // Follow the load with a store to the stack slot. Remember the store.
785 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, StackPtr
,
787 // Increment the pointers.
789 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
, Increment
);
790 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, StackPtr
.getValueType(), StackPtr
,
794 // The last copy may be partial. Do an extending load.
795 MVT MemVT
= MVT::getIntegerVT(8 * (LoadedBytes
- Offset
));
796 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Chain
, Ptr
,
797 LD
->getSrcValue(), SVOffset
+ Offset
,
798 MemVT
, LD
->isVolatile(),
799 MinAlign(LD
->getAlignment(), Offset
));
800 // Follow the load with a store to the stack slot. Remember the store.
801 // On big-endian machines this requires a truncating store to ensure
802 // that the bits end up in the right place.
803 Stores
.push_back(DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, StackPtr
,
806 // The order of the stores doesn't matter - say it with a TokenFactor.
807 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, &Stores
[0],
810 // Finally, perform the original load only redirected to the stack slot.
811 Load
= DAG
.getExtLoad(LD
->getExtensionType(), dl
, VT
, TF
, StackBase
,
814 // Callers expect a MERGE_VALUES node.
815 SDValue Ops
[] = { Load
, TF
};
816 return DAG
.getMergeValues(Ops
, 2, dl
);
819 assert(LoadedVT
.isInteger() && !LoadedVT
.isVector() &&
820 "Unaligned load of unsupported type.");
822 // Compute the new VT that is half the size of the old one. This is an
824 unsigned NumBits
= LoadedVT
.getSizeInBits();
826 NewLoadedVT
= MVT::getIntegerVT(NumBits
/2);
829 unsigned Alignment
= LD
->getAlignment();
830 unsigned IncrementSize
= NumBits
/ 8;
831 ISD::LoadExtType HiExtType
= LD
->getExtensionType();
833 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
834 if (HiExtType
== ISD::NON_EXTLOAD
)
835 HiExtType
= ISD::ZEXTLOAD
;
837 // Load the value in two parts
839 if (TLI
.isLittleEndian()) {
840 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
841 SVOffset
, NewLoadedVT
, LD
->isVolatile(), Alignment
);
842 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
843 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
844 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
845 SVOffset
+ IncrementSize
, NewLoadedVT
, LD
->isVolatile(),
846 MinAlign(Alignment
, IncrementSize
));
848 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
849 SVOffset
, NewLoadedVT
, LD
->isVolatile(), Alignment
);
850 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
851 DAG
.getConstant(IncrementSize
, TLI
.getPointerTy()));
852 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getSrcValue(),
853 SVOffset
+ IncrementSize
, NewLoadedVT
, LD
->isVolatile(),
854 MinAlign(Alignment
, IncrementSize
));
857 // aggregate the two parts
858 SDValue ShiftAmount
= DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy());
859 SDValue Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, ShiftAmount
);
860 Result
= DAG
.getNode(ISD::OR
, dl
, VT
, Result
, Lo
);
862 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
865 SDValue Ops
[] = { Result
, TF
};
866 return DAG
.getMergeValues(Ops
, 2, dl
);
869 /// UnrollVectorOp - We know that the given vector has a legal type, however
870 /// the operation it performs is not legal and is an operation that we have
871 /// no way of lowering. "Unroll" the vector, splitting out the scalars and
872 /// operating on each element individually.
873 SDValue
SelectionDAGLegalize::UnrollVectorOp(SDValue Op
) {
874 MVT VT
= Op
.getValueType();
875 assert(isTypeLegal(VT
) &&
876 "Caller should expand or promote operands that are not legal!");
877 assert(Op
.getNode()->getNumValues() == 1 &&
878 "Can't unroll a vector with multiple results!");
879 unsigned NE
= VT
.getVectorNumElements();
880 MVT EltVT
= VT
.getVectorElementType();
881 DebugLoc dl
= Op
.getDebugLoc();
883 SmallVector
<SDValue
, 8> Scalars
;
884 SmallVector
<SDValue
, 4> Operands(Op
.getNumOperands());
885 for (unsigned i
= 0; i
!= NE
; ++i
) {
886 for (unsigned j
= 0; j
!= Op
.getNumOperands(); ++j
) {
887 SDValue Operand
= Op
.getOperand(j
);
888 MVT OperandVT
= Operand
.getValueType();
889 if (OperandVT
.isVector()) {
890 // A vector operand; extract a single element.
891 MVT OperandEltVT
= OperandVT
.getVectorElementType();
892 Operands
[j
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
895 DAG
.getConstant(i
, MVT::i32
));
897 // A scalar operand; just use it as is.
898 Operands
[j
] = Operand
;
902 switch (Op
.getOpcode()) {
904 Scalars
.push_back(DAG
.getNode(Op
.getOpcode(), dl
, EltVT
,
905 &Operands
[0], Operands
.size()));
912 Scalars
.push_back(DAG
.getNode(Op
.getOpcode(), dl
, EltVT
, Operands
[0],
913 DAG
.getShiftAmountOperand(Operands
[1])));
918 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &Scalars
[0], Scalars
.size());
921 /// GetFPLibCall - Return the right libcall for the given floating point type.
922 static RTLIB::Libcall
GetFPLibCall(MVT VT
,
923 RTLIB::Libcall Call_F32
,
924 RTLIB::Libcall Call_F64
,
925 RTLIB::Libcall Call_F80
,
926 RTLIB::Libcall Call_PPCF128
) {
928 VT
== MVT::f32
? Call_F32
:
929 VT
== MVT::f64
? Call_F64
:
930 VT
== MVT::f80
? Call_F80
:
931 VT
== MVT::ppcf128
? Call_PPCF128
:
932 RTLIB::UNKNOWN_LIBCALL
;
935 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
936 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
937 /// is necessary to spill the vector being inserted into to memory, perform
938 /// the insert there, and then read the result back.
939 SDValue
SelectionDAGLegalize::
940 PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
, SDValue Idx
,
946 // If the target doesn't support this, we have to spill the input vector
947 // to a temporary stack slot, update the element, then reload it. This is
948 // badness. We could also load the value into a vector register (either
949 // with a "move to register" or "extload into register" instruction, then
950 // permute it into place, if the idx is a constant and if the idx is
951 // supported by the target.
952 MVT VT
= Tmp1
.getValueType();
953 MVT EltVT
= VT
.getVectorElementType();
954 MVT IdxVT
= Tmp3
.getValueType();
955 MVT PtrVT
= TLI
.getPointerTy();
956 SDValue StackPtr
= DAG
.CreateStackTemporary(VT
);
958 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
961 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Tmp1
, StackPtr
,
962 PseudoSourceValue::getFixedStack(SPFI
), 0);
964 // Truncate or zero extend offset to target pointer type.
965 unsigned CastOpc
= IdxVT
.bitsGT(PtrVT
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
966 Tmp3
= DAG
.getNode(CastOpc
, dl
, PtrVT
, Tmp3
);
967 // Add the offset to the index.
968 unsigned EltSize
= EltVT
.getSizeInBits()/8;
969 Tmp3
= DAG
.getNode(ISD::MUL
, dl
, IdxVT
, Tmp3
,DAG
.getConstant(EltSize
, IdxVT
));
970 SDValue StackPtr2
= DAG
.getNode(ISD::ADD
, dl
, IdxVT
, Tmp3
, StackPtr
);
971 // Store the scalar value.
972 Ch
= DAG
.getTruncStore(Ch
, dl
, Tmp2
, StackPtr2
,
973 PseudoSourceValue::getFixedStack(SPFI
), 0, EltVT
);
974 // Load the updated vector.
975 return DAG
.getLoad(VT
, dl
, Ch
, StackPtr
,
976 PseudoSourceValue::getFixedStack(SPFI
), 0);
980 /// LegalizeOp - We know that the specified value has a legal type, and
981 /// that its operands are legal. Now ensure that the operation itself
982 /// is legal, recursively ensuring that the operands' operations remain
984 SDValue
SelectionDAGLegalize::LegalizeOp(SDValue Op
) {
985 if (Op
.getOpcode() == ISD::TargetConstant
) // Allow illegal target nodes.
988 assert(isTypeLegal(Op
.getValueType()) &&
989 "Caller should expand or promote operands that are not legal!");
990 SDNode
*Node
= Op
.getNode();
991 DebugLoc dl
= Node
->getDebugLoc();
993 // If this operation defines any values that cannot be represented in a
994 // register on this target, make sure to expand or promote them.
995 if (Node
->getNumValues() > 1) {
996 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
997 if (getTypeAction(Node
->getValueType(i
)) != Legal
) {
998 HandleOp(Op
.getValue(i
));
999 assert(LegalizedNodes
.count(Op
) &&
1000 "Handling didn't add legal operands!");
1001 return LegalizedNodes
[Op
];
1005 // Note that LegalizeOp may be reentered even from single-use nodes, which
1006 // means that we always must cache transformed nodes.
1007 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
1008 if (I
!= LegalizedNodes
.end()) return I
->second
;
1010 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
;
1011 SDValue Result
= Op
;
1012 bool isCustom
= false;
1014 switch (Node
->getOpcode()) {
1015 case ISD::FrameIndex
:
1016 case ISD::EntryToken
:
1018 case ISD::BasicBlock
:
1019 case ISD::TargetFrameIndex
:
1020 case ISD::TargetJumpTable
:
1021 case ISD::TargetConstant
:
1022 case ISD::TargetConstantFP
:
1023 case ISD::TargetConstantPool
:
1024 case ISD::TargetGlobalAddress
:
1025 case ISD::TargetGlobalTLSAddress
:
1026 case ISD::TargetExternalSymbol
:
1027 case ISD::VALUETYPE
:
1029 case ISD::MEMOPERAND
:
1031 case ISD::ARG_FLAGS
:
1032 // Primitives must all be legal.
1033 assert(TLI
.isOperationLegal(Node
->getOpcode(), Node
->getValueType(0)) &&
1034 "This must be legal!");
1037 if (Node
->getOpcode() >= ISD::BUILTIN_OP_END
) {
1038 // If this is a target node, legalize it by legalizing the operands then
1039 // passing it through.
1040 SmallVector
<SDValue
, 8> Ops
;
1041 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
1042 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
1044 Result
= DAG
.UpdateNodeOperands(Result
.getValue(0), &Ops
[0], Ops
.size());
1046 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
1047 AddLegalizedOperand(Op
.getValue(i
), Result
.getValue(i
));
1048 return Result
.getValue(Op
.getResNo());
1050 // Otherwise this is an unhandled builtin node. splat.
1052 cerr
<< "NODE: "; Node
->dump(&DAG
); cerr
<< "\n";
1054 assert(0 && "Do not know how to legalize this operator!");
1056 case ISD::GLOBAL_OFFSET_TABLE
:
1057 case ISD::GlobalAddress
:
1058 case ISD::GlobalTLSAddress
:
1059 case ISD::ExternalSymbol
:
1060 case ISD::ConstantPool
:
1061 case ISD::JumpTable
: // Nothing to do.
1062 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
1063 default: assert(0 && "This action is not supported yet!");
1064 case TargetLowering::Custom
:
1065 Tmp1
= TLI
.LowerOperation(Op
, DAG
);
1066 if (Tmp1
.getNode()) Result
= Tmp1
;
1067 // FALLTHROUGH if the target doesn't want to lower this op after all.
1068 case TargetLowering::Legal
:
1072 case ISD::FRAMEADDR
:
1073 case ISD::RETURNADDR
:
1074 // The only option for these nodes is to custom lower them. If the target
1075 // does not custom lower them, then return zero.
1076 Tmp1
= TLI
.LowerOperation(Op
, DAG
);
1080 Result
= DAG
.getConstant(0, TLI
.getPointerTy());
1082 case ISD::FRAME_TO_ARGS_OFFSET
: {
1083 MVT VT
= Node
->getValueType(0);
1084 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1085 default: assert(0 && "This action is not supported yet!");
1086 case TargetLowering::Custom
:
1087 Result
= TLI
.LowerOperation(Op
, DAG
);
1088 if (Result
.getNode()) break;
1090 case TargetLowering::Legal
:
1091 Result
= DAG
.getConstant(0, VT
);
1096 case ISD::EXCEPTIONADDR
: {
1097 Tmp1
= LegalizeOp(Node
->getOperand(0));
1098 MVT VT
= Node
->getValueType(0);
1099 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1100 default: assert(0 && "This action is not supported yet!");
1101 case TargetLowering::Expand
: {
1102 unsigned Reg
= TLI
.getExceptionAddressRegister();
1103 Result
= DAG
.getCopyFromReg(Tmp1
, dl
, Reg
, VT
);
1106 case TargetLowering::Custom
:
1107 Result
= TLI
.LowerOperation(Op
, DAG
);
1108 if (Result
.getNode()) break;
1110 case TargetLowering::Legal
: {
1111 SDValue Ops
[] = { DAG
.getConstant(0, VT
), Tmp1
};
1112 Result
= DAG
.getMergeValues(Ops
, 2, dl
);
1117 if (Result
.getNode()->getNumValues() == 1) break;
1119 assert(Result
.getNode()->getNumValues() == 2 &&
1120 "Cannot return more than two values!");
1122 // Since we produced two values, make sure to remember that we
1123 // legalized both of them.
1124 Tmp1
= LegalizeOp(Result
);
1125 Tmp2
= LegalizeOp(Result
.getValue(1));
1126 AddLegalizedOperand(Op
.getValue(0), Tmp1
);
1127 AddLegalizedOperand(Op
.getValue(1), Tmp2
);
1128 return Op
.getResNo() ? Tmp2
: Tmp1
;
1129 case ISD::EHSELECTION
: {
1130 Tmp1
= LegalizeOp(Node
->getOperand(0));
1131 Tmp2
= LegalizeOp(Node
->getOperand(1));
1132 MVT VT
= Node
->getValueType(0);
1133 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1134 default: assert(0 && "This action is not supported yet!");
1135 case TargetLowering::Expand
: {
1136 unsigned Reg
= TLI
.getExceptionSelectorRegister();
1137 Result
= DAG
.getCopyFromReg(Tmp2
, dl
, Reg
, VT
);
1140 case TargetLowering::Custom
:
1141 Result
= TLI
.LowerOperation(Op
, DAG
);
1142 if (Result
.getNode()) break;
1144 case TargetLowering::Legal
: {
1145 SDValue Ops
[] = { DAG
.getConstant(0, VT
), Tmp2
};
1146 Result
= DAG
.getMergeValues(Ops
, 2, dl
);
1151 if (Result
.getNode()->getNumValues() == 1) break;
1153 assert(Result
.getNode()->getNumValues() == 2 &&
1154 "Cannot return more than two values!");
1156 // Since we produced two values, make sure to remember that we
1157 // legalized both of them.
1158 Tmp1
= LegalizeOp(Result
);
1159 Tmp2
= LegalizeOp(Result
.getValue(1));
1160 AddLegalizedOperand(Op
.getValue(0), Tmp1
);
1161 AddLegalizedOperand(Op
.getValue(1), Tmp2
);
1162 return Op
.getResNo() ? Tmp2
: Tmp1
;
1163 case ISD::EH_RETURN
: {
1164 MVT VT
= Node
->getValueType(0);
1165 // The only "good" option for this node is to custom lower it.
1166 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1167 default: assert(0 && "This action is not supported at all!");
1168 case TargetLowering::Custom
:
1169 Result
= TLI
.LowerOperation(Op
, DAG
);
1170 if (Result
.getNode()) break;
1172 case TargetLowering::Legal
:
1173 // Target does not know, how to lower this, lower to noop
1174 Result
= LegalizeOp(Node
->getOperand(0));
1179 case ISD::AssertSext
:
1180 case ISD::AssertZext
:
1181 Tmp1
= LegalizeOp(Node
->getOperand(0));
1182 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
1184 case ISD::MERGE_VALUES
:
1185 // Legalize eliminates MERGE_VALUES nodes.
1186 Result
= Node
->getOperand(Op
.getResNo());
1188 case ISD::CopyFromReg
:
1189 Tmp1
= LegalizeOp(Node
->getOperand(0));
1190 Result
= Op
.getValue(0);
1191 if (Node
->getNumValues() == 2) {
1192 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
1194 assert(Node
->getNumValues() == 3 && "Invalid copyfromreg!");
1195 if (Node
->getNumOperands() == 3) {
1196 Tmp2
= LegalizeOp(Node
->getOperand(2));
1197 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1),Tmp2
);
1199 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
1201 AddLegalizedOperand(Op
.getValue(2), Result
.getValue(2));
1203 // Since CopyFromReg produces two values, make sure to remember that we
1204 // legalized both of them.
1205 AddLegalizedOperand(Op
.getValue(0), Result
);
1206 AddLegalizedOperand(Op
.getValue(1), Result
.getValue(1));
1207 return Result
.getValue(Op
.getResNo());
1209 MVT VT
= Op
.getValueType();
1210 switch (TLI
.getOperationAction(ISD::UNDEF
, VT
)) {
1211 default: assert(0 && "This action is not supported yet!");
1212 case TargetLowering::Expand
:
1214 Result
= DAG
.getConstant(0, VT
);
1215 else if (VT
.isFloatingPoint())
1216 Result
= DAG
.getConstantFP(APFloat(APInt(VT
.getSizeInBits(), 0)),
1219 assert(0 && "Unknown value type!");
1221 case TargetLowering::Legal
:
1227 case ISD::INTRINSIC_W_CHAIN
:
1228 case ISD::INTRINSIC_WO_CHAIN
:
1229 case ISD::INTRINSIC_VOID
: {
1230 SmallVector
<SDValue
, 8> Ops
;
1231 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
1232 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
1233 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1235 // Allow the target to custom lower its intrinsics if it wants to.
1236 if (TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
) ==
1237 TargetLowering::Custom
) {
1238 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1239 if (Tmp3
.getNode()) Result
= Tmp3
;
1242 if (Result
.getNode()->getNumValues() == 1) break;
1244 // Must have return value and chain result.
1245 assert(Result
.getNode()->getNumValues() == 2 &&
1246 "Cannot return more than two values!");
1248 // Since loads produce two values, make sure to remember that we
1249 // legalized both of them.
1250 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1251 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1252 return Result
.getValue(Op
.getResNo());
1255 case ISD::DBG_STOPPOINT
:
1256 assert(Node
->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!");
1257 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the input chain.
1259 switch (TLI
.getOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
)) {
1260 case TargetLowering::Promote
:
1261 default: assert(0 && "This action is not supported yet!");
1262 case TargetLowering::Expand
: {
1263 DwarfWriter
*DW
= DAG
.getDwarfWriter();
1264 bool useDEBUG_LOC
= TLI
.isOperationLegalOrCustom(ISD::DEBUG_LOC
,
1266 bool useLABEL
= TLI
.isOperationLegalOrCustom(ISD::DBG_LABEL
, MVT::Other
);
1268 const DbgStopPointSDNode
*DSP
= cast
<DbgStopPointSDNode
>(Node
);
1269 GlobalVariable
*CU_GV
= cast
<GlobalVariable
>(DSP
->getCompileUnit());
1270 if (DW
&& (useDEBUG_LOC
|| useLABEL
) && !CU_GV
->isDeclaration()) {
1271 DICompileUnit
CU(cast
<GlobalVariable
>(DSP
->getCompileUnit()));
1273 unsigned Line
= DSP
->getLine();
1274 unsigned Col
= DSP
->getColumn();
1276 if (OptLevel
== CodeGenOpt::None
) {
1277 // A bit self-referential to have DebugLoc on Debug_Loc nodes, but it
1278 // won't hurt anything.
1280 SDValue Ops
[] = { Tmp1
, DAG
.getConstant(Line
, MVT::i32
),
1281 DAG
.getConstant(Col
, MVT::i32
),
1282 DAG
.getSrcValue(CU
.getGV()) };
1283 Result
= DAG
.getNode(ISD::DEBUG_LOC
, dl
, MVT::Other
, Ops
, 4);
1285 unsigned ID
= DW
->RecordSourceLine(Line
, Col
, CU
);
1286 Result
= DAG
.getLabel(ISD::DBG_LABEL
, dl
, Tmp1
, ID
);
1289 Result
= Tmp1
; // chain
1292 Result
= Tmp1
; // chain
1296 case TargetLowering::Custom
:
1297 Result
= TLI
.LowerOperation(Op
, DAG
);
1298 if (Result
.getNode())
1300 case TargetLowering::Legal
: {
1301 LegalizeAction Action
= getTypeAction(Node
->getOperand(1).getValueType());
1302 if (Action
== Legal
&& Tmp1
== Node
->getOperand(0))
1305 SmallVector
<SDValue
, 8> Ops
;
1306 Ops
.push_back(Tmp1
);
1307 if (Action
== Legal
) {
1308 Ops
.push_back(Node
->getOperand(1)); // line # must be legal.
1309 Ops
.push_back(Node
->getOperand(2)); // col # must be legal.
1311 // Otherwise promote them.
1312 Ops
.push_back(PromoteOp(Node
->getOperand(1)));
1313 Ops
.push_back(PromoteOp(Node
->getOperand(2)));
1315 Ops
.push_back(Node
->getOperand(3)); // filename must be legal.
1316 Ops
.push_back(Node
->getOperand(4)); // working dir # must be legal.
1317 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1324 assert(Node
->getNumOperands() == 3 && "Invalid DECLARE node!");
1325 switch (TLI
.getOperationAction(ISD::DECLARE
, MVT::Other
)) {
1326 default: assert(0 && "This action is not supported yet!");
1327 case TargetLowering::Legal
:
1328 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1329 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the address.
1330 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the variable.
1331 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
1333 case TargetLowering::Expand
:
1334 Result
= LegalizeOp(Node
->getOperand(0));
1339 case ISD::DEBUG_LOC
:
1340 assert(Node
->getNumOperands() == 4 && "Invalid DEBUG_LOC node!");
1341 switch (TLI
.getOperationAction(ISD::DEBUG_LOC
, MVT::Other
)) {
1342 default: assert(0 && "This action is not supported yet!");
1343 case TargetLowering::Legal
: {
1344 LegalizeAction Action
= getTypeAction(Node
->getOperand(1).getValueType());
1345 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1346 if (Action
== Legal
&& Tmp1
== Node
->getOperand(0))
1348 if (Action
== Legal
) {
1349 Tmp2
= Node
->getOperand(1);
1350 Tmp3
= Node
->getOperand(2);
1351 Tmp4
= Node
->getOperand(3);
1353 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the line #.
1354 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the col #.
1355 Tmp4
= LegalizeOp(Node
->getOperand(3)); // Legalize the source file id.
1357 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
, Tmp4
);
1363 case ISD::DBG_LABEL
:
1365 assert(Node
->getNumOperands() == 1 && "Invalid LABEL node!");
1366 switch (TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
)) {
1367 default: assert(0 && "This action is not supported yet!");
1368 case TargetLowering::Legal
:
1369 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1370 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
1372 case TargetLowering::Expand
:
1373 Result
= LegalizeOp(Node
->getOperand(0));
1379 assert(Node
->getNumOperands() == 4 && "Invalid Prefetch node!");
1380 switch (TLI
.getOperationAction(ISD::PREFETCH
, MVT::Other
)) {
1381 default: assert(0 && "This action is not supported yet!");
1382 case TargetLowering::Legal
:
1383 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1384 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the address.
1385 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the rw specifier.
1386 Tmp4
= LegalizeOp(Node
->getOperand(3)); // Legalize locality specifier.
1387 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
, Tmp4
);
1389 case TargetLowering::Expand
:
1391 Result
= LegalizeOp(Node
->getOperand(0));
1396 case ISD::MEMBARRIER
: {
1397 assert(Node
->getNumOperands() == 6 && "Invalid MemBarrier node!");
1398 switch (TLI
.getOperationAction(ISD::MEMBARRIER
, MVT::Other
)) {
1399 default: assert(0 && "This action is not supported yet!");
1400 case TargetLowering::Legal
: {
1402 Ops
[0] = LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1403 for (int x
= 1; x
< 6; ++x
) {
1404 Ops
[x
] = Node
->getOperand(x
);
1405 if (!isTypeLegal(Ops
[x
].getValueType()))
1406 Ops
[x
] = PromoteOp(Ops
[x
]);
1408 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], 6);
1411 case TargetLowering::Expand
:
1412 //There is no libgcc call for this op
1413 Result
= Node
->getOperand(0); // Noop
1419 case ISD::ATOMIC_CMP_SWAP
: {
1420 unsigned int num_operands
= 4;
1421 assert(Node
->getNumOperands() == num_operands
&& "Invalid Atomic node!");
1423 for (unsigned int x
= 0; x
< num_operands
; ++x
)
1424 Ops
[x
] = LegalizeOp(Node
->getOperand(x
));
1425 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], num_operands
);
1427 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
1428 default: assert(0 && "This action is not supported yet!");
1429 case TargetLowering::Custom
:
1430 Result
= TLI
.LowerOperation(Result
, DAG
);
1432 case TargetLowering::Legal
:
1435 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1436 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1437 return Result
.getValue(Op
.getResNo());
1439 case ISD::ATOMIC_LOAD_ADD
:
1440 case ISD::ATOMIC_LOAD_SUB
:
1441 case ISD::ATOMIC_LOAD_AND
:
1442 case ISD::ATOMIC_LOAD_OR
:
1443 case ISD::ATOMIC_LOAD_XOR
:
1444 case ISD::ATOMIC_LOAD_NAND
:
1445 case ISD::ATOMIC_LOAD_MIN
:
1446 case ISD::ATOMIC_LOAD_MAX
:
1447 case ISD::ATOMIC_LOAD_UMIN
:
1448 case ISD::ATOMIC_LOAD_UMAX
:
1449 case ISD::ATOMIC_SWAP
: {
1450 unsigned int num_operands
= 3;
1451 assert(Node
->getNumOperands() == num_operands
&& "Invalid Atomic node!");
1453 for (unsigned int x
= 0; x
< num_operands
; ++x
)
1454 Ops
[x
] = LegalizeOp(Node
->getOperand(x
));
1455 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], num_operands
);
1457 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
1458 default: assert(0 && "This action is not supported yet!");
1459 case TargetLowering::Custom
:
1460 Result
= TLI
.LowerOperation(Result
, DAG
);
1462 case TargetLowering::Legal
:
1465 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1466 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1467 return Result
.getValue(Op
.getResNo());
1469 case ISD::Constant
: {
1470 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Node
);
1472 TLI
.getOperationAction(ISD::Constant
, CN
->getValueType(0));
1474 // We know we don't need to expand constants here, constants only have one
1475 // value and we check that it is fine above.
1477 if (opAction
== TargetLowering::Custom
) {
1478 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
1484 case ISD::ConstantFP
: {
1485 // Spill FP immediates to the constant pool if the target cannot directly
1486 // codegen them. Targets often have some immediate values that can be
1487 // efficiently generated into an FP register without a load. We explicitly
1488 // leave these constants as ConstantFP nodes for the target to deal with.
1489 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Node
);
1491 switch (TLI
.getOperationAction(ISD::ConstantFP
, CFP
->getValueType(0))) {
1492 default: assert(0 && "This action is not supported yet!");
1493 case TargetLowering::Legal
:
1495 case TargetLowering::Custom
:
1496 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1497 if (Tmp3
.getNode()) {
1502 case TargetLowering::Expand
: {
1503 // Check to see if this FP immediate is already legal.
1504 bool isLegal
= false;
1505 for (TargetLowering::legal_fpimm_iterator I
= TLI
.legal_fpimm_begin(),
1506 E
= TLI
.legal_fpimm_end(); I
!= E
; ++I
) {
1507 if (CFP
->isExactlyValue(*I
)) {
1512 // If this is a legal constant, turn it into a TargetConstantFP node.
1515 Result
= ExpandConstantFP(CFP
, true, DAG
, TLI
);
1520 case ISD::TokenFactor
:
1521 if (Node
->getNumOperands() == 2) {
1522 Tmp1
= LegalizeOp(Node
->getOperand(0));
1523 Tmp2
= LegalizeOp(Node
->getOperand(1));
1524 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1525 } else if (Node
->getNumOperands() == 3) {
1526 Tmp1
= LegalizeOp(Node
->getOperand(0));
1527 Tmp2
= LegalizeOp(Node
->getOperand(1));
1528 Tmp3
= LegalizeOp(Node
->getOperand(2));
1529 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
1531 SmallVector
<SDValue
, 8> Ops
;
1532 // Legalize the operands.
1533 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
)
1534 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
1535 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1539 case ISD::FORMAL_ARGUMENTS
:
1541 // The only option for this is to custom lower it.
1542 Tmp3
= TLI
.LowerOperation(Result
.getValue(0), DAG
);
1543 assert(Tmp3
.getNode() && "Target didn't custom lower this node!");
1544 // A call within a calling sequence must be legalized to something
1545 // other than the normal CALLSEQ_END. Violating this gets Legalize
1546 // into an infinite loop.
1547 assert ((!IsLegalizingCall
||
1548 Node
->getOpcode() != ISD::CALL
||
1549 Tmp3
.getNode()->getOpcode() != ISD::CALLSEQ_END
) &&
1550 "Nested CALLSEQ_START..CALLSEQ_END not supported.");
1552 // The number of incoming and outgoing values should match; unless the final
1553 // outgoing value is a flag.
1554 assert((Tmp3
.getNode()->getNumValues() == Result
.getNode()->getNumValues() ||
1555 (Tmp3
.getNode()->getNumValues() == Result
.getNode()->getNumValues() + 1 &&
1556 Tmp3
.getNode()->getValueType(Tmp3
.getNode()->getNumValues() - 1) ==
1558 "Lowering call/formal_arguments produced unexpected # results!");
1560 // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
1561 // remember that we legalized all of them, so it doesn't get relegalized.
1562 for (unsigned i
= 0, e
= Tmp3
.getNode()->getNumValues(); i
!= e
; ++i
) {
1563 if (Tmp3
.getNode()->getValueType(i
) == MVT::Flag
)
1565 Tmp1
= LegalizeOp(Tmp3
.getValue(i
));
1566 if (Op
.getResNo() == i
)
1568 AddLegalizedOperand(SDValue(Node
, i
), Tmp1
);
1571 case ISD::BUILD_VECTOR
:
1572 switch (TLI
.getOperationAction(ISD::BUILD_VECTOR
, Node
->getValueType(0))) {
1573 default: assert(0 && "This action is not supported yet!");
1574 case TargetLowering::Custom
:
1575 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1576 if (Tmp3
.getNode()) {
1581 case TargetLowering::Expand
:
1582 Result
= ExpandBUILD_VECTOR(Result
.getNode());
1586 case ISD::INSERT_VECTOR_ELT
:
1587 Tmp1
= LegalizeOp(Node
->getOperand(0)); // InVec
1588 Tmp3
= LegalizeOp(Node
->getOperand(2)); // InEltNo
1590 // The type of the value to insert may not be legal, even though the vector
1591 // type is legal. Legalize/Promote accordingly. We do not handle Expand
1593 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
1594 default: assert(0 && "Cannot expand insert element operand");
1595 case Legal
: Tmp2
= LegalizeOp(Node
->getOperand(1)); break;
1596 case Promote
: Tmp2
= PromoteOp(Node
->getOperand(1)); break;
1598 // FIXME: An alternative would be to check to see if the target is not
1599 // going to custom lower this operation, we could bitcast to half elt
1600 // width and perform two inserts at that width, if that is legal.
1601 Tmp2
= Node
->getOperand(1);
1604 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
1606 switch (TLI
.getOperationAction(ISD::INSERT_VECTOR_ELT
,
1607 Node
->getValueType(0))) {
1608 default: assert(0 && "This action is not supported yet!");
1609 case TargetLowering::Legal
:
1611 case TargetLowering::Custom
:
1612 Tmp4
= TLI
.LowerOperation(Result
, DAG
);
1613 if (Tmp4
.getNode()) {
1618 case TargetLowering::Promote
:
1619 // Fall thru for vector case
1620 case TargetLowering::Expand
: {
1621 // If the insert index is a constant, codegen this as a scalar_to_vector,
1622 // then a shuffle that inserts it into the right position in the vector.
1623 if (ConstantSDNode
*InsertPos
= dyn_cast
<ConstantSDNode
>(Tmp3
)) {
1624 // SCALAR_TO_VECTOR requires that the type of the value being inserted
1625 // match the element type of the vector being created, except for
1626 // integers in which case the inserted value can be over width.
1627 MVT EltVT
= Op
.getValueType().getVectorElementType();
1628 if (Tmp2
.getValueType() == EltVT
||
1629 (EltVT
.isInteger() && Tmp2
.getValueType().bitsGE(EltVT
))) {
1630 SDValue ScVec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
1631 Tmp1
.getValueType(), Tmp2
);
1633 unsigned NumElts
= Tmp1
.getValueType().getVectorNumElements();
1634 // We generate a shuffle of InVec and ScVec, so the shuffle mask
1635 // should be 0,1,2,3,4,5... with the appropriate element replaced with
1636 // elt 0 of the RHS.
1637 SmallVector
<int, 8> ShufOps
;
1638 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1639 ShufOps
.push_back(i
!= InsertPos
->getZExtValue() ? i
: NumElts
);
1641 Result
= DAG
.getVectorShuffle(Tmp1
.getValueType(), dl
, Tmp1
, ScVec
,
1643 Result
= LegalizeOp(Result
);
1647 Result
= PerformInsertVectorEltInMemory(Tmp1
, Tmp2
, Tmp3
, dl
);
1652 case ISD::SCALAR_TO_VECTOR
:
1653 if (!TLI
.isTypeLegal(Node
->getOperand(0).getValueType())) {
1654 Result
= LegalizeOp(ExpandSCALAR_TO_VECTOR(Node
));
1658 Tmp1
= LegalizeOp(Node
->getOperand(0)); // InVal
1659 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
1660 switch (TLI
.getOperationAction(ISD::SCALAR_TO_VECTOR
,
1661 Node
->getValueType(0))) {
1662 default: assert(0 && "This action is not supported yet!");
1663 case TargetLowering::Legal
:
1665 case TargetLowering::Custom
:
1666 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1667 if (Tmp3
.getNode()) {
1672 case TargetLowering::Expand
:
1673 Result
= LegalizeOp(ExpandSCALAR_TO_VECTOR(Node
));
1677 case ISD::VECTOR_SHUFFLE
: {
1678 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the input vectors,
1679 Tmp2
= LegalizeOp(Node
->getOperand(1)); // but not the shuffle mask.
1680 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1681 MVT VT
= Result
.getValueType();
1683 // Copy the Mask to a local SmallVector for use with isShuffleMaskLegal.
1684 SmallVector
<int, 8> Mask
;
1685 cast
<ShuffleVectorSDNode
>(Result
)->getMask(Mask
);
1687 // Allow targets to custom lower the SHUFFLEs they support.
1688 switch (TLI
.getOperationAction(ISD::VECTOR_SHUFFLE
, VT
)) {
1689 default: assert(0 && "Unknown operation action!");
1690 case TargetLowering::Legal
:
1691 assert(TLI
.isShuffleMaskLegal(Mask
, VT
) &&
1692 "vector shuffle should not be created if not legal!");
1694 case TargetLowering::Custom
:
1695 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
1696 if (Tmp3
.getNode()) {
1701 case TargetLowering::Expand
: {
1702 MVT EltVT
= VT
.getVectorElementType();
1703 unsigned NumElems
= VT
.getVectorNumElements();
1704 SmallVector
<SDValue
, 8> Ops
;
1705 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
1707 Ops
.push_back(DAG
.getUNDEF(EltVT
));
1710 unsigned Idx
= Mask
[i
];
1712 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Tmp1
,
1713 DAG
.getIntPtrConstant(Idx
)));
1715 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Tmp2
,
1716 DAG
.getIntPtrConstant(Idx
- NumElems
)));
1718 Result
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &Ops
[0], Ops
.size());
1721 case TargetLowering::Promote
: {
1722 // Change base type to a different vector type.
1723 MVT OVT
= Node
->getValueType(0);
1724 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
1726 // Cast the two input vectors.
1727 Tmp1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Tmp1
);
1728 Tmp2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Tmp2
);
1730 // Convert the shuffle mask to the right # elements.
1731 Result
= ShuffleWithNarrowerEltType(NVT
, OVT
, dl
, Tmp1
, Tmp2
, Mask
);
1732 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, OVT
, Result
);
1738 case ISD::EXTRACT_VECTOR_ELT
:
1739 Tmp1
= Node
->getOperand(0);
1740 Tmp2
= LegalizeOp(Node
->getOperand(1));
1741 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1742 Result
= ExpandEXTRACT_VECTOR_ELT(Result
);
1745 case ISD::EXTRACT_SUBVECTOR
:
1746 Tmp1
= Node
->getOperand(0);
1747 Tmp2
= LegalizeOp(Node
->getOperand(1));
1748 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1749 Result
= ExpandEXTRACT_SUBVECTOR(Result
);
1752 case ISD::CONCAT_VECTORS
: {
1753 // Use extract/insert/build vector for now. We might try to be
1754 // more clever later.
1755 MVT PtrVT
= TLI
.getPointerTy();
1756 SmallVector
<SDValue
, 8> Ops
;
1757 unsigned NumOperands
= Node
->getNumOperands();
1758 for (unsigned i
=0; i
< NumOperands
; ++i
) {
1759 SDValue SubOp
= Node
->getOperand(i
);
1760 MVT VVT
= SubOp
.getNode()->getValueType(0);
1761 MVT EltVT
= VVT
.getVectorElementType();
1762 unsigned NumSubElem
= VVT
.getVectorNumElements();
1763 for (unsigned j
=0; j
< NumSubElem
; ++j
) {
1764 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, SubOp
,
1765 DAG
.getConstant(j
, PtrVT
)));
1768 return LegalizeOp(DAG
.getNode(ISD::BUILD_VECTOR
, dl
, Node
->getValueType(0),
1769 &Ops
[0], Ops
.size()));
1772 case ISD::CALLSEQ_START
: {
1773 SDNode
*CallEnd
= FindCallEndFromCallStart(Node
);
1775 // Recursively Legalize all of the inputs of the call end that do not lead
1776 // to this call start. This ensures that any libcalls that need be inserted
1777 // are inserted *before* the CALLSEQ_START.
1778 IsLegalizingCallArgs
= true;
1779 {SmallPtrSet
<SDNode
*, 32> NodesLeadingTo
;
1780 for (unsigned i
= 0, e
= CallEnd
->getNumOperands(); i
!= e
; ++i
)
1781 LegalizeAllNodesNotLeadingTo(CallEnd
->getOperand(i
).getNode(), Node
,
1784 IsLegalizingCallArgs
= false;
1786 // Now that we legalized all of the inputs (which may have inserted
1787 // libcalls) create the new CALLSEQ_START node.
1788 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1790 // Merge in the last call, to ensure that this call start after the last
1792 if (LastCALLSEQ_END
.getOpcode() != ISD::EntryToken
) {
1793 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1794 Tmp1
, LastCALLSEQ_END
);
1795 Tmp1
= LegalizeOp(Tmp1
);
1798 // Do not try to legalize the target-specific arguments (#1+).
1799 if (Tmp1
!= Node
->getOperand(0)) {
1800 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1802 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1805 // Remember that the CALLSEQ_START is legalized.
1806 AddLegalizedOperand(Op
.getValue(0), Result
);
1807 if (Node
->getNumValues() == 2) // If this has a flag result, remember it.
1808 AddLegalizedOperand(Op
.getValue(1), Result
.getValue(1));
1810 // Now that the callseq_start and all of the non-call nodes above this call
1811 // sequence have been legalized, legalize the call itself. During this
1812 // process, no libcalls can/will be inserted, guaranteeing that no calls
1814 assert(!IsLegalizingCall
&& "Inconsistent sequentialization of calls!");
1815 // Note that we are selecting this call!
1816 LastCALLSEQ_END
= SDValue(CallEnd
, 0);
1817 IsLegalizingCall
= true;
1819 // Legalize the call, starting from the CALLSEQ_END.
1820 LegalizeOp(LastCALLSEQ_END
);
1821 assert(!IsLegalizingCall
&& "CALLSEQ_END should have cleared this!");
1824 case ISD::CALLSEQ_END
:
1825 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1826 // will cause this node to be legalized as well as handling libcalls right.
1827 if (LastCALLSEQ_END
.getNode() != Node
) {
1828 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node
), 0));
1829 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
1830 assert(I
!= LegalizedNodes
.end() &&
1831 "Legalizing the call start should have legalized this node!");
1835 // Otherwise, the call start has been legalized and everything is going
1836 // according to plan. Just legalize ourselves normally here.
1837 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1838 // Do not try to legalize the target-specific arguments (#1+), except for
1839 // an optional flag input.
1840 if (Node
->getOperand(Node
->getNumOperands()-1).getValueType() != MVT::Flag
){
1841 if (Tmp1
!= Node
->getOperand(0)) {
1842 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1844 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1847 Tmp2
= LegalizeOp(Node
->getOperand(Node
->getNumOperands()-1));
1848 if (Tmp1
!= Node
->getOperand(0) ||
1849 Tmp2
!= Node
->getOperand(Node
->getNumOperands()-1)) {
1850 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1853 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1856 assert(IsLegalizingCall
&& "Call sequence imbalance between start/end?");
1857 // This finishes up call legalization.
1858 IsLegalizingCall
= false;
1860 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1861 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1862 if (Node
->getNumValues() == 2)
1863 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1864 return Result
.getValue(Op
.getResNo());
1865 case ISD::DYNAMIC_STACKALLOC
: {
1866 MVT VT
= Node
->getValueType(0);
1867 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1868 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the size.
1869 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the alignment.
1870 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
1872 Tmp1
= Result
.getValue(0);
1873 Tmp2
= Result
.getValue(1);
1874 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
1875 default: assert(0 && "This action is not supported yet!");
1876 case TargetLowering::Expand
: {
1877 unsigned SPReg
= TLI
.getStackPointerRegisterToSaveRestore();
1878 assert(SPReg
&& "Target cannot require DYNAMIC_STACKALLOC expansion and"
1879 " not tell us which reg is the stack pointer!");
1880 SDValue Chain
= Tmp1
.getOperand(0);
1882 // Chain the dynamic stack allocation so that it doesn't modify the stack
1883 // pointer when other instructions are using the stack.
1884 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
1886 SDValue Size
= Tmp2
.getOperand(1);
1887 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, SPReg
, VT
);
1888 Chain
= SP
.getValue(1);
1889 unsigned Align
= cast
<ConstantSDNode
>(Tmp3
)->getZExtValue();
1890 unsigned StackAlign
=
1891 TLI
.getTargetMachine().getFrameInfo()->getStackAlignment();
1892 if (Align
> StackAlign
)
1893 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
,
1894 DAG
.getConstant(-(uint64_t)Align
, VT
));
1895 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, SP
, Size
); // Value
1896 Chain
= DAG
.getCopyToReg(Chain
, dl
, SPReg
, Tmp1
); // Output chain
1898 Tmp2
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, true),
1899 DAG
.getIntPtrConstant(0, true), SDValue());
1901 Tmp1
= LegalizeOp(Tmp1
);
1902 Tmp2
= LegalizeOp(Tmp2
);
1905 case TargetLowering::Custom
:
1906 Tmp3
= TLI
.LowerOperation(Tmp1
, DAG
);
1907 if (Tmp3
.getNode()) {
1908 Tmp1
= LegalizeOp(Tmp3
);
1909 Tmp2
= LegalizeOp(Tmp3
.getValue(1));
1912 case TargetLowering::Legal
:
1915 // Since this op produce two values, make sure to remember that we
1916 // legalized both of them.
1917 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
1918 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
1919 return Op
.getResNo() ? Tmp2
: Tmp1
;
1921 case ISD::INLINEASM
: {
1922 SmallVector
<SDValue
, 8> Ops(Node
->op_begin(), Node
->op_end());
1923 bool Changed
= false;
1924 // Legalize all of the operands of the inline asm, in case they are nodes
1925 // that need to be expanded or something. Note we skip the asm string and
1926 // all of the TargetConstant flags.
1927 SDValue Op
= LegalizeOp(Ops
[0]);
1928 Changed
= Op
!= Ops
[0];
1931 bool HasInFlag
= Ops
.back().getValueType() == MVT::Flag
;
1932 for (unsigned i
= 2, e
= Ops
.size()-HasInFlag
; i
< e
; ) {
1933 unsigned NumVals
= InlineAsm::
1934 getNumOperandRegisters(cast
<ConstantSDNode
>(Ops
[i
])->getZExtValue());
1935 for (++i
; NumVals
; ++i
, --NumVals
) {
1936 SDValue Op
= LegalizeOp(Ops
[i
]);
1945 Op
= LegalizeOp(Ops
.back());
1946 Changed
|= Op
!= Ops
.back();
1951 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
1953 // INLINE asm returns a chain and flag, make sure to add both to the map.
1954 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
1955 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
1956 return Result
.getValue(Op
.getResNo());
1959 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1960 // Ensure that libcalls are emitted before a branch.
1961 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
1962 Tmp1
= LegalizeOp(Tmp1
);
1963 LastCALLSEQ_END
= DAG
.getEntryNode();
1965 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
1968 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1969 // Ensure that libcalls are emitted before a branch.
1970 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
1971 Tmp1
= LegalizeOp(Tmp1
);
1972 LastCALLSEQ_END
= DAG
.getEntryNode();
1974 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
1975 default: assert(0 && "Indirect target must be legal type (pointer)!");
1977 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the condition.
1980 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
1983 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
1984 // Ensure that libcalls are emitted before a branch.
1985 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
1986 Tmp1
= LegalizeOp(Tmp1
);
1987 LastCALLSEQ_END
= DAG
.getEntryNode();
1989 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the jumptable node.
1990 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
1992 switch (TLI
.getOperationAction(ISD::BR_JT
, MVT::Other
)) {
1993 default: assert(0 && "This action is not supported yet!");
1994 case TargetLowering::Legal
: break;
1995 case TargetLowering::Custom
:
1996 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
1997 if (Tmp1
.getNode()) Result
= Tmp1
;
1999 case TargetLowering::Expand
: {
2000 SDValue Chain
= Result
.getOperand(0);
2001 SDValue Table
= Result
.getOperand(1);
2002 SDValue Index
= Result
.getOperand(2);
2004 MVT PTy
= TLI
.getPointerTy();
2005 MachineFunction
&MF
= DAG
.getMachineFunction();
2006 unsigned EntrySize
= MF
.getJumpTableInfo()->getEntrySize();
2007 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
,
2008 Index
, DAG
.getConstant(EntrySize
, PTy
));
2009 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Index
, Table
);
2011 MVT MemVT
= MVT::getIntegerVT(EntrySize
* 8);
2012 SDValue LD
= DAG
.getExtLoad(ISD::SEXTLOAD
, dl
, PTy
, Chain
, Addr
,
2013 PseudoSourceValue::getJumpTable(), 0, MemVT
);
2015 if (TLI
.getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
2016 // For PIC, the sequence is:
2017 // BRIND(load(Jumptable + index) + RelocBase)
2018 // RelocBase can be JumpTable, GOT or some sort of global base.
2019 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Addr
,
2020 TLI
.getPICJumpTableRelocBase(Table
, DAG
));
2022 Result
= DAG
.getNode(ISD::BRIND
, dl
, MVT::Other
, LD
.getValue(1), Addr
);
2027 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2028 // Ensure that libcalls are emitted before a return.
2029 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
2030 Tmp1
= LegalizeOp(Tmp1
);
2031 LastCALLSEQ_END
= DAG
.getEntryNode();
2033 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
2034 case Expand
: assert(0 && "It's impossible to expand bools");
2036 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the condition.
2039 Tmp2
= PromoteOp(Node
->getOperand(1)); // Promote the condition.
2041 // The top bits of the promoted condition are not necessarily zero, ensure
2042 // that the value is properly zero extended.
2043 unsigned BitWidth
= Tmp2
.getValueSizeInBits();
2044 if (!DAG
.MaskedValueIsZero(Tmp2
,
2045 APInt::getHighBitsSet(BitWidth
, BitWidth
-1)))
2046 Tmp2
= DAG
.getZeroExtendInReg(Tmp2
, dl
, MVT::i1
);
2051 // Basic block destination (Op#2) is always legal.
2052 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
2054 switch (TLI
.getOperationAction(ISD::BRCOND
, MVT::Other
)) {
2055 default: assert(0 && "This action is not supported yet!");
2056 case TargetLowering::Legal
: break;
2057 case TargetLowering::Custom
:
2058 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2059 if (Tmp1
.getNode()) Result
= Tmp1
;
2061 case TargetLowering::Expand
:
2062 // Expand brcond's setcc into its constituent parts and create a BR_CC
2064 if (Tmp2
.getOpcode() == ISD::SETCC
) {
2065 Result
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
,
2066 Tmp1
, Tmp2
.getOperand(2),
2067 Tmp2
.getOperand(0), Tmp2
.getOperand(1),
2068 Node
->getOperand(2));
2070 Result
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
, Tmp1
,
2071 DAG
.getCondCode(ISD::SETNE
), Tmp2
,
2072 DAG
.getConstant(0, Tmp2
.getValueType()),
2073 Node
->getOperand(2));
2079 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2080 // Ensure that libcalls are emitted before a branch.
2081 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
2082 Tmp1
= LegalizeOp(Tmp1
);
2083 Tmp2
= Node
->getOperand(2); // LHS
2084 Tmp3
= Node
->getOperand(3); // RHS
2085 Tmp4
= Node
->getOperand(1); // CC
2087 LegalizeSetCC(TLI
.getSetCCResultType(Tmp2
.getValueType()),
2088 Tmp2
, Tmp3
, Tmp4
, dl
);
2089 LastCALLSEQ_END
= DAG
.getEntryNode();
2091 // If we didn't get both a LHS and RHS back from LegalizeSetCC,
2092 // the LHS is a legal SETCC itself. In this case, we need to compare
2093 // the result against zero to select between true and false values.
2094 if (Tmp3
.getNode() == 0) {
2095 Tmp3
= DAG
.getConstant(0, Tmp2
.getValueType());
2096 Tmp4
= DAG
.getCondCode(ISD::SETNE
);
2099 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp4
, Tmp2
, Tmp3
,
2100 Node
->getOperand(4));
2102 switch (TLI
.getOperationAction(ISD::BR_CC
, Tmp3
.getValueType())) {
2103 default: assert(0 && "Unexpected action for BR_CC!");
2104 case TargetLowering::Legal
: break;
2105 case TargetLowering::Custom
:
2106 Tmp4
= TLI
.LowerOperation(Result
, DAG
);
2107 if (Tmp4
.getNode()) Result
= Tmp4
;
2112 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
2113 Tmp1
= LegalizeOp(LD
->getChain()); // Legalize the chain.
2114 Tmp2
= LegalizeOp(LD
->getBasePtr()); // Legalize the base pointer.
2116 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2117 if (ExtType
== ISD::NON_EXTLOAD
) {
2118 MVT VT
= Node
->getValueType(0);
2119 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, LD
->getOffset());
2120 Tmp3
= Result
.getValue(0);
2121 Tmp4
= Result
.getValue(1);
2123 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
2124 default: assert(0 && "This action is not supported yet!");
2125 case TargetLowering::Legal
:
2126 // If this is an unaligned load and the target doesn't support it,
2128 if (!TLI
.allowsUnalignedMemoryAccesses()) {
2129 unsigned ABIAlignment
= TLI
.getTargetData()->
2130 getABITypeAlignment(LD
->getMemoryVT().getTypeForMVT());
2131 if (LD
->getAlignment() < ABIAlignment
){
2132 Result
= ExpandUnalignedLoad(cast
<LoadSDNode
>(Result
.getNode()), DAG
,
2134 Tmp3
= Result
.getOperand(0);
2135 Tmp4
= Result
.getOperand(1);
2136 Tmp3
= LegalizeOp(Tmp3
);
2137 Tmp4
= LegalizeOp(Tmp4
);
2141 case TargetLowering::Custom
:
2142 Tmp1
= TLI
.LowerOperation(Tmp3
, DAG
);
2143 if (Tmp1
.getNode()) {
2144 Tmp3
= LegalizeOp(Tmp1
);
2145 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
2148 case TargetLowering::Promote
: {
2149 // Only promote a load of vector type to another.
2150 assert(VT
.isVector() && "Cannot promote this load!");
2151 // Change base type to a different vector type.
2152 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
2154 Tmp1
= DAG
.getLoad(NVT
, dl
, Tmp1
, Tmp2
, LD
->getSrcValue(),
2155 LD
->getSrcValueOffset(),
2156 LD
->isVolatile(), LD
->getAlignment());
2157 Tmp3
= LegalizeOp(DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Tmp1
));
2158 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
2162 // Since loads produce two values, make sure to remember that we
2163 // legalized both of them.
2164 AddLegalizedOperand(SDValue(Node
, 0), Tmp3
);
2165 AddLegalizedOperand(SDValue(Node
, 1), Tmp4
);
2166 return Op
.getResNo() ? Tmp4
: Tmp3
;
2168 MVT SrcVT
= LD
->getMemoryVT();
2169 unsigned SrcWidth
= SrcVT
.getSizeInBits();
2170 int SVOffset
= LD
->getSrcValueOffset();
2171 unsigned Alignment
= LD
->getAlignment();
2172 bool isVolatile
= LD
->isVolatile();
2174 if (SrcWidth
!= SrcVT
.getStoreSizeInBits() &&
2175 // Some targets pretend to have an i1 loading operation, and actually
2176 // load an i8. This trick is correct for ZEXTLOAD because the top 7
2177 // bits are guaranteed to be zero; it helps the optimizers understand
2178 // that these bits are zero. It is also useful for EXTLOAD, since it
2179 // tells the optimizers that those bits are undefined. It would be
2180 // nice to have an effective generic way of getting these benefits...
2181 // Until such a way is found, don't insist on promoting i1 here.
2182 (SrcVT
!= MVT::i1
||
2183 TLI
.getLoadExtAction(ExtType
, MVT::i1
) == TargetLowering::Promote
)) {
2184 // Promote to a byte-sized load if not loading an integral number of
2185 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2186 unsigned NewWidth
= SrcVT
.getStoreSizeInBits();
2187 MVT NVT
= MVT::getIntegerVT(NewWidth
);
2190 // The extra bits are guaranteed to be zero, since we stored them that
2191 // way. A zext load from NVT thus automatically gives zext from SrcVT.
2193 ISD::LoadExtType NewExtType
=
2194 ExtType
== ISD::ZEXTLOAD
? ISD::ZEXTLOAD
: ISD::EXTLOAD
;
2196 Result
= DAG
.getExtLoad(NewExtType
, dl
, Node
->getValueType(0),
2197 Tmp1
, Tmp2
, LD
->getSrcValue(), SVOffset
,
2198 NVT
, isVolatile
, Alignment
);
2200 Ch
= Result
.getValue(1); // The chain.
2202 if (ExtType
== ISD::SEXTLOAD
)
2203 // Having the top bits zero doesn't help when sign extending.
2204 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
2205 Result
.getValueType(),
2206 Result
, DAG
.getValueType(SrcVT
));
2207 else if (ExtType
== ISD::ZEXTLOAD
|| NVT
== Result
.getValueType())
2208 // All the top bits are guaranteed to be zero - inform the optimizers.
2209 Result
= DAG
.getNode(ISD::AssertZext
, dl
,
2210 Result
.getValueType(), Result
,
2211 DAG
.getValueType(SrcVT
));
2213 Tmp1
= LegalizeOp(Result
);
2214 Tmp2
= LegalizeOp(Ch
);
2215 } else if (SrcWidth
& (SrcWidth
- 1)) {
2216 // If not loading a power-of-2 number of bits, expand as two loads.
2217 assert(SrcVT
.isExtended() && !SrcVT
.isVector() &&
2218 "Unsupported extload!");
2219 unsigned RoundWidth
= 1 << Log2_32(SrcWidth
);
2220 assert(RoundWidth
< SrcWidth
);
2221 unsigned ExtraWidth
= SrcWidth
- RoundWidth
;
2222 assert(ExtraWidth
< RoundWidth
);
2223 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
2224 "Load size not an integral number of bytes!");
2225 MVT RoundVT
= MVT::getIntegerVT(RoundWidth
);
2226 MVT ExtraVT
= MVT::getIntegerVT(ExtraWidth
);
2228 unsigned IncrementSize
;
2230 if (TLI
.isLittleEndian()) {
2231 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
2232 // Load the bottom RoundWidth bits.
2233 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
,
2234 Node
->getValueType(0), Tmp1
, Tmp2
,
2235 LD
->getSrcValue(), SVOffset
, RoundVT
, isVolatile
,
2238 // Load the remaining ExtraWidth bits.
2239 IncrementSize
= RoundWidth
/ 8;
2240 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2241 DAG
.getIntPtrConstant(IncrementSize
));
2242 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Tmp1
, Tmp2
,
2243 LD
->getSrcValue(), SVOffset
+ IncrementSize
,
2244 ExtraVT
, isVolatile
,
2245 MinAlign(Alignment
, IncrementSize
));
2247 // Build a factor node to remember that this load is independent of the
2249 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
2252 // Move the top bits to the right place.
2253 Hi
= DAG
.getNode(ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
2254 DAG
.getConstant(RoundWidth
, TLI
.getShiftAmountTy()));
2256 // Join the hi and lo parts.
2257 Result
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
2259 // Big endian - avoid unaligned loads.
2260 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
2261 // Load the top RoundWidth bits.
2262 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Tmp1
, Tmp2
,
2263 LD
->getSrcValue(), SVOffset
, RoundVT
, isVolatile
,
2266 // Load the remaining ExtraWidth bits.
2267 IncrementSize
= RoundWidth
/ 8;
2268 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2269 DAG
.getIntPtrConstant(IncrementSize
));
2270 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
,
2271 Node
->getValueType(0), Tmp1
, Tmp2
,
2272 LD
->getSrcValue(), SVOffset
+ IncrementSize
,
2273 ExtraVT
, isVolatile
,
2274 MinAlign(Alignment
, IncrementSize
));
2276 // Build a factor node to remember that this load is independent of the
2278 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
2281 // Move the top bits to the right place.
2282 Hi
= DAG
.getNode(ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
2283 DAG
.getConstant(ExtraWidth
, TLI
.getShiftAmountTy()));
2285 // Join the hi and lo parts.
2286 Result
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
2289 Tmp1
= LegalizeOp(Result
);
2290 Tmp2
= LegalizeOp(Ch
);
2292 switch (TLI
.getLoadExtAction(ExtType
, SrcVT
)) {
2293 default: assert(0 && "This action is not supported yet!");
2294 case TargetLowering::Custom
:
2297 case TargetLowering::Legal
:
2298 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, LD
->getOffset());
2299 Tmp1
= Result
.getValue(0);
2300 Tmp2
= Result
.getValue(1);
2303 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
2304 if (Tmp3
.getNode()) {
2305 Tmp1
= LegalizeOp(Tmp3
);
2306 Tmp2
= LegalizeOp(Tmp3
.getValue(1));
2309 // If this is an unaligned load and the target doesn't support it,
2311 if (!TLI
.allowsUnalignedMemoryAccesses()) {
2312 unsigned ABIAlignment
= TLI
.getTargetData()->
2313 getABITypeAlignment(LD
->getMemoryVT().getTypeForMVT());
2314 if (LD
->getAlignment() < ABIAlignment
){
2315 Result
= ExpandUnalignedLoad(cast
<LoadSDNode
>(Result
.getNode()), DAG
,
2317 Tmp1
= Result
.getOperand(0);
2318 Tmp2
= Result
.getOperand(1);
2319 Tmp1
= LegalizeOp(Tmp1
);
2320 Tmp2
= LegalizeOp(Tmp2
);
2325 case TargetLowering::Expand
:
2326 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
2327 if (SrcVT
== MVT::f32
&& Node
->getValueType(0) == MVT::f64
) {
2328 SDValue Load
= DAG
.getLoad(SrcVT
, dl
, Tmp1
, Tmp2
, LD
->getSrcValue(),
2329 LD
->getSrcValueOffset(),
2330 LD
->isVolatile(), LD
->getAlignment());
2331 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
,
2332 Node
->getValueType(0), Load
);
2333 Tmp1
= LegalizeOp(Result
); // Relegalize new nodes.
2334 Tmp2
= LegalizeOp(Load
.getValue(1));
2337 assert(ExtType
!= ISD::EXTLOAD
&&"EXTLOAD should always be supported!");
2338 // Turn the unsupported load into an EXTLOAD followed by an explicit
2339 // zero/sign extend inreg.
2340 Result
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, Node
->getValueType(0),
2341 Tmp1
, Tmp2
, LD
->getSrcValue(),
2342 LD
->getSrcValueOffset(), SrcVT
,
2343 LD
->isVolatile(), LD
->getAlignment());
2345 if (ExtType
== ISD::SEXTLOAD
)
2346 ValRes
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
2347 Result
.getValueType(),
2348 Result
, DAG
.getValueType(SrcVT
));
2350 ValRes
= DAG
.getZeroExtendInReg(Result
, dl
, SrcVT
);
2351 Tmp1
= LegalizeOp(ValRes
); // Relegalize new nodes.
2352 Tmp2
= LegalizeOp(Result
.getValue(1)); // Relegalize new nodes.
2357 // Since loads produce two values, make sure to remember that we legalized
2359 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
2360 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
2361 return Op
.getResNo() ? Tmp2
: Tmp1
;
2364 case ISD::EXTRACT_ELEMENT
: {
2365 MVT OpTy
= Node
->getOperand(0).getValueType();
2366 switch (getTypeAction(OpTy
)) {
2367 default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!");
2369 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
2371 Result
= DAG
.getNode(ISD::SRL
, dl
, OpTy
, Node
->getOperand(0),
2372 DAG
.getConstant(OpTy
.getSizeInBits()/2,
2373 TLI
.getShiftAmountTy()));
2374 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), Result
);
2377 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0),
2378 Node
->getOperand(0));
2382 // Get both the low and high parts.
2383 ExpandOp(Node
->getOperand(0), Tmp1
, Tmp2
);
2384 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue())
2385 Result
= Tmp2
; // 1 -> Hi
2387 Result
= Tmp1
; // 0 -> Lo
2393 case ISD::CopyToReg
:
2394 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2396 assert(isTypeLegal(Node
->getOperand(2).getValueType()) &&
2397 "Register type must be legal!");
2398 // Legalize the incoming value (must be a legal type).
2399 Tmp2
= LegalizeOp(Node
->getOperand(2));
2400 if (Node
->getNumValues() == 1) {
2401 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1), Tmp2
);
2403 assert(Node
->getNumValues() == 2 && "Unknown CopyToReg");
2404 if (Node
->getNumOperands() == 4) {
2405 Tmp3
= LegalizeOp(Node
->getOperand(3));
2406 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1), Tmp2
,
2409 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1),Tmp2
);
2412 // Since this produces two values, make sure to remember that we legalized
2414 AddLegalizedOperand(SDValue(Node
, 0), Result
.getValue(0));
2415 AddLegalizedOperand(SDValue(Node
, 1), Result
.getValue(1));
2421 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2423 // Ensure that libcalls are emitted before a return.
2424 Tmp1
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Tmp1
, LastCALLSEQ_END
);
2425 Tmp1
= LegalizeOp(Tmp1
);
2426 LastCALLSEQ_END
= DAG
.getEntryNode();
2428 switch (Node
->getNumOperands()) {
2430 Tmp2
= Node
->getOperand(1);
2431 Tmp3
= Node
->getOperand(2); // Signness
2432 switch (getTypeAction(Tmp2
.getValueType())) {
2434 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, LegalizeOp(Tmp2
), Tmp3
);
2437 if (!Tmp2
.getValueType().isVector()) {
2439 ExpandOp(Tmp2
, Lo
, Hi
);
2441 // Big endian systems want the hi reg first.
2442 if (TLI
.isBigEndian())
2446 Result
= DAG
.getNode(ISD::RET
, dl
, MVT::Other
,
2447 Tmp1
, Lo
, Tmp3
, Hi
, Tmp3
);
2449 Result
= DAG
.getNode(ISD::RET
, dl
, MVT::Other
, Tmp1
, Lo
, Tmp3
);
2450 Result
= LegalizeOp(Result
);
2452 SDNode
*InVal
= Tmp2
.getNode();
2453 int InIx
= Tmp2
.getResNo();
2454 unsigned NumElems
= InVal
->getValueType(InIx
).getVectorNumElements();
2455 MVT EVT
= InVal
->getValueType(InIx
).getVectorElementType();
2457 // Figure out if there is a simple type corresponding to this Vector
2458 // type. If so, convert to the vector type.
2459 MVT TVT
= MVT::getVectorVT(EVT
, NumElems
);
2460 if (TLI
.isTypeLegal(TVT
)) {
2461 // Turn this into a return of the vector type.
2462 Tmp2
= LegalizeOp(Tmp2
);
2463 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
2464 } else if (NumElems
== 1) {
2465 // Turn this into a return of the scalar type.
2466 Tmp2
= ScalarizeVectorOp(Tmp2
);
2467 Tmp2
= LegalizeOp(Tmp2
);
2468 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
2470 // FIXME: Returns of gcc generic vectors smaller than a legal type
2471 // should be returned in integer registers!
2473 // The scalarized value type may not be legal, e.g. it might require
2474 // promotion or expansion. Relegalize the return.
2475 Result
= LegalizeOp(Result
);
2477 // FIXME: Returns of gcc generic vectors larger than a legal vector
2478 // type should be returned by reference!
2480 SplitVectorOp(Tmp2
, Lo
, Hi
);
2481 Result
= DAG
.getNode(ISD::RET
, dl
, MVT::Other
,
2482 Tmp1
, Lo
, Tmp3
, Hi
, Tmp3
);
2483 Result
= LegalizeOp(Result
);
2488 Tmp2
= PromoteOp(Node
->getOperand(1));
2489 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
2490 Result
= LegalizeOp(Result
);
2495 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
2497 default: { // ret <values>
2498 SmallVector
<SDValue
, 8> NewValues
;
2499 NewValues
.push_back(Tmp1
);
2500 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
< e
; i
+= 2)
2501 switch (getTypeAction(Node
->getOperand(i
).getValueType())) {
2503 NewValues
.push_back(LegalizeOp(Node
->getOperand(i
)));
2504 NewValues
.push_back(Node
->getOperand(i
+1));
2508 assert(!Node
->getOperand(i
).getValueType().isExtended() &&
2509 "FIXME: TODO: implement returning non-legal vector types!");
2510 ExpandOp(Node
->getOperand(i
), Lo
, Hi
);
2511 NewValues
.push_back(Lo
);
2512 NewValues
.push_back(Node
->getOperand(i
+1));
2514 NewValues
.push_back(Hi
);
2515 NewValues
.push_back(Node
->getOperand(i
+1));
2520 assert(0 && "Can't promote multiple return value yet!");
2523 if (NewValues
.size() == Node
->getNumOperands())
2524 Result
= DAG
.UpdateNodeOperands(Result
, &NewValues
[0],NewValues
.size());
2526 Result
= DAG
.getNode(ISD::RET
, dl
, MVT::Other
,
2527 &NewValues
[0], NewValues
.size());
2532 if (Result
.getOpcode() == ISD::RET
) {
2533 switch (TLI
.getOperationAction(Result
.getOpcode(), MVT::Other
)) {
2534 default: assert(0 && "This action is not supported yet!");
2535 case TargetLowering::Legal
: break;
2536 case TargetLowering::Custom
:
2537 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2538 if (Tmp1
.getNode()) Result
= Tmp1
;
2544 StoreSDNode
*ST
= cast
<StoreSDNode
>(Node
);
2545 Tmp1
= LegalizeOp(ST
->getChain()); // Legalize the chain.
2546 Tmp2
= LegalizeOp(ST
->getBasePtr()); // Legalize the pointer.
2547 int SVOffset
= ST
->getSrcValueOffset();
2548 unsigned Alignment
= ST
->getAlignment();
2549 bool isVolatile
= ST
->isVolatile();
2551 if (!ST
->isTruncatingStore()) {
2552 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
2553 // FIXME: We shouldn't do this for TargetConstantFP's.
2554 // FIXME: move this to the DAG Combiner! Note that we can't regress due
2555 // to phase ordering between legalized code and the dag combiner. This
2556 // probably means that we need to integrate dag combiner and legalizer
2558 // We generally can't do this one for long doubles.
2559 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(ST
->getValue())) {
2560 if (CFP
->getValueType(0) == MVT::f32
&&
2561 getTypeAction(MVT::i32
) == Legal
) {
2562 Tmp3
= DAG
.getConstant(CFP
->getValueAPF().
2563 bitcastToAPInt().zextOrTrunc(32),
2565 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2566 SVOffset
, isVolatile
, Alignment
);
2568 } else if (CFP
->getValueType(0) == MVT::f64
) {
2569 // If this target supports 64-bit registers, do a single 64-bit store.
2570 if (getTypeAction(MVT::i64
) == Legal
) {
2571 Tmp3
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
2572 zextOrTrunc(64), MVT::i64
);
2573 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2574 SVOffset
, isVolatile
, Alignment
);
2576 } else if (getTypeAction(MVT::i32
) == Legal
&& !ST
->isVolatile()) {
2577 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
2578 // stores. If the target supports neither 32- nor 64-bits, this
2579 // xform is certainly not worth it.
2580 const APInt
&IntVal
=CFP
->getValueAPF().bitcastToAPInt();
2581 SDValue Lo
= DAG
.getConstant(APInt(IntVal
).trunc(32), MVT::i32
);
2582 SDValue Hi
= DAG
.getConstant(IntVal
.lshr(32).trunc(32), MVT::i32
);
2583 if (TLI
.isBigEndian()) std::swap(Lo
, Hi
);
2585 Lo
= DAG
.getStore(Tmp1
, dl
, Lo
, Tmp2
, ST
->getSrcValue(),
2586 SVOffset
, isVolatile
, Alignment
);
2587 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2588 DAG
.getIntPtrConstant(4));
2589 Hi
= DAG
.getStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(), SVOffset
+4,
2590 isVolatile
, MinAlign(Alignment
, 4U));
2592 Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
2598 switch (getTypeAction(ST
->getMemoryVT())) {
2600 Tmp3
= LegalizeOp(ST
->getValue());
2601 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp3
, Tmp2
,
2604 MVT VT
= Tmp3
.getValueType();
2605 switch (TLI
.getOperationAction(ISD::STORE
, VT
)) {
2606 default: assert(0 && "This action is not supported yet!");
2607 case TargetLowering::Legal
:
2608 // If this is an unaligned store and the target doesn't support it,
2610 if (!TLI
.allowsUnalignedMemoryAccesses()) {
2611 unsigned ABIAlignment
= TLI
.getTargetData()->
2612 getABITypeAlignment(ST
->getMemoryVT().getTypeForMVT());
2613 if (ST
->getAlignment() < ABIAlignment
)
2614 Result
= ExpandUnalignedStore(cast
<StoreSDNode
>(Result
.getNode()), DAG
,
2618 case TargetLowering::Custom
:
2619 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2620 if (Tmp1
.getNode()) Result
= Tmp1
;
2622 case TargetLowering::Promote
:
2623 assert(VT
.isVector() && "Unknown legal promote case!");
2624 Tmp3
= DAG
.getNode(ISD::BIT_CONVERT
, dl
,
2625 TLI
.getTypeToPromoteTo(ISD::STORE
, VT
), Tmp3
);
2626 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
,
2627 ST
->getSrcValue(), SVOffset
, isVolatile
,
2634 if (!ST
->getMemoryVT().isVector()) {
2635 // Truncate the value and store the result.
2636 Tmp3
= PromoteOp(ST
->getValue());
2637 Result
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2638 SVOffset
, ST
->getMemoryVT(),
2639 isVolatile
, Alignment
);
2642 // Fall thru to expand for vector
2644 unsigned IncrementSize
= 0;
2647 // If this is a vector type, then we have to calculate the increment as
2648 // the product of the element size in bytes, and the number of elements
2649 // in the high half of the vector.
2650 if (ST
->getValue().getValueType().isVector()) {
2651 SDNode
*InVal
= ST
->getValue().getNode();
2652 int InIx
= ST
->getValue().getResNo();
2653 MVT InVT
= InVal
->getValueType(InIx
);
2654 unsigned NumElems
= InVT
.getVectorNumElements();
2655 MVT EVT
= InVT
.getVectorElementType();
2657 // Figure out if there is a simple type corresponding to this Vector
2658 // type. If so, convert to the vector type.
2659 MVT TVT
= MVT::getVectorVT(EVT
, NumElems
);
2660 if (TLI
.isTypeLegal(TVT
)) {
2661 // Turn this into a normal store of the vector type.
2662 Tmp3
= LegalizeOp(ST
->getValue());
2663 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2664 SVOffset
, isVolatile
, Alignment
);
2665 Result
= LegalizeOp(Result
);
2667 } else if (NumElems
== 1) {
2668 // Turn this into a normal store of the scalar type.
2669 Tmp3
= ScalarizeVectorOp(ST
->getValue());
2670 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2671 SVOffset
, isVolatile
, Alignment
);
2672 // The scalarized value type may not be legal, e.g. it might require
2673 // promotion or expansion. Relegalize the scalar store.
2674 Result
= LegalizeOp(Result
);
2677 // Check if we have widen this node with another value
2678 std::map
<SDValue
, SDValue
>::iterator I
=
2679 WidenNodes
.find(ST
->getValue());
2680 if (I
!= WidenNodes
.end()) {
2681 Result
= StoreWidenVectorOp(ST
, Tmp1
, Tmp2
);
2685 SplitVectorOp(ST
->getValue(), Lo
, Hi
);
2686 IncrementSize
= Lo
.getNode()->getValueType(0).getVectorNumElements() *
2687 EVT
.getSizeInBits()/8;
2691 ExpandOp(ST
->getValue(), Lo
, Hi
);
2692 IncrementSize
= Hi
.getNode() ? Hi
.getValueType().getSizeInBits()/8 : 0;
2694 if (Hi
.getNode() && TLI
.isBigEndian())
2698 Lo
= DAG
.getStore(Tmp1
, dl
, Lo
, Tmp2
, ST
->getSrcValue(),
2699 SVOffset
, isVolatile
, Alignment
);
2701 if (Hi
.getNode() == NULL
) {
2702 // Must be int <-> float one-to-one expansion.
2707 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2708 DAG
.getIntPtrConstant(IncrementSize
));
2709 assert(isTypeLegal(Tmp2
.getValueType()) &&
2710 "Pointers must be legal!");
2711 SVOffset
+= IncrementSize
;
2712 Alignment
= MinAlign(Alignment
, IncrementSize
);
2713 Hi
= DAG
.getStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(),
2714 SVOffset
, isVolatile
, Alignment
);
2715 Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
2720 switch (getTypeAction(ST
->getValue().getValueType())) {
2722 Tmp3
= LegalizeOp(ST
->getValue());
2725 if (!ST
->getValue().getValueType().isVector()) {
2726 // We can promote the value, the truncstore will still take care of it.
2727 Tmp3
= PromoteOp(ST
->getValue());
2730 // Vector case falls through to expand
2732 // Just store the low part. This may become a non-trunc store, so make
2733 // sure to use getTruncStore, not UpdateNodeOperands below.
2734 ExpandOp(ST
->getValue(), Tmp3
, Tmp4
);
2735 return DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2736 SVOffset
, MVT::i8
, isVolatile
, Alignment
);
2739 MVT StVT
= ST
->getMemoryVT();
2740 unsigned StWidth
= StVT
.getSizeInBits();
2742 if (StWidth
!= StVT
.getStoreSizeInBits()) {
2743 // Promote to a byte-sized store with upper bits zero if not
2744 // storing an integral number of bytes. For example, promote
2745 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
2746 MVT NVT
= MVT::getIntegerVT(StVT
.getStoreSizeInBits());
2747 Tmp3
= DAG
.getZeroExtendInReg(Tmp3
, dl
, StVT
);
2748 Result
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2749 SVOffset
, NVT
, isVolatile
, Alignment
);
2750 } else if (StWidth
& (StWidth
- 1)) {
2751 // If not storing a power-of-2 number of bits, expand as two stores.
2752 assert(StVT
.isExtended() && !StVT
.isVector() &&
2753 "Unsupported truncstore!");
2754 unsigned RoundWidth
= 1 << Log2_32(StWidth
);
2755 assert(RoundWidth
< StWidth
);
2756 unsigned ExtraWidth
= StWidth
- RoundWidth
;
2757 assert(ExtraWidth
< RoundWidth
);
2758 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
2759 "Store size not an integral number of bytes!");
2760 MVT RoundVT
= MVT::getIntegerVT(RoundWidth
);
2761 MVT ExtraVT
= MVT::getIntegerVT(ExtraWidth
);
2763 unsigned IncrementSize
;
2765 if (TLI
.isLittleEndian()) {
2766 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
2767 // Store the bottom RoundWidth bits.
2768 Lo
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2770 isVolatile
, Alignment
);
2772 // Store the remaining ExtraWidth bits.
2773 IncrementSize
= RoundWidth
/ 8;
2774 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2775 DAG
.getIntPtrConstant(IncrementSize
));
2776 Hi
= DAG
.getNode(ISD::SRL
, dl
, Tmp3
.getValueType(), Tmp3
,
2777 DAG
.getConstant(RoundWidth
, TLI
.getShiftAmountTy()));
2778 Hi
= DAG
.getTruncStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(),
2779 SVOffset
+ IncrementSize
, ExtraVT
, isVolatile
,
2780 MinAlign(Alignment
, IncrementSize
));
2782 // Big endian - avoid unaligned stores.
2783 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
2784 // Store the top RoundWidth bits.
2785 Hi
= DAG
.getNode(ISD::SRL
, dl
, Tmp3
.getValueType(), Tmp3
,
2786 DAG
.getConstant(ExtraWidth
, TLI
.getShiftAmountTy()));
2787 Hi
= DAG
.getTruncStore(Tmp1
, dl
, Hi
, Tmp2
, ST
->getSrcValue(),
2788 SVOffset
, RoundVT
, isVolatile
, Alignment
);
2790 // Store the remaining ExtraWidth bits.
2791 IncrementSize
= RoundWidth
/ 8;
2792 Tmp2
= DAG
.getNode(ISD::ADD
, dl
, Tmp2
.getValueType(), Tmp2
,
2793 DAG
.getIntPtrConstant(IncrementSize
));
2794 Lo
= DAG
.getTruncStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2795 SVOffset
+ IncrementSize
, ExtraVT
, isVolatile
,
2796 MinAlign(Alignment
, IncrementSize
));
2799 // The order of the stores doesn't matter.
2800 Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
2802 if (Tmp1
!= ST
->getChain() || Tmp3
!= ST
->getValue() ||
2803 Tmp2
!= ST
->getBasePtr())
2804 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp3
, Tmp2
,
2807 switch (TLI
.getTruncStoreAction(ST
->getValue().getValueType(), StVT
)) {
2808 default: assert(0 && "This action is not supported yet!");
2809 case TargetLowering::Legal
:
2810 // If this is an unaligned store and the target doesn't support it,
2812 if (!TLI
.allowsUnalignedMemoryAccesses()) {
2813 unsigned ABIAlignment
= TLI
.getTargetData()->
2814 getABITypeAlignment(ST
->getMemoryVT().getTypeForMVT());
2815 if (ST
->getAlignment() < ABIAlignment
)
2816 Result
= ExpandUnalignedStore(cast
<StoreSDNode
>(Result
.getNode()), DAG
,
2820 case TargetLowering::Custom
:
2821 Result
= TLI
.LowerOperation(Result
, DAG
);
2824 // TRUNCSTORE:i16 i32 -> STORE i16
2825 assert(isTypeLegal(StVT
) && "Do not know how to expand this store!");
2826 Tmp3
= DAG
.getNode(ISD::TRUNCATE
, dl
, StVT
, Tmp3
);
2827 Result
= DAG
.getStore(Tmp1
, dl
, Tmp3
, Tmp2
, ST
->getSrcValue(),
2828 SVOffset
, isVolatile
, Alignment
);
2836 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2837 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
2839 case ISD::STACKSAVE
:
2840 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2841 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
2842 Tmp1
= Result
.getValue(0);
2843 Tmp2
= Result
.getValue(1);
2845 switch (TLI
.getOperationAction(ISD::STACKSAVE
, MVT::Other
)) {
2846 default: assert(0 && "This action is not supported yet!");
2847 case TargetLowering::Legal
: break;
2848 case TargetLowering::Custom
:
2849 Tmp3
= TLI
.LowerOperation(Result
, DAG
);
2850 if (Tmp3
.getNode()) {
2851 Tmp1
= LegalizeOp(Tmp3
);
2852 Tmp2
= LegalizeOp(Tmp3
.getValue(1));
2855 case TargetLowering::Expand
:
2856 // Expand to CopyFromReg if the target set
2857 // StackPointerRegisterToSaveRestore.
2858 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
2859 Tmp1
= DAG
.getCopyFromReg(Result
.getOperand(0), dl
, SP
,
2860 Node
->getValueType(0));
2861 Tmp2
= Tmp1
.getValue(1);
2863 Tmp1
= DAG
.getUNDEF(Node
->getValueType(0));
2864 Tmp2
= Node
->getOperand(0);
2869 // Since stacksave produce two values, make sure to remember that we
2870 // legalized both of them.
2871 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
2872 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
2873 return Op
.getResNo() ? Tmp2
: Tmp1
;
2875 case ISD::STACKRESTORE
:
2876 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
2877 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the pointer.
2878 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
2880 switch (TLI
.getOperationAction(ISD::STACKRESTORE
, MVT::Other
)) {
2881 default: assert(0 && "This action is not supported yet!");
2882 case TargetLowering::Legal
: break;
2883 case TargetLowering::Custom
:
2884 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2885 if (Tmp1
.getNode()) Result
= Tmp1
;
2887 case TargetLowering::Expand
:
2888 // Expand to CopyToReg if the target set
2889 // StackPointerRegisterToSaveRestore.
2890 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
2891 Result
= DAG
.getCopyToReg(Tmp1
, dl
, SP
, Tmp2
);
2899 case ISD::READCYCLECOUNTER
:
2900 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain
2901 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
2902 switch (TLI
.getOperationAction(ISD::READCYCLECOUNTER
,
2903 Node
->getValueType(0))) {
2904 default: assert(0 && "This action is not supported yet!");
2905 case TargetLowering::Legal
:
2906 Tmp1
= Result
.getValue(0);
2907 Tmp2
= Result
.getValue(1);
2909 case TargetLowering::Custom
:
2910 Result
= TLI
.LowerOperation(Result
, DAG
);
2911 Tmp1
= LegalizeOp(Result
.getValue(0));
2912 Tmp2
= LegalizeOp(Result
.getValue(1));
2916 // Since rdcc produce two values, make sure to remember that we legalized
2918 AddLegalizedOperand(SDValue(Node
, 0), Tmp1
);
2919 AddLegalizedOperand(SDValue(Node
, 1), Tmp2
);
2923 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
2924 case Expand
: assert(0 && "It's impossible to expand bools");
2926 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the condition.
2929 assert(!Node
->getOperand(0).getValueType().isVector() && "not possible");
2930 Tmp1
= PromoteOp(Node
->getOperand(0)); // Promote the condition.
2931 // Make sure the condition is either zero or one.
2932 unsigned BitWidth
= Tmp1
.getValueSizeInBits();
2933 if (!DAG
.MaskedValueIsZero(Tmp1
,
2934 APInt::getHighBitsSet(BitWidth
, BitWidth
-1)))
2935 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, MVT::i1
);
2939 Tmp2
= LegalizeOp(Node
->getOperand(1)); // TrueVal
2940 Tmp3
= LegalizeOp(Node
->getOperand(2)); // FalseVal
2942 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
2944 switch (TLI
.getOperationAction(ISD::SELECT
, Tmp2
.getValueType())) {
2945 default: assert(0 && "This action is not supported yet!");
2946 case TargetLowering::Legal
: break;
2947 case TargetLowering::Custom
: {
2948 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
2949 if (Tmp1
.getNode()) Result
= Tmp1
;
2952 case TargetLowering::Expand
:
2953 if (Tmp1
.getOpcode() == ISD::SETCC
) {
2954 Result
= DAG
.getSelectCC(dl
, Tmp1
.getOperand(0), Tmp1
.getOperand(1),
2956 cast
<CondCodeSDNode
>(Tmp1
.getOperand(2))->get());
2958 Result
= DAG
.getSelectCC(dl
, Tmp1
,
2959 DAG
.getConstant(0, Tmp1
.getValueType()),
2960 Tmp2
, Tmp3
, ISD::SETNE
);
2963 case TargetLowering::Promote
: {
2965 TLI
.getTypeToPromoteTo(ISD::SELECT
, Tmp2
.getValueType());
2966 unsigned ExtOp
, TruncOp
;
2967 if (Tmp2
.getValueType().isVector()) {
2968 ExtOp
= ISD::BIT_CONVERT
;
2969 TruncOp
= ISD::BIT_CONVERT
;
2970 } else if (Tmp2
.getValueType().isInteger()) {
2971 ExtOp
= ISD::ANY_EXTEND
;
2972 TruncOp
= ISD::TRUNCATE
;
2974 ExtOp
= ISD::FP_EXTEND
;
2975 TruncOp
= ISD::FP_ROUND
;
2977 // Promote each of the values to the new type.
2978 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Tmp2
);
2979 Tmp3
= DAG
.getNode(ExtOp
, dl
, NVT
, Tmp3
);
2980 // Perform the larger operation, then round down.
2981 Result
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp1
, Tmp2
, Tmp3
);
2982 if (TruncOp
!= ISD::FP_ROUND
)
2983 Result
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Result
);
2985 Result
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Result
,
2986 DAG
.getIntPtrConstant(0));
2991 case ISD::SELECT_CC
: {
2992 Tmp1
= Node
->getOperand(0); // LHS
2993 Tmp2
= Node
->getOperand(1); // RHS
2994 Tmp3
= LegalizeOp(Node
->getOperand(2)); // True
2995 Tmp4
= LegalizeOp(Node
->getOperand(3)); // False
2996 SDValue CC
= Node
->getOperand(4);
2998 LegalizeSetCC(TLI
.getSetCCResultType(Tmp1
.getValueType()),
2999 Tmp1
, Tmp2
, CC
, dl
);
3001 // If we didn't get both a LHS and RHS back from LegalizeSetCC,
3002 // the LHS is a legal SETCC itself. In this case, we need to compare
3003 // the result against zero to select between true and false values.
3004 if (Tmp2
.getNode() == 0) {
3005 Tmp2
= DAG
.getConstant(0, Tmp1
.getValueType());
3006 CC
= DAG
.getCondCode(ISD::SETNE
);
3008 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
, Tmp4
, CC
);
3010 // Everything is legal, see if we should expand this op or something.
3011 switch (TLI
.getOperationAction(ISD::SELECT_CC
, Tmp3
.getValueType())) {
3012 default: assert(0 && "This action is not supported yet!");
3013 case TargetLowering::Legal
: break;
3014 case TargetLowering::Custom
:
3015 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3016 if (Tmp1
.getNode()) Result
= Tmp1
;
3022 Tmp1
= Node
->getOperand(0);
3023 Tmp2
= Node
->getOperand(1);
3024 Tmp3
= Node
->getOperand(2);
3025 LegalizeSetCC(Node
->getValueType(0), Tmp1
, Tmp2
, Tmp3
, dl
);
3027 // If we had to Expand the SetCC operands into a SELECT node, then it may
3028 // not always be possible to return a true LHS & RHS. In this case, just
3029 // return the value we legalized, returned in the LHS
3030 if (Tmp2
.getNode() == 0) {
3035 switch (TLI
.getOperationAction(ISD::SETCC
, Tmp1
.getValueType())) {
3036 default: assert(0 && "Cannot handle this action for SETCC yet!");
3037 case TargetLowering::Custom
:
3040 case TargetLowering::Legal
:
3041 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
3043 Tmp4
= TLI
.LowerOperation(Result
, DAG
);
3044 if (Tmp4
.getNode()) Result
= Tmp4
;
3047 case TargetLowering::Promote
: {
3048 // First step, figure out the appropriate operation to use.
3049 // Allow SETCC to not be supported for all legal data types
3050 // Mostly this targets FP
3051 MVT NewInTy
= Node
->getOperand(0).getValueType();
3052 MVT OldVT
= NewInTy
; OldVT
= OldVT
;
3054 // Scan for the appropriate larger type to use.
3056 NewInTy
= (MVT::SimpleValueType
)(NewInTy
.getSimpleVT()+1);
3058 assert(NewInTy
.isInteger() == OldVT
.isInteger() &&
3059 "Fell off of the edge of the integer world");
3060 assert(NewInTy
.isFloatingPoint() == OldVT
.isFloatingPoint() &&
3061 "Fell off of the edge of the floating point world");
3063 // If the target supports SETCC of this type, use it.
3064 if (TLI
.isOperationLegalOrCustom(ISD::SETCC
, NewInTy
))
3067 if (NewInTy
.isInteger())
3068 assert(0 && "Cannot promote Legal Integer SETCC yet");
3070 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NewInTy
, Tmp1
);
3071 Tmp2
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NewInTy
, Tmp2
);
3073 Tmp1
= LegalizeOp(Tmp1
);
3074 Tmp2
= LegalizeOp(Tmp2
);
3075 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
3076 Result
= LegalizeOp(Result
);
3079 case TargetLowering::Expand
:
3080 // Expand a setcc node into a select_cc of the same condition, lhs, and
3081 // rhs that selects between const 1 (true) and const 0 (false).
3082 MVT VT
= Node
->getValueType(0);
3083 Result
= DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, Tmp1
, Tmp2
,
3084 DAG
.getConstant(1, VT
), DAG
.getConstant(0, VT
),
3090 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3091 Tmp2
= LegalizeOp(Node
->getOperand(1)); // RHS
3092 SDValue CC
= Node
->getOperand(2);
3094 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, CC
);
3096 // Everything is legal, see if we should expand this op or something.
3097 switch (TLI
.getOperationAction(ISD::VSETCC
, Tmp1
.getValueType())) {
3098 default: assert(0 && "This action is not supported yet!");
3099 case TargetLowering::Legal
: break;
3100 case TargetLowering::Custom
:
3101 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3102 if (Tmp1
.getNode()) Result
= Tmp1
;
3104 case TargetLowering::Expand
: {
3105 // Unroll into a nasty set of scalar code for now.
3106 MVT VT
= Node
->getValueType(0);
3107 unsigned NumElems
= VT
.getVectorNumElements();
3108 MVT EltVT
= VT
.getVectorElementType();
3109 MVT TmpEltVT
= Tmp1
.getValueType().getVectorElementType();
3110 SmallVector
<SDValue
, 8> Ops(NumElems
);
3111 for (unsigned i
= 0; i
< NumElems
; ++i
) {
3112 SDValue In1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
,
3113 Tmp1
, DAG
.getIntPtrConstant(i
));
3114 Ops
[i
] = DAG
.getNode(ISD::SETCC
, dl
, TLI
.getSetCCResultType(TmpEltVT
),
3115 In1
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
3117 DAG
.getIntPtrConstant(i
)),
3119 Ops
[i
] = DAG
.getNode(ISD::SELECT
, dl
, EltVT
, Ops
[i
],
3120 DAG
.getConstant(APInt::getAllOnesValue
3121 (EltVT
.getSizeInBits()), EltVT
),
3122 DAG
.getConstant(0, EltVT
));
3124 Result
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &Ops
[0], NumElems
);
3131 case ISD::SHL_PARTS
:
3132 case ISD::SRA_PARTS
:
3133 case ISD::SRL_PARTS
: {
3134 SmallVector
<SDValue
, 8> Ops
;
3135 bool Changed
= false;
3136 unsigned N
= Node
->getNumOperands();
3137 for (unsigned i
= 0; i
+ 1 < N
; ++i
) {
3138 Ops
.push_back(LegalizeOp(Node
->getOperand(i
)));
3139 Changed
|= Ops
.back() != Node
->getOperand(i
);
3141 Ops
.push_back(LegalizeOp(DAG
.getShiftAmountOperand(Node
->getOperand(N
-1))));
3142 Changed
|= Ops
.back() != Node
->getOperand(N
-1);
3144 Result
= DAG
.UpdateNodeOperands(Result
, &Ops
[0], Ops
.size());
3146 switch (TLI
.getOperationAction(Node
->getOpcode(),
3147 Node
->getValueType(0))) {
3148 default: assert(0 && "This action is not supported yet!");
3149 case TargetLowering::Legal
: break;
3150 case TargetLowering::Custom
:
3151 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3152 if (Tmp1
.getNode()) {
3153 SDValue Tmp2
, RetVal(0, 0);
3154 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
) {
3155 Tmp2
= LegalizeOp(Tmp1
.getValue(i
));
3156 AddLegalizedOperand(SDValue(Node
, i
), Tmp2
);
3157 if (i
== Op
.getResNo())
3160 assert(RetVal
.getNode() && "Illegal result number");
3166 // Since these produce multiple values, make sure to remember that we
3167 // legalized all of them.
3168 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
3169 AddLegalizedOperand(SDValue(Node
, i
), Result
.getValue(i
));
3170 return Result
.getValue(Op
.getResNo());
3192 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3193 Tmp2
= LegalizeOp(Node
->getOperand(1)); // RHS
3195 if ((Node
->getOpcode() == ISD::SHL
||
3196 Node
->getOpcode() == ISD::SRL
||
3197 Node
->getOpcode() == ISD::SRA
) &&
3198 !Node
->getValueType(0).isVector())
3199 Tmp2
= DAG
.getShiftAmountOperand(Tmp2
);
3201 switch (getTypeAction(Tmp2
.getValueType())) {
3202 case Expand
: assert(0 && "Not possible");
3204 Tmp2
= LegalizeOp(Tmp2
); // Legalize the RHS.
3207 Tmp2
= PromoteOp(Tmp2
); // Promote the RHS.
3211 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3213 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3214 default: assert(0 && "BinOp legalize operation not supported");
3215 case TargetLowering::Legal
: break;
3216 case TargetLowering::Custom
:
3217 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3218 if (Tmp1
.getNode()) {
3222 // Fall through if the custom lower can't deal with the operation
3223 case TargetLowering::Expand
: {
3224 MVT VT
= Op
.getValueType();
3226 // See if multiply or divide can be lowered using two-result operations.
3227 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3228 if (Node
->getOpcode() == ISD::MUL
) {
3229 // We just need the low half of the multiply; try both the signed
3230 // and unsigned forms. If the target supports both SMUL_LOHI and
3231 // UMUL_LOHI, form a preference by checking which forms of plain
3232 // MULH it supports.
3233 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
);
3234 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
);
3235 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
);
3236 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
);
3237 unsigned OpToUse
= 0;
3238 if (HasSMUL_LOHI
&& !HasMULHS
) {
3239 OpToUse
= ISD::SMUL_LOHI
;
3240 } else if (HasUMUL_LOHI
&& !HasMULHU
) {
3241 OpToUse
= ISD::UMUL_LOHI
;
3242 } else if (HasSMUL_LOHI
) {
3243 OpToUse
= ISD::SMUL_LOHI
;
3244 } else if (HasUMUL_LOHI
) {
3245 OpToUse
= ISD::UMUL_LOHI
;
3248 Result
= SDValue(DAG
.getNode(OpToUse
, dl
, VTs
, Tmp1
, Tmp2
).getNode(),
3253 if (Node
->getOpcode() == ISD::MULHS
&&
3254 TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
)) {
3255 Result
= SDValue(DAG
.getNode(ISD::SMUL_LOHI
, dl
,
3256 VTs
, Tmp1
, Tmp2
).getNode(),
3260 if (Node
->getOpcode() == ISD::MULHU
&&
3261 TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
)) {
3262 Result
= SDValue(DAG
.getNode(ISD::UMUL_LOHI
, dl
,
3263 VTs
, Tmp1
, Tmp2
).getNode(),
3267 if (Node
->getOpcode() == ISD::SDIV
&&
3268 TLI
.isOperationLegalOrCustom(ISD::SDIVREM
, VT
)) {
3269 Result
= SDValue(DAG
.getNode(ISD::SDIVREM
, dl
,
3270 VTs
, Tmp1
, Tmp2
).getNode(),
3274 if (Node
->getOpcode() == ISD::UDIV
&&
3275 TLI
.isOperationLegalOrCustom(ISD::UDIVREM
, VT
)) {
3276 Result
= SDValue(DAG
.getNode(ISD::UDIVREM
, dl
,
3277 VTs
, Tmp1
, Tmp2
).getNode(),
3282 // Check to see if we have a libcall for this operator.
3283 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
3284 bool isSigned
= false;
3285 switch (Node
->getOpcode()) {
3288 if (VT
== MVT::i32
) {
3289 LC
= Node
->getOpcode() == ISD::UDIV
3290 ? RTLIB::UDIV_I32
: RTLIB::SDIV_I32
;
3291 isSigned
= Node
->getOpcode() == ISD::SDIV
;
3296 LC
= RTLIB::MUL_I32
;
3297 else if (VT
== MVT::i64
)
3298 LC
= RTLIB::MUL_I64
;
3301 LC
= GetFPLibCall(VT
, RTLIB::POW_F32
, RTLIB::POW_F64
, RTLIB::POW_F80
,
3302 RTLIB::POW_PPCF128
);
3305 LC
= GetFPLibCall(VT
, RTLIB::DIV_F32
, RTLIB::DIV_F64
, RTLIB::DIV_F80
,
3306 RTLIB::DIV_PPCF128
);
3310 if (LC
!= RTLIB::UNKNOWN_LIBCALL
) {
3312 Result
= ExpandLibCall(LC
, Node
, isSigned
, Dummy
);
3316 assert(Node
->getValueType(0).isVector() &&
3317 "Cannot expand this binary operator!");
3318 // Expand the operation into a bunch of nasty scalar code.
3319 Result
= LegalizeOp(UnrollVectorOp(Op
));
3322 case TargetLowering::Promote
: {
3323 switch (Node
->getOpcode()) {
3324 default: assert(0 && "Do not know how to promote this BinOp!");
3328 MVT OVT
= Node
->getValueType(0);
3329 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
3330 assert(OVT
.isVector() && "Cannot promote this BinOp!");
3331 // Bit convert each of the values to the new type.
3332 Tmp1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Tmp1
);
3333 Tmp2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Tmp2
);
3334 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
3335 // Bit convert the result back the original type.
3336 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, OVT
, Result
);
3344 case ISD::SMUL_LOHI
:
3345 case ISD::UMUL_LOHI
:
3348 // These nodes will only be produced by target-specific lowering, so
3349 // they shouldn't be here if they aren't legal.
3350 assert(TLI
.isOperationLegal(Node
->getOpcode(), Node
->getValueType(0)) &&
3351 "This must be legal!");
3353 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3354 Tmp2
= LegalizeOp(Node
->getOperand(1)); // RHS
3355 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3358 case ISD::FCOPYSIGN
: // FCOPYSIGN does not require LHS/RHS to match type!
3359 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3360 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
3361 case Expand
: assert(0 && "Not possible");
3363 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the RHS.
3366 Tmp2
= PromoteOp(Node
->getOperand(1)); // Promote the RHS.
3370 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3372 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3373 default: assert(0 && "Operation not supported");
3374 case TargetLowering::Custom
:
3375 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3376 if (Tmp1
.getNode()) Result
= Tmp1
;
3378 case TargetLowering::Legal
: break;
3379 case TargetLowering::Expand
: {
3380 // If this target supports fabs/fneg natively and select is cheap,
3381 // do this efficiently.
3382 if (!TLI
.isSelectExpensive() &&
3383 TLI
.getOperationAction(ISD::FABS
, Tmp1
.getValueType()) ==
3384 TargetLowering::Legal
&&
3385 TLI
.getOperationAction(ISD::FNEG
, Tmp1
.getValueType()) ==
3386 TargetLowering::Legal
) {
3387 // Get the sign bit of the RHS.
3389 Tmp2
.getValueType() == MVT::f32
? MVT::i32
: MVT::i64
;
3390 SDValue SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, IVT
, Tmp2
);
3391 SignBit
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(IVT
),
3392 SignBit
, DAG
.getConstant(0, IVT
), ISD::SETLT
);
3393 // Get the absolute value of the result.
3394 SDValue AbsVal
= DAG
.getNode(ISD::FABS
, dl
, Tmp1
.getValueType(), Tmp1
);
3395 // Select between the nabs and abs value based on the sign bit of
3397 Result
= DAG
.getNode(ISD::SELECT
, dl
, AbsVal
.getValueType(), SignBit
,
3398 DAG
.getNode(ISD::FNEG
, dl
, AbsVal
.getValueType(),
3401 Result
= LegalizeOp(Result
);
3405 // Otherwise, do bitwise ops!
3407 Node
->getValueType(0) == MVT::f32
? MVT::i32
: MVT::i64
;
3408 Result
= ExpandFCOPYSIGNToBitwiseOps(Node
, NVT
, DAG
, TLI
);
3409 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Node
->getValueType(0), Result
);
3410 Result
= LegalizeOp(Result
);
3418 Tmp1
= LegalizeOp(Node
->getOperand(0));
3419 Tmp2
= LegalizeOp(Node
->getOperand(1));
3420 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3421 Tmp3
= Result
.getValue(0);
3422 Tmp4
= Result
.getValue(1);
3424 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3425 default: assert(0 && "This action is not supported yet!");
3426 case TargetLowering::Legal
:
3428 case TargetLowering::Custom
:
3429 Tmp1
= TLI
.LowerOperation(Tmp3
, DAG
);
3430 if (Tmp1
.getNode() != NULL
) {
3431 Tmp3
= LegalizeOp(Tmp1
);
3432 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
3436 // Since this produces two values, make sure to remember that we legalized
3438 AddLegalizedOperand(SDValue(Node
, 0), Tmp3
);
3439 AddLegalizedOperand(SDValue(Node
, 1), Tmp4
);
3440 return Op
.getResNo() ? Tmp4
: Tmp3
;
3444 Tmp1
= LegalizeOp(Node
->getOperand(0));
3445 Tmp2
= LegalizeOp(Node
->getOperand(1));
3446 Tmp3
= LegalizeOp(Node
->getOperand(2));
3447 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
);
3448 Tmp3
= Result
.getValue(0);
3449 Tmp4
= Result
.getValue(1);
3451 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3452 default: assert(0 && "This action is not supported yet!");
3453 case TargetLowering::Legal
:
3455 case TargetLowering::Custom
:
3456 Tmp1
= TLI
.LowerOperation(Tmp3
, DAG
);
3457 if (Tmp1
.getNode() != NULL
) {
3458 Tmp3
= LegalizeOp(Tmp1
);
3459 Tmp4
= LegalizeOp(Tmp1
.getValue(1));
3463 // Since this produces two values, make sure to remember that we legalized
3465 AddLegalizedOperand(SDValue(Node
, 0), Tmp3
);
3466 AddLegalizedOperand(SDValue(Node
, 1), Tmp4
);
3467 return Op
.getResNo() ? Tmp4
: Tmp3
;
3469 case ISD::BUILD_PAIR
: {
3470 MVT PairTy
= Node
->getValueType(0);
3471 // TODO: handle the case where the Lo and Hi operands are not of legal type
3472 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Lo
3473 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Hi
3474 switch (TLI
.getOperationAction(ISD::BUILD_PAIR
, PairTy
)) {
3475 case TargetLowering::Promote
:
3476 case TargetLowering::Custom
:
3477 assert(0 && "Cannot promote/custom this yet!");
3478 case TargetLowering::Legal
:
3479 if (Tmp1
!= Node
->getOperand(0) || Tmp2
!= Node
->getOperand(1))
3480 Result
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, PairTy
, Tmp1
, Tmp2
);
3482 case TargetLowering::Expand
:
3483 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, PairTy
, Tmp1
);
3484 Tmp2
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, PairTy
, Tmp2
);
3485 Tmp2
= DAG
.getNode(ISD::SHL
, dl
, PairTy
, Tmp2
,
3486 DAG
.getConstant(PairTy
.getSizeInBits()/2,
3487 TLI
.getShiftAmountTy()));
3488 Result
= DAG
.getNode(ISD::OR
, dl
, PairTy
, Tmp1
, Tmp2
);
3497 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3498 Tmp2
= LegalizeOp(Node
->getOperand(1)); // RHS
3500 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3501 case TargetLowering::Promote
: assert(0 && "Cannot promote this yet!");
3502 case TargetLowering::Custom
:
3505 case TargetLowering::Legal
:
3506 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3508 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3509 if (Tmp1
.getNode()) Result
= Tmp1
;
3512 case TargetLowering::Expand
: {
3513 unsigned DivOpc
= (Node
->getOpcode() == ISD::UREM
) ? ISD::UDIV
: ISD::SDIV
;
3514 bool isSigned
= DivOpc
== ISD::SDIV
;
3515 MVT VT
= Node
->getValueType(0);
3517 // See if remainder can be lowered using two-result operations.
3518 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3519 if (Node
->getOpcode() == ISD::SREM
&&
3520 TLI
.isOperationLegalOrCustom(ISD::SDIVREM
, VT
)) {
3521 Result
= SDValue(DAG
.getNode(ISD::SDIVREM
, dl
,
3522 VTs
, Tmp1
, Tmp2
).getNode(), 1);
3525 if (Node
->getOpcode() == ISD::UREM
&&
3526 TLI
.isOperationLegalOrCustom(ISD::UDIVREM
, VT
)) {
3527 Result
= SDValue(DAG
.getNode(ISD::UDIVREM
, dl
,
3528 VTs
, Tmp1
, Tmp2
).getNode(), 1);
3532 if (VT
.isInteger()) {
3533 if (TLI
.getOperationAction(DivOpc
, VT
) ==
3534 TargetLowering::Legal
) {
3536 Result
= DAG
.getNode(DivOpc
, dl
, VT
, Tmp1
, Tmp2
);
3537 Result
= DAG
.getNode(ISD::MUL
, dl
, VT
, Result
, Tmp2
);
3538 Result
= DAG
.getNode(ISD::SUB
, dl
, VT
, Tmp1
, Result
);
3539 } else if (VT
.isVector()) {
3540 Result
= LegalizeOp(UnrollVectorOp(Op
));
3542 assert(VT
== MVT::i32
&&
3543 "Cannot expand this binary operator!");
3544 RTLIB::Libcall LC
= Node
->getOpcode() == ISD::UREM
3545 ? RTLIB::UREM_I32
: RTLIB::SREM_I32
;
3547 Result
= ExpandLibCall(LC
, Node
, isSigned
, Dummy
);
3550 assert(VT
.isFloatingPoint() &&
3551 "remainder op must have integer or floating-point type");
3552 if (VT
.isVector()) {
3553 Result
= LegalizeOp(UnrollVectorOp(Op
));
3555 // Floating point mod -> fmod libcall.
3556 RTLIB::Libcall LC
= GetFPLibCall(VT
, RTLIB::REM_F32
, RTLIB::REM_F64
,
3557 RTLIB::REM_F80
, RTLIB::REM_PPCF128
);
3559 Result
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Dummy
);
3567 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
3568 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the pointer.
3570 MVT VT
= Node
->getValueType(0);
3571 switch (TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
)) {
3572 default: assert(0 && "This action is not supported yet!");
3573 case TargetLowering::Custom
:
3576 case TargetLowering::Legal
:
3577 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
3578 Result
= Result
.getValue(0);
3579 Tmp1
= Result
.getValue(1);
3582 Tmp2
= TLI
.LowerOperation(Result
, DAG
);
3583 if (Tmp2
.getNode()) {
3584 Result
= LegalizeOp(Tmp2
);
3585 Tmp1
= LegalizeOp(Tmp2
.getValue(1));
3589 case TargetLowering::Expand
: {
3590 const Value
*V
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
3591 SDValue VAList
= DAG
.getLoad(TLI
.getPointerTy(), dl
, Tmp1
, Tmp2
, V
, 0);
3592 // Increment the pointer, VAList, to the next vaarg
3593 Tmp3
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), VAList
,
3594 DAG
.getConstant(TLI
.getTargetData()->
3595 getTypePaddedSize(VT
.getTypeForMVT()),
3596 TLI
.getPointerTy()));
3597 // Store the incremented VAList to the legalized pointer
3598 Tmp3
= DAG
.getStore(VAList
.getValue(1), dl
, Tmp3
, Tmp2
, V
, 0);
3599 // Load the actual argument out of the pointer VAList
3600 Result
= DAG
.getLoad(VT
, dl
, Tmp3
, VAList
, NULL
, 0);
3601 Tmp1
= LegalizeOp(Result
.getValue(1));
3602 Result
= LegalizeOp(Result
);
3606 // Since VAARG produces two values, make sure to remember that we
3607 // legalized both of them.
3608 AddLegalizedOperand(SDValue(Node
, 0), Result
);
3609 AddLegalizedOperand(SDValue(Node
, 1), Tmp1
);
3610 return Op
.getResNo() ? Tmp1
: Result
;
3614 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
3615 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the dest pointer.
3616 Tmp3
= LegalizeOp(Node
->getOperand(2)); // Legalize the source pointer.
3618 switch (TLI
.getOperationAction(ISD::VACOPY
, MVT::Other
)) {
3619 default: assert(0 && "This action is not supported yet!");
3620 case TargetLowering::Custom
:
3623 case TargetLowering::Legal
:
3624 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Tmp3
,
3625 Node
->getOperand(3), Node
->getOperand(4));
3627 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3628 if (Tmp1
.getNode()) Result
= Tmp1
;
3631 case TargetLowering::Expand
:
3632 // This defaults to loading a pointer from the input and storing it to the
3633 // output, returning the chain.
3634 const Value
*VD
= cast
<SrcValueSDNode
>(Node
->getOperand(3))->getValue();
3635 const Value
*VS
= cast
<SrcValueSDNode
>(Node
->getOperand(4))->getValue();
3636 Tmp4
= DAG
.getLoad(TLI
.getPointerTy(), dl
, Tmp1
, Tmp3
, VS
, 0);
3637 Result
= DAG
.getStore(Tmp4
.getValue(1), dl
, Tmp4
, Tmp2
, VD
, 0);
3643 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
3644 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the pointer.
3646 switch (TLI
.getOperationAction(ISD::VAEND
, MVT::Other
)) {
3647 default: assert(0 && "This action is not supported yet!");
3648 case TargetLowering::Custom
:
3651 case TargetLowering::Legal
:
3652 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
3654 Tmp1
= TLI
.LowerOperation(Tmp1
, DAG
);
3655 if (Tmp1
.getNode()) Result
= Tmp1
;
3658 case TargetLowering::Expand
:
3659 Result
= Tmp1
; // Default to a no-op, return the chain
3665 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Legalize the chain.
3666 Tmp2
= LegalizeOp(Node
->getOperand(1)); // Legalize the pointer.
3668 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
, Node
->getOperand(2));
3670 switch (TLI
.getOperationAction(ISD::VASTART
, MVT::Other
)) {
3671 default: assert(0 && "This action is not supported yet!");
3672 case TargetLowering::Legal
: break;
3673 case TargetLowering::Custom
:
3674 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3675 if (Tmp1
.getNode()) Result
= Tmp1
;
3682 Tmp1
= LegalizeOp(Node
->getOperand(0)); // LHS
3683 Tmp2
= LegalizeOp(DAG
.getShiftAmountOperand(Node
->getOperand(1))); // RHS
3684 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Tmp2
);
3685 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3687 assert(0 && "ROTL/ROTR legalize operation not supported");
3689 case TargetLowering::Legal
:
3691 case TargetLowering::Custom
:
3692 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3693 if (Tmp1
.getNode()) Result
= Tmp1
;
3695 case TargetLowering::Promote
:
3696 assert(0 && "Do not know how to promote ROTL/ROTR");
3698 case TargetLowering::Expand
:
3699 assert(0 && "Do not know how to expand ROTL/ROTR");
3705 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Op
3706 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3707 case TargetLowering::Custom
:
3708 assert(0 && "Cannot custom legalize this yet!");
3709 case TargetLowering::Legal
:
3710 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
3712 case TargetLowering::Promote
: {
3713 MVT OVT
= Tmp1
.getValueType();
3714 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
3715 unsigned DiffBits
= NVT
.getSizeInBits() - OVT
.getSizeInBits();
3717 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Tmp1
);
3718 Tmp1
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Tmp1
);
3719 Result
= DAG
.getNode(ISD::SRL
, dl
, NVT
, Tmp1
,
3720 DAG
.getConstant(DiffBits
, TLI
.getShiftAmountTy()));
3723 case TargetLowering::Expand
:
3724 Result
= ExpandBSWAP(Tmp1
, dl
);
3732 Tmp1
= LegalizeOp(Node
->getOperand(0)); // Op
3733 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3734 case TargetLowering::Custom
:
3735 case TargetLowering::Legal
:
3736 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
3737 if (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0)) ==
3738 TargetLowering::Custom
) {
3739 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3740 if (Tmp1
.getNode()) {
3745 case TargetLowering::Promote
: {
3746 MVT OVT
= Tmp1
.getValueType();
3747 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
3749 // Zero extend the argument.
3750 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Tmp1
);
3751 // Perform the larger operation, then subtract if needed.
3752 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, Node
->getValueType(0), Tmp1
);
3753 switch (Node
->getOpcode()) {
3758 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3759 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Tmp1
.getValueType()),
3760 Tmp1
, DAG
.getConstant(NVT
.getSizeInBits(), NVT
),
3762 Result
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp2
,
3763 DAG
.getConstant(OVT
.getSizeInBits(), NVT
), Tmp1
);
3766 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3767 Result
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Tmp1
,
3768 DAG
.getConstant(NVT
.getSizeInBits() -
3769 OVT
.getSizeInBits(), NVT
));
3774 case TargetLowering::Expand
:
3775 Result
= ExpandBitCount(Node
->getOpcode(), Tmp1
, dl
);
3795 case ISD::FNEARBYINT
:
3796 Tmp1
= LegalizeOp(Node
->getOperand(0));
3797 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
3798 case TargetLowering::Promote
:
3799 case TargetLowering::Custom
:
3802 case TargetLowering::Legal
:
3803 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
3805 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
3806 if (Tmp1
.getNode()) Result
= Tmp1
;
3809 case TargetLowering::Expand
:
3810 switch (Node
->getOpcode()) {
3811 default: assert(0 && "Unreachable!");
3813 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3814 Tmp2
= DAG
.getConstantFP(-0.0, Node
->getValueType(0));
3815 Result
= DAG
.getNode(ISD::FSUB
, dl
, Node
->getValueType(0), Tmp2
, Tmp1
);
3818 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3819 MVT VT
= Node
->getValueType(0);
3820 Tmp2
= DAG
.getConstantFP(0.0, VT
);
3821 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Tmp1
.getValueType()),
3822 Tmp1
, Tmp2
, ISD::SETUGT
);
3823 Tmp3
= DAG
.getNode(ISD::FNEG
, dl
, VT
, Tmp1
);
3824 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, Tmp2
, Tmp1
, Tmp3
);
3839 case ISD::FNEARBYINT
: {
3840 MVT VT
= Node
->getValueType(0);
3842 // Expand unsupported unary vector operators by unrolling them.
3843 if (VT
.isVector()) {
3844 Result
= LegalizeOp(UnrollVectorOp(Op
));
3848 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
3849 switch(Node
->getOpcode()) {
3851 LC
= GetFPLibCall(VT
, RTLIB::SQRT_F32
, RTLIB::SQRT_F64
,
3852 RTLIB::SQRT_F80
, RTLIB::SQRT_PPCF128
);
3855 LC
= GetFPLibCall(VT
, RTLIB::SIN_F32
, RTLIB::SIN_F64
,
3856 RTLIB::SIN_F80
, RTLIB::SIN_PPCF128
);
3859 LC
= GetFPLibCall(VT
, RTLIB::COS_F32
, RTLIB::COS_F64
,
3860 RTLIB::COS_F80
, RTLIB::COS_PPCF128
);
3863 LC
= GetFPLibCall(VT
, RTLIB::LOG_F32
, RTLIB::LOG_F64
,
3864 RTLIB::LOG_F80
, RTLIB::LOG_PPCF128
);
3867 LC
= GetFPLibCall(VT
, RTLIB::LOG2_F32
, RTLIB::LOG2_F64
,
3868 RTLIB::LOG2_F80
, RTLIB::LOG2_PPCF128
);
3871 LC
= GetFPLibCall(VT
, RTLIB::LOG10_F32
, RTLIB::LOG10_F64
,
3872 RTLIB::LOG10_F80
, RTLIB::LOG10_PPCF128
);
3875 LC
= GetFPLibCall(VT
, RTLIB::EXP_F32
, RTLIB::EXP_F64
,
3876 RTLIB::EXP_F80
, RTLIB::EXP_PPCF128
);
3879 LC
= GetFPLibCall(VT
, RTLIB::EXP2_F32
, RTLIB::EXP2_F64
,
3880 RTLIB::EXP2_F80
, RTLIB::EXP2_PPCF128
);
3883 LC
= GetFPLibCall(VT
, RTLIB::TRUNC_F32
, RTLIB::TRUNC_F64
,
3884 RTLIB::TRUNC_F80
, RTLIB::TRUNC_PPCF128
);
3887 LC
= GetFPLibCall(VT
, RTLIB::FLOOR_F32
, RTLIB::FLOOR_F64
,
3888 RTLIB::FLOOR_F80
, RTLIB::FLOOR_PPCF128
);
3891 LC
= GetFPLibCall(VT
, RTLIB::CEIL_F32
, RTLIB::CEIL_F64
,
3892 RTLIB::CEIL_F80
, RTLIB::CEIL_PPCF128
);
3895 LC
= GetFPLibCall(VT
, RTLIB::RINT_F32
, RTLIB::RINT_F64
,
3896 RTLIB::RINT_F80
, RTLIB::RINT_PPCF128
);
3898 case ISD::FNEARBYINT
:
3899 LC
= GetFPLibCall(VT
, RTLIB::NEARBYINT_F32
, RTLIB::NEARBYINT_F64
,
3900 RTLIB::NEARBYINT_F80
, RTLIB::NEARBYINT_PPCF128
);
3903 default: assert(0 && "Unreachable!");
3906 Result
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Dummy
);
3914 MVT VT
= Node
->getValueType(0);
3916 // Expand unsupported unary vector operators by unrolling them.
3917 if (VT
.isVector()) {
3918 Result
= LegalizeOp(UnrollVectorOp(Op
));
3922 // We always lower FPOWI into a libcall. No target support for it yet.
3923 RTLIB::Libcall LC
= GetFPLibCall(VT
, RTLIB::POWI_F32
, RTLIB::POWI_F64
,
3924 RTLIB::POWI_F80
, RTLIB::POWI_PPCF128
);
3926 Result
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Dummy
);
3929 case ISD::BIT_CONVERT
:
3930 if (!isTypeLegal(Node
->getOperand(0).getValueType())) {
3931 Result
= EmitStackConvert(Node
->getOperand(0), Node
->getValueType(0),
3932 Node
->getValueType(0), dl
);
3933 } else if (Op
.getOperand(0).getValueType().isVector()) {
3934 // The input has to be a vector type, we have to either scalarize it, pack
3935 // it, or convert it based on whether the input vector type is legal.
3936 SDNode
*InVal
= Node
->getOperand(0).getNode();
3937 int InIx
= Node
->getOperand(0).getResNo();
3938 unsigned NumElems
= InVal
->getValueType(InIx
).getVectorNumElements();
3939 MVT EVT
= InVal
->getValueType(InIx
).getVectorElementType();
3941 // Figure out if there is a simple type corresponding to this Vector
3942 // type. If so, convert to the vector type.
3943 MVT TVT
= MVT::getVectorVT(EVT
, NumElems
);
3944 if (TLI
.isTypeLegal(TVT
)) {
3945 // Turn this into a bit convert of the vector input.
3946 Tmp1
= LegalizeOp(Node
->getOperand(0));
3947 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Node
->getValueType(0), Tmp1
);
3949 } else if (NumElems
== 1) {
3950 // Turn this into a bit convert of the scalar input.
3951 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, Node
->getValueType(0),
3952 ScalarizeVectorOp(Node
->getOperand(0)));
3955 // FIXME: UNIMP! Store then reload
3956 assert(0 && "Cast from unsupported vector type not implemented yet!");
3959 switch (TLI
.getOperationAction(ISD::BIT_CONVERT
,
3960 Node
->getOperand(0).getValueType())) {
3961 default: assert(0 && "Unknown operation action!");
3962 case TargetLowering::Expand
:
3963 Result
= EmitStackConvert(Node
->getOperand(0), Node
->getValueType(0),
3964 Node
->getValueType(0), dl
);
3966 case TargetLowering::Legal
:
3967 Tmp1
= LegalizeOp(Node
->getOperand(0));
3968 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
3973 case ISD::CONVERT_RNDSAT
: {
3974 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(Node
)->getCvtCode();
3976 default: assert(0 && "Unknown cvt code!");
3987 SDValue DTyOp
= Node
->getOperand(1);
3988 SDValue STyOp
= Node
->getOperand(2);
3989 SDValue RndOp
= Node
->getOperand(3);
3990 SDValue SatOp
= Node
->getOperand(4);
3991 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
3992 case Expand
: assert(0 && "Shouldn't need to expand other operators here!");
3994 Tmp1
= LegalizeOp(Node
->getOperand(0));
3995 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, DTyOp
, STyOp
,
3997 if (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0)) ==
3998 TargetLowering::Custom
) {
3999 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
4000 if (Tmp1
.getNode()) Result
= Tmp1
;
4004 Result
= PromoteOp(Node
->getOperand(0));
4005 // For FP, make Op1 a i32
4007 Result
= DAG
.getConvertRndSat(Op
.getValueType(), dl
, Result
,
4008 DTyOp
, STyOp
, RndOp
, SatOp
, CvtCode
);
4013 } // end switch CvtCode
4016 // Conversion operators. The source and destination have different types.
4017 case ISD::SINT_TO_FP
:
4018 case ISD::UINT_TO_FP
: {
4019 bool isSigned
= Node
->getOpcode() == ISD::SINT_TO_FP
;
4020 Result
= LegalizeINT_TO_FP(Result
, isSigned
,
4021 Node
->getValueType(0), Node
->getOperand(0), dl
);
4025 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4027 Tmp1
= LegalizeOp(Node
->getOperand(0));
4028 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))) {
4029 default: assert(0 && "Unknown TRUNCATE legalization operation action!");
4030 case TargetLowering::Custom
:
4033 case TargetLowering::Legal
:
4034 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4036 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
4037 if (Tmp1
.getNode()) Result
= Tmp1
;
4040 case TargetLowering::Expand
:
4041 assert(Result
.getValueType().isVector() && "must be vector type");
4042 // Unroll the truncate. We should do better.
4043 Result
= LegalizeOp(UnrollVectorOp(Result
));
4047 ExpandOp(Node
->getOperand(0), Tmp1
, Tmp2
);
4049 // Since the result is legal, we should just be able to truncate the low
4050 // part of the source.
4051 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), Tmp1
);
4054 Result
= PromoteOp(Node
->getOperand(0));
4055 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, Op
.getValueType(), Result
);
4060 case ISD::FP_TO_SINT
:
4061 case ISD::FP_TO_UINT
:
4062 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4064 Tmp1
= LegalizeOp(Node
->getOperand(0));
4066 switch (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0))){
4067 default: assert(0 && "Unknown operation action!");
4068 case TargetLowering::Custom
:
4071 case TargetLowering::Legal
:
4072 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4074 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
4075 if (Tmp1
.getNode()) Result
= Tmp1
;
4078 case TargetLowering::Promote
:
4079 Result
= PromoteLegalFP_TO_INT(Tmp1
, Node
->getValueType(0),
4080 Node
->getOpcode() == ISD::FP_TO_SINT
,
4083 case TargetLowering::Expand
:
4084 if (Node
->getOpcode() == ISD::FP_TO_UINT
) {
4085 SDValue True
, False
;
4086 MVT VT
= Node
->getOperand(0).getValueType();
4087 MVT NVT
= Node
->getValueType(0);
4088 const uint64_t zero
[] = {0, 0};
4089 APFloat apf
= APFloat(APInt(VT
.getSizeInBits(), 2, zero
));
4090 APInt x
= APInt::getSignBit(NVT
.getSizeInBits());
4091 (void)apf
.convertFromAPInt(x
, false, APFloat::rmNearestTiesToEven
);
4092 Tmp2
= DAG
.getConstantFP(apf
, VT
);
4093 Tmp3
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(VT
),
4094 Node
->getOperand(0),
4096 True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, NVT
, Node
->getOperand(0));
4097 False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, NVT
,
4098 DAG
.getNode(ISD::FSUB
, dl
, VT
,
4099 Node
->getOperand(0), Tmp2
));
4100 False
= DAG
.getNode(ISD::XOR
, dl
, NVT
, False
,
4101 DAG
.getConstant(x
, NVT
));
4102 Result
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp3
, True
, False
);
4105 assert(0 && "Do not know how to expand FP_TO_SINT yet!");
4111 MVT VT
= Op
.getValueType();
4112 MVT OVT
= Node
->getOperand(0).getValueType();
4113 // Convert ppcf128 to i32
4114 if (OVT
== MVT::ppcf128
&& VT
== MVT::i32
) {
4115 if (Node
->getOpcode() == ISD::FP_TO_SINT
) {
4116 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, MVT::ppcf128
,
4117 Node
->getOperand(0), DAG
.getValueType(MVT::f64
));
4118 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f64
, Result
,
4119 DAG
.getIntPtrConstant(1));
4120 Result
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
, Result
);
4122 const uint64_t TwoE31
[] = {0x41e0000000000000LL
, 0};
4123 APFloat apf
= APFloat(APInt(128, 2, TwoE31
));
4124 Tmp2
= DAG
.getConstantFP(apf
, OVT
);
4125 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
4126 // FIXME: generated code sucks.
4127 Result
= DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, Node
->getOperand(0),
4129 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
4130 DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
,
4131 DAG
.getNode(ISD::FSUB
, dl
, OVT
,
4132 Node
->getOperand(0), Tmp2
)),
4133 DAG
.getConstant(0x80000000, MVT::i32
)),
4134 DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
,
4135 Node
->getOperand(0)),
4136 DAG
.getCondCode(ISD::SETGE
));
4140 // Convert f32 / f64 to i32 / i64 / i128.
4141 RTLIB::Libcall LC
= (Node
->getOpcode() == ISD::FP_TO_SINT
) ?
4142 RTLIB::getFPTOSINT(OVT
, VT
) : RTLIB::getFPTOUINT(OVT
, VT
);
4143 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpectd fp-to-int conversion!");
4145 Result
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Dummy
);
4149 Tmp1
= PromoteOp(Node
->getOperand(0));
4150 Result
= DAG
.UpdateNodeOperands(Result
, LegalizeOp(Tmp1
));
4151 Result
= LegalizeOp(Result
);
4156 case ISD::FP_EXTEND
: {
4157 MVT DstVT
= Op
.getValueType();
4158 MVT SrcVT
= Op
.getOperand(0).getValueType();
4159 if (TLI
.getConvertAction(SrcVT
, DstVT
) == TargetLowering::Expand
) {
4160 // The only other way we can lower this is to turn it into a STORE,
4161 // LOAD pair, targetting a temporary location (a stack slot).
4162 Result
= EmitStackConvert(Node
->getOperand(0), SrcVT
, DstVT
, dl
);
4165 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4166 case Expand
: assert(0 && "Shouldn't need to expand other operators here!");
4168 Tmp1
= LegalizeOp(Node
->getOperand(0));
4169 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4172 Tmp1
= PromoteOp(Node
->getOperand(0));
4173 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, Op
.getValueType(), Tmp1
);
4178 case ISD::FP_ROUND
: {
4179 MVT DstVT
= Op
.getValueType();
4180 MVT SrcVT
= Op
.getOperand(0).getValueType();
4181 if (TLI
.getConvertAction(SrcVT
, DstVT
) == TargetLowering::Expand
) {
4182 if (SrcVT
== MVT::ppcf128
) {
4184 ExpandOp(Node
->getOperand(0), Lo
, Result
);
4185 // Round it the rest of the way (e.g. to f32) if needed.
4186 if (DstVT
!=MVT::f64
)
4187 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
,
4188 DstVT
, Result
, Op
.getOperand(1));
4191 // The only other way we can lower this is to turn it into a STORE,
4192 // LOAD pair, targetting a temporary location (a stack slot).
4193 Result
= EmitStackConvert(Node
->getOperand(0), DstVT
, DstVT
, dl
);
4196 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4197 case Expand
: assert(0 && "Shouldn't need to expand other operators here!");
4199 Tmp1
= LegalizeOp(Node
->getOperand(0));
4200 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
4203 Tmp1
= PromoteOp(Node
->getOperand(0));
4204 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, Op
.getValueType(), Tmp1
,
4205 Node
->getOperand(1));
4210 case ISD::ANY_EXTEND
:
4211 case ISD::ZERO_EXTEND
:
4212 case ISD::SIGN_EXTEND
:
4213 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4214 case Expand
: assert(0 && "Shouldn't need to expand other operators here!");
4216 Tmp1
= LegalizeOp(Node
->getOperand(0));
4217 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4218 if (TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0)) ==
4219 TargetLowering::Custom
) {
4220 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
4221 if (Tmp1
.getNode()) Result
= Tmp1
;
4225 switch (Node
->getOpcode()) {
4226 case ISD::ANY_EXTEND
:
4227 Tmp1
= PromoteOp(Node
->getOperand(0));
4228 Result
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), Tmp1
);
4230 case ISD::ZERO_EXTEND
:
4231 Result
= PromoteOp(Node
->getOperand(0));
4232 Result
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), Result
);
4233 Result
= DAG
.getZeroExtendInReg(Result
, dl
,
4234 Node
->getOperand(0).getValueType());
4236 case ISD::SIGN_EXTEND
:
4237 Result
= PromoteOp(Node
->getOperand(0));
4238 Result
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), Result
);
4239 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Result
.getValueType(),
4241 DAG
.getValueType(Node
->getOperand(0).getValueType()));
4246 case ISD::FP_ROUND_INREG
:
4247 case ISD::SIGN_EXTEND_INREG
: {
4248 Tmp1
= LegalizeOp(Node
->getOperand(0));
4249 MVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
4251 // If this operation is not supported, convert it to a shl/shr or load/store
4253 switch (TLI
.getOperationAction(Node
->getOpcode(), ExtraVT
)) {
4254 default: assert(0 && "This action not supported for this op yet!");
4255 case TargetLowering::Legal
:
4256 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
, Node
->getOperand(1));
4258 case TargetLowering::Expand
:
4259 // If this is an integer extend and shifts are supported, do that.
4260 if (Node
->getOpcode() == ISD::SIGN_EXTEND_INREG
) {
4261 // NOTE: we could fall back on load/store here too for targets without
4262 // SAR. However, it is doubtful that any exist.
4263 unsigned BitsDiff
= Node
->getValueType(0).getSizeInBits() -
4264 ExtraVT
.getSizeInBits();
4265 SDValue ShiftCst
= DAG
.getConstant(BitsDiff
, TLI
.getShiftAmountTy());
4266 Result
= DAG
.getNode(ISD::SHL
, dl
, Node
->getValueType(0),
4267 Node
->getOperand(0), ShiftCst
);
4268 Result
= DAG
.getNode(ISD::SRA
, dl
, Node
->getValueType(0),
4270 } else if (Node
->getOpcode() == ISD::FP_ROUND_INREG
) {
4271 // The only way we can lower this is to turn it into a TRUNCSTORE,
4272 // EXTLOAD pair, targetting a temporary location (a stack slot).
4274 // NOTE: there is a choice here between constantly creating new stack
4275 // slots and always reusing the same one. We currently always create
4276 // new ones, as reuse may inhibit scheduling.
4277 Result
= EmitStackConvert(Node
->getOperand(0), ExtraVT
,
4278 Node
->getValueType(0), dl
);
4280 assert(0 && "Unknown op");
4286 case ISD::TRAMPOLINE
: {
4288 for (unsigned i
= 0; i
!= 6; ++i
)
4289 Ops
[i
] = LegalizeOp(Node
->getOperand(i
));
4290 Result
= DAG
.UpdateNodeOperands(Result
, Ops
, 6);
4291 // The only option for this node is to custom lower it.
4292 Result
= TLI
.LowerOperation(Result
, DAG
);
4293 assert(Result
.getNode() && "Should always custom lower!");
4295 // Since trampoline produces two values, make sure to remember that we
4296 // legalized both of them.
4297 Tmp1
= LegalizeOp(Result
.getValue(1));
4298 Result
= LegalizeOp(Result
);
4299 AddLegalizedOperand(SDValue(Node
, 0), Result
);
4300 AddLegalizedOperand(SDValue(Node
, 1), Tmp1
);
4301 return Op
.getResNo() ? Tmp1
: Result
;
4303 case ISD::FLT_ROUNDS_
: {
4304 MVT VT
= Node
->getValueType(0);
4305 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4306 default: assert(0 && "This action not supported for this op yet!");
4307 case TargetLowering::Custom
:
4308 Result
= TLI
.LowerOperation(Op
, DAG
);
4309 if (Result
.getNode()) break;
4311 case TargetLowering::Legal
:
4312 // If this operation is not supported, lower it to constant 1
4313 Result
= DAG
.getConstant(1, VT
);
4319 MVT VT
= Node
->getValueType(0);
4320 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4321 default: assert(0 && "This action not supported for this op yet!");
4322 case TargetLowering::Legal
:
4323 Tmp1
= LegalizeOp(Node
->getOperand(0));
4324 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
4326 case TargetLowering::Custom
:
4327 Result
= TLI
.LowerOperation(Op
, DAG
);
4328 if (Result
.getNode()) break;
4330 case TargetLowering::Expand
:
4331 // If this operation is not supported, lower it to 'abort()' call
4332 Tmp1
= LegalizeOp(Node
->getOperand(0));
4333 TargetLowering::ArgListTy Args
;
4334 std::pair
<SDValue
, SDValue
> CallResult
=
4335 TLI
.LowerCallTo(Tmp1
, Type::VoidTy
,
4336 false, false, false, false, CallingConv::C
, false,
4337 DAG
.getExternalSymbol("abort", TLI
.getPointerTy()),
4339 Result
= CallResult
.second
;
4347 MVT VT
= Node
->getValueType(0);
4348 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4349 default: assert(0 && "This action not supported for this op yet!");
4350 case TargetLowering::Custom
:
4351 Result
= TLI
.LowerOperation(Op
, DAG
);
4352 if (Result
.getNode()) break;
4354 case TargetLowering::Legal
: {
4355 SDValue LHS
= LegalizeOp(Node
->getOperand(0));
4356 SDValue RHS
= LegalizeOp(Node
->getOperand(1));
4358 SDValue Sum
= DAG
.getNode(Node
->getOpcode() == ISD::SADDO
?
4359 ISD::ADD
: ISD::SUB
, dl
, LHS
.getValueType(),
4361 MVT OType
= Node
->getValueType(1);
4363 SDValue Zero
= DAG
.getConstant(0, LHS
.getValueType());
4365 // LHSSign -> LHS >= 0
4366 // RHSSign -> RHS >= 0
4367 // SumSign -> Sum >= 0
4370 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
4372 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
4374 SDValue LHSSign
= DAG
.getSetCC(dl
, OType
, LHS
, Zero
, ISD::SETGE
);
4375 SDValue RHSSign
= DAG
.getSetCC(dl
, OType
, RHS
, Zero
, ISD::SETGE
);
4376 SDValue SignsMatch
= DAG
.getSetCC(dl
, OType
, LHSSign
, RHSSign
,
4377 Node
->getOpcode() == ISD::SADDO
?
4378 ISD::SETEQ
: ISD::SETNE
);
4380 SDValue SumSign
= DAG
.getSetCC(dl
, OType
, Sum
, Zero
, ISD::SETGE
);
4381 SDValue SumSignNE
= DAG
.getSetCC(dl
, OType
, LHSSign
, SumSign
, ISD::SETNE
);
4383 SDValue Cmp
= DAG
.getNode(ISD::AND
, dl
, OType
, SignsMatch
, SumSignNE
);
4385 MVT ValueVTs
[] = { LHS
.getValueType(), OType
};
4386 SDValue Ops
[] = { Sum
, Cmp
};
4388 Result
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4389 DAG
.getVTList(&ValueVTs
[0], 2),
4391 SDNode
*RNode
= Result
.getNode();
4392 DAG
.ReplaceAllUsesWith(Node
, RNode
);
4401 MVT VT
= Node
->getValueType(0);
4402 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4403 default: assert(0 && "This action not supported for this op yet!");
4404 case TargetLowering::Custom
:
4405 Result
= TLI
.LowerOperation(Op
, DAG
);
4406 if (Result
.getNode()) break;
4408 case TargetLowering::Legal
: {
4409 SDValue LHS
= LegalizeOp(Node
->getOperand(0));
4410 SDValue RHS
= LegalizeOp(Node
->getOperand(1));
4412 SDValue Sum
= DAG
.getNode(Node
->getOpcode() == ISD::UADDO
?
4413 ISD::ADD
: ISD::SUB
, dl
, LHS
.getValueType(),
4415 MVT OType
= Node
->getValueType(1);
4416 SDValue Cmp
= DAG
.getSetCC(dl
, OType
, Sum
, LHS
,
4417 Node
->getOpcode () == ISD::UADDO
?
4418 ISD::SETULT
: ISD::SETUGT
);
4420 MVT ValueVTs
[] = { LHS
.getValueType(), OType
};
4421 SDValue Ops
[] = { Sum
, Cmp
};
4423 Result
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4424 DAG
.getVTList(&ValueVTs
[0], 2),
4426 SDNode
*RNode
= Result
.getNode();
4427 DAG
.ReplaceAllUsesWith(Node
, RNode
);
4436 MVT VT
= Node
->getValueType(0);
4437 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
4438 default: assert(0 && "This action is not supported at all!");
4439 case TargetLowering::Custom
:
4440 Result
= TLI
.LowerOperation(Op
, DAG
);
4441 if (Result
.getNode()) break;
4443 case TargetLowering::Legal
:
4444 // FIXME: According to Hacker's Delight, this can be implemented in
4445 // target independent lowering, but it would be inefficient, since it
4446 // requires a division + a branch.
4447 assert(0 && "Target independent lowering is not supported for SMULO/UMULO!");
4455 assert(Result
.getValueType() == Op
.getValueType() &&
4456 "Bad legalization!");
4458 // Make sure that the generated code is itself legal.
4460 Result
= LegalizeOp(Result
);
4462 // Note that LegalizeOp may be reentered even from single-use nodes, which
4463 // means that we always must cache transformed nodes.
4464 AddLegalizedOperand(Op
, Result
);
4468 /// PromoteOp - Given an operation that produces a value in an invalid type,
4469 /// promote it to compute the value into a larger type. The produced value will
4470 /// have the correct bits for the low portion of the register, but no guarantee
4471 /// is made about the top bits: it may be zero, sign-extended, or garbage.
4472 SDValue
SelectionDAGLegalize::PromoteOp(SDValue Op
) {
4473 MVT VT
= Op
.getValueType();
4474 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
4475 assert(getTypeAction(VT
) == Promote
&&
4476 "Caller should expand or legalize operands that are not promotable!");
4477 assert(NVT
.bitsGT(VT
) && NVT
.isInteger() == VT
.isInteger() &&
4478 "Cannot promote to smaller type!");
4480 SDValue Tmp1
, Tmp2
, Tmp3
;
4482 SDNode
*Node
= Op
.getNode();
4483 DebugLoc dl
= Node
->getDebugLoc();
4485 DenseMap
<SDValue
, SDValue
>::iterator I
= PromotedNodes
.find(Op
);
4486 if (I
!= PromotedNodes
.end()) return I
->second
;
4488 switch (Node
->getOpcode()) {
4489 case ISD::CopyFromReg
:
4490 assert(0 && "CopyFromReg must be legal!");
4493 cerr
<< "NODE: "; Node
->dump(&DAG
); cerr
<< "\n";
4495 assert(0 && "Do not know how to promote this operator!");
4498 Result
= DAG
.getUNDEF(NVT
);
4502 Result
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, NVT
, Op
);
4504 Result
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Op
);
4505 assert(isa
<ConstantSDNode
>(Result
) && "Didn't constant fold zext?");
4507 case ISD::ConstantFP
:
4508 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Op
);
4509 assert(isa
<ConstantFPSDNode
>(Result
) && "Didn't constant fold fp_extend?");
4513 MVT VT0
= Node
->getOperand(0).getValueType();
4514 assert(isTypeLegal(TLI
.getSetCCResultType(VT0
))
4515 && "SetCC type is not legal??");
4516 Result
= DAG
.getNode(ISD::SETCC
, dl
, TLI
.getSetCCResultType(VT0
),
4517 Node
->getOperand(0), Node
->getOperand(1),
4518 Node
->getOperand(2));
4522 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4524 Result
= LegalizeOp(Node
->getOperand(0));
4525 assert(Result
.getValueType().bitsGE(NVT
) &&
4526 "This truncation doesn't make sense!");
4527 if (Result
.getValueType().bitsGT(NVT
)) // Truncate to NVT instead of VT
4528 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, Result
);
4531 // The truncation is not required, because we don't guarantee anything
4532 // about high bits anyway.
4533 Result
= PromoteOp(Node
->getOperand(0));
4536 ExpandOp(Node
->getOperand(0), Tmp1
, Tmp2
);
4537 // Truncate the low part of the expanded value to the result type
4538 Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, NVT
, Tmp1
);
4541 case ISD::SIGN_EXTEND
:
4542 case ISD::ZERO_EXTEND
:
4543 case ISD::ANY_EXTEND
:
4544 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4545 case Expand
: assert(0 && "BUG: Smaller reg should have been promoted!");
4547 // Input is legal? Just do extend all the way to the larger type.
4548 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Node
->getOperand(0));
4551 // Promote the reg if it's smaller.
4552 Result
= PromoteOp(Node
->getOperand(0));
4553 // The high bits are not guaranteed to be anything. Insert an extend.
4554 if (Node
->getOpcode() == ISD::SIGN_EXTEND
)
4555 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Result
,
4556 DAG
.getValueType(Node
->getOperand(0).getValueType()));
4557 else if (Node
->getOpcode() == ISD::ZERO_EXTEND
)
4558 Result
= DAG
.getZeroExtendInReg(Result
, dl
,
4559 Node
->getOperand(0).getValueType());
4563 case ISD::CONVERT_RNDSAT
: {
4564 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(Node
)->getCvtCode();
4565 assert ((CvtCode
== ISD::CVT_SS
|| CvtCode
== ISD::CVT_SU
||
4566 CvtCode
== ISD::CVT_US
|| CvtCode
== ISD::CVT_UU
||
4567 CvtCode
== ISD::CVT_SF
|| CvtCode
== ISD::CVT_UF
) &&
4568 "can only promote integers");
4569 Result
= DAG
.getConvertRndSat(NVT
, dl
, Node
->getOperand(0),
4570 Node
->getOperand(1), Node
->getOperand(2),
4571 Node
->getOperand(3), Node
->getOperand(4),
4576 case ISD::BIT_CONVERT
:
4577 Result
= EmitStackConvert(Node
->getOperand(0), Node
->getValueType(0),
4578 Node
->getValueType(0), dl
);
4579 Result
= PromoteOp(Result
);
4582 case ISD::FP_EXTEND
:
4583 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
4585 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4586 case Expand
: assert(0 && "BUG: Cannot expand FP regs!");
4587 case Promote
: assert(0 && "Unreachable with 2 FP types!");
4589 if (Node
->getConstantOperandVal(1) == 0) {
4590 // Input is legal? Do an FP_ROUND_INREG.
4591 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Node
->getOperand(0),
4592 DAG
.getValueType(VT
));
4594 // Just remove the truncate, it isn't affecting the value.
4595 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, NVT
, Node
->getOperand(0),
4596 Node
->getOperand(1));
4601 case ISD::SINT_TO_FP
:
4602 case ISD::UINT_TO_FP
:
4603 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4605 // No extra round required here.
4606 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Node
->getOperand(0));
4610 Result
= PromoteOp(Node
->getOperand(0));
4611 if (Node
->getOpcode() == ISD::SINT_TO_FP
)
4612 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Result
.getValueType(),
4614 DAG
.getValueType(Node
->getOperand(0).getValueType()));
4616 Result
= DAG
.getZeroExtendInReg(Result
, dl
,
4617 Node
->getOperand(0).getValueType());
4618 // No extra round required here.
4619 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Result
);
4622 Result
= ExpandIntToFP(Node
->getOpcode() == ISD::SINT_TO_FP
, NVT
,
4623 Node
->getOperand(0), dl
);
4624 // Round if we cannot tolerate excess precision.
4625 if (NoExcessFPPrecision
)
4626 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4627 DAG
.getValueType(VT
));
4632 case ISD::SIGN_EXTEND_INREG
:
4633 Result
= PromoteOp(Node
->getOperand(0));
4634 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Result
,
4635 Node
->getOperand(1));
4637 case ISD::FP_TO_SINT
:
4638 case ISD::FP_TO_UINT
:
4639 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4642 Tmp1
= Node
->getOperand(0);
4645 // The input result is prerounded, so we don't have to do anything
4647 Tmp1
= PromoteOp(Node
->getOperand(0));
4650 // If we're promoting a UINT to a larger size, check to see if the new node
4651 // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since
4652 // we can use that instead. This allows us to generate better code for
4653 // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
4654 // legal, such as PowerPC.
4655 if (Node
->getOpcode() == ISD::FP_TO_UINT
&&
4656 !TLI
.isOperationLegalOrCustom(ISD::FP_TO_UINT
, NVT
) &&
4657 (TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NVT
) ||
4658 TLI
.getOperationAction(ISD::FP_TO_SINT
, NVT
)==TargetLowering::Custom
)){
4659 Result
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, NVT
, Tmp1
);
4661 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4667 Tmp1
= PromoteOp(Node
->getOperand(0));
4668 assert(Tmp1
.getValueType() == NVT
);
4669 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4670 // NOTE: we do not have to do any extra rounding here for
4671 // NoExcessFPPrecision, because we know the input will have the appropriate
4672 // precision, and these operations don't modify precision at all.
4687 case ISD::FNEARBYINT
:
4688 Tmp1
= PromoteOp(Node
->getOperand(0));
4689 assert(Tmp1
.getValueType() == NVT
);
4690 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4691 if (NoExcessFPPrecision
)
4692 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4693 DAG
.getValueType(VT
));
4698 // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall
4699 // directly as well, which may be better.
4700 Tmp1
= PromoteOp(Node
->getOperand(0));
4701 Tmp2
= Node
->getOperand(1);
4702 if (Node
->getOpcode() == ISD::FPOW
)
4703 Tmp2
= PromoteOp(Tmp2
);
4704 assert(Tmp1
.getValueType() == NVT
);
4705 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4706 if (NoExcessFPPrecision
)
4707 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4708 DAG
.getValueType(VT
));
4712 case ISD::ATOMIC_CMP_SWAP
: {
4713 AtomicSDNode
* AtomNode
= cast
<AtomicSDNode
>(Node
);
4714 Tmp2
= PromoteOp(Node
->getOperand(2));
4715 Tmp3
= PromoteOp(Node
->getOperand(3));
4716 Result
= DAG
.getAtomic(Node
->getOpcode(), dl
, AtomNode
->getMemoryVT(),
4717 AtomNode
->getChain(),
4718 AtomNode
->getBasePtr(), Tmp2
, Tmp3
,
4719 AtomNode
->getSrcValue(),
4720 AtomNode
->getAlignment());
4721 // Remember that we legalized the chain.
4722 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
4725 case ISD::ATOMIC_LOAD_ADD
:
4726 case ISD::ATOMIC_LOAD_SUB
:
4727 case ISD::ATOMIC_LOAD_AND
:
4728 case ISD::ATOMIC_LOAD_OR
:
4729 case ISD::ATOMIC_LOAD_XOR
:
4730 case ISD::ATOMIC_LOAD_NAND
:
4731 case ISD::ATOMIC_LOAD_MIN
:
4732 case ISD::ATOMIC_LOAD_MAX
:
4733 case ISD::ATOMIC_LOAD_UMIN
:
4734 case ISD::ATOMIC_LOAD_UMAX
:
4735 case ISD::ATOMIC_SWAP
: {
4736 AtomicSDNode
* AtomNode
= cast
<AtomicSDNode
>(Node
);
4737 Tmp2
= PromoteOp(Node
->getOperand(2));
4738 Result
= DAG
.getAtomic(Node
->getOpcode(), dl
, AtomNode
->getMemoryVT(),
4739 AtomNode
->getChain(),
4740 AtomNode
->getBasePtr(), Tmp2
,
4741 AtomNode
->getSrcValue(),
4742 AtomNode
->getAlignment());
4743 // Remember that we legalized the chain.
4744 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
4754 // The input may have strange things in the top bits of the registers, but
4755 // these operations don't care. They may have weird bits going out, but
4756 // that too is okay if they are integer operations.
4757 Tmp1
= PromoteOp(Node
->getOperand(0));
4758 Tmp2
= PromoteOp(Node
->getOperand(1));
4759 assert(Tmp1
.getValueType() == NVT
&& Tmp2
.getValueType() == NVT
);
4760 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4765 Tmp1
= PromoteOp(Node
->getOperand(0));
4766 Tmp2
= PromoteOp(Node
->getOperand(1));
4767 assert(Tmp1
.getValueType() == NVT
&& Tmp2
.getValueType() == NVT
);
4768 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4770 // Floating point operations will give excess precision that we may not be
4771 // able to tolerate. If we DO allow excess precision, just leave it,
4772 // otherwise excise it.
4773 // FIXME: Why would we need to round FP ops more than integer ones?
4774 // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C))
4775 if (NoExcessFPPrecision
)
4776 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4777 DAG
.getValueType(VT
));
4782 // These operators require that their input be sign extended.
4783 Tmp1
= PromoteOp(Node
->getOperand(0));
4784 Tmp2
= PromoteOp(Node
->getOperand(1));
4785 if (NVT
.isInteger()) {
4786 Tmp1
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp1
,
4787 DAG
.getValueType(VT
));
4788 Tmp2
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp2
,
4789 DAG
.getValueType(VT
));
4791 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4793 // Perform FP_ROUND: this is probably overly pessimistic.
4794 if (NVT
.isFloatingPoint() && NoExcessFPPrecision
)
4795 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4796 DAG
.getValueType(VT
));
4800 case ISD::FCOPYSIGN
:
4801 // These operators require that their input be fp extended.
4802 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
4803 case Expand
: assert(0 && "not implemented");
4804 case Legal
: Tmp1
= LegalizeOp(Node
->getOperand(0)); break;
4805 case Promote
: Tmp1
= PromoteOp(Node
->getOperand(0)); break;
4807 switch (getTypeAction(Node
->getOperand(1).getValueType())) {
4808 case Expand
: assert(0 && "not implemented");
4809 case Legal
: Tmp2
= LegalizeOp(Node
->getOperand(1)); break;
4810 case Promote
: Tmp2
= PromoteOp(Node
->getOperand(1)); break;
4812 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4814 // Perform FP_ROUND: this is probably overly pessimistic.
4815 if (NoExcessFPPrecision
&& Node
->getOpcode() != ISD::FCOPYSIGN
)
4816 Result
= DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, NVT
, Result
,
4817 DAG
.getValueType(VT
));
4822 // These operators require that their input be zero extended.
4823 Tmp1
= PromoteOp(Node
->getOperand(0));
4824 Tmp2
= PromoteOp(Node
->getOperand(1));
4825 assert(NVT
.isInteger() && "Operators don't apply to FP!");
4826 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, VT
);
4827 Tmp2
= DAG
.getZeroExtendInReg(Tmp2
, dl
, VT
);
4828 Result
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4832 Tmp1
= PromoteOp(Node
->getOperand(0));
4833 Result
= DAG
.getNode(ISD::SHL
, dl
, NVT
, Tmp1
, Node
->getOperand(1));
4836 // The input value must be properly sign extended.
4837 Tmp1
= PromoteOp(Node
->getOperand(0));
4838 Tmp1
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp1
,
4839 DAG
.getValueType(VT
));
4840 Result
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Tmp1
, Node
->getOperand(1));
4843 // The input value must be properly zero extended.
4844 Tmp1
= PromoteOp(Node
->getOperand(0));
4845 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, VT
);
4846 Result
= DAG
.getNode(ISD::SRL
, dl
, NVT
, Tmp1
, Node
->getOperand(1));
4850 Tmp1
= Node
->getOperand(0); // Get the chain.
4851 Tmp2
= Node
->getOperand(1); // Get the pointer.
4852 if (TLI
.getOperationAction(ISD::VAARG
, VT
) == TargetLowering::Custom
) {
4853 Tmp3
= DAG
.getVAArg(VT
, dl
, Tmp1
, Tmp2
, Node
->getOperand(2));
4854 Result
= TLI
.LowerOperation(Tmp3
, DAG
);
4856 const Value
*V
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
4857 SDValue VAList
= DAG
.getLoad(TLI
.getPointerTy(), dl
, Tmp1
, Tmp2
, V
, 0);
4858 // Increment the pointer, VAList, to the next vaarg
4859 Tmp3
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), VAList
,
4860 DAG
.getConstant(VT
.getSizeInBits()/8,
4861 TLI
.getPointerTy()));
4862 // Store the incremented VAList to the legalized pointer
4863 Tmp3
= DAG
.getStore(VAList
.getValue(1), dl
, Tmp3
, Tmp2
, V
, 0);
4864 // Load the actual argument out of the pointer VAList
4865 Result
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NVT
, Tmp3
, VAList
, NULL
, 0, VT
);
4867 // Remember that we legalized the chain.
4868 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
4872 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
4873 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(Node
)
4874 ? ISD::EXTLOAD
: LD
->getExtensionType();
4875 Result
= DAG
.getExtLoad(ExtType
, dl
, NVT
,
4876 LD
->getChain(), LD
->getBasePtr(),
4877 LD
->getSrcValue(), LD
->getSrcValueOffset(),
4880 LD
->getAlignment());
4881 // Remember that we legalized the chain.
4882 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
4886 Tmp2
= PromoteOp(Node
->getOperand(1)); // Legalize the op0
4887 Tmp3
= PromoteOp(Node
->getOperand(2)); // Legalize the op1
4889 MVT VT2
= Tmp2
.getValueType();
4890 assert(VT2
== Tmp3
.getValueType()
4891 && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match");
4892 // Ensure that the resulting node is at least the same size as the operands'
4893 // value types, because we cannot assume that TLI.getSetCCValueType() is
4895 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT2
, Node
->getOperand(0), Tmp2
, Tmp3
);
4898 case ISD::SELECT_CC
:
4899 Tmp2
= PromoteOp(Node
->getOperand(2)); // True
4900 Tmp3
= PromoteOp(Node
->getOperand(3)); // False
4901 Result
= DAG
.getNode(ISD::SELECT_CC
, dl
, NVT
, Node
->getOperand(0),
4902 Node
->getOperand(1), Tmp2
, Tmp3
, Node
->getOperand(4));
4905 Tmp1
= Node
->getOperand(0);
4906 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Tmp1
);
4907 Tmp1
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Tmp1
);
4908 Result
= DAG
.getNode(ISD::SRL
, dl
, NVT
, Tmp1
,
4909 DAG
.getConstant(NVT
.getSizeInBits() -
4911 TLI
.getShiftAmountTy()));
4916 // Zero extend the argument
4917 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4918 // Perform the larger operation, then subtract if needed.
4919 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4920 switch(Node
->getOpcode()) {
4925 // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
4926 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Tmp1
.getValueType()), Tmp1
,
4927 DAG
.getConstant(NVT
.getSizeInBits(), NVT
),
4929 Result
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Tmp2
,
4930 DAG
.getConstant(VT
.getSizeInBits(), NVT
), Tmp1
);
4933 //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4934 Result
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Tmp1
,
4935 DAG
.getConstant(NVT
.getSizeInBits() -
4936 VT
.getSizeInBits(), NVT
));
4940 case ISD::EXTRACT_SUBVECTOR
:
4941 Result
= PromoteOp(ExpandEXTRACT_SUBVECTOR(Op
));
4943 case ISD::EXTRACT_VECTOR_ELT
:
4944 Result
= PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op
));
4948 assert(Result
.getNode() && "Didn't set a result!");
4950 // Make sure the result is itself legal.
4951 Result
= LegalizeOp(Result
);
4953 // Remember that we promoted this!
4954 AddPromotedOperand(Op
, Result
);
4958 /// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into
4959 /// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic,
4960 /// based on the vector type. The return type of this matches the element type
4961 /// of the vector, which may not be legal for the target.
4962 SDValue
SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op
) {
4963 // We know that operand #0 is the Vec vector. If the index is a constant
4964 // or if the invec is a supported hardware type, we can use it. Otherwise,
4965 // lower to a store then an indexed load.
4966 SDValue Vec
= Op
.getOperand(0);
4967 SDValue Idx
= Op
.getOperand(1);
4968 DebugLoc dl
= Op
.getDebugLoc();
4970 MVT TVT
= Vec
.getValueType();
4971 unsigned NumElems
= TVT
.getVectorNumElements();
4973 switch (TLI
.getOperationAction(ISD::EXTRACT_VECTOR_ELT
, TVT
)) {
4974 default: assert(0 && "This action is not supported yet!");
4975 case TargetLowering::Custom
: {
4976 Vec
= LegalizeOp(Vec
);
4977 Op
= DAG
.UpdateNodeOperands(Op
, Vec
, Idx
);
4978 SDValue Tmp3
= TLI
.LowerOperation(Op
, DAG
);
4983 case TargetLowering::Legal
:
4984 if (isTypeLegal(TVT
)) {
4985 Vec
= LegalizeOp(Vec
);
4986 Op
= DAG
.UpdateNodeOperands(Op
, Vec
, Idx
);
4990 case TargetLowering::Promote
:
4991 assert(TVT
.isVector() && "not vector type");
4992 // fall thru to expand since vectors are by default are promote
4993 case TargetLowering::Expand
:
4997 if (NumElems
== 1) {
4998 // This must be an access of the only element. Return it.
4999 Op
= ScalarizeVectorOp(Vec
);
5000 } else if (!TLI
.isTypeLegal(TVT
) && isa
<ConstantSDNode
>(Idx
)) {
5001 unsigned NumLoElts
= 1 << Log2_32(NumElems
-1);
5002 ConstantSDNode
*CIdx
= cast
<ConstantSDNode
>(Idx
);
5004 SplitVectorOp(Vec
, Lo
, Hi
);
5005 if (CIdx
->getZExtValue() < NumLoElts
) {
5009 Idx
= DAG
.getConstant(CIdx
->getZExtValue() - NumLoElts
,
5010 Idx
.getValueType());
5013 // It's now an extract from the appropriate high or low part. Recurse.
5014 Op
= DAG
.UpdateNodeOperands(Op
, Vec
, Idx
);
5015 Op
= ExpandEXTRACT_VECTOR_ELT(Op
);
5017 // Store the value to a temporary stack slot, then LOAD the scalar
5018 // element back out.
5019 SDValue StackPtr
= DAG
.CreateStackTemporary(Vec
.getValueType());
5020 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
, NULL
, 0);
5022 // Add the offset to the index.
5023 unsigned EltSize
= Op
.getValueType().getSizeInBits()/8;
5024 Idx
= DAG
.getNode(ISD::MUL
, dl
, Idx
.getValueType(), Idx
,
5025 DAG
.getConstant(EltSize
, Idx
.getValueType()));
5027 if (Idx
.getValueType().bitsGT(TLI
.getPointerTy()))
5028 Idx
= DAG
.getNode(ISD::TRUNCATE
, dl
, TLI
.getPointerTy(), Idx
);
5030 Idx
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, TLI
.getPointerTy(), Idx
);
5032 StackPtr
= DAG
.getNode(ISD::ADD
, dl
, Idx
.getValueType(), Idx
, StackPtr
);
5034 Op
= DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, NULL
, 0);
5039 /// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now
5040 /// we assume the operation can be split if it is not already legal.
5041 SDValue
SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op
) {
5042 // We know that operand #0 is the Vec vector. For now we assume the index
5043 // is a constant and that the extracted result is a supported hardware type.
5044 SDValue Vec
= Op
.getOperand(0);
5045 SDValue Idx
= LegalizeOp(Op
.getOperand(1));
5047 unsigned NumElems
= Vec
.getValueType().getVectorNumElements();
5049 if (NumElems
== Op
.getValueType().getVectorNumElements()) {
5050 // This must be an access of the desired vector length. Return it.
5054 ConstantSDNode
*CIdx
= cast
<ConstantSDNode
>(Idx
);
5056 SplitVectorOp(Vec
, Lo
, Hi
);
5057 if (CIdx
->getZExtValue() < NumElems
/2) {
5061 Idx
= DAG
.getConstant(CIdx
->getZExtValue() - NumElems
/2,
5062 Idx
.getValueType());
5065 // It's now an extract from the appropriate high or low part. Recurse.
5066 Op
= DAG
.UpdateNodeOperands(Op
, Vec
, Idx
);
5067 return ExpandEXTRACT_SUBVECTOR(Op
);
5070 /// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC
5071 /// with condition CC on the current target. This usually involves legalizing
5072 /// or promoting the arguments. In the case where LHS and RHS must be expanded,
5073 /// there may be no choice but to create a new SetCC node to represent the
5074 /// legalized value of setcc lhs, rhs. In this case, the value is returned in
5075 /// LHS, and the SDValue returned in RHS has a nil SDNode value.
5076 void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue
&LHS
,
5080 SDValue Tmp1
, Tmp2
, Tmp3
, Result
;
5082 switch (getTypeAction(LHS
.getValueType())) {
5084 Tmp1
= LegalizeOp(LHS
); // LHS
5085 Tmp2
= LegalizeOp(RHS
); // RHS
5088 Tmp1
= PromoteOp(LHS
); // LHS
5089 Tmp2
= PromoteOp(RHS
); // RHS
5091 // If this is an FP compare, the operands have already been extended.
5092 if (LHS
.getValueType().isInteger()) {
5093 MVT VT
= LHS
.getValueType();
5094 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
5096 // Otherwise, we have to insert explicit sign or zero extends. Note
5097 // that we could insert sign extends for ALL conditions, but zero extend
5098 // is cheaper on many machines (an AND instead of two shifts), so prefer
5100 switch (cast
<CondCodeSDNode
>(CC
)->get()) {
5101 default: assert(0 && "Unknown integer comparison!");
5108 // ALL of these operations will work if we either sign or zero extend
5109 // the operands (including the unsigned comparisons!). Zero extend is
5110 // usually a simpler/cheaper operation, so prefer it.
5111 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, VT
);
5112 Tmp2
= DAG
.getZeroExtendInReg(Tmp2
, dl
, VT
);
5118 Tmp1
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp1
,
5119 DAG
.getValueType(VT
));
5120 Tmp2
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Tmp2
,
5121 DAG
.getValueType(VT
));
5122 Tmp1
= LegalizeOp(Tmp1
); // Relegalize new nodes.
5123 Tmp2
= LegalizeOp(Tmp2
); // Relegalize new nodes.
5129 MVT VT
= LHS
.getValueType();
5130 if (VT
== MVT::f32
|| VT
== MVT::f64
) {
5131 // Expand into one or more soft-fp libcall(s).
5132 RTLIB::Libcall LC1
= RTLIB::UNKNOWN_LIBCALL
, LC2
= RTLIB::UNKNOWN_LIBCALL
;
5133 switch (cast
<CondCodeSDNode
>(CC
)->get()) {
5136 LC1
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
: RTLIB::OEQ_F64
;
5140 LC1
= (VT
== MVT::f32
) ? RTLIB::UNE_F32
: RTLIB::UNE_F64
;
5144 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
: RTLIB::OGE_F64
;
5148 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
: RTLIB::OLT_F64
;
5152 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
: RTLIB::OLE_F64
;
5156 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
: RTLIB::OGT_F64
;
5159 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
: RTLIB::UO_F64
;
5162 LC1
= (VT
== MVT::f32
) ? RTLIB::O_F32
: RTLIB::O_F64
;
5165 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
: RTLIB::UO_F64
;
5166 switch (cast
<CondCodeSDNode
>(CC
)->get()) {
5168 // SETONE = SETOLT | SETOGT
5169 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
: RTLIB::OLT_F64
;
5172 LC2
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
: RTLIB::OGT_F64
;
5175 LC2
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
: RTLIB::OGE_F64
;
5178 LC2
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
: RTLIB::OLT_F64
;
5181 LC2
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
: RTLIB::OLE_F64
;
5184 LC2
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
: RTLIB::OEQ_F64
;
5186 default: assert(0 && "Unsupported FP setcc!");
5191 SDValue Ops
[2] = { LHS
, RHS
};
5192 Tmp1
= ExpandLibCall(LC1
, DAG
.getMergeValues(Ops
, 2, dl
).getNode(),
5193 false /*sign irrelevant*/, Dummy
);
5194 Tmp2
= DAG
.getConstant(0, MVT::i32
);
5195 CC
= DAG
.getCondCode(TLI
.getCmpLibcallCC(LC1
));
5196 if (LC2
!= RTLIB::UNKNOWN_LIBCALL
) {
5197 Tmp1
= DAG
.getNode(ISD::SETCC
, dl
,
5198 TLI
.getSetCCResultType(Tmp1
.getValueType()),
5200 LHS
= ExpandLibCall(LC2
, DAG
.getMergeValues(Ops
, 2, dl
).getNode(),
5201 false /*sign irrelevant*/, Dummy
);
5202 Tmp2
= DAG
.getNode(ISD::SETCC
, dl
,
5203 TLI
.getSetCCResultType(LHS
.getValueType()), LHS
,
5204 Tmp2
, DAG
.getCondCode(TLI
.getCmpLibcallCC(LC2
)));
5205 Tmp1
= DAG
.getNode(ISD::OR
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp2
);
5208 LHS
= LegalizeOp(Tmp1
);
5213 SDValue LHSLo
, LHSHi
, RHSLo
, RHSHi
;
5214 ExpandOp(LHS
, LHSLo
, LHSHi
);
5215 ExpandOp(RHS
, RHSLo
, RHSHi
);
5216 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
5218 if (VT
==MVT::ppcf128
) {
5219 // FIXME: This generated code sucks. We want to generate
5220 // FCMPU crN, hi1, hi2
5222 // FCMPU crN, lo1, lo2
5223 // The following can be improved, but not that much.
5224 Tmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
5225 LHSHi
, RHSHi
, ISD::SETOEQ
);
5226 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSLo
.getValueType()),
5227 LHSLo
, RHSLo
, CCCode
);
5228 Tmp3
= DAG
.getNode(ISD::AND
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp2
);
5229 Tmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
5230 LHSHi
, RHSHi
, ISD::SETUNE
);
5231 Tmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
5232 LHSHi
, RHSHi
, CCCode
);
5233 Tmp1
= DAG
.getNode(ISD::AND
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp2
);
5234 Tmp1
= DAG
.getNode(ISD::OR
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp3
);
5243 if (ConstantSDNode
*RHSCST
= dyn_cast
<ConstantSDNode
>(RHSLo
))
5244 if (RHSCST
->isAllOnesValue()) {
5245 // Comparison to -1.
5246 Tmp1
= DAG
.getNode(ISD::AND
, dl
,LHSLo
.getValueType(), LHSLo
, LHSHi
);
5251 Tmp1
= DAG
.getNode(ISD::XOR
, dl
, LHSLo
.getValueType(), LHSLo
, RHSLo
);
5252 Tmp2
= DAG
.getNode(ISD::XOR
, dl
, LHSLo
.getValueType(), LHSHi
, RHSHi
);
5253 Tmp1
= DAG
.getNode(ISD::OR
, dl
, Tmp1
.getValueType(), Tmp1
, Tmp2
);
5254 Tmp2
= DAG
.getConstant(0, Tmp1
.getValueType());
5257 // If this is a comparison of the sign bit, just look at the top part.
5259 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(RHS
))
5260 if ((cast
<CondCodeSDNode
>(CC
)->get() == ISD::SETLT
&&
5261 CST
->isNullValue()) || // X < 0
5262 (cast
<CondCodeSDNode
>(CC
)->get() == ISD::SETGT
&&
5263 CST
->isAllOnesValue())) { // X > -1
5269 // FIXME: This generated code sucks.
5270 ISD::CondCode LowCC
;
5272 default: assert(0 && "Unknown integer setcc!");
5274 case ISD::SETULT
: LowCC
= ISD::SETULT
; break;
5276 case ISD::SETUGT
: LowCC
= ISD::SETUGT
; break;
5278 case ISD::SETULE
: LowCC
= ISD::SETULE
; break;
5280 case ISD::SETUGE
: LowCC
= ISD::SETUGE
; break;
5283 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
5284 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
5285 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
5287 // NOTE: on targets without efficient SELECT of bools, we can always use
5288 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
5289 TargetLowering::DAGCombinerInfo
DagCombineInfo(DAG
, false, true, NULL
);
5290 Tmp1
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSLo
.getValueType()),
5291 LHSLo
, RHSLo
, LowCC
, false, DagCombineInfo
, dl
);
5292 if (!Tmp1
.getNode())
5293 Tmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSLo
.getValueType()),
5294 LHSLo
, RHSLo
, LowCC
);
5295 Tmp2
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSHi
.getValueType()),
5296 LHSHi
, RHSHi
, CCCode
, false, DagCombineInfo
, dl
);
5297 if (!Tmp2
.getNode())
5298 Tmp2
= DAG
.getNode(ISD::SETCC
, dl
,
5299 TLI
.getSetCCResultType(LHSHi
.getValueType()),
5302 ConstantSDNode
*Tmp1C
= dyn_cast
<ConstantSDNode
>(Tmp1
.getNode());
5303 ConstantSDNode
*Tmp2C
= dyn_cast
<ConstantSDNode
>(Tmp2
.getNode());
5304 if ((Tmp1C
&& Tmp1C
->isNullValue()) ||
5305 (Tmp2C
&& Tmp2C
->isNullValue() &&
5306 (CCCode
== ISD::SETLE
|| CCCode
== ISD::SETGE
||
5307 CCCode
== ISD::SETUGE
|| CCCode
== ISD::SETULE
)) ||
5308 (Tmp2C
&& Tmp2C
->getAPIntValue() == 1 &&
5309 (CCCode
== ISD::SETLT
|| CCCode
== ISD::SETGT
||
5310 CCCode
== ISD::SETUGT
|| CCCode
== ISD::SETULT
))) {
5311 // low part is known false, returns high part.
5312 // For LE / GE, if high part is known false, ignore the low part.
5313 // For LT / GT, if high part is known true, ignore the low part.
5317 Result
= TLI
.SimplifySetCC(TLI
.getSetCCResultType(LHSHi
.getValueType()),
5318 LHSHi
, RHSHi
, ISD::SETEQ
, false,
5319 DagCombineInfo
, dl
);
5320 if (!Result
.getNode())
5321 Result
=DAG
.getSetCC(dl
, TLI
.getSetCCResultType(LHSHi
.getValueType()),
5322 LHSHi
, RHSHi
, ISD::SETEQ
);
5323 Result
= LegalizeOp(DAG
.getNode(ISD::SELECT
, dl
, Tmp1
.getValueType(),
5324 Result
, Tmp1
, Tmp2
));
5335 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
5336 /// condition code CC on the current target. This routine assumes LHS and rHS
5337 /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
5338 /// illegal condition code into AND / OR of multiple SETCC values.
5339 void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT
,
5340 SDValue
&LHS
, SDValue
&RHS
,
5343 MVT OpVT
= LHS
.getValueType();
5344 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
5345 switch (TLI
.getCondCodeAction(CCCode
, OpVT
)) {
5346 default: assert(0 && "Unknown condition code action!");
5347 case TargetLowering::Legal
:
5350 case TargetLowering::Expand
: {
5351 ISD::CondCode CC1
= ISD::SETCC_INVALID
, CC2
= ISD::SETCC_INVALID
;
5354 default: assert(0 && "Don't know how to expand this condition!"); abort();
5355 case ISD::SETOEQ
: CC1
= ISD::SETEQ
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5356 case ISD::SETOGT
: CC1
= ISD::SETGT
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5357 case ISD::SETOGE
: CC1
= ISD::SETGE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5358 case ISD::SETOLT
: CC1
= ISD::SETLT
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5359 case ISD::SETOLE
: CC1
= ISD::SETLE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5360 case ISD::SETONE
: CC1
= ISD::SETNE
; CC2
= ISD::SETO
; Opc
= ISD::AND
; break;
5361 case ISD::SETUEQ
: CC1
= ISD::SETEQ
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5362 case ISD::SETUGT
: CC1
= ISD::SETGT
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5363 case ISD::SETUGE
: CC1
= ISD::SETGE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5364 case ISD::SETULT
: CC1
= ISD::SETLT
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5365 case ISD::SETULE
: CC1
= ISD::SETLE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5366 case ISD::SETUNE
: CC1
= ISD::SETNE
; CC2
= ISD::SETUO
; Opc
= ISD::OR
; break;
5367 // FIXME: Implement more expansions.
5370 SDValue SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC1
);
5371 SDValue SetCC2
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC2
);
5372 LHS
= DAG
.getNode(Opc
, dl
, VT
, SetCC1
, SetCC2
);
5380 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
5381 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
5382 /// a load from the stack slot to DestVT, extending it if needed.
5383 /// The resultant code need not be legal.
5384 SDValue
SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp
,
5388 // Create the stack frame object.
5390 TLI
.getTargetData()->getPrefTypeAlignment(SrcOp
.getValueType().
5392 SDValue FIPtr
= DAG
.CreateStackTemporary(SlotVT
, SrcAlign
);
5394 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(FIPtr
);
5395 int SPFI
= StackPtrFI
->getIndex();
5396 const Value
*SV
= PseudoSourceValue::getFixedStack(SPFI
);
5398 unsigned SrcSize
= SrcOp
.getValueType().getSizeInBits();
5399 unsigned SlotSize
= SlotVT
.getSizeInBits();
5400 unsigned DestSize
= DestVT
.getSizeInBits();
5401 unsigned DestAlign
=
5402 TLI
.getTargetData()->getPrefTypeAlignment(DestVT
.getTypeForMVT());
5404 // Emit a store to the stack slot. Use a truncstore if the input value is
5405 // later than DestVT.
5408 if (SrcSize
> SlotSize
)
5409 Store
= DAG
.getTruncStore(DAG
.getEntryNode(), dl
, SrcOp
, FIPtr
,
5410 SV
, 0, SlotVT
, false, SrcAlign
);
5412 assert(SrcSize
== SlotSize
&& "Invalid store");
5413 Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, SrcOp
, FIPtr
,
5414 SV
, 0, false, SrcAlign
);
5417 // Result is a load from the stack slot.
5418 if (SlotSize
== DestSize
)
5419 return DAG
.getLoad(DestVT
, dl
, Store
, FIPtr
, SV
, 0, false, DestAlign
);
5421 assert(SlotSize
< DestSize
&& "Unknown extension!");
5422 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
, Store
, FIPtr
, SV
, 0, SlotVT
,
5426 SDValue
SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode
*Node
) {
5427 DebugLoc dl
= Node
->getDebugLoc();
5428 // Create a vector sized/aligned stack slot, store the value to element #0,
5429 // then load the whole vector back out.
5430 SDValue StackPtr
= DAG
.CreateStackTemporary(Node
->getValueType(0));
5432 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(StackPtr
);
5433 int SPFI
= StackPtrFI
->getIndex();
5435 SDValue Ch
= DAG
.getTruncStore(DAG
.getEntryNode(), dl
, Node
->getOperand(0),
5437 PseudoSourceValue::getFixedStack(SPFI
), 0,
5438 Node
->getValueType(0).getVectorElementType());
5439 return DAG
.getLoad(Node
->getValueType(0), dl
, Ch
, StackPtr
,
5440 PseudoSourceValue::getFixedStack(SPFI
), 0);
5444 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
5445 /// support the operation, but do support the resultant vector type.
5446 SDValue
SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode
*Node
) {
5447 unsigned NumElems
= Node
->getNumOperands();
5448 SDValue SplatValue
= Node
->getOperand(0);
5449 DebugLoc dl
= Node
->getDebugLoc();
5450 MVT VT
= Node
->getValueType(0);
5451 MVT OpVT
= SplatValue
.getValueType();
5452 MVT EltVT
= VT
.getVectorElementType();
5454 // If the only non-undef value is the low element, turn this into a
5455 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
5456 bool isOnlyLowElement
= true;
5458 // FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
5459 // and use a bitmask instead of a list of elements.
5460 // FIXME: this doesn't treat <0, u, 0, u> for example, as a splat.
5461 std::map
<SDValue
, std::vector
<unsigned> > Values
;
5462 Values
[SplatValue
].push_back(0);
5463 bool isConstant
= true;
5464 if (!isa
<ConstantFPSDNode
>(SplatValue
) && !isa
<ConstantSDNode
>(SplatValue
) &&
5465 SplatValue
.getOpcode() != ISD::UNDEF
)
5468 for (unsigned i
= 1; i
< NumElems
; ++i
) {
5469 SDValue V
= Node
->getOperand(i
);
5470 Values
[V
].push_back(i
);
5471 if (V
.getOpcode() != ISD::UNDEF
)
5472 isOnlyLowElement
= false;
5473 if (SplatValue
!= V
)
5474 SplatValue
= SDValue(0, 0);
5476 // If this isn't a constant element or an undef, we can't use a constant
5478 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
) &&
5479 V
.getOpcode() != ISD::UNDEF
)
5483 if (isOnlyLowElement
) {
5484 // If the low element is an undef too, then this whole things is an undef.
5485 if (Node
->getOperand(0).getOpcode() == ISD::UNDEF
)
5486 return DAG
.getUNDEF(VT
);
5487 // Otherwise, turn this into a scalar_to_vector node.
5488 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Node
->getOperand(0));
5491 // If all elements are constants, create a load from the constant pool.
5493 std::vector
<Constant
*> CV
;
5494 for (unsigned i
= 0, e
= NumElems
; i
!= e
; ++i
) {
5495 if (ConstantFPSDNode
*V
=
5496 dyn_cast
<ConstantFPSDNode
>(Node
->getOperand(i
))) {
5497 CV
.push_back(const_cast<ConstantFP
*>(V
->getConstantFPValue()));
5498 } else if (ConstantSDNode
*V
=
5499 dyn_cast
<ConstantSDNode
>(Node
->getOperand(i
))) {
5500 CV
.push_back(const_cast<ConstantInt
*>(V
->getConstantIntValue()));
5502 assert(Node
->getOperand(i
).getOpcode() == ISD::UNDEF
);
5503 const Type
*OpNTy
= OpVT
.getTypeForMVT();
5504 CV
.push_back(UndefValue::get(OpNTy
));
5507 Constant
*CP
= ConstantVector::get(CV
);
5508 SDValue CPIdx
= DAG
.getConstantPool(CP
, TLI
.getPointerTy());
5509 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5510 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5511 PseudoSourceValue::getConstantPool(), 0,
5515 if (SplatValue
.getNode()) { // Splat of one value?
5516 // Build the shuffle constant vector: <0, 0, 0, 0>
5517 SmallVector
<int, 8> ZeroVec(NumElems
, 0);
5519 // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
5520 if (TLI
.isShuffleMaskLegal(ZeroVec
, Node
->getValueType(0))) {
5521 // Get the splatted value into the low element of a vector register.
5523 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, SplatValue
);
5525 // Return shuffle(LowValVec, undef, <0,0,0,0>)
5526 return DAG
.getVectorShuffle(VT
, dl
, LowValVec
, DAG
.getUNDEF(VT
),
5531 // If there are only two unique elements, we may be able to turn this into a
5533 if (Values
.size() == 2) {
5534 // Get the two values in deterministic order.
5535 SDValue Val1
= Node
->getOperand(1);
5537 std::map
<SDValue
, std::vector
<unsigned> >::iterator MI
= Values
.begin();
5538 if (MI
->first
!= Val1
)
5541 Val2
= (++MI
)->first
;
5543 // If Val1 is an undef, make sure it ends up as Val2, to ensure that our
5544 // vector shuffle has the undef vector on the RHS.
5545 if (Val1
.getOpcode() == ISD::UNDEF
)
5546 std::swap(Val1
, Val2
);
5548 // Build the shuffle constant vector: e.g. <0, 4, 0, 4>
5549 SmallVector
<int, 8> ShuffleMask(NumElems
, -1);
5551 // Set elements of the shuffle mask for Val1.
5552 std::vector
<unsigned> &Val1Elts
= Values
[Val1
];
5553 for (unsigned i
= 0, e
= Val1Elts
.size(); i
!= e
; ++i
)
5554 ShuffleMask
[Val1Elts
[i
]] = 0;
5556 // Set elements of the shuffle mask for Val2.
5557 std::vector
<unsigned> &Val2Elts
= Values
[Val2
];
5558 for (unsigned i
= 0, e
= Val2Elts
.size(); i
!= e
; ++i
)
5559 if (Val2
.getOpcode() != ISD::UNDEF
)
5560 ShuffleMask
[Val2Elts
[i
]] = NumElems
;
5562 // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
5563 if (TLI
.isOperationLegalOrCustom(ISD::SCALAR_TO_VECTOR
, VT
) &&
5564 TLI
.isShuffleMaskLegal(ShuffleMask
, VT
)) {
5565 Val1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Val1
);
5566 Val2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Val2
);
5567 return DAG
.getVectorShuffle(VT
, dl
, Val1
, Val2
, &ShuffleMask
[0]);
5571 // Otherwise, we can't handle this case efficiently. Allocate a sufficiently
5572 // aligned object on the stack, store each element into it, then load
5573 // the result as a vector.
5574 // Create the stack frame object.
5575 SDValue FIPtr
= DAG
.CreateStackTemporary(VT
);
5576 int FI
= cast
<FrameIndexSDNode
>(FIPtr
.getNode())->getIndex();
5577 const Value
*SV
= PseudoSourceValue::getFixedStack(FI
);
5579 // Emit a store of each element to the stack slot.
5580 SmallVector
<SDValue
, 8> Stores
;
5581 unsigned TypeByteSize
= OpVT
.getSizeInBits() / 8;
5582 // Store (in the right endianness) the elements to memory.
5583 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
5584 // Ignore undef elements.
5585 if (Node
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
5587 unsigned Offset
= TypeByteSize
*i
;
5589 SDValue Idx
= DAG
.getConstant(Offset
, FIPtr
.getValueType());
5590 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
, Idx
);
5592 Stores
.push_back(DAG
.getStore(DAG
.getEntryNode(), dl
, Node
->getOperand(i
),
5597 if (!Stores
.empty()) // Not all undef elements?
5598 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5599 &Stores
[0], Stores
.size());
5601 StoreChain
= DAG
.getEntryNode();
5603 // Result is a load from the stack slot.
5604 return DAG
.getLoad(VT
, dl
, StoreChain
, FIPtr
, SV
, 0);
5607 void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp
,
5608 SDValue Op
, SDValue Amt
,
5609 SDValue
&Lo
, SDValue
&Hi
,
5611 // Expand the subcomponents.
5613 ExpandOp(Op
, LHSL
, LHSH
);
5615 SDValue Ops
[] = { LHSL
, LHSH
, Amt
};
5616 MVT VT
= LHSL
.getValueType();
5617 Lo
= DAG
.getNode(NodeOp
, dl
, DAG
.getVTList(VT
, VT
), Ops
, 3);
5618 Hi
= Lo
.getValue(1);
5622 /// ExpandShift - Try to find a clever way to expand this shift operation out to
5623 /// smaller elements. If we can't find a way that is more efficient than a
5624 /// libcall on this target, return false. Otherwise, return true with the
5625 /// low-parts expanded into Lo and Hi.
5626 bool SelectionDAGLegalize::ExpandShift(unsigned Opc
, SDValue Op
, SDValue Amt
,
5627 SDValue
&Lo
, SDValue
&Hi
,
5629 assert((Opc
== ISD::SHL
|| Opc
== ISD::SRA
|| Opc
== ISD::SRL
) &&
5630 "This is not a shift!");
5632 MVT NVT
= TLI
.getTypeToTransformTo(Op
.getValueType());
5633 SDValue ShAmt
= LegalizeOp(Amt
);
5634 MVT ShTy
= ShAmt
.getValueType();
5635 unsigned ShBits
= ShTy
.getSizeInBits();
5636 unsigned VTBits
= Op
.getValueType().getSizeInBits();
5637 unsigned NVTBits
= NVT
.getSizeInBits();
5639 // Handle the case when Amt is an immediate.
5640 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Amt
.getNode())) {
5641 unsigned Cst
= CN
->getZExtValue();
5642 // Expand the incoming operand to be shifted, so that we have its parts
5644 ExpandOp(Op
, InL
, InH
);
5648 Lo
= DAG
.getConstant(0, NVT
);
5649 Hi
= DAG
.getConstant(0, NVT
);
5650 } else if (Cst
> NVTBits
) {
5651 Lo
= DAG
.getConstant(0, NVT
);
5652 Hi
= DAG
.getNode(ISD::SHL
, dl
,
5653 NVT
, InL
, DAG
.getConstant(Cst
-NVTBits
, ShTy
));
5654 } else if (Cst
== NVTBits
) {
5655 Lo
= DAG
.getConstant(0, NVT
);
5658 Lo
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, DAG
.getConstant(Cst
, ShTy
));
5659 Hi
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5660 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, DAG
.getConstant(Cst
, ShTy
)),
5661 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
,
5662 DAG
.getConstant(NVTBits
-Cst
, ShTy
)));
5667 Lo
= DAG
.getConstant(0, NVT
);
5668 Hi
= DAG
.getConstant(0, NVT
);
5669 } else if (Cst
> NVTBits
) {
5670 Lo
= DAG
.getNode(ISD::SRL
, dl
, NVT
,
5671 InH
, DAG
.getConstant(Cst
-NVTBits
, ShTy
));
5672 Hi
= DAG
.getConstant(0, NVT
);
5673 } else if (Cst
== NVTBits
) {
5675 Hi
= DAG
.getConstant(0, NVT
);
5677 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5678 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, DAG
.getConstant(Cst
, ShTy
)),
5679 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
,
5680 DAG
.getConstant(NVTBits
-Cst
, ShTy
)));
5681 Hi
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, DAG
.getConstant(Cst
, ShTy
));
5686 Hi
= Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
5687 DAG
.getConstant(NVTBits
-1, ShTy
));
5688 } else if (Cst
> NVTBits
) {
5689 Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
5690 DAG
.getConstant(Cst
-NVTBits
, ShTy
));
5691 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
5692 DAG
.getConstant(NVTBits
-1, ShTy
));
5693 } else if (Cst
== NVTBits
) {
5695 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
,
5696 DAG
.getConstant(NVTBits
-1, ShTy
));
5698 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5699 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, DAG
.getConstant(Cst
, ShTy
)),
5700 DAG
.getNode(ISD::SHL
, dl
,
5701 NVT
, InH
, DAG
.getConstant(NVTBits
-Cst
, ShTy
)));
5702 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, DAG
.getConstant(Cst
, ShTy
));
5708 // Okay, the shift amount isn't constant. However, if we can tell that it is
5709 // >= 32 or < 32, we can still simplify it, without knowing the actual value.
5710 APInt Mask
= APInt::getHighBitsSet(ShBits
, ShBits
- Log2_32(NVTBits
));
5711 APInt KnownZero
, KnownOne
;
5712 DAG
.ComputeMaskedBits(Amt
, Mask
, KnownZero
, KnownOne
);
5714 // If we know that if any of the high bits of the shift amount are one, then
5715 // we can do this as a couple of simple shifts.
5716 if (KnownOne
.intersects(Mask
)) {
5717 // Mask out the high bit, which we know is set.
5718 Amt
= DAG
.getNode(ISD::AND
, dl
, Amt
.getValueType(), Amt
,
5719 DAG
.getConstant(~Mask
, Amt
.getValueType()));
5721 // Expand the incoming operand to be shifted, so that we have its parts
5723 ExpandOp(Op
, InL
, InH
);
5726 Lo
= DAG
.getConstant(0, NVT
); // Low part is zero.
5727 Hi
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, Amt
); // High part from Lo part.
5730 Hi
= DAG
.getConstant(0, NVT
); // Hi part is zero.
5731 Lo
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, Amt
); // Lo part from Hi part.
5734 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, // Sign extend high part.
5735 DAG
.getConstant(NVTBits
-1, Amt
.getValueType()));
5736 Lo
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, Amt
); // Lo part from Hi part.
5741 // If we know that the high bits of the shift amount are all zero, then we can
5742 // do this as a couple of simple shifts.
5743 if ((KnownZero
& Mask
) == Mask
) {
5745 SDValue Amt2
= DAG
.getNode(ISD::SUB
, dl
, Amt
.getValueType(),
5746 DAG
.getConstant(NVTBits
, Amt
.getValueType()),
5749 // Expand the incoming operand to be shifted, so that we have its parts
5751 ExpandOp(Op
, InL
, InH
);
5754 Lo
= DAG
.getNode(ISD::SHL
, dl
, NVT
, InL
, Amt
);
5755 Hi
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5756 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt
),
5757 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt2
));
5760 Hi
= DAG
.getNode(ISD::SRL
, dl
, NVT
, InH
, Amt
);
5761 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5762 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt
),
5763 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt2
));
5766 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, InH
, Amt
);
5767 Lo
= DAG
.getNode(ISD::OR
, dl
, NVT
,
5768 DAG
.getNode(ISD::SRL
, dl
, NVT
, InL
, Amt
),
5769 DAG
.getNode(ISD::SHL
, dl
, NVT
, InH
, Amt2
));
5778 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
5779 // does not fit into a register, return the lo part and set the hi part to the
5780 // by-reg argument. If it does fit into a single register, return the result
5781 // and leave the Hi part unset.
5782 SDValue
SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
,
5783 bool isSigned
, SDValue
&Hi
) {
5784 assert(!IsLegalizingCall
&& "Cannot overlap legalization of calls!");
5785 // The input chain to this libcall is the entry node of the function.
5786 // Legalizing the call will automatically add the previous call to the
5788 SDValue InChain
= DAG
.getEntryNode();
5790 TargetLowering::ArgListTy Args
;
5791 TargetLowering::ArgListEntry Entry
;
5792 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
5793 MVT ArgVT
= Node
->getOperand(i
).getValueType();
5794 const Type
*ArgTy
= ArgVT
.getTypeForMVT();
5795 Entry
.Node
= Node
->getOperand(i
); Entry
.Ty
= ArgTy
;
5796 Entry
.isSExt
= isSigned
;
5797 Entry
.isZExt
= !isSigned
;
5798 Args
.push_back(Entry
);
5800 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
5801 TLI
.getPointerTy());
5803 // Splice the libcall in wherever FindInputOutputChains tells us to.
5804 const Type
*RetTy
= Node
->getValueType(0).getTypeForMVT();
5805 std::pair
<SDValue
, SDValue
> CallInfo
=
5806 TLI
.LowerCallTo(InChain
, RetTy
, isSigned
, !isSigned
, false, false,
5807 CallingConv::C
, false, Callee
, Args
, DAG
,
5808 Node
->getDebugLoc());
5810 // Legalize the call sequence, starting with the chain. This will advance
5811 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
5812 // was added by LowerCallTo (guaranteeing proper serialization of calls).
5813 LegalizeOp(CallInfo
.second
);
5815 switch (getTypeAction(CallInfo
.first
.getValueType())) {
5816 default: assert(0 && "Unknown thing");
5818 Result
= CallInfo
.first
;
5821 ExpandOp(CallInfo
.first
, Result
, Hi
);
5827 /// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation.
5829 SDValue
SelectionDAGLegalize::
5830 LegalizeINT_TO_FP(SDValue Result
, bool isSigned
, MVT DestTy
, SDValue Op
,
5832 bool isCustom
= false;
5834 switch (getTypeAction(Op
.getValueType())) {
5836 switch (TLI
.getOperationAction(isSigned
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
5837 Op
.getValueType())) {
5838 default: assert(0 && "Unknown operation action!");
5839 case TargetLowering::Custom
:
5842 case TargetLowering::Legal
:
5843 Tmp1
= LegalizeOp(Op
);
5844 if (Result
.getNode())
5845 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
5847 Result
= DAG
.getNode(isSigned
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
, dl
,
5850 Tmp1
= TLI
.LowerOperation(Result
, DAG
);
5851 if (Tmp1
.getNode()) Result
= Tmp1
;
5854 case TargetLowering::Expand
:
5855 Result
= ExpandLegalINT_TO_FP(isSigned
, LegalizeOp(Op
), DestTy
, dl
);
5857 case TargetLowering::Promote
:
5858 Result
= PromoteLegalINT_TO_FP(LegalizeOp(Op
), DestTy
, isSigned
, dl
);
5863 Result
= ExpandIntToFP(isSigned
, DestTy
, Op
, dl
) ;
5866 Tmp1
= PromoteOp(Op
);
5868 Tmp1
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Tmp1
.getValueType(),
5869 Tmp1
, DAG
.getValueType(Op
.getValueType()));
5871 Tmp1
= DAG
.getZeroExtendInReg(Tmp1
, dl
, Op
.getValueType());
5873 if (Result
.getNode())
5874 Result
= DAG
.UpdateNodeOperands(Result
, Tmp1
);
5876 Result
= DAG
.getNode(isSigned
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
, dl
,
5878 Result
= LegalizeOp(Result
); // The 'op' is not necessarily legal!
5884 /// ExpandIntToFP - Expand a [US]INT_TO_FP operation.
5886 SDValue
SelectionDAGLegalize::
5887 ExpandIntToFP(bool isSigned
, MVT DestTy
, SDValue Source
, DebugLoc dl
) {
5888 MVT SourceVT
= Source
.getValueType();
5889 bool ExpandSource
= getTypeAction(SourceVT
) == Expand
;
5891 // Expand unsupported int-to-fp vector casts by unrolling them.
5892 if (DestTy
.isVector()) {
5894 return LegalizeOp(UnrollVectorOp(Source
));
5895 MVT DestEltTy
= DestTy
.getVectorElementType();
5896 if (DestTy
.getVectorNumElements() == 1) {
5897 SDValue Scalar
= ScalarizeVectorOp(Source
);
5898 SDValue Result
= LegalizeINT_TO_FP(SDValue(), isSigned
,
5899 DestEltTy
, Scalar
, dl
);
5900 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, DestTy
, Result
);
5903 SplitVectorOp(Source
, Lo
, Hi
);
5904 MVT SplitDestTy
= MVT::getVectorVT(DestEltTy
,
5905 DestTy
.getVectorNumElements() / 2);
5906 SDValue LoResult
= LegalizeINT_TO_FP(SDValue(), isSigned
, SplitDestTy
,
5908 SDValue HiResult
= LegalizeINT_TO_FP(SDValue(), isSigned
, SplitDestTy
,
5910 return LegalizeOp(DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestTy
, LoResult
,
5914 // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc.
5915 if (!isSigned
&& SourceVT
!= MVT::i32
) {
5916 // The integer value loaded will be incorrectly if the 'sign bit' of the
5917 // incoming integer is set. To handle this, we dynamically test to see if
5918 // it is set, and, if so, add a fudge factor.
5922 ExpandOp(Source
, Lo
, Hi
);
5923 Source
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, SourceVT
, Lo
, Hi
);
5925 // The comparison for the sign bit will use the entire operand.
5929 // Check to see if the target has a custom way to lower this. If so, use
5930 // it. (Note we've already expanded the operand in this case.)
5931 switch (TLI
.getOperationAction(ISD::UINT_TO_FP
, SourceVT
)) {
5932 default: assert(0 && "This action not implemented for this operation!");
5933 case TargetLowering::Legal
:
5934 case TargetLowering::Expand
:
5935 break; // This case is handled below.
5936 case TargetLowering::Custom
: {
5937 SDValue NV
= TLI
.LowerOperation(DAG
.getNode(ISD::UINT_TO_FP
, dl
, DestTy
,
5940 return LegalizeOp(NV
);
5941 break; // The target decided this was legal after all
5945 // If this is unsigned, and not supported, first perform the conversion to
5946 // signed, then adjust the result if the sign bit is set.
5947 SDValue SignedConv
= ExpandIntToFP(true, DestTy
, Source
, dl
);
5949 SDValue SignSet
= DAG
.getSetCC(dl
,
5950 TLI
.getSetCCResultType(Hi
.getValueType()),
5951 Hi
, DAG
.getConstant(0, Hi
.getValueType()),
5953 SDValue Zero
= DAG
.getIntPtrConstant(0), Four
= DAG
.getIntPtrConstant(4);
5954 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, dl
, Zero
.getValueType(),
5955 SignSet
, Four
, Zero
);
5956 uint64_t FF
= 0x5f800000ULL
;
5957 if (TLI
.isLittleEndian()) FF
<<= 32;
5958 Constant
*FudgeFactor
= ConstantInt::get(Type::Int64Ty
, FF
);
5960 SDValue CPIdx
= DAG
.getConstantPool(FudgeFactor
, TLI
.getPointerTy());
5961 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
5962 CPIdx
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), CPIdx
, CstOffset
);
5963 Alignment
= std::min(Alignment
, 4u);
5965 if (DestTy
== MVT::f32
)
5966 FudgeInReg
= DAG
.getLoad(MVT::f32
, dl
, DAG
.getEntryNode(), CPIdx
,
5967 PseudoSourceValue::getConstantPool(), 0,
5969 else if (DestTy
.bitsGT(MVT::f32
))
5970 // FIXME: Avoid the extend by construction the right constantpool?
5971 FudgeInReg
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestTy
, DAG
.getEntryNode(),
5973 PseudoSourceValue::getConstantPool(), 0,
5974 MVT::f32
, false, Alignment
);
5976 assert(0 && "Unexpected conversion");
5978 MVT SCVT
= SignedConv
.getValueType();
5979 if (SCVT
!= DestTy
) {
5980 // Destination type needs to be expanded as well. The FADD now we are
5981 // constructing will be expanded into a libcall.
5982 if (SCVT
.getSizeInBits() != DestTy
.getSizeInBits()) {
5983 assert(SCVT
.getSizeInBits() * 2 == DestTy
.getSizeInBits());
5984 SignedConv
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, DestTy
,
5985 SignedConv
, SignedConv
.getValue(1));
5987 SignedConv
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, DestTy
, SignedConv
);
5989 return DAG
.getNode(ISD::FADD
, dl
, DestTy
, SignedConv
, FudgeInReg
);
5992 // Check to see if the target has a custom way to lower this. If so, use it.
5993 switch (TLI
.getOperationAction(ISD::SINT_TO_FP
, SourceVT
)) {
5994 default: assert(0 && "This action not implemented for this operation!");
5995 case TargetLowering::Legal
:
5996 case TargetLowering::Expand
:
5997 break; // This case is handled below.
5998 case TargetLowering::Custom
: {
5999 SDValue NV
= TLI
.LowerOperation(DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestTy
,
6002 return LegalizeOp(NV
);
6003 break; // The target decided this was legal after all
6007 // Expand the source, then glue it back together for the call. We must expand
6008 // the source in case it is shared (this pass of legalize must traverse it).
6010 SDValue SrcLo
, SrcHi
;
6011 ExpandOp(Source
, SrcLo
, SrcHi
);
6012 Source
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, SourceVT
, SrcLo
, SrcHi
);
6015 RTLIB::Libcall LC
= isSigned
?
6016 RTLIB::getSINTTOFP(SourceVT
, DestTy
) :
6017 RTLIB::getUINTTOFP(SourceVT
, DestTy
);
6018 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unknown int value type");
6020 Source
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestTy
, Source
);
6022 SDValue Result
= ExpandLibCall(LC
, Source
.getNode(), isSigned
, HiPart
);
6023 if (Result
.getValueType() != DestTy
&& HiPart
.getNode())
6024 Result
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, DestTy
, Result
, HiPart
);
6028 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
6029 /// INT_TO_FP operation of the specified operand when the target requests that
6030 /// we expand it. At this point, we know that the result and operand types are
6031 /// legal for the target.
6032 SDValue
SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned
,
6036 if (Op0
.getValueType() == MVT::i32
) {
6037 // simple 32-bit [signed|unsigned] integer to float/double expansion
6039 // Get the stack frame index of a 8 byte buffer.
6040 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::f64
);
6042 // word offset constant for Hi/Lo address computation
6043 SDValue WordOff
= DAG
.getConstant(sizeof(int), TLI
.getPointerTy());
6044 // set up Hi and Lo (into buffer) address based on endian
6045 SDValue Hi
= StackSlot
;
6046 SDValue Lo
= DAG
.getNode(ISD::ADD
, dl
,
6047 TLI
.getPointerTy(), StackSlot
, WordOff
);
6048 if (TLI
.isLittleEndian())
6051 // if signed map to unsigned space
6054 // constant used to invert sign bit (signed to unsigned mapping)
6055 SDValue SignBit
= DAG
.getConstant(0x80000000u
, MVT::i32
);
6056 Op0Mapped
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Op0
, SignBit
);
6060 // store the lo of the constructed double - based on integer input
6061 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
,
6062 Op0Mapped
, Lo
, NULL
, 0);
6063 // initial hi portion of constructed double
6064 SDValue InitialHi
= DAG
.getConstant(0x43300000u
, MVT::i32
);
6065 // store the hi of the constructed double - biased exponent
6066 SDValue Store2
=DAG
.getStore(Store1
, dl
, InitialHi
, Hi
, NULL
, 0);
6067 // load the constructed double
6068 SDValue Load
= DAG
.getLoad(MVT::f64
, dl
, Store2
, StackSlot
, NULL
, 0);
6069 // FP constant to bias correct the final result
6070 SDValue Bias
= DAG
.getConstantFP(isSigned
?
6071 BitsToDouble(0x4330000080000000ULL
) :
6072 BitsToDouble(0x4330000000000000ULL
),
6074 // subtract the bias
6075 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Load
, Bias
);
6078 // handle final rounding
6079 if (DestVT
== MVT::f64
) {
6082 } else if (DestVT
.bitsLT(MVT::f64
)) {
6083 Result
= DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
6084 DAG
.getIntPtrConstant(0));
6085 } else if (DestVT
.bitsGT(MVT::f64
)) {
6086 Result
= DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
6090 assert(!isSigned
&& "Legalize cannot Expand SINT_TO_FP for i64 yet");
6091 SDValue Tmp1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestVT
, Op0
);
6093 SDValue SignSet
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(Op0
.getValueType()),
6094 Op0
, DAG
.getConstant(0, Op0
.getValueType()),
6096 SDValue Zero
= DAG
.getIntPtrConstant(0), Four
= DAG
.getIntPtrConstant(4);
6097 SDValue CstOffset
= DAG
.getNode(ISD::SELECT
, dl
, Zero
.getValueType(),
6098 SignSet
, Four
, Zero
);
6100 // If the sign bit of the integer is set, the large number will be treated
6101 // as a negative number. To counteract this, the dynamic code adds an
6102 // offset depending on the data type.
6104 switch (Op0
.getValueType().getSimpleVT()) {
6105 default: assert(0 && "Unsupported integer type!");
6106 case MVT::i8
: FF
= 0x43800000ULL
; break; // 2^8 (as a float)
6107 case MVT::i16
: FF
= 0x47800000ULL
; break; // 2^16 (as a float)
6108 case MVT::i32
: FF
= 0x4F800000ULL
; break; // 2^32 (as a float)
6109 case MVT::i64
: FF
= 0x5F800000ULL
; break; // 2^64 (as a float)
6111 if (TLI
.isLittleEndian()) FF
<<= 32;
6112 Constant
*FudgeFactor
= ConstantInt::get(Type::Int64Ty
, FF
);
6114 SDValue CPIdx
= DAG
.getConstantPool(FudgeFactor
, TLI
.getPointerTy());
6115 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
6116 CPIdx
= DAG
.getNode(ISD::ADD
, dl
, TLI
.getPointerTy(), CPIdx
, CstOffset
);
6117 Alignment
= std::min(Alignment
, 4u);
6119 if (DestVT
== MVT::f32
)
6120 FudgeInReg
= DAG
.getLoad(MVT::f32
, dl
, DAG
.getEntryNode(), CPIdx
,
6121 PseudoSourceValue::getConstantPool(), 0,
6125 LegalizeOp(DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
,
6126 DAG
.getEntryNode(), CPIdx
,
6127 PseudoSourceValue::getConstantPool(), 0,
6128 MVT::f32
, false, Alignment
));
6131 return DAG
.getNode(ISD::FADD
, dl
, DestVT
, Tmp1
, FudgeInReg
);
6134 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
6135 /// *INT_TO_FP operation of the specified operand when the target requests that
6136 /// we promote it. At this point, we know that the result and operand types are
6137 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
6138 /// operation that takes a larger input.
6139 SDValue
SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp
,
6143 // First step, figure out the appropriate *INT_TO_FP operation to use.
6144 MVT NewInTy
= LegalOp
.getValueType();
6146 unsigned OpToUse
= 0;
6148 // Scan for the appropriate larger type to use.
6150 NewInTy
= (MVT::SimpleValueType
)(NewInTy
.getSimpleVT()+1);
6151 assert(NewInTy
.isInteger() && "Ran out of possibilities!");
6153 // If the target supports SINT_TO_FP of this type, use it.
6154 switch (TLI
.getOperationAction(ISD::SINT_TO_FP
, NewInTy
)) {
6156 case TargetLowering::Legal
:
6157 if (!TLI
.isTypeLegal(NewInTy
))
6158 break; // Can't use this datatype.
6160 case TargetLowering::Custom
:
6161 OpToUse
= ISD::SINT_TO_FP
;
6165 if (isSigned
) continue;
6167 // If the target supports UINT_TO_FP of this type, use it.
6168 switch (TLI
.getOperationAction(ISD::UINT_TO_FP
, NewInTy
)) {
6170 case TargetLowering::Legal
:
6171 if (!TLI
.isTypeLegal(NewInTy
))
6172 break; // Can't use this datatype.
6174 case TargetLowering::Custom
:
6175 OpToUse
= ISD::UINT_TO_FP
;
6180 // Otherwise, try a larger type.
6183 // Okay, we found the operation and type to use. Zero extend our input to the
6184 // desired type then run the operation on it.
6185 return DAG
.getNode(OpToUse
, dl
, DestVT
,
6186 DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
6187 dl
, NewInTy
, LegalOp
));
6190 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
6191 /// FP_TO_*INT operation of the specified operand when the target requests that
6192 /// we promote it. At this point, we know that the result and operand types are
6193 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
6194 /// operation that returns a larger result.
6195 SDValue
SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp
,
6199 // First step, figure out the appropriate FP_TO*INT operation to use.
6200 MVT NewOutTy
= DestVT
;
6202 unsigned OpToUse
= 0;
6204 // Scan for the appropriate larger type to use.
6206 NewOutTy
= (MVT::SimpleValueType
)(NewOutTy
.getSimpleVT()+1);
6207 assert(NewOutTy
.isInteger() && "Ran out of possibilities!");
6209 // If the target supports FP_TO_SINT returning this type, use it.
6210 switch (TLI
.getOperationAction(ISD::FP_TO_SINT
, NewOutTy
)) {
6212 case TargetLowering::Legal
:
6213 if (!TLI
.isTypeLegal(NewOutTy
))
6214 break; // Can't use this datatype.
6216 case TargetLowering::Custom
:
6217 OpToUse
= ISD::FP_TO_SINT
;
6222 // If the target supports FP_TO_UINT of this type, use it.
6223 switch (TLI
.getOperationAction(ISD::FP_TO_UINT
, NewOutTy
)) {
6225 case TargetLowering::Legal
:
6226 if (!TLI
.isTypeLegal(NewOutTy
))
6227 break; // Can't use this datatype.
6229 case TargetLowering::Custom
:
6230 OpToUse
= ISD::FP_TO_UINT
;
6235 // Otherwise, try a larger type.
6239 // Okay, we found the operation and type to use.
6240 SDValue Operation
= DAG
.getNode(OpToUse
, dl
, NewOutTy
, LegalOp
);
6242 // If the operation produces an invalid type, it must be custom lowered. Use
6243 // the target lowering hooks to expand it. Just keep the low part of the
6244 // expanded operation, we know that we're truncating anyway.
6245 if (getTypeAction(NewOutTy
) == Expand
) {
6246 SmallVector
<SDValue
, 2> Results
;
6247 TLI
.ReplaceNodeResults(Operation
.getNode(), Results
, DAG
);
6248 assert(Results
.size() == 1 && "Incorrect FP_TO_XINT lowering!");
6249 Operation
= Results
[0];
6252 // Truncate the result of the extended FP_TO_*INT operation to the desired
6254 return DAG
.getNode(ISD::TRUNCATE
, dl
, DestVT
, Operation
);
6257 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
6259 SDValue
SelectionDAGLegalize::ExpandBSWAP(SDValue Op
, DebugLoc dl
) {
6260 MVT VT
= Op
.getValueType();
6261 MVT SHVT
= TLI
.getShiftAmountTy();
6262 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
, Tmp5
, Tmp6
, Tmp7
, Tmp8
;
6263 switch (VT
.getSimpleVT()) {
6264 default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
6266 Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6267 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6268 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
6270 Tmp4
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
6271 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6272 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6273 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
6274 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
, DAG
.getConstant(0xFF0000, VT
));
6275 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(0xFF00, VT
));
6276 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
6277 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
6278 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
6280 Tmp8
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(56, SHVT
));
6281 Tmp7
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(40, SHVT
));
6282 Tmp6
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
6283 Tmp5
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6284 Tmp4
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, SHVT
));
6285 Tmp3
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, SHVT
));
6286 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(40, SHVT
));
6287 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(56, SHVT
));
6288 Tmp7
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp7
, DAG
.getConstant(255ULL<<48, VT
));
6289 Tmp6
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp6
, DAG
.getConstant(255ULL<<40, VT
));
6290 Tmp5
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp5
, DAG
.getConstant(255ULL<<32, VT
));
6291 Tmp4
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp4
, DAG
.getConstant(255ULL<<24, VT
));
6292 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
, DAG
.getConstant(255ULL<<16, VT
));
6293 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(255ULL<<8 , VT
));
6294 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp7
);
6295 Tmp6
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp6
, Tmp5
);
6296 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
6297 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
6298 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp6
);
6299 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
6300 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp4
);
6304 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
6306 SDValue
SelectionDAGLegalize::ExpandBitCount(unsigned Opc
, SDValue Op
,
6309 default: assert(0 && "Cannot expand this yet!");
6311 static const uint64_t mask
[6] = {
6312 0x5555555555555555ULL
, 0x3333333333333333ULL
,
6313 0x0F0F0F0F0F0F0F0FULL
, 0x00FF00FF00FF00FFULL
,
6314 0x0000FFFF0000FFFFULL
, 0x00000000FFFFFFFFULL
6316 MVT VT
= Op
.getValueType();
6317 MVT ShVT
= TLI
.getShiftAmountTy();
6318 unsigned len
= VT
.getSizeInBits();
6319 for (unsigned i
= 0; (1U << i
) <= (len
/ 2); ++i
) {
6320 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
6321 unsigned EltSize
= VT
.isVector() ?
6322 VT
.getVectorElementType().getSizeInBits() : len
;
6323 SDValue Tmp2
= DAG
.getConstant(APInt(EltSize
, mask
[i
]), VT
);
6324 SDValue Tmp3
= DAG
.getConstant(1ULL << i
, ShVT
);
6325 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
,
6326 DAG
.getNode(ISD::AND
, dl
, VT
, Op
, Tmp2
),
6327 DAG
.getNode(ISD::AND
, dl
, VT
,
6328 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp3
),
6334 // for now, we do this:
6335 // x = x | (x >> 1);
6336 // x = x | (x >> 2);
6338 // x = x | (x >>16);
6339 // x = x | (x >>32); // for 64-bit input
6340 // return popcount(~x);
6342 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
6343 MVT VT
= Op
.getValueType();
6344 MVT ShVT
= TLI
.getShiftAmountTy();
6345 unsigned len
= VT
.getSizeInBits();
6346 for (unsigned i
= 0; (1U << i
) <= (len
/ 2); ++i
) {
6347 SDValue Tmp3
= DAG
.getConstant(1ULL << i
, ShVT
);
6348 Op
= DAG
.getNode(ISD::OR
, dl
, VT
, Op
,
6349 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp3
));
6351 Op
= DAG
.getNOT(dl
, Op
, VT
);
6352 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Op
);
6355 // for now, we use: { return popcount(~x & (x - 1)); }
6356 // unless the target has ctlz but not ctpop, in which case we use:
6357 // { return 32 - nlz(~x & (x-1)); }
6358 // see also http://www.hackersdelight.org/HDcode/ntz.cc
6359 MVT VT
= Op
.getValueType();
6360 SDValue Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
,
6361 DAG
.getNOT(dl
, Op
, VT
),
6362 DAG
.getNode(ISD::SUB
, dl
, VT
, Op
,
6363 DAG
.getConstant(1, VT
)));
6364 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6365 if (!TLI
.isOperationLegalOrCustom(ISD::CTPOP
, VT
) &&
6366 TLI
.isOperationLegalOrCustom(ISD::CTLZ
, VT
))
6367 return DAG
.getNode(ISD::SUB
, dl
, VT
,
6368 DAG
.getConstant(VT
.getSizeInBits(), VT
),
6369 DAG
.getNode(ISD::CTLZ
, dl
, VT
, Tmp3
));
6370 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Tmp3
);
6375 /// ExpandOp - Expand the specified SDValue into its two component pieces
6376 /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the
6377 /// LegalizedNodes map is filled in for any results that are not expanded, the
6378 /// ExpandedNodes map is filled in for any results that are expanded, and the
6379 /// Lo/Hi values are returned.
6380 void SelectionDAGLegalize::ExpandOp(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
){
6381 MVT VT
= Op
.getValueType();
6382 MVT NVT
= TLI
.getTypeToTransformTo(VT
);
6383 SDNode
*Node
= Op
.getNode();
6384 DebugLoc dl
= Node
->getDebugLoc();
6385 assert(getTypeAction(VT
) == Expand
&& "Not an expanded type!");
6386 assert(((NVT
.isInteger() && NVT
.bitsLT(VT
)) || VT
.isFloatingPoint() ||
6387 VT
.isVector()) && "Cannot expand to FP value or to larger int value!");
6389 // See if we already expanded it.
6390 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> >::iterator I
6391 = ExpandedNodes
.find(Op
);
6392 if (I
!= ExpandedNodes
.end()) {
6393 Lo
= I
->second
.first
;
6394 Hi
= I
->second
.second
;
6398 switch (Node
->getOpcode()) {
6399 case ISD::CopyFromReg
:
6400 assert(0 && "CopyFromReg must be legal!");
6401 case ISD::FP_ROUND_INREG
:
6402 if (VT
== MVT::ppcf128
&&
6403 TLI
.getOperationAction(ISD::FP_ROUND_INREG
, VT
) ==
6404 TargetLowering::Custom
) {
6405 SDValue SrcLo
, SrcHi
, Src
;
6406 ExpandOp(Op
.getOperand(0), SrcLo
, SrcHi
);
6407 Src
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, SrcLo
, SrcHi
);
6409 TLI
.LowerOperation(DAG
.getNode(ISD::FP_ROUND_INREG
, dl
, VT
, Src
,
6410 Op
.getOperand(1)), DAG
);
6411 assert(Result
.getNode()->getOpcode() == ISD::BUILD_PAIR
);
6412 Lo
= Result
.getNode()->getOperand(0);
6413 Hi
= Result
.getNode()->getOperand(1);
6419 cerr
<< "NODE: "; Node
->dump(&DAG
); cerr
<< "\n";
6421 assert(0 && "Do not know how to expand this operator!");
6423 case ISD::EXTRACT_ELEMENT
:
6424 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6425 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue())
6426 return ExpandOp(Hi
, Lo
, Hi
);
6427 return ExpandOp(Lo
, Lo
, Hi
);
6428 case ISD::EXTRACT_VECTOR_ELT
:
6429 // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types.
6430 Lo
= ExpandEXTRACT_VECTOR_ELT(Op
);
6431 return ExpandOp(Lo
, Lo
, Hi
);
6433 Lo
= DAG
.getUNDEF(NVT
);
6434 Hi
= DAG
.getUNDEF(NVT
);
6436 case ISD::Constant
: {
6437 unsigned NVTBits
= NVT
.getSizeInBits();
6438 const APInt
&Cst
= cast
<ConstantSDNode
>(Node
)->getAPIntValue();
6439 Lo
= DAG
.getConstant(APInt(Cst
).trunc(NVTBits
), NVT
);
6440 Hi
= DAG
.getConstant(Cst
.lshr(NVTBits
).trunc(NVTBits
), NVT
);
6443 case ISD::ConstantFP
: {
6444 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Node
);
6445 if (CFP
->getValueType(0) == MVT::ppcf128
) {
6446 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
6447 Lo
= DAG
.getConstantFP(APFloat(APInt(64, 1, &api
.getRawData()[1])),
6449 Hi
= DAG
.getConstantFP(APFloat(APInt(64, 1, &api
.getRawData()[0])),
6453 Lo
= ExpandConstantFP(CFP
, false, DAG
, TLI
);
6454 if (getTypeAction(Lo
.getValueType()) == Expand
)
6455 ExpandOp(Lo
, Lo
, Hi
);
6458 case ISD::BUILD_PAIR
:
6459 // Return the operands.
6460 Lo
= Node
->getOperand(0);
6461 Hi
= Node
->getOperand(1);
6464 case ISD::MERGE_VALUES
:
6465 if (Node
->getNumValues() == 1) {
6466 ExpandOp(Op
.getOperand(0), Lo
, Hi
);
6469 // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y)
6470 assert(Op
.getResNo() == 0 && Node
->getNumValues() == 2 &&
6471 Op
.getValue(1).getValueType() == MVT::Other
&&
6472 "unhandled MERGE_VALUES");
6473 ExpandOp(Op
.getOperand(0), Lo
, Hi
);
6474 // Remember that we legalized the chain.
6475 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Op
.getOperand(1)));
6478 case ISD::SIGN_EXTEND_INREG
:
6479 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6480 // sext_inreg the low part if needed.
6481 Lo
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, NVT
, Lo
, Node
->getOperand(1));
6483 // The high part gets the sign extension from the lo-part. This handles
6484 // things like sextinreg V:i64 from i8.
6485 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
6486 DAG
.getConstant(NVT
.getSizeInBits()-1,
6487 TLI
.getShiftAmountTy()));
6491 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6492 SDValue TempLo
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Hi
);
6493 Hi
= DAG
.getNode(ISD::BSWAP
, dl
, NVT
, Lo
);
6499 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6500 Lo
= DAG
.getNode(ISD::ADD
, dl
, NVT
, // ctpop(HL) -> ctpop(H)+ctpop(L)
6501 DAG
.getNode(ISD::CTPOP
, dl
, NVT
, Lo
),
6502 DAG
.getNode(ISD::CTPOP
, dl
, NVT
, Hi
));
6503 Hi
= DAG
.getConstant(0, NVT
);
6507 // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32)
6508 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6509 SDValue BitsC
= DAG
.getConstant(NVT
.getSizeInBits(), NVT
);
6510 SDValue HLZ
= DAG
.getNode(ISD::CTLZ
, dl
, NVT
, Hi
);
6511 SDValue TopNotZero
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
), HLZ
,
6513 SDValue LowPart
= DAG
.getNode(ISD::CTLZ
, dl
, NVT
, Lo
);
6514 LowPart
= DAG
.getNode(ISD::ADD
, dl
, NVT
, LowPart
, BitsC
);
6516 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, TopNotZero
, HLZ
, LowPart
);
6517 Hi
= DAG
.getConstant(0, NVT
);
6522 // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32)
6523 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6524 SDValue BitsC
= DAG
.getConstant(NVT
.getSizeInBits(), NVT
);
6525 SDValue LTZ
= DAG
.getNode(ISD::CTTZ
, dl
, NVT
, Lo
);
6526 SDValue BotNotZero
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
), LTZ
,
6528 SDValue HiPart
= DAG
.getNode(ISD::CTTZ
, dl
, NVT
, Hi
);
6529 HiPart
= DAG
.getNode(ISD::ADD
, dl
, NVT
, HiPart
, BitsC
);
6531 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, BotNotZero
, LTZ
, HiPart
);
6532 Hi
= DAG
.getConstant(0, NVT
);
6537 SDValue Ch
= Node
->getOperand(0); // Legalize the chain.
6538 SDValue Ptr
= Node
->getOperand(1); // Legalize the pointer.
6539 Lo
= DAG
.getVAArg(NVT
, dl
, Ch
, Ptr
, Node
->getOperand(2));
6540 Hi
= DAG
.getVAArg(NVT
, dl
, Lo
.getValue(1), Ptr
, Node
->getOperand(2));
6542 // Remember that we legalized the chain.
6543 Hi
= LegalizeOp(Hi
);
6544 AddLegalizedOperand(Op
.getValue(1), Hi
.getValue(1));
6545 if (TLI
.isBigEndian())
6551 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
6552 SDValue Ch
= LD
->getChain(); // Legalize the chain.
6553 SDValue Ptr
= LD
->getBasePtr(); // Legalize the pointer.
6554 ISD::LoadExtType ExtType
= LD
->getExtensionType();
6555 const Value
*SV
= LD
->getSrcValue();
6556 int SVOffset
= LD
->getSrcValueOffset();
6557 unsigned Alignment
= LD
->getAlignment();
6558 bool isVolatile
= LD
->isVolatile();
6560 if (ExtType
== ISD::NON_EXTLOAD
) {
6561 Lo
= DAG
.getLoad(NVT
, dl
, Ch
, Ptr
, SV
, SVOffset
,
6562 isVolatile
, Alignment
);
6563 if (VT
== MVT::f32
|| VT
== MVT::f64
) {
6564 // f32->i32 or f64->i64 one to one expansion.
6565 // Remember that we legalized the chain.
6566 AddLegalizedOperand(SDValue(Node
, 1), LegalizeOp(Lo
.getValue(1)));
6567 // Recursively expand the new load.
6568 if (getTypeAction(NVT
) == Expand
)
6569 ExpandOp(Lo
, Lo
, Hi
);
6573 // Increment the pointer to the other half.
6574 unsigned IncrementSize
= Lo
.getValueType().getSizeInBits()/8;
6575 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
6576 DAG
.getIntPtrConstant(IncrementSize
));
6577 SVOffset
+= IncrementSize
;
6578 Alignment
= MinAlign(Alignment
, IncrementSize
);
6579 Hi
= DAG
.getLoad(NVT
, dl
, Ch
, Ptr
, SV
, SVOffset
,
6580 isVolatile
, Alignment
);
6582 // Build a factor node to remember that this load is independent of the
6584 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
6587 // Remember that we legalized the chain.
6588 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(TF
));
6589 if (TLI
.isBigEndian())
6592 MVT EVT
= LD
->getMemoryVT();
6594 if ((VT
== MVT::f64
&& EVT
== MVT::f32
) ||
6595 (VT
== MVT::ppcf128
&& (EVT
==MVT::f64
|| EVT
==MVT::f32
))) {
6596 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
6597 SDValue Load
= DAG
.getLoad(EVT
, dl
, Ch
, Ptr
, SV
,
6598 SVOffset
, isVolatile
, Alignment
);
6599 // Remember that we legalized the chain.
6600 AddLegalizedOperand(SDValue(Node
, 1), LegalizeOp(Load
.getValue(1)));
6601 ExpandOp(DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Load
), Lo
, Hi
);
6606 Lo
= DAG
.getLoad(NVT
, dl
, Ch
, Ptr
, SV
,
6607 SVOffset
, isVolatile
, Alignment
);
6609 Lo
= DAG
.getExtLoad(ExtType
, dl
, NVT
, Ch
, Ptr
, SV
,
6610 SVOffset
, EVT
, isVolatile
,
6613 // Remember that we legalized the chain.
6614 AddLegalizedOperand(SDValue(Node
, 1), LegalizeOp(Lo
.getValue(1)));
6616 if (ExtType
== ISD::SEXTLOAD
) {
6617 // The high part is obtained by SRA'ing all but one of the bits of the
6619 unsigned LoSize
= Lo
.getValueType().getSizeInBits();
6620 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
6621 DAG
.getConstant(LoSize
-1, TLI
.getShiftAmountTy()));
6622 } else if (ExtType
== ISD::ZEXTLOAD
) {
6623 // The high part is just a zero.
6624 Hi
= DAG
.getConstant(0, NVT
);
6625 } else /* if (ExtType == ISD::EXTLOAD) */ {
6626 // The high part is undefined.
6627 Hi
= DAG
.getUNDEF(NVT
);
6634 case ISD::XOR
: { // Simple logical operators -> two trivial pieces.
6635 SDValue LL
, LH
, RL
, RH
;
6636 ExpandOp(Node
->getOperand(0), LL
, LH
);
6637 ExpandOp(Node
->getOperand(1), RL
, RH
);
6638 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, LL
, RL
);
6639 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, LH
, RH
);
6643 SDValue LL
, LH
, RL
, RH
;
6644 ExpandOp(Node
->getOperand(1), LL
, LH
);
6645 ExpandOp(Node
->getOperand(2), RL
, RH
);
6646 if (getTypeAction(NVT
) == Expand
)
6647 NVT
= TLI
.getTypeToExpandTo(NVT
);
6648 Lo
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Node
->getOperand(0), LL
, RL
);
6650 Hi
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Node
->getOperand(0), LH
, RH
);
6653 case ISD::SELECT_CC
: {
6654 SDValue TL
, TH
, FL
, FH
;
6655 ExpandOp(Node
->getOperand(2), TL
, TH
);
6656 ExpandOp(Node
->getOperand(3), FL
, FH
);
6657 if (getTypeAction(NVT
) == Expand
)
6658 NVT
= TLI
.getTypeToExpandTo(NVT
);
6659 Lo
= DAG
.getNode(ISD::SELECT_CC
, dl
, NVT
, Node
->getOperand(0),
6660 Node
->getOperand(1), TL
, FL
, Node
->getOperand(4));
6662 Hi
= DAG
.getNode(ISD::SELECT_CC
, dl
, NVT
, Node
->getOperand(0),
6663 Node
->getOperand(1), TH
, FH
, Node
->getOperand(4));
6666 case ISD::ANY_EXTEND
:
6667 // The low part is any extension of the input (which degenerates to a copy).
6668 Lo
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, NVT
, Node
->getOperand(0));
6669 // The high part is undefined.
6670 Hi
= DAG
.getUNDEF(NVT
);
6672 case ISD::SIGN_EXTEND
: {
6673 // The low part is just a sign extension of the input (which degenerates to
6675 Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, NVT
, Node
->getOperand(0));
6677 // The high part is obtained by SRA'ing all but one of the bits of the lo
6679 unsigned LoSize
= Lo
.getValueType().getSizeInBits();
6680 Hi
= DAG
.getNode(ISD::SRA
, dl
, NVT
, Lo
,
6681 DAG
.getConstant(LoSize
-1, TLI
.getShiftAmountTy()));
6684 case ISD::ZERO_EXTEND
:
6685 // The low part is just a zero extension of the input (which degenerates to
6687 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
6689 // The high part is just a zero.
6690 Hi
= DAG
.getConstant(0, NVT
);
6693 case ISD::TRUNCATE
: {
6694 // The input value must be larger than this value. Expand *it*.
6696 ExpandOp(Node
->getOperand(0), NewLo
, Hi
);
6698 // The low part is now either the right size, or it is closer. If not the
6699 // right size, make an illegal truncate so we recursively expand it.
6700 if (NewLo
.getValueType() != Node
->getValueType(0))
6701 NewLo
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), NewLo
);
6702 ExpandOp(NewLo
, Lo
, Hi
);
6706 case ISD::BIT_CONVERT
: {
6708 if (TLI
.getOperationAction(ISD::BIT_CONVERT
, VT
) == TargetLowering::Custom
){
6709 // If the target wants to, allow it to lower this itself.
6710 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
6711 case Expand
: assert(0 && "cannot expand FP!");
6712 case Legal
: Tmp
= LegalizeOp(Node
->getOperand(0)); break;
6713 case Promote
: Tmp
= PromoteOp (Node
->getOperand(0)); break;
6715 Tmp
= TLI
.LowerOperation(DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Tmp
), DAG
);
6718 // f32 / f64 must be expanded to i32 / i64.
6719 if (VT
== MVT::f32
|| VT
== MVT::f64
) {
6720 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
6721 if (getTypeAction(NVT
) == Expand
)
6722 ExpandOp(Lo
, Lo
, Hi
);
6726 // If source operand will be expanded to the same type as VT, i.e.
6727 // i64 <- f64, i32 <- f32, expand the source operand instead.
6728 MVT VT0
= Node
->getOperand(0).getValueType();
6729 if (getTypeAction(VT0
) == Expand
&& TLI
.getTypeToTransformTo(VT0
) == VT
) {
6730 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
6734 // Turn this into a load/store pair by default.
6735 if (Tmp
.getNode() == 0)
6736 Tmp
= EmitStackConvert(Node
->getOperand(0), VT
, VT
, dl
);
6738 ExpandOp(Tmp
, Lo
, Hi
);
6742 case ISD::READCYCLECOUNTER
: {
6743 assert(TLI
.getOperationAction(ISD::READCYCLECOUNTER
, VT
) ==
6744 TargetLowering::Custom
&&
6745 "Must custom expand ReadCycleCounter");
6746 SDValue Tmp
= TLI
.LowerOperation(Op
, DAG
);
6747 assert(Tmp
.getNode() && "Node must be custom expanded!");
6748 ExpandOp(Tmp
.getValue(0), Lo
, Hi
);
6749 AddLegalizedOperand(SDValue(Node
, 1), // Remember we legalized the chain.
6750 LegalizeOp(Tmp
.getValue(1)));
6754 case ISD::ATOMIC_CMP_SWAP
: {
6755 // This operation does not need a loop.
6756 SDValue Tmp
= TLI
.LowerOperation(Op
, DAG
);
6757 assert(Tmp
.getNode() && "Node must be custom expanded!");
6758 ExpandOp(Tmp
.getValue(0), Lo
, Hi
);
6759 AddLegalizedOperand(SDValue(Node
, 1), // Remember we legalized the chain.
6760 LegalizeOp(Tmp
.getValue(1)));
6764 case ISD::ATOMIC_LOAD_ADD
:
6765 case ISD::ATOMIC_LOAD_SUB
:
6766 case ISD::ATOMIC_LOAD_AND
:
6767 case ISD::ATOMIC_LOAD_OR
:
6768 case ISD::ATOMIC_LOAD_XOR
:
6769 case ISD::ATOMIC_LOAD_NAND
:
6770 case ISD::ATOMIC_SWAP
: {
6771 // These operations require a loop to be generated. We can't do that yet,
6772 // so substitute a target-dependent pseudo and expand that later.
6773 SDValue In2Lo
, In2Hi
, In2
;
6774 ExpandOp(Op
.getOperand(2), In2Lo
, In2Hi
);
6775 In2
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, In2Lo
, In2Hi
);
6776 AtomicSDNode
* Anode
= cast
<AtomicSDNode
>(Node
);
6778 DAG
.getAtomic(Op
.getOpcode(), dl
, Anode
->getMemoryVT(),
6779 Op
.getOperand(0), Op
.getOperand(1), In2
,
6780 Anode
->getSrcValue(), Anode
->getAlignment());
6781 SDValue Result
= TLI
.LowerOperation(Replace
, DAG
);
6782 ExpandOp(Result
.getValue(0), Lo
, Hi
);
6783 // Remember that we legalized the chain.
6784 AddLegalizedOperand(SDValue(Node
, 1), LegalizeOp(Result
.getValue(1)));
6788 // These operators cannot be expanded directly, emit them as calls to
6789 // library functions.
6790 case ISD::FP_TO_SINT
: {
6791 if (TLI
.getOperationAction(ISD::FP_TO_SINT
, VT
) == TargetLowering::Custom
) {
6793 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
6794 case Expand
: assert(0 && "cannot expand FP!");
6795 case Legal
: Op
= LegalizeOp(Node
->getOperand(0)); break;
6796 case Promote
: Op
= PromoteOp (Node
->getOperand(0)); break;
6799 Op
= TLI
.LowerOperation(DAG
.getNode(ISD::FP_TO_SINT
, dl
, VT
, Op
), DAG
);
6801 // Now that the custom expander is done, expand the result, which is still
6804 ExpandOp(Op
, Lo
, Hi
);
6809 RTLIB::Libcall LC
= RTLIB::getFPTOSINT(Node
->getOperand(0).getValueType(),
6811 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected uint-to-fp conversion!");
6812 Lo
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Hi
);
6816 case ISD::FP_TO_UINT
: {
6817 if (TLI
.getOperationAction(ISD::FP_TO_UINT
, VT
) == TargetLowering::Custom
) {
6819 switch (getTypeAction(Node
->getOperand(0).getValueType())) {
6820 case Expand
: assert(0 && "cannot expand FP!");
6821 case Legal
: Op
= LegalizeOp(Node
->getOperand(0)); break;
6822 case Promote
: Op
= PromoteOp (Node
->getOperand(0)); break;
6825 Op
= TLI
.LowerOperation(DAG
.getNode(ISD::FP_TO_UINT
, dl
, VT
, Op
), DAG
);
6827 // Now that the custom expander is done, expand the result.
6829 ExpandOp(Op
, Lo
, Hi
);
6834 RTLIB::Libcall LC
= RTLIB::getFPTOUINT(Node
->getOperand(0).getValueType(),
6836 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected fp-to-uint conversion!");
6837 Lo
= ExpandLibCall(LC
, Node
, false/*sign irrelevant*/, Hi
);
6842 // If the target wants custom lowering, do so.
6843 SDValue ShiftAmt
= LegalizeOp(Node
->getOperand(1));
6844 if (TLI
.getOperationAction(ISD::SHL
, VT
) == TargetLowering::Custom
) {
6845 SDValue Op
= DAG
.getNode(ISD::SHL
, dl
, VT
, Node
->getOperand(0), ShiftAmt
);
6846 Op
= TLI
.LowerOperation(Op
, DAG
);
6848 // Now that the custom expander is done, expand the result, which is
6850 ExpandOp(Op
, Lo
, Hi
);
6855 // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit
6856 // this X << 1 as X+X.
6857 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(ShiftAmt
)) {
6858 if (ShAmt
->getAPIntValue() == 1 &&
6859 TLI
.isOperationLegalOrCustom(ISD::ADDC
, NVT
) &&
6860 TLI
.isOperationLegalOrCustom(ISD::ADDE
, NVT
)) {
6861 SDValue LoOps
[2], HiOps
[3];
6862 ExpandOp(Node
->getOperand(0), LoOps
[0], HiOps
[0]);
6863 SDVTList VTList
= DAG
.getVTList(LoOps
[0].getValueType(), MVT::Flag
);
6864 LoOps
[1] = LoOps
[0];
6865 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
6867 HiOps
[1] = HiOps
[0];
6868 HiOps
[2] = Lo
.getValue(1);
6869 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
6874 // If we can emit an efficient shift operation, do so now.
6875 if (ExpandShift(ISD::SHL
, Node
->getOperand(0), ShiftAmt
, Lo
, Hi
, dl
))
6878 // If this target supports SHL_PARTS, use it.
6879 TargetLowering::LegalizeAction Action
=
6880 TLI
.getOperationAction(ISD::SHL_PARTS
, NVT
);
6881 if ((Action
== TargetLowering::Legal
&& TLI
.isTypeLegal(NVT
)) ||
6882 Action
== TargetLowering::Custom
) {
6883 ExpandShiftParts(ISD::SHL_PARTS
, Node
->getOperand(0),
6884 ShiftAmt
, Lo
, Hi
, dl
);
6888 // Otherwise, emit a libcall.
6889 Lo
= ExpandLibCall(RTLIB::SHL_I64
, Node
, false/*left shift=unsigned*/, Hi
);
6894 // If the target wants custom lowering, do so.
6895 SDValue ShiftAmt
= LegalizeOp(Node
->getOperand(1));
6896 if (TLI
.getOperationAction(ISD::SRA
, VT
) == TargetLowering::Custom
) {
6897 SDValue Op
= DAG
.getNode(ISD::SRA
, dl
, VT
, Node
->getOperand(0), ShiftAmt
);
6898 Op
= TLI
.LowerOperation(Op
, DAG
);
6900 // Now that the custom expander is done, expand the result, which is
6902 ExpandOp(Op
, Lo
, Hi
);
6907 // If we can emit an efficient shift operation, do so now.
6908 if (ExpandShift(ISD::SRA
, Node
->getOperand(0), ShiftAmt
, Lo
, Hi
, dl
))
6911 // If this target supports SRA_PARTS, use it.
6912 TargetLowering::LegalizeAction Action
=
6913 TLI
.getOperationAction(ISD::SRA_PARTS
, NVT
);
6914 if ((Action
== TargetLowering::Legal
&& TLI
.isTypeLegal(NVT
)) ||
6915 Action
== TargetLowering::Custom
) {
6916 ExpandShiftParts(ISD::SRA_PARTS
, Node
->getOperand(0),
6917 ShiftAmt
, Lo
, Hi
, dl
);
6921 // Otherwise, emit a libcall.
6922 Lo
= ExpandLibCall(RTLIB::SRA_I64
, Node
, true/*ashr is signed*/, Hi
);
6927 // If the target wants custom lowering, do so.
6928 SDValue ShiftAmt
= LegalizeOp(Node
->getOperand(1));
6929 if (TLI
.getOperationAction(ISD::SRL
, VT
) == TargetLowering::Custom
) {
6930 SDValue Op
= DAG
.getNode(ISD::SRL
, dl
, VT
, Node
->getOperand(0), ShiftAmt
);
6931 Op
= TLI
.LowerOperation(Op
, DAG
);
6933 // Now that the custom expander is done, expand the result, which is
6935 ExpandOp(Op
, Lo
, Hi
);
6940 // If we can emit an efficient shift operation, do so now.
6941 if (ExpandShift(ISD::SRL
, Node
->getOperand(0), ShiftAmt
, Lo
, Hi
, dl
))
6944 // If this target supports SRL_PARTS, use it.
6945 TargetLowering::LegalizeAction Action
=
6946 TLI
.getOperationAction(ISD::SRL_PARTS
, NVT
);
6947 if ((Action
== TargetLowering::Legal
&& TLI
.isTypeLegal(NVT
)) ||
6948 Action
== TargetLowering::Custom
) {
6949 ExpandShiftParts(ISD::SRL_PARTS
,
6950 Node
->getOperand(0), ShiftAmt
, Lo
, Hi
, dl
);
6954 // Otherwise, emit a libcall.
6955 Lo
= ExpandLibCall(RTLIB::SRL_I64
, Node
, false/*lshr is unsigned*/, Hi
);
6961 // If the target wants to custom expand this, let them.
6962 if (TLI
.getOperationAction(Node
->getOpcode(), VT
) ==
6963 TargetLowering::Custom
) {
6964 SDValue Result
= TLI
.LowerOperation(Op
, DAG
);
6965 if (Result
.getNode()) {
6966 ExpandOp(Result
, Lo
, Hi
);
6970 // Expand the subcomponents.
6971 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
6972 ExpandOp(Node
->getOperand(0), LHSL
, LHSH
);
6973 ExpandOp(Node
->getOperand(1), RHSL
, RHSH
);
6974 SDValue LoOps
[2], HiOps
[3];
6980 //cascaded check to see if any smaller size has a a carry flag.
6981 unsigned OpV
= Node
->getOpcode() == ISD::ADD
? ISD::ADDC
: ISD::SUBC
;
6982 bool hasCarry
= false;
6983 for (unsigned BitSize
= NVT
.getSizeInBits(); BitSize
!= 0; BitSize
/= 2) {
6984 MVT AVT
= MVT::getIntegerVT(BitSize
);
6985 if (TLI
.isOperationLegalOrCustom(OpV
, AVT
)) {
6992 SDVTList VTList
= DAG
.getVTList(LHSL
.getValueType(), MVT::Flag
);
6993 if (Node
->getOpcode() == ISD::ADD
) {
6994 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
6995 HiOps
[2] = Lo
.getValue(1);
6996 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
6998 Lo
= DAG
.getNode(ISD::SUBC
, dl
, VTList
, LoOps
, 2);
6999 HiOps
[2] = Lo
.getValue(1);
7000 Hi
= DAG
.getNode(ISD::SUBE
, dl
, VTList
, HiOps
, 3);
7004 if (Node
->getOpcode() == ISD::ADD
) {
7005 Lo
= DAG
.getNode(ISD::ADD
, dl
, NVT
, LoOps
, 2);
7006 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, HiOps
, 2);
7007 SDValue Cmp1
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
),
7008 Lo
, LoOps
[0], ISD::SETULT
);
7009 SDValue Carry1
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp1
,
7010 DAG
.getConstant(1, NVT
),
7011 DAG
.getConstant(0, NVT
));
7012 SDValue Cmp2
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(NVT
),
7013 Lo
, LoOps
[1], ISD::SETULT
);
7014 SDValue Carry2
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp2
,
7015 DAG
.getConstant(1, NVT
),
7017 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, Carry2
);
7019 Lo
= DAG
.getNode(ISD::SUB
, dl
, NVT
, LoOps
, 2);
7020 Hi
= DAG
.getNode(ISD::SUB
, dl
, NVT
, HiOps
, 2);
7021 SDValue Cmp
= DAG
.getSetCC(dl
, NVT
, LoOps
[0], LoOps
[1], ISD::SETULT
);
7022 SDValue Borrow
= DAG
.getNode(ISD::SELECT
, dl
, NVT
, Cmp
,
7023 DAG
.getConstant(1, NVT
),
7024 DAG
.getConstant(0, NVT
));
7025 Hi
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Hi
, Borrow
);
7033 // Expand the subcomponents.
7034 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
7035 ExpandOp(Node
->getOperand(0), LHSL
, LHSH
);
7036 ExpandOp(Node
->getOperand(1), RHSL
, RHSH
);
7037 SDVTList VTList
= DAG
.getVTList(LHSL
.getValueType(), MVT::Flag
);
7038 SDValue LoOps
[2] = { LHSL
, RHSL
};
7039 SDValue HiOps
[3] = { LHSH
, RHSH
};
7041 if (Node
->getOpcode() == ISD::ADDC
) {
7042 Lo
= DAG
.getNode(ISD::ADDC
, dl
, VTList
, LoOps
, 2);
7043 HiOps
[2] = Lo
.getValue(1);
7044 Hi
= DAG
.getNode(ISD::ADDE
, dl
, VTList
, HiOps
, 3);
7046 Lo
= DAG
.getNode(ISD::SUBC
, dl
, VTList
, LoOps
, 2);
7047 HiOps
[2] = Lo
.getValue(1);
7048 Hi
= DAG
.getNode(ISD::SUBE
, dl
, VTList
, HiOps
, 3);
7050 // Remember that we legalized the flag.
7051 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Hi
.getValue(1)));
7056 // Expand the subcomponents.
7057 SDValue LHSL
, LHSH
, RHSL
, RHSH
;
7058 ExpandOp(Node
->getOperand(0), LHSL
, LHSH
);
7059 ExpandOp(Node
->getOperand(1), RHSL
, RHSH
);
7060 SDVTList VTList
= DAG
.getVTList(LHSL
.getValueType(), MVT::Flag
);
7061 SDValue LoOps
[3] = { LHSL
, RHSL
, Node
->getOperand(2) };
7062 SDValue HiOps
[3] = { LHSH
, RHSH
};
7064 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, VTList
, LoOps
, 3);
7065 HiOps
[2] = Lo
.getValue(1);
7066 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, VTList
, HiOps
, 3);
7068 // Remember that we legalized the flag.
7069 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Hi
.getValue(1)));
7073 // If the target wants to custom expand this, let them.
7074 if (TLI
.getOperationAction(ISD::MUL
, VT
) == TargetLowering::Custom
) {
7075 SDValue New
= TLI
.LowerOperation(Op
, DAG
);
7076 if (New
.getNode()) {
7077 ExpandOp(New
, Lo
, Hi
);
7082 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, NVT
);
7083 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, NVT
);
7084 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, NVT
);
7085 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, NVT
);
7086 if (HasMULHU
|| HasMULHS
|| HasUMUL_LOHI
|| HasSMUL_LOHI
) {
7087 SDValue LL
, LH
, RL
, RH
;
7088 ExpandOp(Node
->getOperand(0), LL
, LH
);
7089 ExpandOp(Node
->getOperand(1), RL
, RH
);
7090 unsigned OuterBitSize
= Op
.getValueSizeInBits();
7091 unsigned InnerBitSize
= RH
.getValueSizeInBits();
7092 unsigned LHSSB
= DAG
.ComputeNumSignBits(Op
.getOperand(0));
7093 unsigned RHSSB
= DAG
.ComputeNumSignBits(Op
.getOperand(1));
7094 APInt HighMask
= APInt::getHighBitsSet(OuterBitSize
, InnerBitSize
);
7095 if (DAG
.MaskedValueIsZero(Node
->getOperand(0), HighMask
) &&
7096 DAG
.MaskedValueIsZero(Node
->getOperand(1), HighMask
)) {
7097 // The inputs are both zero-extended.
7099 // We can emit a umul_lohi.
7100 Lo
= DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(NVT
, NVT
), LL
, RL
);
7101 Hi
= SDValue(Lo
.getNode(), 1);
7105 // We can emit a mulhu+mul.
7106 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
7107 Hi
= DAG
.getNode(ISD::MULHU
, dl
, NVT
, LL
, RL
);
7111 if (LHSSB
> InnerBitSize
&& RHSSB
> InnerBitSize
) {
7112 // The input values are both sign-extended.
7114 // We can emit a smul_lohi.
7115 Lo
= DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(NVT
, NVT
), LL
, RL
);
7116 Hi
= SDValue(Lo
.getNode(), 1);
7120 // We can emit a mulhs+mul.
7121 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
7122 Hi
= DAG
.getNode(ISD::MULHS
, dl
, NVT
, LL
, RL
);
7127 // Lo,Hi = umul LHS, RHS.
7128 SDValue UMulLOHI
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
7129 DAG
.getVTList(NVT
, NVT
), LL
, RL
);
7131 Hi
= UMulLOHI
.getValue(1);
7132 RH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RH
);
7133 LH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LH
, RL
);
7134 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, RH
);
7135 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, LH
);
7139 Lo
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RL
);
7140 Hi
= DAG
.getNode(ISD::MULHU
, dl
, NVT
, LL
, RL
);
7141 RH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LL
, RH
);
7142 LH
= DAG
.getNode(ISD::MUL
, dl
, NVT
, LH
, RL
);
7143 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, RH
);
7144 Hi
= DAG
.getNode(ISD::ADD
, dl
, NVT
, Hi
, LH
);
7149 // If nothing else, we can make a libcall.
7150 Lo
= ExpandLibCall(RTLIB::MUL_I64
, Node
, false/*sign irrelevant*/, Hi
);
7154 Lo
= ExpandLibCall(RTLIB::SDIV_I64
, Node
, true, Hi
);
7157 Lo
= ExpandLibCall(RTLIB::UDIV_I64
, Node
, true, Hi
);
7160 Lo
= ExpandLibCall(RTLIB::SREM_I64
, Node
, true, Hi
);
7163 Lo
= ExpandLibCall(RTLIB::UREM_I64
, Node
, true, Hi
);
7167 Lo
= ExpandLibCall(GetFPLibCall(VT
, RTLIB::ADD_F32
,
7170 RTLIB::ADD_PPCF128
),
7174 Lo
= ExpandLibCall(GetFPLibCall(VT
, RTLIB::SUB_F32
,
7177 RTLIB::SUB_PPCF128
),
7181 Lo
= ExpandLibCall(GetFPLibCall(VT
, RTLIB::MUL_F32
,
7184 RTLIB::MUL_PPCF128
),
7188 Lo
= ExpandLibCall(GetFPLibCall(VT
, RTLIB::DIV_F32
,
7191 RTLIB::DIV_PPCF128
),
7194 case ISD::FP_EXTEND
: {
7195 if (VT
== MVT::ppcf128
) {
7196 assert(Node
->getOperand(0).getValueType()==MVT::f32
||
7197 Node
->getOperand(0).getValueType()==MVT::f64
);
7198 const uint64_t zero
= 0;
7199 if (Node
->getOperand(0).getValueType()==MVT::f32
)
7200 Hi
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Node
->getOperand(0));
7202 Hi
= Node
->getOperand(0);
7203 Lo
= DAG
.getConstantFP(APFloat(APInt(64, 1, &zero
)), MVT::f64
);
7206 RTLIB::Libcall LC
= RTLIB::getFPEXT(Node
->getOperand(0).getValueType(), VT
);
7207 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported FP_EXTEND!");
7208 Lo
= ExpandLibCall(LC
, Node
, true, Hi
);
7211 case ISD::FP_ROUND
: {
7212 RTLIB::Libcall LC
= RTLIB::getFPROUND(Node
->getOperand(0).getValueType(),
7214 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported FP_ROUND!");
7215 Lo
= ExpandLibCall(LC
, Node
, true, Hi
);
7230 case ISD::FNEARBYINT
:
7233 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
7234 switch(Node
->getOpcode()) {
7236 LC
= GetFPLibCall(VT
, RTLIB::SQRT_F32
, RTLIB::SQRT_F64
,
7237 RTLIB::SQRT_F80
, RTLIB::SQRT_PPCF128
);
7240 LC
= GetFPLibCall(VT
, RTLIB::SIN_F32
, RTLIB::SIN_F64
,
7241 RTLIB::SIN_F80
, RTLIB::SIN_PPCF128
);
7244 LC
= GetFPLibCall(VT
, RTLIB::COS_F32
, RTLIB::COS_F64
,
7245 RTLIB::COS_F80
, RTLIB::COS_PPCF128
);
7248 LC
= GetFPLibCall(VT
, RTLIB::LOG_F32
, RTLIB::LOG_F64
,
7249 RTLIB::LOG_F80
, RTLIB::LOG_PPCF128
);
7252 LC
= GetFPLibCall(VT
, RTLIB::LOG2_F32
, RTLIB::LOG2_F64
,
7253 RTLIB::LOG2_F80
, RTLIB::LOG2_PPCF128
);
7256 LC
= GetFPLibCall(VT
, RTLIB::LOG10_F32
, RTLIB::LOG10_F64
,
7257 RTLIB::LOG10_F80
, RTLIB::LOG10_PPCF128
);
7260 LC
= GetFPLibCall(VT
, RTLIB::EXP_F32
, RTLIB::EXP_F64
,
7261 RTLIB::EXP_F80
, RTLIB::EXP_PPCF128
);
7264 LC
= GetFPLibCall(VT
, RTLIB::EXP2_F32
, RTLIB::EXP2_F64
,
7265 RTLIB::EXP2_F80
, RTLIB::EXP2_PPCF128
);
7268 LC
= GetFPLibCall(VT
, RTLIB::TRUNC_F32
, RTLIB::TRUNC_F64
,
7269 RTLIB::TRUNC_F80
, RTLIB::TRUNC_PPCF128
);
7272 LC
= GetFPLibCall(VT
, RTLIB::FLOOR_F32
, RTLIB::FLOOR_F64
,
7273 RTLIB::FLOOR_F80
, RTLIB::FLOOR_PPCF128
);
7276 LC
= GetFPLibCall(VT
, RTLIB::CEIL_F32
, RTLIB::CEIL_F64
,
7277 RTLIB::CEIL_F80
, RTLIB::CEIL_PPCF128
);
7280 LC
= GetFPLibCall(VT
, RTLIB::RINT_F32
, RTLIB::RINT_F64
,
7281 RTLIB::RINT_F80
, RTLIB::RINT_PPCF128
);
7283 case ISD::FNEARBYINT
:
7284 LC
= GetFPLibCall(VT
, RTLIB::NEARBYINT_F32
, RTLIB::NEARBYINT_F64
,
7285 RTLIB::NEARBYINT_F80
, RTLIB::NEARBYINT_PPCF128
);
7288 LC
= GetFPLibCall(VT
, RTLIB::POW_F32
, RTLIB::POW_F64
, RTLIB::POW_F80
,
7289 RTLIB::POW_PPCF128
);
7292 LC
= GetFPLibCall(VT
, RTLIB::POWI_F32
, RTLIB::POWI_F64
, RTLIB::POWI_F80
,
7293 RTLIB::POWI_PPCF128
);
7295 default: assert(0 && "Unreachable!");
7297 Lo
= ExpandLibCall(LC
, Node
, false, Hi
);
7301 if (VT
== MVT::ppcf128
) {
7303 ExpandOp(Node
->getOperand(0), Lo
, Tmp
);
7304 Hi
= DAG
.getNode(ISD::FABS
, dl
, NVT
, Tmp
);
7305 // lo = hi==fabs(hi) ? lo : -lo;
7306 Lo
= DAG
.getNode(ISD::SELECT_CC
, dl
, NVT
, Hi
, Tmp
,
7307 Lo
, DAG
.getNode(ISD::FNEG
, dl
, NVT
, Lo
),
7308 DAG
.getCondCode(ISD::SETEQ
));
7311 SDValue Mask
= (VT
== MVT::f64
)
7312 ? DAG
.getConstantFP(BitsToDouble(~(1ULL << 63)), VT
)
7313 : DAG
.getConstantFP(BitsToFloat(~(1U << 31)), VT
);
7314 Mask
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Mask
);
7315 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
7316 Lo
= DAG
.getNode(ISD::AND
, dl
, NVT
, Lo
, Mask
);
7317 if (getTypeAction(NVT
) == Expand
)
7318 ExpandOp(Lo
, Lo
, Hi
);
7322 if (VT
== MVT::ppcf128
) {
7323 ExpandOp(Node
->getOperand(0), Lo
, Hi
);
7324 Lo
= DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, Lo
);
7325 Hi
= DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, Hi
);
7328 SDValue Mask
= (VT
== MVT::f64
)
7329 ? DAG
.getConstantFP(BitsToDouble(1ULL << 63), VT
)
7330 : DAG
.getConstantFP(BitsToFloat(1U << 31), VT
);
7331 Mask
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Mask
);
7332 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NVT
, Node
->getOperand(0));
7333 Lo
= DAG
.getNode(ISD::XOR
, dl
, NVT
, Lo
, Mask
);
7334 if (getTypeAction(NVT
) == Expand
)
7335 ExpandOp(Lo
, Lo
, Hi
);
7338 case ISD::FCOPYSIGN
: {
7339 Lo
= ExpandFCOPYSIGNToBitwiseOps(Node
, NVT
, DAG
, TLI
);
7340 if (getTypeAction(NVT
) == Expand
)
7341 ExpandOp(Lo
, Lo
, Hi
);
7344 case ISD::SINT_TO_FP
:
7345 case ISD::UINT_TO_FP
: {
7346 bool isSigned
= Node
->getOpcode() == ISD::SINT_TO_FP
;
7347 MVT SrcVT
= Node
->getOperand(0).getValueType();
7349 // Promote the operand if needed. Do this before checking for
7350 // ppcf128 so conversions of i16 and i8 work.
7351 if (getTypeAction(SrcVT
) == Promote
) {
7352 SDValue Tmp
= PromoteOp(Node
->getOperand(0));
7354 ? DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Tmp
.getValueType(), Tmp
,
7355 DAG
.getValueType(SrcVT
))
7356 : DAG
.getZeroExtendInReg(Tmp
, dl
, SrcVT
);
7357 Node
= DAG
.UpdateNodeOperands(Op
, Tmp
).getNode();
7358 SrcVT
= Node
->getOperand(0).getValueType();
7361 if (VT
== MVT::ppcf128
&& SrcVT
== MVT::i32
) {
7362 static const uint64_t zero
= 0;
7364 Hi
= LegalizeOp(DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f64
,
7365 Node
->getOperand(0)));
7366 Lo
= DAG
.getConstantFP(APFloat(APInt(64, 1, &zero
)), MVT::f64
);
7368 static const uint64_t TwoE32
[] = { 0x41f0000000000000LL
, 0 };
7369 Hi
= LegalizeOp(DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f64
,
7370 Node
->getOperand(0)));
7371 Lo
= DAG
.getConstantFP(APFloat(APInt(64, 1, &zero
)), MVT::f64
);
7372 Hi
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, Lo
, Hi
);
7373 // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32
7374 ExpandOp(DAG
.getNode(ISD::SELECT_CC
, dl
,
7375 MVT::ppcf128
, Node
->getOperand(0),
7376 DAG
.getConstant(0, MVT::i32
),
7377 DAG
.getNode(ISD::FADD
, dl
, MVT::ppcf128
, Hi
,
7379 (APFloat(APInt(128, 2, TwoE32
)),
7382 DAG
.getCondCode(ISD::SETLT
)),
7387 if (VT
== MVT::ppcf128
&& SrcVT
== MVT::i64
&& !isSigned
) {
7388 // si64->ppcf128 done by libcall, below
7389 static const uint64_t TwoE64
[] = { 0x43f0000000000000LL
, 0 };
7390 ExpandOp(DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::ppcf128
,
7391 Node
->getOperand(0)), Lo
, Hi
);
7392 Hi
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, Lo
, Hi
);
7393 // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64
7394 ExpandOp(DAG
.getNode(ISD::SELECT_CC
, dl
, MVT::ppcf128
,
7395 Node
->getOperand(0),
7396 DAG
.getConstant(0, MVT::i64
),
7397 DAG
.getNode(ISD::FADD
, dl
, MVT::ppcf128
, Hi
,
7399 (APFloat(APInt(128, 2, TwoE64
)),
7402 DAG
.getCondCode(ISD::SETLT
)),
7407 Lo
= ExpandIntToFP(Node
->getOpcode() == ISD::SINT_TO_FP
, VT
,
7408 Node
->getOperand(0), dl
);
7409 if (getTypeAction(Lo
.getValueType()) == Expand
)
7410 // float to i32 etc. can be 'expanded' to a single node.
7411 ExpandOp(Lo
, Lo
, Hi
);
7416 // Make sure the resultant values have been legalized themselves, unless this
7417 // is a type that requires multi-step expansion.
7418 if (getTypeAction(NVT
) != Expand
&& NVT
!= MVT::isVoid
) {
7419 Lo
= LegalizeOp(Lo
);
7421 // Don't legalize the high part if it is expanded to a single node.
7422 Hi
= LegalizeOp(Hi
);
7425 // Remember in a map if the values will be reused later.
7427 ExpandedNodes
.insert(std::make_pair(Op
, std::make_pair(Lo
, Hi
))).second
;
7428 assert(isNew
&& "Value already expanded?!?");
7432 /// SplitVectorOp - Given an operand of vector type, break it down into
7433 /// two smaller values, still of vector type.
7434 void SelectionDAGLegalize::SplitVectorOp(SDValue Op
, SDValue
&Lo
,
7436 assert(Op
.getValueType().isVector() && "Cannot split non-vector type!");
7437 SDNode
*Node
= Op
.getNode();
7438 DebugLoc dl
= Node
->getDebugLoc();
7439 unsigned NumElements
= Op
.getValueType().getVectorNumElements();
7440 assert(NumElements
> 1 && "Cannot split a single element vector!");
7442 MVT NewEltVT
= Op
.getValueType().getVectorElementType();
7444 unsigned NewNumElts_Lo
= 1 << Log2_32(NumElements
-1);
7445 unsigned NewNumElts_Hi
= NumElements
- NewNumElts_Lo
;
7447 MVT NewVT_Lo
= MVT::getVectorVT(NewEltVT
, NewNumElts_Lo
);
7448 MVT NewVT_Hi
= MVT::getVectorVT(NewEltVT
, NewNumElts_Hi
);
7450 // See if we already split it.
7451 std::map
<SDValue
, std::pair
<SDValue
, SDValue
> >::iterator I
7452 = SplitNodes
.find(Op
);
7453 if (I
!= SplitNodes
.end()) {
7454 Lo
= I
->second
.first
;
7455 Hi
= I
->second
.second
;
7459 switch (Node
->getOpcode()) {
7464 assert(0 && "Unhandled operation in SplitVectorOp!");
7466 Lo
= DAG
.getUNDEF(NewVT_Lo
);
7467 Hi
= DAG
.getUNDEF(NewVT_Hi
);
7469 case ISD::BUILD_PAIR
:
7470 Lo
= Node
->getOperand(0);
7471 Hi
= Node
->getOperand(1);
7473 case ISD::INSERT_VECTOR_ELT
: {
7474 if (ConstantSDNode
*Idx
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(2))) {
7475 SplitVectorOp(Node
->getOperand(0), Lo
, Hi
);
7476 unsigned Index
= Idx
->getZExtValue();
7477 SDValue ScalarOp
= Node
->getOperand(1);
7478 if (Index
< NewNumElts_Lo
)
7479 Lo
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, NewVT_Lo
, Lo
, ScalarOp
,
7480 DAG
.getIntPtrConstant(Index
));
7482 Hi
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, NewVT_Hi
, Hi
, ScalarOp
,
7483 DAG
.getIntPtrConstant(Index
- NewNumElts_Lo
));
7486 SDValue Tmp
= PerformInsertVectorEltInMemory(Node
->getOperand(0),
7487 Node
->getOperand(1),
7488 Node
->getOperand(2), dl
);
7489 SplitVectorOp(Tmp
, Lo
, Hi
);
7492 case ISD::VECTOR_SHUFFLE
: {
7493 // Build the low part.
7494 SDValue Mask
= Node
->getOperand(2);
7495 SmallVector
<SDValue
, 8> Ops
;
7496 MVT PtrVT
= TLI
.getPointerTy();
7498 // Insert all of the elements from the input that are needed. We use
7499 // buildvector of extractelement here because the input vectors will have
7500 // to be legalized, so this makes the code simpler.
7501 for (unsigned i
= 0; i
!= NewNumElts_Lo
; ++i
) {
7502 SDValue IdxNode
= Mask
.getOperand(i
);
7503 if (IdxNode
.getOpcode() == ISD::UNDEF
) {
7504 Ops
.push_back(DAG
.getUNDEF(NewEltVT
));
7507 unsigned Idx
= cast
<ConstantSDNode
>(IdxNode
)->getZExtValue();
7508 SDValue InVec
= Node
->getOperand(0);
7509 if (Idx
>= NumElements
) {
7510 InVec
= Node
->getOperand(1);
7513 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewEltVT
, InVec
,
7514 DAG
.getConstant(Idx
, PtrVT
)));
7516 Lo
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewVT_Lo
, &Ops
[0], Ops
.size());
7519 for (unsigned i
= NewNumElts_Lo
; i
!= NumElements
; ++i
) {
7520 SDValue IdxNode
= Mask
.getOperand(i
);
7521 if (IdxNode
.getOpcode() == ISD::UNDEF
) {
7522 Ops
.push_back(DAG
.getUNDEF(NewEltVT
));
7525 unsigned Idx
= cast
<ConstantSDNode
>(IdxNode
)->getZExtValue();
7526 SDValue InVec
= Node
->getOperand(0);
7527 if (Idx
>= NumElements
) {
7528 InVec
= Node
->getOperand(1);
7531 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewEltVT
, InVec
,
7532 DAG
.getConstant(Idx
, PtrVT
)));
7534 Hi
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewVT_Hi
, &Ops
[0], Ops
.size());
7537 case ISD::BUILD_VECTOR
: {
7538 SmallVector
<SDValue
, 8> LoOps(Node
->op_begin(),
7539 Node
->op_begin()+NewNumElts_Lo
);
7540 Lo
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewVT_Lo
, &LoOps
[0], LoOps
.size());
7542 SmallVector
<SDValue
, 8> HiOps(Node
->op_begin()+NewNumElts_Lo
,
7544 Hi
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewVT_Hi
, &HiOps
[0], HiOps
.size());
7547 case ISD::CONCAT_VECTORS
: {
7548 // FIXME: Handle non-power-of-two vectors?
7549 unsigned NewNumSubvectors
= Node
->getNumOperands() / 2;
7550 if (NewNumSubvectors
== 1) {
7551 Lo
= Node
->getOperand(0);
7552 Hi
= Node
->getOperand(1);
7554 SmallVector
<SDValue
, 8> LoOps(Node
->op_begin(),
7555 Node
->op_begin()+NewNumSubvectors
);
7556 Lo
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, NewVT_Lo
,
7557 &LoOps
[0], LoOps
.size());
7559 SmallVector
<SDValue
, 8> HiOps(Node
->op_begin()+NewNumSubvectors
,
7561 Hi
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, NewVT_Hi
,
7562 &HiOps
[0], HiOps
.size());
7566 case ISD::EXTRACT_SUBVECTOR
: {
7567 SDValue Vec
= Op
.getOperand(0);
7568 SDValue Idx
= Op
.getOperand(1);
7569 MVT IdxVT
= Idx
.getValueType();
7571 Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NewVT_Lo
, Vec
, Idx
);
7572 ConstantSDNode
*CIdx
= dyn_cast
<ConstantSDNode
>(Idx
);
7574 Hi
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NewVT_Hi
, Vec
,
7575 DAG
.getConstant(CIdx
->getZExtValue() + NewNumElts_Lo
,
7578 Idx
= DAG
.getNode(ISD::ADD
, dl
, IdxVT
, Idx
,
7579 DAG
.getConstant(NewNumElts_Lo
, IdxVT
));
7580 Hi
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NewVT_Hi
, Vec
, Idx
);
7585 SDValue Cond
= Node
->getOperand(0);
7587 SDValue LL
, LH
, RL
, RH
;
7588 SplitVectorOp(Node
->getOperand(1), LL
, LH
);
7589 SplitVectorOp(Node
->getOperand(2), RL
, RH
);
7591 if (Cond
.getValueType().isVector()) {
7592 // Handle a vector merge.
7594 SplitVectorOp(Cond
, CL
, CH
);
7595 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, CL
, LL
, RL
);
7596 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, CH
, LH
, RH
);
7598 // Handle a simple select with vector operands.
7599 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, Cond
, LL
, RL
);
7600 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, Cond
, LH
, RH
);
7604 case ISD::SELECT_CC
: {
7605 SDValue CondLHS
= Node
->getOperand(0);
7606 SDValue CondRHS
= Node
->getOperand(1);
7607 SDValue CondCode
= Node
->getOperand(4);
7609 SDValue LL
, LH
, RL
, RH
;
7610 SplitVectorOp(Node
->getOperand(2), LL
, LH
);
7611 SplitVectorOp(Node
->getOperand(3), RL
, RH
);
7613 // Handle a simple select with vector operands.
7614 Lo
= DAG
.getNode(ISD::SELECT_CC
, dl
, NewVT_Lo
, CondLHS
, CondRHS
,
7616 Hi
= DAG
.getNode(ISD::SELECT_CC
, dl
, NewVT_Hi
, CondLHS
, CondRHS
,
7621 SDValue LL
, LH
, RL
, RH
;
7622 SplitVectorOp(Node
->getOperand(0), LL
, LH
);
7623 SplitVectorOp(Node
->getOperand(1), RL
, RH
);
7624 Lo
= DAG
.getNode(ISD::VSETCC
, dl
, NewVT_Lo
, LL
, RL
, Node
->getOperand(2));
7625 Hi
= DAG
.getNode(ISD::VSETCC
, dl
, NewVT_Hi
, LH
, RH
, Node
->getOperand(2));
7647 SDValue LL
, LH
, RL
, RH
;
7648 SplitVectorOp(Node
->getOperand(0), LL
, LH
);
7649 SplitVectorOp(Node
->getOperand(1), RL
, RH
);
7651 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, LL
, RL
);
7652 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, LH
, RH
);
7658 SplitVectorOp(Node
->getOperand(0), L
, H
);
7660 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, L
, Node
->getOperand(1));
7661 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, H
, Node
->getOperand(1));
7677 case ISD::FP_TO_SINT
:
7678 case ISD::FP_TO_UINT
:
7679 case ISD::SINT_TO_FP
:
7680 case ISD::UINT_TO_FP
:
7682 case ISD::ANY_EXTEND
:
7683 case ISD::SIGN_EXTEND
:
7684 case ISD::ZERO_EXTEND
:
7685 case ISD::FP_EXTEND
: {
7687 SplitVectorOp(Node
->getOperand(0), L
, H
);
7689 Lo
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Lo
, L
);
7690 Hi
= DAG
.getNode(Node
->getOpcode(), dl
, NewVT_Hi
, H
);
7693 case ISD::CONVERT_RNDSAT
: {
7694 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(Node
)->getCvtCode();
7696 SplitVectorOp(Node
->getOperand(0), L
, H
);
7697 SDValue DTyOpL
= DAG
.getValueType(NewVT_Lo
);
7698 SDValue DTyOpH
= DAG
.getValueType(NewVT_Hi
);
7699 SDValue STyOpL
= DAG
.getValueType(L
.getValueType());
7700 SDValue STyOpH
= DAG
.getValueType(H
.getValueType());
7702 SDValue RndOp
= Node
->getOperand(3);
7703 SDValue SatOp
= Node
->getOperand(4);
7705 Lo
= DAG
.getConvertRndSat(NewVT_Lo
, dl
, L
, DTyOpL
, STyOpL
,
7706 RndOp
, SatOp
, CvtCode
);
7707 Hi
= DAG
.getConvertRndSat(NewVT_Hi
, dl
, H
, DTyOpH
, STyOpH
,
7708 RndOp
, SatOp
, CvtCode
);
7712 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
7713 SDValue Ch
= LD
->getChain();
7714 SDValue Ptr
= LD
->getBasePtr();
7715 ISD::LoadExtType ExtType
= LD
->getExtensionType();
7716 const Value
*SV
= LD
->getSrcValue();
7717 int SVOffset
= LD
->getSrcValueOffset();
7718 MVT MemoryVT
= LD
->getMemoryVT();
7719 unsigned Alignment
= LD
->getAlignment();
7720 bool isVolatile
= LD
->isVolatile();
7722 assert(LD
->isUnindexed() && "Indexed vector loads are not supported yet!");
7723 SDValue Offset
= DAG
.getUNDEF(Ptr
.getValueType());
7725 MVT MemNewEltVT
= MemoryVT
.getVectorElementType();
7726 MVT MemNewVT_Lo
= MVT::getVectorVT(MemNewEltVT
, NewNumElts_Lo
);
7727 MVT MemNewVT_Hi
= MVT::getVectorVT(MemNewEltVT
, NewNumElts_Hi
);
7729 Lo
= DAG
.getLoad(ISD::UNINDEXED
, dl
, ExtType
,
7730 NewVT_Lo
, Ch
, Ptr
, Offset
,
7731 SV
, SVOffset
, MemNewVT_Lo
, isVolatile
, Alignment
);
7732 unsigned IncrementSize
= NewNumElts_Lo
* MemNewEltVT
.getSizeInBits()/8;
7733 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
7734 DAG
.getIntPtrConstant(IncrementSize
));
7735 SVOffset
+= IncrementSize
;
7736 Alignment
= MinAlign(Alignment
, IncrementSize
);
7737 Hi
= DAG
.getLoad(ISD::UNINDEXED
, dl
, ExtType
,
7738 NewVT_Hi
, Ch
, Ptr
, Offset
,
7739 SV
, SVOffset
, MemNewVT_Hi
, isVolatile
, Alignment
);
7741 // Build a factor node to remember that this load is independent of the
7743 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
7746 // Remember that we legalized the chain.
7747 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(TF
));
7750 case ISD::BIT_CONVERT
: {
7751 // We know the result is a vector. The input may be either a vector or a
7753 SDValue InOp
= Node
->getOperand(0);
7754 if (!InOp
.getValueType().isVector() ||
7755 InOp
.getValueType().getVectorNumElements() == 1) {
7756 // The input is a scalar or single-element vector.
7757 // Lower to a store/load so that it can be split.
7758 // FIXME: this could be improved probably.
7759 unsigned LdAlign
= TLI
.getTargetData()->
7760 getPrefTypeAlignment(Op
.getValueType().getTypeForMVT());
7761 SDValue Ptr
= DAG
.CreateStackTemporary(InOp
.getValueType(), LdAlign
);
7762 int FI
= cast
<FrameIndexSDNode
>(Ptr
.getNode())->getIndex();
7764 SDValue St
= DAG
.getStore(DAG
.getEntryNode(), dl
,
7766 PseudoSourceValue::getFixedStack(FI
), 0);
7767 InOp
= DAG
.getLoad(Op
.getValueType(), dl
, St
, Ptr
,
7768 PseudoSourceValue::getFixedStack(FI
), 0);
7770 // Split the vector and convert each of the pieces now.
7771 SplitVectorOp(InOp
, Lo
, Hi
);
7772 Lo
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT_Lo
, Lo
);
7773 Hi
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT_Hi
, Hi
);
7778 // Remember in a map if the values will be reused later.
7780 SplitNodes
.insert(std::make_pair(Op
, std::make_pair(Lo
, Hi
))).second
;
7781 assert(isNew
&& "Value already split?!?");
7786 /// ScalarizeVectorOp - Given an operand of single-element vector type
7787 /// (e.g. v1f32), convert it into the equivalent operation that returns a
7788 /// scalar (e.g. f32) value.
7789 SDValue
SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op
) {
7790 assert(Op
.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!");
7791 SDNode
*Node
= Op
.getNode();
7792 DebugLoc dl
= Node
->getDebugLoc();
7793 MVT NewVT
= Op
.getValueType().getVectorElementType();
7794 assert(Op
.getValueType().getVectorNumElements() == 1);
7796 // See if we already scalarized it.
7797 std::map
<SDValue
, SDValue
>::iterator I
= ScalarizedNodes
.find(Op
);
7798 if (I
!= ScalarizedNodes
.end()) return I
->second
;
7801 switch (Node
->getOpcode()) {
7804 Node
->dump(&DAG
); cerr
<< "\n";
7806 assert(0 && "Unknown vector operation in ScalarizeVectorOp!");
7823 Result
= DAG
.getNode(Node
->getOpcode(), dl
,
7825 ScalarizeVectorOp(Node
->getOperand(0)),
7826 ScalarizeVectorOp(Node
->getOperand(1)));
7838 case ISD::FP_TO_SINT
:
7839 case ISD::FP_TO_UINT
:
7840 case ISD::SINT_TO_FP
:
7841 case ISD::UINT_TO_FP
:
7842 case ISD::SIGN_EXTEND
:
7843 case ISD::ZERO_EXTEND
:
7844 case ISD::ANY_EXTEND
:
7846 case ISD::FP_EXTEND
:
7847 Result
= DAG
.getNode(Node
->getOpcode(), dl
,
7849 ScalarizeVectorOp(Node
->getOperand(0)));
7851 case ISD::CONVERT_RNDSAT
: {
7852 SDValue Op0
= ScalarizeVectorOp(Node
->getOperand(0));
7853 Result
= DAG
.getConvertRndSat(NewVT
, dl
, Op0
,
7854 DAG
.getValueType(NewVT
),
7855 DAG
.getValueType(Op0
.getValueType()),
7856 Node
->getOperand(3),
7857 Node
->getOperand(4),
7858 cast
<CvtRndSatSDNode
>(Node
)->getCvtCode());
7863 Result
= DAG
.getNode(Node
->getOpcode(), dl
,
7865 ScalarizeVectorOp(Node
->getOperand(0)),
7866 Node
->getOperand(1));
7869 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
7870 SDValue Ch
= LegalizeOp(LD
->getChain()); // Legalize the chain.
7871 SDValue Ptr
= LegalizeOp(LD
->getBasePtr()); // Legalize the pointer.
7872 ISD::LoadExtType ExtType
= LD
->getExtensionType();
7873 const Value
*SV
= LD
->getSrcValue();
7874 int SVOffset
= LD
->getSrcValueOffset();
7875 MVT MemoryVT
= LD
->getMemoryVT();
7876 unsigned Alignment
= LD
->getAlignment();
7877 bool isVolatile
= LD
->isVolatile();
7879 assert(LD
->isUnindexed() && "Indexed vector loads are not supported yet!");
7880 SDValue Offset
= DAG
.getUNDEF(Ptr
.getValueType());
7882 Result
= DAG
.getLoad(ISD::UNINDEXED
, dl
, ExtType
,
7883 NewVT
, Ch
, Ptr
, Offset
, SV
, SVOffset
,
7884 MemoryVT
.getVectorElementType(),
7885 isVolatile
, Alignment
);
7887 // Remember that we legalized the chain.
7888 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Result
.getValue(1)));
7891 case ISD::BUILD_VECTOR
:
7892 Result
= Node
->getOperand(0);
7894 case ISD::INSERT_VECTOR_ELT
:
7895 // Returning the inserted scalar element.
7896 Result
= Node
->getOperand(1);
7898 case ISD::CONCAT_VECTORS
:
7899 assert(Node
->getOperand(0).getValueType() == NewVT
&&
7900 "Concat of non-legal vectors not yet supported!");
7901 Result
= Node
->getOperand(0);
7903 case ISD::VECTOR_SHUFFLE
: {
7904 // Figure out if the scalar is the LHS or RHS and return it.
7905 SDValue EltNum
= Node
->getOperand(2).getOperand(0);
7906 if (cast
<ConstantSDNode
>(EltNum
)->getZExtValue())
7907 Result
= ScalarizeVectorOp(Node
->getOperand(1));
7909 Result
= ScalarizeVectorOp(Node
->getOperand(0));
7912 case ISD::EXTRACT_SUBVECTOR
:
7913 Result
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, NewVT
,
7914 Node
->getOperand(0), Node
->getOperand(1));
7916 case ISD::BIT_CONVERT
: {
7917 SDValue Op0
= Op
.getOperand(0);
7918 if (Op0
.getValueType().getVectorNumElements() == 1)
7919 Op0
= ScalarizeVectorOp(Op0
);
7920 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, Op0
);
7924 Result
= DAG
.getNode(ISD::SELECT
, dl
, NewVT
, Op
.getOperand(0),
7925 ScalarizeVectorOp(Op
.getOperand(1)),
7926 ScalarizeVectorOp(Op
.getOperand(2)));
7928 case ISD::SELECT_CC
:
7929 Result
= DAG
.getNode(ISD::SELECT_CC
, dl
, NewVT
, Node
->getOperand(0),
7930 Node
->getOperand(1),
7931 ScalarizeVectorOp(Op
.getOperand(2)),
7932 ScalarizeVectorOp(Op
.getOperand(3)),
7933 Node
->getOperand(4));
7936 SDValue Op0
= ScalarizeVectorOp(Op
.getOperand(0));
7937 SDValue Op1
= ScalarizeVectorOp(Op
.getOperand(1));
7938 Result
= DAG
.getNode(ISD::SETCC
, dl
,
7939 TLI
.getSetCCResultType(Op0
.getValueType()),
7940 Op0
, Op1
, Op
.getOperand(2));
7941 Result
= DAG
.getNode(ISD::SELECT
, dl
, NewVT
, Result
,
7942 DAG
.getConstant(-1ULL, NewVT
),
7943 DAG
.getConstant(0ULL, NewVT
));
7948 if (TLI
.isTypeLegal(NewVT
))
7949 Result
= LegalizeOp(Result
);
7950 bool isNew
= ScalarizedNodes
.insert(std::make_pair(Op
, Result
)).second
;
7951 assert(isNew
&& "Value already scalarized?");
7957 SDValue
SelectionDAGLegalize::WidenVectorOp(SDValue Op
, MVT WidenVT
) {
7958 std::map
<SDValue
, SDValue
>::iterator I
= WidenNodes
.find(Op
);
7959 if (I
!= WidenNodes
.end()) return I
->second
;
7961 MVT VT
= Op
.getValueType();
7962 assert(VT
.isVector() && "Cannot widen non-vector type!");
7965 SDNode
*Node
= Op
.getNode();
7966 DebugLoc dl
= Node
->getDebugLoc();
7967 MVT EVT
= VT
.getVectorElementType();
7969 unsigned NumElts
= VT
.getVectorNumElements();
7970 unsigned NewNumElts
= WidenVT
.getVectorNumElements();
7971 assert(NewNumElts
> NumElts
&& "Cannot widen to smaller type!");
7972 assert(NewNumElts
< 17);
7974 // When widen is called, it is assumed that it is more efficient to use a
7975 // wide type. The default action is to widen to operation to a wider legal
7976 // vector type and then do the operation if it is legal by calling LegalizeOp
7977 // again. If there is no vector equivalent, we will unroll the operation, do
7978 // it, and rebuild the vector. If most of the operations are vectorizible to
7979 // the legal type, the resulting code will be more efficient. If this is not
7980 // the case, the resulting code will preform badly as we end up generating
7981 // code to pack/unpack the results. It is the function that calls widen
7982 // that is responsible for seeing this doesn't happen.
7983 switch (Node
->getOpcode()) {
7988 assert(0 && "Unexpected operation in WidenVectorOp!");
7990 case ISD::CopyFromReg
:
7991 assert(0 && "CopyFromReg doesn't need widening!");
7993 case ISD::ConstantFP
:
7994 // To build a vector of these elements, clients should call BuildVector
7995 // and with each element instead of creating a node with a vector type
7996 assert(0 && "Unexpected operation in WidenVectorOp!");
7998 // Variable Arguments with vector types doesn't make any sense to me
7999 assert(0 && "Unexpected operation in WidenVectorOp!");
8002 Result
= DAG
.getUNDEF(WidenVT
);
8004 case ISD::BUILD_VECTOR
: {
8005 // Build a vector with undefined for the new nodes
8006 SDValueVector
NewOps(Node
->op_begin(), Node
->op_end());
8007 for (unsigned i
= NumElts
; i
< NewNumElts
; ++i
) {
8008 NewOps
.push_back(DAG
.getUNDEF(EVT
));
8010 Result
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, WidenVT
,
8011 &NewOps
[0], NewOps
.size());
8014 case ISD::INSERT_VECTOR_ELT
: {
8015 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8016 Result
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, WidenVT
, Tmp1
,
8017 Node
->getOperand(1), Node
->getOperand(2));
8020 case ISD::VECTOR_SHUFFLE
: {
8021 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8022 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(1), WidenVT
);
8023 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Node
);
8024 SmallVector
<int, 8> NewMask
;
8025 for (unsigned i
= 0; i
< NumElts
; ++i
) {
8026 int Idx
= SVOp
->getMaskElt(i
);
8027 if (Idx
< (int)NumElts
)
8028 NewMask
.push_back(Idx
);
8030 NewMask
.push_back(Idx
+ NewNumElts
- NumElts
);
8032 for (unsigned i
= NumElts
; i
< NewNumElts
; ++i
)
8033 NewMask
.push_back(-1);
8035 Result
= DAG
.getVectorShuffle(WidenVT
, dl
, Tmp1
, Tmp2
, &NewMask
[0]);
8039 // If the load widen returns true, we can use a single load for the
8040 // vector. Otherwise, it is returning a token factor for multiple
8043 if (LoadWidenVectorOp(Result
, TFOp
, Op
, WidenVT
))
8044 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(TFOp
.getValue(1)));
8046 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(TFOp
.getValue(0)));
8050 case ISD::BIT_CONVERT
: {
8051 SDValue Tmp1
= Node
->getOperand(0);
8052 // Converts between two different types so we need to determine
8053 // the correct widen type for the input operand.
8054 MVT InVT
= Tmp1
.getValueType();
8055 unsigned WidenSize
= WidenVT
.getSizeInBits();
8056 if (InVT
.isVector()) {
8057 MVT InEltVT
= InVT
.getVectorElementType();
8058 unsigned InEltSize
= InEltVT
.getSizeInBits();
8059 assert(WidenSize
% InEltSize
== 0 &&
8060 "can not widen bit convert that are not multiple of element type");
8061 MVT NewInWidenVT
= MVT::getVectorVT(InEltVT
, WidenSize
/ InEltSize
);
8062 Tmp1
= WidenVectorOp(Tmp1
, NewInWidenVT
);
8063 assert(Tmp1
.getValueType().getSizeInBits() == WidenVT
.getSizeInBits());
8064 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, WidenVT
, Tmp1
);
8066 // If the result size is a multiple of the input size, widen the input
8067 // and then convert.
8068 unsigned InSize
= InVT
.getSizeInBits();
8069 assert(WidenSize
% InSize
== 0 &&
8070 "can not widen bit convert that are not multiple of element type");
8071 unsigned NewNumElts
= WidenSize
/ InSize
;
8072 SmallVector
<SDValue
, 16> Ops(NewNumElts
);
8073 SDValue UndefVal
= DAG
.getUNDEF(InVT
);
8075 for (unsigned i
= 1; i
< NewNumElts
; ++i
)
8078 MVT NewInVT
= MVT::getVectorVT(InVT
, NewNumElts
);
8079 Result
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, NewInVT
, &Ops
[0], NewNumElts
);
8080 Result
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, WidenVT
, Result
);
8085 case ISD::SINT_TO_FP
:
8086 case ISD::UINT_TO_FP
:
8087 case ISD::FP_TO_SINT
:
8088 case ISD::FP_TO_UINT
:
8089 case ISD::FP_ROUND
: {
8090 SDValue Tmp1
= Node
->getOperand(0);
8091 // Converts between two different types so we need to determine
8092 // the correct widen type for the input operand.
8093 MVT TVT
= Tmp1
.getValueType();
8094 assert(TVT
.isVector() && "can not widen non vector type");
8095 MVT TEVT
= TVT
.getVectorElementType();
8096 MVT TWidenVT
= MVT::getVectorVT(TEVT
, NewNumElts
);
8097 Tmp1
= WidenVectorOp(Tmp1
, TWidenVT
);
8098 assert(Tmp1
.getValueType().getVectorNumElements() == NewNumElts
);
8099 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
);
8103 case ISD::FP_EXTEND
:
8104 assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
8106 case ISD::SIGN_EXTEND
:
8107 case ISD::ZERO_EXTEND
:
8108 case ISD::ANY_EXTEND
:
8109 case ISD::SIGN_EXTEND_INREG
:
8118 // Unary op widening
8120 Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8121 assert(Tmp1
.getValueType() == WidenVT
);
8122 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
);
8125 case ISD::CONVERT_RNDSAT
: {
8126 SDValue RndOp
= Node
->getOperand(3);
8127 SDValue SatOp
= Node
->getOperand(4);
8128 SDValue SrcOp
= Node
->getOperand(0);
8130 // Converts between two different types so we need to determine
8131 // the correct widen type for the input operand.
8132 MVT SVT
= SrcOp
.getValueType();
8133 assert(SVT
.isVector() && "can not widen non vector type");
8134 MVT SEVT
= SVT
.getVectorElementType();
8135 MVT SWidenVT
= MVT::getVectorVT(SEVT
, NewNumElts
);
8137 SrcOp
= WidenVectorOp(SrcOp
, SWidenVT
);
8138 assert(SrcOp
.getValueType() == WidenVT
);
8139 SDValue DTyOp
= DAG
.getValueType(WidenVT
);
8140 SDValue STyOp
= DAG
.getValueType(SrcOp
.getValueType());
8141 ISD::CvtCode CvtCode
= cast
<CvtRndSatSDNode
>(Node
)->getCvtCode();
8143 Result
= DAG
.getConvertRndSat(WidenVT
, dl
, SrcOp
, DTyOp
, STyOp
,
8144 RndOp
, SatOp
, CvtCode
);
8164 case ISD::FCOPYSIGN
:
8168 // Binary op widening
8169 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8170 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(1), WidenVT
);
8171 assert(Tmp1
.getValueType() == WidenVT
&& Tmp2
.getValueType() == WidenVT
);
8172 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
, Tmp2
);
8179 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8180 assert(Tmp1
.getValueType() == WidenVT
);
8181 SDValue ShOp
= Node
->getOperand(1);
8182 MVT ShVT
= ShOp
.getValueType();
8183 MVT NewShVT
= MVT::getVectorVT(ShVT
.getVectorElementType(),
8184 WidenVT
.getVectorNumElements());
8185 ShOp
= WidenVectorOp(ShOp
, NewShVT
);
8186 assert(ShOp
.getValueType() == NewShVT
);
8187 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
, ShOp
);
8191 case ISD::EXTRACT_VECTOR_ELT
: {
8192 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(0), WidenVT
);
8193 assert(Tmp1
.getValueType() == WidenVT
);
8194 Result
= DAG
.getNode(Node
->getOpcode(), dl
, EVT
, Tmp1
, Node
->getOperand(1));
8197 case ISD::CONCAT_VECTORS
: {
8198 // We concurrently support only widen on a multiple of the incoming vector.
8199 // We could widen on a multiple of the incoming operand if necessary.
8200 unsigned NumConcat
= NewNumElts
/ NumElts
;
8201 assert(NewNumElts
% NumElts
== 0 && "Can widen only a multiple of vector");
8202 SDValue UndefVal
= DAG
.getUNDEF(VT
);
8203 SmallVector
<SDValue
, 8> MOps
;
8205 for (unsigned i
= 1; i
!= NumConcat
; ++i
) {
8206 MOps
.push_back(UndefVal
);
8208 Result
= LegalizeOp(DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, WidenVT
,
8209 &MOps
[0], MOps
.size()));
8212 case ISD::EXTRACT_SUBVECTOR
: {
8213 SDValue Tmp1
= Node
->getOperand(0);
8214 SDValue Idx
= Node
->getOperand(1);
8215 ConstantSDNode
*CIdx
= dyn_cast
<ConstantSDNode
>(Idx
);
8216 if (CIdx
&& CIdx
->getZExtValue() == 0) {
8217 // Since we are access the start of the vector, the incoming
8218 // vector type might be the proper.
8219 MVT Tmp1VT
= Tmp1
.getValueType();
8220 if (Tmp1VT
== WidenVT
)
8223 unsigned Tmp1VTNumElts
= Tmp1VT
.getVectorNumElements();
8224 if (Tmp1VTNumElts
< NewNumElts
)
8225 Result
= WidenVectorOp(Tmp1
, WidenVT
);
8227 Result
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, WidenVT
, Tmp1
, Idx
);
8229 } else if (NewNumElts
% NumElts
== 0) {
8230 // Widen the extracted subvector.
8231 unsigned NumConcat
= NewNumElts
/ NumElts
;
8232 SDValue UndefVal
= DAG
.getUNDEF(VT
);
8233 SmallVector
<SDValue
, 8> MOps
;
8235 for (unsigned i
= 1; i
!= NumConcat
; ++i
) {
8236 MOps
.push_back(UndefVal
);
8238 Result
= LegalizeOp(DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, WidenVT
,
8239 &MOps
[0], MOps
.size()));
8241 assert(0 && "can not widen extract subvector");
8242 // This could be implemented using insert and build vector but I would
8243 // like to see when this happens.
8249 // Determine new condition widen type and widen
8250 SDValue Cond1
= Node
->getOperand(0);
8251 MVT CondVT
= Cond1
.getValueType();
8252 assert(CondVT
.isVector() && "can not widen non vector type");
8253 MVT CondEVT
= CondVT
.getVectorElementType();
8254 MVT CondWidenVT
= MVT::getVectorVT(CondEVT
, NewNumElts
);
8255 Cond1
= WidenVectorOp(Cond1
, CondWidenVT
);
8256 assert(Cond1
.getValueType() == CondWidenVT
&& "Condition not widen");
8258 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(1), WidenVT
);
8259 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(2), WidenVT
);
8260 assert(Tmp1
.getValueType() == WidenVT
&& Tmp2
.getValueType() == WidenVT
);
8261 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Cond1
, Tmp1
, Tmp2
);
8265 case ISD::SELECT_CC
: {
8266 // Determine new condition widen type and widen
8267 SDValue Cond1
= Node
->getOperand(0);
8268 SDValue Cond2
= Node
->getOperand(1);
8269 MVT CondVT
= Cond1
.getValueType();
8270 assert(CondVT
.isVector() && "can not widen non vector type");
8271 assert(CondVT
== Cond2
.getValueType() && "mismatch lhs/rhs");
8272 MVT CondEVT
= CondVT
.getVectorElementType();
8273 MVT CondWidenVT
= MVT::getVectorVT(CondEVT
, NewNumElts
);
8274 Cond1
= WidenVectorOp(Cond1
, CondWidenVT
);
8275 Cond2
= WidenVectorOp(Cond2
, CondWidenVT
);
8276 assert(Cond1
.getValueType() == CondWidenVT
&&
8277 Cond2
.getValueType() == CondWidenVT
&& "condition not widen");
8279 SDValue Tmp1
= WidenVectorOp(Node
->getOperand(2), WidenVT
);
8280 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(3), WidenVT
);
8281 assert(Tmp1
.getValueType() == WidenVT
&& Tmp2
.getValueType() == WidenVT
&&
8282 "operands not widen");
8283 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Cond1
, Cond2
, Tmp1
,
8284 Tmp2
, Node
->getOperand(4));
8288 // Determine widen for the operand
8289 SDValue Tmp1
= Node
->getOperand(0);
8290 MVT TmpVT
= Tmp1
.getValueType();
8291 assert(TmpVT
.isVector() && "can not widen non vector type");
8292 MVT TmpEVT
= TmpVT
.getVectorElementType();
8293 MVT TmpWidenVT
= MVT::getVectorVT(TmpEVT
, NewNumElts
);
8294 Tmp1
= WidenVectorOp(Tmp1
, TmpWidenVT
);
8295 SDValue Tmp2
= WidenVectorOp(Node
->getOperand(1), TmpWidenVT
);
8296 Result
= DAG
.getNode(Node
->getOpcode(), dl
, WidenVT
, Tmp1
, Tmp2
,
8297 Node
->getOperand(2));
8300 case ISD::ATOMIC_CMP_SWAP
:
8301 case ISD::ATOMIC_LOAD_ADD
:
8302 case ISD::ATOMIC_LOAD_SUB
:
8303 case ISD::ATOMIC_LOAD_AND
:
8304 case ISD::ATOMIC_LOAD_OR
:
8305 case ISD::ATOMIC_LOAD_XOR
:
8306 case ISD::ATOMIC_LOAD_NAND
:
8307 case ISD::ATOMIC_LOAD_MIN
:
8308 case ISD::ATOMIC_LOAD_MAX
:
8309 case ISD::ATOMIC_LOAD_UMIN
:
8310 case ISD::ATOMIC_LOAD_UMAX
:
8311 case ISD::ATOMIC_SWAP
: {
8312 // For now, we assume that using vectors for these operations don't make
8313 // much sense so we just split it. We return an empty result
8315 SplitVectorOp(Op
, X
, Y
);
8320 } // end switch (Node->getOpcode())
8322 assert(Result
.getNode() && "Didn't set a result!");
8324 Result
= LegalizeOp(Result
);
8326 AddWidenedOperand(Op
, Result
);
8330 // Utility function to find a legal vector type and its associated element
8331 // type from a preferred width and whose vector type must be the same size
8333 // TLI: Target lowering used to determine legal types
8334 // Width: Preferred width of element type
8335 // VVT: Vector value type whose size we must match.
8336 // Returns VecEVT and EVT - the vector type and its associated element type
8337 static void FindWidenVecType(const TargetLowering
&TLI
, unsigned Width
, MVT VVT
,
8338 MVT
& EVT
, MVT
& VecEVT
) {
8339 // We start with the preferred width, make it a power of 2 and see if
8340 // we can find a vector type of that width. If not, we reduce it by
8341 // another power of 2. If we have widen the type, a vector of bytes should
8343 assert(TLI
.isTypeLegal(VVT
));
8344 unsigned EWidth
= Width
+ 1;
8347 EWidth
= (1 << Log2_32(EWidth
-1));
8348 EVT
= MVT::getIntegerVT(EWidth
);
8349 unsigned NumEVT
= VVT
.getSizeInBits()/EWidth
;
8350 VecEVT
= MVT::getVectorVT(EVT
, NumEVT
);
8351 } while (!TLI
.isTypeLegal(VecEVT
) ||
8352 VVT
.getSizeInBits() != VecEVT
.getSizeInBits());
8355 SDValue
SelectionDAGLegalize::genWidenVectorLoads(SDValueVector
& LdChain
,
8365 // We assume that we have good rules to handle loading power of two loads so
8366 // we break down the operations to power of 2 loads. The strategy is to
8367 // load the largest power of 2 that we can easily transform to a legal vector
8368 // and then insert into that vector, and the cast the result into the legal
8369 // vector that we want. This avoids unnecessary stack converts.
8370 // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
8371 // the load is nonvolatile, we an use a wider load for the value.
8372 // Find a vector length we can load a large chunk
8375 FindWidenVecType(TLI
, LdWidth
, ResType
, EVT
, VecEVT
);
8376 EVTWidth
= EVT
.getSizeInBits();
8378 SDValue LdOp
= DAG
.getLoad(EVT
, dl
, Chain
, BasePtr
, SV
, SVOffset
,
8379 isVolatile
, Alignment
);
8380 SDValue VecOp
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecEVT
, LdOp
);
8381 LdChain
.push_back(LdOp
.getValue(1));
8383 // Check if we can load the element with one instruction
8384 if (LdWidth
== EVTWidth
) {
8385 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ResType
, VecOp
);
8388 // The vector element order is endianness dependent.
8390 LdWidth
-= EVTWidth
;
8391 unsigned Offset
= 0;
8393 while (LdWidth
> 0) {
8394 unsigned Increment
= EVTWidth
/ 8;
8395 Offset
+= Increment
;
8396 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
8397 DAG
.getIntPtrConstant(Increment
));
8399 if (LdWidth
< EVTWidth
) {
8400 // Our current type we are using is too large, use a smaller size by
8401 // using a smaller power of 2
8402 unsigned oEVTWidth
= EVTWidth
;
8403 FindWidenVecType(TLI
, LdWidth
, ResType
, EVT
, VecEVT
);
8404 EVTWidth
= EVT
.getSizeInBits();
8405 // Readjust position and vector position based on new load type
8406 Idx
= Idx
* (oEVTWidth
/EVTWidth
);
8407 VecOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VecEVT
, VecOp
);
8410 SDValue LdOp
= DAG
.getLoad(EVT
, dl
, Chain
, BasePtr
, SV
,
8411 SVOffset
+Offset
, isVolatile
,
8412 MinAlign(Alignment
, Offset
));
8413 LdChain
.push_back(LdOp
.getValue(1));
8414 VecOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecEVT
, VecOp
, LdOp
,
8415 DAG
.getIntPtrConstant(Idx
++));
8417 LdWidth
-= EVTWidth
;
8420 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, ResType
, VecOp
);
8423 bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue
& Result
,
8427 // TODO: Add support for ConcatVec and the ability to load many vector
8428 // types (e.g., v4i8). This will not work when a vector register
8429 // to memory mapping is strange (e.g., vector elements are not
8430 // stored in some sequential order).
8432 // It must be true that the widen vector type is bigger than where
8433 // we need to load from.
8434 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
8435 MVT LdVT
= LD
->getMemoryVT();
8436 DebugLoc dl
= LD
->getDebugLoc();
8437 assert(LdVT
.isVector() && NVT
.isVector());
8438 assert(LdVT
.getVectorElementType() == NVT
.getVectorElementType());
8441 SDValue Chain
= LD
->getChain();
8442 SDValue BasePtr
= LD
->getBasePtr();
8443 int SVOffset
= LD
->getSrcValueOffset();
8444 unsigned Alignment
= LD
->getAlignment();
8445 bool isVolatile
= LD
->isVolatile();
8446 const Value
*SV
= LD
->getSrcValue();
8447 unsigned int LdWidth
= LdVT
.getSizeInBits();
8449 // Load value as a large register
8450 SDValueVector LdChain
;
8451 Result
= genWidenVectorLoads(LdChain
, Chain
, BasePtr
, SV
, SVOffset
,
8452 Alignment
, isVolatile
, LdWidth
, NVT
, dl
);
8454 if (LdChain
.size() == 1) {
8459 TFOp
=DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
8460 &LdChain
[0], LdChain
.size());
8466 void SelectionDAGLegalize::genWidenVectorStores(SDValueVector
& StChain
,
8476 // Breaks the stores into a series of power of 2 width stores. For any
8477 // width, we convert the vector to the vector of element size that we
8478 // want to store. This avoids requiring a stack convert.
8480 // Find a width of the element type we can store with
8481 MVT VVT
= ValOp
.getValueType();
8484 FindWidenVecType(TLI
, StWidth
, VVT
, EVT
, VecEVT
);
8485 EVTWidth
= EVT
.getSizeInBits();
8487 SDValue VecOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VecEVT
, ValOp
);
8488 SDValue EOp
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EVT
, VecOp
,
8489 DAG
.getIntPtrConstant(0));
8490 SDValue StOp
= DAG
.getStore(Chain
, dl
, EOp
, BasePtr
, SV
, SVOffset
,
8491 isVolatile
, Alignment
);
8492 StChain
.push_back(StOp
);
8494 // Check if we are done
8495 if (StWidth
== EVTWidth
) {
8500 StWidth
-= EVTWidth
;
8501 unsigned Offset
= 0;
8503 while (StWidth
> 0) {
8504 unsigned Increment
= EVTWidth
/ 8;
8505 Offset
+= Increment
;
8506 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
8507 DAG
.getIntPtrConstant(Increment
));
8509 if (StWidth
< EVTWidth
) {
8510 // Our current type we are using is too large, use a smaller size by
8511 // using a smaller power of 2
8512 unsigned oEVTWidth
= EVTWidth
;
8513 FindWidenVecType(TLI
, StWidth
, VVT
, EVT
, VecEVT
);
8514 EVTWidth
= EVT
.getSizeInBits();
8515 // Readjust position and vector position based on new load type
8516 Idx
= Idx
* (oEVTWidth
/EVTWidth
);
8517 VecOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VecEVT
, VecOp
);
8520 EOp
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EVT
, VecOp
,
8521 DAG
.getIntPtrConstant(Idx
++));
8522 StChain
.push_back(DAG
.getStore(Chain
, dl
, EOp
, BasePtr
, SV
,
8523 SVOffset
+ Offset
, isVolatile
,
8524 MinAlign(Alignment
, Offset
)));
8525 StWidth
-= EVTWidth
;
8530 SDValue
SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode
*ST
,
8533 // TODO: It might be cleaner if we can use SplitVector and have more legal
8534 // vector types that can be stored into memory (e.g., v4xi8 can
8535 // be stored as a word). This will not work when a vector register
8536 // to memory mapping is strange (e.g., vector elements are not
8537 // stored in some sequential order).
8539 MVT StVT
= ST
->getMemoryVT();
8540 SDValue ValOp
= ST
->getValue();
8541 DebugLoc dl
= ST
->getDebugLoc();
8543 // Check if we have widen this node with another value
8544 std::map
<SDValue
, SDValue
>::iterator I
= WidenNodes
.find(ValOp
);
8545 if (I
!= WidenNodes
.end())
8548 MVT VVT
= ValOp
.getValueType();
8550 // It must be true that we the widen vector type is bigger than where
8551 // we need to store.
8552 assert(StVT
.isVector() && VVT
.isVector());
8553 assert(StVT
.bitsLT(VVT
));
8554 assert(StVT
.getVectorElementType() == VVT
.getVectorElementType());
8557 SDValueVector StChain
;
8558 genWidenVectorStores(StChain
, Chain
, BasePtr
, ST
->getSrcValue(),
8559 ST
->getSrcValueOffset(), ST
->getAlignment(),
8560 ST
->isVolatile(), ValOp
, StVT
.getSizeInBits(), dl
);
8561 if (StChain
.size() == 1)
8564 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
8565 &StChain
[0], StChain
.size());
8569 // SelectionDAG::Legalize - This is the entry point for the file.
8571 void SelectionDAG::Legalize(bool TypesNeedLegalizing
,
8572 CodeGenOpt::Level OptLevel
) {
8573 /// run - This is the main entry point to this class.
8575 SelectionDAGLegalize(*this, TypesNeedLegalizing
, OptLevel
).LegalizeDAG();